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Abstract

Most probabilistic extensions of description logics focus on the terminological

apparatus. While some allow for expressing probabilistic knowledge about

concept assertions, systems which can express probabilistic knowledge about

role assertions have received very little attention as yet. We present a system

PALC which allows us to express degrees of belief in concept and role asser-

tions for individuals. We introduce syntax and semantics for PALC and we

define the corresponding reasoning problem. An independence assumption

regarding the assertions for different individuals yields additional constraints

on the possible interpretations.
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Introduction

Motivation

Nowadays, description logics are a standard formalism for knowledge rep-

resentation. An overview of the existing work on description logics can be

found in [BCM+03] and [BKW03]. For many applications it is important

to extend description logics such that they can handle probabilistic knowl-

edge. Halpern [Hal90] and Bacchus [Bac90] define logics to reason with and

about probabilities. Since they work with full first-order logic, their systems

are undecidable. Moreover the independence assumption fundamental to our

approach does not hold for full first-order logic. Most of the probabilis-

tic extensions of description logics focus on probabilities on terminological

axioms, see for example [BKW03, Hei94, KLP97]. Notable exceptions are

[Jae94, GL02]. Jaeger [Jae94] presents a system which allows for proba-

bilistic knowledge about concept instances. He concentrates mainly on com-

bining probabilistic terminological knowledge with probabilistic assertional

knowledge by means of cross-entropy minimization. Giugno and Lukasiewicz

[GL02] examine probabilistic ontologies for the semantic web. There, as-

sertions of the form C(a) are expressed as inclusion axioms {a} v C and

probabilistic assertions are simply probabilistic inclusion axioms. None of

the approaches however allows for expressing probabilistic knowledge on role

instances.

In our work, we propose the language PALC as a probabilistic extension to

the description logic ALC. It allows us to express degrees of belief in both,
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concept and role assertions for individuals. We introduce syntax and seman-

tics of PALC. A reasoning problem for this system is to find the possible

valuations for the probabilistic constants. The expressive power of ALC is

relatively low when compared to first-order logic. This results in a high de-

gree of independence regarding the assertions for different individuals. The

identification of some specific sets of independent assertions yields additional

constraints on the interpretation of the probabilistic constants. In partic-

ular, we have less freedom in the interpretation of assertions about value

restrictions. Straccia [Str04] introduces similar constraints in a lattice based

approach to uncertainty in description logics. However, because his approach

is not based on probabilities, there is no notion of independence.

Investigating the structure of the solution space of a PALC reasoning prob-

lem, we will first identify linear constraints similar to those in [Nil86]. The

origin of these constraints are the probability axioms. We identify further,

non linear constraints which are imposed by our independence assumption.

Whether the constraints identified in this work fully characterize the solu-

tions of a PALC reasoning problem remains an open question as yet.
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Chapter 1

Preliminaries

1.1 Probability

In this section we will briefly review some topics of probability theory. See

[Kol33] for Kolmogorov’s original work on the mathematical foundations of

probability. A more exhaustive treatment especially regarding the Borel-

Cantelli Lemmas can be found in [Nev69].

A triple (Ω, F, P) on the domain Ω is called probability space for

i) Ω is a non-empty set called sample space.

ii) The set of events F is a σ-algebra over Ω.

iii) The probability distribution P : F → R on F is a mapping from the

events to the reals such that the probability axioms hold:

• P(A) ≥ 0 for all A ∈ F ,

• P(Ω) = 1,

• P(
⋃

j∈J Aj) =
∑

j∈J P(Aj) for any countable sequence (Aj)j∈J of

pairwise disjoint events.

Let (Ω, F, P) be a probability space, Ω′ a set, and F ′ a σ-algebra on Ω′. A

function X : Ω → Ω′ is called a random variable (for F ′) if X−1(A) ∈ F for
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every A ∈ F ′. For brevity of notation we write

{X ∈ A} := {s ∈ Ω|X(s) ∈ A}

for the inverse image of A ∈ F ′ under X. We can obtain a new probability

space (Ω′, F ′, P′) with the probability distribution

P′ : Ω′ → R, P′(A) = P(X ∈ A).

P′ is called the distribution of the random variable X.

Let Ωj be a set with the σ-algebra Fj for each j in a non-empty index set J ,

and let Xj : Ω → Ωj be a random variable for Fj for each j. The σ-algebra

generated by {Xj|j ∈ J} is

σ({Xj|j ∈ J}) = σ(
⋃
j∈J

{X−1
j (Aj) ∈ F |Aj ∈ Fj}).

Two events A and B are independent if

P(A ∩B) = P(A) P(B).

Note that Ω and ∅ are always independent from any other event. For any

event A with P(A) 6= 0 we have P(∅ ∩ A) = P(∅) = 0 = P(∅) P(A) and

P(Ω∩A) = P(A) = P(Ω) P(A). In general a set of events {Aj ∈ F |j ∈ J} is

independent if for any finite, non-empty subset K ⊆ J

P(
⋂

k∈K

Ak) =
∏

k∈K

P(Ak).

Independence of random variables reduces to independence of sets of events:

{Xj|j ∈ J} is independent if for any finite, non-empty subset K ⊆ J

P(
⋂

k∈K

{Xk ∈ Ak}) =
∏

k∈K

P(Xk ∈ Ak) for all Ak ∈ Fk.
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1.1.1 Convergence

We now provide some important results about infinite sequences of events.

We will draw on these results later when we define the semantics of prob-

abilistic value restrictions and probabilistic existential restrictions. Further

we give a definition for infinite products. Since we work with probabilities we

restrict our interest in products where all factors are restraint to the interval

[0, 1].

For the remainder of this section J will denote an arbitrary, non-empty, and

countable index set. (Aj)j∈J will denote a sequence of events in a probability

space (Ω, F, P).

Definition 1. We define the events

lim
j→∞

sup Aj =
∞⋂

j=1

∞⋃

k=j

Ak,

lim
j→∞

inf Aj =
∞⋃

j=1

∞⋂

k=j

Ak.

Remark 2.

lim
j→∞

inf Aj ⊆ lim
j→∞

sup Aj.

Definition 3. In the case of equality we define the limit of the sequence

(Aj)j∈J as

lim
j→∞

Aj = lim
j→∞

inf Aj = lim
j→∞

sup Aj.

Lemma 4.

i) Let (Aj)j∈J be an increasing sequence, that is Aj ⊆ Aj+1 for all j ∈ J .

Then

lim
j→∞

Aj =
∞⋃

j=1

Aj.

ii) Let (Aj)j∈J be a decreasing sequence, that is Aj ⊇ Aj+1 for all j ∈ J .

Then

lim
j→∞

Aj =
∞⋂

j=1

Aj.
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Proof.

i) • lim
j→∞

inf Aj =
∞⋃

j=1

∞⋂

k=j

Ak

︸ ︷︷ ︸
=Aj

=
∞⋃

j=1

Aj.

• Since lim
j→∞

sup Aj ⊇ lim
j→∞

inf Aj it is sufficient to show that

∞⋂
j=1

∞⋃

k=j

Ak ⊆
∞⋃

j=1

Aj.

Let a ∈ ⋂∞
j=1

⋃∞
k=j Ak. Then a ∈ ⋃∞

k=j Ak for all j ∈ J and thus

a ∈ ⋃∞
k=1 Ak.

Together we thus find lim
j→∞

inf Aj = lim
j→∞

sup Aj =
∞⋃

j=1

Aj.

ii) Similar to the proof of the first part.

A fundamental property of probability distributions is their continuity. That

is, probability distributions and limits commute.

Theorem 5. Let A = lim
j→∞

Aj. Then

lim
j→∞

P(Aj) = P( lim
j→∞

Aj) = P(A).

Proof.

lim
j→∞

sup P(Aj) = lim
j→∞

P(
∞⋃

k=j

Ak)

= P( lim
j→∞

sup Aj) = P(A) = P( lim
j→∞

inf Aj)

= lim
j→∞

P(
∞⋂

k=j

Ak) = lim
j→∞

inf P(Aj).
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Lemma 6.

P(
∞⋂

j=1

Aj) = lim
j→∞

P(

j⋂

k=1

Ak).

Proof.

i) (Bj)j∈J with Bj =
⋂j

k=1 Ak is a decreasing sequence,

ii) lim
j→∞

Bj =
⋂∞

j=1 Bj =
⋂∞

j=1 Aj,

iii) P(
⋂∞

j=1 Aj) = P( lim
j→∞

Bj) = lim
j→∞

P(Bj) = lim
j→∞

P(
⋂j

k=1 Ak).

Lemma 7 (Borel-Cantelli Part 1). Let
∑∞

j=1 P(Aj) < ∞. Then

P( lim
j→∞

sup Aj) = 0.

Proof.

P( lim
j→∞

sup Aj) = lim
j→∞

P(
∞⋃

k=j

Ak) ≤ lim
j→∞

∞∑

k=j

P(Ak) = 0.

Lemma 8 (Borel-Cantelli Part 2). Let {Aj|j ∈ J} be independent and∑∞
j=1 P(Aj) = ∞. Then

P( lim
j→∞

sup Aj) = 1.

Proof. First note that

1− P( lim
j→∞

sup Aj) = P( lim
j→∞

inf Ω \ Aj) = lim
j→∞

P(
∞⋂

k=j

Ω \ Ak).
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Because of independence, we find for every j ∈ J

P(
∞⋂

k=j

Ω \ Ak) = lim
n→∞

P(
n⋂

k=j

Ω \ Ak)

= lim
n→∞

n∏

k=j

P(Ω \ Ak)

= lim
n→∞

n∏

k=j

1− P(Ak)

≤ lim
n→∞

n∏

k=j

exp(−P(Ak))

= lim
n→∞

exp(−
n∑

k=j

P(Ak))

= 0

since the sum diverges.

Definition 9 (Infinite Product). Let (xj)j∈J be a sequence in (0, 1]. The

infinite product of this sequence converges if the limit of its partial products

exists and is then defined as

∞∏
j=1

xj = lim
j→∞

j∏

k=1

xk.

