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Abstract

This article provides an ordinal analysis of Σ1
1 transfinite dependent

choice.

1 Introduction

Σ1
1-TDC0 (Σ1

1 Transfinite Dependent Choice) is a natural strengthening of
Σ1

1-DC0. Both are subsystems of analysis and assure the existence of im-
plicitly Σ1

1 definable sequences (of sets). In Σ1
1-DC0, the length of these

sequences is ω, whereas in Σ1
1-TDC0 we can choose these sequences along an

arbitrary well-ordering. Σ1
1-DC0 has proof-theoretic strength ϕω0 (cf. [2]), it

is a predicative theory. On the other hand, the proof-theoretic strength of
Σ1

1-TDC0 is ϕω00. If we add complete induction for arbitrary formulas, then
the corresponding proof-theoretic ordinals are ϕε00 and ϕε000.

The theory Σ1
1-TDC0 and its proof-theoretic analysis typically belong to

the new area of so-called metapredicative proof-theory. Metapredicative sys-
tems have proof-theoretic ordinals beyond Γ0 but can still be treated by
methods of predicative proof-theory only. Recently, numerous interesting
metapredicative systems have been characterized. For previous work in
metapredicativity the reader is referred to Jäger [5], Jäger, Kahle, Setzer
and Strahm [7], Jäger and Strahm [8, 9], Kahle [10], Rathjen [12], Rüede
[13, 14] and Strahm [19, 20, 21]. A central result of [14] is that (Σ1

1-TDC)

∗This paper comprises a part of the author’s Ph.D. dissertation [13]
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is equivalent over ACA0 to Π1
2 reflection on ω-models of Σ1

1-DC. We will use
this equivalence for the determination of the upper bound of Σ1

1-TDC0. The
underlying idea of this proof-theoretic analysis is closely related to the deter-
mination of the upper proof-theoretic bound of metapredicative Mahlo (cf.
[9]). On the other hand, we carry-through the well-ordering proof directly
in the theory Σ1

1-TDC0. (The proof of the equivalence of (Σ1
1-TDC0) and Π1

2

reflection on ω-models of Σ1
1-DC given in [14] uses a pseudohierarchy argu-

ment. This argument is needed to prove Π1
2 reflection on ω-models of Σ1

1-DC
assuming (Σ1

1-TDC). The other direction is proved without the method of
pseudohierarchies.)

The plan of this article is as follows. In the next section we introduce
the notation and definitions. The well-ordering proof is given in section
3. In sections 4, 5 and 6 we discuss semi-formal systems needed for the
determination of the upper bound of Π1

2 reflection on ω-models of Σ1
1-DC. In

some sense, these semi-formal systems can be seen as analogues of systems
for n-(hyper)inaccessibles (cf. [9]). The interpretation of Π1

2 reflection on
ω-models of Σ1

1-DC into these semi-formal systems is given in section 7.

2 Preliminaries

In this section we fix notation and abbreviations and introduce some subsys-
tems of analysis, in particular Σ1

1-TDC and (Π1
2-RFN)Σ1

1-DC.
We let L2 denote the language of second order arithmetic. L2 includes

number variables (denoted by small letters, except r, s, t), set variables (de-
noted by capital letters), symbols for all primitive recursive functions and
relations, the symbol ∈ for element-hood between numbers and sets as well
as equality in the first sort. We write L1 for the first order part of L2. The
number terms r, s, t of L2 and the formulas ϕ, ψ, θ, . . . of L2 are defined as
usual.

An L2 formula is called arithmetic, if it does not contain bound set vari-
ables (but possibly free set variables). We write Π1

0 for the collection of these
formulas and Σ1

1 for the collection of all arithmetic formulas and of all L2

formulas ∃Xϕ(X) with ϕ(X) from Π1
0. Σ1

k and Π1
k are defined similarly.

In the following 〈. . .〉 denotes a primitive recursive coding function for
n-tuples 〈t1, . . . , tn〉 with associated projections (·)1, . . . , (·)n. Seqn is the
primitive recursive set of sequence numbers of length n. Seq denotes the
primitive recursive set of sequence numbers. We write s ∈ (X)t for 〈s, t〉 ∈ X,
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i.e. (X)t = {x : 〈x, t〉 ∈ X}, and ~X for X1, ..., Xn. Occasionally we use the
following abbreviations.

x ∈ X ⊕ Y := Seq2x ∧
[((x)0 ∈ X ∧ (x)1 = 1) ∨ ((x)0 ∈ Y ∧ (x)1 = 2)],

X = Y := (∀x)(x ∈ X ↔ x ∈ Y ),

X 6= Y := ¬(X = Y ),

X ∈̇ Y := (∃k)(∀x)(x ∈ X ↔ 〈x, k〉 ∈ Y ),

(∃Y ∈̇ Z)ϕ(Y ) := (∃k)ϕ((Y )k),

(∀Y ∈̇ Z)ϕ(Y ) := (∀k)ϕ((Yk),

~X ∈̇ Y := X1 ∈̇ Y ∧ . . . ∧Xn ∈̇ Y.

By ϕ[~x, ~X] we indicate that the variables ~x, ~X really occur in ϕ, i.e., the

free variables are {~x, ~X}. ϕ(~x, ~X) just means that ~x, ~X may occur in ϕ.

ϕ[~x\~t, ~X\~S] is obtained from ϕ[~x, ~X] by replacing all occurrences of xi and

Xj by ti and Sj. Similarly we define ϕ(~x\~t, ~X\~S). We adopt the stan-
dard notation ϕX for the relativization of the formula ϕ to X (for example
(∀Y ϕ(Y ))X := (∀Y ∈̇ X)ϕX(Y )).

In a next step we introduce some well-known subsystems of analysis which
we shall need. We use the following abbreviations.

WO(X) := formalization of “X codes a non-reflexive well-ordering”,

x ∈ field(X) := (∃y)(〈x, y〉 ∈ X ∨ 〈y, x〉 ∈ X),

x ∈ (Y )Za := Seq2x ∧ x ∈ Y ∧ 〈(x)1, a〉 ∈ Z.

(Y )Za is the disjoint union of all projections (Y )b with b less than a w.r.t. Z.
For a well-ordering Z we let 0Z denote the Z-least element in field(Z) and
for a ∈ field(Z) we let a +Z 1 denote the Z-successor of a. Sometimes we
write ≺ for our well-ordering. Then e.g. (X)Za is written as (X)≺a.

All subsystems are based on the usual axioms and rules for the two-sorted
predicate calculus. Often we write (T) for the central axiom of a theory T.

The theory ACA includes defining axioms for all primitive recursive func-
tions and relations, the induction scheme for arbitrary formulas of L2 and
the scheme
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(ACA) For all arithmetic L2 formulas ϕ(x):
(∃X)(∀x)(x ∈ X ↔ ϕ(x)).

The theory Σ1
1-AC extends ACA by the scheme

(Σ1
1-AC) For all L2 formulas ϕ(x,X) in Σ1

1:
(∀x)(∃X)ϕ(x,X)→ (∃X)(∀x)ϕ(x, (X)x).

The theory ATR extends ACA by the scheme

(ATR) For all arithmetic L2 formulas ϕ(x,X):
WO(Z)→ (∃Y )(∀a ∈ field(Z))(∀x)(x ∈ (Y )a ↔ ϕ(x, (Y )Za)).

The theory Σ1
1-DC extends ACA by the scheme

(Σ1
1-DC) For all L2 formulas ϕ(X,Y ) in Σ1

1:
(∀X)(∃Y )ϕ(X, Y )→ (∃Z)[(Z)0 = X ∧ (∀u)ϕ((Z)u, (Z)u+1)].

AxACA denotes a finite axiomatization of the arithmetical comprehension
scheme (ACA) (cf. [18] Lemma VIII.1.5 for such a finite axiomatization).
Using these notations, we formulate the theory Π1

n+1-RFN. It extends ACA
by the scheme

(Π1
n+1-RFN) For all L2 formulas ϕ[~x, ~Z] in Π1

n+1:

ϕ[~x, ~Z]→ (∃X)(~Z ∈̇ X ∧ (AxACA)X ∧ ϕX [~x, ~Z]).

Next we introduce for each natural number n predicates In.

I0(M) := (AxΣ1
1-AC)M

In+1(M) := (AxΣ1
1-DC)M ∧ (∀X ∈̇M)(∃Y ∈̇M)(X ∈̇ Y ∧ In(Y )).

We have written AxΣ1
1-DC for a finite axiomatization of (Σ1

1-DC) + (ACA)
and AxΣ1

1-AC for a finite axiomatization of (Σ1
1-AC) + (ACA). We refer to

Lemma VIII.1.5 [18] for a finite axiomatization of (ACA). And using the fact
that (Σ1

1-DC) and (Π0
1-DC) ((Σ1

1-AC) and (Π0
1-AC), resp.) are equivalent over

ACA0, the finite axiomatization of the mentioned axiom schemes can easily
be found (cf. e.g. [13]). Using these predicates In we can define the theories
In-RFN. In-RFN extends ACA by the axiom

(In-RFN) (∀X)(∃Y )(X ∈̇ Y ∧ In(Y )).
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Finally we introduce the basic subsystems of analysis of this paper: Σ1
1 trans-

finite dependent choice and Π1
2 reflection on ω-models of Σ1

1-DC. The the-
ory Σ1

1-TDC is the theory ACA extended by the scheme of Σ1
1 Transfinite

Dependent Choice.

(Σ1
1-TDC) For all Σ1

1 formulas ϕ:
(∀X)(∃Y )ϕ(X, Y ) ∧WO(Z)

→ (∃Y )(∀a ∈ field(Z))ϕ((Y )Za, (Y )a).

The theory (Π1
2-RFN)Σ1

1-DC extends ACA by the scheme

((Π1
2-RFN)Σ1

1-DC) For all Π1
2 formulas ϕ[~z, ~Z]:

ϕ[~z, ~Z]→ (∃M)[~Z ∈̇M ∧ (AxΣ1
1-DC)M ∧ ϕM ].

T0 denotes the theory T with set-induction instead of the induction scheme
for arbitrary formulas.

In the following we will measure the proof-theoretic strength of formal theo-
ries in terms of their proof-theoretic ordinals. As usual we set for all primitive
recursive relations ≺ and all formulas ϕ:

Prog(ϕ,≺) := (∀x)[(∀y)(y ≺ x→ ϕ(y))→ ϕ(x)],

TI(ϕ,≺) := Prog(ϕ,≺)→ (∀x ∈ field(≺))ϕ(x).

We say that an ordinal α is provable in T, if there is a primitive recursive well-
ordering ≺ of order type α so that T ` (∀X)TI(X,≺). The proof-theoretic
ordinal of T, denoted by |T|, is the least ordinal which is not provable in T.

3 A well-ordering proof for Σ1
1-TDC0

In this section we show that Σ1
1-TDC0 (Σ1

1-TDC) proves transfinite induction
for each initial segment of the ordinal ϕω00 (ϕε000). The proof and the
presentation is inspired by [19, 21]. The ordinal notation system which we use
here is based on n-ary ϕ functions (cf. e.g. [7]). These ϕ functions correspond
to Schütte‘s Klammersymbole [15].

We have mentioned that we do not use Π1
2 reflection on ω-models in

the well-ordering proof of Σ1
1-TDC0. Nevertheless, in [13] we have given a

well-ordering proof of Σ1
1-TDC0 using Π1

2 reflection on ω-models. That well-
ordering proof is nearly the same as for KPm0 (cf. [21]).
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In the sequel we presuppose the same ordinal-theoretic facts as given in
section 2 of [7]. Namely, we let Φ0 denote the least ordinal greater than 0
which is closed under all n-ary ϕ functions, and we assume that a standard
notation system of order type Φ0 is given in a straightforward manner. We
write ≺ for the corresponding primitive recursive wellordering. We assume
without loss of generality that the field of ≺ is the set of all natural numbers
and that 0 is the least element with respect to≺. Hence, each natural number
codes an ordinal less than Φ0. When working in Σ1

1-TDC0 in this section, we
let a, b, c, . . . range over the field of ≺, and ` denotes limit notations. There
exist primitive recursive functions acting on the codes of this notation system
which corresponds to the usual operations on ordinals. In the sequel it is
often convenient in order to simplify notation to use ordinals and ordinal
operations instead of their codes and primitive recursive analogues. Then
(for example) ω and ω + ω stand for the natural numbers whose order type
with respect to ≺ are ω and ω + ω. Finally, let us put as usual

Prog(ϕ) := Prog(ϕ,≺),

TI(ϕ, a) := TI(ϕ,≺� a).

If we want to stress the relevant induction variable of a formula ϕ, we some-
times write Prog(λa.ϕ(a)) instead of Prog(ϕ). If S is a set term, then Prog(S)
and TI(S, a) have their obvious meanings.

We assign fundamental sequences (`[n])n≥0 to each limit ordinal `. We
can assume `[u] ≺ `[u+ 1] and 0 ≺ `[u] for all u. We choose `−[u] to denote
the unique ordinal such that `[u] + `−[u] = `[u + 1]. Moreover, we use for
each natural number n > 0 the following abbreviations.

K1(M) := (AxΣ1
1-AC)M ,

Kn+1(M) := (AxACA)M ∧
[(∀Q)(∃Y )(∀a)(WO(≺� a)→ Hiern(a,Q, (Y )a))]

M ,

Hiern(a,Q, Y ) := (∀c ≺ a)((Y )≺c ∈̇ (Y )c ∧Q ∈̇ (Y )c ∧ Kn((Y )c)),

TI≺c(Y, a) := (∀b ≺ c)(∀X ∈̇ (Y )b)TI(X, a),

a ↑ b := (∃c, `)(b = c+ a · `), (` denotes limit notations)
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Mainnc,Y (a) := (∀b)(∀e � c)[ω1+a ↑ e ∧ TI≺e(Y, b)→ TI≺e(Y, ϕnab)].

Next we specify the steps of the well-ordering proof in the following lem-
mas. We first collect some basic facts which we will often use tacitly in the
following.

Lemma 1 The following holds.

a) (ATR) and (∀X)(∃Y )(X ∈̇ Y ∧ (AxΣ1
1-AC)Y ) are equivalent over ACA0.

b) We have for each natural number n > 1 and for each instance ϕ of
(ATR)

ACA0 ` Kn(M)→ (AxΣ1
1-AC)M ∧ ϕM .

c) We have for each natural number n

ACA0 ` Hiern(a,Q, Y )→ (∀b ≺ a)(∃Z ∈̇ (Y )b)(∀x)(x ∈ Z ↔ TI≺b(Y, x)).

