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Abstract. After briefly discussing the concepts of predicativity, metapredicativity and

impredicativity, we turn to the notion of Mahloness as it is treated in various contexts.

Afterwards the appropriate Mahlo axioms for the framework of explicit mathematics are

presented. The article concludes with relating explicit Mahlo to certain nonmonotone

inductive definitions.

§1. Introduction. More than 100 years ago Cantor developed the the-
ory of infinite sets (Cantor’s paradise). Shortly afterwards, Russell found his
famous paradox, and, as a consequence, many mathematicians became very
concerned about the foundations of mathematics, and the expression founda-
tional crisis was coined.

To overcome this crisis, Hilbert proposed the program of Beweistheorie as
a method of rescuing Cantor’s paradise. A few years later, however, Gödel
showed that Hilbert’s program – at least in its original strong form – cannot
work. Again, after only a short while a first new idea was brought in by
Gentzen, and a break-through along these lines was obtained by his proof-
theoretic analysis of first order arithmetic. Then, during the last decades,
Gentzen’s work has been extended to stronger and stronger subsystems of
second order arithmetic and set theory, most prominently by the schools of
Schütte and Takeuti, leading to what today is denoted as infinitary and finitary
proof theory, respectively.

A position completely different from Hilbert’s was taken by Brouwer who
advocated the restriction of mathematics to those principles which could be
justified on constructive grounds. Starting off from his pioneering work various
“dialects” of constructive mathematics have been put forward (e.g. in the
Netherlands directly following Brouwer and Heyting, the Russian form(s) of
constructivism, Bishop’s approach, Martin-Löf type theory, Feferman’s explicit
mathematics).

In a certain sense the research directions originating from Hilbert’s and
Brouwer’s original ideas come together again under the heading of reductive
proof theory which tries to justify classical theories and classical principles
by reducing them to a (more) constructive framework. For further reading
Meeting
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and detailed information about this topic we refer, for example, to Beeson [6],
Feferman [17] and Troelstra and van Dalen [61].

§2. The predicative, impredicative and metapredicative. The gen-
eral picture described so far is, however, oversimplified in that it leaves out
many important intermediate approaches. A particularly interesting line of
thought was initiated by Poincaré’s conviction that many foundational prob-
lems are caused by making use of so called impredicative definitions.1 On the
other hand, he did not consider the use of classical logic as being critical.

Poincaré was followed by Weyl, and they focused on the arithmetical foun-
dations of mathematics (using their own terminology): their starting point
being the usual structure (N, . . . ) of the natural numbers with the schema
of complete induction; moreover, all predicatively definable subsets of N are
permitted.

This informal Poincaré-Weyl program was later brought into precise math-
ematical and logical terms by Feferman; see Feferman [13]. A further guiding
line is his attempt to answer the following question: what is implicit in the
structure of the natural numbers together with the principle of induction?

During the sixties Feferman and Schütte independently characterized pred-
icative mathematics and showed that the associated ordinal is the famous
Feferman-Schütte ordinal Γ0. They achieved this by employing autonomous
progressions of theories or ramified systems of second order arithmetic; for
details see, for example, Feferman [8] and Schütte [51]. The theories capturing
exactly predicative mathematics have their least standard model at

(N, LΓ0 ∩ Pow(N), . . . )

and are equivalent to the system of second order arithmetic AUT(Π0
1) + (BR)

which comprises autonomously iterated Π0
1 comprehension and the bar rule.

Starting off from the Feferman-Schütte notion of predicativity, we can now
distinguish the following three collections of theories:
A. Predicatively reducible systems. They comprise all those theories
which are (finitely) reducible to a predicative system, i.e. whose proof-theoretic
ordinal is less than or equal to Γ0.

Trivially, all predicative theories are predicatively reducible. On the other
hand, the least standard model of a predicatively reducible but not predicative
theory can well be of the form

(N, Lα ∩ Pow(N), . . . ) or (Lα, ∈, . . . )
for some α > Γ0. A typical such theory is the system Σ1

1-AC of second order
arithmetic with the Σ1

1 axiom of choice; its proof-theoretic ordinal is the ordinal
ϕε00 < Γ0, although its least standard model is only reached at the first non-
recursive ordinal ωCK1 .

1The definition of a set S is called impredicative if it refers to a totality of sets to which

S itself belongs to.
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In most cases the proof-theoretic analysis of a predicatively reducible theory
can be obtained by forms of partial cut elimination and consecutive asymmetric
interpretations or use of Skolem operators.

Examples of further important predicatively reducible systems are the the-
ory Σ1

1-AC + (BR), Friedman’s theory ATR0 of arithmetic transfinite recursion
(cf. e.g. [20]), Avigad fixed point theory FP0 (cf. e.g. [5]), Feferman’s theory
ÎD<ω of finitely many iterated fixed point axioms (cf. e.g. [12]) and Jäger’s
theory KPi0 for a recursively inaccessible universe without foundation (cf. e.g.
[28]).

B. Impredicative systems. Traditionally, all theories which are not pred-
icatively reducible have been subsumed under the heading impredicative. Such
an approach, however, has some undesired consequences.

Friedman’s theory ATR0, mentioned above, has proof-theoretic ordinal Γ0,
thus is predicatively reducible. But for obtaining this result it is essential that
in ATR0 complete induction on the natural numbers is restricted to sets. If
complete induction on the natural numbers is permitted for arbitrary formulas,
then results of Friedman (see Simpson [53]) and Jäger [25] show that the
corresponding theory, called ATR, is of proof-theoretic strength Γε0 . As a
consequence, ATR is not predicatively reducible.

