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Abstract

In this paper we introduce theories of universes in analysis. We
discuss a non-uniform, a uniform and a minimal variant. An analysis
of the proof-theoretic bounds of these systems is given, using only
methods of predicative proof-theory. It turns out that all introduced
theories are of proof-theoretic strength between 'y and leg0.

1 Introduction

From an abstract point of view a universe is a collection of objects which
is closed under certain constructions. The idea which leads to this concept
of a universe is the following. Given some principles and operations which
are (philosophically) justified, we should also accept a collection of objects
satisfying these closure conditions. Consequently, this process can — maybe
has to — be iterated, leading to universes of universes etc.

The concept of universes is frequently studied in constructive mathemat-
ics. In admissible set theory admissibles can be regarded as universes (cf.
e.g. [5]). In Martin-Lof type theory a universe is a type of types closed under
certain type constructions (cf. e.g. [11, 12]). In explicit mathematics a uni-
verse is a type of names closed under some name formation operations (cf.
e.g. [9, 22]). It is the aim of this article to discuss the concept of universes
in metapredicative analysis.

Metapredicativity is a new term in proof-theory. Metapredicative systems
have proof-theoretic ordinals beyond I'q but can still be treated by methods
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of predicative proof-theory only. Recently, numerous interesting metapred-
icative systems have been characterized. For previous work in metapredica-
tivity the reader is referred to Jager [4], Jager, Kahle, Setzer and Strahm [6],
Jager and Strahm [7, 8], Kahle [10], Rathjen [14], Riede [15] and Strahm
[22, 23, 24]. A central result of [15] is that in the context of metapredicative
analysis the notions of hierarchy, reflection and universe are very natural
and fruitful. In [16] we have discussed hierarchies and reflections, here we
are concerned with universes.

We present three different theories of universes, a non-uniform (NUT), a
uniform (UUT) and a minimal (MUT) variant. In NUT, a limit axiom asserts
the existence of universes. In UUT, we can build universes using a universe
operator. Finally, in MUT, we can choose minimal universes with respect to a
linear ordering on the universes. Moreover we determine the proof-theoretic
strength of all these theories. The proof-theoretic ordinals of the theories
which we consider in this paper are most easily expressed by making use of
a ternary Veblen or ¢ function (cf. e.g. [6]). They generate an initial section
of the notation system given by Schiitte’s Klammersymbole [18].
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2 Preliminaries

In this section we present the languages, classes of formulas, notations and
abbreviations. Furthermore, we introduce some well-known subsystems of
analysis.

Languages, terms, formulas and special classes of formulas

The language L£,(U,U) includes number variables (denoted by small letters,
except r, s,1), set variables (denoted by capital letters, except R, S,T'), sym-
bols for all primitive recursive functions and relations, the symbol € for
elementhood between numbers and sets, as well as equality in the first sort



and a symbol ~ for forming negative literals. Furthermore, there is a unary
relation symbol U for being a universe and a unary universe operator .

The number terms r,s,t of L2(U,U) are defined as usual; the set terms
R.S,T are the set variables and all expressions U(X), U(U(X)), .... The
positive literals of L2(U,U) are all expressions (s =t), K(s1,...,8,), s €5,
U(S) for K a symbol for an n-ary primitive recursive relation. The negative
literals of L3(U,U) have the form (~F) so that F is a positive literal. We
often write (s # ) and (s ¢ S) instead of ~(s = t) and ~(s € X). The
true literals of L£o(U,U) are all literals (s = t), K(si,...s,) such that (s =
t), K(s1,...,8,) ist true respectively. The formulas p,1,0,... of Lo(U,U)
are generated from the positive and negative literals of £,(U,U) by closing
against disjunction, conjunction, existential and universal number and set
quantification. The negation —p of an L,(U,U) formula ¢ is defined by
making use of De Morgan’s laws and the law of double negation.

An L,(U,U) formula is called arithmetic, if it does not contain bound set
variables (but possibly free set variables); for the collection of these formulas
we write II5(U,U). For the collection of all arithmetic formulas and of all
Lo(U,U) formulas X p(X) with o(X) from IT5 (U, U) we write X1 (U, ). The
definitions of X} (U, ) and II}(U,U) are analogous.

The language L£3(U), (Lo, resp.) is Lo(U,U) without U (without U,U,
resp.) and the language £; ist £, without set variables. The set terms,
literals, formulas and classes of formulas of £5(U), £, and £y are defined
similarly.

Abbreviations, some subsystems of second order arithmetic and
the proof-theoretic ordinal

In the following (...) denotes a primitive recursive coding function for n-
tuples (t1,...,t,) with associated projections (-)1,...,(:)n. Seq, is the prim-
itive recursive set of sequence numbers of length n. Seq denotes the primitive
recursive set of sequence numbers. We write s € (5); for (s,¢) € S and S for
S1y ey One B

By ¢[Z, X] we indicate that the variables Z, X really occur in ¢, i.e.,
the free variables are {zy,...,2,, X;,..., X, }. cp(f,)?) just means that Z,
X may occur in . @[#\l, X\ 5] is obtained from @[Z, X] by replacing all
occurrences of z; and X; by ¢; and S;. Similarly we define o(Z\1, )?\g) If

there is no danger of confusion we omit & and X. Occasionally we use the



abbreviations

re€SHT = SeqrA
() = 1A (2)o € )V () =2 A (2)o € T)]
S=T = Va)(z €S zel),
S#T = ~5=T,
SET = (F)Va)(ze S« (v,k)eT),

(Y € Se(Y) = AY)NY €S Ap((Y)),
(VY € S)p(Y) = (VY)Y €S = oY),
SET = S,ETA...AS, ET,
S=T = VX)(XES XET),
z € field(X) = (Fy)(z,y) € X V(y,z) € X),
€ (Y)y = SeqpzANz €Y A{(z),a) € Z.

We often say “S is in 77 for S € T. (Y)z, is the disjoint union of all
projections (Y'), such that (b,a) € Z. For a well-ordering Z we let 0, denote
the Z-least element in field(Z) and for a € field(Z) we let a 4+, 1 denote
the Z-successor of a. Sometimes we write aZb for (a,b) € Z.

We need some (well known) subsystems of second order arithmetic. All
subsystems are based on the usual axioms and rules for two-sorted predicate
calculus. The theory ACA includes defining axioms for all primitive recur-
sive functions and relations, the induction scheme for arbitrary formulas of
L, and (ACA), an arithmetical comprehension axiom. The theory X1-AC
extends ACA by (X1-AC), a Y] choice axiom, the theory ATR extends ACA
by the arithmetical transfinite recursion axiom (ATR) and the theory ¥1-DC
extends ACA by (¥1-DC), X1 dependent choice. Ty denotes the theory T with
set-induction instead of the induction scheme for arbitrary formulas. More
detailed descriptions of these subsystems can be found in [21].

