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Abstract

Applicative theories form the basis of Feferman’s systems of explicit
mathematics, which have been introduced in the early seventies. In
an applicative universe, all individuals may be thought of as opera-
tions, which can freely be applied to each other: self-application is
meaningful, but not necessarily total. It has turned out that theories
with self-application provide a natural setting for studying notions of
abstract computability, especially from a proof-theoretic perspective.

This article is concerned with the study of (unramified) bounded ap-
plicative theories which have a strong relationship to classes of com-
putational complexity. We propose new applicative systems whose
provably total functions coincide with the functions computable in
polynomial time, polynomial space, polynomial time and linear space,
as well as linear space. Our theories can be regarded as applicative
analogues of traditional systems of bounded arithmetic. We are also
interested in higher type features of our systems; in particular, it is
shown that Cook and Urquhart’s system PVω is directly contained in
a natural applicative theory of polynomial strength.

1 Introduction

Theories with self-application form the operational core of Feferman’s sys-
tems of explicit mathematics, which have been introduced in [24, 25, 26]. The
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original aim of explicit mathematics was to provide a logical basis for Bishop-
style constructive mathematics. More generally, the explicit framework has
gained considerable importance in proof theory in connection with the proof-
theoretic analysis of subsystems of second order arithmetic and set theory.
In particular, it was possible to reduce prima-facie non-constructive systems
to a constructively justifiable framework. The most famous example in this
connection is the reduction of the subsystem of second order arithmetic based
on ∆1

2 comprehension and bar induction to the most prominent framework of
explicit mathematics, T0, achieved by Jäger [42] and Jäger and Pohlers [44].
The language and axioms of explicit mathematics have also been shown to
provide a logical framework for functional and object-oriented programming
(cf. e.g. [27, 28, 29, 66]).

In a typical formulation of explicit mathematics one has to deal with two
sorts of objects, namely operations and types. It has turned out that al-
ready the operational or applicative core of explicit mathematics – so-called
applicative theories – are of significant interest. In particular, applicative
theories provide a natural framework for a proof-theoretic approach to ab-
stract computations. In contrast to traditional formalizations of mathematics
which follow a set-theoretic paradigm and an extensional approach to func-
tions, applicative theories and explicit mathematics focus on an intensional
point of view. In an applicative universe of discourse, all objects may be
regarded as operations (or rules) which can be freely applied to each other;
self-application is meaningful, though not necessarily total. The key example
of such a domain are the (codes of) partial recursive functions, which form a
partial combinatory algebra via the usual notion of partial recursive function
application. Indeed, the axioms for an untyped partial combinatory algebra
will be at the heart of all applicative theories discussed in this paper. As
usual, they guarantee full recursion in an abstract and elegant way. The
reader is referred to the article Jäger, Kahle and Strahm [43] for a recent
survey and references on applicative theories.

The main purpose of the present contribution is the study of (unramified)
bounded applicative systems which have a strong relationship to classes of
computational complexity. We provide new applicative theories whose prov-
ably total functions coincide with the functions computable in polynomial
time, polynomial space, simultaneously polynomial time and linear space, as
well as linear space. Our theories can be seen as natural applicative analogues
of systems of bounded arithmetic, cf. Buss [8, 9, 11], Hájek and Pudlák [37],
and Kraj́ıček [48].

The most famous theory of bounded arithmetic is Buss’ S1
2 (cf. [8]) or, equiv-

alently, Ferreira’s PTCA+ (cf. [33]). Both systems are first order systems
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of arithmetic closely related to the polynomial time computable functions.
Whereas the former theory is formulated over the natural numbers, the latter
directly refers to the collection of finite words over {0, 1}. Canonical exten-
sions of S1

2 are Buss’ theories Si2 (i ∈ N), which characterize the levels of
the polynomial time hierarchy. Takeuti [67] has studied weak second order
theories Ui,w∗

2 which are essentially equivalent to Si2. Moreover, Zambella [71]
has set up a very appealing second order bounded arithmetic BA whose frag-
ments are naturally related to the theories Si2. Further, in his seminal thesis
[8], Buss studies second order bounded arithmetic theories U1

2 and V1
2 for the

polynomial space and exponential time computable functions, respectively.
For extensive lists of references on bounded arithmetic, see the monographs
and survey articles cited above.

Apart from the area of bounded arithmetic, there is the rapidly growing field
of implicit computational complexity and tiered formal systems. We refer
the reader to the conclusion of this paper for some references and discussion
concerning this area of research.

The framework of all our applicative theories is very uniform and simple. The
various applicative systems studied in this article will only differ with respect
to the available initial functions or functionals as well as principles of induc-
tion. Due to the high expressive power of the underlying applicative language,
lower bound arguments will be considerably simpler than in traditional sys-
tems of bounded arithmetic. This leads, in particular, to a straightforward
characterization of the class simultaneous polytime and linspace, something
that has yet to be accomplished for traditional (non-self-applicative) bounded
arithmetic. The upper proof-theoretic bounds for our systems, which are all
based on classical logic, will be established by combining partial cut elimi-
nation with a suitable notion of realizability or witnessing.

For example, we will set up an applicative theory PT for the polynomial time
computable functions. In PT we have available full recursion and, hence,
terms for all partial recursive functions, e.g., exponentiation; however, con-
vergence or totality can only be derived for terms defining polynomial time
computable functions. We will see that Buss’ S1

2 or Ferreira’s PTCA+ are
directly interpretable in PT. In addition, “bootstrapping” the polynomial
time computable functions in PT is very pleasant and coding-free.

We will also be interested in higher type aspects of our applicative systems. It
turns out that higher types arise very naturally in our applicative framework,
and again the question arises which functionals provably converge in a given
axiomatic setting. In this article it is shown that Cook and Urquhart’s system
PVω (cf. [23]), a natural higher type version of Cook’s PV (cf. [21]), is directly
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contained in PT. The terms of PVω define exactly the so-called Basic Feasible
Functionals, BFF. The BFF’s have turned out to be a rather robust class of
higher type functionals with many interesting characterizations, see Section
5 of this paper for further information and references.

Let us now give a quick guided tour through our paper. We start in Section 2
with a short review of known recursion-theoretic characterizations of various
function complexity classes on the binary words W by means of bounded
recursion on notation as well as bounded unary recursion. The so-obtained
machine-independent characterizations will be crucial for lower as well as
upper bound arguments used in the sequel of the paper.

In Section 3 we set up the central applicative framework. We start with
introducing the basic theory B of operations and words and recall some of
its crucial properties. Then we present various forms of bounded induction
and define the four central systems of this article, PT, PS, PTLS, and LS,
corresponding to the functions computable in polynomial time, polynomial
space, polynomial time and linear space, as well as linear space, respectively.

In Section 4 we provide lower bound arguments for our applicative systems,
i.e., we show that the functions from the respective function complexity
classes are provably total in the four applicative theories mentioned above.
In particular, we will see that forms of bounded recursion are very natu-
rally derived by means of the fixed point theorem and exploiting our various
principles of bounded induction.

Higher type issues are at the heart of Section 5. There we will recapitulate
an intensional and an extensional version of the Cook-Urquhart system PVω

and show that both systems are naturally contained in our applicative system
PT for the polynomial time computable functions. Indeed, the embeddings
presented in this section also give rise immediately to higher type systems
corresponding to PS, PTLS, and LS.

Upper bounds for the four systems PT, PS, PTLS, and LS are established in
Section 6. The upper bound arguments proceed in two steps. First, standard
partial cut elimination is employed in a sequent version of our systems in or-
der to show that derivations of sequents of positive formulas can be restricted
to positive cuts. The second crucial step consists in establishing very uniform
realizability theorems for our four systems, where a notion of realizability for
positive formulas in the standard open term modelM(λη) is used. The spirit
of our realizability theorems is related to the work of Leivant [49], Schlüter
[58], and Cantini [16, 18] and, in fact, our notion of realizability can be seen
as an applicative analogue of Buss’ witnessing method, see [8, 10].

In Section 7 we present further natural applicative systems for various classes
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of computable functions. In particular, we will study a system PH which is
closely related to the polynomial time hierarchy; the crucial axiom of PH is
a very uniform type two functional π for bounded quantification. Further
investigations in this section concern applicative theories whose provably
total functions are exactly the primitive recursive functions.

The paper ends with concluding remarks concerning the systems and results
of this paper as well as directions for future research.

A preliminary version of this paper has been circulated in May 2000. More-
over, the main bulk of this article is contained in Part II of the author’s
habilitation thesis [64]. Recently, Cantini [12] has studied substantial exten-
sions of the theory PT by an axiom of choice for operations and a uniformity
principle, both restricted to positive conditions. In addition, he has con-
sidered a form of self-referential truth, providing a fixed point theorem for
predicates. Cantini shows in [12] that the recursive content of PT is not
altered by adding all the mentioned principles. The methods of proof used
by Cantini provide new general insight into the relationship between classi-
cal and intuitionistic applicative systems. Finally, in [18] Cantini has also
studied an applicative theory based on safe induction in the spirit of im-
plicit computational complexity, see also our remarks in the conclusion of
this paper.

2 Recursion-theoretic characterizations

of complexity classes

In this section we review know recursion-theoretic characterizations of vari-
ous classes of computational complexity. We will work over the set of binary
words W = {0, 1}∗. Our main interest in the sequel are the functions on W
which are computable on a Turing machine in polynomial time, simultane-
ously polynomial time and linear space, polynomial space, and linear space. In
the following we let FPtime, FPtimeLinspace, FPspace, and FLinspace

denote the respective classes of functions on binary words W. For an exten-
sive discussion of recursion-theoretic or function algebra characterizations of
complexity classes the reader is referred to the survey article Clote [19].

We are interested in various kinds of successor operations on the binary
words W. As usual, s0 and s1 denote the binary successor functions which
concatenate 0 and 1 to the end of a given binary word, respectively. We are
also given a unary lexicographic successor s` on W, which satisfies for all x
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in W the following recursion equations,

s`(ε) = 0, s`(s0x) = s1x, s`(s1x) = s0(s`x).

We have used here ε to denote the empty word. Observe that s` is the
successor operation in the natural wellordering <` of W according to which
words are ordered by length and words of the same length are ordered lexi-
cographically. Thinking of binary words as binary representations of natural
numbers, s` essentially corresponds to the usual successor operation on the
natural numbers. Finally, we let ∗ and × stand for the binary operations of
word concatenation and word multiplication, respectively, where x×y denotes
the word x, length of y times concatenated with itself.

Towards a function algebra characterization of the complexity classes men-
tioned above, we now want to introduce two schemas of bounded recursion.
For that purpose, let G, H0, H1 and K be given functions on binary words of
appropriate arities. We say the function F is defined by bounded recursion
on notation (BRN) from G,H0, H1 and K, if

F (~x, ε) = G(~x),

F (~x, siy) = Hi(~x, y, F (x, ~y)), (i = 0, 1)

F (~x, y) ≤ K(~x, y)

for all ~x, y in W. Here x ≤ y signifies that the length of the word x is less
than or equal to the length of the word y. On the other hand, a function F
is defined by bounded lexicographic recursion (BRL) from G,H and K, if

F (~x, ε) = G(~x),

F (~x, s`y) = H(~x, y, F (x, ~y)),

F (~x, y) ≤ K(~x, y)

for all ~x, y in W. Hence, the crucial difference between bounded recursion
on notation (BRN) and bounded lexicographic or unary recursion (BRL) is
that the former recursion scheme acts along the branches of the binary tree,
whereas the latter form of bounded recursion is with respect to the lexico-
graphic ordering of the full binary tree.