Proof. We first prove a). It can be proved in ACA0 by induction on the
wellordering Z that for each arithmetic formula ψ the following holds

(AxΣ1
1-AC)D ∧ Z, ~X ∈̇ D ∧WO(Z)

→ (∃Y ∈̇ D)(∀a ∈ field(Z))(∀x)(x ∈ (Y )a ↔ ψ[x, a, ~z, (Y )Za, ~X]).

Hence (∀X)(∃Y )(X ∈̇ Y ∧(AxΣ1
1-AC)Y ) implies (ATR). The converse direction

follows from Theorem VIII.3.15 [18] and Lemma VIII.4.19 [18]. Next we
prove b). Since (ATR) is equivalent over ACA0 to

(∀X)(∃Y )(X ∈̇ Y ∧ (AxΣ1
1-AC)Y )

(cf. a)) and since ATR0 proves (Σ1
1-AC) (cf. [18], Theorem V.8.3), we have to

prove only

ACA0 ` Kn(M)→ (∀X ∈̇M)(∃Y ∈̇M)(X ∈̇ Y ∧ (AxΣ1
1-AC)Y ).

This can be proved by an easy (meta-)induction on n > 1. We omit the
details. We now discuss c). We argue in ACA0 and assume that Hiern(a,Q, Y )
holds. Furthermore, we choose a b ≺ a. Note that we have

(∀x)(TI≺c(Y, x)↔ (∀c ≺ b)(∀X ∈̇ ((Y )≺b)c)TI(X, x)).
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Thus TI≺b(Y, x) is arithmetic in (Y )≺b. Hence assertion b) – in the case n = 1
we know by definition that (AxΣ1

1-AC)(Y )b holds – and (Y )≺b ∈̇ (Y )b imply the
claim. 2

In the next lemma we prove in Σ1
1-TDC0 the existence of sets M with Kn(M).

Lemma 2 We have for each natural number n > 0

Σ1
1-TDC0 ` (∃M)(P ∈̇M ∧ Kn(M))

Proof. The proof is by (meta-)induction on n > 0. For n = 1 the claim
follows from the fact that Σ1

1-TDC0 proves (ATR) and that ATR0 proves the
existence of ω-models of Σ1

1-AC, as mentioned in the preceding lemma. Hence
we can assume n > 1. The induction hypothesis is

(∀P )(∃M)(P ∈̇M ∧ Kn−1(M)).

We apply (Σ1
1-TDC0) and obtain

(∀a)(∃Y )(WO(≺� a)→ Hiern−1(a,Q, Y )).

An application of (Σ1
1-AC) leads to

(∀Q)(∃Y )(∀a)(WO(≺� a)→ Hiern−1(a,Q, (Y )a)). (1)

Using (Σ1
1-AC) we can show that this formula is equivalent to a Π1

2 formula ψ
(cf. e.g. [18], Lemma VIII.6.2). Note that for the proof of this equivalence we
need (Σ1

1-AC) only for the implication (1)→ ψ. The other direction needs only
(ACA). Here, we need the ”strong” direction; i.e. we need in fact (Σ1

1-AC).
In the argument below we need the ”weak” direction, i.e. only (ACA).

In [18], Theorem VIII.5.12, the equivalence of (Σ1
1-DC) and (Π1

2-RFN) over
ACA0 is proved. Since (Σ1

1-TDC) implies (Σ1
1-DC), we can use (Π1

2-RFN) and
obtain a set M such that

P ∈̇M ∧ (AxACA)M ∧
((∀Q)(∃Y )(∀a)(WO(≺�a)→ Hiern−1(a,Q, (Y )a)))

M

holds. This is just the claim. 2

Our well-ordering proof is in some sense an iteration of the well-ordering
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proof for ÎDα. Roughly spoken, the next lemma corresponds to the begin-
ning of the iteration. The statements are adaptions of Lemma 5, 6 and 7 in
[7] to our situation. (Lemma 3 and some further technical lemmas in this
article are adaptions of corresponding lemmas proven in the literature. We
agree with the referee that there should be abstract lemmas from which the
arguments in question follows. But this will be done in a different article.)

Lemma 3 The following holds

a) ACA0 ` Hier1(`,Q, Y ) ∧ TI≺`(Y, a)→ TI≺`(Y, ϕa0).

b) ACA0 ` Hier1(`,Q, Y )→ Prog(λa.TI≺`(Y, ϕ10a)).

c) ACA0 ` Hier1(c,Q, Y )→ Prog(λa.Main1
c,Y (a)).

Proof. The proof of a) is standard. The relevant arguments can easily be
extracted from [16], pp. 184 ff., or [3], Lemma 5.3.1 ff.. b) is an immediate
consequence of a). Assertion c) corresponds to Main Lemma I in [7]. Since
the proof of c) is very much the same as the proof given in [7] – we have to
change only the underlying theories –, we omit it here. 2

The induction step is given in the next three lemmas.

Lemma 4 ACA0 proves for each natural number n > 0

Kn+1(M) ∧ [(∀Q, Y, c)(Hiern(c,Q, Y )→ Prog(λa.Mainnc,Y (a)))]M

→ (∀a)[(∀X ∈̇M)TI(X, a)→ (∀X ∈̇M)TI(X,ϕna0)].

Proof. We argue in ACA0 and assume

Kn+1(M) ∧ [(∀Q, Y, c)(Hiern(c,Q, Y )→ Prog(λa.Mainnc,Y (a)))]M (2)

Choose a such that (∀X ∈̇ M)TI(X, a) holds and let X be a set in M .
We have to show TI(X,ϕna0). Since M is a ω-model of (ACA), we have
(∀X ∈̇ M)TI(X,ω1+a · ω), too. The definition of Kn+1(M) now implies the
existence of a set P in M such that Hiern(ω1+a · ω,X, P ) holds. Using (2),
we conclude that

Prog(λb.Mainnω1+a·ω,P (b)) (3)

holds. Since P is in M , the set {b : Mainnω1+a·ω,P (b)} is in M too. Hence
(∀X ∈̇ M)TI(X, a) and (3) imply Mainnω1+a·ω,P (a). It follows TI(X,ϕna0),
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the claim. 2

The following lemma follows by

ϕ(n+ 1)00 = sup {(λx.ϕnx0)m(0) | m ∈ IN},
ϕ(n+ 1)0(a+ 1) = sup {(λx.ϕnx0)m(ϕ(n+ 1)0a+ 1) | m ∈ IN},

ϕ(n+ 1)0` = sup {ϕ(n+ 1)0x | x ≺ `}.

Lemma 5 ACA0 proves for each natural number n > 0

Kn+1(M) ∧ (∀a)((∀X ∈̇M)TI(X, a)→ (∀X ∈̇M)TI(X,ϕna0))

→ Prog(λa.(∀X ∈̇M)TI(X,ϕ(n+ 1)0a)).

Lemma 6 ACA0 proves for each natural number n > 0

Hiern(c,Q, Y ) ∧ (∀M)(Kn(M)→ Prog(λa.(∀X ∈̇M)TI(X,ϕn0a)))

→ Prog(λa.Mainnc,Y (a)).

Proof. We argue in ACA0 and assume

Hiern(c,Q, Y ) ∧ (∀M)(Kn(M)→ Prog(λa.(∀X ∈̇M)TI(X,ϕn0a))) (4)

We break the proof of Prog(λa.Mainnc,Y (a)) into three cases by showing

(a) Mainnc,Y (0),

(b) Mainnc,Y (a)→ Mainnc,Y (a+ 1),

(c) Lim(a) ∧ (∀w)Mainnc,Y (a[w])→ Mainnc,Y (a).

The proof of (b) and (c) corresponds to the proof of (b) and (c) in the proof
of Main Lemma I [7]. There is only one relevant difference: Main Lemma I
deals with fundamental sequences for e.g. ϕ1pq and not with fundamental
sequences for e.g. ϕnpq. However, there is no difficulty to give corresponding
fundamental sequences for ϕnpq. Hence we prove here only (a). Let us
assume

e � c ∧ ω ↑ e ∧ TI≺e(Y, b).

We have to prove TI≺e(Y, ϕn0b). There is a limit notation ` such that e =
e0 + ω · ` for an e0. We set eu := e0 + ω · `[u]. It is sufficient to verify
TI≺eu(Y, ϕn0b) for each u. We fix a u and a d ≺ eu. Then we have to prove

(∀X ∈̇ (Y )d)TI(X,ϕn0b).
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Since Kn((Y )d) holds, it follows from (4)

Prog(λa.(∀X ∈̇ (Y )d)TI(X,ϕn0a)).

Hence TI≺e(Y, b) implies (∀X ∈̇ (Y )d)TI(X,ϕn0b). 2

The iteration of the preceding lemmas leads to the following lemma.

Lemma 7 ACA0 proves for each natural number n > 0

a) (∀M)[(AxACA)M →
[(∀Q, Y, c)(Hiern(c,Q, Y )→ Prog(λa.Mainnc,Y (a)))]M ],

b) (∀M)(Kn+1(M)→
(∀a)((∀X ∈̇M)TI(X, a)→ (∀X ∈̇M)TI(X,ϕna0))),

c) (∀M)(Kn+1(M)→ Prog(λa.(∀X ∈̇M)TI(X,ϕ(n+ 1)0a))).

Proof. We first prove that a) implies b) and c). Since by Lemma 5 assertion
b) implies c), we have to prove only a)⇒b). We argue in Σ1

1-TDC0 and
assume a) and Kn+1(M). Furthermore, we choose an ordinal notation a such
that we have (∀X ∈̇ M)TI(X, a). Let X be a set in M . We have to prove
TI(X,ϕna0). By (AxACA)M we conclude that (∀X ∈̇M)TI(X,ω1+a ·ω) holds.
Using Kn+1(M) we obtain a set P in M such that Hiern(ω1+a ·ω,X, P ) holds.
Now a) implies

Prog(λd.Mainnω1+a·ω,P (d)).

Since P is in M we obtain by (∀X ∈̇M)TI(X, a)

Mainnω1+a·ω,P (a).

This implies TI(X,ϕna0). Hence a)⇒b) is shown. Now we prove a) by
(meta-)induction on n. For n = 1 this is just Lemma 3c). For n > 1 the
claim follows from the induction hypothesis and Lemma 6. 2

The following theorem follows immediately from Lemma 2 and Lemma 7b).

Theorem 8 Σ1
1-TDC0 proves for each natural number n

(∀X)TI(X,ϕn00).

Corollary 9 ϕω00 ≤ |Σ1
1-TDC0|.
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We end this section with a discussion of the lower bound of Σ1
1-TDC. In

Σ1
1-TDC we have induction for arbitrary formulas. The lower bound compu-

tation given in this section for Σ1
1-TDC0 can be extended in order to yield

ϕε000 as a proof-theoretic lower bound of Σ1
1-TDC. The aim is to introduce

within Σ1
1-TDC for all ordinals α < ε0 the notion of a set X with “Kα(X)”

and to show the existence of such sets. The formulas Kn (n a natural num-
ber) are arithmetic. The formulas Kα (α an ordinal) will be Σ1

1. Hence we
will need formula induction in order to prove that this Σ1

1 formula serves the
right role and that sets X with “Kα(X)” exists.

The main modification is that we do not speak about all sets X with
Kn(X) but that we speak only about all sets X in Y with Kn(X). For each
set Y we will define a characteristic function F with

k ∈ (F )α ↔ “Kα((Y )k)”.

These functions F can be constructed inductively by using formula induction.
We give first an informal description where Kα and Hierα should be under-
stood informally too. The formula ϕK means: F is the desired characteristic
function on the sets in Y .

ϕK(F, Y, α) :=
for all b � α:
if b = 0: x ∈ (F )0 ↔ (AxΣ1

1-AC)(Y )x

if Suc(b): x ∈ (F )b ↔ (AxACA)(Y )x∧
[(∀Q)(∃P )(∀a)(WO(≺� a)

→ Hierb−1(a,Q, (P )a))]
(Y )x

if Lim(b): x ∈ (F )b ↔ (AxACA)(Y )x ∧ (∀c ≺ b)Kc((Y )x)

The exact definition of ϕK is: (α ∈ Φ0)

ϕK(F, Y, α) :=
(AxΣ1

1-DC)Y∧
(∀b � α)(∀x)[
(b = 0→ (x ∈ (F )0 ↔ (AxΣ1

1-AC)(Y )x))∧
(Suc(b)→ (x ∈ (F )b ↔ ((AxACA)(Y )x∧

[(∀Q)(∃P )(∀a)(WO(≺� a)
→ Hierb−1(a,Q, (P )a))]

(Y )x))∧
(Lim(b)→ (x ∈ (F )b ↔ ((AxACA)(Y )x ∧ (∀c ≺ b)(x ∈ (F )c))))]

12



where Hierb−1(a,Q, (P )a) is the following formula:

(∀c ≺ a)[((P )a)≺c ∈̇ ((P )a)c ∧Q ∈̇ ((P )a)c

∧(∃j ∈ (F )b−1)(((P )a)c = (Y )j)].

Using the formula ϕK we can define “Kα”:

K(α, P ) := (∃F, Y )(ϕK(F, Y, α) ∧ (∃x ∈ (F )α)(Y )x = P ).

Following the lines in [13], section 4.4, we can prove for each ordinal α less
than ε0

Σ1
1-TDC ` (∀b � α)(∀Q)(∃P )(Q ∈̇ P ∧ K(b, P ))

and
Σ1

1-TDC ` (∀X)TI(α,X).

