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Abstract A weak formal theory of arithmetic is developed, entirely anal-
ogous to classical arithmetic but with two separate kinds of variables: in-
duction variables and quantifier variables. The point is that the provably
recursive functions are now more feasibly computable than in the classi-
cal case, lying between Grzegorczyk’s E2 and E3, and their computational
complexity can be characterized in terms of the logical complexity of their
termination proofs. Previous results of Leivant are reworked and extended
in this new setting, with quite different proof theoretic methods.
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1. Introduction

The classical methods of proof theory (cut elimination or normalization)
enable one to read off, from a proof that a recursively defined function
terminates everywhere, a bound on its computational complexity. This was
already implicit in the work of Kreisel (1951-52) fifty years ago, where
the first recursion theoretic characterization of the provably terminating
functions of arithmetic was given (in terms of an algebra of recursions over
transfinite well orderings of order-types less than ε0). However, although the
programs defining them are quite “natural” in their structure, the functions
themselves are (in general) far away from being realistically or feasibly
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computable. It took another thirty-five years before Buss (1986) had devel-
oped Bounded Arithmetic, and characterized the PTIME functions as those
provably terminating in its Σ1 fragment. More recently, through the work of
Bellantoni and Cook (1992) and Leivant (1994) on their different forms of
“tiered recursion”, there has been a growing interest in developing theories
analogous to classical arithmetic, but without the explicit quantifier-bounds
of Bounded Arithmetic, whose provably terminating functions form (much)
more realistic complexity classes than in the classical case. In particular,
Leivant’s (1995) theories based on his ramified induction schemes give proof
theoretic characterizations of PTIME and the low Grzegorczyk classes E2

and E3. What we do here is present a simple re-formulation of arithmetic,
motivated by the normal/safe variable separation of Bellantoni and Cook,
in which results similar to Leivant’s can be developed and extended. Our
methods, however, are quite different from his, being based on traditional
cut elimination with ordinal bounds. The analogies with the classical case
are very strong (cf. Fairtlough and Wainer (1998)).

Bellantoni and Cook made a simple syntactic restriction on the usual
schemes of primitive recursion, by inserting a semicolon to separate the
variables into two distinct classes: the recursion variables, which they call
“normal”, and the substitution variables, which they call “safe”. The effect
of this is quite dramatic: every function so defined is now polynomially
bounded! By working on binary number representation, they thus char-
acterize PTIME, and if instead one works with unary representation (as
we shall do) one obtains the Grzegorczyk class E2 (see also Handley and
Wainer (1999)). We shall consider the result of imposing a similar variable
separation on a formal system of arithmetic. Thus “input” or “normal”
variables will control the inductions, and will only occur free, whereas “out-
put” or “safe” variables may be bound by quantifiers. The resulting theory,
denoted EA(I;O) to signify this input/output separation of variables, we
call Elementary Arithmetic because its provably terminating functions all
lie in the Grzegorczyk class E3 of “elementary” functions (those computable
in a number of steps bounded by a finitely iterated exponential). There is a
well known complexity hierarchy for E3, according to the number of times
the exponential is iterated in producing the required bound. At the bottom
is E2 with polynomial bounds, at the next level lies EXPTIME with bounds
2p, p a polynomial, and so on. As we shall show, this hierarchy is closely re-
lated to the increasing levels of induction complexity of termination proofs.

The theory EA(I;O) will be based on minimal, not classical, logic. The
reason is that from a proof in classical logic of a Σ1 formula ∃aA(a) we
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can, by Herbrand’s Theorem, extract a finite set of terms ti such that
` A(t1) ∨ . . . ∨ A(tn). Although one of the ti will be a correct witness for
A, we don’t necessarily know which one. Minimal logic allows us to extract
one, correct witness, so it provides more precise computational information.
This will not be a restriction for us, since we will still be able to prove
termination of the same functions in EA(I;O) with minimal logic, as we
can using classical logic. On the other hand one needs to exercise more
care in measuring the complexity of induction formulas, since minimal
or intuitionistic logic is more sensitive to the precise logical structure of
formulas than is classical logic (see Burr (2000)).

A very appealing feature of Leivant’s “intrinsic” theories, which we too
adopt, is that they are based on Kleene’s equation calculus, which allows
for a natural notion of provable recursiveness, completely free of any coding
implicit in the more traditional definition involving the T-predicate. Thus
one is allowed to introduce arbitrary partial recursive functions f by means
of their equational definitions as axioms, but the logical and inductive power
of the theory severely restricts one’s ability to prove termination: f(x) ↓.
In Leivant’s theory over N (he allows for more abstract data types) this is
expressed by N(x)→ N(f(x)). In our theory, specific to N though it could
be generalised, definedness is expressed by

f(x) ↓ ≡ ∃a(f(x) ' a).

This highlights the principal logical restriction which must be applied to
the ∃-introduction and (dually) ∀-elimination rules of our theory EA(I;O)
described below.

If arbitrary terms t were allowed as witnesses for ∃-introduction, then
from the axiom t ' t we could immediately deduce ∃a(t ' a) and hence
f(x) ↓ for every f ! This is clearly not what we want. In order to avoid
it we make the restriction that only “basic” terms: variables or 0 or their
successors or predecessors, may be used as witnesses. This is not quite so
restrictive as it first appears, since from the equality rule

t ' a, A(t) ` A(a)

we can derive immediately

t ↓, A(t) ` ∃aA(a).

Thus a term may be used to witness an existential quantifier only when it
has been proven to be defined. In particular, if f is introduced by a defining
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equation f(x) ' t then to prove f(x) ↓ we first must prove (compute) t ↓.

For example suppose f is introduced by the defining equation:

f(x) ' g(x, h(x))

where g and h have been previously defined. Then the termination proof
for f(x) goes like this:

By the substitution axiom (which, interacting with equational cuts,
constitutes the only computation rule of the equation calculus),

h(x) ' b, g(x, b) ' a ` g(x, h(x)) ' a

and by the defining equation for f ,

g(x, h(x)) ' a ` f(x) ' a .

Therefore by an equational cut,

h(x) ' b, g(x, b) ' a ` f(x) ' a

and then by applying the ∃ rule on the right, followed by an ∃ rule on the
left (since variable a is then not free anywhere else),

h(x) ' b, g(x, b) ↓ ` f(x) ↓ .

Now assuming that g(x, b) ↓ has already been proven, we can cut it to
obtain

h(x) ' b ` f(x) ↓ .

Since b does not now occur free anywhere else, we can existentially quantify
it to obtain

h(x) ↓ ` f(x) ↓

and then, assuming h(x) ↓ is already proven, another cut gives

` f(x) ↓ .

Note that a bottom-up (goal-directed) reading of the proof determines the
order of computation of f(x) thus: first find the value of h(x), call it b, then
find the value of g(x, b), and then pass this as the value of f(x).

Here we can begin to see that, provided we formulate the theory care-
fully enough, proofs in its Σ1 fragment will correspond to computations
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in the equation calculus, and bounds on proof-size will yield complexity
measures.

