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Dedicated to H. Schwichtenberg for his 60th birthday

Abstract

The notions of common knowledge or common belief play an impor-
tant role in several areas of computer science (e.g. distributed sys-
tems, communication), in philosophy, game theory, artificial intelli-
gence, psychology and many other fields which deal with the interac-
tion within a group of “agents”, agreement or coordinated actions. In
the following we will present several deductive systems for common
knowledge above epistemic logics – such as K, T, S4 and S5 – with
a fixed number of agents. We focus on structural and proof-theoretic
properties of these calculi.

1 Introduction

The notions of common knowledge or common belief play an important role in
several areas of computer science (e.g. distributed systems, communication),
in philosophy, game theory, artificial intelligence, psychology and many other
fields which deal with the interaction within a group of “agents”, agreement
or coordinated actions. Everybody has a vague intuitive understanding of
what common knowledge (belief) should be, and for a lot of applications such
informal approaches may suffice. On the other hand, in many cases a formal
mathematical treatment of common knowledge (belief) is required.

There are two main directions in developing formalizations of reasoning with
and about common knowledge:

• Barwise (cf. e.g. [3, 4]) discusses common knowledge within his Situ-
ation Semantics and his general treatment Situation in Logic. Basic
ingredients are the sets SIT of situations and FACTS of facts.
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• Alternatively, common knowledge may be studied by starting off from
epistemic logics, i.e. in the context of multi-modal logics; see the text-
books Fagin, Halpern, Moses and Vardi [5] and Meyer and van der
Hoek [12] for a good introduction.

Although being built up from different “atoms”, there exist interesting con-
nections between these two formal frameworks for common knowledge. For
example, largest fixed points of suitable operators are used in a crucial way
in both cases. In this article, however, we will confine ourselves to common
knowledge in its multi-modal version. More about its relationship to common
knowledge à la Barwise can be found in Graf [7] and Lismont [11].

In the following we will present several deductive systems for common knowl-
edge above epistemic logics – such as K, T, S4 and S5 – with a fixed number
of agents. We focus on structural and proof-theoretic properties of these cal-
culi, in particular in connection with cuts and cut elimination.

For completeness we recall the basic syntactic and semantic notions of our
logics of common knowledge and introduce their standard Hilbert-style for-
mulations. In the later sections we turn to finitary and infinitary Tait-calculi,
present results about partial cut elimination for the finitary system and total
cut elimination for the infinitary one. In addition we study two interesting
finite and cut-free fragments of the infinitary calculus.

2 Syntax and semantics of logics of common

knowledge

Let Ln(C) be our standard language for multi-modal logic which comprises
a set PROP of atomic propositions, typically indicated by P,Q, . . . (possibly
with subscripts), the propositional connectives ∨ and ∧, the epistemic oper-
ators K1,K2, . . . ,Kn and the common knowledge operator C; in addition we
assume that there is an auxiliary symbol ∼ for forming the complements of
atomic propositions and dual epistemic operators. The formulas α, β, γ, . . .
(possibly with subscripts) of Ln(C) and the depth dpt(α) for each Ln(C)
formula α are inductively generated as follows:

1. All atomic propositions P and their complements ∼P are Ln(C) for-
mulas;

dpt(P ) := dpt(∼P ) := 0.

2. If α and β are Ln(C) formulas, so are (α ∨ β) and (α ∧ β);

dpt((α ∨ β)) := dpt((α ∧ β)) := max(dpt(α), dpt(β)) + 1.
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3. If α is an Ln(C) formula, so are Ki(α) and ∼Ki(α);

dpt(Ki(α)) := dpt(∼Ki(α)) := dpt(α) + 1.

4. If α is an Ln(C) formula, so are C(α) and ∼C(α);

dpt(C(α)) := dpt(∼C(α)) := dpt(α) + n+ 1.

See below for an explanation why the number n, i.e. the number of agents,
has to be added in the last clause. The Ln(C) formulas ∼P act as negations
of the atomic proposition P ; the duals ∼Ki and ∼C of the modal operators
Ki and C, respectively, are needed in forming the negations ¬α of general
Ln(C) formulas α (by making use of de Morgan’s laws and the law of double
negation):

1. If α is the atomic proposition P , then ¬α is ∼P ; if α is the formula
∼P , then ¬α is P .

2. If α is the formula (β ∨ γ), then ¬α is (¬β ∧ ¬γ); if α is the formula
(β ∧ γ), then ¬α is (¬β ∨ ¬γ).

3. If α is the formula Ki(β), then ¬α is ∼Ki(¬β); if α is the formula
∼Ki(β), then ¬α is Ki(¬β).

4. If α is the formula C(β), then ¬α is ∼C(¬β); if α is the formula ∼C(β),
then ¬α is C(¬β).

Often we omit parentheses if there is no danger of confusion and abbreviate
the remaining logical connectives as usual; in addition we set

E(α) := K1(α) ∧ . . . ∧ Kn(α).

The definition of the depth of the formulas C(α) and ∼C(α) has been tailored
so that we always have

dpt(E(α)) = dpt(∼E(α)) < dpt(C(α)) = dpt(∼C(α)).

A possible intuitive interpretation of Ki(α) is “agent i knows (believes) that
α”, and thus E(α) can be understood as “everybody knows (believes) that
α”. The latter formula has to be strictly distinguished from C(α), which
expresses common knowledge of α among the agents 1 to n (see below).
We also need the iterations Em(α) for all natural numbers m, inductively
introduced as

E0(α) := α and Em+1(α) := E(Em(α)).
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Turning to the semantics of Ln(C), we define a Kripke-frame (for Ln(C)) to
be an (n+1)-tuple

M = (W,K1, . . . ,Kn)

for a non-empty set W of worlds and binary relations K1, . . . ,Kn on W ; the
set of worlds of a Kripke-frame M is often denoted by |M|. A valuation in
M then is a function V from the atomic propositions PROP to the power set
Pow(|M|) of |M|,

V : PROP → Pow(|M|).

The truth-set ‖α‖M
V of an Ln(C) formula α with respect to the Kripke-frame

M = (W,K1, . . . ,Kn) and a valuation V is defined, as usual in multi-modal
logics, by induction an the complexity of α with an additional clause for
treating the operator C:

‖P‖M
V := V(P ),

‖∼P‖M
V := W \ ‖P‖M

V ,

‖α ∨ β‖M
V := ‖α‖M

V ∪ ‖β‖M
V ,

‖α ∧ β‖M
V := ‖α‖M

V ∩ ‖β‖M
V ,

‖Ki(α)‖M
V := { v ∈ W : w ∈ ‖α‖M

V for all w so that (v, w) ∈ Ki },

‖∼Ki(α)‖M
V := W \ ‖Ki(¬α)‖M

V ,

‖C(α)‖M
V :=

⋂
{ ‖Em(α)‖M

V : m ≥ 1 },

‖∼C(α)‖M
V := W \ ‖C(¬α)‖M

V .

By means of these truth-sets we can easily express that the Ln(C) formula α
is valid in the Kripke-frame M with respect to valuation V and world w; this
is the case if w ∈ ‖α‖M

V . The following notation is convenient for expressing
this situation:

(M,V , w) |= α :⇐⇒ w ∈ ‖α‖M
V .

Observe that these semantics do not imply that α is true in all worlds which
satisfy C(α). In the literature sometimes a distinction is made between knowl-
edge and belief: knowledge of a fact implies the truth of this fact, whereas
the belief of something may be compatible with its falsity. But since the
intuitive meaning of knowledge or belief can only be approximated and can
never be completely grasped by formal semantics, we will not pay attention
to this subtlety.
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If we have (M,V , w) |= α for all valuations V in M and all worlds w ∈ |M|
of a Kripke-frame M, then α is valid in M,

M |= α.

Our semantics reflects the so-called iterative interpretation of common knowl-
edge:

(M,V , w) |= C(α) ⇐⇒ (M,V , w) |=
∧
m≥1

Em(α).