In the following we will measure the proof-theoretic strength of formal
theories in terms of their proof-theoretic ordinals. As usual we set for all
primitive recursive relations < and all formulas ¢

Prog(<,¢) = (Vo)[(Vy)(y <z = ¢(y)) = »(z)],
TI(<,9) = Prog(<,¢) = (Yx € field(<))p(z).

We say that an ordinal « is provable in T, if there is a primitive recursive well-
ordering < of order type « so that T F (VX)T'I(<, X). The proof-theoretic
ordinal of T, denoted by |T|, is the least ordinal which is not provable in T.
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The classes of formulas rel-X;(U), rel-X,(U,U), rel-11,(U) and rel-
(U, u)

We introduce new classes of formulas. First, we define the class of formulas
rel-TI(U) (relative arithmetic £2(U)-formulas).

1. Each arithmetic £,(U) formula is a rel-TI}(U) formula.

2. If ¢ and ¢ are rel-IIL(U) formulas, so also are (¢ V ) and (¢ A 1)),
3. If ¢ is a rel-IL(U) formula, so also are Jz¢ and Vay.

4. 1f @ is a rel-TI(U) formula, so also are (3X & S)p and (VX € §)p.

rel-X1(U) is the collection of all rel-II5(U) formulas and of all formulas
IXe(X) with p(X) a rel-II5(U) formula. rel-I;(U) and rel-X(U) are de-
fined as usual. rel-IT,(U,U) and rel-X(U,U) are similarly defined.

Let ¢ be an Lo(U,U) formula. Then we mean by U({z : ¢(z)}) the
expression (3X)[(Vz)(z € X ¢ o(2)) AU(X)], and by t € U({z : ¢(z)}) we
mean the expression (IX)[(Vz)(z € X < p(z)) At € U(X)].

3 Definition of the theories

First we define the theory of universes NUT (Non-uniform Universes Theory).
It is formulated in £5(U) and is based on the usual axioms and rules for the
two-sorted predicate calculus. The non-logical axioms are:

(1) defining azioms for all primitive recursive functions and relations.

(2) equality azioms

X =Y = (UX) = U(Y)).
(3) set operations

(rel-1I5(U)-CA):  For all rel-IT5(U) formulas p(z):
(FX)(Vo)(z € X & p(x)).

(rel-X1(U)-AC):  For all rel-X1(U) formulas ¢(z, X):
(V) 3X) (2, X) = (3X)(Va)p(z, (X)a).

(4) closure conditions for universes
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(4.1)  For all rel-1I(V) formulas o[z, Z, Z]
UD)AZED — (Y € D)(Va)(z €Y & o[z, 7, Z)).

(4.2)  For all rel-1Ij(U) formulas @[z, 2, X, Y, Z]
U(D)AZ € D — (V2)(3Y € D)(3X € D)y[z,Z, X, Y, 7]

—

— (Y € D)(Vz)(3X € D)yplx,Z, X, (Y),, Z].
(5) non-uniform limit azioms (3D)(X € D A U(D)).
(6) induction scheme for arbitrary formulas of L2(U).

The theory MUT (Minimal Universes Theory) is also formulated in £5(U) and
is based on the usual axioms and rules for the two-sorted predicate calculus.
It is a strengthening of NUT. The non-logical axioms are:

(1)-(4) same as for NUT.

(5) (5.1)  non-uniform limit azioms

(3D)(X € D AU(D)).

(5.2)  linearity
UD)AU(E) - DEEVD=EVEED .

(5.3) minimal universe axioms
For all ¢(X) € rel-X1(U) and for all ¢(X) € rel-II;(U):
(VX)($(X) ¢ ¢(X)) A (3D)((D) A U(D))
— (3D)[(D) AUD) A (¥X & D)(U(X) = ~¢(X))]

(6) induction scheme for arbitrary formulas of L(U).

Finally, we introduce a uniform variant of NUT, the theory UUT (Uniform
Universes Theory). It is formulated in £5(U,U) and is based on the usual ax-
ioms and rules for the two-sorted predicate calculus. The non-logical axioms
are:

(1) defining azioms for all primitive recursive functions and relations.
(2) equality axioms

(2.1) S=R—= (U(S)— U(R)).

(22) S=R— (U(S)=U(R)).
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(3) set operations
As in NUT but extended to all rel-TI5(U,U) (rel-Xi(U,U), resp.) for-

mulas .

(4) closure conditions for universes

Exactly as for NUT.

(5) uniform limit axioms

X eUX)ANUU(X)).
(6) induction scheme for arbitrary formulas of Lo(U,U).

Notice that in UUT we can prove (VX )p(X) — ¢(95) for each formula ¢ and
set term S of Lo(U,U). NUTy, MUT, and UUT, are taken to be the theories
NUT, MUT, UUT with set-induction

0eSA(Ve)(zeS—a+1€8)) — (Va)(xzed)

instead of full induction (6) We end this section with some remarks.

NUT, is included in UUT, and MUT,
A trivial induction on the length of the derivation NUTg = ¢ shows

NUToFe = UUToF ¢ and MUT( F .

Therefore, NUT is included in UUTy and MUT,,.

Closure conditions of universes in UUT,

Notice that the closure conditions for universes in UUTy are formulated for
rel-TI5(U) and not for rel-TT5(U,U) formulas. If we took, for instance,

for all rel-TI5(U,U) formulas @[z, Z, 3):
UR)AS € R— (37 &€ R)(Va)(z € 7 & [z, Z,5)),

then the corresponding theory would be inconsistent. To see this, set ¢ :=

z € U(X). Then the axiom yields
UUXNAX EUX) = (37 EUX))(Z =U(X)).
We conclude that ¢#(X) € U(X) holds. This contradicts lemma 1b).
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Motivation of the axioms

The use of the axiom scheme (1) makes working in the above theories more
convenient. (2) assures the compatibility of the introduced symbols U, U
with the extensional equality of the sets.

With our theories we intend to describe countable coded w-models of
Y1-AC. Tt is natural to demand at least the same set principles for dealing
with these models. Therefore we have imposed the axiom scheme (3). The
closure conditions of these models are listed in (4). We have closure under
arithmetical comprehension (4.1) and closure under Xj-choice (4.2).

In (5) the existence of universes is ensured by a limit axiom. In MUT we
can choose these universes minimal with respect to rel-Aj(U) formulas and
the given notion of linearity. In UUT we can choose universes uniformly.

