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Abstract
Let ≺ be a primitive recursive well-ordering on the natural numbers
and assume that its order-type is greater than or equal to the proof-
theoretic ordinal of the theory T. We show that the proof-theoretic
strength of T is not increased if we add the negation of the statement
which formalizes transfinite induction along ≺.
Key words Proof theory, proof-theoretic strength, transfinite induc-
tion.
MSC (2000) 03F03, 03F05, 03F15, 03F25

1 Introduction

The technique of pseudo-hierarchies has become a powerful tool in several ar-
eas of mathematical logic and goes back to Spector [13], Gandy [3] and – in its
full form – to Feferman and Spector [2]. The method of pseudo-hierarchies in
connection with subsystems of second order arithmetic is described in Simp-
son [12] in extenso; a typical application for specific fixed point definitions is
given in Avigad [1].

Recent work on metapredicative theories for iterated admissible sets and ex-
plicit mathematics with comparatively weak induction principles – see Probst
[9] and some papers in preparation [5, 8] for all relevant details – makes it
desirable to apply similar strategies, but the use of pseudo-hierarchies in
subsystems of set theory and explicit mathematics seems to be a different
matter.

For the proof-theoretic applications we have in mind, pseudo-hierarchy con-
structions cannot directly be employed. However, there is a way around
this:

(i) Given a suitable set theory T, extend it to a system T† by adding the
negations of certain instances of transfinite induction which are not
derivable in T.
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(ii) Work now within T† where pseudo-hierarchies can be employed, similar
to as it is done in subsystems of second order arithmetic.

(iii) Finally by showing that T† has the same proof-theoretic strength as T,
we achieve what we desire.

In this short technical note we are concerned with step (iii) which is inter-
esting in its own right. Let T be any theory with proof-theoretic ordinal α,
and let ≺ be a primitive recursive well-ordering of the natural numbers of
order-type greater than or equal to α. Then it is clear that T cannot prove
the statement I≺,

I≺ := (∀X ⊂ N)[(∀u ∈ N)((∀v ≺ u)(v ∈ X) → (u ∈ X)) → N ⊂ X],

formalizing transfinite induction along the well-ordering ≺. This implies that
the theory T+¬I≺, which results from T by adding the negation of the true
statement I≺, is consistent. It is a natural question to ask whether such
extensions lead to an increase of proof-theoretic strength.

This question is answered negatively below. To achieve this result we only
have to modify the proof of Schütte’s famous boundedness theorem for in-
finitary number theory PA∞.

2 The semiformal system PA∞

Let L2 be any standard language of second order arithmetic with number vari-
ables a, b, c, u, v, w, x, y, z, . . ., set variables X, Y, Z, . . . (both possibly with
subscripts), the symbol ∈ for membership, the constant 0, the unary func-
tion symbol S for the successor function as well as function and relation
symbols for all other primitive recursive functions and relations. Starting off
from this alphabet, the number terms r, s, t, . . . (possibly with subscripts) of
L2 are defined as usual; the set terms of L2 are just its set variables.

The formulas of L2 and the axioms and rules of the system PA∞ will be
formulated in a Tait-style. This is only in order to fix a framework which is
convenient for our proof-theoretic considerations below. Gentzen or Schütte
calculi, for example, would work just as well.

The positive literals of L2 are all expressions of the form R(t1, . . . , tn) and
(t ∈ X) where R is a relation symbol for an n-ary primitive recursive relation,
X is a set variable and t, t1, . . . , tn are number terms of L2. The negative
literals of L2 have the form ∼E so that E is a positive literal of L2; for
∼(t ∈ X) we write (t 6∈ X).
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The formulas A, B, C,D, . . . (possibly with subscripts) of L2 and their ranks
are inductively generated from the positive and negative literals by clos-
ing under disjunctions, conjunctions and existential and universal quantifi-
cations; i.e.

1. Each positive and negative literal E is a formula; rn(E) := 0.

2. If A and B are formulas, then so also are (A ∨B) and (A ∧B);

rn(A ∨B) := rn(A ∧B) := max(rn(A), rn(B)) + 1.

3. If A is a formula, then so also are ∃uA and ∀uA;

rn(∃uA) := rn(∀uA) := rn(A) + 1.

4. If A is a formula, then so also are ∃XA and ∀XA;

rn(∃XA) := rn(∀XA) := rn(A) + 1.