In the following we use the notation of Clote [19] for a compact representation
of function algebras. Accordingly, we call (partial) mappings from functions
on W to functions on W operators. If X is a set of functions on W and OP
is a collection of operators, then [X ; OP] is used to denote the smallest set of
functions containing X and closed under the operators in OP. We call [X ; OP]
a function algebra. Our crucial examples of operators in the sequel are (BRN)
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and (BRL). A further operator is the composition operator (COMP), which
takes functions F,G1, . . . , Gn and maps them to the usual composition of F
with G1, . . . , Gn. Below we also use I for the usual collection of projection
functions and we simply write ε for the 0-ary function being constant to the
empty word ε.

We are now ready to state the function algebra characterizations of the four
complexity classes which are relevant in this paper. The characterization of
FPtime is due to Cobham [20]. The delineations of FPtimeLinspace and
FPspace are due to Thompson [68]. Finally, the fourth assertion of our
theorem is due to Ritchie [56]. For a uniform presentation of all these results
we urge the reader to consult Clote [19].

Theorem 1 We have the following function algebra characterizations of the
complexity classes mentioned above:

1. [ε, I, s0, s1, ∗,×; COMP,BRN] = FPtime.

2. [ε, I, s0, s1, ∗; COMP,BRN] = FPtimeLinspace.

3. [ε, I, s`, ∗,×; COMP,BRL] = FPspace.

4. [ε, I, s`, ∗; COMP,BRL] = FLinspace.

Let us mention that indeed word concatenation ∗ is redundant in the presence
of word multiplication ×, and we have included it in the formulation of this
theorem for reasons of uniformity only.

3 The applicative framework

In this section we will introduce the applicative systems which will be relevant
in the rest of this paper. We start with a precise description of the basic
theory of operations and words B. Later we will discuss two basic forms
of bounded induction which will be used to set up the central applicative
frameworks PT, PTLS, PS, and LS.

3.1 The basic theory B of operations and words

All applicative systems to be considered below are formulated in the language
L; it is a language of partial terms with individual variables a, b, c, x, y, z, u, v,
f, g, h, . . . (possibly with subscripts). L includes individual constants k, s
(combinators), p, p0, p1 (pairing and unpairing), dW (definition by cases on
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binary words), ε (empty word) s0, s1 (binary successors), pW (binary prede-
cessor), s`, p` (lexicographic successor and predecessor), c⊆ (initial subword
relation) and lW (tally length of binary words). We also assume that the
two constants ∗ (word concatenation) and × (word multiplication) belong
to L, however, not all our applicative systems will have axioms about ∗ and
×. Finally, L has a binary function symbol · for (partial) term application,
unary relation symbols ↓ (defined) and W (binary words) as well as a binary
relation symbol = (equality).

The terms r, s, t, . . . of L (possibly with subscripts) are inductively gener-
ated from the variables and constants by means of application ·. We write
ts instead of ·(t, s) and follow the standard convention of association to the
left when omitting brackets in applicative terms. As usual, (s, t) is a short-
hand for pst. Moreover, we use the abbreviations 0 and 1 for s0ε and s1ε,
respectively. Furthermore, we write s ⊆ t instead of c⊆st = 0 and s ≤ t for
lWs ⊆ lWt; s ⊂ t and s < t are understood accordingly. Finally, s∗t stands
for ∗st, and s×t for ×st.
The formulas A,B,C, . . . of L (possibly with subscripts) are built from the
atomic formulas (s = t), s↓ and W(s) by closing under negation, disjunction,
conjunction, implication, as well as existential and universal quantification
over individuals.

Our conventions concerning substitutions are as follows. As usual we write
t[~s/~x] and A[~s/~x] for the substitution of the terms ~s for the variables ~x in
the term t and the formula A, respectively. In this connection we often write
A(~x) instead of A and A(~s) instead of A[~s/~x].

Our applicative theories are based on partial term application. Hence, it is
not guaranteed that terms have a value, and t↓ is read as t is defined or t
has a value. The partial equality relation ' is introduced by

s ' t := (s↓ ∨ t↓)→ (s = t).

In the following we will use the following natural abbreviations concerning
the predicate W (~s = s1, . . . , sn):

~s ∈ W := W(s1) ∧ · · · ∧W(sn),

(∃x ∈ W)A := (∃x)(x ∈ W ∧ A),

(∀x ∈ W)A := (∀x)(x ∈ W→ A),

(∃x ≤ t)A := (∃x ∈ W)(x ≤ t ∧ A),

(∀x ≤ t)A := (∀x ∈ W)(x ≤ t→ A),

(t : W→ W) := (∀x ∈ W)(tx ∈ W),

(t : Wm+1 → W) := (∀x ∈ W)(tx : Wm → W).
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Before we turn to precise axiomatizations, let us give a short informal inter-
pretation of the syntax of the language L. The individual variables are con-
ceived of as ranging over a universe V of computationally amenable objects,
which can freely be applied to each other. Self-application is meaningful,
but not necessarily total. V is assumed to be combinatory complete, due to
the presence of the well-known combinators k and s, and V is closed under
pairing. There is a collection of objects W ⊆ V , consisting of finite sequences
of 0’s and 1’s. W is closed under various kinds of successor and predecessor
operations as well as definition by cases. In addition, there are operations
for the initial subword relation as well as the tally length of a binary word.
Possibly, operations for word concatenation and/or word multiplication are
explicitly included.

We now introduce the basic theory of operations and words B. The under-
lying logic of B is the classical logic of partial terms due to Beeson [3, 4];
it corresponds to E+ logic with strictness and equality of Troelstra and Van
Dalen [69]. According to this logic, quantifiers range over defined objects
only, so that the usual axioms for ∃ and ∀ are modified to

A(t) ∧ t↓ → (∃x)A(x) and (∀x)A(x) ∧ t↓ → A(t),

and one further assumes that (∀x)(x↓). The strictness axioms claim that
if a compound term is defined, then so also are all its subterms, and if a
positive atomic statement holds, then all terms involved in that statement
are defined. Note that t↓ ↔ (∃x)(t = x), so definedness need not be taken
as basic symbol. The reader is referred to [3, 4, 69] for a detailed exposition
of the logic of partial terms.

We are now ready to spell out in detail the non-logical axioms of B. To
improve readability we divide the axioms into the following six groups.

I. Partial combinatory algebra and pairing

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz),

(3) p0(x, y) = x ∧ p1(x, y) = y.

II. Definition by cases on W

(4) a ∈ W ∧ b ∈ W ∧ a = b → dWxyab = x,

(5) a ∈ W ∧ b ∈ W ∧ a 6= b → dWxyab = y.

III. Closure, binary successors and predecessor
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(6) ε ∈ W ∧ (∀x ∈ W)(s0x ∈ W ∧ s1x ∈ W),

(7) s0x 6= s1y ∧ s0x 6= ε ∧ s1x 6= ε,

(8) pW : W→ W ∧ pWε = ε,

(9) x ∈ W → pW(s0x) = x ∧ pW(s1x) = x,

(10) x ∈ W ∧ x 6= ε → s0(pWx) = x ∨ s1(pWx) = x.

IV. Lexicographic successor and predecessor

(11) s` : W→ W ∧ s`ε = 0,

(12) x ∈ W → s`(s0x) = s1x ∧ s`(s1x) = s0(s`x),

(13) p` : W→ W ∧ p`ε = ε,

(14) x ∈ W → p`(s`x) = x,

(15) x ∈ W ∧ x 6= ε → s`(p`x) = x.

V. Initial subword relation.

(16) x ∈ W ∧ y ∈ W → c⊆xy = 0 ∨ c⊆xy = 1,

(17) x ∈ W → (x ⊆ ε↔ x = ε),

(18) x ∈ W ∧ y ∈ W ∧ y 6= ε → (x ⊆ y ↔ x ⊆ pWy ∨ x = y),

(19) x ∈ W ∧ y ∈ W ∧ z ∈ W ∧ x ⊆ y ∧ y ⊆ z → x ⊆ z.

VI. Tally length of binary words

(20) lW : W→ W ∧ lWε = ε,

(21) x ∈ W → lW(s0x) = s1(lWx) ∧ lW(s1x) = s1(lWx),

(22) x ∈ W ∧ lW(x) = x → lW(s`x) = s1x,

(23) x ∈ W ∧ lW(x) 6= x → lW(s`x) = lW(x),

(24) x ∈ W ∧ y ∈ W → x ≤ y ∨ y ≤ x.

Let us immediately turn to two crucial consequences of the partial combi-
natory algebra axioms (1) and (2) of B, namely abstraction and recursion.
These two central results appear in slightly different form than in the set-
ting of a total combinatory algebra, the essential ingredients in the proofs,
however, are the same. The relevant arguments are given, for example, in
Beeson [3] or Feferman [24].
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Lemma 2 (Abstraction) For each L term t and all variables x there exists
an L term (λx.t) whose variables are those of t, excluding x, so that B proves

(λx.t)↓ ∧ (λx.t)x ' t.

As usual, we generalize λ abstraction to several arguments by iterating ab-
straction for one argument, i.e., (λx1 . . . xn.t) abbreviates (λx1.(. . . (λxn.t)).

Lemma 3 (Recursion) There exists a closed L term rec so that B proves

recf↓ ∧ recfx ' f(recf)x.

Clearly, recursion nicely demonstrates the power of self-application. It will
be an essential tool for defining operations in the various applicative systems
to be introduced below.

In the meanwhile let us briefly sketch B’s standard recursion-theoretic model
PRO of partial recursive operations. The universe of PRO consists of the set
of finite 0-1 sequences W = {0, 1}∗, and W is interpreted by W. Applica-
tion · is interpreted as partial recursive function application, i.e. x · y means
{x}(y) in PRO , where {x} is a standard enumeration of the partial recursive
functions over W. It is easy to find interpretations of the constants of L so
that all the axioms of B are true in PRO .

There are many more interesting models of the combinatory axioms, which
can easily be extended to models of B. These include further recursion-
theoretic models, term models, continuous models, generated models, and
set-theoretic models. For detailed descriptions and results the reader is re-
ferred to Beeson [3], Feferman [26], and Troelstra and van Dalen [70]. We will
make use of the so-called extensional term model of B in our upper bound
arguments in Section 6; there we will define this model in some detail.

We finish this subsection by spelling out the obvious axioms for word concate-
nation and word multiplication in our applicative framework. Note, however,
that these axioms do not belong to the theory B.

VII. Word concatenation.

(25) ∗ : W2 → W,

(26) x ∈ W → x∗ε = x,

(27) x ∈ W ∧ y ∈ W → x∗(s0y) = s0(x∗y) ∧ x∗(s1y) = s1(x∗y).

VIII. Word multiplication.
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(28) × : W2 → W,

(29) x ∈ W → x×ε = ε,

(30) x ∈ W ∧ y ∈ W → x×(s0y) = (x×y)∗x ∧ x×(s1y) = (x×y)∗x.

In the following we write B(∗) for the extension of B by the axioms (25)–(27),
and B(∗,×) for B plus the axioms (25)–(30).

3.2 Bounded forms of induction

We have not yet specified induction principles on the binary words W; these
are of course crucial for our proof-theoretic characterizations of complexity
classes below. We start by defining three central classes of L formulas.

We call an L formula positive if it is built from the atomic formulas by means
of disjunction, conjunction as well as existential and universal quantification
over individuals; i.e., the positive formulas are exactly the implication and
negation free L formulas. We let Pos stand for the collection of positive
formulas. Further, an L formula is called W free, if the relation symbol W
does not occur in it.