It is very important to remark that in our theories universes can only
introduced by the limit axioms (and the minimal universe axioms). All these
axioms are existence axioms only. In a certain sense the universes are given
implicitly. We have not defined the universes, in this sense the universes are
not given explicitly.

Inconsistencies
In [15] some inconsistencies are proved. For instance, ATRy plus
(ALCE%_A(:>X A (AIE%_A(:>Y — X E Y V X = Y V Y E X

is inconsistent. Here, we have written Azgi_ac for a finite axiomatization
of (ACA) 4+ (X}-AC). (Later on, we prove that ATRy is included in NUT,
and has the same proof-theoretic strength.) A further result is the following.
NUTq plus (linearity of universes) is consistent, since MUT is consistent.
But NUTq plus (linearity of universes ) plus

UX)AX =Y — U(Y)

is inconsistent.

Universes and countable coded w-models of E}-AC

We mention the following fact: If there is a set X such that U(X )holds, then
we can define for example

YVi={(z,2k+1): (z,k) € X}.
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We see immediately that Y is also a countable coded w-model of ¥1-AC, but
we cannot prove that Y is a universe. In this sense we use the notation
“universe” only for sets X with U(X). On the other hand we use the nota-
tion “countable coded w-model of ¥]-AC” for sets which satisfy the closure
conditions (4.1) and (4.2) for universes. Each universe is a countable coded
w-model of ¥1-AC but not vice versa.

In our theories there are much more countable coded w-models of %1-AC
than universes. Since we can embed ATR into these theories (cf. lemma 4)
we can even construct in our theories countable coded w-models of X1-AC (cf.
theorem 6), because these models are defined explicitly (and of course because
ATRy is strong enough). But we cannot prove that these so constructed
models are universes. That is, we can choose for example in MUT; a minimal
universe but not a minimal countable coded w-model of X]-AC.

What about a uniform variant of MUT?

We can create a lot of further theories by mixing the stated axioms (and
adding further axioms). For instance, we can replace the non-uniform limit
axiom in MUT by a uniform limit axiom for minimal universes and adapt the
other axioms of MUT. Later on we show that this extension has the same
proof-theoretic ordinal. On the other hand it is an open question whether
the stated linearity axiom of MUT is strong enough to define in MUT a
universe operator. In this context we will prove that by the (in a certain
sense stronger) linearity axiom

UX)AUY) - X EYVX=YVYEX

we can define in MUT a universe operator. This universe operator will be a
minimal universe operator.

Our theories of universes in comparison with theories of universes
in other contexts

Our theories are built in a similar way as the theories of universes in ex-
plicit mathematics, or theories about admissibles without foundation in the
framework of set theory (cf. for example KPi® [3]). We find always the same
structure: some ontological axioms and ground structures (here (1) and (2)),
some set operations (here (3)), axioms about the properties of universes (here
(4)), then universes with the aid of limit axioms are introduced (here (5))
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and finally there is some kind of induction (here (6)). The purpose of our
theories of universes is not to give another possibility to deal with universes,
but rather to show that we can build similar theories (as for example KPi®) in
second order arithmetic and that these theories have the same proof-theoretic
strength.

Notice that our universes correspond to admissibles without foundation.
The reason is that the properties of our universes are not strong. We have
only closure under arithmetical comprehension and under the Y1-choice ax-
iom. But, for example, we cannot prove that our universes are equivalent
(with respect to =) to sets of the form {X C w : X is hyperarithmetical in Z}.
(That is, we cannot prove that our universes are least (with respect to €)

countable coded w-models of ¥{-AC.)

Universes as countable coded w-models of ¥{-DC

Our universes satisfy the axiom of Xj-choice. Assume that we had “U(X)
implies that X is a countable coded w-model of X{-DC” instead of “U(X)
implies that X is a countable coded w-model of ¥{-AC”. Is the corresponding
theory of such universes proof-theoretically stronger than the theory NUT (or
UUT, MUT)? We do not give a proof here but only mention that the proof-
theoretic strength does not change. There is the following reason for this fact:
In the sequel we use that in ATRy we can prove the existence of countable
coded w-models of X1-AC (theorem VII1.4.20 [21]). But the same theorem
states also that ATR, proves the existence of countable coded w-models of
Y1-DC. This fact leads to the proof-theoretic equivalence of the mentioned
theories.

But notice that the situation is different if we add rel-X1(U)-DC to these
theories. Then, e.g., the adapted theory NUT will be proof-theoretically
stronger than the original NUT.

4 Properties of NUTy, UUTy, MUT,

The purpose of this section is to present ontological properties of our theories,
especially the closure properties of our classes of formulas. We often use these
properties tacitly in the following. First we collect two properties of universes
in lemma 1. Assertion a) is a kind of transitivity and assertion b) says that
“a universe cannot speak about itself”.
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Lemma 1 In NUTy, UUTq and MUT, we have
a) UT)YNRESASET - RET,
b) UT)—T¢T.

Proof. Here and in the following we work informally in the theories. Assertion
a) follows easily by arithmetical comprehension in the universe T. There
remains assertion b). TLet us assume U(T) and T € T. We show by a
diagonalization argument that this leads to a contradiction. By 7' € T' and
closure of the universe 7' under arithmetical comprehension there exists a set

Z in T such that
(Va)lo € Z & (Seqar A (T)y, & (T A (2)o € (T)ay,)]-
First, we prove
(VXETX#£0 = (X EZ X ¢ X)), (1)

Choose X in T such that X # (). We have to show X € 7 < X ¢ X.
—: Since X is in Z there is an index [ with X = (Z);. The definition of Z

yields _
(Ve)z e X & (T) ¢ (T) Nz € (T)).

Since X is not empty we can choose an x in X and conclude (T'); Qﬁ (T):.
Then we have (Va)(z € X <» « € (T);). This is just X = (T); and therefore
X¢X. _

: We have X ¢ X. Furthermore we know X € T. Therefore we can choose
an index [ with X = (T');. Since we have X ¢ X we conclude

(Va)[z € X & ((T) & (T) Az € (T))].

By definition of Z we immediately get X = (Z); and therefore X € Z. Hence
(1). In a next step we show Z # (). The injectivity of the coding function
yields that there exists a z such that (VI)(z,[) # z. Then {z} gé {z}. Finally,
we know {z} € T and we conclude {z} € Z. This together with (1) and
7 € T yields the desired contradiction 7 € 7 ¢ 7 gé 7. O

Notice that the proof of lemma 1b) does not use the closure property (4.2)
of universes. This means: For each countable coded w-model T' of ACA we
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have T' §E T. In a next step we prove that in NUTy (UUTy, resp.) we have
(rel-A(U)-CA) ((rel-Ai(U,U)-CA), resp.). Since the proof of this statement
is an imitation of the proof of “II}-CA and ¥1-AC imply A]-CA” (cf. lemma
VIL6.6 in [21]), we omit it.