Thus α is common knowledge if everybody knows α and everybody knows
that everybody knows α and everybody knows that everybody knows that
everybody knows α and so on. Alternatively, we could also treat common
knowledge in the sense of the greatest fixed point interpretation since

(?) ‖C(α)‖M
V =

⋃
{X ⊂ |M| : X = ‖E(α) ∧ E(Q)‖M

V[Q:=X] }

where Q is chosen to be an atomic proposition which does not occur in α and
V [Q := X] is the valuation which maps Q to X and otherwise agrees with V .
A proof of equation (?) can be found, for example, in Fagin, Halpern, Moses
and Vardi [5].

Property (?) follows from the continuity of the operator defined by the for-
mula (E(α)∧E(Q)). There are variants of common knowledge like ε-common
knowledge or �-common knowledge so that Cε(α) and C�(α) cannot be char-
acterized by the union of the finite iterations of the corresponding operators;
then only the greatest fixed point approach makes sense (cf. e.g. [8, 5]).

Now we recall the Hilbert-style formulations of a few multi-modal logics of
common knowledge. We begin with the usual logic K, extended to n agents
plus C, and denote it by Kn(C).

Basic axioms of Kn(C)

All propositional tautologies(TAUT)

Ki(α) ∧ Ki(α→ β) → Ki(β)(K)

Basic rules of inference of Kn(C)

α α→ β

β
(MP)

α

Ki(α)
(NEC)
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Co-closure axioms of Kn(C)

C(α) → (E(α) ∧ E(C(α)))(CCL)

Induction rules of Kn(C)

β → E(α) ∧ E(β)

β → C(α)
(IND)

In these axioms and rules and in the ones which will be formulated below, α
and β may be arbitrary Ln(C) formulas. The system Tn(C) is obtained from
Kn(C) by adding all axioms

Ki(α) → α.(T)

S4n(C) is the multi-modal version of S4 with common knowledge and extends
Tn(C) by all axioms (4) for positive introspection

Ki(α) → Ki(Ki(α)).(4)

Finally, adding the corresponding axioms (5) of negative introspection to the
theory S4n(C) gives the system S5n(C),

¬Ki(α) → Ki(¬Ki(α)).(5)

Now let F be one of the theories Kn(C), Tn(C), S4n(C) or S5n(C). We employ
the standard notion of provability of an Ln(C) formula α in the theory F and
write this fact as

F ` α.

A Kripke-frame M is a model of F if all axioms of F are valid in M and if M

is closed under the rules of inference of F with respect to validity. A standard
result of modal logic characterizes the Kripke-frames M = (W,K1, . . . ,Kn)
which are models of these theories:

(1) M is a model of Kn(C) for arbitrary (binary) K1, . . . ,Kn.

(2) M is a model of Tn(C) if and only if the K1, . . . ,Kn are reflexive.

(3) M is a model of S4n(C) if and only if the K1, . . . ,Kn are reflexive and
transitive.

(4) M is a model of S5n(C) if and only if the K1, . . . ,Kn are equivalence
relations.
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Following the standard patterns, we call the Ln(C) formula α a semantic
consequence of F,

F |= α,

if α is valid in all models of F. The subsequent theorem states that syntactic
derivability is adequate for semantic consequence in all our logics.

Theorem 1 (Soundness and completeness) Let F be one of the logics
Kn(C), Tn(C), S4n(C) or S5n(C). Then we have

F ` α ⇐⇒ F |= α.

Let us now come back to the co-closure axioms and induction rules of, say,
Kn(C). The axiom (CCL) states that each formula C(α) describes a set of
states co-closed under the operator

Opα(X) := E(α) ∧ E(X)

mapping sets of states to sets of states, with respect to a given frame and
valuation. The rules (IND), on the other hand, formulate, that C(α) is the
greatest (definable) set co-closed under Opα. So we immediately obtain that
C(α) is the largest fixed point of Opα, i.e.

Kn(C) ` C(α) ↔ E(α) ∧ E(C(α)).

Proof-theoretic experience should provide a clear indication that the interplay
of (CCL) and (IND) may cause serious difficulties in finding good deductive
systems for Kn(C) and the other multi-modal logics mentioned before.

3 A Tait-style reformulation of Kn(C)

In this and the following sections we will look more carefully at the deductive
and procedural aspects of our logics of common knowledge. For simplicity we
restrict ourselves to the theory Kn(C); other logics are treated in Alberucci
[2, 1].

Obviously, inference rules like modus ponens (MP), which violate the sub-
formula property, make reasonable backward proof search impossible. The
first steps thus are a reformulation of Kn(C) as a Tait-style system with cuts
and an attempt to “tame” general cuts in a suitable way.

The Tait-calculus Kn(C) derives finite sets of Ln(C) formulas which are de-
noted by the capital Greek letters Γ,∆,Π,Σ . . . (possibly with subscripts) and
have to be interpreted disjunctively. We often write (for example) α, β,Γ,∆
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for the union {α, β} ∪ Γ ∪ ∆. In addition, if Γ is the set {α1, . . . , αm}, we
often use the following convenient abbreviations:

Γ∨ := α1 ∨ . . . ∨ αm,

¬Γ := {¬α1, . . . ,¬αm},

¬Ki(Γ) := {¬Ki(α1), . . . ,¬Ki(αm)},

¬C(Γ) := {¬C(α1), . . . ,¬C(αm)}.

The axioms and rules of Kn(C) consist of the usual propositional axioms and
rules of Tait-calculi, of rules for the epistemic operators Ki with incorporated
formulas ¬C(∆) plus specific C-rules and induction rules.

Axioms of Kn(C)

P, ¬P, Γ(ID)

Basic rules of inference of Kn(C)

α, β, Γ

α ∨ β, Γ
(∨)

α, Γ β, Γ

α ∧ β, Γ
(∧)

α, ¬Γ, ¬C(∆)

Ki(α), ¬Ki(Γ), ¬C(∆), Π
(Ki)

C-rules of Kn(C)

¬E(α), Γ

¬C(α), Γ
(¬C)

E(α), ¬C(∆)

C(α), ¬C(∆), Π
(C)

Induction rules of Kn(C)

¬β, E(α), ¬C(∆) ¬β, E(β), ¬C(∆)

¬β, C(α), ¬C(∆), Π
(Ind)
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The axioms and rules of our Tait-style formalization of Kn(C) do not com-
prise cuts; since we want to distinguish between various cut rules, we always
mention explicitly what sort of cuts we use.

Now we introduce the usual cuts, called general cuts in our present context;
restrictions of the cut rule will be discussed later.

General cuts

α, Γ ¬α, Γ

Γ
(G-Cut)

The designated formulas α and ¬α are called the cut formulas of this general
cut.

Derivability of a finite set Γ of Ln(C) formulas in Kn(C) with possible addi-
tional cuts from (∗-Cut) is introduced as usual and written as

Kn(C) + (∗-Cut) ` Γ.

Before saying more about general and special cuts, we have to make sure
that Kn(C)+(G-Cut) is a reformulation of Kn(C). One direction is straight-
forward and formulated below.

Lemma 2 For all finite sets Γ of Ln(C) formulas we have that

Kn(C) + (G-Cut) ` Γ =⇒ Kn(C) ` Γ∨.

The proof of this lemma is unproblematic but requires some tedious work
within the theory Kn(C) which we omit. For establishing the reduction of
Kn(C) to Kn(C) + (G-Cut), it is convenient to begin with some auxiliary
considerations. A first remark refers to the propositional completeness and
the co-closure properties of Kn(C).

Lemma 3 For all Ln(C) formulas α the following two assertions can be
proved in Kn(C):

1. ¬α, α.

2. ¬C(α), E(α) ∧ E(C(α)).

Proof The first assertion can be easily established by induction on the depth
dpt(α) of α; details are left to the reader. Thus we have

Kn(C) ` ¬E(α), E(α),(1)

Kn(C) ` ¬C(α), C(α).(2)
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From (1) we can immediately deduce by rule (¬C) that

(3) Kn(C) ` ¬C(α), E(α),

Moreover, (2) and applications of the rules (K1), . . . , (Kn) and (∧) yield

(4) Kn(C) ` ¬C(α), E(C(α)).

Altogether, statements (3) and (4) plus once more the rule (∧) give us what
we want. 2

Lemma 4 Let α and β be two Ln(C) formulas so that

Kn(C) + (G-Cut) ` β → E(α) ∧ E(β).