The negation ¬A of an L2 formula A is defined by making use of the law of
double negation and de Morgan’s laws, and all other logical connectives are
abbreviated in the standard way.

The arithmetic formulas of L2 are the formulas of L2 which do not contain
set quantifiers. The terms of L2 which do not contain free occurrences of
number variables are the closed terms of L2; the formulas of L2 which do not
contain free occurrences of number variables are the semi-closed formulas
of L2. Semi-closed formulas of L2 may contain set variables. Based on
the standard interpretation of all function symbols, a uniquely determined
natural number Val(t) – the value of t – is associated to any closed number
term t of L2. We call two semi-closed literals of L2 numerically equivalent if
they are syntactically identical modulo subterms which have the same value.

The true [false] positive literals of L2 are the literals R(t1, . . . , tn) where
R is the relation symbol for an n-ary primitive recursive relation R, the
number terms t1, . . . , tn are closed and R(Val(t1), . . . , Val(tn)) is true [false].
Accordingly, the true [false] negative literals of L2 are the literals ∼E so that
E is a false [true] positive literal. Let T be the collection of all true positive
and true negative literals of L2 and F the collection of all false positive and
false negative literals of L2.

The semiformal system PA∞ works with finite sets Γ, ∆, Φ, Ψ, . . . (possibly
with subscripts) of semi-closed arithmetic formulas of L2, which have to be
interpreted disjunctively. If A is a semi-closed arithmetic L2 formula, then

3



Γ, A is shorthand for Γ ∪ {A}, and similar for expressions, for example, of
the form Γ, A,B.

The axioms and rules of inference of the system PA∞ can now be divided
into the following four groups:

I. Axioms of PA∞. For all finite sets Γ of semi-closed arithmetic L2 for-
mulas, all elements A of T and all numerically equivalent literals B and C:

Γ, A and Γ, ¬B, C.

II. Propositional rules of PA∞. For all finite sets Γ of semi-closed arith-
metic L2 formulas and all semi-closed arithmetic L2 formulas A and B:

Γ, A

Γ, A ∨B
,

Γ, B

Γ, A ∨B
,

Γ, A Γ, B

Γ, A ∧B
.

III. Quantifier rules of PA∞. For all finite sets Γ of semi-closed arithmetic
L2 formulas and all semi-closed arithmetic L2 formulas A(a):

Γ, A(s)

Γ, ∃uA(u)
,

Γ, A(t) for all closed terms t

Γ, ∀uA(u)
(ω-rule).

IV. Cut rules of PA∞. For all finite sets Γ of semi-closed arithmetic L2

formulas and all semi-closed arithmetic L2 formulas A:

Γ, A Γ, ¬A

Γ
.

The formulas A and ¬A are the cut formulas of this cut; the rank of this cut
is the rank rn(A) = rn(¬A) of its cut formulas.

The (ω-rule) is an inference rule with infinitely many premises, and as a con-
sequence, derivations in PA∞ may be of infinite depth. The exact definition
of derivability in PA∞ is as follows.

Definition 1 Let Γ be a finite set of semi-closed arithmetic L2 formulas.
Then PA∞ `α

n Γ is defined for all ordinals α and natural numbers n by
induction on α.

1. If Γ is an axiom of PA∞, then we have PA∞ `α
n for all ordinals α and

all natural numbers n.

2. If PA∞ `αι
n Γι and αι < α for all premises Γι of a propositional rule,

a quantifier rule or a cut whose rank is less than n, then we have
PA∞ `α

n Γ for the conclusion Γ of this rule.
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Thus PA∞ `α
0 Γ means that Γ is provable in PA∞ by a proof of depth

bounded by α which does not make use of any cut rule. Furthermore, we
write PA∞ `<α

0 Γ if there exists an ordinal β < α so that PA∞ `β
0 Γ.

Our system PA∞ simply is one specific formulation of infinitary first order
arithmetic. One of the main features of such systems is their cut elimination
property.

Theorem 2 (Gentzen, Schütte) For all finite sets Γ of semi-closed arith-
metic formulas of L2, all ordinals α and all natural numbers n we have that

PA∞ `α
n Γ =⇒ PA∞ `2(n,α)

0 Γ.

For a proof of this theorem and further details we refer, for example, to
Schütte [11]. The ordinal 2(n, α) is inductively defined by setting 2(0, α) := α
and 2(n+1, α) := 22(n,α).