Most important in the sequel are the so-called bounded (with respect to W)
existential formulas or Σb

W formulas of L. A formula A(f, x) belongs to the
class Σb

W if it has the form (∃y ≤ fx)B(f, x, y) for B(f, x, y) a positive and
W free formula. It is important to recall here that bounded quantifiers range
over W, i.e., (∃y ≤ fx)B(f, x, y) stands for

(∃y ∈ W)[y ≤ fx ∧ B(f, x, y)].

Further observe that the matrix B of a Σb
W formula can have unrestricted

existential and universal individual quantifiers, not ranging over W, however.

Assuming that the bounding operation f in a Σb
W formula has polynomial

growth, Σb
W formulas can be seen as a very abstract applicative analogue

of Buss’ Σb
1 formulas (cf. [8]) or Ferreira’s NP formulas (cf. [32, 33]). No-

tice, however, whereas the latter classes of formulas define exactly the NP

predicates, Σb
W formulas of L in general define highly undecidable sets in the

standard recursion theoretic model PRO .

At the heart of our delineation of complexity classes below are forms of
bounded (with respect to W) induction. These principles allow induction
with respect to formulas in the class Σb

W, under the proviso that the bound-
ing operation f has the right type. We will distinguish usual notation induc-
tion on binary words and the corresponding “slow” induction principle with
respect to the lexicographic successor s`.
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The scheme (Σb
W-IW) of Σb

W notation induction on W includes for each formula
A(x) ≡ (∃y ≤ fx)B(f, x, y) in the formula class Σb

W,

f : W→ W ∧ A(ε) ∧ (∀x ∈ W)(A(x)→ A(s0x) ∧ A(s1x))

→ (∀x ∈ W)A(x)
(Σb

W-IW)

Accordingly, the induction scheme (Σb
W-I`) of Σb

W lexicographic induction on
W claims for each formula A(x) ≡ (∃y ≤ fx)B(f, x, y) in the class Σb

W,

f : W→ W ∧ A(ε) ∧ (∀x ∈ W)(A(x)→ A(s`x))

→ (∀x ∈ W)A(x)
(Σb

W-I`)

Let us mention that notation induction IW and lexicographic induction I`
correspond to what is usually called PIND (equivalently: LIND) and IND,
respectively, in the classical literature on bounded arithmetic, cf. e.g. Buss
[8] or Beckmann [2]. However, we will see that the strength of our induction
principles in the applicative setting may differ from the corresponding formal
setting in bounded arithmetic: for example, the theory B(∗,×) + (Σb

W-I`),
termed PS below, at first sight seems to resemble Buss’ theory T1

2, but as
we will prove in the course of this paper, the provably total functions of the
theory B(∗,×)+(Σb

W-I`) are all polynomial space computable functions. This
difference in strength is due to the extremely strong expressive power of our
applicative systems.

We will prove in the next section (Lemma 6) that indeed (Σb
W-I`) entails

(Σb
W-IW) over our base theory B. This is similar to the fact that Buss’ T1

2

is an extension of S1
2. Further, let us mention that the principles of set

induction and NP induction considered in Strahm [62] (cf. also Cantini [17])
are directly entailed by (Σb

W-IW). Moreover, also the axiom of operation
induction of Jäger and Strahm [46] is covered by the above bounded induction
schemes. An induction principle related to (Σb

W-IW) has previously been
studied by Cantini [13] in the context of polynomially bounded operations
(cf. also Cantini [17]).

Depending on whether we include (Σb
W-IW) or (Σb

W-I`), and whether we as-
sume as given only word concatenation or both word concatenation and word
multiplication, we can now distinguish the following four applicative theories
PT, PTLS, PS, and LS:

PT := B(∗,×) + (Σb
W-IW) PTLS := B(∗) + (Σb

W-IW)

PS := B(∗,×) + (Σb
W-I`) LS := B(∗) + (Σb

W-I`)
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As the naming of these system suggests, it is our aim in the sequel to establish
that the provably total operations on words of PT, PTLS, PS, and LS coincide
with FPtime, FPtimeLinspace, FPspace, and FLinspace, respectively.
On our way we will also be interested in some higher type aspects of our
applicative systems.

4 Deriving bounded recursions

It is the main purpose of this section to show that the provably total word
functions of the systems PT, PTLS, PS, and LS include the classes FPtime,
FPtimeLinspace, FPspace, and FLinspace, respectively. We set up our
lower bound arguments in such a way as to facilitate the discussion on higher
type issues in the subsequent section.

Let us first start with a formal definition of the notion of provably total
function of a given L theory. First note that for each word w ∈W we have a
canonical closed term w of L which represents w; of course, w is constructed
form ε by means of the successor operations s0 and s1. In the sequel we
sometimes identify w with w when working in the language L. A function
F : Wn →W is called provably total in an L theory T, if there exists a closed
L term tF such that

(i) T tF : Wn → W and, in addition,

(ii) T tFw1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

The notion of a provably total word function is divided into two conditions
(i) and (ii). The first condition (i) expresses that tF is a total operation from
Wn to W, provably in the L theory T. Condition (ii), on the other hand,
claims that tF indeed represents the given function F : Wn → W, for each
fixed word w in W.

Observe that one gets a too weak notion of provably total function if one
drops condition (i). For example, in the theory B it is well-known that one
can represent all recursive functions in the sense of (ii). The proof of this
fact runs completely analogous to the argument in the untyped λ calculus
showing that all recursive function are representable there (cf. [1, 38]). The
crucial ingredient in the proof is of course the recursion or fixed point lemma
(Lemma 3). Hence, for example, it is possible to find a closed L term exp
representing a suitable form of exponentiation on W in the sense of condition
(ii) above, but indeed none of the theories introduced in the previous section
is able to derive the totality or convergence statement exp : W→ W.

14



Our general strategy for proving lower bounds in the sequel is to make use
of the function algebra characterizations of our complexity classes which we
have discussed in Section 2. Crucial in the set up of the four function algebras
of Theorem 1 are two forms of bounded recursion, namely bounded recursion
on notation (BRN) and bounded lexicographic recursion (BRL). We will now
show that (BRN) and (BRL) can be very smoothly and naturally represented
in B + (Σb

W-IW) and B + (Σb
W-I`), respectively. The key in the proof below is

the recursion or fixed point theorem (Lemma 3) and of course our carefully
chosen forms of bounded induction.

In the sequel we also need the cut-off operator | in order to describe bounded
recursion in our systems. Informally speaking, t | s is t if t ≤ s and s else.
More formally, we can make use of definition by cases dW and the character-
istic function c⊆ in order to define |; then t | s simply is an abbreviation for
the L term dWts(c⊆(lWt)(lWs))0.

Let us now first turn to bounded recursion on notation (BRN) in the system
B + (Σb

W-IW). In favor of a more compact and uniform presentation we state
this form of recursion in our applicative setting by making use of one step
function only and using the predecessor operation pW instead. Moreover, in
order to simplify notation, we have only displayed one parameter; the general
case with an arbitrary list of parameters is completely analogous.

Lemma 4 There exists a closed L term rW so that B + (Σb
W-IW) proves

f : W→ W ∧ g : W3 → W ∧ b : W2 → W →
rWfgb : W2 → W ∧
x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = rWfgb →

hxε = fx ∧ hxy = gxy(hx(pWy)) | bxy

Proof The crucial strategy of this proof consists in applying the recursion or
fixed point lemma (Lemma 3) in order to define the term rW and make subse-
quent use of (Σb

W-IW) in order to establish the required totality or convergence
assertion about rW.

We first define t to be the following L term depending on f , g, and b,

t := λhxy.dWf(λz.gzy(hz(pWy)) | bzy)εyx,

and then set rW := λfgb.rec t. We now have for h ' rWfgb,

hxy ' rec txy ' t(rec t)xy ' thxy ' dWf(λz.gzy(hz(pWy)) | bzy)εyx.
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In particular, we obtain for all x and y in W with y 6= ε,

(1) hxε ' fx ∧ hxy ' gxy(hx(pWy)) | bxy.

In the following we reason in B + (Σb
W-IW) and assume in addition that

(2) f : W→ W ∧ g : W3 → W ∧ b : W2 → W.

Our crucial task is to show that indeed h : W2 → W, and this is of course
where bounded induction enters the scene. First, let c be an operation so
that cxy is simply fx if y = ε and bxy, otherwise. Obviously, we have that
c : W2 → W. Now we define A(y) to be the Σb

W formula

A(y) := (∃z ≤ cxy)(hxy = z).

Recall at this point that bounded quantifiers range over W. Fixing the pa-
rameter x ∈ W, it is now a matter of routine to derive from (1) and (2),

(3) A(ε) ∧ (∀y ∈ W)(A(y) → A(s0y) ∧ A(s1y)).

Further, (3) brings us in the position to apply notation induction for Σb
W

formulas, (Σb
W-IW), and we can thus conclude

(4) (∀y ∈ W)(∃z ∈ W)(z ≤ cxy ∧ hxy = z),

for an arbitrarily chosen x in W. But (4) shows indeed that we have estab-
lished h to be an operation from W2 to W, i.e., h : W2 → W. This is as
claimed and ends our proof. 2

We want to emphasize that indeed we have established the existence of a
type two functional for bounded recursion on notation in B + (Σb

W-IW); this
will be the key for interpreting the Cook-Urquhart system PVω into PT in
the next section. At any rate, the previous lemma shows that the functions
in FPtime and FPtimeLinspace are provably total in PT and PTLS, re-
spectively. Moreover, observe that in fact we have only used very special
instances of (Σb

W-IW), namely (Σb
W-IW) has been applied for statements of the

form (∃z ≤ fy)(gy = z).

If we replace notation induction on W, (Σb
W-IW), by lexicographic induction

on W, (Σb
W-I`), then of course one expects that we can derive bounded lexi-

cographic recursion (BRL) instead of bounded recursion on notation (BRN).
The proof of this fact runs completely analogous to the proof of the previ-
ous lemma and is hence omitted. Clearly, the following lemma shows that
FPspace and FLinspace are contained in the provably total functions of
PS and LS, respectively.
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Lemma 5 There exists a closed L term r` so that B + (Σb
W-I`) proves

f : W→ W ∧ g : W3 → W ∧ b : W2 → W →
r`fgb : W2 → W ∧
x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = r`fgb →

hxε = fx ∧ hxy = gxy(hx(p`y)) | bxy

A natural question to ask is whether bounded recursion on notation in the
above functional form using the recursor rW is directly available in B+(Σb

W-I`),
too. The answer is indeed positive due to the fact that over the base theory
B, lexicographic induction (Σb

W-I`) entails notation induction (Σb
W-IW). The

proof of this fact is completely analogous to the argument showing that Buss’
theory T1

2 contains his system S1
2, cf. Buss [8]. Nevertheless, since our setting

is different, and in some sense simpler, we spell out the relevant arguments
in some detail.

Lemma 6 We have that (Σb
W-I`) entails (Σb

W-IW) over our base theory B.