Then we also have that

Kn(C) + (G-Cut) ` β → C(α).

This lemma is a direct consequence of the induction rule (Ind) of our calculus
and some trivial formula manipulations within Kn(C). Thus, recapitulating
what we have obtained so far, we see that Kn(C) + (G-Cut) is a Tait-style
reformulation of Kn(C).

Theorem 5 For all finite sets Γ of Ln(C) formulas we have that

Kn(C) + (G-Cut) ` Γ ⇐⇒ Kn(C) ` Γ∨.

Proof The direction from left to right is a direct consequence of Lemma 2.
In order to prove the converse direction, we first observe that the basic axioms
of Kn(C) are trivially derivable in Kn(C) and that the co-closure axioms are
proved in Lemma 3(2). Hence all axioms of Kn(C) are provable in Kn(C).
Since Lemma 4 states that Kn(C) + (G-Cut) is closed under the induction
rule of Kn(C) and since all other derivation rules of Kn(C) have obvious
counterparts in Kn(C) + (G-Cut), the direction from right to left of our
theorem follows by induction on the derivations in Kn(C). 2

The rule (G-Cut) is a stumbling block to using Kn(C) + (G-Cut) as a mean-
ingful procedural framework for common knowledge. However, total cut
elimination for this calculus is not possible: Let us work with two agents
only, choose two different atomic propositions P and Q and consider the
formula α given by

¬K1(P ∧ C(Q)) ∨ ¬K2(Q ∧ C(P )) ∨ C(P ∨Q).
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Then it can be easily checked that Kn(C) |= α, hence Kn(C) + (G-Cut) ` α
in view of Theorem 1 and Theorem 5. But it is also not too complicated to
show that α cannot be proved in (the cut-free system) Kn(C).

Because of this and related examples we doubt that there is a natural and
perspicuous (more sophisticated) cut-free Tait- or Gentzen-calculus which is
equivalent to Kn(C) and enjoys the subformula property.

4 Fischer-Ladner cuts

An interesting partial cut elimination result for a Tait-style version of Kn(C)
is obtained by restricting cuts to specific formulas generated from the so-
called Fischer-Ladner closure of provable formulas. The exact details will be
described below; first we introduce some auxiliary notions.

Let Ω be a set of Ln(C) formulas which is closed under negation; i.e. Ω has
the property that Ω = ¬Ω. Then the Ω-cuts are all cuts

α, Γ ¬α, Γ

Γ
(Ω-Cut)

so that their cut formulas α and ¬α belong to the set Ω. Such Ω-cuts, for
very specific sets of formulas Ω, will play an important role later.

Lemma 6 Let Ω be a set of Ln(C) formulas which is closed under negation.
Then we have for all finite sets Γ of Ln(C) formulas and all formulas (α∨β)
and (α0 ∧ α1) which belong to Ω:

1. Kn(C) + (Ω-Cut) ` (α ∨ β), Γ =⇒ Kn(C) + (Ω-Cut) ` α, β, Γ.

2. Kn(C) + (Ω-Cut) ` (α0 ∧ α1), Γ =⇒ Kn(C) + (Ω-Cut) ` αi, Γ.

Proof Obvious derivations in Kn(C) yield that

Kn(C) ` (¬α ∧ ¬β), α, β,(1)

Kn(C) ` (¬α0 ∨ ¬α1), αi(2)

for i = 0, 1. Since the formulas (¬α ∧¬β) and (¬α0 ∨¬α1) belong to Ω, the
assertions of our lemma follow from (1) and (2) by simple Ω-cuts. 2

For the next considerations let Ω and Σ be two sets of Ln(C) formulas which
are closed under negation and assume that Σ is a finite subset of Ω. For
those Ω and Σ we introduce as auxiliary notions:
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• A finite subset Γ of Ln(C) formulas is called Ω-consistent in case that

Kn(C) + (Ω-Cut) 6` ¬Γ.

• A subset Γ of Σ is called maximal Ω-consistent with respect to Σ if Γ
is Ω-consistent and if there exists no Ω-consistent subset of Σ which is
a proper superset of Γ.

Some important properties of maximal Ω-consistent sets with respect to Σ
are summarized in the subsequent lemma. Its proof is standard and can be
omitted.

Lemma 7 Let Ω and Σ be sets of Ln(C) formulas as above. Then we have
for all subsets Γ of Σ which are maximal Ω-consistent with respect to Σ and
all Ln(C) formulas α, β:

1. α ∈ Σ =⇒ α ∈ Γ or ¬α ∈ Γ.

2. α ∈ Σ and Kn(C) + (Ω-Cut) ` α, ¬Γ =⇒ α ∈ Γ.

3. α, β ∈ Σ and (α ∨ β) ∈ Γ =⇒ α ∈ Γ or β ∈ Γ.

4. α, β ∈ Σ and (α ∧ β) ∈ Γ =⇒ α ∈ Γ and β ∈ Γ.

Again, let Ω and Σ be sets of Ln(C) formulas as above. Each subset Γ of Σ
which is Ω-consistent can be easily extended to a maximal Ω-consistent set
with respect to Σ. To see why, simply fix an enumeration γ0, . . . , γk of Σ and
define Γ0 := Γ as well as

Γi+1 :=

{
Γi ∪ {γi} if Γi ∪ {γi} is Ω-consistent with respect to Σ,

Γi ∪ {¬γi} otherwise

for all natural numbers i ≤ k. Then simple induction on i ≤ k shows that
each Γi is Ω-consistent and contained in Σ. Hence the union of all sets Γi,
0 ≤ i ≤ k, is a possible candidate for the set ∆ which is claimed to exist in
the following lemma.

Lemma 8 Let Ω and Σ be sets of Ln(C) formulas as above and assume that
Γ is Ω-consistent subset of Σ. Then there exists a subset ∆ of Σ which is
maximal Ω-consistent with respect to Σ and contains Γ.

Before formulating and proving the main results of this section, we have to
fix those sets of Ln(C) formulas which we have to substitute for Σ and Ω.

The so-called Fischer-Ladner closure FL(α) of an Ln(C) formula α (see Fis-
cher and Ladner [6]) is the set of Ln(C) formulas which is inductively gener-
ated as follows:
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1. α belongs to FL(α).

2. If β belongs to FL(α), then ¬β belongs to FL(α).

3. If (β ∨ γ) belongs to FL(α), then β and γ belong to FL(α).

4. If (β ∧ γ) belongs to FL(α), then β and γ belong to FL(α).

5. If Ki(β) belongs to FL(α), then β belongs to FL(α).

6. If C(β) belongs to FL(α), then β, E(β) and E(C(β)) belong to FL(α).

Moreover, for any finite set Γ of Ln(C) formulas, its Fisher-Ladner closure
FL(Γ) is introduced by

FL(Γ) := FL(Γ∨).

The Fischer-Ladner closure FL(α) of an Ln(C) formula α is obviously finite
and, according to [6], the number of elements of FL(α) is of order O(|α|)
where |α| denotes the length of the formula α.

Sets FL(Γ) will take over the role of the set Σ in the previous considerations;
the counterpart of the set Ω will be the disjunctive-conjunctive closure DC(Γ)
of FL(Γ) which is carefully introduced now.

Until the end of this section we fix an arbitrary finite set Γ of Ln(C) formulas
and associate to this Γ (arbitrary but fixed) enumerations

(?) δ1, δ2, . . . , δp and ∆1,∆2, . . . ,∆q

of the elements of FL(Γ) and the subsets of FL(Γ), respectively. Each set
∆ ⊂ FL(Γ) can then be written as

{ δs(1), δs(2), . . . , δs(m∆) }

so that 1 ≤ s(1) < s(2) < . . . < s(m∆) ≤ p, and we define the Ln(C) formula

(??) ϕ∆ := (. . . (δs(1) ∧ δs(2)) ∧ . . .) ∧ δs(m∆)).