Lemma 2 For all o1 € rel-X1(U), @2 € rel-II}(U), ¢y € rel-X1(U,U),
¥y € rel-11;(U,U) the following hold.

a) NUT, proves (rel-Aj(U)-CA), i.e., fori € {1,2} we have
NUTo F (p1(z) <> pa(z)) = (3X) (V) (z € X & ¢i(x)).

b) UUT, proves (rel-Aj(U,U)-CA), i.e., fori e {1,2} we have
UUTo b ($a(e)  a(e)) = (BX)(Va)(x € X 6 gie).

In the next lemma we formulate properties which correspond to the usual
closure conditions of the class of ¥j-formulas (IT}-formulas, resp.). For that
purpose we define: If Th is a theory and F is a class of £(Th) formulas, then
F'™ denotes the class of all £(Th) formulas which in Th are equivalent to
some € F. Since the proof of lemma 3 uses only standard arguments, we
omit it.

Lemma 3 The class of rel-S1(U)NYTo (rel-TIH(UNYTe - resp.)  formulas is
closed under A, V, Jz, Vo, X €Y, VX €Y, 3X (VX, resp.). The same
holds for rel-XY (U, UNYTo (rel-TTHU, U)NVTo | resp.).

In the following we often use the notion of a rel-Aj(U) (rel-Aj(U,U), resp.)
formula which is defined with respect to a theory as usual. It will always
be clear from the context which theory we mean. The lemmas 2 and 3
show that for theories which contain NUT, (UUTy, resp.) we have formula
comprehension and (usual) closure conditions for rel-Aj(U) (rel-Aj(U,U),

resp. ).

5 ATR and NUT

We show that there is an embedding of ATR into NUT and of NUT into ATR.
The embedding of ATRq into NUTq corresponds exactly to the embedding
of ATRy into KPiy (cf. [3]). Therefore we omit the proof of the following

lemma.
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Lemma 4 For each Ly formula p we have
a) ATRpF e = NUToF ¢,
b) ATRF¢ = NUTF ¢.

Now we use results of Simpson [21] to embed NUT, into ATRg. In [21] it is
shown that ATR, proves the existence of countable coded w-models of ¥1-AC.
Simpsons definition of countable coded w-models makes use of the notion of
valuation functions (cf. definition VIL.2.1 in [21]). Our countable coded w-
models however are sets which reflect (not satisfy) appropriate properties.
In order to apply the results of Simpson we proceed as follows. First we give
a finite axiomatization Azyiac of (X1-AC) + (ACA). Next we investigate
Simpsons proof which leads to lemma VIIL.4.19 in [21]. This investigation
shows that more or less the same proof leads to the proposition: “ATRg
proves the existence of a set D with X € D and (AxE%_AC)D”. Then we
can translate the predicate U(D) as “D is a countable coded w-model of
Y1-AC” and the embedding goes through. We need universal relations for
the exact formulation. For each n and m let Tr?’n’m[e, Tlyenoy Ty X1ye ooy X
be a universal ITY formula (of £;). Now the finite axiomatization is given by
the formula Azgi_ac.

AIE%_AC = (VX,)V)3Z)(Z=XaY)A
(Ve,z)(VZ)(FY)(Va)(z € YV « W?’m[e,x,z, Z)) A
[(Ve, z)(‘v’Z)[(VJ;)(HY)W?’Z’Z[G, z,z,Y, 7]
— (FY)(Ya)m) g 0le, 2, 2, (V)a, Z]]].
Again we adopt the standard notation ¢ for the relativization of the L,
formula ¢ to D (for example (VX p(X))” := (VX € D)p”(X)). The follow-

ing lemma shows that the formula Azy1_ac serves the right role. Its proof is
standard and therefore omitted.

Lemma 5 Let ¢ be an instance of (X1-AC) + (ACA). Then ACA, proves
(D) (Arsyac)® A7 E D = PL2, ).

Now, Simpsons theorem VIII.3.15 [21] and more or less the same proof which
leads to lemma VIII.4.19 [21] yields the following theorem.

Theorem 6 ATR, - (ID)(X € D A (A:EE%_AC)D).
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This theorem is the crucial point in the embedding of NUT into ATRg. We
now introduce the translation. For every £y(U) formula we write 4% for
the L, formula which is obtained by replacing each instance U(X) in ¢ by
(A.TE%_A(:>X. Then we have the following embedding theorem.

Theorem 7 For all L4(U) formulas ¢ the following holds.
a) NUT k¢ = ATRoF o™,
b) NUTFy — ATRF o™,
Proof. We show b) by induction on the length of derivation NUT F ¢ (the

proof of the assertion a) is identical). We consider only the mathematical
axioms (3) of NUT, the other mathematical axioms (1), (2), (4) - (6) and
the logical rules and logical axioms are easily verified.

Discussing (3), we prove only (rel-Xj(U)-AC), since the proof of (rel-
I13(U)-CA) is similar. Let us assume ((Vz)(3X)p(z, X)) and ¢ € rel-X}(U).
We have to show (within ATR) ((3X)(Vz)p(x, (X),))4. First we notice

(Vo) AX)p(a, X)* & (Vo) 3X)p™ (2, X),
(AX)(Va)p(z, (X)) & (AX)(Va)e™ (2, (X)o).

Since (A;cz%_AC)X is equivalent to an arithmetic formula, the formula 4% is
equivalent to a ¥i formula 0, and we have (Vz)(3X)6(z, X). Note that we
have (X1-AC) in ATR. Hence

(3X)(Vz)0(z,(X),) and  (3X)(Va)p?(z,(X),).

O

By lemma 4 and theorem 7 NUTy (NUT, resp.) is conservative over ATR,
(ATR, resp.) for arithmetic formulas. This yields the following corollary (cf.
e.g. [1, 7).

Corollary 8 |[NUTy| = |ATRy| =T’y and |[NUT| = |ATR| =T, .

6 An embedding of UUT, into MUT,,

In this section we show that in a strengthening of MUT, we can define unique
universes using an appropriate rel-Aj(U) formula. This yields an embedding
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of UUTy into this strengthened theory. We do not know whether an embed-
ding of UUT into MUT is possible, since we do not know how to define unique
minimal universes with respect to the linear ordering of universes in MUT.
Therefore, we strengthen the linearity axiom in such a way that we are able
to show the existence of (unique) minimal universes. Then we can define a
universe operator and the embedding goes through.