Hence
ϕε000 ≤ |Σ1

1-TDC|. (5)

4 The semi-formal systems Tn
α and Enα

Our next goal is to establish the upper bound of Σ1
1-TDC0. Since (Σ1

1-TDC)
and ((Π1

2-RFN)Σ1
1-DC) are equivalent over ACA0 (cf. [14]) it is sufficient to

determine the upper bound of (Π1
2-RFN)

Σ1
1-DC

0 . And since we will reduce

(Π1
2-RFN)

Σ1
1-DC

0 to
⋃
n∈IN In-RFN0, it will be sufficient to determine the upper

bound of In-RFN0. In this section we introduce for each n ∈ IN and each
ordinal α ∈ Φ0 semi-formal systems Tn

α and Enα which we will need for the
determination of the upper bound of In-RFN0. In Tn

α we have constants Dn
β

for each β < α such that In(Dn
β) and Dn

γ ∈̇ Dn
β holds for γ < β. Hence there

is a hierarchy Dn
<α up to α such that In((Dn

<α)β) holds for β < α. Enα is a first
order reformulation of Tn

α. The introduction of Enα is for technical reasons.
We now turn to the exact definition of the semi-formal systems Tn

α. Tn
α is

based on the language Lnα. Lnα is the extension of L2 by new unary relation
symbols Dn

β for each β < α and new unary relation symbols Dn
<γ for each

γ ≤ α. The set terms of Lnα are the set variables. The Lnα formulas are the
L2 literals and all formulas [¬]Dn

β(t), [¬]Dn
<γ(t) for each set variable X, all

number terms t and all ordinals β < α, γ ≤ α. Furthermore, the class of Lnα
formulas is closed under ∧,∨,∀x, ∃x, ∃X ∈̇ Dn

β,∀X ∈̇ Dn
β,∃X,∀X for each

β < α. Note that Tn
α is formulated with bounded second order quantifiers

13



∃X ∈̇ Dn
β and ∀X ∈̇ Dn

β for β < α. The exact meaning of the bounded second
order quantifiers will be given in the definition of Tn

α.
In the following we write for instance t ∈ Dn

β for Dn
β(t), t ∈ Dn

<β for
Dn
<β(t) etc. Analogously we use Dn

β ∈̇ X, X ∈̇ Dn
β, . . . . Finally, we fix for

each n,m ∈ IN a universal Π0
1 predicate π0

1[e, x1, . . . , xn, X1, . . . , Xm]. We
take as Lnα formulas of Tn

α the Lnα formulas without free number variables.
We let Γ,Λ, . . . range over finite sets of Lnα formulas; we often write (for

instance) Γ, ϕ for the union of Γ and {ϕ}. The Tait-calculus Tn
α is an exten-

sion of the classical Tait-calculus [17]. It contains the following axioms and
rules of inference:

Tn
α-1 Ontological axioms I. For all finite sets Γ of Lnα formulas of Tn

α,
all closed number terms s, t with identical value, all true literals ϕ of L1, all
set variables X and all β < α, γ ≤ α:

Γ, ϕ and Γ, t ∈ X, s /∈ X

and Γ, t ∈ Dn
β, s /∈ Dn

β and Γ, t ∈ Dn
<γ, s /∈ Dn

<γ.

Tn
α-2 Propositional rules. For all finite sets Γ of Lnα formulas of Tn

α and
all Lnα formulas ϕ and ψ of Tn

α:

Γ, ϕ

Γ, ϕ ∨ ψ
,

Γ, ψ

Γ, ϕ ∨ ψ
,

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
.

Tn
α-3 Quantifier rules. For all finite sets Γ of Lnα formulas of Tn

α, all β < α,
all Lnα formulas ϕ and ψ of Tn

α, all closed number terms s, all set variables
Y :

Γ, ϕ(s)

Γ, (∃x)ϕ(x)
,

Γ, ϕ(t) for all closed terms t

Γ, (∀x)ϕ(x)
,

Γ, ψ(Y )

Γ, (∃X)ψ(X)
,

Γ, ψ(Y )

Γ, (∀X)ψ(X)
(vc),

Γ, Y ∈̇ Dn
β ∧ ψ(Y )

Γ, (∃X ∈̇ Dn
β)ψ(X)

,
Γ, Y ∈̇ Dn

β → ψ(Y )

Γ, (∀X ∈̇ Dn
β)ψ(X)

(vc),

By (vc) we indicate that the rule has to respect the usual variable conditions.
That is, Y must not occur the conclusion.
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Tn
α-4 Ontological axioms II. For all finite sets Γ of Lnα formulas of Tn

α,
all β ≤ α, all closed terms s so that Seq2s is false, all closed terms t such
that Seq2t, Seq2(t)0 and β � (t)1 is true:

Γ, s /∈ Dn
<β and Γ, t /∈ Dn

<β.

Tn
α-5 Ontological rules III. For all finite sets Γ of Lnα formulas of Tn

α, all
β ≤ α, γ < β, all closed terms t so that Seq2t and (t)1 = γ is true:

Γ, (t)0 ∈ Dn
γ

Γ, t ∈ Dn
<β

,
Γ, (t)0 /∈ Dn

γ

Γ, t /∈ Dn
<β

.

Tn
α-6 Closure axioms. For all finite sets Γ of Lnα formulas of Tn

α, all closed
number terms e, r, all set variables U , V and all β < α:

Γ, (U, V /̇∈ Dn
β), (∃X ∈̇ Dn

β)(X = U ⊕ V ),

Γ, (U /̇∈ Dn
β), (∃X ∈̇ Dn

β)(∀x)(x ∈ X ↔ π0
1[e, x, r, U,Dn

<β]).

Tn
α-7 Closure rules. For all finite sets Γ of Lnα formulas of Tn

α, all closed
number terms e, r, all β < α, all set variables U, V and if n = 0:

Γ, (U /̇∈ D0
β), (∀x)(∃X ∈̇ D0

β)π0
1[e, x, r,X, U,D0

<β]

Γ, (U /̇∈ D0
β), (∃X ∈̇ D0

β)(∀x)π0
1[e, x, r, (X)x, U,D0

<β]
,

and if n > 0:

Γ, (U, V /̇∈ Dn
β), (∀X ∈̇ Dn

β)(∃Y ∈̇ Dn
β)π0

1[e, r,X, Y, V,Dn
<β]

Γ, (U, V /̇∈ Dn
β), (∃X ∈̇ Dn

β)[(X)0 = U ∧ (∀u)π0
1[e, r, (X)u, (X)u+1, V,Dn

<β]]
.

Tn
α-8 Reflection axioms. For all finite sets Γ of Lnα formulas of Tn

α, all
β < α, all set variables U and if n > 0:

Γ, U /̇∈ Dn
β, (∃X ∈̇ Dn

β)(U ∈̇ X ∧ In−1(X)).

Tn
α-9 Cut rules. For all finite sets Γ of Lnα formulas of Tn

α and for all Lnα
formulas ϕ of Tn

α:
Γ, ϕ Γ,¬ϕ

Γ
.

In order to prove a partial cut elimination, we have to introduce a cut rank.
Choose an Lnα formula ϕ of Tn

α. We set rk(ϕ) = 0 iff in ϕ there are no
unbounded second order quantifiers ∃X,∀X. Otherwise we set
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1. If ϕ is a formula ψ ∧ θ or ψ ∨ θ, then rk(ϕ) := max(rk(ψ), rk(θ)) + 1.

2. If ϕ is a formula ∃xψ, ∀xψ, ∃Xψ or ∀Xψ, then rk(ϕ) := rk(ψ) + 1.

3. If ϕ is a formula (∃X ∈̇ Dn
γ)ψ or (∀X ∈̇ Dn

γ)ψ, then rk(ϕ) := rk(ψ) + 2
(γ < α).

The notion Tn
α

β

m
Γ is used to express that Γ is provable in Tn

α by a proof
of depth less than or equal to β and so that all its cut formulas have ranks

less than m. We write Tn
α

<β

<m
Γ if there exists a γ < β and a k < m with

Tn
α

γ

k
Γ. We write Tn

α
<β

<ω
Γ if there exists a γ < β and a k with Tn

α
γ

k
Γ.

Finally we write Tn
α

β

<ω
Γ if there exists a k with Tn

α
β

k
Γ. Since all main

formulas of the conclusions of Tn
α-4 – Tn

α-8 have rank 0 we can prove partial
cut elimination for Tn

α. The proof is standard and hence omitted. We set
ω0(γ) := γ and ωk+1(γ) := ωωk(γ).

Lemma 10 Tn
α

γ

k+1
Γ =⇒ Tn

α
ωk(γ)

1
Γ.

Next we introduce the systems Enα; they are first order reformulations of Tn
α.

We formulate Enα in the first order part of Lnα. The formulas of Enα are the
formulas of Tn

α in which no set variables occur. We now give the definition
of the Tait-calculus Enα.

Enα-1 Ontological axioms I. For all finite sets Γ of Lnα formulas of Enα,
all closed number terms s, t with identical value, all true literals ϕ of L1 and
all β < α, γ ≤ α:

Γ, ϕ and Γ, t ∈ Dn
β, s /∈ Dn

β and Γ, t ∈ Dn
<γ, s /∈ Dn

<γ.

Enα-2 Propositional rules. For all finite sets Γ of Lnα formulas of Enα and all
Lnα formulas ϕ and ψ of Enα:

Γ, ϕ

Γ, ϕ ∨ ψ
,

Γ, ψ

Γ, ϕ ∨ ψ
,

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
.

Enα-3 Quantifier rules. For all finite sets Γ of Lnα formulas of Enα, all β < α,
all closed number terms s and all Lnα formulas ϕ and ψ of Enα:

Γ, ϕ(s)

Γ, (∃x)ϕ(x)
,

Γ, ϕ(t) for all closed terms t

Γ, (∀x)ϕ(x)
.
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Enα-4 Ontological axioms II. For all finite sets Γ of Lnα formulas of Enα, all
β ≤ α, all closed terms s so that Seq2s is false, all closed terms t such that
Seq2t, Seq2(t)0 and β � (t)1 is true:

Γ, s /∈ Dn
<β and Γ, t /∈ Dn

<β.

Enα-5 Ontological rules III. For all finite sets Γ of Lnα formulas of Enα, all
β ≤ α, γ < β, all closed terms t so that Seq2t and (t)1 = γ is true:

Γ, (t)0 ∈ Dn
γ

Γ, t ∈ Dn
<β

,
Γ, (t)0 /∈ Dn

γ

Γ, t /∈ Dn
<β

.

Enα-6 Closure axioms. For all finite sets Γ of Lnα formulas of Enα, all closed
number terms e, r, s, t and all β < α:

Γ, (∃k)(Dn
β)k = (Dn

β)t ⊕ (Dn
β)s,

Γ, (∃k)(∀x)(x ∈ (Dn
β)k ↔ π0

1[e, x, r, (Dn
β)t,D

n
<β]).

Enα-7 Closure rules. For all finite sets Γ of Lnα formulas of Enα, all closed
number terms e, r, s, t, all β < α and if n = 0:

Γ, (∀x)(∃k)π0
1[e, x, r, (D0

β)k, (D0
β)t,D

0
<β]

Γ, (∃k)(∀x)π0
1[e, x, r, ((D0

β)k)x, (D0
β)t,D0

<β]
,

and if n > 0:

Γ, (∀k)(∃l)π0
1[e, r, (Dn

β)k, (Dn
β)l, (Dn

β)t,D
n
<β]

Γ, (∃k)[((Dn
β)k)0 = (Dn

β)s ∧ (∀u)π0
1[e, r, ((Dn

β)k)u, ((Dn
β)k)u+1, (Dn

β)t,Dn
<β]]

.

Enα-8 Reflection axioms. For all finite sets Γ of Lnα formulas of Enα, all
closed number terms t, all β < α and if n > 0:

Γ, (∃k)((Dn
β)t ∈̇ (Dn

β)k ∧ In−1((Dn
β)k)).

Enα-9 Cut rules. For all finite sets Γ of Lnα formulas of Enα and for all Lnα
formulas ϕ of Enα:

Γ, ϕ Γ,¬ϕ
Γ

.

In a next step we give a partial cut elimination for Enα. The situation here
is more complicated than for Tn

α. We have in Enα, for instance, that the
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formula (∃k)ϕ((Dn
β)k) corresponds to (∃X ∈̇ Dn

β)ϕ(X). The problem is that
we want to characterize formulas (∃k)ϕ(k) with subformulas of type 〈s, k〉 ∈
Dn
β (k /∈ FV (s)) but not with, e.g., a subformula of type k ∈ Dn

β. In order to
define such an appropriate class of formulas we introduce (nominal) symbols
∗i (i ∈ IN) which are different from all symbols in Lnα. We now define the
classes ess-Σ1

1(Dn
β) and ess-Π1

1(Dn
β).

Definition 11 We fix an α ∈ Φ0, a β < α and an n ∈ IN. The classes
ess-Σ1

1(Dn
β) and ess-Π1

1(Dn
β) are inductively defined as follows:

1. For all number terms ~s, t of L1, all γ < β, all primitive recursive relation
symbols K of L1 and all ∗i the following expressions are in ess-Σ1

1(Dn
β)

and ess-Π1
1(Dn

β): [¬]K~s, [¬]t ∈ Dn
γ , [¬]t ∈ Dn

<γ, [¬]t ∈ (Dn
β)∗i , [¬]t ∈

Dn
<β. (We write t ∈ (Dn

β)∗i for Dn
β(〈t, ∗i〉).)

2. If ϕ, ψ are in ess-Σ1
1(Dn

β) (ess-Π1
1(Dn

β), resp.), then ϕ∧ψ and ϕ∨ψ are
in ess-Σ1

1(Dn
β) (resp. ess-Π1

1(Dn
β)).

3. If ϕ is in ess-Σ1
1(Dn

β) (ess-Π1
1(Dn

β), resp.), then ∃xϕ and ∀xϕ are in
ess-Σ1

1(Dn
β) (ess-Π1

1(Dn
β), resp.).

4. If ϕ(∗i) is in ess-Σ1
1(Dn

β) (ess-Π1
1(Dn

β), resp.), then ∃xϕ[∗i\x] (∀xϕ[∗i\x],
resp.) is in ess-Σ1

1(Dn
β) (ess-Π1

1(Dn
β), resp.). Here we write ϕ[∗i\x] for

the expression ϕ where all occurrences of ∗i are substituted by x.

There is one point worth mentioning. If ϕ is in ess-Σ1
1(Dn

β) or in ess-Π1
1(Dn

β)
and of the form t ∈ Dn

γ , then γ is strict less than β. And if ϕ is in ess-Σ1
1(Dn

β)
or in ess-Π1

1(Dn
β) and of the form t ∈ (Dn

γ)∗i , then γ is (syntactically) equal
to β.

Further we define that the class ess-Σ1
1(Dn

β)c (ess-Π1
1(Dn

β)c, resp.) is the
subset of all expressions in ess-Σ1

1(Dn
β) (ess-Π1

1(Dn
β), resp.) which have no

free number variables. For a given ϕ in ess-Σ1
1(Dn

β)c or in ess-Π1
1(Dn

β)c and
for ~∗ = ∗1, . . . , ∗k we write ϕ[~∗] if all ∗i occurring in ϕ are among ∗1, . . . , ∗k.
Often we write only ϕ[~t] for ϕ[~∗][~∗\~t]. Notice that ϕ[~t] is an Lnα formula of
Enα. Analogously we write Γ[~∗] if all ∗i occurring in a ϕ in Γ are listed in ~∗
and if Γ is a finite subset of ess-Σ1

1(Dn
β)c ∪ ess-Π1

1(Dn
β)c. And again we write

Γ[~t] for Γ[~∗][~∗\~t].
We can now define the rank rk(ϕ) of a Lnα formula ϕ of Enα. We set

rk(ϕ) = 0 iff there is a ~t and a ψ[~∗] in ess-Σ1
1(Dn

β)c or ess-Π1
1(Dn

β)c with

β < α such that ϕ ≡ ψ[~t]. Otherwise we set
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1. If ϕ is a formula t ∈ Dn
<α, t /∈ Dn

<α, t ∈ Dn
β or a formula t /∈ Dn

β

(β + 1 = α), then rk(ϕ) := 1.