In addition, each D ⊂ Pow(FL(Γ)) can be brought into the form

{∆t(1),∆t(2), . . . ,∆t(mD) }

so that 1 ≤ t(1) < t(2) < . . . < t(mD) ≤ q, and now we define

ϕD := (. . . (ϕ∆t(1)
∨ ϕ∆t(2)

) ∨ . . .) ∨ ϕ∆t(mD)
).
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Finally, we let DC(Γ) be the set of all formulas ϕD, for D ⊂ Pow(FL(Γ)),
and their negations,

DC(Γ) := {ϕD : D ⊂ Pow(FL(Γ)) } ∪ {¬ϕD : D ⊂ Pow(FL(Γ)) }.

According to these definitions, FL(Γ) is contained in the set DC(Γ). Futher-
more, since DC(Γ) contains a representative (modulo logical equivalence) of
each formula which is built up from the elements of FL(Γ) by disjunctions
and conjunctions, it is justified to regard it as the disjunctive-conjunctive
closure of FL(Γ).

Depending on Γ, we can introduce the canonical Kripke-frame

MΓ := (W Γ,KΓ
1 , . . . ,KΓ

n)

whose set of worlds W Γ is the collection of all maximal DC(Γ)-consistent
sets with respect to FL(Γ); the accessibility relations KΓ

i consist of all pairs
(∆,Σ) of elements of W Γ so that

∆/Ki := {α : Ki(α) ∈ ∆}

is contained in Σ, i.e.

KΓ
i := { (∆,Σ) ∈ W Γ ×W Γ : ∆/Ki ⊂ Σ }.

The following lemma takes care of one specific case in the proof of Lemma 10
and is treated separately in order to “disburden” this rather lengthy proof.

Lemma 9 Assume that ∆ ∈ W Γ, (∆,Σ) ∈ KΓ
i and C(α) ∈ ∆. Then we

have C(α) ∈ Σ and α ∈ Σ.

Proof Recall from Lemma 3(2) that

Kn(C) + (DC(Γ)-Cut) ` ¬C(α), E(C(α)),(1)

Kn(C) + (DC(Γ)-Cut) ` ¬C(α), E(α).(2)

Since E(C(α)) and E(α) belong to FL(Γ), we are in the position of applying
Lemma 7(2) to (1) and (2) and know that

E(C(α)) ∈ ∆,(3)

E(α) ∈ ∆.(4)

Because of Lemma 7(4) we thus have Ki(C(α)) ∈ ∆ and Ki(α) ∈ ∆. The
definition of KΓ

i therefore implies the assertion of our lemma. 2
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As canonical valuation (with respect to Γ) we fix the mapping VΓ from the
atomic propositions to Pow(W Γ) given by

VΓ(P ) := {∆ ∈ W Γ : P ∈ ∆}

for all elements P of PROP. With MΓ and VΓ being provided, we are ready
for establishing the main lemma for the proof of Theorem 11.

Lemma 10 Let Γ be our finite set of Ln(C) formulas. Then we have for all
Σ ∈ W Γ and all α ∈ FL(Γ) that

α ∈ Σ ⇐⇒ (MΓ,VΓ,Σ) |= α.

Proof We show this equivalence by induction on the structure of the formula
α and carry through the following distinction by cases.

1. α is an atomic proposition or the negation of an atomic proposition. Then
the assertion follows from the definition of Vα.

2. α is of the form (β0∨β1) or (β0∧β1). Then the assertion follows from the
induction hypothesis by means of Lemma 7.

3. α is of the form Ki(β). The direction from left to right is immediate from
the definition of KΓ

i and the induction hypothesis. For the converse direction,
assume that Ki(β) 6∈ Σ. Then ¬Ki(β) ∈ Σ by Lemma 7(1) and

Kn(C) + (DC(Γ)-Cut) 6` Ki(β), {¬Ki(γ) : Ki(γ) ∈ Σ}.(1)

Because of the rule (Ki) we therefore also have

Kn(C) + (DC(Γ)-Cut) 6` β, {¬γ : Ki(γ) ∈ Σ}.(2)

This means that the set {¬β} ∪ {γ : Ki(γ) ∈ Σ} is DC(Γ)-consistent. Since
it is also contained in FL(Γ), Lemma 8 claims the existence of an element ∆
of W Γ with

¬β ∈ ∆,(3)

{γ : Ki(γ) ∈ Σ} ⊂ ∆.(4)

From (3) we conclude with the induction hypothesis that (MΓ,VΓ,∆) 6|= β.
Further, (4) yields that (Σ,∆) ∈ KΓ

i . Hence (MΓ,VΓ,Σ) 6|= Ki(β), and the
direction from right to left is proved.

4. α is of the form ∼Ki(β). The treatment of this case is analogous to the
previous one.
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5. α is of the form C(β). For showing the direction from left to right we
assume C(β) ∈ Σ. Lemma 9 and a simple proof by induction on m entails
that

C(β) ∈ ∆ and β ∈ ∆(5)

for all elements ∆ ∈ W Γ which are accessible from Σ in m steps. But then
the induction hypothesis implies

(MΓ,VΓ,∆) |= β(6)

for such ∆. Given the definition of the validity of the formula C(β), we have
herewith shown that (MΓ,VΓ,Σ) |= C(β).

For dealing with the converse direction, we first recall the enumerations (?)
and let

∆w(1), ∆w(2), . . . , ∆w(u)

with 1 ≤ w(1) < w(2) < . . . < w(u) ≤ q be the list of all sets ∆j so that
(MΓ,VΓ,∆j) |= C(β). Now introduce the formula ψC(β),

ψC(β) := (. . . (ϕ∆w(1)
∨ ϕ∆w(2)

) ∨ . . .) ∨ ϕ∆w(u)
)

for each ϕ∆w(j)
being defined as in (??). From the definition of DC(Γ) above

we learn that ψC(β) ∈ DC(Γ). For this formula ψC(β) we want to show:

Kn(C) ` ¬ψC(β), E(β),(7)

Kn(C) + (DC(Γ)-Cut) ` ¬ψC(β), E(ψC(β)).(8)

To prove (7), observe that

(MΓ,VΓ,∆) |= C(β) =⇒ (MΓ,VΓ,∆) |= E(β)

for all ∆ ∈ W Γ. Hence the induction hypothesis tells us that E(β) ∈ ∆w(j)

for j = 1, . . . , u. Consequently, we have

Kn(C) ` ¬ϕ∆w(j)
, E(β)(9)

for j = 1, . . . , u. From (9) and the definition of ¬ψC(β) we obtain assertion
(7) by some obvious basic inferences.

The proof of (8) is more complicated: We first observe that for all ∆ ∈ W Γ

Kn(C) + (DC(Γ)-Cut) ` ¬(∆/Ki), {ϕ∆j
: j ∈ N∆}(10)
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where N∆ is the set of all natural numbers given by

N∆ := { j : 1 ≤ j ≤ q and (∆,∆j) ∈ KΓ
i },

again referring to the enumerations (?). If this were not the case, then we
could pick for each j ∈ N∆ a formula χj ∈ ∆j satisfying

Kn(C) + (DC(Γ)-Cut) 6` ¬(∆/Ki), {χj : j ∈ N∆}.

However, this would imply that the set

(∆/Ki) ∪ {¬χj : j ∈ N∆}

is DC(Γ)-consistent and therefore, by Lemma 8, contained in a set Π which is
maximal DC(Γ)-consistent with respect to FL(Γ). But then we had (∆/Ki) ⊂
Π, hence (∆,Π) ∈ KΓ

i , and Π 6= ∆j for all j ∈ N∆ because of the choice of
the formulas χj. This is a contradiction, and (10) has been established.

The next step is to choose an arbitrary ∆w(k) with 1 ≤ k ≤ u. By (10) we
have

Kn(C) + (DC(Γ)-Cut) ` ¬(∆w(k)/Ki), ψC(β),(11)

simply because N∆w(k)
⊂ {w(1), w(2), . . . , w(u)}. By applying the rule (Ki)

to (11) we gain

Kn(C) + (DC(Γ)-Cut) ` ¬∆w(k), Ki(ψC(β)),(12)

hence also

Kn(C) + (DC(Γ)-Cut) ` ¬∆w(k), E(ψC(β)),(13)

since (12) holds for all operators K1, . . . ,Kn. Assertion (13) is immediately
transformed into

Kn(C) + (DC(Γ)-Cut) ` ¬ϕ∆w(k)
, E(ψC(β))(14)

and available for all 1 ≤ k ≤ u. Therefore assertion (8) follows from (14) by
several applications of the rule (∧).

