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Abstract

In this article we study the theory KPi0 + (Σ-TR) which (i) describes
a recursively inaccessible universe, (ii) permits the iteration of Σ op-
erations along the ordinals, (iii) does not comprise ∈ induction, and
(iv) restricts complete induction on the natural numbers to sets. It
is shown that the proof-theoretic ordinal of KPi0 + (Σ-TR) is the
metapredicative Mahlo ordinal ϕω00. Our system KPi0 + (Σ-TR) is
closely related to the system of second order arithmetic for Σ1

1 trans-
finite dependent choice introduced in Rüede [8].

1 Introduction

The theory KPi0, introduced in Jäger [3], is a natural subsystem of set theory
whose proof-theoretic strength is characterized by the well-known ordinal Γ0.
It describes a set-theoretic universe above the natural numbers as urelements
which is admissible and a limit of admissibles, i.e. recursively inaccessible.
However, KPi0 is very weak with respect to induction principles: ∈ induction
is not available at all, and complete induction on the natural numbers is
restricted to sets.

In this article we study the effect of extending KPi0 by the possibility of
iterating Σ operations (on the universe) along ordinals. It will be shown
that the resulting system, we call it KPi0 + (Σ-TR), has the proof-theoretic
ordinal ϕω00 and thus the same proof-theoretic strength as the theory KPm0

of Jäger and Strahm [6], which plays an important role in connection with
the concept of metapredicative Mahlo; see Jäger [2] for a discussion of this
topic in a wider context.

∗Research partly supported by the Swiss National Science Foundation.
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There exists a close relationship between our KPi0 + (Σ-TR) and the system
of second order arithmetic for Σ1

1 transfinite dependent choice which Rüede
describes in [8, 9]. Actually, we will adapt Rüede’s well-ordering proof in [9]
to the theory KPi0 + (Σ-TR) in order to establish ϕω00 as its lower proof-
theoretic bound. A straightforward argument yields that ϕω00 is also the
upper proof-theoretic bound of KPi0 + (Σ-TR).

The plan of this paper is as follows: In the next section we introduce the
basic definitions and describe the theories KPi0, KPi0 + (Σ-TR) and KPm0.
Section 3 is dedicated to delimiting the system KPi0 + (Σ-TR) from above
by embedding it into KPm0. Section 4 deals with some important properties
of KPi0 and KPi0 + (Σ-TR), whereas in Section 5 we carry through a well-
ordering proof in KPi0 + (Σ-TR).

2 The theories KPi0, KPi0 + (Σ-TR) and KPm0

Let L1 be some of the standard languages of first order arithmetic with vari-
ables a, b, c, d, e, f, g, h, u, v, w, x, y, z, . . . (possibly with subscripts), a con-
stant 0 as well as function and relation symbols for all primitive recursive
functions and relations. The theory KPi0 is formulated in the extension
L? = L1(∈, N, S, Ad) of L1 by the membership relation symbol ∈, the set
constant N for the set of natural numbers and the unary relation symbols S
and Ad for sets and admissible sets, respectively.

The number terms of L? are inductively generated from the variables, the
constant 0 and the symbols for the primitive recursive functions; the terms
(r, s, t, r1, s1, t1, . . .) of L? are the number terms of L1 plus the set constant
N. The formulas (A, B, C,A1, B1, C1, . . .) of L? as well as the ∆0, Σ, Π, Σn

and Πn formulas of L? are defined as usual. Equality between objects is not
represented by a primitive symbol but defined by

(s = t) :=

{
(s ∈ N ∧ t ∈ N ∧ (s =N t)) ∨
(S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s))

where =N is the symbol for the primitive recursive equality on the natu-
ral numbers. The formula As is the result of replacing each unrestricted
quantifier (∃x)(. . .) and (∀x)(. . .) in A by (∃x ∈ s)(. . .) and (∀x ∈ s)(. . .),
respectively. In addition, we freely make use of all standard set-theoretic
notations and write, for example, Tran(s) for the ∆0 formula saying that s is
a transitive set.

Since the axioms of KPi0 do not comprise ∈ induction, i.e. the principle of
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foundation with respect to ∈, we build it directly into the notion of ordinal,

Wf(a,∈) := ∀x(x ⊂ a ∧ x 6= ∅ → (∃y ∈ x)(∀z ∈ y)(z 6∈ x)),

Ord(a) := Tran(a) ∧ (∀x ∈ a)Tran(x) ∧ Wf(a,∈).

Thus Ord(a) is a Π formula of L?; in the following small Greek letters range
over ordinals.