Recall, in addition, that the schema of complete induction on the natural
numbers is at the core of predicativity a la Poincaré, Weyl and Feferman. Thus
the predicatively reducible theory ATR0 would be shifted into the impredicative
by adding a purely predicative principle.

Moreover, the proof-theoretic analysis of ATR requires more of less the same
concepts and machinery as the proof-theoretic analysis of ATR0. Hence also
from the point of view of methods involved, a very sharp dividing line between
ATR0 and ATR seems out of place.

To overcome such atrocities, we suggest to use the proof-theoretic tech-
niques involved as criterion for structuring the range of systems which are
not predicatively reducible. This then leads to the following “definition” of
impredicativity: The collection of impredicative systems comprises all those
theories whose proof-theoretic (ordinal) analysis requires the use of impredica-
tive methods.

Of course, this is far from being a formal definition since we refer to the
notion of impredicative method, and it is nowhere exactly pinned down what
that means. However, given a specific ordinal analysis of a theory, we are
convinced that all proof-theorists would agree on whether this analysis is done
via impredicative techniques or not.

Our experience shows that typical impredicative methods always refer to
some sort of collapsing techniques and collapsing functions, either directly
applied to infinitary proofs or to the ordinals assigned to proofs or to both.

The first system for whose proof-theoretic analysis such impredicative meth-
ods have been used is the famous first order theory ID1 for non-iterated positive
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arithmetic inductive definitions. On the other hand, recent work reveals (see
below) that also an alternative approach is possible.

C. Metapredicative systems. The division into predicatively reducible and
impredicative systems provided so far leaves some space between these two
collections which is filled by the so-called metapredicative systems introduced
now: The collection of metapredicative systems comprises all those theories
which are not predicatively reducible and whose proof-theoretic analysis can be
carried through without making use of any impredicative methods.

This description of metapredicativity is as informal as that of impredica-
tivity. Therefore it would be very interesting to answer the following two
questions:

(1) Is there a formal counterpart of this informal notion?
(2) If so, what is the limit of metapredicativity?

A satisfactory answer to question (1) has not yet been given, thus also (2) is
still open. A first and necessary step in the direction of learning more about
metapredicativity certainly consists of

• analyzing typical metapredicative systems and
• identifying their structural properties.

Years ago theories like ATR – lying in strength between Γ0 and ID1 – have
been considered as exceptional cases; today we know that many interesting
systems can be found in this area.

§3. More about metapredicative systems. The first metapredicative
system which called for attention was the above mentioned theory ATR with
proof-theoretic ordinal Γε0 and was considered to be a rather isolated phe-
nomenon at the time of its analysis. It was only later that more and more
related theories turned up, and the systematic approach to metapredicativity
began with the proof-theoretic analysis of the transfinitely iterated fixed point
theories ÎDα and ÎD<β for (recursive) ordinals α ≥ ω and β > ω in Jäger,
Kahle, Setzer and Strahm [32].

These first order systems extend Feferman’s theories ÎDn into the transfinite
and are a very good tool for calibrating the initial part of metapredicativity.
ATR, for example, is proof-theoretically equivalent to ÎDω. In addition, Jäger
and Strahm [37] established the role of the schema of Σ1

1 dependent choice in
the contexts of ATR0 and ATR and proved that ATR0 + (Σ1

1-DC) has the same
proof-theoretic strength as ÎD<ωω whereas ATR+(Σ1

1-DC) is proof-theoretically
equivalent to ÎD<ε0 .

By using this result we could also answer a question of Simpson [54] about
the strength of some of his second order systems for transfinite Σ1

1 and Π1
1

induction:

Σ1
1-TI0 + Π1

1-TI0 ≡ ÎD<ωω and Σ1
1-TI + Π1

1-TI ≡ ÎD<ε0 .
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Afterwards Strahm studied autonomously iterated fixed point theories; see
Strahm [57]. In his article he also establishes the relationship between au-
tonomous fixed point iteration and transfinite fixed point recursion in the
spirit of Friedman’s arithmetic transfinite recursion.

In the context of admissible set theory without foundation, we obtain an
interesting metapredicative system, if complete induction on the natural num-
bers is added to the previously mentioned theory KPi0,

KPi0 + (full induction on N) ≡ ÎD<ε0 .

To obtain this result we first have to show in KPi0 that for each set a there
exists a least admissible containing a (cf. Jäger [31]). Moreover, because of
full complete induction on N, we have transfinite induction for all formulas
up to each α < ε0 and can thus build hierarchies of admissibles of the same
height. Then it is easy to embed ÎD<ε0 . The upper bound is established by
an extension of the methods in Jäger [28]. It is interesting to see that these
arguments are sensitive to the question of whether in KPi0 the admissible sets
are linearly ordered or not.

Later in this article the formalism of explicit mathematics will be (very)
briefly introduced. However, for the reader already familiar with this ap-
proach we include some remarks about metapredicative systems of explicit
mathematics.

In the following we write EETJ for the theory comprising of the basic first
order axioms plus elementary comprehension and join. Furthermore, we have
a so-called limit axiom,

(∀x) [<(x) → (x ∈̇ `x ∧ U(x)) ](Lim)

stating that each name x of a type is contained in a universe named `x. Then
EETJ+(Lim) plus complete induction on N for types is a predicatively reducible
theory of strength Γ0; for details see Marzetta [41] and Kahle [39]. According
to Strahm [56], the addition of compete induction on N for arbitrary formulas
gives a metapredicative theory, again proof-theoretically equivalent to ÎD<ε0 .
A non-uniform version of the limit axiom (Lim) is considered in Marzetta [41].