3 An extension of Schütte’s boundedness

theorem

One of the applications of cut-free proofs in infinitary first order arithmetic
is Schütte’s celebrated boundedness theorem. It plays a crucial rôle in deter-
mining upper proof-theoretic bounds by means of infinitary proof theory.

We have to fix some notation first. If R≺ is the binary relation symbol of L2

denoting the primitive recursive well-ordering ≺, we usually write (s ≺ t) or
simply s ≺ t instead of R≺(s, t). Further convenient abbreviations are:

(∃u ≺ t)A(u) := ∃u(u ≺ t ∧ A(u)),

(∀u ≺ t)A(u) := ∀u(u ≺ t → A(u)),

Prog≺(Z) := ∀u((∀v ≺ u)(v ∈ Z) → (u ∈ Z)),

TI≺(t, Z) := Prog≺(Z) → (∀u ≺ t)(u ∈ Z),

I≺(t) := ∀ZTI≺(t, Z).

The order-type of a primitive recursive well-ordering ≺ is denoted by |≺|,
and, for any closed number term t of L2, we let |t|≺ be the order-type of the
natural number Val(t) with respect to this well-ordering.

Schütte’s boundedness theorem states that there is a close relationship be-
tween the cut-free provability of the assertion TI≺(t, Z) within PA∞ and the
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ordinal |t|≺: a cut-free PA∞ proof of depth, more or less, |t|≺ is required in
order to establish within PA∞ that the initial part of ≺ up to t is well-ordered.

Theorem 3 (Boundedness Theorem) Let ≺ be some primitive recursive
well-ordering. For any closed number term t of L2 and any ordinal α we
have that

PA∞ `α
0 TI≺(t, Z) =⇒ |t|≺ ≤ ωα.

The proof of this theorem is given in Schütte [11] in all details; alternatively,
it can also be found in Pohlers [7].

Now we turn to the variation or extension of Schütte’s theorem which is the
main topic of this note. The crucial step is the following main lemma whose
proof is tailored according to a corresponding lemma in Schütte [11].

Lemma 4 (Main Lemma) Let ≺ be a primitive recursive well-ordering
and suppose that we are given two ordinals α, β < |≺|, two sets Γ and ∆ of
semi-closed arithmetic L2 formulas and two finite sets M+ and M− of closed
number terms of L2 so that the following assumptions are satisfied:

(1) M+ 6= ∅ and β = min{|r|≺ : r ∈ M+},

(2) {|r|≺ : r ∈ M+} ∩ {|r|≺ : r ∈ M−} = ∅,

(3) ∆ ⊂ {¬Prog≺(Z)} ∪ {(r ∈ Z) : r ∈ M+} ∪ {(r 6∈ Z) : r ∈ M−} ∪ F,

(4) the relation variable Z does not occur in Γ,

(5) PA∞ `α
0 Γ, ∆ and ωα ≤ β.

Then we even have that PA∞ `α
0 Γ.

Proof We prove this assertion by induction on α and distinguish the fol-
lowing cases.

1. The set Γ ∪∆ is an axiom of PA∞. Then already Γ has to be an axiom,
hence PA∞ `α

0 Γ.

2. The main formula of the last inference (S) belongs to Γ. Then we apply
the induction hypothesis to the premises of (S) and derive Γ afterwards by
applying (S) again.

3. The main formula of the last inference (S) belongs to ∆. Then this
formula has to be the formula ¬Prog≺(Z), and there exist a γ < α and a
closed number term t of L2 so that

PA∞ `γ
0 Γ, ∆, (∀u ≺ t)(u ∈ Z) ∧ (t 6∈ Z).(1)
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By simple inversion we deduce from (1) that

PA∞ `γ
0 Γ, ∆, (∀u ≺ t)(u ∈ Z),(2)

PA∞ `γ
0 Γ, ∆, (t 6∈ Z).(3)

We continue by considering the following two subcases:

3.1. |t|≺ 6∈ {|r|≺ : r ∈ M+}. Considering (3), we now immediately realize
that the assumptions (1)–(5) of our lemma are satisfied if we replace the
ordinal α by γ, the set of formulas ∆ by ∆, (t 6∈ Z) and the set of terms
M− by M− ∪ {t}. Thus the induction hypothesis implies PA∞ `γ

0 Γ, and,
consequently, we have PA∞ `α

0 Γ.