2. If ϕ is a formula ψ ∧ θ or ψ ∨ θ, then rk(ϕ) := max(rk(ψ), rk(θ)) + 1.

3. If ϕ is a formula ∃xψ or ∀xψ, then rk(ϕ) := rk(ψ) + 1.

Concerning clause 1 of this rank definition of Enα, we give some explanations.
First, assume that α is a limit number. Then each t ∈ Dn

β with β < α has
rank 0, since t ∈ Dn

β is an element of ess-Σ1
1(Dn

β+1)c and β + 1 < α. t ∈ Dn
<α

has rank 1 for each term t. Secondly, we assume that α is a successor ordinal.
We write α − 1 for the predecessor of α. Then each t ∈ Dn

β with β < α − 1
has rank 0 and 〈r, s〉 ∈ Dn

α−1 has rank 0 too. If t is a term different of all
terms 〈r, s〉, then t ∈ Dn

α−1 has rank 1. Again the rank of t ∈ Dn
<α is 1 and

the rank of t ∈ Dn
<β is 0 for β < α.

The notion Enα
β

m
Γ is defined as for Tn

α but now with the above cut ranks.
The rank of the main formulas in Enα-4 – Enα-8 is 0. Hence one immediately
realizes that the axioms and rules of Enα are tailored in such a way that one can
prove partial cut elimination in a straightforward manner. This observation
is stated in the following lemma.

Lemma 12 Enα
γ

k+1
Γ =⇒ Enα

ωk(γ)

1
Γ.

In a next step we embed Tn
α into Enα. In order to achieve this, we inductively

define for each Lnα formula ϕ of Tn
α an Lnα formula ϕ∗ of Enα. If in ϕ there is no

occurrence of ∀X ∈̇ Dn
β and of ∃X ∈̇ Dn

β for all β < α, then we set ϕ∗ := ϕ.
Otherwise we set

1. If ϕ is of the form θ ∨ψ (θ ∧ψ respectively), then we set ϕ∗ := θ∗ ∨ψ∗
(θ∗ ∧ ψ∗ respectively).

2. If ϕ is of the form ∃xψ (∀xψ, ∃Xψ, ∀Xψ respectively), then we set
ϕ∗ := ∃xψ∗ (∀xψ∗, ∃Xψ∗, ∀Xψ∗ respectively).

3. If ϕ is of the form (∃X ∈̇ Dn
β)ψ(X) ((∀X ∈̇ Dn

β)ψ(X), resp.), then we
set ϕ∗ := (∃k)ψ∗((Dn

β)k) ((∀k)ψ∗((Dn
β)k), resp.) for β < α.

This translation leads to the following embedding. For ~t = t1, . . . , tn we write
(Dn

<α)~t for (Dn
<α)t1 , . . . , (Dn

<α)tn . Γ[(Dn
<α)~t] is a shorthand for Γ[ ~X][ ~X\(Dn

<α)~t].
(The bound in Lemma 13 is not optimal, we have chosen it for technical
reasons.)
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Lemma 13 Assume that Γ is a set of Tn
α formulas without occurrences of

unbounded set quantifiers ∃X,∀X. Then there exists an integer m such that
we have for all closed number terms ~t

Tn
α

γ

1
Γ[ ~X] =⇒ Enα

ωω
γ

m
Γ∗[(Dn

<α)~t].

Proof. The proof is by induction on γ. If Γ is an axiom of Tn
α-1 or Tn

α-4,
the claim is immediate. If Γ is the conclusion of a propositional rule Tn

α-
2, of an ontological rule III Tn

α-5 or of a cut rule Tn
α-9, the claim follows

immediately from the induction hypothesis. We now discuss the quantifier
rules Tn

α-3. By assumption we do not have to deal with the (∃X)- and
(∀X)-rule. The (∃x)- and (∀x)-rule follows immediately from the induction
hypothesis. There remain the cases of the bounded second order quantifiers.
First we discuss the (∃X ∈̇ Dn

β)-rule. We assume that Γ[ ~X] is the conclusion
of the (∃X ∈̇ Dn

β)-rule (β < α). Then there exists a γ0 < γ and a set variable
Z with

Tn
α

γ0

1
Γ[ ~X], Z ∈̇ Dn

β ∧ ψ(Z). (6)

The induction hypothesis yields an integer m with

Enα
ωω

γ0

m
Γ∗[(Dn

<α)~t], (Dn
<α)r ∈̇ Dn

β ∧ ψ∗((Dn
<α)r)

for all closed number terms r,~t such that Xi ≡ Z implies ti ≡ r. An appli-
cation of the (∃x)-rule leads to

Enα
<ωω

γ

m
Γ∗[(Dn

<α)~t], (∃k)((Dn
<α)k ∈̇ Dn

β ∧ ψ∗((Dn
<α)k)).

We prove now

Enα
<ω

k
¬(∃k)((Dn

<α)k ∈̇ Dn
β ∧ ψ∗((Dn

<α)k)), (∃k)ψ∗((Dn
β)k) (7)

for an integer k. Then a cut implies the claim. Notice that there are integers
l1, l2 such that we have for all closed terms t, r

Enα
l1
l2

(Dn
<α)t 6= (Dn

β)r,¬ψ∗((Dn
<α)t), ψ

∗((Dn
β)r).

Hence there are integers l3, l4 such that

Enα
l3
l4

(Dn
<α)t ∈̇ Dn

β → ¬ψ∗((Dn
<α)t), (∃k)ψ∗((Dn

β)k)
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holds for all closed terms t. Now the (∀x)-rule implies (7). Next we discuss

the (∀X ∈̇ Dn
β)-rule. Hence we assume that Γ[ ~X] is the conclusion of the

(∀X ∈̇ Dn
β)-rule (β < α). Then there exists a γ0 < γ and a set variable Y

which does not occur in Γ[ ~X] with

Tn
α

γ0

1
Γ[ ~X], Y ∈̇ Dn

β → ψ(Y ).

The induction hypothesis yields an integer m such that we have

Enα
ωω

γ0

m
Γ∗[(Dn

<α)~t], (Dn
<α)r ∈̇ Dn

β → ψ∗((Dn
<α)r) (8)

for all closed terms ~t, r. Since we can prove for β < α

Enα
l1
l2
¬(∀k)((Dn

<α)k ∈̇ Dn
β → ψ∗((Dn

<α)k)), (∀k)ψ∗((Dn
β)k),

for suitable integers l1, l2, a cut together with the (∀x)-rule implies the claim.
There remain the closure and reflection properties. We first prove closure
under disjoint union. We have to prove for all β < α the existence of integers
l1, l2 such that

Enα
l1
l2

(Dn
<α)t /̇∈ Dn

β, (Dn
<α)s /̇∈ Dn

β, (∃k)((Dn
β)k = (Dn

<α)t ⊕ (Dn
<α)s)

for all closed terms s, t. Let us fix a β < α. Since we have closure under
disjoint union in Enα too, we have

Enα
0

0
(∃k)((Dn

β)k = (Dn
β)r1 ⊕ (Dn

β)r2)

for all closed terms r1 and r2 and hence there are integers l3, l4 such that

Enα
l3
l4

(Dn
<α)t 6= (Dn

β)r1 , (Dn
<α)s 6= (Dn

β)r2 , (∃k)((Dn
β)k = (Dn

<α)t ⊕ (Dn
<α)s)

for all closed terms r1, r2. The (∀x)-rule implies the claim. Similarly we
can prove the remaining axioms and rules of Tn

α-6, Tn
α-7 and Tn

α-8 using the
corresponding properties in Enα. This is straightforward, hence omitted. 2

The following lemma will be used in the asymmetric interpretation. It states
that in E0

α+1 the projections (D0
α)t are first order analogues of the second

order variables X. Usual second order systems have a substitution property:
If they prove Γ[ ~X], then they prove Γ[~Y ] too. We prove in Lemma 14 the cor-
responding property for the system E0

α+1: If we can prove Γ[~t] (as mentioned
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we write Γ[~t] for Γ[~∗][~∗\~t]) we can also prove Γ[~s] (for ti = tj ⇒ si = sj).
Of course we can not prove this for arbitrary sets Γ of formulas; but only
for formulas which have a second order analogue. That is, we prove this
substitution property for formulas in ess-Σ1

1(D0
α)c ∪ ess-Π1

1(D0
α)c. In fact,

it would be possible to prove the substitution property for a larger class of
such second order analogue but we do not want to introduce further classes
of formulas. We also refer to Lemma 13. There it is proved that free set
variables (in Tn

α+1) are represented by projections (in Enα+1).
Note that this substitution property reflects a typical quality of countable

coded ω-models. Assume that M is such a countable coded ω-model, e.g. of
ACA. Then the projections (M)k are the sets in M . The number variable k
is the index of the set (M)k in M . We know absolutely nothing about this
index. If there is given an index k we have no more information than the
fact “k is an index”. Perhaps, this can serve as motivation for the following
lemma. We write only s = t for “s = t is true” (s, t closed number terms).

Lemma 14 Assume that Γ[~∗] is a finite subset of ess-Σ1
1(D0

α)c∪ess-Π1
1(D0

α)c.
We assume that

E0
α+1

γ

1
Γ[~t].

Then we have for all n-tuples ~s of closed terms si (1 ≤ i ≤ n) such that for
all i, j (1 ≤ i, j ≤ n) ti = tj implies si = sj that

E0
α+1

γ

1
Γ[~s].

Proof. The proof is by induction on γ. The case of the closure axioms Enα+1-6
and rules Enα+1-7 follows immediately from the induction hypothesis. If Γ is
the conclusion of a propositional rule Enα+1-2, of an ontological rule III Enα+1-5
or of a cut rule Enα+1-9, the claim is immediate from the induction hypothesis.
The case of the ontological axioms II Enα+1-4 is also trivial. There remain the
cases of the ontological axioms I Enα+1-1 and of the quantifier rules Enα+1-3.
Let us discuss the ontological axioms I. Here we have only to discuss the case
of the following axioms, since the other cases are trivial. Assume

Λ[~t], r1 ∈ (D0
α)tn+1 , r2 /∈ (D0

α)tn+2

such that ~t = (t1, . . . , tn) and tn+1 = tn+2, r1 = r2. Choose an n-tuple ~s and
sn+1, sn+2 such that ti = tj implies si = sj (1 ≤ i, j ≤ n + 2). We have to
prove

Λ[~s], r1 ∈ (D0
α)sn+1 , r2 /∈ (D0

α)sn+2
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But this is again an axiom, since sn+1 = sn+2. We now discuss the quantifier
rules. Γ is a subset of ess-Σ1

1(D0
α)c ∪ ess-Π1

1(D0
α)c. First, we assume that Γ is

the conclusion of the (∃x)-rule. Then the main formula of the conclusion is
of type ∃kϕ(k). If there occur no (D0

α)k in ϕ the claim follows immediately
from the induction hypothesis. If there occur a (D0

α)k in ϕ, then k occurs in
ϕ only in (D0

α)k. Hence there are a γ0 < γ and a closed number term r such
that

E0
α+1

γ0

1
Γ[~t], ϕ[~t, r].

We fix ~s such that ti = tj implies si = sj. Then the induction hypothesis
yields

E0
α+1

γ0

1
Γ[~s], ϕ[~s, r′].

We have written r′ instead of r, since it is possible that the application of
the induction hypothesis changes r too. Now the (∃x)-rule implies the claim.
Finally we discuss the (∀x)-rule. Here the main formula of the conclusion
is of type ∀kϕ(k). Again we discuss only the case where (D0

α)k occurs in ϕ.
Then there are γr < γ such that

E0
α+1

γr
1

Γ[~t], ϕ[~t, r]

for all closed number terms r. We fix an ~s such that ti = tj implies si = sj
(1 ≤ i, j ≤ n). Choose an r such that r 6= ti for all i (1 ≤ i ≤ n). Then an
application of the induction hypothesis leads to

E0
α+1

γr2
1

Γ[~s], ϕ[~s, r].

for all closed terms r. Then the (∀x)-rule gives the claim. 2

5 Finite reduction

In this and the next section the proof-theoretic analysis of Enα is given.

5.1 Reduction of E0
α+1 to E0

α

In some sense our reductions are adaptions of the reductions presented in
[2]. Thus we introduce further semi-formal systems HνE0

α in which we have
in addition iterated arithmetical comprehension up to ν ∈ Φ0. We will prove
an asymmetric interpretation of E0

α+1 into HνE0
α. The next step will be the
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elimination of “Hν” in HνE0
α. To achieve this we introduce a system RAα

of ramified analysis. The first order part of RAα essentially corresponds to
E0
α. We can embed HνE0

α into RAα. There is also a partial (second) cut
elimination in RAα. Finally, we will embed the first order fragment of RAα

into E0
α. This will yield the desired reduction of E0

α+1 to E0
α.

The class of arithmetic L0
α formulas of E0

α contains all L0
α formulas ϕ

such that no quantifier ∃X ∈̇ D0
γ, ∀X ∈̇ D0

γ, ∃X, ∀X occurs in ϕ (γ < α).

Definition of the Tait-calculus HνE0
α. HνE0

α is formulated in L0
α. The

formulas of HνE0
α are those of T0

α which do not contain bounded second or-
der quantifiers. In particular we allow unbounded second order quantifiers.
HνE0

α includes all axioms and rules of E0
α extended to formulas of HνE0

α. In
addition there are quantifier rules for unbounded second order quantification,
as well as the following scheme.

Iterated arithmetical comprehension. For all finite sets Γ of L0
α for-

mulas of HνE0
α, all arithmetic L0

α formulas ϕ[x, y, Z, Y ] of E0
α and all set

variables Y :

Γ, (∃X)(∀x)(∀c ≺ ν)(x ∈ (X)c ↔ ϕ[x, c, (X)≺c, Y ]).

In HνE0
α we need a rank definition for the definition of the notion of deduction

δ

k
which is defined as before. For simplicity we set rk(ϕ) := 0 iff there are

either no unbounded second order universal quantifiers ∀X or no unbounded
second order existence quantifiers ∃X in ϕ.

We can now define in HνE0
α the hyperarithmetical hierarchy (HS

a )a≺ν and
predicates (ISa )a≺ν . We fix a Π0

1 complete predicate j and define

1. HS
0 := {x : x ∈ S}.

HS
a+1 := {x : j(HS

a , x)}.
HS
` := {〈x, a〉 : a ≺ ` ∧ x ∈ HS

a}.
2. HS

a := {Y : Y is recursive in a HS
b with b � a},

:= {〈x, 〈e, b〉〉 : b � a ∧ (∀y)(∃z)({e}HSb (y) = z) ∧ {e}HSb (x) = 0}.
3. ISa := {〈e, b〉 : 〈e, b〉 is an index of an element of HS

a},
:= {〈e, b〉 : b � a ∧ (∀y)(∃z)({e}HSb (y) = z)}.