2. The theory EA(I;O)

There will be two kinds of variables: “input” (or “normal”) variables de-
noted x, y, z, . . . , and “output” (or “safe”) variables denoted a, b, c, . . . ,
both intended as ranging over natural numbers. Output variables may be
bound by quantifiers, but input variables will always be free. The basic
terms are: variables of either kind, the constant 0, or the result of repeated
application of the successor S or predecessor P . General terms are built up
in the usual way from 0 and variables of either kind, by application of S, P
and arbitrary function symbols f, g, h, . . . denoting partial recursive func-
tions given by sets E of Herbrand-Gödel-Kleene-style defining equations.

Atomic formulas will be equations t1 ' t2 between arbitrary terms,
and formulas A,B, . . . are built from these by applying propositional
connectives and quantifiers ∃a, ∀a over output variables a. The negation of
a formula ¬A will be defined as A→⊥.

It will be convenient, for later proof theoretic analysis, to work with
logic in a sequent-style formalism, and the system G3 (with structural rules
absorbed) as set out on page 65 of Troelstra and Schwichtenberg (1996)
suits us perfectly, except that we write ` instead of their ⇒. However, as
already mentioned above, we shall work in their system G3m of “minimal”,
rather than “classical”, logic. This is computationally more natural, and it
is not a restriction for us, since (as Leivant points out) a classical proof of
f(x) ↓ can be transformed, by the double-negation interpretation, into a
proof in minimal logic of

(∃a((f(x) ' a→⊥)→⊥)→⊥)→⊥

and since minimal logic has no special rule for⊥ we could replace it through-
out by the formula f(x) ↓ and hence obtain an outright proof of f(x) ↓,
since the premise of the above implication becomes provable.

It is not necessary to list the propositional rules as they are quite
standard, and the cut rule (with “cut formula” C) is:

Γ ` C Γ, C ` A

Γ ` A

where, throughout, Γ is an arbitrary finite multiset of formulas. However,
as stressed above, the quantifier rules need restricting. Thus the minimal
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left-∃ and right-∃ rules are:

Γ, A(b) ` B

Γ, ∃aA(a) ` B

Γ ` A(t)
Γ ` ∃aA(a)

where, in the left-∃ rule the output variable b is not free in Γ, B, and in the
right-∃ rule the witnessing term t is basic. The left-∀ and right-∀ rules are:

Γ, ∀aA(a), A(t) ` B

Γ, ∀aA(a) ` B

Γ ` A(b)
Γ ` ∀aA(a)

where, in the left-hand rule the term t is basic, and in the right-hand rule
the output variable b is not free in Γ.

The logical axioms are, with A atomic,

Γ, A ` A

and the equality axioms are Γ ` t ' t and, again with A(.) atomic,

Γ, t1 ' t2, A(t1) ` A(t2).

The logic allows these to be generalised straightforwardly to an arbitrary
formula A and the quantifier rules then enable us to derive

Γ, t ↓, A(t) ` ∃aA(a)

Γ, t ↓, ∀aA(a) ` A(t)

for any terms t and formulas A.

Two further principles are needed, describing the data-type N, namely
induction and cases (a number is either zero or a successor). We present
these as rules rather than their equivalent axioms, since this will afford a
closer match between proofs and computations. The induction rule (with
“induction formula” A(.)) is

Γ ` A(0) Γ, A(a) ` A(Sa)
Γ ` A(x)

where the output variable a is not free in Γ and where, in the conclusion,
x is an input variable, or a basic term on an input variable.

The cases rule is
Γ ` A(0) Γ ` A(Sa)

Γ ` A(t)
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where t is any basic term. Note that with this rule it is easy to derive
∀a(a ' 0 ∨ a ' S(Pa)) from the definition: P (0) ' 0 and P (Sa) ' a.

Definition. Our notion of Σ1 formula will be restricted to those of the form
∃~aA(~a) where A is a conjunction of atomic formulas. A typical example is
f(~x) ↓. Note that a conjunction of such Σ1 formulas is provably equivalent
to a single Σ1 formula, by distributivity of ∃ over ∧.

Definition. A k-ary function f is provably recursive in EA(I;O) if it can
be defined by a system E of equations such that, with input variables
x1, . . . , xk,

Ē ` f(x1, . . . , xk) ↓

where Ē denotes the set of universal closures (over output variables) of the
defining equations in E.

3. Elementary Functions are Provably Recursive

We will first look at some examples of how termination proofs work.

Examples 3.1.

1. Let E be the following program that defines the function a+ b,

a+ 0 ' a, a+ Sb ' S(a+ b).

From an appropriate logical axiom we obtain Ē ` a+Sb ' S(a+ b) as
a consequence of left ∀ rules. Cutting with appropriate equality axioms
we obtain,

Ē, a+ b ' c ` a+ Sb ' Sc

which when read from left to right mirrors what we would expect the
order of computation to be. As Sc is a basic term we can existentially
quantify on the right. Now that c is no longer free anywhere else we can
existentially quantify on the left. What remains is the step premise for
an induction over b,

Ē, a+ b ↓ ` a+ Sb ↓ .

An equivalent sequent for when b is 0 can be trivially obtained. Thus
as an induction conclusion we obtain Ē ` a+ x ↓ .

2. For multiplication we need to augment E by

b+ c.0 ' b, b+ c.Sd ' (b+ c.d) + c.
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As above by starting from an appropriate axiom and applying the left
∀ rule three times we obtain, Ē ` b+ x.Sd ' (b+ x.d) + x and hence,

Ē, b+ x.d ' a ` b+ x.Sd ' a+ x.

Under the assumption that a+x ↓ we can existentially quantify on the
right we obtain,

Ē, a+ x ↓ , b+ x.d ' a ` b+ x.Sd ↓ .

This assumption can be cut out as it is the result of the previous exam-
ple. Now we can existentially quantify on the left over the remaining
variable a. What remains is an induction step over d, from which the
conclusion is Ē ` b + x.y ↓ , where y is any input variable. Note
that the cut reflects that to prove termination for multiplication we
need first have proved it for addition. Further note that we derive a+x
for addition not a + b. This precipitates our choice of formulating the
starting axiom over an input x.

3. If we recount this last derivation whereby the starting axiom is formu-
lated over x.y instead of the input x, then after applying the left ∀ rules
(the definedness of x.y having been obtained in the previous example
by setting b to be 0), we would have,

Ē ` b+ (x.y).Sd ' (b+ (x.y).d) + (x.y),

from which we obtain,

Ē, b+ (x.y).d ' a ` b+ (x.y).Sd ' a+ (x.y).