Although all theories discussed so far are strictly weaker than metapredica-
tive Mahlo,2 we must point out that this is by no means the limit of the area
of metapredicativity. Recent work of Jäger and Strahm has shown that all
instances of Πn reflection (n < ω) can safely be added to KPi0 without sur-
passing metapredicativity. This yields, among other things, a metapredicative
justification for ID1.

Axioms for explicit mathematics corresponding to the set-theoretic Πn re-
flections have also been studied by Jäger and Strahm. And there are certain
stability properties for higher order operations in explicit mathematics which
all give rise to metapredicative theories and reach far beyond metapredicative
Mahlo.

2This notion will be described below.
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The least standard models of all these metapredicative systems are based on
sets Lα for comparatively large ordinals α, and these theories formulate (repre-
sent) many aspects of these sets which are sufficient for mathematical practice.
On the other hand, since the available induction principles are very restricted,
their proof-theoretic strengths stays rather low. So we can summarize some
charatieristics of of metapredicative systems as follows:

• They cover a good deal of ordinary mathematics, for example large parts
of analysis, discrete mathematics, category theory.
• They allow a philosophically careful (justified) proof-theoretic treatment

from below in the sense that no collapsing techniques have to be used.
• In connection with metapredicative theories we can have large (compli-

cated) sets but have to deal with low consistency strength only.

Further evidence for these remarks will now be given by looking closer at the
role of Mahloness in various formal frameworks.

§4. A short survey of Mahloness. Mahlo axioms play an important
role in present day proof theory. They have been studied during the last years
from different perspectives, and some of these will be sketched below. In a
sense, Mahloness draws the borderline of the part of proof theory that is so
well understood, that the interaction between different standpoints becomes
clear.

The Mahlo axioms go back to Mahlo’s pioneering work from around 1911;
see Mahlo [40]. Today an ordinal α is called a Mahlo ordinal if and only if

(∀f : α→ α) (∃β ∈ Reg) [β < α ∧ f : β → β ] ,

Reg denoting the class of all regular cardinal numbers. The least Mahlo ordinal
M0 outgrows all inaccessible, hyperinaccessible, . . . ordinals. M0 cannot be
reached from below by any sort of iteration of inaccessibility.

The usual approach of obtaining the recursive analogues of classical cardinal
numbers also was applied to Mahlo ordinals by simply replacing

• regular cardinals by admissible sets and
• arbitrary functions by recursive functions.

Following the tradition in recursion theory, we will not directly use the corre-
sponding reformulation of the definition of Mahlo ordinal as above, but instead
work in the context of admissible set theory.

Let KPu0 be the system of Kripke-Platek set theory above the natural num-
bers as urelements with induction on the natural numbers restricted to ∆0

formulas and without ∈ induction.3 In this context, the recursive version of
Mahlo can be characterized via Π2 reflection on admissibles.

3The omission of ∈ induction will be crucial for obtaining metapredicative systems; it has

no effect, of course, if transitive standard models are considered.
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Accordingly, KPm0 is defined to be the set theory which extends KPu0 by
the following schema

A(~u) → (∃x)[Ad(x) ∧ ~u ∈ x ∧ Ax(~u)]

for all Π2 formulas A(~u) with the parameters show. An ordinal α is called
recursively Mahlo if Lα, or more precisely the structure (N, Lα(N), ∈, . . . ), is
a model of KPm0, and we write µ0 for the least recursively Mahlo ordinal.

Now we are going to mention two alternative characterizations of µ0. The
first one is in terms of Gandy’s superjump S, introduced in Gandy [21]. The
superjump is an important type 3 functional whose associated closure ordinal
has been studied in Aczel and Hinman [4] and Harrington [22].

Theorem 1 (Aczel, Harrington, Hinman). µ0 is the least ordinal which is
not recursive in Gandy’s superjump S, i.e.

µ0 = ωS1.

For the next description of µ0 we turn to nonmonotone inductive definitions.
Let Φ be some arbitrary operator which maps the power set Pow(N) to itself.
Then Φ can be considered as (inducing) an inductive definition whose stages
are introduced by recursion on the ordinals as follows:

IαΦ := I<αΦ ∪ Φ(I<αΦ ) and I<αΦ :=
⋃
{IξΦ : ξ < α}.

Obviously we have IαΦ ⊂ IβΦ for α ≤ β. A simple cardinality argument thus
implies the existence of a least ordinal α such that IαΦ and I<αΦ are identical.
This ordinal is often called the closure ordinal of Φ and denoted by ||Φ||,

||Φ|| := least α such that I<αΦ = IαΦ.

Correspondingly, if C is a collection of operators, then the closure ordinal ||C||
of C is defined to be the ordinal sup { ||Φ|| : Φ ∈ C }.

An interesting way of combining two operators Φ and Ψ was introduced in
Richter [47]. A new combined operator [Φ,Ψ] is generated from Φ and Ψ by
setting for all subsets X of N:

[Φ,Ψ](X) :=

{
Φ(X) if Φ(X) 6⊂ X,

Ψ(X) if Φ(X) ⊂ X.

Some further notation: let [ POS-Π0
∞, Π0

1 ] be the collection of all combined
operators whose first component is definable by an X-positive arithmetical
formula and whose second component by a (not necessarily X-positive) Π0

1

formula. Then Richter [47] contains the following theorem.

Theorem 2 (Richter). µ0 = || [ POS-Π0
∞, Π0

1 ] ||.