Having proved assertions (7) and (8), the induction rule (Ind) comes into
play and yields

Kn(C) + (DC(Γ)-Cut) ` ¬ψC(β), C(β).(15)
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Since ψC(β) belongs to DC(Γ), assertion (15) gives us in view of Lemma 6(2)
that

Kn(C) + (DC(Γ)-Cut) ` ¬ϕ∆w(k)
, C(β)(16)

for all 1 ≤ k ≤ u. The formulas ϕ∆w(k)
are elements of DC(Γ) as well, and

now we apply Lemma 6(1) to (16) in order to obtain

Kn(C) + (DC(Γ)-Cut) ` ¬∆w(k), C(β)(17)

for all 1 ≤ k ≤ u. To conclude the proof of the direction from right to left,
assume that Σ ∈ W Γ and

(MΓ,VΓ,Σ) |= C(β).

Then the set Σ is identical to some ∆w(k), 1 ≤ k ≤ u, and thus (17) entails

Kn(C) + (DC(Γ)-Cut) ` ¬Σ, C(β).(18)

Finally we make use of Lemma 7(2) and gain C(β) ∈ Σ, as desired.

6. α is of the form ∼C(β). The treatment of this case is analogous to the
previous one. 2

Theorem 11 For all finite sets Γ of Ln(C) formulas we have that

Kn(C) + (DC(Γ)-Cut) ` Γ ⇐⇒ Kn(C) |= Γ∨.

Proof The direction from left to right of this equivalence is implied by
Theorem 5 and Theorem 1. Conversely, fix a finite set Γ of Ln(C) formulas
and assume that

Kn(C) + (DC(Γ)-Cut) 6` Γ.

Then the formula Γ∨ is an element of FL(Γ) ⊂ DC(Γ), and Lemma 6(1)
implies that

Kn(C) + (DC(Γ)-Cut) 6` Γ∨.

Hence {¬(Γ∨)} is DC(Γ)-consistent and, because of Lemma 8, there must be
a set Σ which contains ¬(Γ∨) and is maximal DC(Γ)-consistent with respect
to FL(Γ), i.e.

Σ ∈ W Γ and ¬(Γ∨) ∈ Σ.

Now we can apply the previous lemma in order to obtain

(MΓ,VΓ,Γ) |= ¬(Γ∨).

So we know that Γ∨ is not valid in the canonical MΓ, and, consequently,
Kn(C) 6|= Γ∨. This completes the proof of our theorem. 2
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Corollary 12 (Partial cut elimination for Kn(C)) For all finite sets Γ
of Ln(C) formulas we have that

Kn(C) + (G-Cut) ` Γ ⇐⇒ Kn(C) + (DC(Γ)-Cut) ` Γ.

The last assertion is a trivial consequence of Theorem 1, Theorem 5 and
Theorem 11 just above. It says that for each proof of a finite set Γ of Ln(C)
formulas in the calculus Kn(C) + (G-Cut) there exists a proof with cuts so
that all their cut formulas belong to the representation system DC(Γ) of the
disjunctive-conjunctive closure of the Fischer-Ladner closure of Γ.

This corollary allows us to replace the infinite number of all possible cuts
in a derivation of a set Γ by cuts whose cut formulas belong to the finite
set DC(Γ). However, from the point of view of efficient proof search, the
cardinality of DC(Γ) is still infeasible.

In Alberucci [2, 1] our partial cut elimination technique has been refined
by showing that cuts with cut formulas from the conjunctive closure of the
Fischer-Ladner closure are sufficient. It is an interesting question whether
the cuts can be further restricted.

5 The infinitary system Kω
n(C)

The iterative approach to common knowledge can most easily be reflected in
a deductive system by working with an analogue of the ω-rule which permits
the derivation of the formula C(α) from the infinitely many premises

E1(α), E2(α), . . . , Em(α), . . .

for all natural numbers m ≥ 1, just as in the semantic interpretation of C(α),
introduced in Section 2 above.

Our infinitary system Kω
n(C) is formulated in the finitary language Ln(C) and

derives finite sets of Ln(C) formulas. It is infinitary only because of the rule
(ωC) for introducing common knowledge; (ωC) has infinitely many premises
and thus may give rise to infinite proof trees.

The axioms and basic rules of Kω
n(C) are those of Kn(C), in particular we have

the rules (Ki for introducing the epistemic operators Ki and their negations,

α, ¬Γ, ¬C(∆)

Ki(α), ¬Ki(Γ), ¬C(∆), Π
(Ki)
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with the formulas Ki(α) and ¬Ki(Γ) as main formulas and the negated for-
mulas about common knowledge as side formulas. As further rule for intro-
ducing positive knowledge we add

α

Ki(Em(α)), Π
(K?)

for any natural number m. The rule (K?) might appear to be superfluous
for the following reason: Suppose that α is provable. Then a series of appli-
cations of the rules (K1), . . . , (Kn) and (∧) allows us to derive Ki(E

m(α)), Π
for all m. However, these derivations depend on m, whereas an application
of (K?) enables us to accomplish the same in one step. Together with the rule
(ωC) from below, we only need n additional steps to derive C(α) in case that
α has been proved already. Without (K?) infinitely many additional steps
would be required.

Negated common knowledge is introduced by the rule (¬C) as before, for
positive common knowledge we now have the infinitary rule (ωC).

C-rules of Kω
n(C)

¬E(α), Γ

¬C(α), Γ
(¬C)

Em(α), Γ (for all m ≥ 1)

C(α), Γ
(ωC)

Although all formulas of the language Ln(C) are finite strings of symbols,
the rule (ωC) has the effect of treating the formulas C(α) as the infinite
conjunctions

∧
{Em(α) : m ≥ 1}. Accordingly, the rank me(α) of each Ln(C)

formula α is an ordinal which is inductively generated as follows:

1. me(P ) := me(∼P ) := 0.

2. me(α ∨ β) := me(α ∧ β) := max(me(α),me(β)) + 1.

3. me(Ki(α)) := me(∼Ki(α)) := me(α) + 1.

4. me(C(α)) := me(∼C(α)) := sup(me(Em(α) : m ≥ 1).

Because of the rule (ωC), our system Kω
n(C) allows proof trees which consist

of infinitely many nodes, and thus ordinals, which are denoted by the small
Greek letters σ, τ, η, ξ, . . . (possibly with subscripts) come into the picture.

Starting from these axioms and rules of inference, derivability in Kω
n(C) is

introduced as usual. For arbitrary ordinals σ and finite sets Γ of Ln(C)
formulas the notion Kω

n(C) `σ Γ is defined by induction on σ as follows:
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1. If Γ is an axiom of Kω
n(C), then we have Kω

n(C) `σ Γ for all σ.

2. If Kω
n(C) `σi Γi and σi < σ for all premises Γi of a rule of Kω

n(C),
then we have Kω

n(C) `σ Γ for the conclusion Γ of this rule.

Kω
n(C) `<σ Γ means Kω

n(C) `τ Γ for some ordinal τ < σ, and Kω
n(C) ` Γ

means Kω
n(C) `τ Γ for some ordinal τ .

If general cuts (G-Cut) are added to our legitimate rules of inference, we
define the corresponding notions

Kω
n(C) + (G-Cut) `σ Γ and Kω

n(C) + (G-Cut) ` Γ

of derivability of the finite set Γ of Ln(C) formulas in the extended system
Kω

n(C) + (G-Cut) accordingly.

Two structural properties of Kω
n(C) – weakening and inversion – will play a

certain role in the next section. Both can be established trivially by induction
on the derivations involved.

Lemma 13 (Weakening) For all finite sets Γ,∆ of Ln(C) formulas and
all ordinals σ, τ we have that

Γ ⊂ ∆, σ ≤ τ and Kω
n(C) `σ Γ =⇒ Kω

n(C) `τ ∆.

Lemma 14 (Inversion) For all finite sets Γ of Ln(C) formulas, all Ln(C)
formulas α, β and all ordinals σ we have:

1. Kω
n(C) `σ α ∨ β, Γ =⇒ Kω

n(C) `σ α, β, Γ.