Proof Let us work informally in the theory B + (Σb
W-I`). By the previous

lemma, bounded lexicographic recursion is at our disposal. Hence, we can
define the well-known “most significant part” function msp : W2 → W,

mspaε = a, mspab = pW(mspa(p`b)), mspab ≤ a,

for all a in W and b in W with b 6= ε. This function cuts off b bits to the right
of a, where b is understood in the sense of the lexicographic ordering <` on
W. Further, we have the cut-off operation .− : W2 → W,

a .− ε = a, a .− b = p`(a .− p`b), a .− b ≤ a,

for a, b ∈ W and b 6= ε. Finally, the length function | · | : W → W, which
measures the length of a word by means of the <` ordering can be defined
by bounded lexicographic recursion and by making us of the “tally” length
function which is available in B,

|ε| = ε, |a| = if p`a < a then s`|p`a| else |p`a|, |a| ≤ a,

for all a in W with a 6= ε. It is not difficult to see that the usual properties
of msp, .−, and | · | are derivable in B + (Σb

W-I`).

Consider now an arbitrary Σb
W formula A(x) ≡ (∃y ≤ fx)B(f, x, y) and

assume the premise of (Σb
W-IW), i.e.,

(1) f : W→ W ∧ A(ε) ∧ (∀x ∈ W)(A(x)→ A(s0x) ∧ A(s1x)).
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We fix an a ∈ W and aim at showing A(a). For that purpose we let C(a, x)
be the formula A(mspa(|a| .− x)). Observe that since f : W → W, we also
have g : W→ W, for g being the operation λx.f(mspa(|a| .−x)). We can now
readily derive from (1),

(2) g : W→ W ∧ C(a, ε) ∧ (∀x ∈ W)(C(a, x)→ C(a, s`x)).

This brings us in the position to apply (Σb
W-I`) in order to derive the statement

(∀x ∈ W)C(a, x) and, in particular, C(a, |a|). Clearly, A(a) is entailed by
C(a, |a|). We have established in B+(Σb

W-I`) the schema of notation induction
on W for Σb

W formulas, (Σb
W-IW). 2

Corollary 7 The assertion of Lemma 4 is derivable in B + (Σb
W-I`).

Corollary 8 We have that PT and PTLS are directly contained in PS and
LS, respectively.

In this section we have established lower bounds in terms of provably total
functions of the four central systems, PT, PTLS, PS, and LS. We collect the
corresponding results in the following theorem.

Theorem 9 We have the following lower bound results:

1. The provably total functions of PT include FPtime.

2. The provably total functions of PTLS include FPtimeLinspace.

3. The provably total functions of PS include FPspace.

4. The provably total functions of LS include FLinspace.

Finally, let us mention that the results of this section entail that the applica-
tive theories PTO and PTO+ introduced and analyzed in Strahm [62] are
directly contained in our system PT. In particular, the induction principles
presented in [62] directly follow from the more general induction principle
(Σb

W-IW), and the axioms about bounded recursion on notation in [62] are
derivable in PT thanks to Lemma 4.

5 Higher types in PT and the system PVω

In the last decade intense research efforts have been made in the area of so-
called higher type complexity theory and, in particular, feasible functionals
of higher types. This research is still ongoing and it is not yet clear what
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the right higher type analogue of the polynomial time computable functions
is. Most prominent in the previous research is the class of so-called basic
feasible functionals BFF, which has proved to be a very robust class with
various kinds of interesting characterizations.

The basic feasible functionals of type 2, BFF2, were first studied in Melhorn
[53]. More than ten years later in 1989, Cook and Urquhart [23] introduced
the basic feasible functionals at all finite types in order to provide functional
interpretations of feasibly constructive arithmetic; in particular, they defined
a typed formal system PVω and used it to establish functional and realizabil-
ity interpretations of an intuitionistic version of Buss’ theory S1

2. The basic
feasible functionals BFF are exactly those functionals which can be defined by
PVω terms. Subsequently, much work has been devoted to BFF, cf. e.g. Cook
and Kapron [22, 47], Irwin, Kapron and Royer [41], Pezzoli [55], Royer [57],
and Seth [59].

In this section we introduce an intensional and an extensional version of
the Cook-Urquhart system PVω and show that both systems are naturally
contained in our applicative system PT. Hence, in a sense, PT provides a
direct justification of PVω in a type-free applicative setting. In addition, the
embeddings established in the sequel also show that the well-known systems
of bounded arithmetic PTCA and PTCA+ of Ferreira [32, 33] or, equivalently,
Cook’s system PV [21] and Buss’ S1

2 [8] are directly contained in PT.

We start off with defining the collection T of finite type symbols (α, β, γ, . . .).
T is inductively generated by the usual clauses, (i) 0 ∈ T , (ii) if α, β ∈ T ,
then (α × β) ∈ T , and (iii) if α, β ∈ T , then (α → β) ∈ T . Hence, we have
product and function types as usual. Observe, however, that in our setting
the ground type 0 stands for the set of binary words and not for the set of
natural numbers. We use the usual convention and write α1 → α2 → · · · →
αk instead of (α1 → (α2 → · · · → (αk−1 → αk) · · · )).

In the following we sketch a version of PVω which is similar in spirit to the
presentation of Heyting’s arithmetic in all finite types HAω in Troelstra and
Van Dalen [70]; however, the logic of PVω is classical logic. PVω is based on
combinators and noncommittal as to the exact nature of equality between
objects of higher types. Later we will also discuss an extensional version
EPVω of PVω.1

The language of PVω includes for each type symbol α ∈ T a countable

1Actually, the system EPVω introduced below corresponds to the Cook-Urquhart sys-
tem IPVω in [23] with classical logic instead of intuitionistic logic. What we call PVω in
this paper is just an intensional version of EPVω. We follow Troelstra and Van Dalen [70]
in using this terminology.
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collection xα, yα, zα, uα, vα, wα, . . . of variables of type α. Further, for each
α ∈ T we have a binary relation symbol =α for equality at type α, and for all
α, β ∈ T there is an application operator ·α,β. The constants of PVω first of all
include the “arithmetical” constants of L, namely ε, s0, s1, pW, s`, p`, c⊆, lW, ∗,
and ×; these constants now receive their obvious types in the typed language
of PVω. In addition, we have typed versions of k, s, p, p0, p1 as well as dW,
and most importantly, a recursion operator r. More precisely, we have for all
types α, β, γ ∈ T the following constants with their associated types:

kα,β : α→ β → α,

sα,β,γ : (α→ β → γ)→ (α→ β)→ α→ γ,

pα,β : α→ β → (α× β),

pα,β0 : (α× β)→ α,

pα,β1 : (α× β)→ β,

dα : α→ α→ 0→ 0→ α,

r : 0→ (0→ 0→ 0)→ (0→ 0)→ 0→ 0.

In the sequel we often omit the type superscripts of variables and constants
if these are clear from the context or unimportant.

The terms of PVω are now generated from the variables and constants by
the expected clause for application, namely: if t is a term of type (α → β)
and s a term of type α, then (t ·α,β s) is a term of type β. As usual we write
(ts) instead of (t ·α,β s); moreover, outer parenthesis are often dropped, and
we make free use of the convention of association to the left when writing
applicative terms. The formulas of PVω are built from the prime formulas
(t =α s) for t, s of type α, by means of ¬, ∧, ∨, →, (∀xα), and (∃xα). As in
the applicative setting above, we call a formula positive, if it is implication
and negation free.

The logic of PVω is many-sorted classical predicate calculus with equality.
The non-logical axioms of PVω include the defining axioms for the constants
of PVω: these consist of (i) the defining axioms for the “arithmetical” con-
stants of PVω, which are just the obvious rewriting to the typed setting of the
corresponding axioms of B, and (ii) the following axioms for the combinators
k, s, p, p0, p1 and r:

kxy = x, sxyz = xz(yz),

p0(pxy) = x, p1(pxy) = y, p(p0z)(p1z) = z,

dxyuu = x, u 6= v → dxyuv = y,

rxyzε = x, u 6= ε→ rxyzu = yu(rxyz(pWu)) | zu.

20



In the defining equations for r, the cut-off operator | is understood in the
same way as in the untyped applicative setting via the definition by cases
operator d and the characteristic function c⊆. We have that r provides a type
two functional for bounded recursion on notation in the natural expected
manner. Finally, the system PVω includes induction on notation,

A(ε) ∧ (∀x0)(A(x)→ A(s0x) ∧ A(s1x)) → (∀x0)A(x),

for all formulas A(x) in the language of the system PVω which have the shape
(∃y ≤ tx)B(x, y), with B being a positive and quantifier free formula and t
a term of type (0→ 0).

As usual, the availability of the typed combinators k and s allows for the
definition of simply typed λ terms (λxα.t), for each type symbol α ∈ T . The
definition follows the usual pattern, cf. e.g. [70].

Let us mention once more that in PVω we do not claim that equality =α

for α a higher type is extensional equality. Accordingly, we now sketch an
embedding of PVω into PT by means of the abstract intensional type structure
〈(ITα,=)〉α∈T . This embedding is analogous to the embedding of HAω into
the theory of operations and numbers APP in [70]. We work in the applicative
language L and define ITα inductively as follows:

x ∈ IT0 := x ∈ W,

x ∈ ITα×β := p0x ∈ ITα ∧ p1x ∈ ITβ ∧ p(p0x)(p1x) = x,

x ∈ ITα→β := (∀y ∈ ITα)(xy ∈ ITβ).

Equality in ITα is simply the restriction of equality in PT. We now get an
embedding (·)IT of PVω into PT by letting the variables of type α range
over ITα. Further, application ·α,β in PVω carries over to application · in PT,
restricted to ITα→β× ITα. Moreover, the constants of PVω different from r are
interpreted by the corresponding constants in L. The recursor r of PVω can
be interpreted, for example, by the closed L term λxyzu.rW(kx)(ky)(kz)εu,
where rW denotes the closed term stated in the assertion of Lemma 4. We
now have the following embedding theorem.

Theorem 10 We have for all sentences A that PVω A entails PT AIT.

Proof The proof of the theorem is immediate except for the case of recursion
and induction in PVω. But the defining axioms for r and, more importantly,
the fact the r has the right type, are readily derivable in PT by the results of
Lemma 4. Moreover, the translation of notation induction in PVω directly
carries over to (Σb

W-IW) in PT; for, a formula of the form (∃y ≤ tx)B(x, y)
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with t of type (0→ 0) and B positive and quantifier free directly translates
into a Σb

W formula in the untyped applicative setting of PT. 2

In a further step we now turn to an extensional version EPVω of PVω; we also
give an embedding of EPVω into our type-free applicative setting PT, which
is analogous to the embedding of an extensional version EHAω of HAω into
APP in [70]. The extensionality axioms (Extα,β) for all α, β ∈ T are given in
the expected manner by

(Extα,β) (∀y, z)[(∀x)(yx = zx)→ y = z],

for y, z of type (α → β) and x of type α. Now EPVω is defined in the same
way as PVω, except that (i) it includes (Extα,β) for all α, β ∈ T , and (ii)
the induction formulas (∃y ≤ tx)B(x, y) of PVω are restricted in EPVω to
positive quantifier free formulas B not containing equalities of higher type.

In our embedding of EPVω into PT we now make use of an abstract exten-
sional type structure 〈(ETα,=α)〉α∈T in L, cf. [70]. ETα and =α are induc-
tively given in the following manner:

x ∈ ET0 := x ∈ W,

x =0 y := x ∈ W ∧ y ∈ W ∧ x = y,

x ∈ ETα×β := p0x ∈ ETα ∧ p1x ∈ ETβ ∧ p(p0x)(p1x) = x,

x =α×β y := (p0x =α p0y) ∧ (p1x =α p1y),

x ∈ ETα→β := (∀y, z)(y =α z → xy =β xz),

x =α→β y := x ∈ ETα→β ∧ y ∈ ETα→β ∧ (∀z ∈ ETα)(xz =β yz).

