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Abstract

Most probabilistic extensions of description logics focus on the termi-

nological apparatus. While some allow for expressing probabilistic knowl-

edge about concept assertions, systems which can express probabilistic

knowledge about role assertions have received very little attention as yet.

We present a system PALC which allows us to express degrees of belief

in concept and role assertions for individuals. We introduce syntax and

semantics for PALC and we define the corresponding reasoning problem.

An independence assumption regarding the assertions for different indi-

viduals yields additional constraints on the possible interpretations. This

considerably reduces the solution space of the PALC reasoning problem.

1 Introduction

Nowadays, description logics (DLs) are a standard formalism for knowledge rep-
resentation [1]. For many applications it is important to extend DLs such that
they can handle probabilistic knowledge. Most of the probabilistic extensions of
DLs focus on probabilities on terminological axioms, see for example [2, 7, 9].
Notable exceptions are [8, 5]. Jäger [8] presents a system which allows for
probabilistic knowledge about concept instances. He concentrates mainly on
combining probabilistic terminological knowledge with probabilistic assertional
knowledge by means of cross-entropy minimization. Giugno and Lukasiewicz [5]
examine probabilistic ontologies for the semantic web. There, assertions of the
form C(a) are expressed as inclusion axioms {a} ⊑ C and probabilistic asser-
tions are simply probabilistic inclusion axioms. None of the approaches however
allows for expressing probabilistic knowledge on role instances. Halpern [6] and
Bacchus [3] define logics to reason with and about probabilities. Since they work
with full first-order logic, their systems are undecidable. Moreover the indepen-
dence assumption fundamental to our approach does not hold for full first-order
logic.
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In our work, we propose the language PALC as an extension to ALC. This
language allows us to express degrees of belief in both, concept and role assertions
for individuals. We introduce syntax and semantics of PALC. The reasoning
problem for this system is to find the possible valuations for the probabilis-
tic constants. The expressive power of ALC is relatively low when compared
to first-order logic. This results in a high degree of independence regarding
the assertions for different individuals. The identification of some specific sets
of independent assertions yields additional constraints on the interpretation of
the probabilistic constants. In particular, we have less freedom in the inter-
pretation of assertions about value restrictions. Straccia [12] introduces similar
constraints in a lattice based approach to uncertainty in DLs. However, because
his approach is not based on probabilities, there is no notion of independence.
The additional constraints which are implied by our independence assumption
will considerably reduce the solution space of the PALC reasoning problem.

Let us briefly recall some standard notions of probability theory [10]. A triple
(Ω, F, P) on the domain Ω is called probability space where Ω is a non-empty set
which is called sample space. The set of events F is a σ-algebra over Ω. The
probability distribution P : F → R on F is a mapping from the events to the
reals such that the probability axioms hold:

i) P(E) ≥ 0 for all E ∈ F .

ii) P(Ω) = 1.

iii) P(
⋃

i∈I Ei) =
∑

i∈I P(Ei) for any countable sequence (Ei)i∈I of pairwise
disjoint events.

Let (Ω, F, P) be a probability space, Ω′ a set, and F ′ a σ-algebra on Ω′. A
function X : Ω → Ω′ is called a random variable (for F ′) if X−1(A) ∈ F for
every A ∈ F ′. For brevity of notation we write {X ∈ A} := {s ∈ Ω|X(s) ∈ A}
for the inverse image of A ∈ F ′ under X. We can obtain a new probability space
(Ω′, F ′, P′) with the probability distribution P′ : Ω′ → R, P′(A) = P(X ∈ A). P′

is called the distribution of the random variable X.
Let Ωj be a set with the σ-algebra Fj for each j in a non-empty index set

J , and let Xj : Ω → Ωj be a random variable for Fj for each j. The σ-algebra
generated by {Xj |j ∈ J} is

σ({Xj|j ∈ J}) = σ(
⋃

j∈J

{X−1
j (Aj) ∈ F |Aj ∈ Fj}).

For any events A, B ∈ F with P(B) > 0 the conditional probability of A

given B is defined as

P(A|B) :=
P(A ∩ B)

P(B)
.



A is said to be independent from event B if P(A|B) P(B) = P(A) P(B). In
general {Aj ∈ F |j ∈ J} is independent if for any finite, non-empty subset
K ⊆ J

P(
⋂

k∈K

Ak) =
∏

k∈K

P(Ak).