We follow the same steps as above. Assuming a + (x.y) ↓ we can
existentially quantify on the right. This assumption is then cut out
as it is exactly the result obtained from the previous example. The
induction step is obtained once we existentially quantify over a on the
left,

Ē, b+ (x.y).d ↓ ` b+ (x.y).Sd ↓

The conclusion is Ē ` b + (x.y).z ↓ . Clearly this procedure can be
repeated as many times as we would like. In particular, we therefore
obtain derivations for a+x2 ↓ , a+x3 ↓ , a+x4 ↓ , . . ., the building blocks
for constructing polynomials, over inputs variables. In the following we
shall generalise this argument.
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Definition. Let E be a system of defining equations containing the usual
primitive recursions for addition and multiplication and further equations
of the forms

p0 ' S0, pi ' pi0 + pi1 , pi ' pi0 .b

defining a sequence {pi : i = 0, 1, 2 . . .} of polynomials in variables ~b =
b1, . . . , bn. Henceforth we allow p(~b) to stand for any one of the polynomials
so generated (clearly all polynomials can be built up in this way).

Definition. The progressiveness of a formula A(a) with distinguished free
variable a, is expressed by the formula

ProgaA ≡ A(0) ∧ ∀a(A(a)→ A(Sa)).

Lemma 3.2. Let p(~b) be any polynomial defined by a system of equations
E as above. Then for every formula A(a) we have, with input variables
substituted for the variables of p,

Ē, ProgaA ` A(p(~x)).

Proof. Proceed by induction over the build-up of the polynomial p accord-
ing to the given equations E. We argue in an informal natural deduction
style, deriving the succedent of a sequent from its antecedent.

If p is the constant 1 (that is S0) then A(S0) follows immediately from
A(0) and A(0)→ A(S0), the latter arising from substitution of the defined,
basic term 0 for the universally quantified variable a in ∀a(A(a)→ A(Sa)).

Suppose p is p0 + p1 where, by the induction hypothesis, the result is
assumed for each of p0 and p1 separately. First choose A(a) to be the formula
a ↓ and note that in this case ProgaA is provable. Then the induction
hypothesis applied to p0 gives p0(~x) ↓. Now again with an arbitrary formula
A, we can easily derive

Ē, ProgaA, A(a) ` Progb(a+ b ↓ ∧ A(a+ b))

because if a + b is assumed to be defined, it can be substituted for the
universally quantified a in ∀a(A(a)→A(Sa)) to yield A(a+ b)→A(a+Sb).
Therefore by the induction hypothesis applied to p1 we obtain

Ē, ProgaA, A(a) ` a+ p1(~x) ↓ ∧ A(a+ p1(~x))

and hence
Ē, ProgaA ` ∀a(A(a)→ A(a+ p1(~x))).
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Finally, substituting the defined term p0(~x) for a, and using the induction
hypothesis on p0 to give A(p0(~x)) we get the desired result

Ē, ProgaA ` A(p0(~x) + p1(~x)).

Suppose p is p1.b where b is a fresh variable not occurring in p1. By the
induction hypothesis applied to p1 we have as above, p1(~x) ↓ and

Ē, ProgaA ` ∀a(A(a)→ A(a+ p1(~x)))

for any formula A. Also, from the defining equations E and since p1(~x) ↓,
we have p1(~x).0 ' 0 and p1(~x).Sb ' (p1(~x).b) + p1(~x). Therefore we can
prove

Ē, ProgaA ` Progb(p1(~x).b ↓ ∧ A(p1(~x).b))

and an application of the EA(I;O)-induction principle on variable b gives,
for any input variable x,

Ē, ProgaA ` p1(~x).x ↓ ∧ A(p1(~x).x)

and hence Ē, ProgaA ` A(p(~x)) as required.

Notice that ProgaA ` A(x) is equivalent to the induction principle of
EA(I;O). The preceding lemma extends this principle to any polynomial
in ~x whereby, through inspection, the induction complexity is maintained
as an “A” induction. What follows is the extension of this principle to any
finitely iterated exponential, the cost of which being ever greater induction
complexity. We therefore start by defining a measure for induction com-
plexity.

Definition. A Σ1 formula is said to be of “level-1” and a “level-(n+1)”
formula is one of the form

∀a(C(a)→ D(a))

where C and D are level-n. We could allow a string of universal quantifiers
∀~a in the prefix, but it is not necessary for what follows. Typical exam-
ples of level-2 formulas would be ∀a( f(a)↓), ∀a( f(a)↓) ∧ ∀a( g(a)↓) and
∀c(c 6 d → ∀a( f(a, c) ↓)). The latter two do not fit the definition, but
they are both minimally provably equivalent to level-2 formulas, namely
∀a(f(a) ↓ ∧ g(a) ↓) and ∀c∀a(c 6 d → f(a, c) ↓) respectively. All these
formulations play roles in the following examples.
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Examples 3.3.

1. Let E contain the the following two equations,

a+ 20 ' Sa, a+ 2Sb ' (a+ 2b) + 2b

from which we can now obtain,

Ē, a+ 2b ' c ` a+ 2Sb ' c+ 2b.

Using the more general existential rule for the right we obtain,

Ē, c+ 2b ↓ , a+ 2b ' c ` a+ 2Sb ↓ .

To apply the induction all that remains is to existentially bind the
remaining formula over the variable c. This is inhibited since c appears
free in the first formula. The solution is easy for we first universally
bind this free occurrence of c, and then apply the left ∃ rule to obtain,

Ē, ∀a( a+ 2b ↓ ), a+ 2b ↓ ` a+ 2Sb ↓ .

The simplicity of the solution hides the significance of its consequences;
the induction complexity. The induction is going to be over b and as
this variable appears throughout all the remaining formulas, we need
to first “tidy up”, through quantifications. Therefore our induction is
no longer a level-1 induction (as for addition, multiplication and all
polynomials), but of level-2,

Ē, ∀a( a+ 2b ↓ ) ` ∀a( a+ 2Sb ↓ ).

The conclusion, Ē ` ∀a( a + 2x ↓ ), completes the derivation. Note
that the two uses of left ∀ rule, correspond to two applications of the
induction hypothesis.

2. Let Fib(a, b) be the function that gives a plus the b’th entry in the Fi-
bonacci sequence, and let E be the following program program defining
it:

Fib(a, 0) ' Sa, F ib(a, 1) ' Sa, F ib(a, SSb) ' Fib(Fib(a, b), Sb).

When unravelled the recursion step becomes,

Ē, F ib(a, b) ' c ` Fib(a, SSb) ' Fib(c, Sb).

Existentially quantifying on the right, under the assumption that wit-
ness Fib(c, Sb) is defined, we obtain,

Ē, F ib(a, b) ' c, F ib(c, Sb) ↓ ` Fib(a, SSb) ↓ .
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Notice that c appears twice (reflecting the substitution that increases
the function’s complexity) and that an existential quantifier on the
left would have to bind both occurrences, something that would be
undesired. Universally quantifying the righter most occurrence solves
the problem and after further quantifications we now have,

Ē, ∀a(Fib(a, b) ↓ ), ∀a(Fib(a, Sb) ↓ ) ` ∀a(Fib(a, SSb) ↓ ).

Along with ∀a(Fib(a, Sb) ↓) ` ∀a(Fib(a, Sb) ↓), (easily obtained from
a logical axiom) we have after a right ∧ rule following immediately by
a left ∧ rule,

Ē,∀a(Fib(a, b)↓)∧∀a(Fib(a, Sb)↓)`∀a(Fib(a, Sb)↓)∧∀a(Fib(a, SSb)↓).