In the following we will prove an asymmetric interpretation of E0
α+1 into

HνE0
α. It corresponds essentially to the asymmetric interpretation of Σ1

1-AC
into (Π1

0-CA)<ε0 in [2]. The only difference is that our situation is more
complicated. We first give a translation.
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Definition 15 For each expression ϕ in ess-Σ1
1(D0

α) or in ess-Π1
1(D0

α) we
inductively define ϕβ,γ,ν as follows:

1. If there is no occurrence of D0
α in ϕ, then ϕβ,γ,ν := ϕ.

2. (t ∈ (D0
α)∗i)

β,γ,ν := t ∈ (HD0
<α

ν )∗i and (t /∈ (D0
α)∗i)

β,γ,ν := t /∈ (HD0
<α

ν )∗i .

3. If ϕ is of the form θ ∧ ψ (θ ∨ ψ, resp.), then ϕβ,γ,ν := θβ,γ,ν ∧ ψβ,γ,ν
(θβ,γ,ν ∨ ψβ,γ,ν , resp.).

4. If ϕ is of the form ∃kψ(k) (∀kψ(k), resp.) such that there is no (D0
α)k

in ψ, then ϕβ,γ,ν := ∃kψβ,γ,ν(k) (∀kψβ,γ,ν(k), resp.).

5. If ϕ is of the form ∃kψ((D0
α)k) ((∀kψ((D0

α)k), resp.) such that there

is a (D0
α)k in ψ, then ϕβ,γ,ν := (∃k ∈ I

D0
<α

γ )ψβ,γ,ν((HD0
<α

γ )k) ((∀k ∈
I
D0
<α

β )ψβ,γ,ν((HD0
<α

β )k), resp.).

In clause 2 we have given a translation of t ∈ (D0
α)∗i . In the following we set

(t ∈ (D0
α)s)

β,γ,ν := (t ∈ (D0
α)∗i)

β,γ,ν [∗i\s].

We extend this translation to all expressions ϕ[~∗] in ess-(Σ1
1D0

α)c∪ess-Π1
1(D0

α)c

by setting ϕ[~t]β,γ,ν := (ϕ[~∗]β,γ,ν)[~∗\~t]. Notice that for s a closed number term
the formulas t ∈ (D0

α)s and t /∈ (D0
α)s are interpreted symmetrically, whereas

the quantifiers ∃kψ((D0
α)k), ∀kψ((D0

α)k) are interpreted asymmetrically.
We will give an asymmetric interpretation. It is typical for such situations

that there is a persistency property. Notice that we have defined (HS
a )a≺ν+1

and (ISa )a≺ν+1 in such a way that we can prove in Hν+1E0
α with finite deduction

length

k /∈ I
D0
<α

γ , k ∈ I
D0
<α

γ′

and
k /∈ I

D0
<α

γ , (HD0
<α

γ )k = (HD0
<α

γ′ )k

for all ordinals γ ≤ γ′. Hence there is a persistency lemma. We omit the
proof, since it is proved by straightforward induction on the deduction length
δ.

Lemma 16 For all finite sets Γ[~∗] ∪ {ϕ[~∗]} of expressions in ess-Σ1
1(D0

α)c ∪
ess-Π1

1(D0
α)c and for all ordinals ν, ρ, ρ′, γ, γ′, δ with ν > ρ > ρ′, γ < γ′ < ν

there are integers k,m such that we have for all closed number terms ~t

Hν+1E0
α

δ

k
Γ[~t], ϕ[~t]ρ,γ,ν =⇒ Hν+1E0

α
δ+m

k
Γ[~t], ϕ[~t]ρ

′,γ′,ν .
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The asymmetric interpretation is established in the following theorem.

Theorem 17 For all finite subsets Γ[~∗] of ess-Σ1
1(D0

α)c ∪ ess-Π1
1(D0

α)c and
for all ordinals β, γ, ν ∈ Φ0 with β + ωγ < ν there is an integer k such that
we have for all closed number terms ~t

E0
α+1

γ

1
Γ[~t] =⇒ Hν+1E0

α
ων+1+ωβ+ωγ

k
~t /∈ I

D0
<α

β ,Γ[~t]β,β+ωγ ,ν .

Proof. For technical reasons we first introduce a formal theory M. We tailor
M in such a way that the semi-formal system Hν+1Eα is a (first order) Tait-
style version of M. M is formulated in L0

α and based on the usual axioms and
rules for the two-sorted predicate calculus. We have defining axioms for all
primitive recursive functions and relations and

(1) ontological properties for γ < β < α

(∀x)(x = γ → (D0
<β)x = D0

γ),

(2) closure conditions for all D0
β (β < α)

(2.1) Y, Z ∈̇ D0
β → (∃X ∈̇ D0

β)(X = Y ⊕ Z),

(2.2) Z ∈̇ D0
β → (∃X ∈̇ D0

β)(∀x)(x ∈ X ↔ π0
1[e, x, z, Z,D0

<β]),

(2.3) Z ∈̇ D0
β ∧ (∀x)(∃X ∈̇ D0

β)π0
1[e, x, z,X, Z,D0

<β]
→ (∃X ∈̇ D0

β)π0
1[e, x, z, (X)x, Z,D

0
<β],

(3) iterated arithmetical comprehension up to ν + 1 for all formulas arith-
metic in D0

<α,

(4) set-induction up to ν + 1

(∀X)TI(X, ν + 1).

The whole point of introducing this extra theory M is that we can carry
out more easily certain proofs in M and then interpret them into the more
complicated framework Hν+1E0

α. Let us formulate this embedding of M into
Hν+1E0

α. For all formulas ϕ of Hν+1E0
α there are integers k, n such that

M ` ϕ =⇒ Hν+1E0
α

ων+1+n

k
ϕ (9)
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holds. Furthermore we can prove a tautology lemma for Hν+1E0
α. For each

formula ϕ[~s] of Hν+1E0
α there exists an integer k such that we have for all

closed number terms ~t

Hν+1E0
α+1

k

0
ϕ[~t],¬ϕ[~t]. (10)

We now start to prove the claim by induction on γ. We have to discuss
E0
α+1-1 – E0

α+1-9. If Γ is an axiom of E0
α+1-1, the claim follows immediately,

since we can prove in Hν+1E0
α ¬ϕ, ϕ with finite deduction length (cf. (10)).

Since ∧ and ∨ commute with (·)δ,ε,ν , we immediately get the claim in the
case of E0

α+1-2. Notice that there is no D0
<α+1 in Γ, hence the cases E0

α+1-4
and E0

α+1-5 are immediate. If the last rule is a cut rule E0
α+1-9 we can argue

as in similar asymmetric interpretations, cf. e.g. [2], Theorem 2.5. And since
E0
α+1 does not contain E0

α+1-8 there remain E0
α+1-3, E0

α+1-6, E0
α+1-7. Let us

write in this proof ϕδ,ε for ϕδ,ε,ν .

E0
α+1-3. We have only to deal with the (∀x)-rule and the (∃x)-rule. We

first discuss the (∃x)-rule. Hence, assume that Γ[~t] is the conclusion of the
(∃x)-rule. There is a γ0 < γ and a closed term tn+1 such that

E0
α+1

γ0

1
Γ[~t], ϕ(tn+1)[~t].

If no (D0
α)tn+1 occurs in ϕ, the claim follows easily from the induction hy-

pothesis. Therefore, we assume that (D0
α)tn+1 occurs in ϕ. Thus we have

E0
α+1

γ0

1
Γ[~t], ϕ((D0

α)tn+1)[~t, tn+1].

We prefer here – and sometimes also later on – to write ϕ((D0
α)tn+1)[~t, tn+1]

instead of ϕ[~t, tn+1], since later on we have also to control the ordinal ε in

HD0
<α

ε . Using Lemma 14 and the induction hypothesis, we obtain an integer
k such that for all closed terms ~s = (s1, . . . , sn) and sn+1 such that ti = tj
implies si = sj (1 ≤ i, j ≤ n+ 1)

Hν+1E0
α

ων+1+ωβ+ωγ0

k
~s, sn+1 /∈ I

D0
<α

β ,Γ[~s]β,β+ωγ0 , ϕ((HD0
<α

ν )sn+1)[~s, sn+1]β,β+ωγ0

holds. We can prove with finite deduction length for all sn+1 (sn+1 /∈ I
D0
<α

β ,

sn+1 ∈ I
D0
<α

β+ωγ ). Then we use the ∧-rule, the (∃k)-rule and persistency. Hence,
there is an integer j such that

Hν+1E0
α

ων+1+ωβ+ωγ0 +j

k
~s, sn+1 /∈ I

D0
<α

β ,Γ[~s]β,β+ωγ ,

(∃k ∈ I
D0
<α

β+ωγ )ϕ((HD0
<α

β+ωγ )k)[~s]
β,β+ωγ
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holds for all ~s, sn+1 which satisfy the condition above. If there is a ti (1 ≤
i ≤ n) with ti = tn+1 we can set ~s := ~t, sn+1 := ti and we are done. If there
is no ti with tn+1 = ti we distinguish two cases: If n ≥ 1, we set ~s := ~t and
sn+1 := t1. If n = 0 we use the (∀x)-rule and obtain

Hν+1E0
α

<ων+1+ωβ+ωγ

k
(∀k)(k /∈ I

D0
<α

β ),Γβ,β+ωγ ,

(∃k ∈ I
D0
<α

β+ωγ )ϕ
β,β+ωγ ((HD0

<α

β+ωγ )k).

We can show with finite deduction length ¬(∀k)(k /∈ I
D0
<α

β ). Hence, a cut
implies the claim.

Now, we discuss the (∀x)-rule. We assume that Γ[~t] is the conclusion of
the (∀x)-rule. Hence there is for each closed term r a γr < γ such that

E0
α+1

γr
1

Γ[~t], ϕ(r)[~t].

If no (D0
α)r occurs in ϕ, the claim follows easily from the induction hypothesis.

Therefore, we assume that (D0
α)r occurs in ϕ. Thus we have

E0
α+1

γr
1

Γ[~t], ϕ((D0
α)r)[~t, r]

for all closed terms r. We apply the induction hypothesis and obtain with
the aid of persistency integers j, k such that

Hν+1E0
α

ων+1+ωβ+ωγr+j

k
~t, r /∈ I

D0
<α

β ,Γ[~t]β,β+ωγ , ϕ((HD0
<α

ν )r)[~t, r]
β,β+ωγ .

holds for all closed terms r. The ∨-rule and (∀x)-rule imply

Hν+1E0
α

<ων+1+ωβ+ωγ

k
~t /∈ I

D0
<α

β ,Γ[~t]β,β+ωγ , (∀k ∈ I
D0
<α

β )ϕ((HD0
<α

ν )k)[~t]
β,β+ωγ .

Since we can prove with finite deduction length

t /∈ I
D0
<α

β , (HD0
<α

ν )t = (HD0
<α

β )t,

we can prove with finite deduction length

¬(∀k ∈ I
D0
<α

β )ϕ((HD0
<α

ν )k)[~t]
β,β+ωγ , (∀k ∈ I

D0
<α

β )ϕ((HD0
<α

β )k)[~t]
β,β+ωγ

and a cut implies the claim.
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E0
α+1-6. We discuss the second axioms, the first are proved with similar

arguments. We have to prove

Hν+1E0
α

ων+1+ωβ+ωγ

n
t /∈ I

D0
<α

β ,

(∃k ∈ I
D0
<α

β+ωγ )(∀x)(x ∈ (HD0
<α

β+ωγ )k

↔ π0
1[e, x, r, (HD0

<α
ν )t,D

0
<α]).

for an integer n. Recall that we have in M iterated arithmetical compre-
hension up to ν + 1 and set induction up to ν + 1. Using this iterated
arithmetical comprehension we can build in M the hyperarithmetical hierar-

chy (HD0
<α

a )a≺ν+1 and the sets (I
D0
<α

a )a≺ν+1. We now fix an index t in I
D0
<α

β and

integers e and r. Since (HD0
<α

ν )t = (HD0
<α

β )t holds, the set

{x : π0
1[e, x, r, (HD0

<α
ν )t,D

0
<α]}

is recursive in (HD0
<α

β+1 )t. It follows that there is an index d ∈ I
D0
<α

β+1 such that

(∀x)(x ∈ (HD0
<α

β+1 )d ↔ π0
1[e, x, r, (HD0

<α
ν )t,D

0
<α])

holds. Hence we can prove in M

t /∈ I
D0
<α

β ∨ (∃k ∈ I
D0
<α

β+ωγ )(∀x)(x ∈ (HD0
<α

β+ωγ )k ↔ π0
1[e, x, r, (HD0

<α
ν )t,D

0
<α]). (11)

Using the embedding given in (9), we obtain the claim.

E0
α+1-7. We know

E0
α+1

γ

1
Γ[~t], (∃k)(∀x)π0

1[e, x, r, ((D0
α)k)x, (D0

α)r,D
0
<α]

and have to prove

Hν+1E0
α

ων+1+ωβ+ωγ

n
(~t, r /∈ I

D0
<α

β ),Γ[~t]β,β+ωγ ,

(∃k ∈ I
D0
<α

β+ωγ )(∀x)π0
1[e, x, r, ((HD0

<α

β+ωγ )k)x, (H
D0
<α

ν )r,D
0
<α]

for an integer n. We know that there exists a γ0 < γ with

E0
α+1

γ0

1
Γ[~t], (∀x)(∃k)π0

1[e, x, r, (D0
α)k, (D0

α)r,D
0
<α].
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Applying the induction hypothesis yields an integer n such that

Hν+1E0
α

ων+1+ωβ+ωγ0

n
(~t, r /∈ I

D0
<α

β ),Γ[~t]β,β+ωγ0 ,

(∀x)(∃k ∈ I
D0
<α

β+ωγ0 )π0
1[e, x, r, (HD0

<α

β+ωγ0 )k, (H
D0
<α

ν )r,D
0
<α].

Arguing as in E0
α+1-6, it is sufficient to prove in M

(~t, r ∈ I
D0
<α

β

→ (Γ[~t]β,β+ωγ0 ∨ (∀x)(∃k ∈ I
D0
<α

β+ωγ0 )π0
1[e, x, r, (HD0

<α

β+ωγ0 )k, (H
D0
<α

ν )r,D
0
<α]))

→ (~t, r ∈ I
D0
<α

β

→ (Γ[~t]β,β+ωγ ∨ (∃k ∈ I
D0
<α

β+ωγ )(∀x)π0
1[e, x, r, ((HD0

<α

β+ωγ )k)x, (H
D0
<α

ν )r,D
0
<α])).