The theory KPi0 is formulated in the language L?; its logical axioms comprise
the usual axioms of classical first order logic with equality. The non-logical
axioms of KPi0 can be divided into the following five groups.

I. Ontological axioms. We have for all function symbols H and relation
symbols R of L1 and all axioms A(~u) of group III whose free variables belong
to the list ~u:

a ∈ N ↔ ¬S(a),(1)

~a ∈ N → H(~a) ∈ N,(2)

R(~a) → ~a ∈ N,(3)

a ∈ b → S(b),(4)

Ad(a) → (N ∈ a ∧ Tran(a)),(5)

Ad(a) → (∀~x ∈ a)Aa(~x),(6)

Ad(a) ∧ Ad(b) → a ∈ b ∨ a = b ∨ b ∈ a.(7)

II. Number-theoretic axioms. We have for all axioms A(~u) of Peano
arithmetic PA which are not instances of the schema of complete induction
and whose free variables belong to the list ~u:

~u ∈ N → AN(~u).(Number theory)

III. Kripke Platek axioms. We have for all ∆0 formulas A(u) and B(u, v)
of L?:

∃x(a ∈ x ∧ b ∈ x),(Pair)

∃x(a ⊂ x ∧ Tran(x)),(Tran)

∃y(S(y) ∧ y = {x ∈ a : A(x)}),(∆0-Sep)

(∀x ∈ a)∃yB(x, y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x, y).(∆0-Col)
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IV. Limit axiom. It is used to formalize that each set is element of an
admissible set, hence we claim:

∃x(a ∈ x ∧ Ad(x)).(Lim)

V. Complete induction on N. The only induction principle included in the
axioms of KPi0 is the following axiom of complete induction on the natural
numbers for sets:

0 ∈ a ∧ (∀x ∈ N)(x ∈ a → x + 1 ∈ a) → N ⊂ a.(S-IN)

The monograph Barwise [1] provides an excellent introduction into general
admissible set theory. Theories of admissible sets without foundation, on
the other hand, have been studied, in particular, in Jäger [3, 4]. It is shown
there, among other things, that the proof-theoretic ordinal of KPi0 is Γ0.

In Section 5 we will also mention an auxiliary basic set theory BS0. It is
obtained from KPi0 by simply dropping the schema of ∆0 collection.

In this article, however, we are primarily interested in the axiom schema
(Σ-TR) about the iteration of Σ operations, added to KPi0. To formulate
this principle, we introduce for each Σ formula D(~u, x, y, z) of L? with at
most the variables ~u, x, y, z free the formula

HierD(~a, b, f) :=

{
Ord(b) ∧ Fun(f) ∧ Dom(f) = b ∧

(∀ξ ∈ b)D(~a, ξ, f�ξ, f(ξ)).

KPi0 +(Σ-TR) is now defined to be the theory obtained from KPi0 by adding
the axiom

Ord(α) ∧ (∀ξ < α)∀x∃!yD(~a, ξ, x, y) → ∃fHierD(~a, α, f)(Σ-TR)

for all Σ formulas D(~u, x, y, z) of L?. This axiom says that the Σ operation
defined by D (depending on the parameters ~a) can be iterated along the
ordinal α.

KPi0 + (Σ-TR) is an interesting theory which reveals a further aspect of
metapredicative Mahlo. In the sequel we will show that this system is proof-
theoretically equivalent to the theory KPm0 and that it has proof-theoretic
ordinal ϕω00.

The theory KPm0, introduced in Jäger and Strahm [6], is also formulated
in the language L? and extends KPi0 by the schema of Π2 reflection on the
admissibles,

A(~a) → ∃x(~a ∈ x ∧ Ad(x) ∧ Ax(~a))(Π2-RefAd)
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for all Π2 formulas A(~u) of L? with at most the variables ~u free. In [6] it is
also shown that KPm0, i.e. KPi0 + (Π2-RefAd), is of the same proof-theoretic
strength as a natural system of explicit mathematics.

3 Embedding KPi0 + (Σ-TR) into KPm0

The only purpose of this very short section is to prove that KPi0 + (Σ-TR)
can be directly embedded into KPm0. Given a Σ formula D(~u, x, y, z) of
L?, parameters ~a for which D defines a Σ operation and an ordinal α, the
principle of Π2 reflection on admissibles tells us that there must exist an
admissible set d, containing the parameters ~a and α, so that this operation
maps d into d; working inside d allows us to iterate this operation along α.

Lemma 1 For all Σ formulas D(~u, x, y, z) of L? with at most the variables
~u, x, y, z free we have that

KPm0 ` Ord(α) ∧ (∀ξ < α)∀x∃!yD(~a, ξ, x, y) → ∃fHierD(~a, α, f).