2. Kω
n(C) `σ α ∧ β, Γ =⇒ Kω

n(C) `σ α, Γ and Kω
n(C) `σ β, Γ.

Likewise, weakening and inversion can also be accomplished for the extended
system Kω

n(C) + (G-Cut). However, since we do not need them in this form,
we omit formulating them explicitly.

Straightforward – in general transfinite – induction on the lengths of deriva-
tions yields the correctness of Kω

n(C)+(G-Cut) with respect to the semantics
introduced in Section 2. This means that we have the following theorem.

Theorem 15 For all finite sets Γ of Ln(C) formulas we have that

Kω
n(C) + (G-Cut) ` Γ =⇒ Kn(C) |= Γ∨.
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The converse of this theorem is also true; we will even prove a much stronger
form of completeness later. The next two lemmas deal with the co-closure
and induction properties of Kn(C) and illustrate the use of the infinitary rule
(ωC).

As for the system Kn(C), we first observe that Kω
n(C) is propositionally

complete and proves the co-closure axioms of Kn(C). Because of the infinitary
rule (ωC), however, infinitary derivations may arise.

Lemma 16 For all Ln(C) formulas α the following two assertions can be
proved in Kω

n(C):

1. ¬α, α.

2. ¬C(α), E(α) ∧ E(C(α)).

Proof The first part of this lemma can be easily established by induction on
the structure of α; since the rule (ωC) has to be used for showing assertions
of the form

Kω
n(C) ` ¬C(β), C(β)

proofs of infinite depth are needed in general. The second part of this lemma
follows from the first exactly as in the proof of Lemma 3. 2

The rule (ωC) also enables us to deal with the induction rules of Kn(C) within
Kω

n(C) + (G-Cut); the price being again the use of infinite derivations.

Lemma 17 Let α and β be Ln(C) formulas and suppose that

Kω
n(C) + (G-Cut) ` β → E(α) ∧ E(β).

Then we also have that

Kω
n(C) + (G-Cut) ` β → C(α).

Proof We work informally in Kω
n(C) + (G-Cut) and obtain from the as-

sumption that

¬β, E(α),(1)

¬β, E(β).(2)

From (1) and (2) we deduce by several applications of the rules (K1), . . . , (Kn)
and some intermediate steps that

¬Em(β), Em+1(α),(3)

¬Em(β), Em+1(β)(4)
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for all natural numbers m. Therefore, a series of cuts yields

¬β, Em+1(α)(5)

for all natural numbers m. We can thus apply the rule (ωC) in order to
conclude that

¬β, C(α).(6)

Since the length of the derivation of (5) is m or more, this derivation of (6)
is infinite. Some trivial modifications of (6) finish our proof. 2

Lemma 16 and Lemma 17 make it clear that the Hilbert system Kn(C) can
be embedded into Kω

n(C) + (G-Cut). Recalling Theorem 1 and Theorem 15,
we can state the following intermediate result.

Theorem 18 For all finite sets Γ of Ln(C) formulas we have that

Kω
n(C) + (G-Cut) ` Γ ⇐⇒ Kn(C) ` Γ∨.

The proof of the inclusion of Kn(C) in Kω
n(C)+(G-Cut) given above has only

been included in order to illustrate the use of the rules (Ki), (¬C) and (ωC)
in this infinitary system. It also follows from the fact that Kω

n(C), i.e. the
system without any cuts, is complete. This completeness result for Kω

n(C)
will be proved now by semantic methods.

A finite set Γ of Ln(C) formulas is called Kω
n(C) saturated if the following

conditions are satisfied:

(ωS.1) Kω
n(C) 6` Γ.

(ωS.2) For all Ln(C) formulas (α ∨ β) we have

(α ∨ β) ∈ Γ =⇒ α ∈ Γ and β ∈ Γ.

(ωS.3) For all Ln(C) formulas (α ∧ β) we have

(α ∧ β) ∈ Γ =⇒ α ∈ Γ or β ∈ Γ.

(ωS.4) For all Ln(C) formulas ¬C(α) we have

¬C(α) ∈ Γ =⇒ ¬E(α) ∈ Γ.

(ωS.5) For all Ln(C) formulas C(α) we have

C(α) ∈ Γ =⇒ Em(α) ∈ Γ for some m ≥ 1.
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If Γ is a finite set of Ln(C) formulas which is not provable in Kω
n(C) and

which, in addition, is not Kω
n(C) saturated, then one of the conditions (ωS.2)

to (ωS.5) is violated for Γ. By systematically correcting such deficiencies, we
can extend any finite set Γ of Ln(C) formulas which is not provable in Kω

n(C)
to a Kω

n(C) saturated set.

Lemma 19 For every finite set Γ of Ln(C) formulas which is not provable
in Kω

n(C) there exists a Kω
n(C) saturated set ∆ which contains Γ.

Proof We assume that we have fixed an enumeration δ0, δ1, . . . of all Ln(C)
formulas. If the formula α is the formula δi in this enumeration, we call i the
index of α.

Depending on this enumeration we now define for each finite set Π of Ln(C)
formulas which is not provable in Kω

n(C) a new set Π′:

1. If Π is Kω
n(C) saturated, then Π′ := Π.

2. If Π is not Kω
n(C) saturated, then we choose the formula α with the

smallest index for which one of the conditions (ωS.1)− (ωS.5) is violated and
determine Π′ by distinguishing between the possible forms of α.

2.1. α is of the form (β ∨ γ). Then we set

Π′ := Π ∪ {β, γ}.

2.2. α is of the form (β ∧ γ). Since Π is not provable in Kω
n(C) we know that

Kω
n(C) 6 ` β, Π or Kω

n(C) 6 ` γ, Π.

Then we set

Π′ :=

{
Π ∪ {β} if Kω

n(C) 6 ` β,Π ,

Π ∪ {γ} otherwise.

2.3. α is of the form C(β). Since Π is not provable in Kω
n(C) we know that

Kω
n(C) 6 ` Em(β), Π

for some natural number m ≥ 1. We choose the least such k and set

Π′ := Π ∪ {Ek(β)}.

2.4. α is of the form ¬C(β). Then we set

Π′ := Π ∪ {¬E(β)}.
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Observe that this construction implies that the so defined Π′ is not provable
in Kω

n(C).

In the next step we assign to each finite set Π of Ln(C) formulas which is
not provable in Kω

n(C) its deficiency-number dn(Π). If Π is Kω
n(C) saturated,

then dn(Π) := 0. Otherwise fix the set {α1, α2, . . . , αm} of all elements of Π
for which one of the conditions (ωS.1)− (ωS.5) is violated and set

dn(Π) := ωme(α1) # ωme(α2) # . . . # ωme(αm)

where we make use of the natural sum of ordinals as introduced, for example,
in Schütte [13].

Now we take the given finite set Γ of Ln(C) formulas which is not provable
in Kω

n(C) and define the sequence Γ0,Γ1, . . . of finite sets by

Γ0 := Γ and Γm+1 := Γ′m

for all natural numbers m. What we have done so far guarantees that

Γ ⊂ Γm,(1)

Kω
n(C) 6` Γm,(2)

dn(Γm) 6= 0 =⇒ dn(Γm+1) < dn(Γm)(3)

for all natural numbers m. Since there are no infinite decreasing sequences
of ordinals, one of the sets Γm has to be Kω

n(C) saturated and is a possible
candidate for the choice of ∆. 2

Before turning to the intended Kripke-frame Sω, we introduce for all finite
sets Γ of Ln(C) formulas the following shorthand notations:

(Γ ∩ ¬Ki) := {¬Ki(α) : ¬Ki(α) ∈ Γ},

(Γ ∩ ¬C) := {¬C(α) : ¬C(α) ∈ Γ},

(Γ/¬Ki) := {¬α : ¬Ki(α) ∈ Γ}.

Then the Kripke-frame Sω, which is built up by the Kω
n(C) saturated sets,

is the Kripke-frame

Sω := (Satω,Kω
1 ,Kω

2 , . . . ,Kω
n)

whose universe Satω is the set of all Kω
n(C) saturated sets and whose acces-

sibility relations Kω
i comprise exactly those pairs (Γ,∆) ∈ Satω × Satω such

that
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• α ∈ ∆ and Ki(α) ∈ Γ for some Ln(C) formula α,

• (Γ/¬Ki) ∪ (Γ ∩ ¬C) ⊂ ∆.