Independence of random variables reduces to independence of sets of events:
{Xj|j ∈ J} is independent if for any finite, non-empty subset K ⊆ J

P(
⋂

k∈K

{Xk ∈ Ak}) =
∏

k∈K

P(Xk ∈ Ak) for all Ak ∈ Fk.

2 The Language PALC

The language PALC extends the syntax and semantics of ALC such that we
can state probabilistic assertions about the extensions of concepts and roles.
To achieve this we need a set of probabilistic constants denoted by p0, p1, . . .

which are of a different type than the individual constants and a probability
operator P. If C is a concept, R is a role, p0, p1 are probabilistic constants,
and a, b, c are individual constants, then P(C(a))

.
= p0 and P(R(b, c))

.
= p1

are probabilistic concept assertions and probabilistic role assertions, respectively.
We will use ρ, σ, . . . to denote probabilistic assertions and α, β, . . . for classical
ALC assertions. A probabilistic ABox A is a finite set of probabilistic assertions.
For reasons that will become clear with Lemma 3, we restrict our ABoxes such
that for any role R, individual constant a, and probabilistic constant p we have
P(R(a, a))

.
= p 6∈ A.

The semantics of probabilistic assertions is given by a probabilistic interpre-
tation I = (∆I , ·I ,Ω) where the domain ∆I is a non-empty, countable set and
Ω = (Ω, F, P ) is a probability space. The probabilistic interpretation function
·I interprets concepts and individuals as in ALC and additionally assigns a real
number to each probabilistic constant.

Definition 1. Let σ(cns(PALC)I) ⊆ P(∆I) denote the σ-algebra generated by
the set of all concepts of PALC interpreted by the probabilistic interpretation I.
Similarly let σ(rls(PALC)I) ⊆ P(∆I × ∆I) denote the the σ-algebra generated
by the set of all roles of PALC interpreted by I.

We associate with each individual r ∈ ∆I the random variable Xr : Ω → ∆I

for σ(cns(PALC)I) and with each pair of individuals (r, s) ∈ ∆I × ∆I the
random variable Xrs : Ω → ∆I × ∆I for σ(rls(PALC)I). We require these
random variables to be independent. That is, we require independence for the
set {Xr|r ∈ ∆I} ∪ {Xrs|(r, s) ∈ ∆I × ∆I}. For conciseness of notation we
write P(r ∈ CI) and P((r, s) ∈ RI) instead of P(Xr ∈ CI) and P(Xrs ∈ RI),



respectively. We also write (r, s) 6∈ RI for (r, s) ∈ ∆I × ∆I \ RI . Finally we
require for all r ∈ ∆I , concepts C, and roles R the following condition to hold:

P(r ∈ (∀R.C)I) = P(
⋂

s∈∆I

({(r, s) 6∈ RI} ∪ {s ∈ CI})). (∀)

Remark 2. This condition is in allusion to the semantics in [4] and motivated
by the fact that for an ALC interpretation I we have

r ∈ (∀R.C)I iff r ∈
⋂

s∈∆I

({r ∈ ∆I |(r, s) 6∈ RI} ∪ {r ∈ ∆I |s ∈ CI}).

Assertions about concepts and roles which affect value restrictions are logi-
cally independent in ALC as shown by the following lemma.

Lemma 3. Let R be a role, C (C 6≡ ⊥, C 6≡ ⊤) a concept, and a, bi individual
constants for every i = 1 . . . n. Let further A = {R(a, bi), C(bi)|i = 1 . . . n}.
Then the ALC ABox A is independent in the sense that for every assertion
α ∈ A we have A \ {α} 6|= α and A \ {α} 6|= ¬α.

Remark 4. The ABox A = {R(a, a), ∀R.⊥(a)} is not independent.

A probabilistic interpretation I satisfies a probabilistic concept assertion
P(C(a))

.
= p0 iff P(aI ∈ CI) = p0

I . Similarly I satisfies a probabilistic role
assertion P(R(a, b))

.
= p0 iff P((aI , bI) ∈ RI) = p0

I . We say I is a model of a
probabilistic assertion ρ if I satisfies ρ and write I |= ρ. I satisfies a probabilistic
ABox A iff it satisfies every element of A. We then call I a model of A and
write I |= A. For a concept C we write I |= C if CI 6= ∅.

The next lemma shows that the values assigned to concepts and roles by the
probabilistic interpretation function are indeed probabilities.