Remark 10.
∏∞

j=1 xj = 0 if xk = 0 for some k ∈ J .

Theorem 11. Let {Aj|j ∈ J} be independent. Then

P(
∞⋂

j=1

Aj) ∈ {0, 1}

and further

P(
∞⋂

j=1

Aj) = 1 iff P(Aj) = 1 for all j ∈ J .

Proof. Let Bj =
⋂j

k=1 Ak. With Lemma 6, Definition 3, Lemma 7 and
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Lemma 8 we find

P(
∞⋂

j=1

Aj) = P( lim
j→∞

Bj) = P( lim
j→∞

sup Bj) =

{
0 if

∑∞
j=1 P(Bj) < ∞,

1 if
∑∞

j=1 P(Bj) = ∞.

For the proof of the second part assume P(Aj) = 1 for all j ∈ J . Then

∞∑
j=1

P(Bj) =
∞∑

j=1

j∏

k=1

P(Ak) = ∞

and thus

P(
∞⋂

j=1

Aj) = 1

according to the first part. Finally assume P(Ak) < 1 for some k ∈ J . Then

from Lemma 6 and Definition 9 we find

P(
∞⋂

j=1

Aj) =
∞∏

j=1

P(Aj) < 1

which leaves us with

P(
∞⋂

j=1

Aj) = 0

according to the first part.

1.2 The Description Logic ALC
This section gives a short introduction on the description logic ALC as far

as it is of concern for our aim. For a more in depth treatment see [BCM+03].

In description logics, a description takes the form of a concept. Complex

concepts are built from atomic concepts and roles with concept constructors.

We use the letters A and B for atomic concepts, C and D for complex

concepts and the letters R and S for roles. Concepts in ALC are formed
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according to the following syntax:

C, D −→ A | (atomic concept)

> | (universal concept)

⊥ | (bottom concept)

¬C | (negation)

C uD | (conjunction)

C tD | (disjunction)

∀R.C | (value restriction)

∃R.C (existential restriction).

The semantics of concepts and roles is given by an interpretation I = (∆I , ·I)
where the domain ∆I consists of a non-empty set of individuals and the

interpretation function ·I assigns to every atomic concept A a set AI ⊆ ∆I

and to every role R a binary relation RI ⊆ ∆I × ∆I . The interpretation

function is extended to concepts by the following inductive definitions:

>I := ∆I

⊥I := ∅
(¬C)I := ∆I \ CI

(C uD)I := CI ∩DI

(C tD)I := CI ∪DI

(∀R.C)I := {r ∈ ∆I | ∀s((r, s) ∈ RI → s ∈ CI)}
(∃R.C)I := {r ∈ ∆I | ∃s((r, s) ∈ RI ∧ s ∈ CI)}.

A concept C is satisfiable if there is an interpretation I such that CI 6= ∅.
Further two concepts C and D are equivalent - in symbols C ≡ D - if CI = DI

for every interpretation I.

We introduce a set of individual constants a, b, c, . . . and we assert properties

of these by stating concept assertions C(a) and role assertions R(b, c). In-

formally, C(a) states that a belongs to the concept C and R(b, c) states that
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b and c are related by the role R. A world description or ABox A is a finite

set of (concept and role) assertions.

Definition 12. Let A be an ABox. We define the set of concepts cns(A),

roles rls(A), and individual constants ind(A) occurring in assertions in A as

cns(A) = {C|C(a) ∈ A for some individual constant a},
rls(A) = {R|R(a, b) ∈ A for some individual constants a, b},
ind(A) = {a|R(a, b) ∈ A or R(b, a) ∈ A

for some role R and some individual constant b}∪
{a|C(a) ∈ A for some concept C}.

We give semantics to the ABox by extending interpretations to individual

constants. Let I = (∆I , ·I) be an interpretation. The interpretation function

·I not only maps atomic concepts and roles to sets and relations, but in

addition maps each individual constant a to an element aI ∈ ∆I . We assume

that distinct individual constants denote distinct objects in ∆I . Therefore,

the mapping ·I respects the unique name assumption, that is if a and b are

different individual constants, then aI 6= bI . The interpretation I satisfies

the concept assertion C(a) if aI ∈ CI and it satisfies the role assertion

R(b, c) if (bI , cI) ∈ RI . An interpretation satisfies an ABox A if it satisfies

each assertion in it. We then say A is satisfiable and call I a model of A.

We will use the following notation:

I |= α means that I satisfies the (role or concept) assertion α and

I |= A means that I is a model of the ABox A.

A |= α states that A entails the assertion α. That is, every model I of

A also satisfies α.

A 6|= α states that there exists a model I of A which does not satisfy

the assertion α.

The next Lemma proves some equivalencies between concepts which will be

useful in subsequent sections.
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Lemma 13. Let R be a role and C, D concepts. Then

i) ¬¬C ≡ C.

ii) ¬(C uD) ≡ ¬C t ¬D.

iii) ¬(C tD) ≡ ¬C u ¬D.

iv) ∀R.C ≡ ¬∃R.¬C.

v) ∃R.C ≡ ¬∀R.¬C.

Proof. Let I be an interpretation. Then

i) (¬¬C)I = ∆I \ (∆I \ CI) = CI .

ii) (¬(C uD))I = ∆I \ (CI ∩DI) = (∆I \CI)∪ (∆I \DI) = (¬C t¬D)I .

iii) Similar to ii).

iv) (¬∃R.¬C)I = ∆I \ {r ∈ ∆I | ∃s((r, s) ∈ RI ∧ s 6∈ CI)}
= {r ∈ ∆I | ∀s((r, s) ∈ RI → s ∈ CI)}
= (∀R.C)I .

v) Similar to iv).

An ABox contains implicit knowledge that can be made explicit through

inferences. The main ABox reasoning tasks are satisfiability checking and

entailment checking. By satisfiability checking we want to determine if a

given ABox has a model while entailment checking determines whether a

given ABox entails a certain assertion.

Lemma 14. Let A be an ABox and C(a) an assertion. Then

A |= C(a) iff A ∪ {¬C(a)} is not satisfiable.
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Proof. Let A |= C(a). Assume I |= A ∪ {¬C(a)}. Then aI 6∈ CI and

I |= A. But the latter implies aI ∈ CI which contradicts the former. The

assumption was thus wrong and A ∪ {¬C(a)} is not satisfiable.

Conversely let I 6|= A∪{¬C(a)} for every interpretation I. If I 6|= A for every

interpretation I, then C(a) holds in every model of A. Otherwise J |= A
for some interpretation J . But then J 6|= ¬C(a) and thus J |= C(a).

An important property of ALC is its decidability. In particular:

Theorem 15. Let A be an ABox. Then it is decidable whether or not A is

satisfiable.

Proof. See [BCM+03] for a proof sketch and [BS99] for the full proof although

done for the more expressive description logic ALCN (◦).

1.2.1 Independence

In this section we provide some rather specific results about ALC ABoxes.

In particular we show that assertions occurring in these ABoxes are strongly

independent. We will make use of these results later when we define proba-

bilistic ABoxes and their semantics.

The proofs in this section make use of the tableau algorithm for ALC. See

[BCM+03] for an introduction or [BS99] and [BS01] for a more exhaustive

treatment.

Definition 16. Let A be an ABox. We define the binary relation <A on the

individual constants a, b ∈ ind(A) as

i) a <A b if R(a, b) ∈ A for some role R,

ii) a <A b if a <A c and c <A b for some c ∈ ind(A),

iii) a 6<A b otherwise.
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Definition 17. An ABox A is separable if <A is irreflexive (i.e. a 6<A a for

all individual constants a) and further

a <A b ∧ a′ <A b =⇒ a <A a′ ∨ a′ <A a ∨ a = a′

for all individual constants a, a′, b ∈ ind(A).

Lemma 18. Let A be a separable ABox and An an ABox occurring in a

run of the tableau algorithm after n completion rules have been applied to A.

Then An is separable and further for every individual constant b ∈ ind(An)

there is an individual constant a ∈ ind(A) such that either a = b or a <An b.

We call a the root of b in A.

Proof. First note that since An ⊆ An+1 also <An⊆<An+1 . We proceed by

induction on the number of completion rule applications n of the tableau

algorithm applied to A.

• For n = 0 the claim holds by precondition.

• Assume the claim holds for n. If An is complete we are done. So

assume An is not complete. Then there exists an assertion C(b) ∈ An

such that a completion rule is applicable to C(b). If the applicable rule

is one of →t,→u, or →∀ then the ABoxes An+1 (and A′
n+1) produced

by the completion rule do neither contain new role assertions nor new

individual constants. Thus <An+1=<An (and <A′n+1=<An) and the

claim holds by hypothesis. Otherwise the applicable rule is →∃. Thus

R(b, z) ∈ An+1 where z 6∈ ind(An) and thus b <An+1 z. By hypothesis

a <An b for some a ∈ ind(A). Using <An⊆<An+1 and transitivity we

find a <An+1 z. Further <An+1 is irreflexive since by hypothesis <An

is irreflexive, z 6∈ ind(An) and z 6<An+1 z. Finally assume a <An+1 z

and a′ <An+1 z for a 6= a′. If a <An+1 b and a′ <An+1 b then either

a <An+1 a′ or a′ <An+1 a by hypothesis. Otherwise without loss of

generality assume a <An+1 z and b <An+1 z. But then a <An+1 b

because a <An+1 z implies either a = b or a <An+1 b.
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Remark 19. In a separable ABox A the interaction of individuals of different

assertions is of a limited kind. That is, when running the tableau algorithm

on A and a completion rule is applicable at a certain point then the indi-

viduals occurring in the assertions involved all have the same root a in A.

Similarly if a completion rule is not applicable at a certain point then the in-

dividuals occurring in the assertions blocking the completion rule from being

applied all have the same root a′ in A.