Proof We work informally in KPm0 and choose an ordinal α and parameters
~a so that

(∀ξ < α)∀x∃!yD(~a, ξ, x, y).(1)

By Π2 reflection on the admissibles applied to (1) it follows that there exists
an admissible set d which contains α and ~a as elements and satisfies

(∀ξ < α)(∀x ∈ d)(∃y ∈ d)Dd(~a, ξ, x, y).(2)

Furthermore, because of Σ persistence and (1), we can now conclude from
assertion (2) that

(∀ξ < α)(∀x ∈ d)(∃y ∈ d)D(~a, ξ, x, y),(3)

(∀ξ < α)(∀x, y ∈ d)(D(~a, ξ, x, y) ↔ Dd(~a, ξ, x, y)).(4)

Working within the admissible set d, a straightforward adaptation of the
usual proof of Σ recursion yields

(∃f ∈ d)(Fun(f) ∧ Dom(f) = β ∧ (∀ξ < β)Dd(~a, ξ, f�ξ, f(ξ)))(5)

by transfinite induction for all ordinals β ≤ α. Because of (4), the assertion
of our lemma follows immediately from (5). 2

This lemma states that (Σ-TR) is provable in KPm0. Consequently, our
system KPi0 + (Σ-TR) is a subtheory of KPm0.
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Theorem 2 (Embedding) For all L? formulas A we have that

KPi0 + (Σ-TR) ` A =⇒ KPm0 ` A.

In view of this theorem and the results of Jäger and Strahm [6] we know
that the ordinal ϕω00 is an upper bound for the proof-theoretic strength of
KPi0 + (Σ-TR).

4 Some basic properties of the theories KPi0

and KPi0 + (Σ-TR)

The foundation axiom is not available in KPi0, and thus it is not ruled out
in general that there are sets which contain themselves. Nevertheless it can
be shown that this is not possible for admissibles.

Lemma 3 In KPi0 it can be proved that

Ad(a) → a 6∈ a.

Proof Suppose, on the contrary, that a is an admissible set which contains
itself as an element. By ∆0 separation within a this a then also contains the
“Russell” set r,

r := {x ∈ a : x 6∈ x}.

Hence we have that r ∈ r if and only if r 6∈ r. This is a contradiction, and
our lemma is proved. 2

Now we turn to two further properties of KPi0 which – or better: gener-
alizations thereof – will be crucial for the well-ordering proof in the next
section: (i) every set s is provably contained in a least admissible set s+, (ii)
every set s is provably contained in a least set which is admissible or limit of
admissibles.

If ∈ induction (foundation) were available we could simply carry over the
standard recursion-theoretic proof. In the present context, however, a differ-
ent strategy has to be chosen.

Lemma 4 Let D(~u, v) be a ∆0 formula of L? with at most the variables
~u, v free. Then KPi0 proves that

∃x(D(~a, x) ∧ ~a ∈ x ∧ Ad(x)) →
∃y(y =

⋂
{x : D(~a, x) ∧ ~a ∈ x ∧ Ad(x)} ∧ D(~a, y) ∧ ~a ∈ y ∧ Ad(y)).
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Proof We work informally in the theory KPi0 and fix some arbitrary pa-
rameters ~a. The assertion is obvious by the linearity of the admissibles if
the class {x : D(~a, x)∧~a ∈ x∧ Ad(x)} contains only finitely many elements.
Hence we may assume that there exist elements b, c, d, e with the properties

b ∈ c ∈ d ∈ e,(1)

b, c, d, e ∈ {x : D(~a, x) ∧ ~a ∈ x ∧ Ad(x)}.(2)

Now we use ∆0 separation in order to define the set

s0 :=
⋂
{x ∈ e : D(~a, x) ∧ ~a ∈ x ∧ Ad(x)}.

Because of the linearity of Ad we obtain the following further properties of
this set s0:

s0 =
⋂
{x : D(~a, x) ∧ ~a ∈ x ∧ Ad(x)},(3)

s0 =
⋂
{x ∈ c : D(~a, x) ∧ ~a ∈ x ∧ Ad(x)},(4)

s0 ∈ d.(5)

Assertion (5) follows from (4) by ∆0 separation in d. In a next step the
further set

s1 :=
⋂
{x ∈ e : D(~a, x) ∧ ~a ∈ x ∧ Ad(x) ∧ s0 ∈ x}

is introduced. Given these sets s0 and s1, we convince ourselves that they
are really different,

s0 6= s1.(6)

Assume, for the contrary, that s0 = s1 and employ ∆0 separation once more
for defining the Russell set

r := {x ∈ s0 : x 6∈ x}.