First we describe the strengthening of MUT(. We add to the theory MUT)

the linearity axioms
(LinT™) UX)AUY)=>XeEYVX=YVY EX.

The difference between (LinT) and (Lin) is only by a small dot “*”. (Lin)
are the axioms

(Lin) UX)AU(Y) 5> X EYVX=YVYELX.

Note that X = Y means that X and Y are the same sets. On the other
hand, X =Y only implies that X and Y have the same projections. X =Y
implies X =Y but not vice versa.

MUT™ denotes the theory MUT + (Lin™). Later on, we will show that
MUT™ and MUT have the same proof-theoretic strength.

In the theory MUT the universes are stratified in the following sense: All
minimal universes over the empty set contain the same projections and all
these universes make up the first, lowest stratum. If, for example, the uni-
verses A and B are in the first stratum, then they have the same projections
(A = B), but they may have different indices for the same projections (i.e.,
we may have (A)r # (B)r). Now choose a universe D in this first stratum.
Then the next stratum contains all minimal universes over D. That this
second stratum does not depend on the choice of D is stated in lemma 16 in
[15]. There, we proved

MUT, - UX) AU AU AX =Y AY EZ = X & 7.

That is, each universe C' in the first stratum is contained in each universe of
the second stratum; and so on. In the stratification of MUT™ each stratum
contains only one universe. It is an open question whether NUT + (Lin7) is
proof-theoretically stronger than NUT.

The uniqueness in MUT™ of the universes in a stratum implies that the
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following abbreviation is in fact a rel-Aj(U) formula.
minU(z, X) = (3Z)[X EZANU(Z)AN (VY EZ)U(Y) > X ¢ Y) Az € Z].

In MUTG the meaning of the formula minU(z, X) is: x is in the (unique!)
minimal universe which contains X. The following lemma is the formalization
of this idea.

Lemma 9 The following are theorems of MUT ;.

a) [UD)AX EDANVY)UY)AXEY Y =DVDEY)] &
[UD)A X EDAVY ED)UY) = X ¢ V).

b) (AZ)[X € ZAU(Z) A (VY € Z)(U(Y) = X ¢ V)]

c) minU(z,X) < .
(VOX EZANUI)ANNY E€DUY) = X ¢Y)] —azeZ].

Proof. a) follows from lemma 1 and (LinT). The existence of Z in b) is
assured by the limit axiom and the minimal universe axiom. Uniqueness
follows from (Lin™). ¢) follows from b). O

We now give an embedding of UUT into MUT=. The idea is to interpret
x € U(S) as “z is in the minimal universe which contains 5”. U(S) will
be interpreted essentially as U(S) (more precisely: U(S) will be interpreted
as U({z : (x € S)™"})). We define for each L£y(U,U) formula ¢ an Ly(U)
formula ™", Tt is inductively defined. If ¢ is an £, literal, then ™" := (.
Otherwise we set

1. (zeU(S)™ = (3D(3Fk)(V2)[(z € S)™™ < (z,k) € Z]A
U(Z)ANz € ZA
(VY € Z)[U(Y) —
=(3k)(V2)[(2 € )™ ¢ (2, k) € Y]]],

2 (x gUS)™" = —(x €US)), |

3. (U(S))min = (32)[(Va)(z € Z & (z € S)™™) AU(Z)],
1 (FUE)T = =(U(E)

5. (poy)mn = o ymin o € {A V],

6. (Qup)™™ = Qugr Q€ {3,V),
T(QXey = QXgm Qe {3.v).

Note that NUT, proves (z € U(S))mm < (minU(z, S))mm
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Theorem 10 For all L2(U,U) formulas ¢ we have
a) UUTogFp = MUT; F pm™in,
b) UUTF ¢ = MUT=F ™"

Proof. We show a) by induction on the length of the derivation UUT, F ¢
(an analogous argument shows b)). The logical rules and logical axioms are
easily dealt with. Let us consider the mathematical axioms (1)-(6) of UUT,.

(1) We have these axioms in MUT} too.
(2) An easy induction on the build-up of set terms implies the claim.

(3) If ¢ is a rel-I{(U,U) formula, then we can prove by induction on
the build-up of ¢, using lemma 9¢) and the closure properties of rel-
Al(U) formulas (cf. lemma 3), that ™" is a rel-Al(U) formula. In
MUT; we have (rel-Aj(U)-CA) (lemma 2). This immediately proves
the translation of (rel-II5(U,U)-CA). For the proof of the translation of
(rel-X1(U,U)-AC) we notice that in MUT we have (rel-X1(U)-AC) and
that for ¢ € rel-3}(U,U) the formula ™" is equivalent to a rel-}(U)
formula (again by induction on the build-up of ¢).

(4) Since (U(X))™™ is equivalent to U(X) the claim is immediately evident.
(5) Follows from lemma 9b) and the definition of the (...)™" translation.
(6) We have set induction in MUTg too. O

We obtain the following corollary.
Corollary 11 [UUT,| < |[MUTS| and [UUT| < |[MUT=|.

7 A well-ordering proof for UUT

In this section we show that UUT proves transfinite induction for each initial
segment of the ordinal pleg0. We follow the presentation in [22]. (Here we
give well-ordering proofs although it is also possible to embed other theories,
for instance ID.,.)

In what follows we presuppose the same ordinal-theoretic facts as given
in section 2 of [6]. That is, we let @ denote the least ordinal greater than 0
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which is closed under all n-ary ¢ functions, and we assume that a standard
notation system of order type ®¢ is given in a straightforward manner. We
write < for the corresponding primitive recursive well-ordering. We assume
without loss of generality that the field of < is the set of all natural numbers
and that 0 is the least element with respect to <. Hence, each natural
number codes an ordinal less than ®;. When working in UUT in this section,
we let a, b, ¢,...range over the field of <, and £ denotes limit notations. There
exist primitive recursive functions acting on the codes of this notation system
which correspond to the usual operations on ordinals. In what follows it is
often convenient in order to simplify notation to use ordinals and ordinal
operations instead of their codes and primitive recursive analogues. Then
(for example) w and w + w stand for the natural numbers whose order type
with respect to < are w and w+w. Finally, we write Prog(y) for Prog(<,¢)
and TI(a, ) for TI(<] a,p).

If we want to stress the relevant induction variable of a formula ¢, we
sometimes write Prog(Aa.p(a)) instead of Prog(y). If S is a set term, then
Prog(S) and T(a,S) have their obvious meanings.