Lemma 20. For every 1 ≤ i ≤ n let Ci be a concept and bi an individual

constant. Then the ABox

A = {Ci(bi)|1 ≤ i ≤ n}

is satisfiable iff each of its elements is satisfiable (i.e. each Ci(bi) for 1 ≤ i ≤ n

is satisfiable).

Proof. The only if direction holds by definition.

For the other direction assume each element ofA is satisfiable. Then for every

1 ≤ i ≤ n applying the tableau algorithm toAi = {Ci(bi)} there is a sequence

Si with length li of completion rules which leads to a complete and clash free

ABox Ac
i . We show by induction on n that then the sequence of completion

rules S1, . . . , Sn obtained by concatenating the individual sequences can be

applied to A and leads to an ABox Ac =
⋃

1≤i≤nAc
i which is complete and

clash free.

• For n = 1 the claim holds since A = A1.

• Assume the claim holds for n. Let Sl
i denote the starting segment

consisting of the first l members of Si. For l ≥ li we set Sl
i = Si. We

show by induction on l that S1, . . . , Sn+1 can be applied to A.

– For l = 0 we have S1, . . . , S
l
n+1 = S1, . . . , Sn which by hypothesis

can be applied to A.
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– Assume S1, . . . , S
l
n+1 can be applied to A. If l ≥ ln+1 we are done

since S1, . . . , S
l
n+1 = S1, . . . , Sn+1. Otherwise we have to show

that the last completion rule in the sequence S1, . . . , S
l+1
n+1 can be

applied to A. But this is the case as consequence of Lemma 18

and because A is separable.

⋃
1≤i≤nAc

i is complete and clash free by hypothesis and Ac
n+1 is com-

plete and clash free by precondition.
⋃

1≤i≤n+1Ac
i =

⋃
1≤i≤nAc

i ∪Ac
n+1

is thus also complete and clash free as a consequence of Lemma 18 and

because A is separable.

We momentarily extend our definition of an ABox such that it can contain

negative role assertions of the form ¬R(a, b). An interpretation I satisfies a

negative role assertion ¬R(a, b) iff I does not satisfy R(a, b).

Lemma 21. Let R be a role and for every 1 ≤ i ≤ n let Ci be a concept and

a, bi individual constants with a 6= bi and bi 6= bj for i 6= j. Then the ABox

A = {Ci(bi)|1 ≤ i ≤ n}

is satisfiable iff each ABox

A′ = A ∪ {Ri(a, bi)|Ri ∈ {R,¬R}, 1 ≤ i ≤ n}

is satisfiable .

Proof. For the if direction let I |= A′. Then I |= A.

For the other direction let I |= A. We define the interpretation J with

∆J = ∆I ∪ {z} where z 6∈ ∆I , aJ = z, bJi = bIi for 1 ≤ i ≤ n, AJ = AI

for all atomic concepts A, SJ = SI for all roles S 6= R and RJ = RI ∪
{(z, bIi ) |R(a, bi) ∈ A′}.

i) J satisfies R(a, bi) for all R(a, bi) ∈ A′ and J satisfies ¬R(a, bi) for all

¬R(a, bi) ∈ A′.
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ii) J satisfies Ci(bi) for all Ci(bi) ∈ A′ since for all r ∈ ∆I we have r ∈ CI
i

iff r ∈ CJ
i as we will show by induction on formula structure:

r ∈ AI = AJ .

¬: r ∈ (¬C)I iff r 6∈ CI iff r 6∈ CJ iff r ∈ (¬C)J .

u: r ∈ (C u D)I iff r ∈ CI and r ∈ DI iff r ∈ CJ and r ∈ DJ iff

r ∈ (C uD)J .

t: r ∈ (C t D)I iff r ∈ CI or r ∈ DI iff r ∈ CJ or r ∈ DJ iff

r ∈ (C tD)J .

∀: r ∈ (∀R.C)I iff (by definition)

∀s ∈ ∆I : (r, s) 6∈ RI ∨ s ∈ CI iff (1)

∀s ∈ ∆I : (r, s) 6∈ RJ ∨ s ∈ CI iff (2)

∀s ∈ ∆J : (r, s) 6∈ RJ ∨ s ∈ CI iff (3)

∀s ∈ ∆J : (r, s) 6∈ RJ ∨ s ∈ CJ iff (by definition)

r ∈ (∀R.C)J .

∃: r ∈ (∃R.C)I iff (by definition)

∃s ∈ ∆I : (r, s) ∈ RI ∧ s ∈ CI iff (1)

∃s ∈ ∆I : (r, s) ∈ RJ ∧ s ∈ CI iff (2)

∃s ∈ ∆J : (r, s) ∈ RJ ∧ s ∈ CI iff (3)

∃s ∈ ∆J : (r, s) ∈ RJ ∧ s ∈ CJ iff (by definition)

r ∈ (∃R.C)J .

In the cases ∀ and ∃ (1) holds because ∀s ∈ ∆I : (r, s) ∈ RI ⇔
(r, s) ∈ RJ , (2) holds because (r, z) 6∈ RJ , and (3) holds because

∀s ∈ ∆J : (r, s) ∈ RJ =⇒ s ∈ ∆I and by hypothesis.

Thus J |= A′.

Theorem 22 (Independence). Let R be a role, C a concept with C 6≡ ⊥ and

C 6≡ >, and for every 1 ≤ i ≤ n let a, bi be individual constants with a 6= bi

and bi 6= bj for i 6= j. Then the ABox

A = {R(a, bi), C(bi)|1 ≤ i ≤ n}
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is independent in the sense that for every assertion α ∈ A

A \ {α} 6|= α and A \ {α} 6|= ¬α.

Proof. A\{α} 6|= α iff A0 = A\{α}∪{¬α} is satisfiable. If α is the concept

assertion C(bk) for some 1 ≤ k ≤ n then A0 is satisfiable by Lemma 21 iff

{C(bi)|1 ≤ i ≤ n}\{C(bk)}∪{¬C(bk)} is satisfiable. The latter is satisfiable

by Lemma 20 because by precondition C 6≡ ⊥ and ¬C 6≡ ⊥. If α is a role

assertion the argument is similar. The proof for A\{α} 6|= ¬α is similar.

Note that excluding ⊥ and > in Theorem 22 is irrelevant to our aim. In the

probabilistic sense the empty set and the universe are always independent

from any other event.

1.2.2 A Pumping Lemma for ALC

The following lemma basically states, that whenever an ABox A is satisfiable,

then we can expand the domain of its models at will. That is, if A has a

model with domain ∆I we can find another model for A whose domain is a

proper superset of ∆I .

Lemma 23 (Pumping). Let A be an ABox with I |= A for some interpre-

tation I. Then there exists an interpretation J which agrees on I except for

∆J = ∆I ∪ {z} for some z 6∈ ∆I, such that J |= A.

Proof. We prove by structural induction that either CJ = CI ∪{z} holds or

CJ = CI holds for any concept C.

For atomic concepts A and roles R we have AJ = AI and RJ = RI by

definition. Assume either CJ = CI ∪ {z} or CJ = CI holds.

¬: (¬C)J =

{
(∆I ∪ {z}) \ CI = (¬C)I ∪ {z} if CJ = CI ,

(∆I ∪ {z}) \ (CI ∪ {z}) = (¬C)I otherwise.

t: (C tD)J =

{
(CI ∪DI) = (C tD)I if CJ = CI , DJ = DI ,

(CI ∪DI) ∪ {z} = (C tD)I ∪ {z} otherwise.
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u: Analog to the t case.

∀: (∀R.C)J = {r ∈ ∆J |∀s ∈ ∆J : (r, s) ∈ RJ → s ∈ CJ }
= {r ∈ ∆I |∀s ∈ ∆J : (r, s) ∈ RI → s ∈ CJ }∪
{r ∈ ∆J \∆I |∀s ∈ ∆J : (r, s) ∈ RI → s ∈ CJ }︸ ︷︷ ︸

={z} since ∀s∈∆J :(z,s)6∈RI

= {r ∈ ∆I |(∀s ∈ ∆I : (r, s) ∈ RI → s ∈ CJ )∧
((r, z) ∈ RI → s ∈ CJ )︸ ︷︷ ︸

always holds, since ∀r∈∆I :(r,z) 6∈RI

} ∪ {z}

= {r ∈ ∆I |∀s ∈ ∆I : (r, s) ∈ RI → (s ∈ CI ∨ s = z)} ∪ {z}
= {r ∈ ∆I |∀s ∈ ∆I : (r, s) ∈ RI → (s ∈ CI)} ∪ {z}
= (∀R.C)I ∪ {z}

∃: Using (∃R.C)J = (¬∀R.¬C)J for a reduction to the previous cases

yields (∃R.C)J = (∃R.C)I .

Hence for any assertion C(a) ∈ A we have I |= C(a) iff aI ∈ CI iff aI ∈ CJ

iff aJ ∈ CJ and thus J |= C(a) and J |= A.
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Chapter 2

PALC: A Probabilistic Variant

of ALC

In this chapter we introduce syntax and semantics of the language PALC.

PALC is a variant of ALC which allows us to express probabilistic knowledge

about concept and role assertions. In ALC the semantics of assertions is de-

fined via set membership. In contrast, for PALC we define the semantics of

probabilistic assertions by means of random variables. Using the indepen-

dence result from Section 1.2.1 we are able introduce a further restriction on

the interpretation of existential restrictions and value restrictions. This will

lead to a reduction of the solution space when it comes to reasoning in PALC.

Further Theorem 11 will be applicable on our probabilistic interpretations

which will lead to a zero-one law for PALC. Finally we will see that in the

limit when only the probability 1 is involved PALC is equivalent to ALC.

2.1 Syntax and Semantics

PALC extends the syntax and semantics of ALC such that we can state

probabilistic assertions about the extensions of concepts and roles. To achieve

this we need a set of probabilistic constants denoted by p0, p1, . . . which are of a

different type than the individual constants and a symbol P for the probability
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operator. If C is a concept, R is a role, p0, p1 are probabilistic constants, and

a, b, c are individual constants, then P(C(a))
.
= p0 and P(R(b, c))

.
= p1 are

probabilistic concept assertions and probabilistic role assertions, respectively.