Then r ∈ u for each set u satisfying Ad(u) and s0 ∈ u. This implies r ∈ s1

and therefore, because of our assumption, also r ∈ s0. Therefore we have

r ∈ r ↔ r ∈ s0 ∧ r 6∈ r ↔ r 6∈ r.

This is a contradiction, and so (6) is proved. This assertion (6), however,
implies that there exists a set t with the property

t ∈ e ∧ D(~a, t) ∧ ~a ∈ t ∧ Ad(t) ∧ s0 6∈ t.(7)
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It remains to show that s0 = t. The inclusion s0 ⊂ t is obvious. In order to
prove t ⊂ s0, we pick an arbitrary u ∈ d with D(~a, u) ∧ ~a ∈ u ∧ Ad(u) and
establish t ⊂ u. The linearity of Ad gives

t ∈ u ∨ t = u ∨ u ∈ t.(8)

In the cases of t ∈ u and t = u, the property t ⊂ u is clear. On the other
hand, u ∈ t would imply that

s0 =
⋂
{x ∈ u ∪ {u} : D(~a, x) ∧ ~a ∈ x ∧ Ad(x)} ∈ t,

contradicting the choice of t. Therefore, putting everything together, we
know that s0 = t, hence D(~a, s0) ∧ ~a ∈ s0 ∧ Ad(s0). Remembering (3), this
concludes the proof of our lemma. 2

This lemma implies, for example, that in KPi0 for any set a the intersection
a+ of all admissibles containing a is an admissible itself,

a+ :=
⋂
{x : a ∈ x ∧ Ad(x)}.

Given a set a and a binary relation b ⊂ a×a, we write Lin(a, b) if b is a strict
linear ordering on a. A linear ordering is a well-ordering if any non-empty
subset of its domain has a least element with respect to this ordering,

Wo(a, b) := Lin(a, b) ∧ ∀x(x ⊂ a ∧ x 6= ∅ → (∃y ∈ x)(∀z ∈ x)(〈z, y〉 6∈ b)).

We first observe that in KPi0 +(Σ-TR) all Σ operations can be iterated along
arbitrary well-orderings, not only along ordinals as stated by (Σ-TR). To do
so, we write for each Σ formula D(~u, x, y, z) of L? with at most the variables
~u, x, y, z free in analogy to HierD

Hier+D(~a, b, c, f) :=

{
Wo(b, c) ∧ Fun(f) ∧ Dom(f) = b ∧

(∀x ∈ b)D(~a, x, {〈y, f(y)〉 : 〈y, x〉 ∈ c}, f(x)).

For the proof of Theorem 6 below it is convenient to convince ourselves that
for every well-ordering b on a set a there exists a function f – provable in
KPi0 – so that the range Rng(f) of f is an ordinal and f is 1-1 mapping
from a to Rng(f) translating the order relation b on a into the <-relation on
Rng(f). This function f is called the collapse of b on a;

Clp(a, b, f) :=

{
b ⊂ a× a ∧ Fun(f) ∧ Dom(f) = a ∧

(∀x ∈ a)(f(x) = {f(y) : 〈y, x〉 ∈ b}).

The following lemma states that any well-ordering b on any set a has a
collapse which is uniquely determined by a and b.
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Lemma 5 The following two assertions can be proved in KPi0:

1. Wo(a, b) ∧ Clp(a, b, f) ∧ Clp(a, b, g) → f = g.

2. Wo(a, b) ∧ a, b ∈ d ∧ Ad(d) → (∃f ∈ d)Clp(a, b, f).

Proof The uniqueness property is obtained by straightforward induction
along the well-ordering b on a. For the proof of the existence of a collapse
we work informally in KPi0 and choose any a, b, d so that

Wo(a, b) ∧ a, b ∈ d ∧ Ad(d).

Writing a|u and b||u for the restrictions of a and b to the predecessors of u,

a|u := {x ∈ a : 〈x, u〉 ∈ b} and b||u := {〈x, y〉 ∈ b : 〈y, u〉 ∈ b},

we can easily establish by induction along b on a that

(∃!g ∈ d)Clp(a|u, b||u, g)

for all elements u of a. With ∆0 collection we can now immediately derive
what we wish. 2

Theorem 6 For all Σ formulas D(~u, x, y, z) of L? with at most the variables
~u, x, y, z free we have that KPi0 + (Σ-TR) proves

Wo(b, c) ∧ (∀x ∈ b)∀y∃!zD(~a, x, y, z) → ∃fHier+D(~a, b, c, f)).