7.1 Hierarchies of universes

It is our aim to derive (VX)TI(a, X) in UUT for each ordinal « less than
wleg0. A crucial step towards this aim is the construction of a transfinite
hierarchy H of universes along < above a given S. We choose U(.S) for the
universe containing S.

We let Hier(S, H,a) denote the formula which formalizes the property
“H is a hierarchy of universes along < up to a above S”.

Hier(S,H,a) = (Vz){z € (H)o <>z € U(S)] A
(Vb)[0 <b<a— (Vr)(z € (H)y & U((H)<p))]-

We recall that (H)<p is the disjoint union of all (H). with ¢ < b. The
uniqueness of such hierarchies is proved by transfinite induction up to ordinals
« less than g, which is available in UUT.

Lemma 12 For all ordinals o less than g we have
UUT F (Va < a)[Hier(S, H,a) A Hier(S,G,a) — (Vb < a)((H), = (G)s)].

We mention two ontological properties of such hierarchies of universes.
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Lemma 13 The following hold in UUT.
a) Hier(S,H,a) — (Vb= a)U((H)).
b) Hier(S,H,a) = (Vb,c)(c<b=<a— (H). € (H)s).
)

Proof. Assume Hier(S,H,a) and b < a. Each step (H); of the hierarchy
H is of the form U(S) or U((H)<p). We know U(U(S)) for all set terms S.
This gives a). In order to prove assertion b) we assume Hier(S, H,a) and
¢ <b=a Weknow (H). € (H)<p, (H)<p € U((H)<p)and (H)p = U((H)<p).
(H)p is a universe and lemma la) yields (H). € (H)s. O

The next lemma states the existence of such hierarchies up to ordinals less
than £g. The prove is by induction up to a < ¢y which is available in UUT.
Since this proof uses only standard arguments, we omit it.

Lemma 14 For all ordinals o less than ¢y we have

UUT F (Va < a)(3Y)Hier(S,Y, a).

7.2 Well-ordering proof

Crucial for carrying out the well-ordering proof in UUT is the very natu-
ral notion I§(a) of transfinite induction up to a for all sets belonging to a
universe (H)y such that b < ¢ (and Hier(R, H,c)) holds, which is given as
follows:

If(a) := (Vb < ¢)(VY € (H)y)TI(a,Y).

The next lemma tells us that [j; can be represented by a set in (H)., if
Hier(R, H,¢) holds.

Lemma 15 For each ordinal « less than g the following is a theorem of

UuT.
(Ve < a)[Hier(R, H,a) = (37 € (H).)(Vz)(z € 7 + I (x))].
Proof. Assuming ¢ < o and Hier(R, H, o) we know by definition
b<c— ((H)<)s = (H)p and (H)<. € (H)..

Hence (Vb < ¢)(YY € (H);)T1(a,Y) is equivalent to a rel-IIj(U) formula
with set parameter H.. in (H).. Hence closure of (H). under rel-IIj(U)
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comprehension implies the existence of a set Z in (H). such that Z = [j,. O

In the next theorem we use the binary relation
atb:=3c,l)(b=c+a-l)
and the abbreviation
Main,(a) :=
(VX,Y)(Vb,c)[c X a Aw't* t ¢ A Hier(X,Y,¢) Ay (b) — Iy (plab)].

We omit the proof of the following theorem, because the statements corre-
spond to analogous results in [22] and [6].

Theorem 16 For each ordinal « less than ey we can prove in UUT
a) (VX,Y)(V,a)[l < aA Hier(X,Y,a) A I{(a) = Ii-(pal)],
b) (VX,Y)(VO)[l < a A Hier(X,Y,a) — Prog(Aa.I{+(T',))],
c) Prog(Aa.Main,(a)).
And for each ordinal o less than pleg0 the following is a theorem of UUT.
(VX)TI(, X).

The methods of this section can also be applied to the theory MUT in order
to obtain the lower bound of MUT (cf. [15]). We collect these lower bounds

in a corollary.

Corollary 17 We have ¢leg0 < |[UUT| and ¢leo0 < [MUT| < [MUTT.

8 Upper bounds of MUT; and MUT~™

In this section we give an asymmetric interpretation of MUT™ into the semi-
formal system T,. In T, we have constants Dg, Do, (8 < a,7 < ). Each Dg
satisfies the closure conditions for universes. Moreover we have D.g € Dg.
We now sum up the proceeding: We first show that without loss of generality
we can take the minimality condition (5.3) in MUT= only for the rel-TI{(U)
formulas instead for the whole class of rel-A}(U) formulas. Considering this
we will introduce the corresponding Tait-style reformulation (MUT™)T of
MUT. Then we prove an asymmetric interpretation of (MUT=)7 into T,.
This leads finally to the interpretation of MUT™ into T, (& < &¢). The
proof-theoretic analysis of T, is given in [15].
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8.1 The semi-formal system T,

The semi-formal system T, is formulated with bounded second order quan-
tifiers 3X € Dg and VX &€ Ds for # < a. Note that in MUT™ we have
used (3X € Y)p(X) as an abbreviation for (IX)(X € Y A ¢(X)). In T,,
(3X € Dp)p(X) is in fact a formula and not an abbreviation.

T, is based on the language £,. £, is the extension of £y by new unary
relation symbols Dg, Doy (B < «, v < @). The L, literals are the L, literals
and all formulas [—]Dg(t), [7]D<y(t) (8 < @, v < ). Furthermore, the class
of L, formulas is closed under A,V,Vz,3z,3X € Dg, VX € Dg, IX,VX for
each 8 < a. The exact meaning of the bounded second order quantifiers will
be given in the definition of T,. We shall write for instance ¢t € Dg for Ds(1),
t € Deg for Deg(t) etc. We take as L, formulas of T, the L, formulas
without free number variables.

We now introduce the Tait-calculus T,. It is an extension of the cla_gsical
Tait-calculus [20]. In the formulation below we simply write 7{[e, Z, X] for
the universal II{ predicate W?’mm[e,f, );;], @, range over L, formulas and
I, A range over finite sets of such formulas. We often write (for instance)
', ¢ for the union of " and {p}

1. Ontological axioms I.
I', ¢ for each true £, literal ¢ and I', ¢, ~p for each L, literal ¢ of T,.

2. Propositional rules.

I I Ny Ty
Toveyp™  T,pve’ Tony

3. Quantifier rules. For all closed number terms s and all set variables Y:

I, e(s) I',p(t) for all closed terms ¢
I, (Fz)p(z)’ T, (Va)p(z) ’
rp(y) o)
I (3X)y(X) I (VX)y(X) ’
Y € Ds AY(Y) Y € Ds — (V)
I, (3X €Dp)(X)’ WX e Dyux) "
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By (vc) we indicate that the rule has to respect the usual variable conditions.
That is, Y must not occur in the conclusion.