This is now an induction step, from which we could extract the re-
sult that ∀a(Fib(a, x) ↓). Note that although the induction formula,
∀a(Fib(a, b) ↓) ∧ ∀a(Fib(a, Sb) ↓), is not formally a level-2 formula, it
is provably equivalent to one, namely ∀a( Fib(a, b) ↓ ∧Fib(a, Sb) ↓ ).

3. A more complex example suggested by H. Jervell: let E contain the
following three equations,

f(a, 0, c) ' a+ Sc,

f(a, Sb, 0) ' f(a, b, b),

f(a, Sb, Sc) ' f(f(a, Sb, c), b, b).

describing the function a + Fac(b).Sc as a double recursion, where
Fac(b) is the factorial of b, the function we are interested in. Following
in the usual way, we obtain,

Ē, f(a, Sb, c) ' d ` f(a, Sb, Sc) ' f(d, b, b).

Applying a right ∃ rule, under the assumption that f(d, b, b)↓ , gives,

Ē, f(d, b, b) ↓, f(a, Sb, c) ' d ` f(a, Sb, Sc) ↓ .

Again we are obliged to universally quantify on the left, to enable
the appropriate left existential quantification. From this, after further
∀ rules, first on the left then finally on the right, we have,

Ē, ∀a( f(a, b, b) ↓ ), ∀a( f(a, Sb, c) ↓ ) ` ∀a( f(a, Sb, Sc) ↓ ).

We trivially obtain Ē,∀a( f(a, b, b) ↓ ) ` ∀a( f(a, Sb, 0) ↓ ) from the
second equation of E. Therefore we have,

Ē, ∀a( f(a, b, b) ↓ ) ` Progc( ∀a( f(a, Sb, c) ↓ ) ).
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Looking ahead, we know that if we were to apply the induction rule
here, we will be prevented from applying the second induction at a
later stage. Instead, we need a stronger form of induction, one that
enables us to derive the following conclusion,

Ē, ∀a( f(a, b, b) ↓ ) ` ∀c( c 6 x→ ∀a( f(a, Sb, c) ↓ ) ).

For from this sequent after inverting the outermost universal quantifier
on the right at Sb and introducing an implication on the left with a
derivation of Ē, Sb 6 x ` b 6 x we arrive at,

Ē, b 6 x→ ∀a( f(a, b, b) ↓ ) ` Sb 6 x→ ∀a( f(a, Sb, Sb) ↓ ).

Now we may apply an induction over b to obtain,

Ē ` x 6 x→ ∀a( f(a, x, x) ↓ ),

from which we may extract the result that a+ Fac(Sx) is defined.

There remain two outstanding parts of the proof. The first is the
stronger form of induction, that from the premise Ē,Γ ` ProgaA(a)
we may derive Ē,Γ ` ∀a( a 6 x → A(a) ). Thus we augment E by
the following equations that define the predecessor and modified minus
functions,

P0 ' 0, P (Sb) ' b

a .− 0 ' a, a .− Sb ' Pa .− b

and we define t 6 r by t .− r ' 0. From these extra equations alone we
derive Ē, a 6 Sb ` Pa 6 b. Further, from the premise of progression
and that Ē ` ∀a( a ' 0 ∨ a ' S(Pa) ) (easily obtained from cases) we
derive Ē, A(Pa) ` A(a). Putting these together with the implication
rules we have,

Ē, Pa 6 b→ A(Pa) ` a 6 Sb→ A(a).

Universally quantifying on the left, over witness Pa, and then on the
right over variable a we have the induction step. The case for when b
is 0 is trivially obtained and the result then follows from an induction.

The second, and final, outstanding part of the original proof is the
derivation of Ē, Sb 6 x ` b 6 x. From the axiom

Pa .− Sb ' P (a .− Sb) ` Pa .− Sb ' P (a .− Sb)
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we obtain,

Ē, PPa .− b ' P (Pa .− b) ` Pa .− Sb ' P (a .− Sb),

by substitution since Pa .−Sb ' PPa .−b and a .−Sb ' Pa .−b. Universally
quantifying, first on the left with witness Pa and then on the right over
variable a we obtain,

Ē, ∀a(Pa .− b ' P (a .− b) ) ` ∀a(Pa .− Sb ' P (a .− Sb) ).

For when b is 0 we can trivially derive Ē ` ∀a(Pa .−0 ' P (a .−0) ), thus
we obtain from an induction Ē ` ∀a(Pa .− x ' P (a .− x)). Substituting
the term Sb for the universally quantified a, we obtain

Ē ` PSb .− x ' P (Sb .− x)

and from the definition of predecessor this is the same as

Ē ` b .− x ' P (Sb .− x).

Thus if Sb .− x ' 0, (i.e. Sb 6 x), then b .− x ' 0, (i.e. b 6 x), since
P0 ' 0, and we are therefore done.

Note that the induction takes the form ∀c( c 6 d→ ∀a( f(a, Sb, c) ↓ ) ),
which although is not formally a level-2 formula is indeed provably
equivalent to one, namely, ∀c∀a( c 6 d→ f(a, Sb, c)↓ ).

The three functions, exponential, Fibonacci and factorial, have two
properties in common; firstly, they all need level-2 induction to prove their
termination and secondly they are all register machine computable in an
exponential number of steps. This relationship is of no coincidence, as it is
a result that follows from the following more general results.

Definition. Extend the system of equations E that includes the equations
for constructing polynomials, by adding the new recursive definitions:

f1(a, 0) ' Sa, f1(a, Sb) ' f1(f1(a, b), b)

and for each k = 2, 3, . . .,

fk(a, b1, . . . , bk) ' f1(a, fk−1(b1, . . . , bk))

so that f1(a, b) = a+ 2b and fk(a,~b) = a+ 2fk−1(~b). Finally define

2k(p(~x)) ' fk(0, . . . 0, p(~x))

for each polynomial p given by E.
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Lemma 3.4. In EA(I;O) we can prove, for each k, for any polynomial p
and any formula A(a),

Ē, ProgaA ` A( 2k(p(~x)) ).

Proof. First note that by a similar argument to one used in the previous
lemma (and going back all the way to Gentzen) we can prove, for any
formula A(a),

Ē, ProgaA ` Progb∀a(A(a)→ f1(a, b) ↓ ∧ A(f1(a, b)))

since the b := 0 case follows straight from ProgaA, and the induction
step from b to Sb follows by appealing to the hypothesis twice: from A(a)
we first obtain A(f1(a, b)) with f1(a, b) ↓, and then (by substituting the
defined f1(a, b) for the universally quantified variable a) from A(f1(a, b))
follows A(f1(a, Sb)) with f1(a, Sb) ↓, using the defining equations for f1.