Mahloness in explicit mathematics has a natural classical and recursion-
theoretic interpretation. We omit its discussion now and refer to Section 6, in
which we will review it in detail and give the exact formulations.
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Mahlo axioms are presently also of much interest in connection with con-
structive set theories and constructive type theories. Older approaches towards
constructive versions of Zermelo-Fraenkel set theory are due to Friedman, My-
hill and Scott, among others, and deal with (sub)systems of ZF, but with
intuitionistic logic instead of classical logic (cf. [42]).

More recently, Aczel, in a series of papers [1, 2, 3], propagates alternative
systems of constructive set theory CZF which incorporate (constructive) vari-
ants of the usual set theoretic principles, although their consistency strength
stays comparatively small. His work has been extended in Rathjen [45] so
that the constructive versions of large cardinal axioms, including Mahlo, find
their place. Crosilla [7] deals with an extension of CZF without foundation for
inaccessibility.

CZF and its extensions use intuitionistic logic as well, and we can obtain
their constructive justification by interpretations into Martin-Löf type theory
MLTT, which provides a philosophically motivated framework for constructive
reasoning. The axioms reflecting the idea of Mahlo sets in MLTT are originally
due to Setzer [52].

Let us end this section with recapitulating some of the most important
proof-theoretic results about Mahlo in its various settings.

A. Full recursive Mahlo. The ordinal analysis of the canonical formalization
of full recursive Mahlo, i.e. of the set theory for Π2 reflection on admissibles

KPm := KPm0 + (full induction),

has been given by Rathjen [43], making use of methods of traditional impred-
icative proof theory. The corresponding system FID([POS-Π0

∞, Π0
1]) for first

order inductive definitions treating combined operators from [POS-Π0
∞, Π0

1]
was studied in Jäger [23] and Jäger and Studer [38].

B. Full and metapredicative explicit Mahlo. Full and metapredicative
explicit Mahlo will be introduced in Section 6. Then we also state the respec-
tive results concerning their proof-theoretic strength.

In a nutshell: full explicit Mahlo is obtained from Feferman’s T0 by adding
the Mahlo axioms (M1) and (M2) formulated below; metapredicative explicit
Mahlo is obtained from full explicit Mahlo by deleting inductive generation
(for details see Section 6).

C. Constructive Mahlo. As mentioned above, the design and analysis of the
first extension of Martin-Löf type theory with one Mahlo universe was given
by Setzer. Related formalizations in MLTT and CZF and their treatment are
due to Rathjen. In the context of Martin-Löf type theory a sort of Mahlo rule
is formulated in Rathjen [46].

D. Metapredicative Mahlo in set theory. KPm0 is a natural formalism for
metapredicative Mahlo in a set-theoretic context. Even if the schema (L∗-IN)
of complete induction on the natural numbers for all formulas of the language
L∗ of KPm0 is added, we do not leave the area of metapredicativity.
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Theorem 3 (Jäger and Strahm). We have the following proof-theoretic or-
dinals for metapredicative Mahlo in set theory:

|KPm0| = ϕω00 and |KPm0 + (L∗-IN)| = ϕε000.

This theorem is proved in Jäger and Strahm [35] and Strahm [55]. The
lower bounds are established by well-ordering proofs, the upper bounds by
interpretations of the respective theories into suitable ordinal theories with
fixed point operators; the treatment of those is via partial cut elimination and
asymmetric interpretations.

§5. The basics of explicit mathematics. Explicit mathematics was in-
troduced by Feferman around 1975. The three basic papers which illuminate
explicit mathematics from various angles are Feferman [9, 10, 11]. The orig-
inal aim of explicit mathematics was to provide a natural formal framework
for Bishop-style constructive mathematics. Soon it turned out, however, that
the range of applications of explicit mathematics is much wider and includes,
for example, also the following subjects:
Reductive proof theory. Systems of explicit mathematics play an important
role in studying the relationship between subsystems of analysis, subsystems
of set theory and theories for inductive definitions and for the reduction of
classical theories to constructively (better) justified formalisms.
Abstract recursion theory. Several of its basic first order features (λ ab-
straction, fixed point theorem) are recursion-theoretic in nature, which are not
tied to any specific structure; it is also a good tool in developing a proof theory
of higher order functionals (cf. e.g. Feferman and Jäger [18, 19] and Jäger and
Strahm [36]).
Type systems. Flexible (polymorphic) type systems find a natural place
in explicit mathematics; the most practically needed type constructs can be
modeled in systems of low proof-theoretic strength (cf. e.g. Feferman [14],
Jäger [30]).
Programming. Feferman [15, 16] deals with properties of functional pro-
grams; Studer [59, 58] employs explicit mathematics for foundational questions
in object-oriented programming.

In the following we do not work with Feferman’s original formulation of
explicit mathematics but use instead the framework of theories of types and
names introduced in Jäger [29]. Their general “ontology” can then be described
as follows:
• individuals are explicitly given and can be interpreted as objects, opera-

tions, (constructive) functions, programs and the like;
• self-application is possible; we define new operations (terms) by means

of principles such as λ abstraction and the fixed point theorem;
• induction is then often used in order to show that these new operations

have the desired properties.
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• Types are abstractly defined collections of operations; they have names
and are addressed via these names.

The focus of explicit mathematics is on the explicit presentation of operations
rather than their constructive justification; it is possible to be explicit without
being constructive (and vice versa).