3.2. |t|≺ ∈ {|r|≺ : r ∈ M+}. In this case we have

ωγ < ωα ≤ β ≤ |t|≺.(4)

Since M− is finite, there exists a closed number term s of L2 with the prop-
erties

|s|≺ 6∈ {|r|≺ : r ∈ M−},(5)

ωγ < |s|≺ < β.(6)

From assertions (4) and (6) we conclude s is smaller than t in the sense of ≺
so that the formula s 6≺ t belongs to F. In addition, an inversion applied to
(2) yields

PA∞ `γ
0 Γ, ∆, s 6≺ t, (s ∈ Z).(7)

The next step is to set M ′
+ := M+ ∪ {s} and to note that

ωγ < |s|≺ = min{|r|≺ : r ∈ M ′
+}.(8)

In view of (7) we easily check, as in the previous subcase, that the assump-
tions (1)–(5) of our lemma are satisfied if we replace, this time, the ordinals α
and β by γ and |s|≺, respectively, the set of formulas ∆ by ∆, s 6≺ t, (s ∈ Z)
and the set of terms M+ by M ′

+. Hence PA∞ `γ
0 Γ by induction hypoth-

esis and therefore PA∞ `α
0 Γ, as required. This completes the proof of our

lemma. 2

In the formulations below we confine ourselves to theories T whose languages
L(T) comprise our language L2. However, everything works as well provided
that there is a natural and canonical embedding of L2 into L(T).
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Definition 5 Let T be any theory which is formulated in a language L(T)
comprising L2. Then T is called α-equivalent to PA∞ if α is the least ordinal
so that we have

T ` A =⇒ PA∞ `<α
0 A

for all semi-closed arithmetic formulas A of L2. In this situation we write
T 'α PA∞.

The notion of α-equivalence to PA∞ is technically well-suited for our present
purpose. It is closely related to the proof-theoretic strength of a theory
measured in terms of its proof-theoretic ordinal which can be defined, in our
present context, as follows.

Definition 6 Let T be a theory which is formulated in a language L(T)
comprising L2.

1. The ordinal α is provable in T if there exists a primitive recursive
well-ordering ≺ of order-type α so that

T ` ∀uI≺(u).

2. The proof-theoretic ordinal of T, denoted by |T|, is the least ordinal
which is not provable in T.

Although we do not formulate an abstract theorem stating that a theory
T is α-equivalent to PA∞ if and only if its proof-theoretic ordinal is α, we
nevertheless want to point out that this is the case in natural situations.
In general, a non-artificial theory which is α-equivalent to PA∞ has proof-
theoretic ordinal α, and vice versa.

To verify this observation, let us have a look at, for example, the proof-
theoretic machinery and the subsystems of first order arithmetic, second or-
der arithmetic and set theory studied in Schütte [11], Pohlers [7] and Jäger [4].
For all these theories T it can be checked immediately that T is α-equivalent
to PA∞ if and only if α is its proof-theoretic ordinal. More precisely: let T
be any theory whose proof-theoretic ordinal has been determined to be the
ordinal α via traditional ordinal analysis; then we may expect that it is proof-
theoretic routine to read of from this ordinal analysis that T is α-equivalent
to PA∞.

The following definition introduces extensions of a given theory by negations
of instances of certain transfinite inductions. Afterwards, it is shown that no
proof-theoretic strength is gained by moving to these extensions.
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Definition 7 Let T be a theory which is formulated in a language L(T)
comprising L2, and let ≺ be a primitive recursive well-ordering. For any
ordinal α less than |≺| we define the α-extension E≺(T, α) of T to be the
theory which consists of T plus all formulas of the form ¬I≺(t) where t is a
closed number term of L2 so that α ≤ |t|≺.

To simplify the formulation of the following theorem, an ordinal α is denoted
ω-closed if and only if ωα = α. We will see now that for any ω-closed α and
any theory T which is α-equivalent to PA∞, its α-extension is α-equivalent
to PA∞ as well.

Theorem 8 Suppose that T is a theory which is formulated in a language
L(T) comprising L2, that ≺ is a primitive recursive well-ordering and that
α is an ω-closed ordinal less than |≺|. Then we have that

T 'α PA∞ =⇒ E≺(T, α) 'α PA∞.