Lemma 5. Let I = (∆I , ·I ,Ω) be a probabilistic interpretation where Ω is the
probability space (Ω, F, P ).

i) For each r ∈ ∆I, the triple (∆I , σ(cns(PALC)I), Pr) is a probability space
with Pr : ∆I → R, Pr(C

I) = P(r ∈ CI).

ii) For each (r, s) ∈ ∆I × ∆I , the triple (∆I × ∆I , σ(rls(PALC)I), Prs) is a
probability space with Prs : ∆I → R, Prs(R

I) = P((r, s) ∈ RI).

In the following we will write interpretation instead of probabilistic inter-
pretation and similarly interpretation function instead of probabilistic interpre-
tation function and membership function instead of probabilistic membership
function if the meaning is clear from the context. For each real number x ∈ R

we use its decimal representation - denoted by x - as a probabilistic constant
and require xI = x for every interpretation I.

We are now in the position to prove that the independence assumption and
Condition (∀) imply additional constraints on the interpretation of probabilistic
assertions for value restrictions.



Theorem 6. A probabilistic interpretation I satisfies a probabilistic value re-
striction P(∀R.C(a))

.
= p0 iff

p0
I =

∏

s∈∆I

1 − P((aI , s) ∈ RI)(1 − P(s, CI)).

Corollary 7. A probabilistic interpretation I satisfies a probabilistic existential
restriction P(∃R.C(a))

.
= p0 iff

p0
I = 1 −

∏

s∈∆I

1 − P((aI , s) ∈ RI) P(s ∈ CI).

Example 8. Consider the ABox

A = {P(∀R.C(a))
.
= 1, P(R(a, b))

.
= x, P(C(b))

.
= p}

with x > 0. In absence of Condition (∀) we could find a model I for A such
that 0 ≤ pI ≤ 1. Condition (∀) however requires 1 ≤ 1 − x(1 − pI) for every
interpretation I and thus pI = 1.

3 PALC Compared to ALC

Definition 9. A function j is a valuation (of the probabilistic constants) of PALC
if j maps each probabilistic constant p to a real number. Additionally, we require
j(x) = x where x is the decimal representation of x ∈ R. An interpretation I
respects a valuation j, denoted by Ij , if I agrees with j on the interpretation of
the probabilistic constants (that is pI = j(p) for all probabilistic constants p).

In PALC an assertion is assigned a probability which can vary among differ-
ent models. In order to get a meaningful notion of entailment, we need to fix
these probabilities.

Definition 10 (Entailment). A probabilistic ABox A entails a probabilistic
assertion ρ with respect to a valuation j, if every model Ij of A is also a model
of ρ. We write A |=

j
ρ.

Let us restrict the semantics such that 1 is the only allowed probability value.
This results in a sub-system of PALC which has the same expressiveness as ALC.
This sub-subsystem is sound and complete with respect to ALC: an assertion
has probability 1 in PALC if and only if it can be derived in ALC.

Theorem 11. Let |=ALC denote the entailment relation of ALC. Further, let
α be an assertion of ALC, A a probabilistic ABox containing only assertions
which have probability 1, j any valuation, and A′ = {γ|P(γ)

.
= 1 ∈ A}. Then

we have A |=
j
P(α)

.
= 1 if and only if A′ |=ALC α.



4 Reasoning in PALC

In this section, we formally define the reasoning problem for PALC. First, we
define the notion of j-consistency which will be the dual of the entailment rela-
tion. We will note that in PALC, entailment gives rather blunt results whereas
j-consistency allows us to relate the probabilities of different assertions. It also
conforms with the way we expect reasoning with probabilities to work.

Definition 12 (j-Consistency). An ABox A is j-consistent with an assertion ρ -
in symbols A |≈

j
ρ - iff there is an interpretation I such that Ij |= A and Ij |= ρ.

Definition 13 (Negation). Let ρ be a probabilistic assertion of the form P(C(a)) =
p. We call ρ the negation of ρ and define I |= ρ iff P(aI ∈ CI) 6= pI . The nega-
tion σ of a role assertion σ is defined correspondingly.

Definition 14. Let J be the set of all valuations, A an ABox, and ρ an assertion.
We define the sets PA,ρ = {j ∈ J |A |≈

j
ρ} and NA,ρ = {j ∈ J |A |=

j
ρ}.

Lemma 15. Let A be an ABox and ρ an assertion. Then PA,ρ = J \ NA,ρ.