Explicit mathematics starts off from a language L of two sorts, those be-
ing individuals (a, b, c, x, y, z, . . . ) and types (U, V,W,X, Y, Z, . . . ). There are
several constants k, s, p, p0, p1, pN, sN, . . . whose meaning will be explained later
plus one binary function symbol Ap for application. Terms are generated from
the individual variables and constants by this form of application,

Terms (r, s, t, . . . ) : variables | constants | Ap(s, t).

In the following we often abbreviate Ap(s, t) as (s·t) or simply as (st) or st. We
also adopt the convention of association to the left so that s1s2 . . . sn stands
for (. . . (s1s2) . . . sn). In addition, we often write s(t1, . . . , tn) for st1 . . . tn.
Further we put t′ := sNt and 1 := 0′.

In addition, we have two unary relation symbols ↓ and N where r↓ and N(r)
express that r is defined (has a value) and r is a natural number, respectively.
The only further relation symbols of our language of explicit mathematics are
the binary = for equality between individuals and between types, ∈ for ele-
menthood of individuals in types and < for the naming relation; if <(r, U) then
we say that the individual r represents (is a name of) the type U . Therefore
we have the atomic formulas

r↓, N(r), r = s, U = V, <(r, U),

and from those our formulas are generated as usual. A formula is called ele-
mentary if it contains neither the relation symbol < nor bound type variables.

Finally, our logic is the classical Beeson-Feferman logic of partial terms with
equality in both sorts as described, for example, in Beeson [6] and Troelstra
and van Dalen [61]. Since it is not guaranteed that terms have values, a partial
equality ' à la Kleene is introduced by

(s ' t) := (s↓ ∨ t↓) → (s = t).

To simplify the notation, we frequently also use the following abbreviations
concerning the predicate N:

t ∈ N := N(t),

t /∈ N := ¬N(t),

(∃x ∈ N)A := (∃x)(x ∈ N ∧A),

(∀x ∈ N)A := (∀x)(x ∈ N→ A),

t ∈ (N→ N) := (∀x ∈ N)(tx ∈ N),

t ∈ (Nk+1 → N) := (∀x ∈ N)(tx ∈ (Nk → N)).
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5.1. Basic theory BON of operations and numbers. BON was intro-
duced in Feferman and Jäger [18]. The nonlogical axioms of BON formalize
that the individuals form a partial combinatory algebra, that we have pairing
and projection and the usual closure conditions on the natural numbers as well
as definition by numerical cases. We divide the axioms into the following five
groups:

I. Partial combinatory algebra.

(1) kab = a,
(2) sab↓ ∧ sabc ' (ac)(bc).

II. Pairing and projection.

(3) p0(pab) = a ∧ p1(pab) = b.

III. Natural numbers.

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),
(5) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x),
(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x).

IV. Definition by numerical cases.

(7) a ∈ N ∧ b ∈ N ∧ a = b → dNuvab = u,
(8) a ∈ N ∧ b ∈ N ∧ a 6= b → dNuvab = v.

V. Primitive recursion on N.

(9) f ∈ (N2 → N) ∧ a ∈ N → rNfa ∈ (N→ N),
(10) f ∈ (N2 → N) ∧ a ∈ N ∧ b ∈ N ∧ h = rNfa →

h0 = a ∧ h(b′) = fb(hb).
There are two crucial principles which follow already from the the axioms of a

partial combinatory algebra, i.e. from axioms (1) and (2) of BON: λ abstraction
and the fixed point (recursion) theorem. These are of course standard results
which have been discussed in the relevant literature a long time ago; cf. e.g.
Beeson [6], Feferman [9] or Troelstra and van Dalen [61].

The existence of rN as claimed in (9) and (10) surely allows us to introduce
representing terms for all primitive recursive functions. The defining equations
and totality of (the representing terms for) these functions are derivable in
BON.

In view of the availability of the fixed point theorem in BON one might even
suspect that rN and the axioms (9) and (10) are superfluous. Unfortunately,
this is only the case if sufficiently strong induction principles are available.
Actually, all induction principles formulated below would suffice. Nevertheless
we decided to include (9) and (10) since these two axioms belong to the now
“official” formulation of BON.

5.2. Basic axioms about types. Our next step is to formulate some basic
axioms about types and their names, which will be included in all our further
systems of explicit mathematics. We first claim that each type has a name,



12 GERHARD JÄGER

that types with the same name are identical and that the equality of types is
extensional.
Naming and extensionality axioms (N&E).
(11) (∀X)(∃a)<(a,X),
(12) <(a,X) ∧ <(a, Y ) → X = Y ,
(13) (∀a)(a ∈ X ↔ a ∈ Y ) ↔ X = Y .

Our systems of explicit mathematics combine intensionality and extension-
ality: on the level of types we are extensional, and types may be considered
as objects in a Platonistic universe, given by abstract definitions. On the
other hand, on the level of names we are intensional, and names have to be
concretely given (introduced) terms. This idea also manifests itself by the
following treatment of elementary comprehension.
Elementary comprehension (ECA). Nowadays we prefer to work with a
finite axiomatization (f-ECA) of elementary comprehension. That means that
we add further constants to our language corresponding to several basic oper-
ations on types so that the following theorem can be proved.

Theorem 4 (ECA). For every elementary formula A(x, ~y, ~Z) with all its
free variables indicated we can define a term tA so that

<(~v, ~V ) → (∃X) [X = {x : A(x, ~u, ~V )} ∧ <(tA(~u,~v), X) ].