Proof We work informally in KPi0+(Σ-TR) and choose arbitrary parameters
~a and sets b, c so that

Wo(b, c) ∧ (∀x ∈ b)∀y∃!zD(~a, x, y, z).(1)

By the previous lemma there exists a collapse h of c on b, i.e. we may assume
that

Clp(b, c, h)(2)

for a suitable function h. Now set α := Rng(h) and apply the principle
(Σ-TR) to a properly tailored modification D′ of the formula D. This gives
us a function g which can then be modified to the desired witness for HierD.
More precisely, let B(u, v) be the Σ formula of L? which is the disjunction
of the following three (mutually exclusive) L? formulas:

(i) Ord(u) ∧ v ∈ b ∧ h(v) = u,
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(ii) u = ∅ ∧ v = ∅,

(iii) ¬Ord(u) ∧ (∀x ∈ u)(∃y ∈ b)∃z(x = 〈h(y), z〉 ∧ 〈y, z〉 ∈ v) ∧
(∀x ∈ v)(∃y ∈ b)∃z(x = 〈y, z〉 ∧ 〈h(y), z〉 ∈ u).

In addition we set

D′(~a, u, v, w) := ∃x∃y(B(u, x) ∧B(v, y) ∧D(~a, x, y, w))

and observe that KPi0 + (Σ-TR) proves

(∀ξ < α)∀x∃!yD′(~a, ξ, x, y).(3)

Because of Σ reflection, the formula D′(~a, u, v, w) is provably equivalent in
KPi0 +(Σ-TR) to a Σ formula. In view of (3) we can apply (Σ-TR), and thus
there exists a function g for which we have

HierD′(~a, α, g).(4)

To finish our proof, let f be the function with domain b which is defined for
all elements u of b by

f(u) := g(h(u)).

¿From (4), the definition of the formula D′(~a, u, v, w) and this definition of
f we obtain

(∀ξ < α)∃y∃z(B(ξ, y) ∧B(g�ξ, z) ∧D(~a, y, z, g(ξ))).(5)

Because of (2) this immediately implies that

(∀x ∈ b)∃y∃z(B(h(x), y) ∧B(g�h(x), z) ∧D(~a, y, z, g(h(x)))).(6)

In view of of the definitions of the function f and the formula B(u, v) we can
transform this assertion into

(∀x ∈ b)∃z(B({〈h(y), f(y)〉 : 〈y, x〉 ∈ c}, z) ∧D(~a, x, z, f(x))).(7)

Looking at the definition of B(u, v) once more, we see that (7) can be sim-
plified to

(∀x ∈ b)D(~a, x, {〈y, f(y)〉 : 〈y, x〉 ∈ c}, f(x)).(8)

This means, however, that we have Hier+D(~a, b, c, f), and therefore the proof
of our lemma is completed. 2

10



In his well-ordering proof for second order arithmetic with Σ1
1 transfinite

dependent choice, Rüede often makes use of Π1
2 reflection on ω-models of

ACA0. In our present context, this part is taken over by Π2 reflection on Ad.
The “topological closure” Ad of the predicate Ad is obtained by adding to
the admissibles also the limits of admissibles,

Ad(d) := Ad(d) ∨ (d 6= ∅ ∧ d =
⋃
{x ∈ d : Ad(x)}).

Clearly each element of Ad satisfies ∆0 separation and models the theory
BS0. We prove a uniform version of Π2 reflection on Ad in a form tailored
for our later purposes.

Lemma 7 (Π2 reflection on Ad) For any Σ formula A(~u, v, w) of L? with
at most the variables ~u, v, w free there exists a Σ formula A](~u, v) of L?

with at most the variables ~u, v free so that the following two assertions can
be proved in KPi0 + (Σ-TR):

1. ∀x∃yA(~a, x, y) → ∃!zA](~a, z).

2. ∀x∃yA(~a, x, y) →
∀z(A](~a, z) → ~a ∈ z ∧ Ad(z) ∧ (∀x ∈ z)(∃y ∈ z)Az(~a, x, y)).