In the sequel we will use ρ, σ, . . . to denote probabilistic PALC assertions and

α, β, . . . for classical ALC assertions. Also if α stands for C(a) we will use

¬α to denote ¬C(a). A probabilistic ABox A is a finite set of probabilistic

assertions.

The semantics of probabilistic assertions is given by a probabilistic interpre-

tation I = (∆I , ·I ,Ω) where the domain ∆I is a non-empty, countable set

and Ω = (Ω, F, P) is a probability space. The probabilistic interpretation

function ·I interprets concepts and individuals as in ALC and additionally

assigns a real number to each probabilistic constant.

Definition 24. With σ(cns(PALC)I) ⊆ P(∆I) we denote the σ-algebra

generated by the set of all concepts of PALC interpreted by the probabilistic

interpretation I. Similarly with σ(rls(PALC)I) ⊆ P(∆I × ∆I) we denote

the σ-algebra generated by the set of all roles of PALC interpreted by I.

We associate with each individual r ∈ ∆I the random variable Xr : Ω → ∆I

for σ(cns(PALC)I) and with each pair of individuals (r, s) ∈ ∆I × ∆I the

random variable Xrs : Ω → ∆I × ∆I for σ(rls(PALC)I). We require these

random variables to be independent. That is, we require independence for

the set {Xr|r ∈ ∆I}∪{Xrs|(r, s) ∈ ∆I×∆I}. For conciseness of notation we

write P(r ∈ CI) and P((r, s) ∈ RI) instead of P(Xr ∈ CI) and P(Xrs ∈ RI),

respectively. We also write (r, s) 6∈ RI for (r, s) ∈ ∆I × ∆I \ RI . Finally

we require for all r ∈ ∆I , concepts C and roles R the following condition to

hold:

P(r ∈ (∀R.C)I) = P(
⋂

s∈∆I
({(r, s) 6∈ RI} ∪ {s ∈ CI})). (∀)

Remark 25. For any ALC interpretation I we have

r ∈ (∀R.C)I iff r ∈
⋂

s∈∆I
({r ∈ ∆I |(r, s) 6∈ RI} ∪ {r ∈ ∆I |s ∈ CI}).
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Condition (∀) is an extrapolation of the classical to the probabilistic case.1

Independence is motivated by the fact that in ALC assertions about concepts

and roles which affect value restrictions are logically independent as shown

by Theorem 22.

A probabilistic interpretation I satisfies a probabilistic concept assertion

P(C(a))
.
= p0 iff P(aI ∈ CI) = p0

I . Similarly I satisfies a probabilistic role

assertion P(R(a, b))
.
= p0 iff P((aI , bI) ∈ RI) = p0

I . We say I is a model

of a probabilistic assertion ρ if I satisfies ρ and write I |= ρ. I satisfies a

probabilistic ABox A iff it satisfies every element of A. We then call I a

model of A and write I |= A.

The next lemma shows that the values assigned to concepts and roles by the

probabilistic interpretation function are indeed probabilities.

Lemma 26. Let I = (∆I , ·I ,Ω) be a probabilistic interpretation where Ω is

the probability space (Ω, F, P).

i) For each r ∈ ∆I, the triple (∆I , σ(cns(PALC)I), Pr) is a probability

space with Pr : ∆I → R, Pr(C
I) = P(r ∈ CI).

ii) For each (r, s) ∈ ∆I ×∆I, the triple (∆I ×∆I , σ(rls(PALC)I), Prs) is

a probability space with Prs : ∆I → R, Prs(R
I) = P((r, s) ∈ RI).

Proof. By Definition. See Section 1.1.

In the following we will write interpretation instead of probabilistic interpre-

tation and similarly interpretation function instead of probabilistic interpre-

tation function and membership function instead of probabilistic membership

function if the meaning is clear from the context. To simplify notation we

adhere to the following convention: for each real number x ∈ R we use its

decimal representation - denoted by x - as a probabilistic constant and require

1Gaifman takes a similar however more general approach in [Gai64]. There the proba-
bility of an universal quantified first order formula ∀xϕ(x) is taken to be the infimum of
the probabilities of all finite conjunctions of the form ϕ(y1) ∧ · · · ∧ ϕ(yn). The constants
yi do not occur in the initial language.
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xI = x for an interpretation I. Thus, instead of I |= P(α)
.
= p0 and p0

I = x

we simply write I |= P(α)
.
= x.

We are now in the position to prove that the independence assumption and

Condition (∀) imply additional constraints on the interpretation of proba-

bilistic assertions for value restrictions.

Theorem 27. A probabilistic interpretation I satisfies a probabilistic value

restriction P(∀R.C(a))
.
= p0 iff

p0
I =

∏

s∈∆I
1− P((aI , s) ∈ RI)(1− P(s ∈ CI)).

Proof. Let s1, s2, . . . be an enumerations of the elements of the domain ∆I .

p0
I = P(aI ∈ (∀R.C)I) = P(

⋂

s∈∆I
({(aI , s) 6∈ RI} ∪ {s ∈ CI}))

= lim
n→∞

P(
n⋂

i=1

({(aI , si) 6∈ RI} ∪ {si ∈ CI}))

= lim
n→∞

n∏
i=1

P({(aI , si) 6∈ RI} ∪ {si ∈ CI})

=
∏

s∈∆I
P({(aI , s) 6∈ RI} ∪ {s ∈ CI})

=
∏

s∈∆I
1− P({(aI , s) ∈ RI} ∩ {s ∈ (¬C)I})

=
∏

s∈∆I
1− P((aI , s) ∈ RI)(1− P(s ∈ CI)).

Example 28. Consider the ABox

A = {P(∀R.C(a))
.
= 1, P(R(a, b))

.
= x, P(C(b))

.
= p}

with x > 0 and neither C ≡ ⊥ nor C ≡ >. In absence of Condition (∀) we

could find a model I for A such that 0 ≤ pI ≤ 1. Condition (∀) however

requires 1 ≤ 1− x(1− pI) for every interpretation I and thus pI = 1.
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While reasoning in ALC consists of checking whether an ABox has a model,

reasoning in PALC consists of deriving interpretations for the probabilistic

constants. This can be regarded as finding suitable probabilities for the

extensions of concepts. To give a flavor of reasoning in PALC we will derive

some standard results of probability theory.

In the following let I = (∆I , ·I ,Ω) with the probability space Ω = (Ω, F, P)

be an interpretation. Let C, D be concepts, a an individual constant, and

p0, p1, . . . probabilistic constants.

Lemma 29. Let I |= P(>(a))
.
= p0. Then p0

I = 1.

Proof. I |= P(>(a))
.
= p0 iff p0

I = P(aI ∈ ∆I) = P({s ∈ Ω|XaI(s) ∈
∆I}) = P(Ω) = 1.

Lemma 30. Let I |= P(C(a))
.
= p0 and I |= P(¬C(a))

.
= p1. Then p0

I +

p1
I = 1.

Proof. Since CI ∩ (¬C)I = ∅ and CI ∪ (¬C)I = ∆I we find 1 = P(aI ∈
∆I) = P(aI ∈ CI ∪ (¬C)I) = P(aI ∈ CI) + P(aI ∈ (¬C)I) = p0

I + p1
I .

Lemma 31. Let I |= P(⊥(a))
.
= p0. Then p0

I = 0.

Proof. I |= P(¬⊥(a))
.
= 1 because (¬⊥)I = >I = ∆I . Using Lemma 30 we

find I |= P(⊥ t ¬⊥(a))
.
= 1 and thus 1 = p0

I + 1 and p0
I = 0.

Lemma 32. Let I |= P(C(a))
.
= p0, I |= P(D(a))

.
= p1 and CI = DI. Then

p0
I = p1

I.

Proof. p0
I = P(aI ∈ CI) = P(aI ∈ DI) = p1

I .

Lemma 33. Let I |= P(C(a))
.
= p0, I |= P(D(a))

.
= p1 and (C tD)I = DI.

Then p0
I ≤ p1

I.

Proof. First note that (C t (Du¬C))I = (C tD)I . From Lemma 32 follows

I |= P(C t (D u ¬C)(a))
.
= p1. Because of (C u (D u ¬C))I = ∅ we get

p1
I = p0

I + P(aI ∈ (D u ¬C)I) and thus p0
I ≤ p1

I .
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Lemma 34. Let I |= P(C tD(a))
.
= p0, I |= P(C(a))

.
= p1, I |= P(D(a))

.
=

p2 and I |= P(C uD(a))
.
= p3. Then p0

I = p1
I + p2

I − p3
I.

Proof. First note that:

i) (C tD)I = (C t (¬C uD))I ,

ii) (C u (¬C uD))I = ∅,

iii) ((C uD) t (¬C uD))I = DI ,

iv) ((C uD) u (¬C uD))I = ∅.

Now p0
I = p1

I + P(aI ∈ (¬C u D)I) by Lemma 32. Together with I |=
P(C u D(a))

.
= p3 we find p2

I = P(aI ∈ (¬C u D)I) + p3
I and thus p0

I =

p1
I + p2

I − p3
I .

Lemma 35. Let I |= P(C(a))
.
= p0. Then 0 ≤ p0

I ≤ 1.

Proof. P(aI ∈ CI) = p0
I ≥ 0. Now assume p0

I > 1. But then P(aI ∈
(C t ¬C)I) > 1 which contradicts Lemma 29.

With these lemmas at our disposal, we can now derive the semantics of

existential restrictions as a corollary to Theorem 27.

Corollary 36. A probabilistic interpretation I satisfies a probabilistic exis-

tential restriction P(∃R.C(a))
.
= p0 iff

p0
I = 1−

∏

s∈∆I
1− P((aI , s) ∈ RI) P(s ∈ CI).