Proof We assume that T is α-equivalent to PA∞ and have to show that
E≺(T, α) is also α-equivalent to PA∞. If E≺(T, α) is β-equivalent to PA∞,
then α ≤ β since E≺(T, α) is an extension of T. Now let A be a semi-
closed arithmetic formula of L2 which is provable in E≺(T, α). Then there
exist finitely many closed number terms t1, . . . , tn of L2 with the following
properties:

α ≤ |t1|≺, . . . , |tn|≺,(1)

T ` I≺(t1) ∨ . . . ∨ I≺(tn) ∨ A.(2)

From (2) we immediately obtain

T ` TI≺(t1, Z) ∨ . . . ∨ TI≺(tn, Z) ∨ A(3)

for some set variable Z which does not occur in A. Thus some simple ma-
nipulations within T yield

T ` ¬Prog≺(Z) ∨ (t1 ∈ Z) ∨ . . . ∨ (tn ∈ Z) ∨ A.(4)

Exploiting the fact that T is α-equivalent to PA∞ we can deduce from (4)
that

PA∞ `<α
0 ¬Prog≺(Z) ∨ (t1 ∈ Z) ∨ . . . ∨ (tn ∈ Z) ∨ A(5)

and therefore also

PA∞ `<α
0 ¬Prog≺(Z), (t1 ∈ Z), . . . , (tn ∈ Z), A.(6)
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In view of our assumption that α is ω-closed and in view of Lemma 4 we
obtain from assertion (6) that PA∞ `<α

0 A. This completes the proof of our
theorem. 2

Ordinal notation systems – for representing initial segments of the ordinal
numbers – can be based in a very natural and perspicuous way on ordinal
addition and the so-called Veblen functions. For the binary Veblen function,
providing a notation system for all ordinals less than the famous Feferman-
Schütte ordinal Γ0, this is done, for example, in Schütte [11] and Pohlers [7] in
full detail. Jäger and Strahm [6] and Strahm [14] employ the ternary Veblen
function ϕ in connetion with their proof-theoretic analysis of metapredicative
subsystems of explicit mathematics and set theory.

In the following example we write < for the primitive recursive well-ordering
whose order-type is the least ordinal Υ so that Υ = ϕΥ00. The ordinal
ϕω00 mentioned below is the metapredicative Mahlo number; see Jäger and
Strahm [6] for details.

Example 9 We consider two subsystems of second order arithmetic and one
theory of (iterated) admissible sets.

1. It is proof-theoretic folklore that ϕε00 is the proof-theoretic ordinal of
the theory ∆1

1-CA and that ∆1
1-CA is ϕε00-equivalent to PA∞. So if we

pick a closed number term r of L2 whose order type with respect to <

is greater than or equal to ϕε00, then the assertion I<(r) – although
true in the standard model – cannot be proved in ∆1

1-CA. In view of
Theorem 8 its negation can be added to ∆1

1-CA without providing any
additional strength;

∆1
1-CA + ¬I<(r) 'ϕε00 PA∞ and |∆1

1-CA + ¬I<(r)| = ϕε00.

2. The same considerations can be applied to the system Σ1
1-TDC of Σ1

1

transfinite dependent choice which has been introduced by Rüede and is
studied in [10]. It follows from the work there that |Σ1

1-TDC| = ϕω00
and that Σ1

1-TDC is ϕω00-equivalent to PA∞. Hence for any closed
number term s of L2 so that ϕω00 ≤ |s|< Theorem 8 yields that

Σ1
1-TDC + ¬I<(s) 'ϕω00 PA∞ and |Σ1

1-TDC + ¬I<(s)| = ϕω00.

3. Now we turn to a subsystem of set theory and consider the theory
KPm0 of Jäger and Strahm [6]. It formalizes that we have a Mahlo
universe, i.e. Π2 reflection on the admissibles; ∈-induction, however, is
not available. The language L(KPm0) of KPm0 contains the language
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L2 modulo an obvious translation A∗ of any L2 formula A. According
to [6], KPm0 is ϕω00-equivalent to PA∞ and ϕω00 is the proof-theoretic
ordinal of KPm0. As in the case above we can therefore deduce with
the help of Theorem 8 that

KPm0 + ¬I∗<(s) 'ϕω00 PA∞ and |KPm0 + ¬I∗<(s)| = ϕω00,

provided that, as before, s is a closed number term whose order type
with respect to the well-ordering < is greater than or equal to ϕω00.

Obviously, Theorem 8 can also be applied in the context of theories of explicit
mathematics, and corresponding examples can be found. However, in this
short note we do not want to go into details of the application of this theorem,
instead we refer the reader to forthcoming publications.
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[5] Gerhard Jäger and Dieter Probst, Metapredicative fixed points in explicit
mathematics, in preparation.
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