Again we build in M the hyperarithmetical hierarchy (HD0
<α

a )a≺ν+1. And
again we use the fundamental properties of this set hierarchy in order to
prove in M the formula above. Since the proof is standard – the relevant
arguments can be extracted from e.g. Case 1 of the proof of Theorem 2.5 in
[2] –, we omit it. 2

In a next step we reduce Hν+1E0
α to E0

α. This reduction together with the
asymmetric interpretation of Theorem 17 will lead to an interpretation of
E0
α+1 into E0

α. As mentioned we introduce a semi-formal system RAα. RAα

is essentially an extension of RA? of Schütte (cf. [16]) by E0
α. The language

LRAα of RAα is similar to L0
α. We have set variables Xβ, Y β, Zβ, . . . for all

β ∈ Φ0, and we have all predicates of L0
α. The number terms of LRAα are

those of L2. The set terms R, S, T, . . . of LRAα are defined simultaneously
with the formulas of LRAα .

1. Each Xβ is a set term.

2. If ϕ is a LRAα formula, then {x : ϕ} is a set term.

3. [¬]K~t, [¬]t ∈ D0
β, [¬]t ∈ D0

<γ are LRAα formulas for K a primitive
recursive relation symbol and β < α, γ ≤ α.

4. [¬]t ∈ T are LRAα formulas for number terms t and set terms T .

5. LRAα formulas are closed under ∧,∨,∃x, ∀x, ∃Xβ,∀Xβ for β > 0.
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The level of a set term and the level of a formula ϕ is defined by

lev(T ) := max({0} ∪ {α : Xα occurs in T}),
lev(ϕ) := max({0} ∪ {α : Xα occurs in ϕ}).

Definition 18 The rank rk(ϕ) of an LRAα formula ϕ and of RAα is induc-
tively defined as follows: If in ϕ there is no occurrence of an Xβ or a {x : ψ},
then rk(ϕ) := 0. Otherwise:

1. If ϕ is a formula t ∈ Xβ or t /∈ Xβ, then rk(ϕ) := max{1, ω · β}.

2. If ϕ is a formula t ∈ {x : ψ} or t /∈ {x : ψ}, then rk(ϕ) := rk(ψ) + 1.

3. If ϕ is a formula ψ ∨ θ or ψ ∧ θ, then rk(ϕ) := max(rk(ψ), rk(θ)) + 1.

4. If ϕ is a formula (∃xψ) or (∀xψ), then rk(ϕ) := rk(ψ) + 1.

5. If ϕ is a formula (∃Xβ)ψ(Xβ) or (∀Xβ)ψ(Xβ), then
rk(ϕ) := max(ω · lev(ϕ), rk(ψ(X0)) + 1).

Notice that rk(ϕ) = rk(¬ϕ). We make the following observations.

1. If lev(ϕ) = γ, then ωγ ≤ rk(ϕ) < ω(γ + 1).

2. If lev(T ) < γ, then rk(ϕ(T )) < rk(∃Xγϕ(Xγ)).

RAα is defined as a Tait-calculus (α ∈ Φ0). The axioms and rules are given
below. Notice that these rank properties will lead to a partial cut elimination
lemma.

1. Logical axioms. For all finite sets Γ of LRAα formulas, all set vari-
ables Xβ, all true L1 literals ϕ, all closed number terms s, t with identical
value and all ordinals γ, δ with γ < α, δ ≤ α:

Γ, ϕ and Γ, t ∈ Xβ, s /∈ Xβ

and Γ, t ∈ D0
γ, s /∈ D0

γ and Γ, t ∈ D0
<δ, s /∈ D0

<δ.

2. Propositional rules. For all finite sets Γ of LRAα formulas and all LRAα
formulas ϕ and ψ:

Γ, ϕ

Γ, ϕ ∨ ψ
,

Γ, ψ

Γ, ϕ ∨ ψ
,

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
.
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3. Set term rules. For all finite sets Γ of LRAα formulas, all LRAα formulas
ϕ and all closed number terms t:

Γ, ϕ(t)

Γ, t ∈ {x : ϕ(x)}
,

Γ,¬ϕ(t)

Γ, t /∈ {x : ϕ(x)}
.

4. Quantifier rules. For all finite sets Γ of LRAα formulas, all set terms T ,
all closed number terms s and all LRAα formulas ϕ(s), ψ(T ):

Γ, ϕ(s)

Γ, (∃x)ϕ(x)
,

Γ, ϕ(t) for all closed terms t

Γ, (∀x)ϕ(x)
,

Γ, ψ(T )

Γ, (∃Xβ)ψ(Xβ)
lev(T ) < β,

Γ, ψ(T ) for all set terms T with lev(T ) < β

Γ, (∀Xβ)ψ(Xβ)
.

5. E0
α axioms and rules. For all finite sets Γ of LRAα formulas, for all

axioms Λ1 and all rules Λ2

Λ3
of the ontological axioms II and rules III and

closure axioms Λ1 and rules Λ2

Λ3
of E0

α:

Γ,Λ1 and
Γ,Λ2

Γ,Λ3

.

6. Cut rules. For all finite sets Γ of closed LRAα formulas and for all LRAα
formulas ϕ:

Γ, ϕ Γ,¬ϕ
Γ

.

In the following theorem we collect the main results about RAα. For the
formulation we need the notion of a γ-instance.

Definition 19 Take an L0
α formula ϕ of HνE0

α (notice that there are no
bounded second order quantifiers in ϕ). The LRAα formula ϕγ is a γ-instance
of ϕ if ϕγ is obtained from ϕ by

– free set variables are replaced by set terms of LRAα with lev < γ.

– bound set variables get the superscript γ.

Theorem 20 The following holds.

a) For all finite sets Γ of LRAα formulas we have

RAα
γ

1+β+ωδ
Γ =⇒ RAα

ϕδγ

1+β
Γ.
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b) For all finite sets Γ of L0
α formulas of HνE0

α, we have for all ων+1-
instances Γω

ν+1
of Γ

HνE0
α

γ

1
Γ =⇒ RAα

ωω
ν+3+ωγ

ωων+3+ωγ
Γω

ν+1

.

c) For all finite sets Γ of LRAα formulas without set terms Xβ, {x : ϕ(x)}
we have

RAα
γ

1
Γ =⇒ E0

α
γ

<ω
Γ.

Proof. The proof of the partial (second) cut elimination a) is standard and
hence omitted (cf. for instance [11] Theorem 18.4). The proof of b) is by
induction on γ. All cases beside the iterated arithmetical comprehension can
be shown by standard arguments and some calculations of bounds. The rel-
evant arguments for the embedding of iterated arithmetical comprehension
in RAα can be extracted from [4], Proposition 9. Finally, an easy induction
on γ shows c). 2

In Corollary 21 we write ε(γ) for the next epsilon number above γ.

Corollary 21 For all finite sets Γ ⊂ (ess-Σ1
1(D0

α))c ∪ (ess-Π1
1(D0

α))c without
an occurrence of D0

α we have

E0
α+1

γ

1
Γ =⇒ E0

α
<ϕε(γ)0

1
Γ.

Proof. We assume that E0
α+1

γ

1
Γ. By Theorem 17 there exist ordinals ν, ξ

less than ε(γ) with

HνE0
α

ξ

<ω
Γ.

We conclude from Theorem 20a) and 20b)

RAα
<ϕε(γ)0

1
Γ.

And from Theorem 20c) and Lemma 12

E0
α

<ϕε(γ)0

1
Γ.

2
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5.2 The semi-formal systems E
~l
~α

In Theorem 17 we have interpreted E0
α+1 into “Iterated arithmetical com-

prehension over E0
α”. In the following we give an asymmetric interpretation

of En+1
α+1 into “Enν over En+1

α ”. We will introduce in this subsection e.g. a
semi-formal system En,n+1

ν,α , which corresponds to “Enν over En+1
α ”.

We write ~l = n, n + 1, . . . , n + k where n, n + 1, . . . , n + k are natural
numbers and ~α = αn, αn+1, . . . , αn+k where αn, αn+1, . . . , αn+k ∈ Φ0. The

language L~l~α is an extension of L1 by the predicates Di
βi

, Di
<γi

for each i with
n ≤ i ≤ n + k and all ordinals βi, γi with βi < αi, γi ≤ αi. The formulas

of L~l~α are built in analogy to Emα : All L1 literals and [¬]t ∈ Di
βi

, [¬]t ∈ Di
<γi

are formulas of L~l~α for n ≤ i ≤ n + k, βi < αi, γi ≤ αi. Moreover, the

formulas of L~l~α are closed under ∧, ∨, ∃x, ∀x. We take as L~l~α formulas of E
~l
~α

the L~l~α formulas without free number variables. The semi-formal system E
~l
~α

corresponds to ”Enαn over En+1
αn+1

over . . . over En+k
αn+k

”. Hence its Tait-calculus
contains the following axioms and rules of inference.

1. Ontological axioms I. For all finite sets Γ of L~l~α formulas of E
~l
~α, all

closed number terms s, t with identical value, all true literals ϕ of L1 and all
βi < αi, γi ≤ αi, 1 ≤ i ≤ n:

Γ, ϕ and Γ, t ∈ Di
βi
, s /∈ Di

βi
and Γ, t ∈ Di

<γi
, s /∈ Di

<γi
.

2. Propositional and quantifier rules. Rules for ∧, ∨, ∃x, ∀x (ω-rule).

3. Ontological axioms II and rules III. For all finite sets Γ of L~l~α
formulas of E

~l
~α and for all ontological axioms II Λ1 and ontological rules III

Λ2

Λ3
of the systems Enαn , . . . ,E

n+k
αn+k

:

Γ,Λ1, and
Γ,Λ2

Γ,Λ3

.

4. Enαn , . . . ,E
n+k
αn+k

axioms and rules. For all finite sets Γ of L~l~α formulas of

E
~l
~α, for all closure and reflection axioms Λ1 and for all closure rules Λ2

Λ3
of the

systems Enαn , . . . ,E
n+k
αn+k

:

Γ,Λ1, and
Γ,Λ2

Γ,Λ3

.
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5. Inclusion axioms. For all finite sets Γ of L~l~α formulas of E
~l
~α, all i with

n ≤ i < j ≤ n+ k and all ordinals βi < αi:

Γ, (∃k)((Di
βi

)k = Dj
<αj).

6. Cut rules. The usual cut rules.

For E
~l
~α we introduce classes corresponding to ess-Σ1

1(Dn
β) and ess-Π1

1(Dn
β)

with respect to β < αn.

Definition 22 We fix ~l = n, n + 1, . . . , n + k, ~α = αn, αn+1, . . . , αn+k,
~β = β, αn+1, . . . , αn+k, β < αn. The classes ess-Σ1

1(D
~l
~β
) and ess-Π1

1(D
~l
~β
)

are inductively defined as follows:

1. For all number terms t, ~s, all primitive recursive relation symbols K,
all ∗i, all ordinals γj ≤ αj (n < j ≤ n + k) and all ordinals δ < β the

following expressions are in ess-Σ1
1(D

~l
~β
) and ess-Π1

1(D
~l
~β
): [¬]K~s, [¬]t ∈

Dj
γj

, [¬]t ∈ Dj
<γj , [¬]t ∈ Dn

δ , [¬]t ∈ Dn
<δ, [¬]t ∈ (Dn

β)∗i , [¬]t ∈ Dn
<β.

2. If ϕ, ψ are in ess-Σ1
1(D

~l
~β
) (ess-Π1

1(D
~l
~β
), resp.), then ϕ∧ψ and ϕ∨ψ are

in ess-Σ1
1(D

~l
~β
) (ess-Π1

1(D
~l
~β
), resp.).

3. If ϕ is in ess-Σ1
1(D

~l
~β
) (ess-Π1

1(D
~l
~β
), resp.), then ∃xϕ and ∀xϕ are in

ess-Σ1
1(D

~l
~β
) (ess-Π1

1(D
~l
~β
), resp.).

4. If ϕ(∗i) is in ess-Σ1
1(D

~l
~β
) (ess-Π1

1(D
~l
~β
), resp.), then ∃xϕ[∗i\x] (∀xϕ[∗i\x],

resp.) is in ess-Σ1
1(D

~l
~β
) (ess-Π1

1(D
~l
~β
), resp.). Here we write ϕ[∗i\x] for

the expression ϕ where all occurrences of ∗i are substituted by x.

As in section 4 we define: ess-Σ1
1(D

~l
~β
)c (ess-Π1

1(D
~l
~β
)c, resp.) is the subset of

all expressions in ess-Σ1
1(D

~l
~β
) (ess-Π1

1(D
~l
~β
), resp.) which have no free num-

ber variables. The rank rk(ϕ) of an L~l~α formula ϕ of E
~l
~α is now defined as

follows: rk(ϕ) = 0 iff there is a closed term ~t and a ψ[~∗] in ess-Σ1
1(D

~l
~β
)c or

ess-Π1
1(D

~l
~β
)c with ~β = β, αn+1, . . . αn+k and β < αn and such that ϕ ≡ ψ[~t].

In order to achieve a finite reduction, we extend the methods of the preceding

subsections, which led to Theorem 17, to E
~l
~α
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Definition 23 Fix ~l = n+ 1, n+ 2, . . . , n+ k and ~α = αn+1, αn+2, . . . , αn+k.

For each expression ϕ in ess-Σ1
1(D

~l
~α) or in ess-Π1

1(D
~l
~α) we inductively define

ϕβ,γ,ν as follows:

1. If there is no occurrence of Dn+1
αn+1

in ϕ, then ϕβ,γ,ν := ϕ.

2. (t ∈ (Dn+1
αn+1

)∗i)
β,γ,ν := t ∈ (Dn

ν )∗i and (t /∈ (Dn+1
αn+1

)∗i)
β,γ,ν := t /∈ (Dn

ν )∗i .

3. If ϕ is of the form θ ∧ ψ (θ ∨ ψ, resp.), then ϕβ,γ,ν := θβ,γ,ν ∧ ψβ,γ,ν
(ϕβ,γ,ν := θβ,γ,ν ∨ ψβ,γ,ν , resp.).

4. If ϕ is of the form ∃xψ (∀xψ, resp.) such that there is no (Dn+1
αn+1

)x in

ϕ, then ϕβ,γ,ν := ∃xψβ,γ,ν (ϕβ,γ,ν := ∀xψβ,γ,ν , resp.).

5. If ϕ is of the form (∃k)ψ((Dn+1
αn+1

)k) ((∀k)ψ((Dn+1
αn+1

)k), resp.) such that

there is a (Dn+1
αn+1

)k in ψ, then ϕβ,γ,ν := (∃k)ψβ,γ,ν((Dn
γ)k) (ϕβ,γ,ν :=

(∀k)ψβ,γ,ν((Dn
β)k), resp.).