Proof. Using (∃R.C)I = (¬∀R.¬C)I from Lemma 13 and applying Lemma 32

we find I |= P(∃R.C(a))
.
= p0 iff I |= P(¬∀R.¬C(a))

.
= p0 by applying

Lemma 30 and Theorem 27 iff

p0
I = 1−

∏

s∈∆I
1− P((aI , s) ∈ RI)(1− P(s 6∈ CI))

= 1−
∏

s∈∆I
1− P((aI , s) ∈ RI) P(s ∈ CI)
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as required.

Theorem 37 (Zero-one law2). Let A be an ABox with P(QR.C(a))
.
= x ∈ A

where Q ∈ {∃,∀} and 0 < x < 1. Then for any interpretation I we have

I |= A =⇒ ∆I is finite.

Proof. Assume I |= A and ∆I is not finite. But then xI ∈ {0, 1} according

to Theorem 11 which contradicts 0 < x < 1. The assumption was thus wrong

and ∆I is finite.

In [YR00] Bernard and Rousset give a somewhat related result. They con-

sider probability distributions on sets of random assertions and show, that

for large domains the probability of these sentences converge to either 0 or 1

in general.

2.2 PALC Compared to ALC
In this section we examine the properties of PALC and contrast them with

those of ALC. The main result will be, that PALC is equivalent to ALC if

we only allow the probability 1. That is, all assertions of a PALC ABox have

probability 1 if and only if an ALC ABox containing the corresponding non

probabilistic assertions is satisfiable. PALC is therefore sound and complete

with respect to ALC.

Definition 38 (Valuation). A function j is a valuation (of the probabilistic

constants) of PALC if j maps each probabilistic constant p to a real number.

Additionally, we require j(x) = x where x is the decimal representation of

x ∈ R. An interpretation I respects a valuation j, denoted by Ij, if I agrees

with j on the interpretation of the probabilistic constants (that is pI = j(p)

for all probabilistic constants p).

2According to Kyburg [KT01, p.85], Carnap gives a similar result for universally quan-
tified formula in first order logic in [Car51].
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Definition 39 (j-Satisfiability). Let A be a probabilistic ABox and j a

valuation. A is j-satisfiable if there is an interpretation Ij such that Ij |= A.

Definition 40 (j-Entailment). A probabilistic ABox A entails a probabilis-

tic assertion ρ with respect to a valuation j, if every model Ij of A is also a

model of ρ. We write A |=
j
ρ.

Lemma 41. Let α be an assertion, A an ABox, j a valuation and x, y

probabilistic constants. Then

i) A |=
j
P(α)

.
= x =⇒ A∪ {P(α)

.
= y} is not j-satisfiable for any y 6= x.

ii) A ∪ {P(α)
.
= x} not j-satisfiable =⇒ A |=

j
P(α)

.
= y for some y 6= x.

Proof.

i) IfA is not j-satisfiable thenA∪{P(α)
.
= y} is not j-satisfiable for any y.

Otherwise Ij |= A for some interpretation Ij and thus Ij |= P(α)
.
= x.

But then Ij 6|= P(α)
.
= y for any y 6= x.

ii) If A is not j-satisfiable then P(α)
.
= y vacuously holds in every model

of A. Otherwise Ij |= A for some interpretation Ij and thus Ij 6|=
P(α)

.
= x. But then Ij |= P(α)

.
= y for some y 6= x.

Theorem 42 (Soundness and Completeness w.r.t. ALC). Let A be an ALC
ABox and j any valuation. We define the probabilistic ABox Ap = {P(α)

.
=

1|α ∈ A}. Then

A is satisfiable iff Ap is j-satisfiable.

Proof. Let J |= A. Define the probabilistic interpretation I which coincides

with J on the non probabilistic part and set for all atomic concepts A, roles

R and individuals r, s

P(r ∈ AI) =





1 if r ∈ AJ ,

0 otherwise,
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and

P((r, s) ∈ RI) =





1 if (r, s) ∈ RJ ,

0 otherwise.

Claim: For any concept C and individual r

P(r ∈ CI) =





1 if r ∈ CJ ,

0 otherwise.

Let C(a) ∈ A. Then J |= C(a) iff aJ ∈ CJ which by the claim implies

P(aI ∈ CI) = 1 and thus Ij |= P(C(a))
.
= 1. Hence we find Ij |= Ap.

Proof of the claim: For atomic concepts and roles the claim holds by defini-

tion. So assume the claim holds for a concept C.

¬: If r ∈ (¬C)J then r 6∈ CJ . By hypothesis P(r ∈ CI) = 0 and thus

P(r ∈ (¬C)I) = 1. The case r 6∈ (¬C)J is similar.

t: If r ∈ (C t D)J then without loss of generality assume r ∈ CJ . By

hypothesis P(r ∈ CI) = 1 and thus P(r ∈ (C tD)I) = 1.

If r 6∈ (CtD)J then r 6∈ CJ and r 6∈ DJ . By hypothesis P(r ∈ CI) = 0

and P(r ∈ DI) = 0 and thus P(r ∈ (C tD)I) = 0.

u: Similar to the t-case.

∀: If r ∈ (∀R.C)J then ∀s ∈ ∆J : ((r, s) 6∈ RJ ∨ s ∈ CJ ). By hypothesis

∀s ∈ ∆I : (P((r, s) ∈ RI) = 0∨P(s ∈ CI) = 1) and thus by Theorem 27

P(r ∈ (∀R.C)I) = 1.

If r 6∈ (∀R.C)J then ∃s ∈ ∆J : ((r, s) ∈ RJ ∧ s 6∈ CJ ). By hypothesis

∃s ∈ ∆I : (P((r, s) ∈ RI) = 1∧P(s ∈ CI) = 0) and thus by Theorem 27

P(r ∈ (∀R.C)I) = 0.

∃: Similar to the ∀-case.

For the other implication let Ij |= Ap with an interpretation I = (∆I , ·I ,Ω)

and the probability space Ω = (Ω, F, P). Then P(aI ∈ CI) = 1 and
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P((bI , cI) ∈ RI) = 1 for all assertions P(C(a))
.
= 1 ∈ Ap and P(R(b, c))

.
=

1 ∈ Ap. Therefore

P(
⋂

P(C(a))
.
=1∈Ap

{aI ∈ CI} ∩
⋂

P(R(b,c))
.
=1∈Ap

{(bI , cI) ∈ RI}) =

P({s ∈ Ω|
∧

P(C(a))
.
=1∈Ap

XaI(s) ∈ CI ∧
∧

P(R(b,c))
.
=1∈Ap

XbIcI(s) ∈ RI}) = 1

and hence

E = {s ∈ Ω|
∧

P(C(a))
.
=1∈Ap

XaI(s) ∈ CI ∧
∧

P(R(b,c))
.
=1∈Ap

XbIcI(s) ∈ RI} 6= ∅.

Define the ALC interpretation J which coincides with the non probabilistic

part of I except for the interpretation of the individual constants for which

we set aJ = XaI(s) and (bJ , cJ ) = XbIcI(s) for some s ∈ E . Then J |= C(a)

for P(C(a))
.
= 1 ∈ Ap and J |= R(b, c) for P(R(b, c))

.
= 1 ∈ Ap and therefore

J |= A.

Corollary 43. Let α be an assertion and A, Ap, j as in Theorem 42. Then

i) Ap |=j P(α)
.
= 1 =⇒ A |= α.

ii) Ap |=j P(α)
.
= 0 =⇒ A |= ¬α.

Proof.

i) Let Ap |=
j

P(α)
.
= 1. Then Ap |=

j
P(¬α)

.
= 0 and by Lemma 41

Ap ∪{P(¬α)
.
= 1} is not j-satisfiable. Thus A∪{¬α} is not satisfiable

by Theorem 42 and hence A |= α.

ii) Let Ap |=j P(α)
.
= 0. Then by Lemma 41 Ap ∪ {P(α)

.
= 1} is not

j-satisfiable. Thus A∪{α} is not satisfiable by Theorem 42 and hence

A |= ¬α.
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Corollary 44. Let α be an assertion, x a probabilistic constant and A, Ap,

j as in Theorem 42. Then

i) A |= α =⇒ Ap |=j P(α)
.
= x for some x > 0.

ii) A |= ¬α =⇒ Ap |=j P(α)
.
= x for some x < 1.

Proof.

i) Let A |= α. Then A∪{¬α} is not satisfiable. Thus Ap ∪ {P(¬α)
.
= 1}

is not j-satisfiable by Theorem 42 and by Lemma 41 Ap |=j P(¬α)
.
= y

for a probabilistic constant y with y < 1. Hence Ap |=j P(α)
.
= x for

some x > 0.

ii) Substitute ¬α for α in the first part of the proof.
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Chapter 3

Reasoning in PALC

After having introduced PALC as a probabilistic extension to ALC we now

proceed to formally define the reasoning problem for PALC. First, we clar-

ify what reasoning in PALC actually means and contrast it with reasoning

in ALC. Having done so, we identify constraints which solutions of a rea-

soning problem for PALC must satisfy. We start by identifying some linear

constraints stemming from the axioms of probability. Our method basically

resembles the approach taken in [BCM+03, BKW03] and also mentioned in

[Jae94]: For a given set of sentences a basis is constructed such that each

sentence of the initial set is equivalent to the disjunction of some members

of the basis. Because the elements of the basis are pairwise disjunct, the

probability of each of the original sentences is uniquely determined by the

probabilities of the elements of the basis. Following Nilsson [Nil86] these

constraints can then be stated in the form of a matrix equation. Proceeding

with the implications of the independence assumption and Condition (∀), we

will find more constraints on possible solution which are not linear anymore.

3.1 Reasoning Formalized

In this section we propose a formal definition of reasoning in PALC and state

some important properties about it. While in ALC reasoning is completely
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determined by entailment, in PALC the situation is different. We define the

notion of j-admissibility which will be the dual to j-entailment. We will note

that in PALC, j-entailment gives rather blunt results whereas j-admissibility

allows us to relate the probabilities of different assertions. It also conforms

with the way we expect reasoning with probabilities to work.