Here we assume that ~u is a finite string u1, . . . , un of individual variables,
~V is a finite string V1, . . . , Vn of type variables and <(~v, ~V ) is short for the
conjunction of the formulas <(vi, Vi) (for i = 1, . . . , n). This form of elemen-
tary comprehension is uniform in the individual and type parameters of the
formula involved.
Join (J). The join (J) is the way in which explicit mathematics treats disjoint
unions. Suppose that we have a type A and an operation f which maps each
element x of A to the name fx of a type, say, Bx. Then we write Σ{fx : x ∈ A}
for the disjoint union of the types Bx, indexed by A.

We want a uniform formulation of join and therefore choose a new constant
j which names the intended disjoint union depending on a name of the index
type and the operation from this index type to names; hence the axiom (J)
can be written as

<(a,A) ∧ (∀x ∈ A)(∃X)<(fx,X) →

(∃Y ) [Y = Σ{fx : x ∈ A} ∧ <(j(a, f), Y ) ].

This finishes the description of the basic type-theoretic axioms of explicit
mathematics. From now on we will write EETJ (elementary explicit typing
with join) for the extension of BON by the naming and extensionality axioms
(N&E), elementary comprehension (ECA) and join (J),

EETJ := BON + (N&E) + (f-ECA) + (J).
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5.3. Induction in explicit mathematics. There are many induction
principles which are studied in the context of explicit mathematics. In the
following we confine ourselves here to type induction and L induction with
respect to the natural numbers. The first is the axiom

(∀X)[0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)].(T-IN)

Obviously, type induction is a subcase of the schema of L induction stating
for all formulas A of L

A(0) ∧ (∀x ∈ N)(A(x)→ A(x′)) → (∀x ∈ N)A(x).(L-IN)

Weaker forms of complete induction on the natural numbers, referring to the
first order part of explicit mathematics, are studied at length in Jäger and
Feferman [18].

5.4. Marriage of convenience. There are two main roads leading to
models of explicit mathematics: one, in which the individuals are interpreted
as (codes of) partial functions in the sense of classical set theory, and a sec-
ond, which restricts itself to (codes of) partial recursive functions for dealing
with the individuals. Details about such model constructions can be found,
for example, in Feferman [11].

If we write Gen(Vℵ1) and Gen(LωCK1
) for the set-theoretic and recursion-

theoretic model generated from the structure (Vℵ1 ,∈) and (LωCK1
,∈), respec-

tively, the following observation can be easily established:

Gen(Vℵ1) |= EETJ + (L-IN) and Gen(LωCK1
) |= EETJ + (L-IN).

The (full) set-theoretic and the recursion-theoretic interpretations of explicit
mathematics are connected by what Feferman [10] calls a marriage of conve-
nience. Consider one of the usual extensions S of EETJ studied so far and a
formula A provable in S. Then we may interpret A in the full set-theoretic
model(s) of S – thus yielding the classical meaning A(set) of A – and in the
recursion-theoretic models of S for obtaining the recursive reflection A(rec) of
the classical assertion A(set).

5.5. Universes in explicit mathematics. Universes were introduced in-
to explicit mathematics in Feferman [12], Marzetta [41] and Jäger, Kahle
and Studer [33] as a powerful method for increasing its expressive and proof-
theoretic strength. Informally speaking, universes play a similar role in explicit
mathematics as admissible sets in weak set theory and the sets Vκ (for regu-
lar cardinals κ) in full classical set theory; explicit universes are also related
to universes in Martin-Löf type theory. More formally, universes in explicit
mathematics are types which consist of names only and reflect the theory
EETJ.

In the following we write U |= EETJ for the conjunction of the finitely
many formulas of L which express that the type U validates all type-theoretic
axioms of EETJ; see Jäger, Kahle and Studer [33] for the exact formulation.
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Furthermore, the following shorthand notations are convenient:

<(a) := (∃X)<(a,X),

a ∈̇ b := (∃X)(<(b,X) ∧ a ∈ X),

U(W ) := W |= EETJ ∧ (∀x ∈ S)<(x),

U(a) := (∃X) [ U(X) ∧ <(a,X) ].

Thus <(a) means that the individual a names some type; the formula a ∈̇ b
expresses that the individual a is an element of the type named by b; U(W )
and U(a) say that the type W is a universe and the individual a a name of a
universe, respectively.

The first important axiom in connection with universes, also studied in
Jäger, Kahle and Studer [33], is the earlier mentioned limit axiom

(∀x) [<(x) → (x ∈̇ `x ∧ U(x)) ](Lim)

which states that the individual ` uniformly picks for each name x of a type
the name `x of a universe containing x.

For several proof-theoretic aspects of (Lim) see the above mentioned Jäger,
Kahle and Studer [33]; the proof-theoretic strength of (Lim) in a metapredica-
tive context is analyzed in Strahm [56].

§6. The Mahlo axioms in explicit mathematics. The limit axiom
(Lim) together with EETJ describes the explicit analogue of (recursive) in-
accessibility. Now we go an important step further and adapt the formulation
of Mahloness to our explicit context. To simplify the notation we set

f ∈ (< → <) := (∀x) (<(x)→ <(fx) ),

f ∈ (a→ a) := (∀x) (x ∈̇ a→ fx ∈̇ a )

to express that the individual is an operation form names to names and the
type named by a to itself, respectively. Then the Mahlo axioms are as follows:

<(a) ∧ f ∈ (< → <) → U(m(a, f)) ∧ a ∈̇ m(a, f),(M1)

<(a) ∧ f ∈ (< → <) → f ∈ (m(a, f)→ m(a, f)).(M2)

m is a fresh individual constant for obtaining a formulation of these two axioms
which is uniform in the name a and the operation f from names to names.
From now on the theory EETJ + (M1) + (M2) is usually written as EETJ(M).