We now formulate the asymmetric interpretation. It corresponds to the
asymmetric interpretation of E0

α+1 into HνE0
α. We write in this interpretation

(∃~k)(Dn
β)~k = (Dn

β)~t for (∃k)(Dn
β)k = (Dn

β)t1 , . . . (∃k)(Dn
β)k = (Dn

β)tr .

Theorem 24 We set ~l = n + 2, . . . , n + k and ~α = αn+2, . . . , αn+k with
αn+2, . . . , αn+k ∈ Φ0. For all finite subsets Γ[~∗] of

ess-Σ1
1(Dn+1,~l

αn+1,~α
)c ∪ ess-Π1

1(Dn+1,~l
αn+1,~α

)c,

for all ordinals αn+1, β, γ, ν ∈ Φ0 with β + ωγ < ν there is a natural number
m such that we have for all closed number terms ~t

En+1,~l
αn+1+1,~α

γ

1
Γ[~t] =⇒ En,n+1,~l

ν,αn+1,~α

ωβ+ωγ

m
¬(∃~k)(Dn

β)~k = (Dn
ν )~t,Γ[~t]β,β+ωγ ,ν .

Proof. We only have to adapt the proof of Theorem 17. First, notice that we

can prove for all semi-formal systems E
~l
~α properties corresponding to Lemma

14 (”substitution property”) and Lemma 16 (”persistency”). Since the proof
of these properties is straightforward, we omit it. We prove now the claim by
induction on γ. Apart from the inclusion axioms and the En+1

αn+1+1, En+2
αn+2

, . . . ,

En+k
αn+k

axioms and rules all axioms and rules are treated in a similar way as
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in Theorem 17. We first discuss the inclusion axioms. The only non trivial
cases are

En+1,~l
αn+1+1,~α

γ

1
Γ[~t], (∃k)((Dn+1

αn+1
)k = Dj

<αj)

where n+ 1 < j ≤ n+ k. We have to prove

En,n+1,~l
ν,αn+1,~α

ωβ+ωγ

m
¬(∃~k)(Dn

β)~k = (Dn
ν )~t,Γ[~t]β,β+ωγ , (∃k)((Dn

β+ωγ )k = Dj
<αj).

(We write ϕδ,ε for ϕδ,ε,ν .) Since this is an inclusion axiom of En,n+1,~l
ν,αn+1,~α

, we

are done. There remain the En+1
αn+1+1, En+2

αn+2
, . . . , En+k

αn+k
axioms and rules. We

assume that Dn+1
αn+1

occurs in Γ[~t] – the other cases are immediate. Recall
that in the proof of Theorem 17 we have built the hyperarithmetical hier-

archy (HD0
<α

b )b≺ν . Here we have a hierarchy (Dn
β)β<ν . In this asymmetric

interpretation here, each Dn
β corresponds to HD0

<α

b (b = β) and vice versa.

And since the properties of Dn
β are analogous to the properties of HD0

<α

b (in
fact stronger), the argumentation is very similar as in Theorem 17. Hence
the relevant arguments for the closure of Dn+1

αn+1
under disjoint union and Π1

0

comprehension can be extracted from Theorem 17 and the relevant argu-
ments for the closure under Σ1

1-DC can be extracted from Theorem 3.1 in [2]
or from Theorem 13 in [8].

There remain the reflection axioms. It is sufficient to show that we can
prove in En,n+1,~l

ν,αn+1,~α
with finite deduction length

¬(∃k)(Dn
β)k = (Dn

ν )t, (∃k)((Dn
ν )t ∈̇ (Dn

β+ωγ )k ∧ In((Dn
β+ωγ )k)).

We assume n > 0, the case n = 0 is immediate. As in the proof of Theorem

17 we introduce a theory M. M is formulated in Ln,n+1,~l
ν,αn+1,~α

and tailored in such

a way that En,n+1,~l
ν,αn+1,~α

is the Tait-style version of M. In particular M is based on
the usual axioms and rules of one-sorted predicate calculus, and M contains

all axioms and rules corresponding to the axioms and rules 1, 3-6 of En,n+1,~l
ν,αn+1,~α

.

And again we argue in M and then embed into En,n+1,~l
ν,αn+1,~α

. We have in M

(∀l)(∃k)((Dn
β)l ∈̇ (Dn

β)k ∧ In−1((Dn
β)k)).

Since we also know (AxΣ1
1-DC)Dnβ , we conclude that In(Dn

β) holds. Hence we
can prove in M

(∃k)((Dn
β)k = (Dn

ν )t)→ ((Dn
ν )t ∈̇ Dn

β ∧ In(Dn
β)).
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We know Dn
β ∈̇ Dn

β+ωγ , thus

¬(∃k)((Dn
β)k = (Dn

ν )t) ∨ (∃k)((Dn
ν )t ∈̇ (Dn

β+ωγ )k ∧ In((Dn
β+ωγ )k)). (12)

Notice that we do not have used induction in this argumentation. Hence we

can prove (12) in En,n+1,~l
ν,αn+1,~α

with finite deduction length. This is the claim. 2

The following corollary is an immediate consequence.

Corollary 25 We set ~l = n + 2, . . . , n + k and ~α = αn+2, . . . , αn+k with
αn+2, . . . , αn+k ∈ Φ0. For all finite subsets Γ of

ess-Σ1
1(Dn+1,~l

αn+1,~α
)c ∪ ess-Π1

1(Dn+1,~l
αn+1,~α

)c,

without occurrences of Dn+1
αn+1

and for all ordinals αn+1 ∈ Φ0 there is a natural
number m such that we have

En+1,~l
αn+1+1,~α

γ

<ω
Γ[~t] =⇒ there is an ordinal ν < ε(γ) with

En,n+1,~l
ν,αn+1,~α

ε(γ)

m
Γ.

6 Transfinite reduction

The transfinite reductions in our context are very similar to the reduction of
transfinitely many fixed points (cf. [7] Main Lemma II) or to the reduction
of transfinitely many n-inaccessibles (cf. [9] Theorem 10). Roughly spoken,
the hard part is the finite reduction, since usually for that we need asymmet-
ric interpretations and embeddings and “back-embeddings”. On the other
hand, when we inspect the proofs of the transfinite reductions we see that
nearly nothing happens: The initial step of the induction follows from the
finite reduction, and the induction step essentially follows from the induction

hypothesis. Again we distinguish two cases: E0
α and E

~l
~α. We start with the

first case.

6.1 Transfinite reduction of E0
α

The following theorem corresponds to Main Lemma II in [7]. Also the proof
is very similar.
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Theorem 26 Assume E0
β+ω1+ρ

α

1
Γ for a finite set

Γ ⊂
⋃

δ<β+ω1+ρ

(ess-Σ1
1(D0

δ)
c ∪ ess-Π1

1(D0
δ)
c).

Then we have for all ordinals ξ less than ω1+ρ

Γ ⊂
⋃

δ<β+ξ

(ess-Σ1
1(D0

δ)
c ∪ ess-Π1

1(D0
δ)
c) =⇒ E0

β+ξ
ϕ1ρα

1
Γ.

Proof. We follow the proof of Main Lemma II in [7]. We prove the claim by
main induction on ρ and side induction on α. We distinguish the cases ρ = 0,
ρ is a successor or ρ is a limit ordinal. Here we discuss only the case ρ = 0,
since the relevant arguments for the other cases can easily be extracted from
the corresponding cases in the proof of Main Lemma II in [7]. That proof
and the proof here differ only in the underlying theories.

Let us assume that ρ = 0 and that Γ is a finite set of L0
β+n formulas

of E0
β+n for some natural number n so that E0

β+ω
α

1
Γ. If Γ is an axiom

of E0
β+n, then the claim is trivial. Furthermore, if Γ is the conclusion of a

rule different from the cut rule, the claim is immediate from the induction
hypothesis. Hence, the only critical case comes up if Γ is the conclusion of a
cut-rule. Then there exist a natural number m ≥ n, ordinals α0, α1 < α and
an L0

β+m formula ϕ such that all D0
θ,D

0
<λ in ϕ fulfill λ, θ < β + m and such

that

E0
β+ω

α0

1
Γ, ϕ and

E0
β+ω

α1

1
Γ,¬ϕ.

By the induction hypothesis we can conclude that

E0
β+m

ϕ10α0

1
Γ, ϕ and

E0
β+m

ϕ10α1

1
Γ,¬ϕ

and an application of the cut-rule yields E0
β+m

γ

<ω
Γ for

γ := max(ϕ10α0, ϕ10α1) + 1.

Partial cut elimination (Lemma 12) gives E0
β+m

<ε(γ)

1
Γ. If m = n, we are

done. Otherwise, successive application of Corollary 21 (finite reduction) and
partial cut elimination gives

E0
β+n

ϕ10α

1
Γ.
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2

Notice that we have proved in Corollary 21 a reduction of E0
α+1 to E0

α. In-
specting the arguments which led to Corollary 21, we see that we can adapt

the arguments obtaining a reduction of E0,~l
α+1,~α to E0,~l

α,~α. The only difference is

that now we have E0
α+1 over E

~l
~α (and not only E0

α+1). We can adapt Lemma 12

and Lemma 14 and introduce semi-formal systems HνE0,~l
α,~α too. There are no

problems to generalize the asymmetric interpretation (Theorem 17) to em-

bed HνE0,~l
α,~α into a system of ramified analysis over E0,~l

α,~α and to back-embed

the first order part into E0,~l
α,~α. We can use this reduction of E0,~l

α+1,~α to E0,~l
α,~α in

order to obtain Theorem 27, a generalized version of Theorem 24. Since the
proof is straightforward, we omit it.

Theorem 27 Let ~l = 1, . . . , k be a vector of natural numbers and let ~α =

α1, . . . , αk be a vector of elements of Φ0. Assume E0,~l
β+ω1+ρ,~α

γ

1
Γ for a finite

set
Γ ⊂

⋃
δ<β+ω1+ρ

(ess-Σ1
1(D0,~l

δ,~α)c ∪ ess-Π1
1(D0,~l

δ,~α)c).

Then we have for all ordinals ξ less than ω1+ρ

Γ ⊂
⋃

δ<β+ξ

(ess-Σ1
1(D0,~l

δ,~α)c ∪ ess-Π1
1(D0,~l

δ,~α)c) =⇒ E0,~l
β+ξ,~α

ϕ1ργ

1
Γ.

6.2 Transfinite reduction of E
~l
~α

We give in this subsection a kind of iteration of Theorem 27.

Theorem 28 Let ~l = n + 1, . . . , n + k be a vector of natural numbers and

let ~α = αn+1, . . . , αn+k be a vector of elements of Φ0. Assume En,
~l

β+ω1+ρ,~α

α

1
Γ

for a finite subset

Γ ⊂
⋃

δ<β+ω1+ρ

(ess-Σ1
1(Dn,~l

δ,~α)c) ∪ ess-Π1
1(Dn,~l

δ,~α)c).

Then we have for all ξ less than ω1+ρ

Γ ⊂
⋃

δ<β+ξ

(ess-Σ1
1(Dn,~l

δ,~α)c ∪ ess-Π1
1(Dn,~l

δ,~α)c) =⇒ En,
~l

β+ξ,~α

ϕ(n+1)ρα

1
Γ.
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Proof. The proof is by meta-induction on n. The case n = 0 is exactly
Theorem 27. It remains to prove the claim for n > 0. Therefore, we assume
n > 0. We prove the claim by main induction on ρ and side induction on α.
We distinguish the cases ρ = 0, ρ is a successor or ρ is a limit ordinal. Here
we discuss again only the case ρ = 0, since for the other two cases we refer
to the corresponding cases in the proof of Main Lemma II in [7].

Let us assume ρ = 0 and that Γ is a finite set of Ln,~lβ+l,~α formulas of En,
~l

β+l,~α

for some natural number l so that En,
~l

β+ω,~α

α

1
Γ. Again, the only critical case

comes up if Γ is the conclusion of a cut-rule. Then there exist a natural

number m ≥ l, ordinals α0, α1 < α and a Ln,~lβ+m,~α formula ϕ such that all
Dn
θ ,D

n
<λ in ϕ fulfill λ, θ < β +m and such that

En,
~l

β+ω,~α

α0

1
Γ, ϕ and

En,
~l

β+ω,~α

α1

1
Γ,¬ϕ.

By the induction hypothesis we can conclude that

En,
~l

β+m,~α

ϕ(n+1)0α0

1
Γ, ϕ and

En,
~l

β+m,~α

ϕ(n+1)0α1

1
Γ,¬ϕ.

An application of the cut rule yields En,
~l

β+m,~α

γ

<ω
Γ for

γ := max(ϕ(n+ 1)0α0, ϕ(n+ 1)0α1) + 1.

Partial cut elimination gives En,
~l

β+m,~α

<ε(γ)

1
Γ. (We have not proved partial

cut elimination for En−1,n,~l
ν,β+m−1,~α. But it is clear that we can do this as for En−1

ν ,
since the mainformulas of the added axioms and rules have cut rank 0.) If
m = l, we are done. Otherwise an application of Corollary 25 yields

En−1,n,~l
ν,β+m−1,~α

<ε(γ)

<ω
Γ

for a ν less than ε(γ). Hence

En−1,n,~l
ν,β+m−1,~α

<ε(γ)

1
Γ.

Now, we use the meta-induction hypothesis and conclude that

En−1,n,~l
0,β+m−1,~α

<ϕnε(γ)0

1
Γ.
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Since En−1,n,~l
0,β+m−1,~α is just En,

~l
β+m−1,~α we have En,

~l
β+m−1,~α

<ϕnε(γ)0

1
Γ. We do this

again and again until we have m− 1 = l. Therefore

En,
~l

β+l,~α

ϕ(n+1)0α

1
Γ.

2

6.3 Proof-theoretic upper bound of Tn+1
m and T0

α

In this subsection we collect the results of the preceding subsections. More-
over we will present these results in such a form that we can directly apply
them in the proof-theoretic analysis of our theories. We write PA? for a Tait-
style reformulation (with ω-rule) of the Peano arithmetic PA. We can take
E0

0 as PA?. Recall that E0
0 is formulated in L1 extended by D0

<0. D0
<0 can

be interpreted as the empty set. The Tait-calculus of E0
0 is given by E0

0-1,
E0

0-2, E0
0-3, E0

0-4, E0
0-9. For a formula ϕ of L1 extended by D0

<0 we can define
a (new) rank rk(ϕ). We set rk(ϕ) = 0 iff ϕ is an L1 literal or t ∈ D0

<0,
t /∈ D0

<0, t a closed number term. Hence we can prove full (predicative) cut
elimination with respect to this rank definition (cf. e.g. [11])

E0
0
α

k
Γ =⇒ E0

0
ωk(α)

0
Γ.