Example 16. Let A = {P(C ⊓ D(a))
.
= p1} and ρ = P(C(a))

.
= p0. Assume

Ij |= A and Ij |= ρ. We find 0 ≤ pI1 ≤ pI0 ≤ 1 and thus PA,ρ = {j ∈ J |0 ≤
j(p1) ≤ j(p0) ≤ 1}. Let j be such that j(p1) < 1. Since, p0 does not occur in A,
we find a model Ij of A with P(aI ∈ CI) 6= j(p0) and thus Ij 6|=

j
ρ and A 6|=

j
ρ.

We therefore find NA,ρ = {j ∈ J |j(p0) = j(p1) = 1}.

Definition 17 (PALC reasoning problem). Let A be an ABox, ρ be the prob-
abilistic assertion P(α)

.
= p0 where p0 does not occur in A, and j a valuation.

i) The triple 〈A, ρ, j〉 is a called a PALC reasoning problem.

ii) A real number s ∈ R is called a solution to the PALC reasoning problem
〈A, ρ, j〉 iff A |≈

j[p0=s]
ρ where

j[p = s](x) =

{

j(x) if x 6= p,
s otherwise.

iii) The set S〈A,ρ,j〉 = {s ∈ R|A |≈
j[p0=s]

ρ} is called the set of solutions to the
PALC reasoning problem 〈A, ρ, j〉.

Entailment and j-consistency in PALC can be reduced to finding the set
of solutions of a PALC reasoning problem 〈A, ρ, j〉. This is because the set of
solutions S〈A,ρ,j〉 coincides with the set of valuations in a specific subset of PA,ρ

evaluated at p0 as the following lemma shows:



Lemma 18. Let P
j
A,ρ = {j′(p0) ∈ R|j′ ∈ PA,ρ and j′(p) = j(p) for all p 6= p0}

be the restriction of PA,ρ to j evaluated at p0. Then S〈A,ρ,j〉 = P
j
A,ρ.

Example 19. Consider the ABox

A = {P(C(b))
.
= 1, P(C(c))

.
= 1, P(R(a, b))

.
= y, P(∀R.¬C(a))

.
= x}

and ρ = P(R(a, c))
.
= p0. Assume we are given an Ij such that Ij |= A. Then

P(bI ∈ (¬C)I) = P(cI ∈ (¬C)I) = 0. Together with Condition (∀) we find
x + δ = (1 − y)(1 − pI0 ) with a parameter δ ≥ 0. For y = 1 this yields the
solutions 0 ≤ pI0 ≤ 1 if x = 0 and no solution otherwise. For y < 1 we find
pI0 = 1 − x+δ

1−y
. Therefore

S〈A,ρ,j〉 =







[0, 1 − min{1, x
1−y

}] if y < 1,

[0, 1] if y = 1, x = 0,
∅ otherwise.

This example demonstrates that Condition (∀) generally poses non-linear
constraints on the possible interpretations of the probabilistic constants. A
simple linear reasoning approach similar to [11] and also proposed in [1, 2] will
therefore not work for PALC. Although we have non-linear constraints on the
solutions of PALC reasoning problems, we conjecture that the set of solutions
forms a closed interval.

Conjecture 20. The set of solutions S〈A,ρ,j〉 of a PALC reasoning problem is a
closed interval. That is, there exist pl, pu ∈ R such that S〈A,ρ,j〉 = [pl, pu].

Building on this, we formulate the reasoning task for PALC as follows:

Definition 21. Let 〈A, ρ, j〉 be a PALC reasoning problem. The PALC reason-
ing task consists of finding pl, pu ∈ R such that A |≈

j[p0=s]
ρ iff s ∈ [pl, pu].

5 Conclusion

PALC is a novel DL framework with probabilistic ABoxes. We have presented
syntax and semantics for PALC and we have defined the corresponding rea-
soning problem. Previous approaches to probabilistic ABoxes only considered
probabilistic concept assertions. PALC also allows for expressing probabilistic
role assertions. Further, the identification of some specific sets of independent
assertions yields additional constraints on the interpretation of probabilistic con-
stants. This considerably reduces the solution space of the PALC reasoning
problem. PALC is an extension to ALC if only allowing 1 as probability value.

Our primary future goal is to develop a reasoning algorithm for PALC. We
aim at a showing that the set of solutions of a PALC reasoning problem is a



closed interval. A reasoning algorithm has then to find the lower and upper
bounds of this interval. We plan to investigate the structure of the constraints
which are imposed on the solution space. This should help to prove Conjecture
20. We hope that it also leads to a tractable reasoning algorithm for PALC.
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