The result is now obtained straightforwardly by induction on k. Assum-
ing Ē and ProgaA we derive

Progb∀a(A(a)→ f1(a, b) ↓ ∧ A(f1(a, b)))

and then by the previous lemma,

∀a(A(a)→ f1(a, p(~x)) ↓ ∧ A(f1(a, p(~x))))

and then by putting a to be 0 and using A(0) we have 21(p(~x)) ↓ and
A(21(p(~x))), which is the case k = 1. For the step from k to k + 1 do the
same, but instead of the previous lemma use the induction to replace p(~x)
by 2k(p(~x)).

Theorem 3.5. Every elementary (E3) function is provably recursive in
the theory EA(I;O), and every sub-elementary (E2) function is provably
recursive in the fragment which allows induction only on Σ1 formulas. Every
function computable in number of steps bounded by an exponential function
of its inputs is provably recursive in the “level-2” inductive fragment of
EA(I;O).

Proof. Any elementary function g(~x) is computable by a register machine
M (working in unary notation with basic instructions “successor”, “pre-
decessor”, “transfer” and “jump”) within a number of steps bounded by
2k(p(~x)) for some fixed k and polynomial p. Let r1(c), r2(c), . . . , rn(c) be
the values held in its registers at step c of the computation, and let i(c)
be the number of the machine instruction to be performed next. Each of
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these functions depends also on the input parameters ~x, but we suppress
mention of these for brevity. The state of the computation 〈i, r1, r2, . . . , rn〉
at step c+ 1 is obtained from the state at step c by performing the atomic
act dictated by the instruction i(c). Thus the values of i, r1, . . . , rn at step
c+ 1 can be defined from their values at step c by a simultaneous recursive
definition involving only the successor S, predecessor P and definitions by
cases C. So now, add these defining equations for i, r1, . . . , rn to the system
E above, together with the equations for predecessor and cases:

P (0) ' 0, P (Sa) ' a

C(0, a, b) ' a, C(Sd, a, b) ' b
and notice that the cases rule built into EA(I;O) ensures that we can prove
∀d∀a∀b C(d, a, b) ↓. Since the passage from one step to the next involves
only applications of C or basic terms, all of which are provably defined, it
is easy to convince oneself that the Σ1 formula

∃~a (i(c) ' a0 ∧ r1(c) ' a1 ∧ . . . ∧ rn(c) ' an)

is provably progressive in variable c. Call this formula A(~x, c). Then by the
second lemma above we can prove

Ē ` A(~x, 2k(p(~x)))

and hence, with the convention that the final output is the value of r1 when
the computation terminates,

Ē ` r1(2k(p(~x))) ↓ .

Hence the function g given by g(~x) ' r1(2k(p(~x))) is provably recursive.

In just the same way, but using only the first lemma above, we see that
any sub-elementary function (which, e.g. by Rödding (1968), is register ma-
chine computable in a number of steps bounded by just a polynomial of its
inputs) is provably recursive in the Σ1-inductive fragment. This is because
the proof of A(~x, p(~x)) in lemma 3.2 only uses inductions on substitution
instances of A, and here, A is Σ1.

To see that a function computable in 6 2p(~x) steps is provably recursive
in the level-2 inductive fragment, we need only verify that the proof of
Ē ` A(~x, 21(p(~x))) uses inductions that are at most level-2. Therefore, all
we need to do is analyse the proofs of lemmas 3.2 and 3.4 a little more
carefully. For any polynomial term p let B(p) be the formula

∀c(A(~x, c)→ p ↓ ∧f1(c, p) ↓ ∧A(~x, f1(c, p)) )
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and notice that although it isn’t quite a level-2 formula, it is trivially
and provably equivalent to one. (Recall that our notion of Σ1 formula
is restricted to an existentially quantified conjunction of equations, and
the conjunction occurring after the implication inside B is equivalent to
a single Σ1 formula by distribution of ∃ over ∧). Notice also that B(b) is
provably progressive since A(~x, c) is. Hence by lemma 3.2 we can prove
Ē ` B(p(~x)) for any polynomial p, and by setting c := 0 we obtain the
desired result. It only remains to check that this application of lemma 3.2
requires nothing more than level-2 induction. In fact the inductions required
are on formulas of shape q ↓ ∧B(p) with q other polynomial terms, but
since we can prove A(~x, 0) the subformulas q ↓ can also be shifted after
the implication inside B, yielding provably equivalent level-2 forms. Thus
level-2 induction suffices, and this completes the proof.

4. Provably Recursive Functions are Elementary

Suppose we have a derivation of Ē ` f(~x) ↓ in EA(I;O), and suppose (arbi-
trary, but fixed) numerals n̄1, n̄2, . . . are substituted for the input variables
~x = x1, x2, . . . throughout. In the resulting derivation, each application of
induction takes the form:

Γ ` A(0) Γ, A(a) ` A(Sa)
Γ ` A(t(n̄i))

where t(xi) is the basic term appearing in the conclusion of the original
(unsubstituted) EA(I;O)-induction. Let m denote the value of t(n̄i), so m
is not greater than ni plus the length of term t. Furthermore, let ` denote
the length of the binary representation of m. Then, given the premises, we
can unravel the induction so as to obtain a derivation of

Γ ` A(m̄)

by a sequence of cuts on the formula A, with proof-height `+ 1. To see this
we first induct on ` to derive

Γ, A(a) ` A(Sma) and Γ, A(a) ` A(Sm+1a)

by sequences of A-cuts with proof-height `. This is immediate when ` = 1,
and if ` > 1 then either m = 2m0 or m = 2m0 + 1 where m0 has binary
length less than `. So from the result for m0 we get

Γ, A(a) ` A(Sm0a) and Γ, A(Sm0a) ` A(Sma)

by substitution of Sm0a for the free variable a, and both of these derivations
have proof-height `− 1. Therefore one more cut yields

Γ, A(a) ` A(Sma)
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as required. The case A(Sm+1a) is done in just the same way.

Therefore if we now substitute 0 for variable a, and appeal to the base
case of the induction, a final cut on A(0) yields Γ ` A(m̄) with height
`+ 1 as required.

What we have just done is unravelled the induction up to A(m̄), re-
placing the single application of the induction rule by a sequence of cuts.
Thus if we make any fixed numerical instantiation of the input variables,
a proof in EA(I;O) can be unravelled into one in which all the inductions
have been removed, and replaced by sequences of cuts on the induction
formulas. The Cut-Elimination process then allows us to successively reduce
the logical complexity of cut formulas, but the price paid is an exponential
increase in the height of the proof. Once we get down to the level of Σ1

cut formulas, what remains is essentially a computation (from the given
system of equations E), and its complexity will correspond to the number
of proof-steps. However, the size of the resulting proof (or computation) will
vary with the size of numerical inputs originally substituted for the input
variables. What we need is some way of giving a uniform bound on the
proof-size, independent of the given input numbers. This is where ordinals
enter into proof theory.

4.1. ORDINAL BOUNDS FOR RECURSION

For each fixed number k, we inductively generate an infinitary system of
sequents

E, n : N, Γ `α A

where (i) E is a (consistent) set of Herbrand-Gödel-Kleene defining equa-
tions for partial recursive functions f, g, h, . . . ; (ii) n is a bound on the
numerical inputs (or more precisely, its representing numeral); (iii) A is a
closed formula, and Γ a finite multiset of closed formulas, built up from
atomic equations between arbitrary terms t involving the function symbols
of E; and (iv) α, β denote ordinal bounds which we shall be more specific
about later (for the time being think of β as being smaller than α “modulo
k”).