Theorem 29 Assume that α is an ordinal less than Φ0 given in the form

α = ω1+αn + ω1+αn−1 + . . .+ ω1+α1 +m

for ordinals αn ≥ αn−1 ≥ . . . ≥ α1 and m < ω. We set

(α|0) := ε(α) and (α|m+ 1) := ϕ(α|m)0

and δ := ϕ1αn(ϕ1αn−1(. . . ϕ1α1(α|m) . . .)).

Then we have for all sentences ϕ of L1 and for all ordinals ν < ε(α)

T0
α

ν

<ω
ϕ =⇒ PA? <δ

0
ϕ.

Proof. We assume T0
α

ν

<ω
ϕ. From Lemma 10, 12 and 13 we conclude that

E0
α

<ε(ν)

1
ϕ. Applying m-times Corollary 21 leads to

E0
ω1+αn+...+ω1+α1

<(α|m)

1
ϕ.

We now use n-times Theorem 26 and conclude E0
0

<δ

1
ϕ. We obtain the

claim by predicative cut elimination (in PA∗). 2
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Theorem 30 We set γν,0 := ε(ν) and γν,k+1 := ϕnγν,k0 for n > 0. Then we
have for all sentences of L1 and for n > 0

Tn
m

ν

<ω
ϕ =⇒ PA? γν,m

0
ϕ.

Proof. We assume Tn
m

ν

<ω
ϕ. Lemma 10 and Lemma 13 lead to Enm

<ε(ν)

1
ϕ.

By induction on m we prove

Enm
β

1
ϕ =⇒ PA? γβ,m

0
ϕ

which implies the claim. If m = 0, we embed En0 into PA? by interpreting all
Dn
<0 as D0

<0 and get the claim by predicative cut elimination. Now we assume
m > 0. We conclude from Corollary 25 that there is an ordinal α less than
ε(β) with

En−1,n
α,m

α

<ω
ϕ.

An application of Theorem 28 gives

En−1,n
0,m−1

ϕnαα

1
ϕ.

This is Enm−1
ϕnαα

1
ϕ. Now, the induction hypothesis implies the claim. 2

7 Proof-theoretic strengths

In this section we finish the proof-theoretic analysis of Σ1
1-TDC0. The lower

bound is given in Corollary 9. It remains the determination of the upper

bound. In order to achieve this, we use the equivalence of (Π1
2-RFN)

Σ1
1-DC

0

and Σ1
1-TDC0 (cf. [14]). We first reduce (Π1

2-RFN)
Σ1

1-DC
0 to

⋃
n∈IN In-RFN0 by

a symmetric interpretation. Secondly, using an asymmetric interpretation,
we reduce

⋃
n∈IN In-RFN0 to

⋃
n∈IN Tn

m.

In the following we let ((Π1
2-RFN)

Σ1
1-DC

0 )T denote a Tait-style reformula-

tion of (Π1
2-RFN)

Σ1
1-DC

0 . Note that in this Tait-calculus ((Π1
2-RFN)Σ1

1-DC) is
formulated as the rule

Γ, (∃Y )ϕ[~x,X, Y, ~Z]

Γ, (∃M)(~Z ∈̇M ∧ (AxΣ1
1-DC)M ∧ ((∀X)(∃Y )ϕ[~x,X, Y, ~Z])M)

for all Π1
0 formulas ϕ[~x,X, Y, ~Z]. The arithmetic comprehension is formulated

as
Γ, (∃X)(∀x)(x ∈ X ↔ ϕ[x, ~z, ~Z])
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for each Π1
0 formula ϕ[x, ~z, Z] and set induction has now the form

Γ,¬0 ∈ X, (∃x)(x ∈ X ∧ ¬(x+ 1) ∈ X), (∀x)(x ∈ X).

These mathematical axioms and rules are extended by rules for ∨, ∧, ∃x,
∀x, ∃X, ∀X, by cut rules and by axioms Γ, ϕ and Γ, t ∈ X, s /∈ X for each
true L1 literal ϕ and all closed number terms t, s with t = s. Of course these

Tait-style reformulation of (Π1
2-RFN)

Σ1
1-DC

0 is tailored in such a way that we

can embed (Π1
2-RFN)

Σ1
1-DC

0 into it. For all L2 formulas ϕ there exists a natural
number n such that

(Π1
2-RFN)

Σ1
1-DC

0 ` ϕ[~x] =⇒ ((Π1
2-RFN)

Σ1
1-DC

0 )T
n
ϕ[~t]

holds for all closed number terms ~t. Next we define the cut rank of a formula
ϕ. We set rk(ϕ) = 0 iff ϕ is a Σ1

1 or a Π1
1 formula. Then one readily notes that

the mainformulas of the mathematical axioms and rules of ((Π1
2-RFN)

Σ1
1-DC

0 )T

have cut rank 0. As a consequence we obtain the following partial cut elim-
ination

((Π1
2-RFN)

Σ1
1-DC

0 )T
n

k+1
Γ =⇒ ((Π1

2-RFN)
Σ1

1-DC
0 )T

2n

1
Γ

and finally

(Π1
2-RFN)

Σ1
1-DC

0 ` ϕ =⇒ ((Π1
2-RFN)

Σ1
1-DC

0 )T
<ω

1
ϕ

for each L1 sentence ϕ. Let us now formulate the reduction of (Π1
2-RFN)

Σ1
1-DC

0

to
⋃
n∈IN In-RFN0. For an analogous reduction in the context of set theory we

refer to [9].

Theorem 31 For all finite sets Γ ⊂ Σ1
1 of closed L2 formulas, all arithmetic

sentences ϕ and all n ∈ IN we have

a) ((Π1
2-RFN)

Σ1
1-DC

0 )T
n

1
Γ[~Z] =⇒ ACA0 ¬In+1(D), ~Z /̇∈ D,ΓD[~Z],

b) (Π1
2-RFN)

Σ1
1-DC

0 ϕ =⇒
⋃
n∈IN In-RFN0 ϕ.

Proof. Assertion b) follows from assertion a), since in In-RFN0 we have sets
D with In(D) and since we can embed (Π1

2-RFN)Σ1
1-DC into its Tait-calculus.

Thus, we have to show a). The proof is by induction on n. We discuss only
the case where Γ is the conclusion of the ((Π1

2-RFN)Σ1
1-DC)-rule, since the
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other cases follow easily from the induction hypothesis and the definition of

In+1(D). Hence, assume that ((Π1
2-RFN)

Σ1
1-DC

0 )T proves with deduction length
n > 0

Γ[~P ], (∃M)(~Z ∈̇M ∧ (AxΣ1-DC)M ∧ ϕM), (13)

where ϕ is of the form (∀X)(∃Y )ψ(X,Y, ~Z) and all free set parameters of

ψ ∈ Π1
0 are among X, Y, ~Z. We have to prove in ACA0

¬In+1(D), ~P , ~Z /̇∈ D,ΓD[~P ], (∃M ∈̇ D)(~Z ∈̇M ∧ (AxΣ1
1-DC)M ∧ ϕM).

First, we notice that we have

((Π1
2-RFN)

Σ1
1-DC

0 )T
n−1

1
Γ[~P ], (∀X)(∃Y )ψ(X, Y, ~Z).

We can prove (∀X)-inversion in ((Π1
2-RFN)

Σ1
1-DC

0 )T . Hence

((Π1
2-RFN)

Σ1
1-DC

0 )T
n−1

1
Γ[~P ], (∃Y )ψ(V, Y, ~Z),

V a fresh variable. Now we apply the induction hypothesis and obtain

ACA0 ¬In(D), (~Z, ~P , V /̇∈ D),ΓD[~P ], (∃Y ∈̇ D)ψ(V, Y, ~Z). (14)

From now on we argue within ACA0. Choose a set C with In+1(C) and
~P , ~Z ∈ C. We have to show

ΓC [~P ], (∃M ∈̇ C)(~Z ∈̇M ∧ (AxΣ1
1-DC)M ∧ ϕM). (15)

Since we have In+1(C), there is an M in C with ~P , ~Z ∈̇M and In(M). Using
(14), we obtain

V /̇∈M,ΓM [~P ], (∃Y ∈̇M)ψ(V, Y, ~Z).

That is ΓM [~P ], ϕM . Notice that we have transitivity in C, i.e. G ∈̇ M ∈̇ C
implies G ∈̇ C. This fact follows from In+1(C), in particular it follows from
arithmetical comprehension in C. Since we know G = (M)k for a k, there is
an F in C with

(∀x)(x ∈ F ↔ 〈x, k〉 ∈M).

Hence G ∈̇ C. Using this transitivity and the fact that Γ is a disjunction of
Σ1

1 formulas we have also ΓC [~P ], ϕM . Furthermore, we have n > 0 and hence
(AxΣ1

1-DC)M . Thus

ΓC [~P ], (∃M ∈̇ C)(~Z ∈̇M ∧ (AxΣ1
1-DC)M ∧ ϕM).
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But this is exactly (15). 2

In a next step we asymmetrically interpret In-RFN0 into
⋃
k∈IN Tn

k . Again
we use a Tait-style reformulation (In-RFN0)T of In-RFN0. (In-RFN0)T is the

Tait-calculus ((Π1
2-RFN)

Σ1
1-DC

0 )T without the ((Π1
2-RFN)Σ1

1-DC)-rule , but with

Γ, (∃Y )(X ∈̇ Y ∧ In(Y ))

In (In-RFN0)T we set rk(ϕ) = 0 iff ϕ is a Σ1
1 or a Π1

1 formula. Hence we
can prove partial cut elimination and we can embed In-RFN0 into (In-RFN0)T

such that the deduction lengths are finite. Combining embedding and partial
cut elimination we conclude that for all L2 formulas ϕ[~x] there is a natural
number k such that

In-RFN0 ` ϕ[~x] =⇒ (In-RFN0)T
k

1
ϕ[~t]

holds for all closed number terms ~t. Now, we introduce a translation. For each
L2 formula ϕ we define a Lnmax(k,l)+1 formula ϕk,l. If there are no second order

quantifiers ∃X,∀X in ϕ, we set ϕk,l ≡ ϕ. Otherwise we set (∃Xψ)k,l = (∃X ∈̇
Dn
l )ψk,l and (∀Xψ)k,l = (∀X ∈̇ Dn

k)ψk,l. This is inductively extended to the
whole class of L2 formulas. We now formulate the asymmetric interpretation.

Theorem 32 For all i, j, l with i + 2j < l, for all finite sets Γ[~x, ~X] of L2

formulas there exists a natural number k such that

(In-RFN0)T
j

1
Γ[~x, ~X] =⇒ Tn

l
ωω

i+ωj

k
~X /̇∈ Dn

i ,Γ
i,i+2j [~t, ~X]

for all closed number terms ~t.

Proof. This theorem is proved by induction on j. Apart from (In-RFN) all
axioms and rules of inferences are treated as in similar asymmetric interpre-
tations, cf. e.g. [2]. Now suppose that Γ is a reflection axiom Γ, (∃Y )(X ∈̇
Y ∧ In(Y )). It is sufficient to prove that we can prove in Tn

l

X /̇∈ Dn
i , (∃Y ∈̇ Dn

i+2j)(X ∈̇ Y ∧ In(Y )) (16)

with finite deduction length. We assume n > 0. (The case n = 0 is in fact
easier.) Using Tn

l -8 we obtain

(∀U ∈̇ Dn
i )(∃V ∈̇ Dn

i )(U ∈̇ V ∧ In−1(V )).
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And using Tn
l -6 and Tn

l -7, we obtain (AxΣ1
1-DC)Dni . We conclude In(Dn

i ) – with
finite deduction length. Hence

X /̇∈ Dn
i , X ∈̇ Dn

i ∧ In(Dn
i ).

Since we can prove in Tn
l that Dn

i is a set in Dn
i+2j , we can show (16) with

finite deduction length. 2

Finally we obtain the following theorem.

Theorem 33 We have for all arithmetic sentences ϕ

a) In-RFN0 ϕ =⇒ There is an m with Tn
m

<ε0
<ω

ϕ

b) (Π1
2-RFN)

Σ1
1-DC

0 ϕ =⇒ There is an n and an m with Tn
m

<ε0
<ω

ϕ.

Using the results of the preceding sections, we obtain the following theorem.

Theorem 34 |(Π1
2-RFN)

Σ1
1-DC

0 | = |Σ1
1-TDC0| = ϕω00.

Proof. From [14] we know that (Π1
2-RFN)

Σ1
1-DC

0 and Σ1
1-TDC0 are equivalent.

In particular we have |Σ1
1-TDC0| = |(Π1

2-RFN)
Σ1

1-DC
0 |. The lower bound of

Σ1
1-TDC0 is stated in Corollary 9a). And from Theorem 33b) and Theorem

30 we can take the upper bound. 2

In (Π1
2-RFN)

Σ1
1-DC

0 complete induction is restricted to sets. The methods
applied before also provide an upper bound for (Π1

2-RFN)Σ1
1-DC where we

have complete induction for arbitrary formula. The pattern of the argu-
ment is as follows. Let us write ((Π1

2-RFN)Σ1
1-DC)T for a Tait-calculus of

(Π1
2-RFN)Σ1

1-DC, where we have the ω-rule. We can embed (Π1
2-RFN)Σ1

1-DC

into this Tait-calculus, thus getting rid of full complete induction in favor of
infinite derivation lengths. Hence

(Π1
2-RFN)Σ1

1-DC ` ϕ =⇒ ((Π1
2-RFN)Σ1

1-DC)T
<ε0

1
ϕ

for each arithmetic sentence ϕ. Infinite derivations in ((Π1
2-RFN)Σ1

1-DC)T are
modeled in infinite unions of theories Iα-RFN. Following the proof of Theorem
31 we obtain

(Π1
2-RFN)Σ1

1-DC ` ϕ =⇒
⋃
α<ε0

Iα-RFN
<ε0

1
ϕ
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for each arithmetic sentence ϕ. From now on we can proceed as before, but
always with families (Iα : α < ε0) instead of families (In : n < ω). Carrying-
through everything in detail finally gives ϕε000 as proof-theoretical upper
bound for (Π1

2-RFN)Σ1
1-DC. Using the equivalence of ((Π1

2-RFN)Σ1
1-DC) and

(Σ1
1-TDC) over ACA0 and (5) we obtain

|(Π1
2-RFN)Σ1

1-DC| = |Σ1
1-TDC| = ϕε000.

|(Π1
2-RFN)

Σ1
1-DC

0 | = |Σ1
1-TDC0| = ϕω00.

References

[1] Avigad, J. On the relationship between ATR0 and ÎD<ω. Journal of
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[7] Jäger, G., Kahle, R., Setzer, A., and Strahm, T. The proof-
theoretic analysis of transfinitely iterated fixed point theories. Journal
of Symbolic Logic 64, 1999, 53 – 67.
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