EPVω can now be interpreted into PT via an embedding (·)ET in the same
way as we have embedded PVω into PT via (·)IT above. Therefore, we omit
the proof of the following theorem.

Theorem 11 We have for all sentences A that EPVω A entails PT AET.

Let us observe that if we interpret PT in its standard recursion-theoretic
model of partial recursive operations PRO , then IT and ET correspond to
the so-called hereditarily recursive operations HRO and hereditarily effective
operations HEO , respectively, cf. [70]. HRO forms the standard recursion-
theoretic model of PVω and HEO is the corresponding interpretation of EPVω.

We finish this section with the observation that the results of the previous
section give rise immediately to higher type systems for FPtimeLinspace,
FPspace, and FLinspace, which are naturally contained in the correspond-
ing type-free settings PTLS, PS and LS, respectively. For example, the type
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system for FPspace has a type two recursor for bounded lexicographic re-
cursion, which is available in PS by Lemma 5. It might be of interest to
study these type systems from the recursion-theoretic and abstract machine
point of view.

6 Realizing positive derivations

It is the aim of this section to establish proof-theoretic upper bounds of PT,
PTLS, PS, and LS. Namely, we will show that the lower bounds with respect
to provably total functions derived in Theorem 9 are indeed sharp. For our
upper bound arguments we will proceed in two steps. First, a partial cut
elimination argument in a sequent-style reformulation of our four systems is
employed in order to show that as far as the computational content of our
systems is concerned, we can restrict ourselves to positive derivations, i.e.,
sequent style proofs using positive formulas only. In a second crucial step
we use a notion of realizability for positive formulas in the standard open
term model of our systems: quasi cut-free positive sequent derivations of
PT, PTLS, PS, and LS are suitably realized by word functions in FPtime,
FPtimeLinspace, FPspace, and FLinspace, respectively, thus yielding
the desired computational information concerning the provably total func-
tions of these systems.

Actually, in the following we will establish our upper bounds for slight
strengthenings of PT, PTLS, PS, and LS. Namely, we augment our applica-
tive frameworks by the axioms (Tot) for totality of application and (Ext) for
extensionality of operations,

(Tot) (∀x, y)(xy↓) (Ext) (∀f, g)[(∀x)(fx = gx)→ f = g]

We observe that B + (Tot) proves t↓ for each term t, so that in the presence
of (Tot) the logic of partial terms reduces to ordinary classical predicate
calculus. Accordingly, if T denotes one of the systems PT, PTLS, PS, or
LS, then we write T+ for the system T based on ordinary classical logic with
equality and augmented with the axiom of extensionality (Ext). Observe that
in the setting of T+ we no longer have the relation symbol ↓, so that instead
of axiom (2) of B we simply have the usual total version of the s combinator,
given by the axiom sxyz = xz(yz).

The simplest model of T+ is just the standard open term model M(λη),
which is based on a straightforward extension of usual λη reduction. We will
discuss this model is some more detail below, where it will be used in our
realizability interpretation of (the positive fragment of) T+.
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The fact that the presence of (Tot) and (Ext) does not raise the strength of
a given partial applicative system is not too surprising as is witnessed by
the previous work on applicative theories. For sample references cf. Cantini
[14, 17] and Jäger and Strahm [45].

6.1 Preparatory partial cut elimination

In this subsection we turn to a preparatory partial cut elimination argument
for T+, where again T denotes any of the systems PT, PTLS, PS, or LS.
For that purpose, we will make use of a reformulation of T+ in terms of
Gentzen’s classical sequent calculus LK; in the sequel we assume that the
reader is familiar with LK as it is presented, for example, in Girard [35].

In the following we let Γ,∆,Λ, . . . range over finite sequences of formulas in
the language L; a sequent is a formal expression of the form Γ ⇒ ∆. As
usual, the natural interpretation of the sequent A1, . . . , An ⇒ B1, . . . , Bm is
(A1 ∧ · · · ∧ An)→ (B1 ∨ · · · ∨Bm).

We are now aiming at a suitable sequent-style reformulation of T+. As men-
tioned above, our crucial aim is to prove a partial cut elimination theorem so
that the only cuts occurring in partially cut free derivations have positive cut
formulas. Hence, in order to solve this task, we must find a Gentzen-style
reformulation of T+ so that all the main formulas of non-logical axioms and
rules (including equality) are positive. In the following we sketch such a re-
formulation of T+; we are confining ourselves to the essential points without
spelling out each single axiom and rule in detail.

The axioms of our basic theory of operations and words, B, are easily refor-
mulated in positive form. Just to give an example, axioms (4) and (5) about
definition by cases dW on W translate into the pair of sequents

W(r), W(s), r = s ⇒ dWt1t2rs = t1,

W(r), W(s) ⇒ r = s, dWt1t2rs = t2,

for all terms r, s, t1, t2 of L. Observe that as usual in sequent formulations,
we take all substitution instances of the axioms of B. It is a matter of routine
to spell out in positive sequent form the other axioms of B. In some cases, an
axiom has to be split into several sequents, e.g., axiom (18) about the initial
subword relation is now given by the two sequents

W(s), W(t), s ⊆ t ⇒ t = ε, s ⊆ pWt, s = t,

W(s), W(t), s ⊆ pWt ∨ s = t ⇒ t = ε, s ⊆ t.
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We leave it to the reader to provide suitable positive sequents of the other
axioms of B, and also of the axioms (25)–(30) concerning word concatenation
and word multiplication. Moreover, the extensionality axiom (Ext) of T+ now
simply takes the positive sequent form

(∀x)(sx = tx) ⇒ s = t,

for s and t being arbitrary terms in our applicative language L, not containing
the variable x. Of course, T+ also includes the usual equality axioms; clearly,
these can be stated in positive sequent form as follows:

⇒ t = t s = t ⇒ t = s s = t, t = r ⇒ s = r,

s1 = t1, s2 = t2 ⇒ s1s2 = t1t2 s = t, W(s) ⇒ W(t).

Let us now turn to the reformulation of the schemas (Σb
W-IW) and (Σb

W-I`) of
Σb

W notation induction on W and lexicographic induction on W, respectively.
These will be replaced by suitable rules of inference in the Gentzen-style
formulation of T+. Let A(u) be of the form (∃y ≤ tu)B(u, y) for B being
a positive and W free formula. Then an instance of the (Σb

W-IW) notation
induction rule is given as follows:

Γ, W(u) ⇒ W(tu), ∆ Γ ⇒ A(ε), ∆ Γ, W(u), A(u) ⇒ A(siu), ∆

Γ, W(s) ⇒ A(s), ∆

Here u denotes a fresh variable not occurring in Γ,∆ and i ranges over
0, 1, i.e., the rule has four premises. Clearly, the main formulas of this rule
are positive. We do not need to spell out the corresponding rule for (Σb

W-I`)
lexicographic induction, since it is formulated in the very same manner except
that it uses the successor s` instead of s0 and s1, thus only having three
premises.

This ends the Gentzen-style reformulation of the non-logical axioms and rules
of T+. The logical axioms and rules of T+ are just the usual ones for Gentzen’s
LK, cf. e.g. [35]. I.e., we have identity axioms, the well-known logical rules
for introducing ∧,∨,¬,→,∀ and ∃ on the right-hand side and on the left-
hand side, the structural rules for weakening, exchange, and contraction, as
well as the cut rule. In contrast to [35], however, we are using the so-called
context-sharing or additive versions of these rules: this means that rules of
inference with several premises are using the same context; we have already
used this convention in the formulation of the induction rules above. To give
a further example, the cut rule in its context-sharing version takes the form

Γ, A ⇒ ∆ Γ ⇒ A, ∆

Γ ⇒ ∆
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As usual, we call the formula A the cut formula of this cut. We do not spell
out all the rules of LK at the moment and refer the reader to the proofs of
the realizability theorems in the following subsection, where some of these
rules will be treated in all detail.

It should be clear that we have provided an adequate sequent-style refor-
mulation of T+; in particular, the axioms schemas (Σb

W-IW) and (Σb
W-I`) as

given in Section 3.2 of this paper are readily derivable by means of the corre-
sponding rules of inference stated above, where as usual the presence of side
formulas is crucial. In the following we often identify T+ with its Gentzen-
style version and write T+ Γ ⇒ ∆ in order to express that the sequent
Γ ⇒ ∆ is derivable in T+. Moreover, we will use the notation T+

?
Γ ⇒ ∆

if the sequent Γ ⇒ ∆ has a proof in T+ so that all cut formulas appearing
in this proof are positive.

Due to the fact that all the main formulas of non-logical axioms and rules of
T+ are positive, we now obtain the desired partial cut elimination theorem for
T+. Its proof is immediate from the well-known proof of the cut elimination
theorem for LK and is therefore omitted.

Theorem 12 (Partial cut elimination for T+) We have for all sequents
Γ ⇒ ∆ that T+ Γ ⇒ ∆ entails T+

?
Γ ⇒ ∆.

The following corollary directly follows from the above theorem and a quick
inspection of the axioms and rules of T+. It will be crucial for our realizability
arguments below.

Corollary 13 Assume that Γ ⇒ ∆ is a sequent of positive formulas so
that T+ Γ ⇒ ∆. Then Γ ⇒ ∆ has a T+ derivation containing positive
formulas only.

6.2 The realizability theorems

In this subsection we use a realizability interpretation in the term model
M(λη) in order to determine the computational content of sequent-style
derivations in the positive fragment of PT, PTLS, PS, and LS, respectively.
We will show that the crucial realizing functions for our four systems belong
to the corresponding function complexity classes on binary words, FPtime,
FPtimeLinspace, FPspace, and FLinspace. As immediate corollaries of
the four realizability theorems below we obtain the desired upper bounds for
the provably total functions of PT, PTLS, PS, and LS.

The notion of realizability as well as the style and spirit of our realizability
theorems are related to the work of Leivant [49], Schlüter [58], and Cantini
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[16, 18], all three in the context of FPtime. However, in contrast to these pa-
pers, we work in a bounded unramified setting. Moreover, and this is similar
to [18, 58], we are able to realize directly quasi cut-free positive derivations
in the classical sequent calculus. Finally, in order to find our realizing func-
tions, we can make direct use of the function algebra characterizations of
FPtime, FPtimeLinspace, FPspace, and FLinspace given in Theorem
1; hence, direct reference to a machine model is not needed.

In fact, the above mentioned literature on realizability in an applicative con-
text, especially in the classical setting, is clearly related to and inspired by
older work on witnessing that has been used in classical fragments of arith-
metic. In particular, Buss’ witnessing technique (cf. Buss [8, 10, 11]) has
been employed with great success in a variety of contexts. Another kind
of witnessing is due to Sieg in his important work on “Herbrand analyses”,
cf. Sieg [60, 61], and also Buchholz and Sieg [7].

In our definition of realizability below we will make use of the open term
model M(λη) of T+. This model is based on the usual λη reduction of the
untyped lambda calculus (cf. [1, 38]) and exploits the well-known equivalence
between combinatory logic with extensionality and λη. In order to deal with
the constants different from k and s, one extends λη reduction by the obvious
reduction clauses for these new constants and checks that the so-obtained new
reduction relation enjoys the Church Rosser property.2

The universe of the model M(λη) now consists of the set of all L terms.
Equality = means reduction to a common reduct and W is interpreted as the
set of all L terms t so that t reduces to a “standard” word w for some w ∈W.
Finally, the constants are interpreted as indicated above and application of
t to s is simply the term ts. As usual, we write M(λη) |= A in order to
express that the formula A is true in M(λη).