Proof We work informally in KPi0 +(Σ-TR) and begin with introducing the
following abbreviations:

BA(~u, v, w) := ~u, v ∈ w ∧ Ad(w) ∧ (∀x ∈ v)(∃y ∈ w)Aw(~u, x, y)

CA(~u, v, w) := BA(~u, v, w) ∧ (∀z ∈ w)¬BA(~u, v, z)

Obviously, BA(~u, v, w) and CA(~u, v, w) are ∆0 formulas, and with Σ reflection
and the limit axiom (Lim) we obtain for arbitrary parameters ~a that

∀x∃yA(~a, x, y) → ∀v∃wBA(~a, v, w).(1)

Hence Lemma 3, i.e. the fact that an admissible cannot contain itself, and
Lemma 4 imply in view of (1) that

∀x∃yA(~a, x, y) → ∀v∃!wCA(~a, v, w).(2)

The operation described by this fact will now be iterated along the standard
less relation <N on the natural numbers N. To adjust everything to the
formulation of Theorem 6 we define

DA(~u, x, y, z) := CA(~u,
⋃
{v : (∃w ∈ N)(w <N x ∧ 〈w, v〉 ∈ y)}, z).
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Trivially, we have Wo(N, <N). Furthermore, (2) implies that

∀x∃yA(~a, x, y) → (∀x ∈ N)∀y∃!zDA(~a, x, y, z).(3)

Because of Theorem 6 we consequently know that there exists a function f
whose domain is the set N and which satisfies Hier+DA

(~a, N, <N, f), i.e.

∀x∃yA(~a, x, y) → ∃fHier+DA
(~a, N, <N, f).(4)

The function f which is claimed to exist in (4) has to be unique. Thus also
the set d,

d :=
⋃
{f(x) : x ∈ N},

is uniquely determined. Under the assumption ∀x∃yA(~a, x, y) it is now easily
verified that we have for this set d the desired properties ~a ∈ d, Ad(d) and
(∀x ∈ d)(∃y ∈ d)Ad(~a, x, y)).

To finish the proof of our lemma, we set

A](~u, v) := ∃f(Hier+DA
(~u, N, <N, f) ∧ v =

⋃
{f(x) : x ∈ N}).

Our previous considerations make it clear that for this Σ formula A](~u, v)
both assertions of our lemma are satisfied. 2

5 The well-ordering proof in KPi0 + (Σ-TR)

Now the stage is set for extending the well-ordering proof in Jäger, Setzer,
Kahle and Strahm [5] to our set theory KPi0 +(Σ-TR), similar to how Rüede
[8] adopts it for the treatment of Σ1

1 transfinite dependent choice. We will
show that all ordinals less than ϕω00 are provable in KPi0 + (Σ-TR).

As in, for example, Jäger and Strahm [6] we work with the ternary Veblen
functions for coping with an sufficiently long initial segment of the ordinals.
The usual Veblen hierarchy is generated by the binary function ϕ, starting
off with ϕ0β = ωβ, and often discussed in the literature, cf. e.g. Pohlers [7]
or Schütte [10]. The ternary Veblen function ϕ is easily obtained from the
binary ϕ as follows:

1. ϕ0βγ is ϕβγ.

2. If α > 0, then ϕα0γ denotes the γth ordinal which is strongly critical
with respect to all functions λξ.λη.ϕδξη for δ < α.
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3. If α > 0 and β > 0, then ϕαβγ denotes the γth common fixed point of
the functions λη.ϕαδη for δ < β.

Let Ξ0 be the least ordinal greater than 0 which is closed under addition
and the ternary ϕ. In the following we will work with a standard primitive
recursive notation system (OT,≺) for all ordinals less than Ξ0. All required
definitions are straightforward generalizations of those used for building a
notation system for Γ0 (cf. [7, 10]) and can be omitted.

In this section we let a b, c, . . . (possibly with subscripts) range over the set
OT; in addition, ` is used for codes of limit ordinals; the terms 0̂, 1̂, 2̂, . . . act
as codes for the finite ordinals. To simplify the notation we often write the
ordinal constants and ordinal functions such as, for example,

0, 1, ω, λξ.λη.(ξ + η), λξ.ωξ, λζ.λξ.λη.ϕζξη

instead of the corresponding codes and primitive recursive functions. Another
useful binary operation on ordinal notations, introduced in Jäger, Setzer,
Kahle and Strahm [5], is given by

a ↑ b := ∃c∃`(b = c + a · `).

For completeness we also recall how it is expressed that our specific primitive
recursive relation ≺ is a well-ordering, that a formula is progressive with
respect to ≺ and how transfinite induction along ≺ is defined for arbitrary
formulas:

Wo(a) := Wo({b : b ≺ a}, {〈c, b〉 : c ≺ b ≺ a}),

Prog(A) := ∀a((∀b ≺ a)A(b) → A(a)),

TI(A, a) := Prog(A) → (∀b ≺ a)A(b).