Definition 45 (j-Admissible). An assertion ρ is j-admissible for an ABox

A - in symbols A |≈
j

ρ - iff there is an interpretation I such that Ij |=
A and Ij |= ρ.

Definition 46 (Negation). Let ρ be a probabilistic assertion of the form

P(C(a)) = p. We call ρ the negation of ρ and define I |= ρ iff P(aI ∈ CI) 6=
pI . The negation σ of a role assertion σ is defined correspondingly.

Definition 47. Let J be the set of all valuations j with ran(j) ⊆ [0, 1], A
an ABox and ρ an assertion. We define the sets

PA,ρ = {j ∈ J |A |≈
j
ρ} and NA,ρ = {j ∈ J |A |=

j
ρ}.

Remark 48. Intuitively PA,ρ = {j ∈ J |A |≈
j

ρ} corresponds to the set of

valuations which are possible for ρ given A whereas NA,ρ = {j ∈ J |A |=
j

ρ}
corresponds to the set of valuations which are necessary for ρ given A.

Example 49. Let ρ = P(C(a))
.
= p0. Then

N∅,ρ ={j ∈ J | |=
j
ρ} =





{j ∈ J |j(p0) = 1} if C ≡ >,

{j ∈ J |j(p0) = 0} if C ≡ ⊥,

∅ otherwise.

P∅,ρ ={j ∈ J | |≈
j
ρ} =





{j ∈ J |j(p0) = 1} if C ≡ >,

{j ∈ J |j(p0) = 0} if C ≡ ⊥,

{j ∈ J |0 ≤ j(p0) ≤ 1} otherwise.

PA,ρ is dual to NA,ρ as the following lemma shows:
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Lemma 50. Let A be an ABox and ρ an assertion. Then

PA,ρ = J \NA,ρ and NA,ρ = J \ PA,ρ.

Proof. J \NA,ρ = {j ∈ J |A 6|=
j
ρ} = {j ∈ J |A |≈

j
ρ} = PA,ρ. The proof for the

second equality is similar.

Example 51. Let A = {P(C(a))
.
= p1} and ρ = P(>(a))

.
= p0 with neither

C 6≡ ⊥ nor C 6≡ >. Assume Ij |= A and Ij |= ρ. Then 0 ≤ j(p1) ≤ 1

and j(p0) < 1 and thus PA,ρ = {j ∈ J |0 ≤ j(p1) ≤ 1, j(p0) < 1}. Hence

NA,ρ = J \ PA,ρ = {j ∈ J |j(p0) = 1}.

Definition 52 (PALC reasoning problem). Let A be an ABox, ρ be the

probabilistic assertion P(α)
.
= p0 where p0 does not occur in A, and j a

valuation.

i) The triple 〈A, ρ, j〉 is a called a PALC reasoning problem.

ii) A real number s ∈ R is called a solution to the PALC reasoning problem

〈A, ρ, j〉 iff A |≈
j[p0=s]

ρ where

j[p = s](x) =

{
j(x) if x 6= p,

s otherwise.

iii) The set S〈A,ρ,j〉 = {s ∈ R|A |≈
j[p0=s]

ρ} is called the set of solutions to

the PALC reasoning problem 〈A, ρ, j〉.

Entailment and j-admissibility in PALC can be reduced to finding the set of

solutions of a PALC reasoning problem 〈A, ρ, j〉. This is because the set of

solutions S〈A,ρ,j〉 coincides with the set of valuations in a specific subset of

PA,ρ evaluated at p0 as the following lemma shows:

Lemma 53. Let

P j
A,ρ = {j′(p0) ∈ R|j′ ∈ PA,ρ and j′(p) = j(p) for all p 6= p0}
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be the restriction of PA,ρ to j evaluated at p0. Then

S〈A,ρ,j〉 = P j
A,ρ.

Proof. We prove each inclusion separately.

(⊆) Let s′ ∈ S〈A,ρ,j〉. Then A |≈
j[p0=s′] ρ and thus j[p0 = s′] ∈ PA,ρ. Because

j[p0 = s′](p) = j(p) for all p 6= p0 we conclude j[p0 = s′](p0) = s′ ∈
P j
A,ρ.

(⊇) Let s′ ∈ P j
A,ρ. Then there is a valuation j′ ∈ PA,ρ such that j′(p0) = s′

and j′(p) = j(p) for all p 6= p′0. Thus j′ = j[p0 = s′] and hence

s′ ∈ {s ∈ R|A |≈
j[p0=s]

ρ}.

Example 54. Consider the ABox

A = {P(C(b))
.
= 1, P(C(c))

.
= 1, P(R(a, b))

.
= y, P(∀R.¬C(a))

.
= x}

and ρ = P(R(a, c))
.
= p0. Assume we are given an Ij such that Ij |= A.

Then P(bI ∈ (¬C)I) = P(cI ∈ (¬C)I) = 0. Together with Condition (∀) we

find x + δ = (1 − y)(1 − pI0 ) with a parameter δ ≥ 0. For y = 1 this yields

the solutions 0 ≤ pI0 ≤ 1 if x = 0 and no solution otherwise. For y < 1 we

find pI0 = 1− x+δ
1−y

. Therefore

S〈A,ρ,j〉 =





[0, 1−min{1, x
1−y
}] if y < 1,

[0, 1] if y = 1, x = 0,

∅ otherwise.

This example demonstrates that Condition (∀) generally poses non-linear

constraints on the possible interpretations of the probabilistic constants. A

simple linear reasoning approach will therefore not suffice for reasoning in

PALC. Although we have non-linear constraints on the solutions of PALC
reasoning problems, we conjecture that the set of solutions forms a closed

interval.
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Conjecture 55. The set of solutions S〈A,ρ,j〉 of a PALC reasoning problem

is a closed interval. That is, there exist pl, pu ∈ R such that S〈A,ρ,j〉 = [pl, pu].

Building on this, we formulate the reasoning task for PALC as follows:

Definition 56. Let 〈A, ρ, j〉 be a PALC reasoning problem. The PALC
reasoning task consists of finding pl, pu ∈ R such that A |≈

j[p0=s]
ρ iff s ∈

[pl, pu].

3.2 Finding a Basis

In order to further characterize the PALC reasoning problem 〈A, ρ, j〉 we

identify conditions which must hold for any valuation j in PA,ρ. The following

lemma shows how determining PA,ρ can be transformed into the problem of

finding all possible interpretations of the ABox A ∪ {ρ}.

Lemma 57. Let A be an ABox and ρ an assertion. Then

PA,ρ = {j ∈ J |∃I : Ij |= A ∪ {ρ}}

Proof. j ∈ PA,ρ iff A |≈
j

ρ iff (by Definition 45) Ij |= A ∪ {ρ} for some

interpretation I.

Assuming Ij |= A for an ABox A we concentrate on the conditions which

must be satisfied by the valuation j. We therefore introduce the mapping σI
which maps ABox assertions to its corresponding elements of the σ-algebra

F generated by the random variables of I. By finding a basis for theses

elements, we are able to define a set of linear constraints which probabil-

ity distributions over F must obey. Via the mapping σI these constraints

carry directly over to the valuation j. In later sections we will examine

other constraints which are implied by our independence assumption and by

Condition (∀).

Definition 58. Let I = (∆I , ·I ,Ω) with the probability space Ω = (Ω, F, P)

be an interpretation and let A denote the set of classical assertions of a given
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language PALC. (i.e. A = {C(a)|C ∈ cns(PALC), a ∈ ind(PALC)}). We

define the mapping

σI : A → F , σI(C(a)) = {aI ∈ CI}.

Lemma 59. Let A be an ABox with P(α)
.
= p0 ∈ A and Ij |= A. Then

P(σI(α)) = j(p0).

Proof. Assume α is the concept assertion C(a). Then Ij |= P(α)
.
= p0 iff

P(aI ∈ CI) = pI0 = j(p0) = P(σI(C(a))). The proof for the case where α is

a role assertions is similar.

Using the mapping σI we can transform the problem of finding a valuation

of the probabilistic constants of a given PALC ABox into the problem of

finding a probability distribution on a σ-algebra F . We do so by identifying

a subset of F - a basis - which elements are pairwise disjoint and which span

the image of the elements of an ABox A under σI . The probabilities of the

elements of the ABox are then uniquely determined by the probabilities of

the elements of its basis.

Definition 60 (Basis). Let F be a σ-algebra over the set Ω and E ⊆ F . The

set B ⊆ F is called a basis for E iff

i) The elements of B are pairwise disjoint: B ∩ B′ = ∅ for all B, B′ ∈ B
with B 6= B′.

ii) The elements of B span the set E : For each E ∈ E there exists BE ⊆ B
such that

⋃
B∈BE

B = E .

iii) B is exhaustive:
⋃

B∈B B = Ω.

The following lemma shows that a basis B for E always exists if E is finite.

Lemma 61. Let F be a σ-algebra over the set Ω and E ⊆ F finite. Then

B = {
⋂
E∈E

E ′|E ′ ∈ {E, Ω \ E}}

37



is a basis for E.

Proof. First note that B ⊆ F since F is closed under negation and countable

union. Further B is a basis for E since

i) Let B, B′ ∈ B with B 6= B′. Then there is a E ∈ E such that either

B ⊆ E and B′ ⊆ Ω \ E or B ⊆ Ω \ E and B′ ⊆ E. Thus B ∩B′ = ∅.

ii) Let E ∈ E and BE = {B ∈ B|B ⊆ E}. Then E =
⋃

B∈BE
B.

iii) Let E ∈ E and BΩ\E = {B ∈ B|B ⊆ Ω \E}. Then Ω \E =
⋃

B∈BΩ\E
B.

With BE as above we find BE ∪ BΩ\E = B and thus
⋃

B∈B B = Ω.

Definition 62. For an ABox A we define the image of A under the mapping

σI as

σI(A) = {σI(α)|P(α)
.
= p0 ∈ A}.