We are now ready to turn to realizability. Our realizers ρ, σ, τ, . . . are simply
elements of the set W of binary words. We presuppose a low-level pairing
operation 〈·, ·〉 onW with associated projections (·)0 and (·)1; for definiteness,
we assume that 〈·, ·〉, (·)0, and (·)1 are in FPtimeLinspace. Further, for each
natural number i let us write i2 for the binary notation of i.

Since we are only interested in realizing positive derivations, we need to define
realizability only for positive formulas. Accordingly, the crucial notion ρ r A
(“ρ realizes A”) for ρ ∈ W and A a positive formula, is given inductively in

2Actually, suitable interpretations for the constants s`, p`, c⊆, lW, ∗ and × can also be
given using the other constants of L.
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the following manner.

ρ r W(t) if M(λη) |= t = ρ,

ρ r (t1 = t2) if ρ = ε and M(λη) |= t1 = t2,

ρ r (A ∧B) if ρ = 〈ρ0, ρ1〉 and ρ0 r A and ρ1 r B,

ρ r (A ∨B) if ρ = 〈i, ρ0〉 and either i = 0 and ρ0 r A or

i = 1 and ρ0 r B,
ρ r (∀x)A(x) if ρ r A(u) for a fresh variable u,

ρ r (∃x)A(x) if ρ r A(t) for some term t.

If ∆ denotes the sequence A1, . . . , An of positive formulas, then we say that ρ
realizes the sequence ∆, in symbols, ρ r ∆, if ρ = 〈i2, ρ0〉 for some 1 ≤ i ≤ n
and ρ0 r Ai. Hence, according to the notion ρ r ∆, the sequence ∆ is
understood disjunctively, i.e. as the succedent of a given sequent.

It is important to note that in our definition of realizability, the realizers
ρ mainly control information concerning the predicate W and, in addition,
the usual information concerning conjunction and disjunction. However, the
above notion of realizability trivializes quantifiers over arbitrary individuals.

The following properties concerning substitution will be crucial in the proof
of the realizability theorem below. The proof of the following lemma is
immediate from the definition of realizability and will therefore be omitted.

Lemma 14 (Substitution) We have for all positive formulas A, all vari-
ables u and all terms s and t:

1. If ρ r A(t) and M(λη) |= t = s, then ρ r A(s).

2. If ρ r A(u), then ρ r A(t).

Let us introduce some final piece of notation before we state the realizability
theorem for PT. For an L formula A we write A[~u] in order to express that all
the free variables occurring in A are contained in the list ~u. The analogous
convention is used for finite sequences of L formulas.

Theorem 15 (Realizability for PT+) Let Γ ⇒ ∆ be a sequent of positive
formulas with Γ = A1, . . . , An and assume that PT+

?
Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn →W in FPtime so that we have for all terms
~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].
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Proof We will prove our claim by induction on the length of quasi cut-free
derivations of sequents of positive formulas in PT+. In order to show that
our realizing functions are in FPtime we make use of the function algebra
characterization of FPtime given in Theorem 1. It is important that our
realizing functions are invariant under substitutions of terms ~s for the free
variables ~u in the sequent Γ[~u] ⇒ ∆[~u]. This fact is always immediate and,
therefore, in order to simplify notation, we often suppress substitutions in
our discussion of the various axioms and rules below.

We start with a discussion of the logical axioms and rules of our sequent
calculus LK. In the case of an identity axiom A ⇒ A for A being a positive
formula, we simply choose the function F with F (ρ) = 〈1, ρ〉 as our realizing
function so that our claim is immediate.

Let us turn to rules for conjunction introduction on the right and on the left.
If our last inference is of the form

Γ ⇒ A, ∆ Γ ⇒ B, ∆

Γ ⇒ A ∧B, ∆
,

and F0 and F1 are the two realizing functions for the left and the right premise
of this rule, respectively, given to us by the induction hypothesis, then we
define the realizing function F for the conclusion of the rule by

F (~ρ) =


F0(~ρ) if F0(~ρ)0 6= 1,
F1(~ρ) if F0(~ρ)0 = 1 and F1(~ρ)0 6= 1,
〈1, 〈F0(~ρ)1, F1(~ρ)1〉〉 otherwise.

In the case of introduction of ∧ on the left, i.e., if we have derived the
sequent Γ, A ∧ B ⇒ ∆ from Γ, A ⇒ ∆ or Γ, B ⇒ ∆, we choose F (~ρ, σ)
to be F0(~ρ, (σ)0), respectively F0(~ρ, (σ)1), for F0 being the realizing function
for the corresponding premise.

Next we discuss the rules for introducing a disjunction on the left and on the
right. We first assume that our last inference is of the form

Γ ⇒ A, ∆

Γ ⇒ A ∨B, ∆
,

and we let F0 denote the function given by the induction hypothesis. Then
the realizing function F for the conclusion of this rule is given as follows:

F (~ρ) =

{
F0(~ρ) if F0(~ρ)0 6= 1,
〈1, 〈0, F0(~ρ)1〉〉 otherwise.
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The dual rule for introducing ∨ on the right is treated similarly. Now assume
that our derivation ends with the rule

Γ, A ⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨B ⇒ ∆
,

and let F0 and F1 be our realizing functions for the premises of this rule.
Then we can simply define F by

F (~ρ, σ) =

{
F0(~ρ, (σ)1) if (σ)0 = 0,
F1(~ρ, (σ)1) otherwise.

This ends our discussion of ∨ introduction. Observe that we do not have to
consider introduction rules for negation and implication, since we are working
in the positive fragment of PT+.

We now address the quantification rules of LK. The introduction rules for
universal quantification on the right and on the left have their usual form,

Γ ⇒ A(u), ∆

Γ ⇒ (∀x)A(x), ∆

Γ, A(t) ⇒ ∆

Γ, (∀x)A(x) ⇒ ∆
,

for u a “fresh” variable and t an arbitrary term. Letting F0 denote the
function realizing the premise of these rules, it is straightforward to see that
we can simply take F = F0 for the function realizing the conclusion of the
corresponding rule, since our definition of realizability trivializes quantifiers.
In the case of the second of the above rules we further use the fact that our
notion of realizability is closed under substitution (Lemma 14). Finally, it
is easily seen that the choice F = F0 also works equally well for the two
introduction rules for the existential quantifiers, namely

Γ ⇒ A(t), ∆

Γ ⇒ (∃x)A(x), ∆

Γ, A(u) ⇒ ∆

Γ, (∃x)A(x) ⇒ ∆
.

In a further step we have to convince ourselves how to realize the structural
rules of LK, namely weakening, exchange and contraction. As these rules
are realized in a rather straightforward manner, we leave the details as an
exercise to the devoted reader.

We conclude our discussion of the logical axioms and rules by considering
the cut rule. Hence, by assumption, there exists a positive formula A so that
our derivation ends by an application of the rule

Γ, A ⇒ ∆ Γ ⇒ A, ∆

Γ ⇒ ∆
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By induction hypothesis we are given realizing functions F0 and F1 for the
left and the right premise of this rule, respectively. We now obtain a realizing
function F for Γ ⇒ ∆ by setting

F (~ρ) =

{
F1(~ρ) if F1(~ρ)0 6= 1,
F0(~ρ, F1(~ρ)1) otherwise.

Let us now turn to the non-logical axioms and rules of PT+. First of all, it is
quite easy to find realizing functions for the positive sequents corresponding
to the axioms of B(∗,×). Instead of discussing all cases in detail we confine
ourselves to looking at a few examples.

Clearly, sequents corresponding to true equations in the term modelM(λη)
such as ⇒ st1t2t3 = t1t3(t2t3) are simply realized by the 0-ary function
F = 〈1, ε〉. Further, for the two sequents given in the previous subsection
for definition by cases on W we can simply take the two realizing functions
F0(ρ, σ, τ) = 〈1, ε〉 as well as

F1(ρ, σ) =

{
〈1, ε〉 if ρ = σ,
〈22, ε〉 otherwise,

respectively. Further, in order to be realize the two sequents corresponding
to axioms (25) and (28) concerning the totality of word concatenation and
word multiplication, namely

W(s), W(t) ⇒ W(s∗t), W(s), W(t) ⇒ W(s×t),

the two functions F0(ρ, σ) = 〈1, ρ∗σ〉 and F1(ρ, σ) = 〈1, ρ×σ〉 do the job.
Also, it is easy to see how to realize the equality axioms. E.g., the sequent
s = t, W(s) ⇒ W(t) can be realized by the function F (ρ, σ) = σ.

Recall that PT+ also includes an extensionality axiom for our notion of equal-
ity =, which we have formalized by the sequent (∀x)(sx = tx) ⇒ s = t. Also
this sequent is easily seen to be realizable by the function F (ρ) = 〈1, ε〉.
Let us now turn to the crucial part of the proof, namely the treatment of the
rule for Σb

W notation induction on W. According to the four premises of Σb
W

induction, we have quasi cut-free PT+ derivations of the four sequents

Γ, W(u) ⇒ W(tu), ∆,

Γ ⇒ A(ε), ∆,

Γ, W(u), A(u) ⇒ A(siu), ∆, (i = 0, 1)

for A(u) being of the form (∃y ≤ tu)B(u, y) with B positive and W free.
Hence, the induction hypothesis guarantees the existence of four FPtime
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functions F,Gε, G0, and G1 on W, so that we have for all L terms ~s and all
binary words ~ρ, σ, τ ,

~ρ r Γ[~s] =⇒ F (~ρ, σ) r W(t[~s](σ)), ∆[~s],3(1)

~ρ r Γ[~s] =⇒ Gε(~ρ) r A[~s, ε], ∆[~s],(2)

~ρ r Γ[~s], τ r A[~s, σ] =⇒ Gi(~ρ, σ, τ) r A[~s, siσ], ∆[~s] (i = 0, 1)(3)

It is our aim to find a realizing function for the conclusion of the induction
rule, i.e., a FPtime function H so that we have for all ~ρ, σ in W,

(4) ~ρ r Γ[~s] =⇒ H(~ρ, σ) r A[~s, σ], ∆[~s].

Our desired word function H is defined for all ~ρ and σ in W as follows:

H(~ρ, ε) = Gε(~ρ),

H(~ρ, siσ) =


H(~ρ, σ) if H(~ρ, σ)0 6= 1,
F (~ρ, σ) if H(~ρ, σ)0 = 1 and F (~ρ, σ)0 6= 1,
Gi(~ρ, σ,H(~ρ, σ)1) otherwise.

It is now a matter of routine to check (4) by (meta) notation induction on
σ, using our assertions (1)–(3) from the induction hypothesis.

It still remains to check that the function H is indeed in FPtime. Clearly, H
is defined by recursion on notation from functions which are already known
to be in FPtime and, hence, it is sufficient to provide a suitable bound
for H; of course it is enough to bound H(~ρ, σ) under the assumption that
~ρ r Γ[~s]. Looking at our recursive definition of H, it is clear that H stays
constant whenever we enter the first or the second case of our three-fold case
distinction, so that bounding will be immediate from our discussion below.
Further, when setting

(5) H(~ρ, siσ) = Gi(~ρ, σ,H(~ρ, σ)1)

in the third case, we know that H(~ρ, σ)0 = 1 and F (~ρ, σ)0 = 1. Using (4)
and (1) together with our assumption ~ρ r Γ[~s] this means in particular that

(6) H(~ρ, σ)1 r A[~s, σ] and F (~ρ, σ)1 r W(t[~s](σ)).