Note that we do not explicitly display the parameter k in the sequents
below, but if we later need to do this we shall insert an additional declara-
tion k : I in the antecedent thus:

E, k : I, n : N, Γ `α A .
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Intuitively, k will be a bound on the lengths of “unravelled inductions”.

The first two rules are just the input and substitution axioms of the
equation calculus, the next two are computation rules for N , and the rest
are essentially just formalised versions of the truth definition, with Cut
added.

E1 E, n : N, Γ `α e(~n) where e is either one of the defining equations of
E or an identity t ' t, and e(~n) denotes the result of substituting, for
its variables, numerals for numbers 6 n.

E2 E, n : N, Γ, t1 ' t2, e(t1) `α e(t2) where e(t1) is an equation
between terms in the language of E, with t1 occurring as a subterm,
and e(t2) is the result of replacing an occurrence of t1 by t2.

N1
E, n : N, Γ `α m : N provided m 6 n+ 1

N2
E, n : N, Γ `β n′ : N E, n′ : N, Γ `β′ A

E, n : N, Γ `α A

Cut
E, n : N, Γ `β C E, n : N, Γ, C `β′ A

E, n : N, Γ `α A

∃L
E, max(n, i) : N, Γ, B(i) `βi A for every i ∈ N

E, n : N, Γ, ∃bB(b) `α A

∃R
E, n : N, Γ `β m : N E, n : N, Γ `β′ A(m)

E, n : N, Γ `α ∃aA(a)

∀L
E, n : N, Γ `β m : N E, n : N, Γ, ∀bB(b), B(m) `β′ A

E, n : N, Γ, ∀bB(b) `α A

∀R
E, max(n, i) : N, Γ `βi A(i) for every i ∈ N

E, n : N, Γ `α ∀aA(a)
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In addition, there are of course two rules for each propositional symbol,
but it is not necessary to list them since they are quite standard. However
it should be noted that the rules essentially mimic the truth definition
for arithmetic, but as with EA(I;O) they are formalized in the style of
minimal, not classical, logic. They provide a system within which the
inductive proofs of EA(I;O) can be unravelled in a uniform way.

Ordinal Assignment à la Buchholz (1987).
The ordinal bounds on sequents above are intensional, “tree ordinals”,

generated inductively by: 0 is a tree ordinal; if α is a tree ordinal so is
α+1; and if λ0, λ1, λ2, . . . is an ω-sequence of tree ordinals then the function
i 7→ λi denoted λ = supλi, is itself also a tree ordinal. Thus tree ordinals
carry a specific choice of fundamental sequence to each “limit” encountered
in their build-up, and because of this the usual definitions of primitive re-
cursive functions lift easily to tree ordinals. For example addition is defined
by:

α+ 0 = 0, α+ (β + 1) = (α+ β) + 1, α+ λ = sup(α+ λi)

and multiplication is defined by:

α.0 = 0, α.(β + 1) = α.β + α, α.λ = supα.λi

and exponentiation is defined by:

20 = 1, 2β+1 = 2β + 2β, 2λ = sup 2λi .

For ω we choose the specific fundamental sequence ω = sup(i + 1). For ε0

we choose the fundamental sequence ε0 = sup 2i(ω2) where 2i(β) is defined
to be β if i = 0 and 22i−1(β) if i > 0.

Definitions. For each integer i there is a predecessor function given by:

Pi(0) = 0, Pi(α+ 1) = α, Pi(λ) = Pi(λi)

and by iterating Pi we obtain, for each non-zero tree ordinal α, the finite
set α[i] of all its “i-predecessors” thus:

α[i] = {Pi(α), P 2
i (α), P 3

i (α), . . . , 0}.

Call a tree ordinal α “structured” if every sub-tree ordinal of the form
λ = supλi (occurring in the build-up of α) has the property that λi ∈ λ[i+1]
for all i. Then if α is structured, α[i] ⊂ α[i + 1] for all i, and each of its
sub-tree ordinals β appears in one, and all succeeding, α[i]. Thus we can
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think of a structured α as the directed union of its finite sub-orderings α[i].
The basic example is ω[i] = {0, 1, . . . , i}. All tree ordinals used here will be
structured ones.

Ordinal Bounds. The condition on ordinal bounds in the above sequents
is to be as follows:

− In rules E1, E2, N1, the bound α is arbitrary.
− In all other rules, the ordinal bounds on the premises are governed by

β, β′, βi ∈ α[k] where k is the fixed parameter.

Lemma 4.1. (Weakening) If E, n : N, Γ `α A where n 6 n′ and
α[k] ⊂ α′[k] then E, n′ : N, Γ `α′ A.

4.2. BOUNDING FUNCTIONS

Definition. The bounding functions Bα(k;n) are given by the recursion:

B0(k;n) = n+ 1, Bα+1(k;n) = Bα(k;Bα(k;n)), Bλ(k;n) = Bλk(k;n) .

Lemma 4.2. m 6 Bα(k;n) if and only if, using the N1, N2 rules, we can
derive k : I, n : N `α m : N .

Proof. For the “only if” proceed by induction on α. If α = 0 the result
is immediate by rule N1. If α > 0 then it’s easy to see that Bα(k;n) =
Bβ(k;Bβ(k;n)) where β = Pk(α). So if m 6 Bα(k;n) then m 6 Bβ(k;n′)
where n′ = Bβ(k;n). Therefore by the induction hypothesis we have both
k : I, n : N `β n′ : N and k : I, n′ : N `β m : N . Hence we obtain by the
N2 rule k : I, n : N `α m : N .

The “if” part again follows by induction on α. The result is immediate if
the sequent k : I, n : N `α m : N comes about by the N1 rule. If it comes
about by an application of N2 from premises k : I, n : N `β n′ : N and
k : I, n′ : N `β′ m : N then by the induction hypothesis n′ 6 Bβ(k;n)
and m 6 Bβ′(k;n′). Thus m 6 Bβ′(k;Bβ(k;n)) and this is bounded by
Bα(k;n) since β, β′ ∈ α[k].

Lemma 4.3. Bα(k;n) = n+ 2G(α,k) where G(α, k) is the size of α[k]. Fur-
thermore, if α = 2i(ω.d) ≺ ε0 then G(α, k) is simply obtained by substituting
k + 1 for ω thus G(α, k) = 2i((k + 1).d).

Proof. The first part follows directly from the recursive definition of Bα, by
noting also that G(0, k)=0, G(α+1, k)=G(α, k)+1 and G(λ, k)=G(λk, k).
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The second part uses G(ω, k) = G(k+1, k) = k+1 together with the easily
verified fact that if ϕ(α, β) denotes either α+ β or α.β or αβ then

G(ϕ(α, β), k) = ϕ(G(α, k), G(β, k)) .