Maybe apart from a ↑ b, all these notions are standard in the context of well-
ordering proofs. For dealing with KPi0 + (Σ-TR) we need further predicates
Kn(u) and Hn(a, u, f) which are defined simultaneously by induction on the
natural number n as well as the predicates I(b, f, a) and Mn(b, f, a):

T (f) := Fun(f) ∧ Dom(f) = OT,

K1(a) := Ad(a),

Kn+1(a) := Ad(a) ∧ [∀x∃f(T (f) ∧ ∀a(Wo(a) → Hn(a, x, f)))]a,
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Hn(a, u, f) := T (f) ∧ (∀b ≺ a)(f�b ∈ f(b) ∧ u ∈ f(b) ∧ Kn(f(b))),

I(b, f, a) := (∀c ≺ b)(∀x ∈ f(c))TI(x, a),

Mn(b, f, a) := ∀c(∀d � b)(ω1+a ↑ d ∧ I(d, f, c) → I(d, f, ϕn̂ac)).

The first lemma concerning this machinery states that each set a is provably
element of a set b which satisfies the property Kn. It plays a key role in our
well-ordering proof.

Lemma 8 (Main lemma) For any natural number n greater than 0 there
exists a Σ formula Fn(u, v) of L? so that KPi0 + (Σ-TR) proves

∀x∃!yFn(x, y) ∧ ∀x∀y(Fn(x, y) → x ∈ y ∧ Kn(y)).

Proof We prove this assertions by complete induction on n. For n = 1 we
simply have to set

F1(u, v) := (v = u+).

Because of Lemma 4 and the discussion following this lemma we know that
this formula F1(u, v) satisfies our requirements. Now we assume n > 1 and
apply the induction hypothesis to provide a Σ formula Fn−1(u, v) so that
KPi0 + (Σ-TR) proves

∀x∃!yFn−1(x, y) ∧ ∀x∀y(Fn−1(x, y) → x ∈ y ∧ Kn(y)).(1)

Based on this Σ formula Fn−1(u, v) we introduce the auxiliary Σ formula
Bn(u, v, w),

Bn(u, v, w) := Fn−1({u, v}, w).

¿From (1) we immediately conclude that KPi0 + (Σ-TR) proves

∀x∀y∃!zBn(x, y, z).(2)

Hence Bn(u, v, w) defines a Σ operation to which we want to apply Theorem 6
in a next step. This theorem 6 implies for any parameter u and any element
c of OT that, provably in KPi0 + (Σ-TR),

Wo(c) →

{
∃g[Fun(g) ∧ Dom(g) = {d : d ≺ c} ∧

(∀d ≺ c)Bn(u, g�d, g(d))].
(3)

Now define En(u, c, g) to be the Σ formula

Fun(g) ∧ Dom(g) = {d : d ≺ c} ∧ (∀d ≺ c)Bn(u, g�d, g(d)).
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Until the end of this section we work informally in KPi0 +(Σ-TR) and rewrite
statement (3) as

∀c∃g(Wo(c) → En(u, c, g)).(4)

Σ reflection, the limit axiom (Lim) and Σ persistence in connection with (4)
guarantee the existence of an admissible set d such that

∀c(∃g ∈ d)(Wod(c) → Ed
n(u, c, g)).(5)

We further claim that for all elements g and g′ of d

Wod(c) ∧ a ≺ b ≺ c ∧ Ed
n(u, b, g) ∧ Ed

n(u, c, g′) → g(a) = g′(a),(6)

a fact that can be easily checked by inspecting the definitions of En(u, b, g)
and En(u, c, g′). A next step in the proof of our lemma is to set

f :=
⋃
{g ∈ d : ∃c(Wod(c) ∧ Ed

n(u, c, g)} ∪ {〈c, ∅〉 : ¬Wod(c)}.

f is an element of d+; by (6) we know that it is a function, and Dom(f) = OT
is immediate from its definition. Assertion (5) and the definition of f yield,
in addition, that

Wod(c) → (∀d ≺ c)(u ∈ f(d) ∧ f�d ∈ f(d) ∧ Kn−1(f(d)))(7)

and this, in turn, implies because of Σ persistence and our previous remarks
about f that

∀x∃f(T (f) ∧ ∀c(Wo(c) → Hn−1(c, x, f))).(8)

The last step of our proof consists in applying Π2 reflection on Ad, to the Σ
formula An(u, v, w),

An(u, v, w) := (u = u) ∧ T (w) ∧ ∀c(Wo(c) → Hn−1(c, v, w)).