But now we have to recall that the formula A[~s, σ] has the shape

(∃y ∈ W)[y ≤ t[~s](σ) ∧ B[~s, y, σ]],

3Temporarily in this proof, if Γ = C1, . . . , Cm is a sequence of formulas contained in
the antecedent of a sequent, then we write ρ1, . . . , ρm r Γ if for all 1 ≤ i ≤ m, ρi r Ci.
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with B positive and W free; hence, the only occurrence of W in A[~s, σ]
stems from the leading bounded existential quantifier. But the bounding
term t[~s](σ) of this quantifier evaluates to F (~ρ, σ)1 in M(λη) according to
(6). It is now easy to see that H(~ρ, σ)1 is bounded by a linear function L
in the length of F (~ρ, σ)1; this only uses some obvious properties of our low
level pairing function. It follows from these considerations that if we define
H(~ρ, siσ) by (5) according to the third case in our case distinction, then it
is clearly bounded. This ends our considerations concerning the bounding of
the function H.

We have shown that the conclusion of the Σb
W notation induction rule can be

realized by a FPtime function H. This ends our discussion of the induction
rule and, in fact, also the proof of the realizability theorem for PT+. 2

The following corollary is immediate from our realizability theorem for PT+

as well as the partial cut elimination theorem for PT+ (Theorem 12). It
shows that the provably total functions of PT+ are contained in FPtime.

Corollary 16 Let t be a closed L term and assume that

PT+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPtime so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

Proof Assuming that we have a closed L term t so that the sequent

W(u1), . . . ,W(un) ⇒ W(tu1 . . . un)

is provable in PT+, we know that by partial cut elimination, this sequent
has a proof using positive cut formulas only. Hence, our theorem provides
a function G in FPtime so that we have for all L terms s1, . . . , sn and all
words ρ1, . . . , ρn in W,

G(ρ1, . . . , ρn)1 r W(ts1 . . . sn),

whenever ρi r W(si) for all 1 ≤ i ≤ n. If we now set for given words w1, . . . , wn
in W,

si = wi, ρi = wi, and F (w1, . . . , wn) = G(w1, . . . , wn)1,

then the assertion of our corollary is immediate. 2
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This ends our discussion of the realizability theorem for PT+ and its crucial
consequences. Turning to the realizability theorem for PTLS+, note that the
only difference between PT+ and PTLS+ i̇s the presence of word multiplication
× in PT+. Hence, the proof of the following theorem is literally the same as
the proof of the realizability theorem for PT+, but since× does not need to be
realized, the corresponding realizing function is indeed in FPtimeLinspace,
according to the function algebra characterization of FPtimeLinspace given
in Theorem 1. Again we can derive the desired corollary about the provably
total functions of PTLS+.

Theorem 17 (Realizability for PTLS+) Let Γ ⇒ ∆ be a sequent of pos-
itive formulas with Γ = A1, . . . , An and assume that PTLS+

?
Γ[~u] ⇒ ∆[~u].

Then there exists a function F : Wn → W in FPtimeLinspace so that we
have for all terms ~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Corollary 18 Let t be a closed L term and assume that

PTLS+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPtimeLinspace so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

Let us now discuss the realizability theorems for the two systems PS+ and
LS+. Indeed, also the proof of these theorems runs very analogous to the proof
of the realizability theorem for PT+. The crucial difference between PS+ and
PT+ lies in the fact that PS+ contains lexicographic induction on W, (Σb

W-I`),
instead of the schema (Σb

W-IW) of notation induction on W present in PT+.
The only difference in the realization of the corresponding rules of inference in
the sequent-style setting is that one requires bounded lexicographic recursion
(BRL) in order to realize the (Σb

W-I`) rule, where, as we have seen above,
bounded recursion on notation (BRN) was needed for the realization of the
(Σb

W-IW) induction rule. Otherwise, the proof of the realizability theorem for
PS+ is identical to the one for PT+. Hence, using the characterization of
FPspace stated in Theorem 1, we are thus in a position to spell out the
following theorem together with its expected corollary.

Theorem 19 (Realizability for PS+) Let Γ ⇒ ∆ be a sequent of positive
formulas with Γ = A1, . . . , An and assume that PS+

?
Γ[~u] ⇒ ∆[~u]. Then
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there exists a function F : Wn → W in FPspace so that we have for all
terms ~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Corollary 20 Let t be a closed L term and assume that

PS+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPspace so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

As above, if word multiplication × is absent, then the proof for PS+ actually
produces realizing functions in FLinspace. Thus we obtain the following
realizability theorem for the system LS+.

Theorem 21 (Realizability for LS+) Let Γ ⇒ ∆ be a sequent of positive
formulas with Γ = A1, . . . , An and assume that LS+

?
Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn → W in FLinspace so that we have for all
terms ~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Corollary 22 Let t be a closed L term and assume that

LS+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FLinspace so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

The results of this section can now be combined with our lower bound results
given in Theorem 9; hence, we have established the following crucial theorem
concerning the provably total functions of PT, PTLS, LS, and PS.

Theorem 23 We have the following proof-theoretic results:

1. The provably total functions of PT coincide with FPtime.

2. The provably total functions of PTLS coincide with FPtimeLinspace.

3. The provably total functions of PS coincide with FPspace.

4. The provably total functions of LS coincide with FLinspace.

Moreover, this theorem holds true in the presence of totality of application
(Tot) and extensionality of operations (Ext).
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7 Further applicative systems

It is the aim of this section to consider further natural applicative systems for
various classes of computable functions. We start with the system PH which
is closely related to the polynomial time hierarchy Ph. The second subsection
is concerned with applicative systems for the primitive recursive functions
and, finally, in the last subsection we make some remarks concerning an
applicative setting which is of the same strength as Peano arithmetic PA.
We will see that the techniques developed in this paper so far extend in a
straightforward manner to the various systems considered in this section.

7.1 A type two functional for bounded quantification

In this subsection we consider a natural type two functional π which allows
for the elimination of bounded quantifiers. Using the techniques of the pre-
vious section we will show that the provably total functions of the theory PT
augmented by π are exactly the functions on W in the function polynomial
time hierarchy FPh.

It is worth mentioning at this point that the formulation and spirit of the
π functional is similar to the non-constructive µ operator which has been
studied extensively in the applicative context, cf. the papers Feferman and
Jäger [30, 31], Glass and Strahm [36], Jäger and Strahm [45], Marzetta and
Strahm [52], and Strahm [63]. In contrast to π, the operator µ tests for
unbounded quantification and, hence, is much stronger than the π functional.
The applicative axiomatization of the two functionals, however, is completely
analogous.

As usual, a function F on the binary words W is defined to be in the (func-
tion) polynomial time hierarchy FPh if F is computable in polynomial time
using finitely many oracles from the Meyer-Stockmeyer polynomial time hi-
erarchy Ph onW. It is well-known how to extend Cobham’s function algebra
characterization of FPtime so as to capture FPh: one simply closes the Cob-
ham algebra under bounded quantification. In the sequel we let (BQ) denote
the operator which maps an (n+1)-ary function F on W to the (n+1)-ary
function BQ(F ), which is given for all ~x, y ∈W as follows:

BQ(F )(~x, y) :=

{
0 if (∃z ≤ y)(F (~x, z) = 0),
1 otherwise.

The following theorem is folklore, cf. Clote’s survey article [19] on function
algebras and computation models.
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Theorem 24 We have the following function algebra characterization:

[ε, I, s0, s1, ∗,×; COMP,BRN,BQ] = FPh.

For the formulation of our type two functional for bounded quantification in
the applicative setting, we assume that the applicative language L is extended
by a new constant π. The axioms for π are divided into (π.1) and (π.2): the
first axiom claims that for a given total operation f on W and an a ∈ W,
it is always the case that πfa is a word whose length is bounded by the
length of a; the second axioms expresses, in addition, that πfa is a zero of
f provided that there exists a word x ≤ a with fx = 0. Hence, given that
f : W → W and a ∈ W, we have that indeed (∃x ≤ a)(fx = 0) is equivalent
to f(πfa) = 0, i.e., bounded quantifiers can be eliminated by means of π.

The type two functional π for bounded quantification

f : W→ W ∧ a ∈ W → πfa ∈ W ∧ πfa ≤ a(π.1)

f : W→ W ∧ a ∈ W ∧ (∃x ≤ a)(fx = 0) → f(πfa) = 0(π.2)

We now define the L theory PH to be simply PT plus the two axioms (π.1)
and (π.2). We aim at showing that the provably total functions of PH are
exactly the functions in the function polynomial time hierarchy FPh.

Clearly, we can make use of the function algebra characterization of FPh

given in the theorem above in order to show that the provably total functions
of PH contain FPh: with the help of π we have closure under bounded
quantification and, moreover, due to Lemma 4 we know that in PH closure
under bounded recursion on notation is available. Hence, we can state the
following theorem.

Theorem 25 The provably total functions of PH include FPh.

Indeed, let us mention that it is possible to show that Ferreira’s system
Σb
∞-NIA (cf. Ferreira [34]) or, equivalently, Buss’ system S2 (cf. Buss [8]) are

directly contained in PH.

In order to show that the lower bound stated in the above theorem is sharp,
we can make use in a straightforward manner of the partial cut elimina-
tion and realizability techniques introduced in the previous section. In the
following we sketch the main new steps of this procedure.

As above, we provide an upper bound directly for the system PH+, i.e., the
extension of PH by totality and extensionality. The Gentzen-style reformu-
lation of PH+ simply extends the Gentzen-style version of PT+ by two new
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rules corresponding to the axioms (π.1) and (π.2) for π. As expected, in
these rules u denotes a fresh variable.

Γ, W(u) ⇒ W(tu), ∆

Γ, W(s) ⇒ W(πts) ∧ πts ≤ s, ∆
(π.1)

Γ, W(u) ⇒ W(tu), ∆

Γ, W(s), (∃x ≤ s)(tx = 0) ⇒ t(πts) = 0, ∆
(π.2)

We observe that the main formulas of both rules are positive, so that the
partial cut elimination theorem for PT+ (Theorem 12) readily extends to
PH+. Hence, we can assume that PH+ derivations of sequents of positive
formulas contain cuts with positive cut formulas only.

In the sequel we want to use the same notion of realizability as in the previous
section. Hence, we have to extend our open term model M(λη) so as to
incorporate the new constant π. The informal interpretation of πfa is simply
the least x ≤ a so that fx = 0, if such an x exists, and ε otherwise.4 Formally
inM(λη), we can either write down appropriate reduction rules for π or use
recursion in M(λη) in order to define π directly. The realizability theorem
for PH+ is now spelled out in the expected manner.

Theorem 26 (Realizability for PH+) Let Γ ⇒ ∆ be a sequent of positive
formulas with Γ = A1, . . . , An and assume that PH+

?
Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn →W in FPh so that we have for all terms ~s
and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Proof In addition to the proof of the realizability theorem for PT+ we only
have to show how to deal with the two rules (π.1) and (π.2). For that purpose
let us assume that we have a quasi cut free derivation of the sequent

Γ, W(u) ⇒ W(tu), ∆,

and let F0 denote the function in FPh which is given to us by the induction
hypothesis. In case of (π.1) it is not difficult to check that the following
function F can be used as a realizing function for the conclusion of this rule.