Lemma 4.4. If α is structured, β ∈ α[k], k 6 k′ and n 6 n′ then
Bβ(k;n) < Bα(k;n) 6 Bα(k′;n′).

Proof. Immediate from the above.

4.3. EMBEDDING EA(I;O), AND CUT REDUCTION

Lemma 4.5. (Embedding) If Ē ` f(~x) ↓ in EA(I;O) there is a fixed number
d determined by this derivation, such that: for all inputs ~n of binary length
6 k, we can derive

E, k : I, 0 : N `ω.d f(~n) ↓

in the infinitary system. Furthermore the non-atomic cut-formulas in this
derivation are the induction-formulas occurring in the EA(I;O) proof.

Proof. First, by standard “free cut”-elimination arguments we can elimi-
nate from the given EA(I;O) derivation all non-atomic cut-formulas which
are not induction formulas. Then pass through the resulting free-cut-free
proof, substituting the numerals for the input variables and translating
each proof-rule into the corresponding infinitary rule with an appropriate
ordinal bound. The non-inductive steps are quite straightforward, and each
induction is unravelled in the manner described earlier. For suppose the two
premises of the induction have been embedded with ordinal bound ω.d. If
the conclusion is A(t(xi)) with t a basic term then, upon substitution of ni
for xi, we obtain t(ni) with value m 6 ni + c where c measures the length
of the term t (determined by the given EA(I;O) proof). The binary length
of m is then ` < k + c and we thus obtain a derivation of

E, k : I, m : N `ω.d+k+c A(m)

whose ordinal bound we can manipulate so that

E, k : I, m : N `ω.(d+c)+k A(m) .

Now m 6 c + 2k+1 = Bω(k; c) and c 6 Bω.c(k; 0). So m 6 Bω.(d+c)(k; 0)
and by the lemma about B,

E, k : I, 0 : N `ω.(d+c) m : N .
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Therefore by applying the N2 rule,

E, k : I, 0 : N `ω.(d+c)+k+1 A(m)

and then since ω.(d+ c+ 1)[k] = ω.(d+ c) + k + 1[k] we have

E, k : I, 0 : N `ω.(d+c+1) A(m)

as required.

Lemma 4.6. (Cut Reduction) If Ē ` f(~x) ↓ in EA(I;O) then there is a
tree ordinal α ≺ ε0 such that: for all inputs ~n of binary length 6 k, we can
derive

E, k : I, 0 : N `α f(~n) ↓
by an infinitary derivation in which all the cut formulas are at worst Σ1.

Proof. The Embedding Lemma above gives a derivation of

E, k : I, 0 : N `ω.d f(~n) ↓

wherein the cut formulas might be of great logical complexity, depending on
the inductions used in the original EA(I;O) proof. However Gentzen-style
cut-reduction applies to the infinitary system (whereas it doesn’t apply
directly to EA(I;O)). Thus the “sizes” of cut formulas can be successively
reduced, one level at a time, so that all that remains are cut formulas
of shape Σ1. But each time the cuts are reduced in size, there will be
an exponential increase in the ordinal bound of the resulting derivation.
Therefore, if the maximum size of induction formula used in the EA(I;O)
proof is r, then we obtain the desired derivation

E, k : I, 0 : N `α f(~n) ↓

with at most Σ1 cuts and ordinal bound α ≺ 2r(ω.d) ≺ ε0.

We now describe briefly how the cut reduction process works. First
define the size of a formula to be 0 if it is a conjunction of atoms, 1 if it is
Σ1, and r + 1 otherwise, where r is the maximum size of its subformulas.
Then define the cut rank of a derivation to be the maximum size of all cut
formulas appearing in it. There are two steps to the process:

Step (i) Suppose we have two derivations in the infinitary system:

E, k : I, n : N, Γ `β C

and
E, k : I, n : N, Γ, C `γ A
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both with cut rank 6 r, and where C is of size r + 1. Suppose also that
β, γ ∈ α[k] for some fixed α. Obviously we could apply the Cut Rule, with
cut formula C, to derive

E, k : I, n : N, Γ `α A

but the cut rank would then be r + 1. The point is we can do better than
this, and replace this cut by another one of rank r. However the ordinal
bound will increase to either β + γ or γ + β, depending on the form of cut
formula C.

As an example, suppose C is of the form ∀aD(a). Then by induction on
γ we show that we can remove C and derive

E, k : I, n : N, Γ `β+γ A

with cut rank r.

For suppose the derivation with bound γ arises by an application of the
∀L rule on formula C. Then, suppressing E, k : I and Γ in the antecedent,
we have premises n : N, `γ0 m : N and n : N, C, D(m) `γ1 A, and by
applying the induction hypothesis to remove C from the second of these,
we obtain n : N, D(m) `β+γ1 A. Also, by inverting the derivation with
bound β we obtain max(n,m) : N `βm D(m) for some βm ∈ β[k] and
then by the N2 rule, n : N `β+max(γ0,γ1) D(m) provided that γ0 and γ1

are not both zero. We can then derive n : N `β+γ A by a cut on the
formula D(m) and the cut rank will be just r as required, since the size of
D is one less than the size of C. If, on the other hand, γ0 = γ1 = 0 then
n : N, C, D(m) `0 A is an axiom, and therefore so is n : N, D(m) `β A
since C is not atomic and can thus be deleted from any axiom. Hence using
N2 to give n : N `β D(m) we again derive n : N `β+γ A with cut rank
r by a cut on D(m) as before.

If the derivation with bound γ arises by an application of any other
rule, then the C will appear in the premises as an inactive “side formula”
which can be removed simply by applying the induction hypothesis, and
adding β to their ordinal bounds. Then that rule can be re-applied to give
the desired result. This completes our example of Step (i). The other cases
are handled in a similar way, though sometimes the induction must be on
β instead of γ, producing an ordinal bound γ + β.

Step (ii) Transform any derivation with ordinal bound α and cut rank
r + 1 into a derivation of the same sequent, but with cut rank 6 r and
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ordinal bound 2α, as follows using Step (i):

Proceed by induction on α with cases according to the last rule applied.
If this last rule is a cut with cut formula C of size r + 1 then the premises
(with all “side formulas” suppressed) will be of the form `β C and C `γ A
with β, γ ∈ α[k]. By increasing the smaller of these bounds if necessary,
using weakening, we may assume that they are both the same. Applying
the induction hypothesis to each premise, one obtains derivations `2β C

and C `2β A both now with cut rank 6 r. Then Step (i) applies to give a
derivation of A with cut rank r and ordinal bound 2β + 2β , which is either
equal to 2α or can be weakened to it.

If the last rule applied is anything other than a cut of rank r + 1, then
simply apply the induction hypothesis to the premises in order to reduce
their cut rank, and then re-apply that last rule, noting that if β ∈ α[k] then
2β ∈ 2α[k]. This completes the proof of the Cut Reduction Lemma.

4.4. COMPLEXITY BOUNDS

Notation. We signify that an infinitary derivation involves only Σ1 cut for-
mulas C, by attaching a subscript 1 to the proof-gate thus: E,n : N,Γ `α1 A.
If all cut formulas are atomic equations (or possibly conjunctions of them)
we attach a subscript 0 instead.