Based on these relations Kω
1 , . . . ,Kω

n we define the reachability in m steps of
a set ∆ ∈ Satω from a set Γ ∈ Satω by induction on m as follows:

(i) Γ is reachable from Γ in 0 steps.

(ii) ∆ is reachable from Γ in m + 1 step if and only if there exist an i,
1 ≤ i ≤ n, and a set Π ∈ Satω so that Π is reachable from Γ in m steps
and (Π,∆) ∈ Kω

i .

∆ is called reachable from Γ if ∆ is reachable from Γ in m steps for some
natural number m. Observe that the definition of the relations Kω

1 , . . . ,Kω
n

immediately implies the following property.

Lemma 20 Assume Γ,∆ ∈ Satω. If ∆ is reachable from Γ, then we have
for all Ln(C) formulas α that

¬C(α) ∈ Γ =⇒ ¬C(α) ∈ ∆.

For the Kripke-frame Sω we also fix the valuation Vω from the atomic propo-
sitions to Pow(Satω) defined by

Vω(P ) := {Γ ∈ Satω : P 6∈ Γ}.

This finishes this construction and allows us to prove the following lemma,
which is the core in proving the completeness of Kω

n(C).

Lemma 21 For all Ln(C) formulas α and all Γ ∈ Satω we have that

α ∈ Γ =⇒ (Sω,Vω,Γ) 6|= α.

Proof We obtain this implication by induction on the structure of α and
distinguish the following cases.

1. α is an atomic proposition or the negation of an atomic proposition. Then
the assertion follows from the definition of Vω.

2. α is of the form (β ∨ γ), (β ∧ γ) or C(β). Then the assertion follows
immediately from the induction hypothesis since Γ is Kω

n(C) saturated.

3. α is of the form Ki(β). We know that Γ is Kω
n(C) saturated, and thus

Kω
n(C) 6` Γ. Hence we also have

Kω
n(C) 6 ` α, (Γ ∩ ¬Ki), (Γ ∩ ¬C).(1)
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Because of the form of the rule (Ki) this implies

Kω
n(C) 6 ` β, (Γ/¬Ki), (Γ ∩ ¬C).(2)

Moreover, in view of Lemma 19, there exists a set ∆ ∈ Satω so that {β} ∪
(Γ/¬Ki) ∪ (Γ ∩ ¬C) is contained in ∆. This implies, in particular, that

β ∈ ∆,(3)

(Γ,∆) ∈ Kω
i .(4)

From the induction hypothesis and (3) we obtain

(Sω,Vω,∆) 6|= β.

This implies the assertion since, by (4), ∆ is reachable in one step from Γ
via the accessibility relation Kω

i .

4. α is of the form ∼Ki(β). In this case we carry though the following further
distinction.

4.1. There exists no ∆ so that (Γ,∆) ∈ Kω
i . Then we obviously must have

that (Sω,Vω,Γ) |= Ki(¬β), hence also (Sω,Vω,Γ) 6|= α.

4.2. There exists a ∆ so that (Γ,∆) ∈ Kω
i . By the definition of Kω

i we have
β ∈ ∆ for all ∆ so that (Γ,∆) ∈ Kω

i . Therefore, the induction hypothesis
implies

(Sω,Vω,∆) 6|= β(5)

for all ∆ so that (Γ,∆) ∈ Kω
i . From this observation we can immediately

deduce that

(Sω,Vω,Γ) |= Ki(¬β).(6)

However, this is exactly our assertion that (Sω,Vω,Γ) 6|= α since α is the
formula ∼Ki(β) in this case.

5. α is of the form ∼C(β). Consequently, because of Lemma 20, ¬C(¬β) ∈ ∆
for all sets ∆ which are reachable from Γ. All these ∆ are Kω

n(C) saturated,
and so we have ¬E(¬β) ∈ ∆. We apply the induction hypothesis and obtain

(Sω,Vω,∆) 6|= ¬E(¬β) i.e. (Sω,Vω,∆) |= E(¬β)(7)

for all ∆ which are reachable from Γ. But since (Sω,Vω,Γ) |= Ek+1(¬β) is
equivalent to the fact that (Sω,Vω,∆) |= E(¬β) for all ∆ which are reachable
from Γ in k steps, assertion (7) gives us

(Sω,Vω,Γ) |= Em(¬β)(8)
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for all natural numbers m ≥ 1. This implies (Sω,Vω,Γ) |= C(¬β), hence
(Sω,Vω,Γ) 6|= α and finishes the proof of our lemma. 2

Theorem 22 (Completeness of Kω
n(C)) If the Ln(C) formula α is valid

in all Kripke-frames for Ln(C), then we have Kω
n(C) ` α.

Proof Assume that the Ln(C) formula α cannot be proved in Kω
n(C). Then

by Lemma 19 there has to exist an Kω
n(C) saturated set Γ which contains α.

Thus the previous lemma implies (Sω,Vω,Γ) 6|= α, and hence α is not valid
in all Kripke-frames for Ln(C). 2

Since the system Kω
n(C)+(G-Cut) is sound and the system Kω

n(C) is complete,
all cuts are superfluous. Hence we have a semantic proof of cut elimination
for Kω

n(C) + (G-Cut).

Corollary 23 (Total cut elimination for Kω
n(C)) For all finite sets Γ of

Ln(C) formulas we have that

Kω
n(C) + (G-Cut) ` Γ ⇐⇒ Kω

n(C) ` Γ.

Proof Let Γ be a set of Ln(C) formulas which is provable in Kω
n(C)+(G-Cut).

Then Theorem 15 and Theorem 22 imply that Kω
n(C) ` Γ∨. Thus Γ has to be

derivable in Kω
n(C), as can be seen by applying some inversions. The other

direction of the claimed equivalence is obvious. 2

This result also interesting in connection with work by Kaneko and Na-
gashima (cf. e.g. [10, 9]). They introduce an infintary system GL(G) for
common knowledge and obtain cut elimination for GL(G). However, after
cut elimination their “cut-free” proofs do not have the subformula property;
something like cuts may creep in in the context of another rule. In contrast
to that situation, proofs in Kω

n(C) enjoy the subformula property, provided,
of course, that formulas Em(α) are regarded as subformulas of C(α).

6 The positive and the negative fragment of

the system Kω
n(C)

In the previous section we have seen that Kω
n(C) is a cut-free and complete

deductive system for common knowledge – the price for this cut-freeness
being the allowance of infinitary derivations. However, although Kω

n(C) is a
system permitting infinitary derivations, it contains (at least) two interesting
finite subsystems: its positive and its negative fragment. They are both finite
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in the sense that each positive (negative) assertion of Ln(C) which is provable
in Kω

n(C) has a finite proof in the positive (negative) fragment of Kω
n(C).

An Ln(C) formula α is called positive if it does not contain occurrences of the
dual ∼C of the common knowledge operator; α is called negative if it does
not contain the common knowledge operator C (this means that a negative
formula α may contain occurrences of C only in the form ∼C). Recall that all
our formulas are in negation normal form and that the negation of complex
formulas is defined; thus “positive” and “negative” refer to the occurrences
of the subformulas about common knowledge.

The positive fragment Kω
n(C+) of Kω

n(C) is obtained from Kω
n(C) by dropping

the rule (¬C) and restricting all other rules to finite sets of positive Ln(C)
formulas; accordingly, the negative fragment Kω

n(C−) of Kω
n(C) is obtained

from Kω
n(C) by dropping the rule (ωC) and restricting all other rules to finite

sets of negative Ln(C) formulas. Thus Kω
n(C+) contains the infinitary rule

(ωC), whereas all rules of Kω
n(C−) are finite.

Theorem 24 (Negative fragment) Let Γ be a finite set of negative Ln(C)
formulas. For all ordinals σ we then have that

Kω
n(C) `σ Γ =⇒ Kω

n(C−) `<ω Γ.