4. Ontological axioms II. For all closed terms s such that Seqys is false,
all closed terms ¢ such that Seqyt, Seqa(t)o and S < (t); is true:

I',s ¢ Dep and I',t ¢ Dep.

5. Ontological rules ITI. For all closed terms ¢ so that Segyt and (t); = v
is true:

I, (t)o € D’v I (t)O §é D’v

IteDes’ [t¢Des
6. Closure axioms. For all closed number terms s, r:

T,(U,V ¢ Dg),(3X EDg)(X =U a V),
T, (U & Dg), (3X € Ds)(Vx)(z € X ¢ 7%s, 2,7, U, D).

7. Closure rules. For all closed number terms s, r:

I, (U ¢ Ds), (Va)(3X € Dg)nils,z,r, X, U, Doyl
I, (U ¢ Dp), (3X & Dg)(Va)7ils, z, 7, (X)., U, Dep]

8. Cut rules.

8.2 Asymmetric interpretation of MUT™ into T,

As mentioned we can reduce the minimality condition (5.3) for rel-Al(U) to
a minimality condition in MUT™ for rel-TI5(U).

Lemma 18 Let T denote the theory MUT™ where the minimal universe az-
iom (5.3) is formulated only for rel-TI3(U) formulas. Then T proves the (full)

mintmal universe axiom (53)

Proof. We argue in T. Choose rel-TI;(U) formulas ¢, ¢ such that

(VE)(32)¢(Z, E) < (V2)(Z, E)) A (3D)(U(D) A (32)¢(Z, D).
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We have to show that there is a minimal universe F' such that (32)p(Z, F).
We can choose a universe F such that there is a universe D in F and such

that (37)p(Z, D) holds. Now set
H = (k) - 2 € (B) A (32)p(Z, (E)a) A U((E)w)}.

H is a rel-Aj(U) set, since we have

We also know
UX) = (XEH(XEEN(TD)(Z,X))).

Hence the universe D is in H. An application of the minimal universe axiom

(of T) to the formula D & H yields a universe F such that
FEHANX EF)U(X) = X ¢ H).
Hence, we conclude
FEBNBZ)Q(Z,FYA (VX € F)U(X) = (X ¢ EV=(32)p(Z, X))).
We have for all universes X in F' that X is in E. Thus
(32)p(Z, F) A (VX & F)(U(X) = =(32)p(Z, X)).

This is the claim. O

Next we give an infinitary Tait-style version (MUT™)T of MUT=. Now
I',A,... denote finite sets of £;(U) formulas and T',¢ is a shorthand for
I'U {p}. The system (MUT=)T contains the following axioms and rules of
inference.

1. Ontological axioms I. For all closed number terms s,¢ with identi-
cal value, all true literals ¢ of £, and all set variables X:

| and MNteX,s¢ X and [LU(X), ~U(X).

2. Propositional and quantifier rules. These include the usual Tait-style
inference rules for the propositional connectives and all sorts of quantifiers
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(especially the w-rule).

3. Ontological axioms II.
I, -U(X), X £Y,U(Y).
4. Set axioms and rules. For all rel-TIj(U) formulas ¢:

[, (Va)(3X)e(z, X)
L, (3X)(Va)p(z, (X))

5. Closure axioms. For all rel-TT}(U) formulas ¢:

[,(3X)(z € X & p(z)),

I,-UD),X¢D,Z¢D XBZED,

T,-U(D),Z ¢ D,(3Y & D)(Va)(z € Y ¢ p[a, 2, 7)),

T,-U(D), Z ¢ D,~(Vx)(3Y € D)g[z,2,Y, Z],(3Y &€ D)(Vx)plz, z, (V). Z].
6. Universe axioms. For all rel-IT}(U) formulas :

I, (32)(X € Z AU(2)),

r,-U(D),-U(E),D € E,D=E,E & D,

L, (VZ2)(=U(Z) V =¢(2)),(AZ)U(Z) A e(Z) A (VF € Z)(U(F) = —p(F))].

7. Cut rules. These include the usual cut rules.

In a next step we define the classes of £3(U) formulas essrel-X}(U) and
essrel-1T1;(U). They correspond to ess-X] and ess-TI7 (cf. for example [2]).

Definition 19 The essrel-X1(U) (essrel-1T13(U)) formulas are inductively

defined as follows:

1. Fach rel—l_[(l)(U) formula is an essrel—Z}(U) and an essrel—l_[}(U) for-

mula.

2. If ¢, ¢ are essrel-X1(U) (essrel-1T1{(U), resp.) formulas, then so also
are o Vb, p A, Vo, Jrp, (VX € V), (3X € V), IXe (VXp,
resp. ).

Definition 20 The rank rk(¢) of an £5(U) formula ¢ is inductively defined

as follows:

If v is an essrel-X;(U) or an essrel-11}(U) formula, then rk(¢) := 0. Other-

wise:

24



1. If p is a formula ¢ V 0 or ¥ A 0, then rk(p) := maz(rk(y), rk(6)) + 1.
2. If ¢ is a formula zep, Vo, IXY, VX, then rk(p) := rk(y) + 1.

Corresponding to this rank we have partial cut elimination. Furthermore, we
can embed MUT= into (MUT™)”. Again the proof is standard and we omit
it.

Lemma 21 We have
a) (MUTS)T LS T = (MUT=)7 2@l

b) MUT= | ¢[#,X] = (MUT")T =2 off) X]

for all closed number terms 1.

Now we define the translation which is used in the asymmetric interpretation.

Definition 22 For all £,(U) formulas ¢ and ordinals a, 8 < v let ¢™#7
denote the L, formula of T, which results from ¢ when each subformula
[-]U(X) is replaced by [=](3d < ~)(X = (D«,y)4), and each unbounded
quantifier 3X (VX resp.) is replaced by (3X € Ds) ((VX € Dp), resp.). A
quantifier 3X (VX resp.) is called unbounded if its range is not of the form
XEYAN...(XEY — ... resp.).

In the next lemma we formulate the persistency of our translation. The proof
is by induction on the length of derivation, we omit it.

Lemma23 Ifp' < <, v <y <d < aandT, % T, %73 then
T Fgo™ T s,
Now we are ready to state the asymmetric interpretation.
Theorem 24 For all finite sets T' of L3(U) formulas and all ordinals o, 3,
with f 4+ W' < a < &g we have:

(MUT=)T 2 T[X] = T, X ¢ D,, IPPH72[X].