Lemma 7 implies the existence of a Σ formula A]
n(u, v) so that from (8) we

may deduce for any parameter a that

∃!yA]
n(a, y),(9)

∀y(A]
n(a, y) → a ∈ y ∧ Ad(y) ∧ (∀x ∈ y)(∃f ∈ y)Ay

n(a, x, f)).(10)

By choosing Fn(u, v) to be the formula A]
n(u, v), the assertions (9) and (10)

together with the definition of the formula Kn(v) immediately imply

∀x∃!yFn(x, y) ∧ ∀x∀y(Fn(x, y) → x ∈ y ∧ Kn(y)).
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This finishes the induction step, and therefore also the proof of our lemma
is completed. 2

The proofs of the following three lemmas can be easily recaptured by (more
or less notational) adaptations of the corresponding proofs in Jäger, Kahle
Setzer and Strahm [5] and Rüede [8]. Therefore we omit all details and
confine ourselves to providing exact references.

Lemma 9 The following three assertions can be proved in BS0:

1. H1(`, u, f) ∧ I(`, f, a) → I(`, f, ϕa0).

2. H1(`, u, f) → Prog({a : I(`, f, ϕ10a)}).

3. H1(b, u, f) → Prog({a : M1(b, f, a)}.

Proof For all details concerning the proof of these three assertions see
Lemma 5, Lemma 6 and Lemma 7 of [5]. 2

Lemma 10 For any natural number n greater than 0 the following three
assertions can be proved in BS0:

1. Kn+1(a) ∧ [∀x∀f∀b(Hn(b, x, f) → Prog({c : Mn(b, f, c)}))]a

→ ∀c[(∀x ∈ a)TI(x, c) → (∀x ∈ a)TI(x, ϕn̂c0)].

2. Kn+1(a) ∧ ∀c[(∀x ∈ a)TI(x, c) → (∀x ∈ a)TI(x, ϕn̂c0)]

→ Prog({c : (∀x ∈ a)TI(x, ϕ(n̂+1)0c)}).

3. Hn(b, u, f) ∧ ∀a[Kn(a) → Prog({c : (∀x ∈ a)TI(x, ϕn̂0c)})]
→ Prog({c : Mn(b, f, c}).

Proof For all details concerning the proof of these three assertions see
Lemma 4, Lemma 5 and Lemma 6 of [8]. 2

Lemma 11 For any natural number n greater than 0 the following three
assertions can be proved in BS0:

1. Ad(a) → [∀x∀f∀bHn(b, x, f) → Prog({c : Mn(b, f, c)})]a.

2. Kn+1(a) → ∀c[(∀x ∈ a)TI(x, c) → (∀x ∈ a)TI(x, ϕn̂c0)].

3. Kn+1(a) → Prog({c : (∀x ∈ a)TI(x, ϕ(n̂+1)0c)}).
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Proof Start with showing that the first assertion implies the second and
the second the third. Then prove the first assertion by induction on n. For
details see Theorem 6 of [8]. 2

Theorem 12 (Lower bound) For any natural number n we have that

KPi0 + (Σ-TR) ` ∀xTI(x, ϕn̂00).

Proof Fix any natural number n greater than 0. Arguing informally in
KPi0 + (Σ-TR), let a be an arbitrary set. In view of Lemma 8 we know that
there exist a set b satisfying

a ∈ b ∧ Kn+1(b).(1)

The second part of Lemma 11 yields, in addition, that

Kn+1(b) → ∀c[(∀x ∈ b)TI(x, c) → (∀x ∈ b)TI(x, ϕn̂c0)],(2)

and, consequently, if we set c = 0,

Kn+1(b) → (∀x ∈ b)TI(x, ϕn̂00)].(3)

¿From (1) and (3) we conclude TI(a, ϕn̂00), which is exactly what we had to
show. 2

An ordinal α is called provable in the theory T – formulated in L? or a similar
language – if there exists a primitive recursive well-ordering C on the natural
numbers of order-type α so that

T ` Wo(N, C).

The least ordinal which is not provable in T is called the proof-theoretic
ordinal of T and denoted by |T|.
¿From Theorem 2, Theorem 12 above and the results of Jäger and Strahm [6],
which tell us that |KPm0| ≤ ϕω00, we derive the following characterization
of the theory KPi0 + (Σ-TR) in terms of their proof-theoretic ordinal.

Corollary 13 The set theories KPi0 + (Σ-TR) and KPm0 have the same
proof-theoretic strength, namely

|KPi0 + (Σ-TR)| = |KPm0| = ϕω00.

Of course, Theorem 2 and Theorem 12 also show that any ordinal less than
ϕω00 is provable in KPm0. A direct proof of this result can be found in
Strahm [11].
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