Lemma 63. Let A be an ABox with Ij |= A for an interpretation I =

(∆I , ·I ,Ω) with the probability space Ω = (Ω, F, P). Then

i) There exists a basis B ⊂ F for σI(A).

ii) For each assertion P(α)
.
= p0 ∈ A there exists BE ⊆ B such that∑

B∈BE
P(B) = j(p0).

iii)
∑

B∈B P(B) = 1.

Proof.

i) B ⊆ F exists according to Lemma 61.

ii) Since B is a basis for σI , there exists BE ⊆ B such that
⋃

B∈BE
B =

σI(α). The elements of B are pairwise disjoint. Hence P(
⋃

B∈BE
B) =∑

B∈BE
P(B). Applying Lemma 59 finally P(σI(α)) =

∑
B∈BE

P(B) =

j(p0).
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iii) Since B is exhaustive and its members are pairwise disjoint we find∑
B∈B P(B) = P(

⋃
B∈B B) = P(Ω) = 1.

The following lemma establishes a connection between classic ABox satisfia-

bility and the elements of a basis B for σI(A).

Lemma 64. Let A be an ALC ABox. Then A is satisfiable iff there is an

probabilistic interpretation I = (∆I , ·I ,Ω) with the probability space Ω =

(Ω, F, P) such that ⋂
α∈A

σI(α) 6= ∅.

Proof. As a consequence to Theorem 42 A is satisfiable iff its probabilistic

counterpart Ap = {P(α)
.
= 1|α ∈ A} is j-satisfiable for any valuation j. Let

I |= Ap for some I. Then P(aI ∈ CI) = P(σI(C(a))) = 1 for all concept

assertions C(a) ∈ A and P((aI , bI) ∈ RI) = P(σI(R(a, b))) = 1 for all role

assertions R(a, b) ∈ A. Hence P(
⋂

α∈A σI(α)) = 1 and thus
⋂

α∈A σI(α) 6= ∅.
For the other implication assume there exists a probabilistic interpretation

I such that
⋂

α∈A σI(α) 6= ∅. Thus

⋂
α∈A

σI(α) =
⋂

C(a)∈A
{aI ∈ CI} ∩

⋂

R(b,c)∈A
{(bI , cI) ∈ RI}

= {s ∈ Ω|
∧

C(a)∈A
XaI(s) ∈ CI ∧

∧

R(b,c)∈A
XbIcI(s) ∈ RI} 6= ∅

and therefore for all C(a) ∈ A and all R(b, c) ∈ A we find XaI(s) ∈ CI and

XbIcI(s) ∈ RI . From this we conclude that A is satisfiable.

We can bring these results into a more compact form which basically resem-

bles the approach in [Nil86]. We therefore introduce a canonical representa-

tion of a basis for an ABox.

Definition 65. Let A = {P(α1)
.
= p1, . . . , P(αn)

.
= pn} be an ABox with

Ij |= A for an interpretation I. Let further b(n, k) ∈ {0, 1} denote the k-th
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digit from the right in the binary expansion of n ∈ N (i.e.
∑∞

k=1 b(n, k)2k−1 =

n).

We represent the elements Bi for 0 ≤ i ≤ 2n − 1 of the basis B of σI(A) as

Bi =
n⋂

k=1

σI(α′k) with α′k =

{
αk if b(i, k) = 1,

¬αk otherwise.

Similarly we define the ALC ABox Ai for each 0 ≤ i ≤ 2n − 1 as

Ai = {α′k|1 ≤ k ≤ n, α′k =

{
αk if b(i, k) = 1,

¬αk otherwise.
}.

Finally we define the (2n, n + 1)-matrix

B =




b(0, 1) . . . b(0, n) 1
...

. . .
...

...

b(2n − 1, 1) . . . b(2n − 1, n) 1




.

Remark 66. B = {Bi ∈ F |0 ≤ i ≤ 2n− 1} is a basis for σI(A) by Lemma 61.

Theorem 67. Let A = {P(α1)
.
= p1, . . . , P(αn)

.
= pn} be an ABox with

Ij |= A for an interpretation I and B a basis for σI(A) as in Definition 65.

Then

i) (P(B0), . . . , P(B2n−1)) B = (j(p1), . . . , j(pn), 1).

ii) P(Bi) = 0 iff Ai is not satisfiable (0 ≤ i ≤ 2n − 1).

Proof.

i) For 1 ≤ k ≤ n we have

2n−1∑
i=0

P(Bi)b(i, k) =
∑
B∈B

B⊆σI(αk)

P(B) = j(pk)
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where the last equality holds because of Lemma 63 Part ii). Further

we have
2n−1∑
i=0

P(Bi) =
∑

B′∈B

P(B′) = 1

where the last equality holds by Lemma 63 Part iii).

ii) With Lemma 64 we find Bi = ∅ iff Ai is not satisfiable thus proving

the claim.

Example 68. Let A = {P(α1)
.
= p1, . . . , P(α4)

.
= p4} be an ABox with

α1 = ∀R.C uD(a), α2 = R(a, b), α3 = ¬C uD(b), α4 = C u ¬D(b) and let

Ij |= A for an interpretation I.

With Theorem 67 Part i) we find

(P(B0), . . . , P(B15)) B = (j(p1), . . . , j(p4), 1)

with

B =




0 0 0 0 1

1 0 0 0 1

. . . . . . .

0 1 1 1 1

1 1 1 1 1




.

Since for example the ABox A12 = {α1, α2,¬α3,¬α4} is not satisfiable, ap-

plying Theorem 67 Part ii) we find P(B12) = 0. Checking satisfiability for

all ABoxes Ai (0 ≤ i ≤ 15), we find that only A1, A2, A5, A6, A9 and A10

are satisfiable. We can thus eliminate all but the corresponding rows from
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the matrix B which leaves us with the matrix

B′ =




1 0 0 0 1

0 1 0 0 1

1 0 1 0 1

0 1 1 0 1

1 0 0 1 1

0 1 0 1 1




and

(P(B1), P(B2), P(B5), P(B6), P(B9), P(B10)) B′ = (j(p1), . . . , j(p4), 1).

3.3 Constraints Implied by Independence

So far we left out any implication of our assumption that the random variables

of a probabilistic interpretation are independent. The following example

shows that there indeed are more constraints arising from this assumption.

Example 69. Let A = {P(α1)
.
= p1, P(α2)

.
= p2} be an ABox with α1 =

∀R.⊥(a), α2 = R(a, b) and let Ij |= A for an interpretation I.

With Theorem 67 Part i) we find

(P(B0), . . . , P(B3)) B = (j(p1), j(p2), 1)

with

B =




0 0 1

1 0 1

0 1 1

1 1 1




.

The ABox A3 = {α1, α2} is not satisfiable and thus P (B3) = 0 which enables

us to infer j(p1) + j(p2) ≤ 1. However since A3 is not satisfiable we have by

Lemma 64 that σI(α1) ∩ σI(α2) = ∅ for every interpretation I. Because the

events σI(α1) and σI(α2) are independent we find P(σI(α1)) P(σI(α2)) = 0.
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Which by applying Lemma 59 yields the additional constraint j(p1)j(p2) = 0

on the valuation j. Thus j(p1) = 1 =⇒ j(p0) = 0 and j(p0) = 1 =⇒
j(p1) = 0 which is in analogy to the classical case where I |= ∀R.⊥(a) =⇒
I 6|= R(a, b) and I 6|= R(a, b) =⇒ I |= ∀R.⊥(a) for an interpretation I.

Theorem 70. Let A = {P(α1)
.
= p1, . . . , P(αn)

.
= pn} with Ij |= A. Let

further A′ ⊆ A2n−1 such that {C(a), D(b)} ⊆ A′ =⇒ a 6= b. Then A′ not

satisfiable implies ∏

P(α)=pi∈A′
j(pi) = 0.

Proof. If A′ is not satisfiable then by Lemma 64
⋂

α∈A′ σI(α) = ∅ for any

interpretation I. Using independence and applying Lemma 59 we find

P(
⋂

α∈A′
σI(α)) =

∏

α∈A′
P(σI(α)) =

∏

P(α)=pi∈A′
j(pi) = 0.

For an ABox A where no proper subset A′ ⊂ A is not satisfiable we might

still be able to apply Theorem 70 by first expanding A in a specific way.

Lemma 71. Let A be a probabilistic ABox with {P(C(a))
.
= p0, P(D(a))

.
=

p1} ⊆ A and let j, j′ be valuations such that j(p) = j′(p) for all probabilistic

constants p occurring in A. Then A is j-satisfiable iff A∪{P(CuD(a))
.
= p3}

is j′-satisfiable where p3 is a new probabilistic constant not occurring in A.

Proof. Let Ij′ |= A ∪ {P(C u D(a))
.
= p3}. Then Ij |= A. For the other

implication let Ij |= A. Let J be the interpretation which agrees on I except

for pJ3 = P(aI ∈ (C u D)I) and let j′(p3) = pJ3 . Then Jj′ |= A ∪ {P(C u
D(a))

.
= p3}.

Example 72. Let A = {P(α1)
.
= p1, . . . , P(α3)

.
= p3} be an ABox with α1 =

∀R.C(a), α2 = ∀R.¬C(a), α3 = R(a, b), and let Ij |= A for an interpretation

I. While A3 = {α1, . . . , α3} is not satisfiable, non of its proper subsets

is not satisfiable so Theorem 70 cannot be applied at first. However with
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Lemma 71 we find A is j-satisfiable for some j iff A′ = A ∪ {P(α4)
.
= p4}

with α4 = (∀R.Cu∀R.¬C)(a) is j′-satisfiable. Now {α3, α4} is not satisfiable

which, by applying Theorem 70, yields the constraint j(p3)j(p4) = 0 on the

valuation j′.

3.4 Constraints Implied by Condition (∀)
There are still more constraints on valuations j when we consider Condi-

tion (∀) which we left out so far.