Let M0 be the first Mahlo cardinal and µ0 the first recursively Mahlo ordinal.
Then natural models of explicit Mahlo are generated from the full set-theoretic
and the corresponding recursion-theoretic model of Mahloness.

Gen(VM0) |= EETJ(M) + (L-IN) and Gen(Lµ0) |= EETJ(M) + (L-IN).

The proof-theoretic analysis of EETJ(M) with type and formula induction
on the natural numbers is carried through in Jäger and Strahm [35] and in
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Strahm [55]. Related results can also be obtained for corresponding systems
of explicit mathematics with intuitionistic logic.

Theorem 5 (Jäger and Strahm). We have the following two proof-theoretic
equivalences:

1. EETJ(M) + (T-IN) ≡ KPm0,
2. EETJ(M) + (L-IN) ≡ KPm0 + (L∗-IN).

All induction principles in these “metapredicative Mahlo” theories are re-
stricted to the natural numbers. Later in this article stronger theories will be
considered as well.

§7. Metapredicative Mahlo in second order arithmetic. This sec-
tion is a short insertion turning to the problem of metapredicative Mahlo in
the context of subsystems of second order arithmetic. The basic reference is
Rüede’s recent PhD thesis [48].

A subsystem of second order arithmetic which is proof-theoretically equiv-
alent to KPm, i.e. KPm0 with full ∈ induction, is introduced and analyzed in
Rathjen [44]. For obtaining systems of the same strength as KPm0, Rüede had
to proceed differently.

The role of universes is played in his approach by countable coded ω-models
of (Σ1

1-DC), and for such universes M , the “elements” of M are the sets which
can be written as projections of M , i.e. for all subsets X of the natural numbers
we simply define

X ε M := (∃y)(X = (M)y).

Countable coded ω-models of (Σ1
1-AC) would not suffice since for all limits λ of

admissible ordinals, the set Lλ ∩ Pow(N) is a countable ω-model of (Σ1
1-AC),

but not necessarily admissible.
Two schemas are central. The first is Π1

2 reflection on countable coded ω-
models of (Σ1

1-DC) and consists of

A(X) → (∃M)[X ε M ∧ M |=ω (Σ1
1-DC) ∧ AM (X)](Π1

2-REF)(Σ1
1-DC)

for all Π1
2 formulas A(X) with the only free set variable beingX; of course finite

strings of set parameters could be permitted as well. The second important
schema is Σ1

1 transfinite dependent choice, consisting of

WO(≺) ∧ (∀x)(∀X)(∃Y )A(x,X, Y ) →
(∀X)(∃Z) [ (Z)0 = X ∧ (∀x)(0 ≺ x→ A(x, (Z)≺�x, (Z)x, ) ]

(Σ1
1-TDC)

for all Σ1
1 formulas A(x,X, Y ). As it turns out, (Π1

2-REF)(Σ1
1-DC) is equivalent

to (Σ1
1-TDC) and has the desired proof-theoretic strength.

Theorem 6 (Rüede). The two schemas (Π1
2-REF)(Σ1

1-DC) and (Σ1
1-TDC) are

equivalent over ACA0 and have the same proof-theoretic strength as metapred-
icative Mahlo; i.e. we have
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1. ACA0 + (Π1
2-REF)(Σ1

1-DC) = ACA0 + (Σ1
1-TDC),

2. ACA0 + (Σ1
1-TDC) ≡ KPm0.

For a proof of these two results see the above mentioned PhD thesis Rüede
[48] or Rüede [49, 50].

§8. Mahlo beyond Feferman’s T0. Feferman’s famous theory T0 was
the starting point of explicit mathematics; it extends the theory EETJ+(L-IN)
by the powerful principle of inductive generation (IG): for every type A named
a and every binary relation R on A with name r there exists the type of the
R-accessible elements of A and is named i(a, r). So we set

T0 := EETJ + (IG) + (L-IN).

Originally, T0 was formulated within intuitionistic logic, but for some time
classical logic has been used. The intuitionistic version of T0 is called Ti0
nowadays and provides an elegant framework for Bishop-style constructive
mathematics. The constructive justification of Ti0 is via a realizability inter-
pretation.

The proof-theoretic strength of T0 and Ti0 is substantial and has been estab-
lished in the following four articles: Jäger [27] presents a well-ordering proof
for Ti0; Feferman [11] shows that T0 can be embedded into (∆1

2-CA) + (BI);
Jäger [24, 26] contain proofs that (∆1

2-CA) + (BI) is contained in KPi; Jäger
and Pohlers [34], finally, deals with the upper proof-theoretic limit of KPi.

Theorem 7 (Feferman, Jäger and Pohlers). The theory T0 and its intu-
itionistic version Ti0 possess the same proof-theoretic strength, which is de-
termined by the following equivalences:

Ti0 ≡ T0 ≡ (∆1
2-CA) + (BI) ≡ KPi.

Conceptually, T0 and Ti0 go beyond what is reachable via iterated monotone
inductive definability. Both systems provide a first step towards nonmonotone
inductive definitions. This becomes very perspicuous in the context of the new
model constructions for explicit mathematics given the help of certain classes
of nonmonotone inductive definitions in Jäger [23] and Jäger and Studer [38]
and Studer [60].

Nonmonotone inductive definability is even more important if the Mahlo
axioms (M1) and (M2) are added to T0; call the resulting theory T0(M) for
simplicity. In the next section we will try to convey an idea how nonmonotone
inductive definitions can be used for modeling EETJ(M) and T0(M).