F (~ρ, σ) =

{
〈1, 〈(µτ ≤ σ.F0(~ρ, τ)1 = 0), ε〉〉 if (∀τ ≤ σ)F0(~ρ, τ)0 = 1,

F0(~ρ, (µτ ≤ σ)F0(~ρ, τ)0 6= 1) otherwise
4Leastness is always understood in the sense of the lexicographic ordering of the full

binary tree. In the sequel we use the notation (µx ≤ a)R(x) to denote the least x ≤ a
satisfying R(x) if it exists, and ε otherwise.
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It is easy to see that F is in FPh, since the functions in the polynomial time
hierarchy are clearly closed under bounded minimization. In the case of the
rule for (π.2) the realizing function F for its conclusion can be chosen as
follows. Again it is easy to see that this F is in FPh.

F (~ρ, σ, σ′) =

{
〈1, ε〉 if (∀τ ≤ σ)F0(~ρ, τ)0 = 1,

F0(~ρ, (µτ ≤ σ)F0(~ρ, τ)0 6= 1) otherwise

This ends our short discussion of the proof of the realizability theorem for
the system PH+. 2

As above, we can now derive the following crucial corollary.

Corollary 27 Let t be a closed L term and assume that

PH+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPh so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

This last corollary combined with Theorem 25 yields the following main result
of this subsection.

Theorem 28 The provably total functions of PH coincide with FPh. In
addition, this theorem holds true in the presence of totality of application
(Tot) and extensionality of operations (Ext).

7.2 Positive induction equals primitive recursion

In this subsection we briefly examine the effect of replacing our bounded
induction principles (Σb

W-IW) and (Σb
W-I`) by the schema of induction for

arbitrary positive formulas. We will show that the corresponding applicative
framework characterizes exactly the class of primitive recursive functions.
This result is previously due to Cantini [15] This result is previously due to
Cantini [15]5. However, the proof given here is new and quite different from
the techniques used by Cantini.

The primitive recursive functions FPrim on W are generated from the usual
initial functions by closing under composition and recursion on notation

5Actually, Cantini establishes a slightly stronger theorem in the sense that he also
allows negative equations to occur in induction formulas.
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(RN), where (RN) is simply (BRN) without the bounding condition. Hence,
using our function algebra notation, FPrim is defined to be the function
algebra [ε, I, s0, s1; COMP,RN]. Denoting by (RL) the corresponding schema
of unbounded lexicographic recursion, it is well known that indeed

[ε, I, s`; COMP,RL] = [ε, I, s0, s1; COMP,RN].

Hence, it does not matter whether we use lexicographic or notation recursion
in the context of unbounded recursion schemas.

Let us now turn to a natural applicative framework PR capturing FPrim.
The schema of positive notation induction on W, (Pos-IW), includes for each
formula A(x) in the class Pos,

(Pos-IW) A(ε) ∧ (∀x ∈ W)(A(x)→ A(s0x) ∧ A(s1x)) → (∀x ∈ W)A(x)

The schema of positive lexicographic induction on W, (Pos-I`), is stated ac-
cordingly. The applicative theory PR is now defined to be the theory B plus
positive notation induction on W, (Pos-IW). Observe that we do not include
∗ and × in PR since these are easily definable as we will see now.

As can be expected, it is possible represent recursion on notation in PR in a
very direct and natural way, by referring to the recursion theorem of B and
exploiting (Pos-IW). In particular, we obtain in a straightforward manner the
following unbounded analogue of Lemma 4; its proof is an obvious adaptation
of the proof of Lemma 4 and, therefore, is left to the reader.

Lemma 29 There exists a closed L term r̃W so that PR proves

f : W→ W ∧ g : W3 → W →
r̃Wfg : W2 → W ∧
x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = r̃Wfg →

hxε = fx ∧ hxy = gxy(hx(pWy))

Corollary 30 The provably total functions of PR include FPrim.

Indeed, PR does not only establish the convergence of each primitive recursive
function, but it also interprets in a straightforward manner the subsystem of
Peano arithmetic PA which is based on the schema of complete induction for
Σ1 formulas. The latter system is well-known to be a conservative extension
with respect to Π2 statements of primitive recursive arithmetic PRA as was
shown by Parsons [54].
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Before we turn to the upper bound of PR let us quickly address the question
of whether it matters if we include (Pos-IW) or (Pos-I`) in our definition of
PR. As our discussion above concerning the corresponding function algebras
suggests, there should be no difference, and indeed this is confirmed by the
following folklore lemma, whose proof is left to the reader as an exercise.

Lemma 31 We have that (Pos-I`) and (Pos-IW) are equivalent over our base
theory B.

Clearly, this lemma shows that in the theory PR we have available the lexi-
cographic analogue of Lemma 29.

The final part of this subsection is devoted to showing that the provably total
functions of PR do not go beyond the primitive recursive functions FPrim

on W. Again our realizability techniques work in a perspicuous manner. We
first reformulate the system PR+, i.e., PR + (Tot) + (Ext), in sequent style.
Positive induction on notation (Pos-IW) is stated as a rule in the same way
as for the system PT+, but of course without the premise concerning the
totality of a bounding function. Partial cut elimination for PR+ works as
before. As to the realizability theorem, its proof is literally the same as the
proof of the realizability theorem for PT+, with the only difference that in the
treatment of the notation induction rule, we have no bounding information
available and, hence, we can only conclude that the corresponding function
is primitive recursive.

Theorem 32 (Realizability for PR+) Let Γ ⇒ ∆ be a sequent of positive
formulas with Γ = A1, . . . , An and assume that PR+

?
Γ[~u] ⇒ ∆[~u]. Then

there exists a function F : Wn →W in FPrim so that we have for all terms
~s and all ρ1, . . . , ρn ∈W:

For all 1 ≤ i ≤ n : ρi r Ai[~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Corollary 33 Let t be a closed L term and assume that

PR+ W(u1), . . . ,W(un) ⇒ W(tu1 . . . un),

for distinct variables u1, . . . , un. Then there exists a function F : Wn → W

in FPrim so that we have for all words w1, . . . , wn in W,

M(λη) |= tw1 . . . wn = F (w1, . . . , wn).

From this corollary and Corollary 30 we are now in a position to state the
following crucial theorem concerning the provably total functions of PR. As
we have noted above, this theorem has previously been obtained by Cantini
[15], using a quite different argument.
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Theorem 34 The provably total functions of PR coincide with FPrim. In
addition, this theorem holds true in the presence of totality of application
(Tot) and extensionality of operations (Ext).

7.3 Full induction and Peano arithmetic

A further natural strengthening of our applicative framework consists in al-
lowing induction on W for arbitrary formulas in the language L. Using known
techniques, it easily follows that the so-obtained applicative systems have the
same proof-theoretic strength as Peano arithmetic PA.

By (L-IW) and (L-I`) we denote the schema of notation induction and lexico-
graphic induction on W, respectively, for arbitrary formulas of our applicative
language L. With the same argument as in Lemma 31 above one establishes
that (L-IW) and (L-I`) are equivalent over the base theory B. For an inter-
pretation of B + (L-IW) or B + (L-I`) in Peano arithmetic PA, one makes use
of an inner model construction, formalizing the standard recursion-theoretic
model PRO of B, cf. e.g. Feferman and Jäger [30] for a similar argument.
The so-obtained interpretation yields that the provably total functions of
B+(L-IW) and B+(L-I`) are exactly the α recursive functions for α less than
PA’s proof-theoretic ordinal ε0.

The interpretation of B + (L-IW) or B + (L-I`) can also be strengthened so
as to include the axiom of totality (Tot) and the axiom of extensionality
(Ext). In this case, one simply formalizes the standard term model M(λη)
of B + (Tot) + (Ext) in PA, cf. Cantini [14] or Jäger and Strahm [45] for more
details.

Let us conclude this section by noting that similar inner model constructions
are of no use in order to establish upper bounds e.g. for the system PR: the
reason is that in induction formulas in PR arbitrary unbounded universal
quantifiers over individuals are allowed, which makes an embedding in, say,
primitive recursive arithmetic PRA extended by Σ1 induction impossible.

8 Concluding remarks

In this article we have presented a series of natural applicative systems of
various bounded complexities. In particular, we have elucidated frameworks
for the functions on binary words computable in polynomial time, polyno-
mial time and linear space, polynomial space, linear space, as well as the
polynomial time hierarchy. Our systems can be viewed as natural applica-
tive analogues of various bounded arithmetics; this is witnessed by the fact
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that the latter are directly embeddable into various applicative settings. A
further distinguished feature of applicative theories is that they allow for a
very direct treatment of higher types issues: we have seen that even higher
order systems such as Cook and Urquhart’s PVω are directly contained in
the applicative theory PT for the polynomial time computable functions.

Apart from the world of bounded recursion schemas, bounded arithmetic and
bounded applicative theories there is the world of so-called tiered systems in
the sense of Cook and Bellantoni (cf. e.g. [5]) and Leivant (cf. e.g. [49, 51]).
Crucial for this approach to characterizing complexities is a strictly predica-
tive regime which distinguishes between different uses of variables in induc-
tion and recursion schemas, thus severely restricting the definable or provably
total functions in various unbounded formalisms. In our applicative setting
such a “predicativization” amounts to distinguishing between (at least) two
sorts or types of binary words W0 and W1, say, where induction over W1 is
allowed for formulas which are positive and do not contain W1, cf. Cantini
[16, 18] for such systems.

Unarguably, the tiered approach to complexity has led to numerous highly
interesting and intrinsic recursion-theoretic and also proof-theoretic charac-
terizations of complexity classes, which might lead to new subrecursive pro-
gramming paradigms. Also, higher type issues have recently been a subject
of interest in this area, cf. e.g. Leivant [50], Bellantoni, Niggl, Schwichtenberg
[6], and Hofmann [40]. In spite of its elegance, it has to be mentioned that
the tiered or ramified approach also has its drawbacks. First of all, there is
the general observation that reasoning in a system with ramifications can be
very difficult: for example, dealing with two tiers W0 and W1 only, one has to
take into account four kinds of functions from binary words to binary words,
which are not closed under composition, of course. Secondly, the strict pred-
icative regime disallows the direct formulation of many natural algorithms,
especially those obtained by various kinds of nested recursions, cf. Hofmann
[39] for a discussion. And thirdly, it is not at all clear how modern tiered
systems relate to the more traditional bounded subsystems of first and higher
order arithmetic.

Taking up these points of criticism in the context of the bounded world, of
course one has to pay a price in order to avoid ramifications and to deal
only with one type W of binary words. Namely, the systems discussed in
this article include initial functions such as word concatenation and word
multiplication as well as recursions and inductions need to be bounded. On
the other hand, nesting recursions is generally easy and in many cases it is
also not difficult to provide the necessary bounding information. Hence, both
the bounded and the tiered approach have their pros and cons. Summing
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up, in our opinion it is worth exploring both the bounded and the ramified
world, and it would be especially interesting to find out more about the exact
relationship between these two worlds.

Coming back to the work and results achieved in this article, let us briefly
address some directions for future research. Certainly, there is the need to
further study and elucidate the role of higher type functionals in the various
settings that we have been considering in this paper. We have done a first step
in this direction and shown that indeed the provably total type two functionals
of the classical theory PT coincide with the basic feasible functionals of type
two, and we conjecture that this results holds true at all higher types. The
proof that a provably total type two functional of PT is basic feasible is based
on a refinement of the realizability theorem for PT established in this paper.
Details are given in a successor to this paper, Strahm [65].

Finally, a further important research project consists in considering exten-
sions of the applicative systems of this article by adding suitable versions of
flexible typing and naming in the spirit of explicit mathematics in order to
answer the question of what type existence principles can live in a, say, feasi-
ble setting of explicit mathematics. We believe that the formalisms designed
in this paper should help in finding suitable frameworks of “bounded explicit
mathematics”.
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