Lemma 4.7. (Bounding) Let Γ, A consist of (conjunctions of) atomic
formulas only.

1. If E, k : I, n : N, Γ `α1 m : N then m 6 Bα(k;n).
2. If E, k : I, n : N, Γ `α1 ∃~aA(~a) then there are numbers ~m 6 Bα(k;n)

such that E, k : I, n : N, Γ `2.α
0 A(~m).

Proof. Both parts are dealt with simultaneously by induction on α. Since
only Σ1 cuts are involved, it is only the E, N, Cut and ∃ rules which come
into play. The E rules require no action at all, and if N1 is applied (in case
1) then we have immediately m 6 n+ 1 6 Bα(k;n).

(N2) Suppose the sequent in 1 or 2 comes about by the N2 rule. Then
one of the premises is of exactly the same form, but with n replaced by n′

and α replaced by a β′ ∈ α[k]. Therefore by the induction hypothesis, and
re-application of N2 to reduce n′ : N to n : N , the desired result follows
since 2.β′ ∈ 2.α[k]. But the bound on existential witnesses that we have at
this stage is Bβ′(k;n′). However the other premise is a sequent of the form
1 with m replaced by n′ and α replaced by a β ∈ α[k], so by the induction
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hypothesis n′ 6 Bβ(k;n). Thus, substituting Bβ(k;n) for n′ we obtain the
required bound

Bβ′(k;n′) 6 Bβ′(k;Bβ(k;n)) 6 Bα(k;n)

using the definition of Bα and its majorization properties.

(∃) The ∃L rule does not apply. If the sequent in 2 comes about by
an application of ∃R, introducing the outermost quantifier in ∃~aA(~a), then
the induction hypothesis applied to the first premise produces a witness
m 6 Bβ(k;n). The induction hypothesis applied to the second premise
yields the desired result, but with bound Bβ′(k;n) on witnesses for the
remaining quantifiers. However Bβ′(k;n) and Bβ(k;n) are both less than
the required bound Bα(k;n) since β, β′ ∈ α[k].

(Cut) Finally, suppose the sequent in 1 or 2 arises by an application of
Cut with cut formula C ≡ ∃~cD(~c). By applying the induction hypothesis
to the first premise we obtain witnesses ~̀ no larger than Bβ(k;n) such that

E, k : I, n : N, Γ `2.β
0 D(~̀)

and by “inverting” the ∃~c in the second premise we obtain

E, k : I, max(n, ~̀) : N, D(~̀), Γ `β
′

1 F

where F ≡ m : N or F ≡ ∃~aA(~a). Applying the induction hypothesis to
this last sequent, in the case F ≡ ∃~aA(~a), we obtain numerical witnesses
~m bounded by:

Bβ′(k; max(n, ~̀)) 6 Bβ′(k;Bβ(k;n)) 6 Bα(k;n)

and
E, k : I, max(n, ~̀) : N, D(~̀), Γ `2.β′

0 A(~m) .

Since ~̀6 Bβ(k;n) 6 B2.β(k;n) we have, by a lemma above,

E, k : I, n : N, D(~̀), Γ `2.β
0 max(n, ~̀) : N

and so by the N2 rule, with γ = max(β, β′), we obtain

E, k : I, n : N, D(~̀), Γ `2.γ+1
0 A(~m) .

Then by a cut on D(~̀), with a weakening, we obtain the required

E, k : I, n : N, ; Γ `2.α
0 A(~m)

since γ ∈ α[k] implies 2.γ + 1 ∈ 2.α[k]. The other case F ≡ m : N is much
simpler. This completes the proof.

Proof_Theoretic_Complexity.tex; 6/08/2002; 9:26; p.26



Theorem 4.8. (Complexity) Suppose f is defined by a system of equations
E and Ē ` f(~x) ↓ in EA(I;O) with induction formulas of size at most r.
Then there is an α = 2r−1(ω.d) such that: for all inputs ~n of binary length
at most k we have

E, k : I, 0 : N `2.α
0 f(~n) ' m where m 6 2r((k + 1).d) .

This is a computation of f(~n) from E, and the number of computation steps
(nodes in the binary branching tree) is less than 42r−1((k+1).d).

Proof. First apply the Embedding Lemma to obtain a number d such that
for all inputs ~n of binary length 6 k,

E, k : I, 0 : N `ω.d f(~n) ↓

with cut rank r. Then apply Cut Reduction r − 1 times, to bring the cut
rank down to the Σ1 level. This gives α = 2r−1(ω.d) such that

E, k : I, 0 : N `α1 f(~n) ↓ .

Then apply the Bounding Lemma to obtain m 6 Bα(k; 0) = 2G(α,k) =
2r((k + 1).d) such that

E, k : I, 0 : N `2.α
0 f(~n) ' m .

This derivation uses only the E axioms, the N rules and equational cuts, so
it is a computation in the equation calculus. Since all the ordinal bounds be-
long to 2.α[k], the height of the derivation tree is no greater than G(2.α, k)
and the number of nodes (or computation steps) is therefore 6 2G(2.α,k) =
4G(α,k) = 42r−1((k+1).d).

Theorem 4.9. The functions provably recursive in EA(I;O) are exactly
the elementary E3 functions. The functions provably recursive in the Σ1

inductive fragment of EA(I;O) are exactly the subelementary (E2) func-
tions. The functions provably recursive in the “level-2” inductive fragment
of EA(I;O) are exactly those computable in a number of steps bounded by
an exponential function of their inputs.

Proof. By the above, if f is provably recursive in EA(I;O) then it is com-
putable in a number of steps bounded by a finitely iterated exponential
function of its inputs. This means it is elementary.

If f is provably recursive in the Σ1 inductive fragment then we can take
r = 1 in the above. So f is computable in a number of steps bounded
by 4(k+1).d. But k is the maximum binary length of the inputs ~n, so this
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bound is just a polynomial in max~n. Therefore by e.g. Rödding (1967), f is
subelementary.

If f is provably recursive using “level-2” inductions then, taking r = 2,
we obtain a computational bound 421((k+1).d) which is 6 2p(~n) for some
polynomial p. (For a more detailed treatment of this case see Ostrin and
Wainer (2001)).

4.5. POLYTIME FUNCTIONS

If the theory EA(I;O) were instead formulated on the basis of binary (rather
than unary) number representation, with two successors S0a = 2a, S1a =
2a+ 1, one predecessor P (0) = 0, P (S0a) = P (S1a) = a, and an induction
rule of the form

Γ ` A(0) Γ, A(a) ` A(S0a) Γ, A(a) ` A(S1a)
Γ ` A(x)

then it only takes log n many induction steps to “climb up” to A(n). Thus
a similar analysis to that given here, but with n replaced by log n, would
show that the functions provably recursive in the Σ1 inductive fragment of
this binary theory are just those with complexity bounds polynomial in the
binary lengths of their inputs, i.e. PTIME, see Leivant (1995).
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