The rest of this section is dedicated to some recent results about the proof-
theoretic strength of T0(M), Ti0(M) and other related theories. For the upper
bound of T0(M) we only have to refer to Jäger and Studer [38].

Theorem 8 (Jäger and Studer). The theory T0(M) can be interpreted in
the theory KPm, i.e. T0(M) ⊂ KPm.
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Recent work of Tupailo is concerned with providing realizability interpreta-
tions of subsystems of second order arithmetic and extensions of Aczel’s system
CZF into explicit mathematics. The article Tupailo [62] embeds a subsystem
of second order arithmetic of the same strength as the familiar ∆1

2-CA + (BI)
into Ti0 whereas Tupailo [63] deals with the extension of CZF by a form of the
Mahlo axiom (Mahlo) suited for the constructive setting.

In view of Rathjen [43] and some of his unpublished observations about
constructive set theory it follows that the well-ordering proof for the proof-
theoretic ordinal of KPm can be carried through in CZF+(Mahlo). Combining
all these results we thus have the following theorem.

Theorem 9. The theories T0(M) and Ti0(M) have the same proof-theoretic
strength as the theory KPm,

CZF + (Mahlo) ≡ Ti0(M) ≡ T0(M) ≡ KPm.

Setzer’s approach to Mahloness within the framework of Martin-Löf type
theory has also to be mentioned in this context; in [52] he studies a type
theory of comparable strength.

§9. Modeling EETJ(M) + (L-IN) and T0(M). We conclude this survey
with a brief description of how explicit Mahlo can be modeled in systems of
nonmonotone inductive definitions of the same strength. We confine ourselves
to the basic ideas; all further details concerning the theory T0(M) for full
recursive Mahlo can be found in Jäger and Studer [38]; the metapredicative
variant is in Jäger and Strahm [35].

The treatment of the applicative part of EETJ(M) + (L-IN) and T0(M) is as
usual: the individuals are supposed to range over the set of natural numbers
N, we assume that {e} for e ∈ N is a usual indexing of the partial recursive
functions and let individual application be translated by setting

(e • n) :' {e}(n).

Then standard applications of the well-known S-m-n theorem provide natural
numbers so that the axioms of BON are satisfied. The interpretation of types
and names is more interesting. For this purpose we choose suitable formulas

A(X, a, b, c) ∈ POS-Π0
∞ and B(X, a, b, c) ∈ Π0

1,

with the corresponding operators ΦA and ΦB and work with the combined
operator Θ := [ΦA,ΦB] generated from ΦA and ΦB. The sets IαΘ are the
stages of the inductive definition induced by Θ, and IΘ is defined as

IΘ :=
⋃
{ IαΘ : α < ||Θ|| },

with α ranging – in the formalized versions – over ordinals or linear orderings,
depending on whether we want to treat, respectively, the stronger or the weaker
(metapredicative) system.
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The set IΘ consists of triples of natural numbers which code names and their
elements in the following sense:

(e, 0, 0) ∈ IΘ ∼ e is (name of) a type,

(e, n, 1) ∈ IΘ ∼ e is a type and n ∈̇ a,

(e, n, 2) ∈ IΘ ∼ e is a type and n /̇∈ a.

The operator form A(X, a, b, c) is reminiscent of the definition of Kleene’s O
and is used to deal with
• elementary comprehension and join,
• elements of universes (and of accessible parts).

The operator form B(X, a, b, c), which contains negative occurrences in an
essential way, provides for
• names of universes (and accessible parts),
• extensions of the complements of universes (and accessible parts).

Formalization of this approach in the suitable systems of nonmonotone induc-
tive definitions immediately provides the sharp upper proof-theoretic bounds
(cf. [38, 35]).

According to Theorem 9, our system T0(M) has the same proof-theoretic
strength as the system of constructive set theory CZF + (Mahlo) and thus is
justified in the sense of reductive proof theory. However, the question remains
whether there is a direct constructive justification of the system Ti0(M) and,
if so, what such a justification would mean.

It may be an interesting general approach to analyze whether nonmonotone
inductive definitions of the form discussed above or even more powerful ones
could be instrumentalized as tool for the constructive justification of strong
systems. It could be the role of nonmonotone operators to provide for the
possibility of carrying through sufficiently long iterations (of such operators)
and the corresponding ordinals. More research in this direction is left for future
publications.
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[51] Kurt Schütte, Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der

verzweigten Typenlogik, Archiv für Mathematische Logik und Grundlagen der Mathe-
matik, vol. 7 (1964), pp. 45–60.

[52] Anton Setzer, Extending Martin-Löf type theory by one Mahlo universe, Archive
for Mathematical Logic, vol. 39 (2000), no. 3, pp. 155 – 181.

[53] Stephen G. Simpson, Set-theoretic aspects of ATR0, Logic Colloquium ’80 (D. van

Dalen, D. Lascar, and J. Smiley, editors), North-Holland, Amsterdam, 1982, pp. 255–271.

[54] , Σ1
1 and Π1

1 transfinite induction, Logic Colloquium ’80 (D. van Dalen,
D. Lascar, and J. Smiley, editors), North-Holland, Amsterdam, 1982, pp. 239–253.

[55] Thomas Strahm, Wellordering proofs for metapredicative Mahlo, The Journal of
Symbolic Logic, submitted.

[56] , First steps into metapredicativity in explicit mathematics, Sets and Proofs
(S. Barry Cooper and John Truss, editors), Cambridge University Press, 1999, pp. 383–402.

[57] , Autonomous fixed point progressions and fixed point transfinite recursion,
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