Proof. This theorem is proved by induction on 7. As an example we discuss
the minimal universe axioms. The other axioms and rules are dealt with as
in similar asymmetric interpretations, cf. e.g. [2, 15, 19]. We write in this
proof only ©>* short for p>*e,
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For technical reasons we introduce a formal system T.. The semi-formal
system T, is a Tait-style version of T,. T, is formulated in £, and is based
on the usual axioms and rules for the two-sorted predicate calculus extended

by rules for the 3X € Dg and VX € Ds quantifiers (8 < o). We have defining

axioms for all primitive recursive functions and relations and

(1) ontological properties for v < B < «

(Ve)(z =5 = (D<p)z = Dy);

(2) closure conditions for all Ds (f < «)

(2.2) Z € Dg — (X € Dg)(Va)(z € X <+ nile,z,2,7Z,Dg]).

(2.3) 7 € Dg A (VZ)(.HX € Dg)nlle,z, 2, X, Z,D 4]
— (3X € Dg)mile,x, 2, (X )z, Z, Degl.

We now assume that an instance of the minimal universe axiom occurs in I'.
Let ¢ be a rel-I[3(U) formula where all free set parameters are among X.
Then we have to show

T. 120 ¥ ¢ Dy, (VZ & Dp)(Vd < a)(Z £ (Dea)a) V (~p)P5+(2)),
(37 & Dpyun)|(3d < 0)(Z = (Daa)i) A" (2) A (2)
(VF & Z)((3d < a)(F = (Dea)s) — (~¢)P5+" (F))].

First we show within T, that (VX)TI(3, X) implies

X &Ds A (37 €Dp)((3d < a)(Z = (Dea)a) A =~(=¢)*7+(Z))
— (37 & Dp1un)[(3d < @)(Z = (D<a)a) A ™7F7(Z) A (3)
(VF & Z)((3d < a)(F = (Dea)a) = (=) P+ (F)].

By induction on the build-up of ¢ it can be proved that there is a 11} formula
Y such that T, proves

)? E (D<a)c Ne<a— (QOB’B-HJV(Z) &~ 'g/)(y, Za Y)[y\ca Y\D<a])

Since ¢ is in rel-TIL(U) we know (—¢)PP+e" = P B+ and —(=p)P P+’ =
PP+ By assumption there is a Z in Dg such that Z = (D<n)a, d < @
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and —(—¢)?P*7"(Z). Hence we can choose Z € (D<n)s, d < « such that
Z = (D<a)i ANY(B,Z,(Dcs)). We have to prove

(3G € Dpyun)[(Fe < @) (G = (Dca)e) A (B, G, Dea) A (4)
(VF € G)((3e < a)(F = (Dca)e) = ~¥(B, F, Da))].

We define H := {c¢: ¢ < BAY(B,(Dca)es D)} We have (Dey)a € Dy,
hence d < ,d € H, H # {}. Therefore, we can choose a least ¢ with ¢ € H,
since we have assumed (VX)T1(3,X). This immediately proves (4).

There is an embedding of T, into T,. For each formula J[Z, )?] and all

number terms 7 we have
T, 07 X] = T.E= 9L X].

Let 6 denote the formula (3). Then we can prove in T, with finite deduc-
tion length —=T'1(3,Y),0. Furthermore, standard arguments show T, IZ—i

whtw” . . .
TI(3,Y) and a cut implies T? I% 6. A-inversion and V-exportation
now imply the claim (2). O

We can carry-out an analogous analysis of the theory MUT{, with the dif-
ference that here only finitely many D,, (n € IN) are necessary. Instead of a
rigorous proof, we give a short sketch of how one proceeds:

1. We fix a Tait-style reformulation (MUTZ)T of MUTS. Tt looks like
(MUT™)T but instead of the w-rule we take the (Vz)-rule; we also have
to add set-induction.

2. As for (MUT™)” we prove partial cut elimination for (MUTZ)T and
embedding of MUTS into (MUTZ)”. Notice that all lengths are finite.

3. We introduce the corresponding translation ™™* (m,n,k € IN) and
prove a corresponding asymmetric interpretation theorem where we
need only finitely many universes.

We collect all results in the following corollary.

Corollary 25 We have for all arithmetic sentences ¢ the following reduc-
tions.

a) MUT; ¢ = Thereisak € IN and a v < &g such thatTkl%go.
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b) MUT™F ¢ = There are a,y < &g such that T, I% ©.

Since the proof-theoretic analysis of the semi-formal systems T, is given in
[15, 17], we only sketch the computation of the upper bound of (T, )<, and
(Ty)n<w. Very briefly, this computation mimics the proof-theoretic analysis
of e.g. D, [6].

First, we notice that there is a partial cut elimination theorem for T,.
For technical reasons we embed T,4; into E,41, a first order reformulation
of Ty41. The formulas of E,4; are the formulas of T,4; in which no set
variables occur. Establishing a partial cut elimination theorem for E,4; too,
we get for all first order sentences ¢

Ta-l-l lg—w p = Ea-l—l |<%(W) ®.

The proof-theoretic analysis of the semi-formal systems E, consists of two
parts: the finite reduction and the transfinite reduction. For the finite reduc-
tion we introduce semi-formal systems H,E, in which we have in addition
iterated arithmetical comprehension up to v. Then we prove an asymmetric
interpretation of E,41 into H,E, (cf. [2] for a similar argument in the con-
text of choice axioms and comprehension principles). The next step is the
elimination of “H,” in H,E,. To achieve this we introduce a system RA,
of ramified analysis. The first order part of RA, essentially corresponds to
E.. We can embed H,E, into RA,. There is also a partial (second) cut
elimination theorem for RA,. Finally, we embed the first order fragment of
RA, into E, and obtain for all first order sentences ¢

Ea+1|%99 — Ealw%(’y)oﬂo

The transfinite reduction of E, is an iteration of this finite reduction and
very similar to the reduction of transfinitely many fixed points (cf. [6] Main
Lemma II). In particular we can prove for all first order sentences ¢

1
Espwrto b0 = Es5— o

Carrying through everything in detail (cf. [15, 17]) finally gives the upper
bound of (T,)acey ((Th)n<w, resp.): pleg0 (g, resp.). Together with corol-
lary 8, 17 and 25 we obtain [MUTF| = I'g and [MUTT| = ¢lee0. Let us
collect the proof-theoretic strengths of the theories of universes in the follow-
ing corollary.
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Corollary 26 We have
a) [INUTo| = |[UUTe| = [MUTy| = IMUT, | = Ty,
b) INUT| =T,,,
¢) |UUT| = |[MUT| = [MUTT| = pleg0.
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