Lemma 73. Let A be an ABox with P(∀R.C(a)) = p0 ∈ A and for 1 ≤ i ≤ n

for some n ∈ N let {P(R(a, bi) = pi, P(C(bi) = qi} ⊆ A. Let further Ij |= A.

Then

j(p0) ≤
n∏

i=1

1− j(pi)(1− j(qi)).

Proof. By Theorem 27

j(p0) = p0
I =

∏

s∈∆I
1− P((aI , s) ∈ RI)(1− P(s ∈ CI))

≤
n∏

i=1

1− P((aI , bIi ) ∈ RI)(1− P(bIi ∈ CI))

=
n∏

i=1

1− j(pi)(1− j(qi)).

Lemma 74. Let A be an ABox with P(∃R.C(a)) = p0 ∈ A and for 1 ≤ i ≤ n

for some n ∈ N let {P(R(a, bi) = pi, P(C(bi) = qi} ⊆ A. Let further Ij |= A.

Then

j(p0) ≥ 1−
n∏

i=1

1− j(pi)j(qi).
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Proof. By Corollary 36

j(p0) = p0
I = 1−

∏

s∈∆I
1− P((aI , s) ∈ RI) P(s ∈ CI)

≥ 1−
n∏

i=1

1− P((aI , bIi ) ∈ RI) P(bIi ∈ CI)

= 1−
n∏

i=1

1− j(pi)j(qi).

When ABoxes contain nested value restrictions or nested existential restric-

tions (for example ∀R.∃C(a)) the above lemmas cannot be readily applied

since there is no probabilistic constant for the inner formula. In order to ac-

count for constraints arising from such situations we have to expand ABoxes

to include witnesses for its inner assertions. Before doing so however, we need

a pumping lemma for PALC to account for additional individual constants

introduced along with the witnesses.

Lemma 75 (Pumping). Let A be a probabilistic ABox with Ij |= A for some

interpretation I and some valuation j. Then there exists an interpretation

J with ∆J = ∆I ∪{z} for some z 6∈ ∆I, such that for all assertions P(α)
.
=

pi ∈ A
Ij |= P(α)

.
= pi iff Jj |= P(α)

.
= pi.

Proof. Let I = (∆I , ·I ,ΩI) with the probability space ΩI = (ΩI , FI , PI)

and J = (∆J , ·J ,ΩJ ) with the probability space ΩJ = (ΩJ , FJ , PJ ). Set

·J = ·I , for any individual constant a. For any concept C set PJ (aJ ∈
CJ ) = PI(aI ∈ CI) and for any individual constants b, c and any role R

set PJ ((bJ , cJ ) ∈ RJ ) = PI((bI , cI) ∈ RI). Finally set PJ (z ∈ CJ ) = 0 for

any concept C. Now it is sufficient to show, that PJ is indeed a probability

distribution: Let r ∈ ∆J then

i) Using CJ \ {z} = CI from Lemma 23 we find PJ (r ∈ CJ ) = PI(r ∈
CJ \ {z}) = PI(r ∈ CI) ≥ 0 for any concept C.
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ii) Let Ck be a concept for any k in a countable index set K and let

CJ
i ∩ CJ

k = ∅ if i 6= k. Using Lemma 23 again, we find

PJ (r ∈
⋃

k∈K

CJ
k ) = PI(r ∈ (

⋃

k∈K

CJ
k ) \ {z}

︸ ︷︷ ︸
=
S

k∈K CIk

)

= PI(r ∈ (
⋃

k∈K

CJ
k \ {z}︸ ︷︷ ︸
=CIk

))

=
∑

k∈K

PI(r ∈ CI
k )

=
∑

k∈K

PJ (r ∈ CJ
k ).

iii) PJ (r ∈ >J ) = PI(r ∈ >I) = 1.

We can now proceed by introducing witnesses for certain assertions in an

ABox.

Lemma 76. Let A be a probabilistic ABox and j, j′ valuations such that

j(p) = j′(p) for all probabilistic constants p occurring in A. Let further p2

and p3 be probabilistic constants which do not occur in A and c an individual

constant with c 6∈ ind(A).

i) If P(∀R.C(a))
.
= p0 ∈ A then the ABox A′ = A ∪ {P(R(a, c))

.
=

p2, P(C(c))
.
= p3} is j′-satisfiable iff A is j-satisfiable.

ii) If {P(∀R.C(a))
.
= p0, P(R(a, b))

.
= p1} ⊆ A then the ABox A′ = A ∪

{P(C(b))
.
= p2} is j′-satisfiable iff A is j-satisfiable.

iii) If P(∃R.C(a))
.
= p0 ∈ A then the ABox A′ = A ∪ {P(R(a, c))

.
=

p2, P(C(c))
.
= p3} is j′-satisfiable iff A is j-satisfiable.

iv) If {P(∃R.C(a))
.
= p0, P(R(a, b))

.
= p1} ⊆ A then the ABox A′ = A ∪

{P(C(b))
.
= p2} is j′-satisfiable iff A is j-satisfiable.
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Proof. Let Ij′ |= A′ then in any of the four cases Ij |= A. For the other

implication assume Ij |= A. Applying Lemma 75 we construct a new inter-

pretation J for each case:

i) Let J be an interpretation with ∆J = ∆I ∪ {z} for some z 6∈ ∆I such

that J agrees on I except for cJ = z, pJ2 = P((aI , cI) ∈ RI), and

pJ3 = P(cI ∈ CI). Let further j′(p2) = pJ2 and j′(p3) = pJ3 . Then

Jj′ |= A′.

ii) Let J be an interpretation with ∆J = ∆I ∪ {z} for some z 6∈ ∆I such

that J agrees on I except for cJ = z and pJ2 = P(bI ∈ CI). Let

further j′(p2) = pJ2 . Then Jj′ |= A′.

iii) Let J be an interpretation with ∆J = ∆I ∪ {z} for some z 6∈ ∆I such

that J agrees on I except for cJ = z, pJ2 = P((aI , cI) ∈ RI) and

pJ3 = P(cI ∈ CI). Let further j′(p2) = pJ2 and j′(p3) = pJ3 . Then

Jj′ |= A′.

iv) Let J be an interpretation with ∆J = ∆I ∪ {z} for some z 6∈ ∆I such

that J agrees on I except for cJ = z and pJ2 = P(bI ∈ CI). Let

further j′(p2) = pJ2 . Then Jj′ |= A′.

In conclusion to the above we are now in a position to formulate further

constraints on valuations:

Definition 77. A probabilistic ABox A is witness complete if

i) For any assertion P(∀R.C(a))
.
= p0 ∈ A there is an individual constant

b such that W = {P(R(a, b))
.
= p1, P(C(b))

.
= p2} ⊆ A and b 6∈ ind(A\

W).

ii) For any assertion P(∃R.C(a))
.
= p0 ∈ A there is an individual constant

b such that W = {P(R(a, b))
.
= p1, P(C(b))

.
= p2} ⊆ A and b 6∈ ind(A\

W).
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Theorem 78. Let A = {P(α1)
.
= p1, . . . , P(αn)

.
= pn} be an ABox which is

witness complete and let Ij |= A for an interpretation I.

i) If {P(∀R.C(a)) = p0, P(R(a, bi)) = pi, P(C(bi)) = qi} ⊆ A for 1 ≤ i ≤
n and some n ∈ N then

j(p0) ≤
n∏

i=1

1− j(pi)(1− j(qi)).

ii) If {P(∃R.C(a)) = p0, P(R(a, bi)) = pi, P(C(bi)) = qi} ⊆ A for 1 ≤ i ≤
n and some n ∈ N then

j(p0) ≥ 1−
n∏

i=1

1− j(pi)j(qi).

Proof. The theorem follows directly from Lemma 73 and Lemma 74.

Example 79. Let A = {P(α1)
.
= p1, P(α2)

.
= p2} be an ABox with α1 =

∀R.∃S.⊥(a), α2 = R(a, b) and let Ij |= A for an interpretation I. Then

according to Lemma 76 we can introduce witnesses such that the ABox A′ =

A ∪ {P(α3)
.
= p3, . . . , P(α5)

.
= p5} with α3 = ∃S.⊥(b), α4 = S(b, c) and

α5 = ⊥(c) is j′-satisfiable for a valuation j′ with j′(pi) = j(pi), (i ∈ {1, 2}).
Applying Theorem 78 we then find j′(p1) ≤ 1− j′(p2)(1− j(p′3)) and j′(p3) ≤
j′(p4)j

′(p5). Using j′(p5) = 0 we finally find j′(p1) + j′(p2) ≤ 1.
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Chapter 4

Conclusion and Outlook

With PALC we presented a novel description logic framework to deal with

ABoxes containing probabilistic assertions. We introduced syntax and se-

mantics for PALC and we have defined the corresponding reasoning problem.

Previous approaches to probabilistic assertions only considered probabilis-

tic concept assertions. In contrast, PALC also allows for probabilistic role

assertions. Further, the identification of some specific sets of independent

assertions yields additional constraints on the interpretation of probabilistic

constants. We have shown that PALC is equivalent to ALC if we only allow

the probability 1. Therefore PALC is sound and complete with respect to

ALC.

We investigated the structure of solutions to a PALC reasoning problem

and identified constraints which are imposed on such solutions. The lin-

ear constraints of Theorem 67 originate directly in the axioms of proba-

bility. All candidates for which these constraints hold are solutions of a

linear optimization problem as described in [Nil86] and also mentioned in

[Jae94, BCM+03, BKW03]. The space of such candidate solutions will there-

fore be convex. The additional constraints of Theorem 70 are non linear.

They have their cause in the independence of the random variables of prob-

abilistic interpretations. Finally taking Condition (∀) into consideration, we

identified constraints on the interpretations of value restrictions and existen-
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tial restrictions in Theorem 78. Again these constraints are non linear.

As yet it is an open question whether the constraints identified in this work

fully characterize the solution space of a PALC reasoning problem. Specif-

ically it is an open question whether the solution space is convex or even

connected as was conjectured in Conjecture 55.
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