Proof We show this assertion by induction of σ and observe that Γ, which is
a set of negative Ln(C) formulas, cannot have been derived by the rule (ωC).
All other rules have only finitely many premises which are sets of negative
Ln(C) formulas since no cuts are permitted. With the help of the induction
hypothesis we therefore immediately obtain what we want. 2

The situation is much more complicated in the case of the positive fragment
Kω

n(C+) of Kω
n(C): we have to finitize each application of the infinitary rule

(ωC). To achieve this, we count the nestings of the ∼Ki and prove Lemma 25
below. For all positive Ln(C) formulas α the number ∂(α) is inductively
defined as follows:

1. ∂(P ) := ∂(∼P ) := 0.

2. ∂(α ∨ β) := ∂(α ∧ β) := max(∂(α), ∂(β)).

3. ∂(Ki(α)) := ∂(C(α)) := ∂(α).

4. ∂(∼Ki(α)) := ∂(α) + 1.

Besides that, we extend this definition to all finite sets Γ of positive Ln(C)
formulas by setting

∂(Γ) := sup(∂(α) : α ∈ Γ).
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It is easy to verify that for all positive Ln(C) formulas α we have the equality
∂(¬Ki(α)) = ∂(¬α) + 1 and, as a consequence thereof, for all finite sets Γ
and ¬∆ of positive Ln(C) formulas

¬Ki(∆) ⊂ Γ and ∆ 6= ∅ =⇒ ∂(¬∆) < ∂(Γ).

Lemma 25 Let Γ be a finite set of positive Ln(C) formulas and α a positive
Ln(C) formula. Then we have for all ordinals σ, all natural numbers `,m
with ∂(Γ) ≤ ` ≤ m and all i ∈ {1, . . . , n} that

Kω
n(C+) `σ Ki(E

`(α)), Γ =⇒ Kω
n(C+) `nσ Ki(E

m(α)), Γ.

Proof We show this assertion by induction on σ and have to distinguish
between the following cases.

1. {Ki(E
`(α))}∪Γ is an axiom of Kω

n(C+). Then {Ki(E
m(α))}∪Γ is an axiom

of Kω
n(C+) as well.

2. {Ki(E
`(α))}∪Γ is the conclusion of a rule (∨), (∧) or (ωC). Then we apply

the induction hypothesis to the premise(s) of this rule and carry it through
again afterwards in order to derive what we want.

3. {Ki(E
`(α))}∪Γ is the conclusion of a rule (Kj), and the formula Ki(E

`(α))
is not its main formula of this inference. Then there exist an ordinal τ < σ,
a positive Ln(C) formula β and a finite set ¬∆ of positive Ln(C) formulas so
that

Kω
n(C+) `τ β, ¬∆,(1)

{Kj(β)} ∪ ¬Kj(∆) ⊂ {Ki(E
`(α))} ∪ Γ.(2)

Keeping (2) in mind, we can simply apply the rule (Kj) to (1) in order to
obtain our assertion. The induction hypothesis is not needed in this case.

4. {Ki(E
`(α))} ∪ Γ is the conclusion of a rule (Ki) with the main formula

Ki(E
`(α)). Then there exist an ordinal τ < σ and a finite set ¬∆ of positive

Ln(C) formulas so that

Kω
n(C+) `τ E`(α), ¬∆,(3)

¬Ki(∆) ⊂ Γ.(4)

It simplifies matters to proceed with a further distinction of cases: whether
∆ is the empty set or not.

4.1. ∆ = ∅. By Lemma 14 we obtain from (3)

Kω
n(C+) `τ α,(5)
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and from that together with the rule (K?) that

Kω
n(C+) `τ+1 Ki(E

k(α)), Γ(6)

for all natural numbers k and all i ∈ {1, . . . , n}. Since τ+1 ≤ nσ, Lemma 13
yields our claim.

4.2. ∆ 6= ∅. In view of a previous consideration we know that in this
case ∂(¬∆) < ∂(Γ), thus ` = k + 1 for some natural number k. Moreover,
Lemma 14 applied to (3) gives us

Kω
n(C+) `τ Kj(E

k(α)), ¬∆(7)

for all j ∈ {1, . . . , n}. But k ≥ ∂(¬∆), and so the induction hypothesis
applied to (7) yields

Kω
n(C+) `nτ Kj(E

r(α)), ¬∆(8)

for all natural numbers r ≥ k and all j ∈ {1, . . . , n}. We continue with n− 1
applications of the rule (∧) and conclude

Kω
n(C+) `nτ+(n−1) Em(α), ¬∆(9)

for all natural numbers m ≥ k + 1 = `. Finally, by rule (Ki) we can go over
from (9) to

Kω
n(C+) `nτ+n Ki(E

m(α)), ¬Ki(∆)(10)

for all natural numbers m ≥ `. Since nτ + n ≤ nσ, our assertion follows
immediately from (10), (4) and Lemma 13. This completes the treatment of
the last case and finishes our proof. 2

Theorem 26 (Positive fragment) Let Γ be a finite set of positive Ln(C)
formulas. For all ordinals σ we then have that

Kω
n(C) `σ Γ =⇒ Kω

n(C+) `<ω Γ.

Proof We prove this assertion by induction on σ and distinguish the fol-
lowing cases.

1. Γ is an axiom Kω
n(C). Then we trivially have Kω

n(C+) `0 Γ.

2. Γ is the conclusion of a rule (∨), (∧), (Ki) or (∼Ki). Each of these rules
has only finitely many premises to which the induction hypothesis is applied.
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Hence these premises are finitely derivable, and in one further derivation step
we thus have our assertion.

3. Γ is the conclusion of a rule (ωC). Then Γ contains an Ln(C) formula C(α)
and there exist ordinals σ1, σ2, . . ., so that for all natural numbers k ≥ 1

Kω
n(C) `σk Ek(α), Γ,(1)

σk < σ.(2)

Set ` := ∂(Γ) and apply the previous lemma to the “branches” 1 to `+ 1 of
(1) in order to obtain natural numbers r1, . . . , r`+1 satisfying

Kω
n(C+) `rk Ek(α), Γ(3)

for all k ≤ `+ 1. Now we make use of Lemma 14 to obtain from (3)

Kω
n(C+) `r`+1 Ki(E

`(α)), Γ(4)

for all i ∈ {1, . . . , n}. Thus the previous lemma can be applied to (4), and
we accomplish

Kω
n(C) `nr`+1 Ki(E

m(α)), Γ(5)

for all natural numbers m ≥ ` and for all i ∈ {1, . . . , n}. Consequently, by
(n− 1) applications of the rule (∧) and Lemma 13 we derive

Kω
n(C) `(n+1)r`+1 Em+1(α), Γ(6)

for all m ≥ `. Summing up, we have for all natural numbers k with 1 ≤ k ≤ `
that

Kω
n(C+) `rk Ek(α), Γ(7)

and for all natural numbers s > ` that

Kω
n(C+) `(n+1)r`+1 Es(α), Γ.(8)

For any natural number t greater than r1, . . . , r` and (n+1)r`+1 we obtain
from (7) and (8) with the help of the rule (ωC) that

Kω
n(C+) `t C(α), Γ.(9)

Since Γ is a set of positive Ln(C) formulas, we have covered all possibilities
of its derivation, and our theorem is proved. 2
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Notice that our positive fragment does not guarantee that all proofs are finite
since infinite branchings are still permitted. However, also this problem can
be solved by introducing a new calculus K<ω

n (C+) which is obtained from
Kω

n(C+) by replacing the infinitary rule

Em(α), Γ (for all m ≥ 1)

C(α), Γ
(ωC)

by the finitary rule

Em(α), Γ (for all m so that 1 ≤ m ≤ ∂(Γ) + 1)

C(α), Γ
(<ωC)

Working within the positive fragment, we can now show that the infinitary
rule (ωC) can be restricted to the finitary (<ωC).

Theorem 27 For any set Γ of positive Ln(C) formulas we have that

Kω
n(C+) ` Γ ⇐⇒ K<ω

n (C+) ` Γ.

Proof The direction from left to right follows by induction on the proofs in
Kω

n(C+). The reverse direction is proved by induction on the lengths of the
proofs in K<ω

n (C+), using Lemma 25 in the induction step whenever the last
rule applied in K<ω

n (C+) is an instance of (<ωC). 2
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