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Abstract. We present an infinitary and a finitary cut–free axiomatiza-
tion for a fragment of the modal µ–calculus in which nesting of fixed
points is restricted to non–interleaving occurrences. In this study we
prove soundness and completeness of both axiomatizations. Complete-
ness is established by constructing a canonical countermodel to any non–
provable formula using an extension of the method of saturated sequents.
Soundness of the finitary axiomatization is a consequence of the small
model property and well–known results about monotone operators while
completeness follows from the corresponding result for the infinitary case.

1 Introduction

Stratified modal fixed point logic, henceforth abbreviated as SFL, is an exten-
sion of standard multi–modal logic with syntactic constructs for representing
least and greatest fixed points of stratified positive formulae. As such SFL is
contained in Kozen’s well known modal µ–calculus which – along with many of
its fragments – is an important tool for the specification and verification of prop-
erties of programs. It has been studied extensively, for example, with respect to
model–checking. Classical studies in this direction include Kozen [11], Streett
and Emerson [14], Winskel [17] and Stirling and Walker [13].

Interesting efforts have also been undertaken to obtain sound and complete de-
ductive systems for the modal µ–calculus. Completeness of the (trivially sound)
axiomatization proposed by Kozen [11] was addressed by Walukiewicz [15], mak-
ing use of some deep results from the theory of automata on infinite words. While
certainly being interesting from a foundational point of view the proposed de-
ductive systems have so far left one important question largely unaddressed,
namely the possibility of obtaining cut–free axiomatizations. All previously pro-
posed complete deductive systems for the modal µ–calculus crucially include a
cut–rule and semantic or syntactic cut–elimination procedures were not known.

In this paper we present an infinitary and a closely related finitary cut–free ax-
iomatization of SFL and show that these axiomatizations are sound and complete
with respect to the standard Kripke semantics. The language of SFL captures –
? Research partly supported by the Swiss National Science Foundation



as we shall see later – many important logics such as PDL, CTL and the logic
of common knowledge. It is stratified in the following sense: Consider a formula
µX.A[X], where A[X] is positive in the variable X. A[X] may contain a subformula
µY.B[Y] and νY.B[Y] only if X does not appear free in νY.B[Y]. This allows us
to compute the meaning of µY.B[Y] and νY.B[Y] and then use it to determine
the meaning of µX.A[X]. Stratification guarantees that inner fixed points do not
depend on the outer ones. Hence it is possible to determine the meaning of any
formula by a simple induction on the levels of its fixed points and its complexity.

This is not possible when interleaving of fixed points is allowed. Consider the
formula of the form µX.νY.A[X,Y]. Here the meaning of the inner fixed point
νY.A[X,Y] depends on the value assigned to X by the interpretation of the
outer fixed point µX.νY.A[X,Y] which in turn depends on νY.A[X,Y]. Hence
interleaving has the effect that the meaning of nested fixed points cannot be
determined one after another, but has to be treated in a more complicated way.

Turning to our two deductive systems for SFL we show (i) completeness of the
infinitary version Tω

SFL and (ii) the soundness of the finitary system TSFL. Fur-
thermore, it will be obvious that everything provable in Tω

SFL is also provable in
TSFL and, consequently, Tω

SFL as well as TSFL are sound and complete.

The completeness of Tω
SFL is proved by extending a method also used in Alberucci

and Jäger [1]. For establishing the soundness of the finitary system TSFL, we
heavily rely on the small model property of the modal µ–calculus; see [14, 5, 9,
16]. Generalizing an idea of Jäger, Kretz and Studer [10], we can exploit the fact
that with respect to provability only finitely many stages of greatest fixed points
are relevant.

The focus of this paper is on proof-theoretic aspects of an important subsystem of
the modal µ–calculus and the question whether there are cut–free formalizations.
We do not claim that the systems presented in this article are a direct basis for
implementations which perform better, for example, with respect to average case
behavior. However, we think that it is important to know that finite cut–free
calculi do exist so that it makes sense to search for cut–free frameworks whose
structural proof theory is more developed than that of TSFL. Furthermore, the
proof systems studied in this paper allow direct and logic–oriented completeness
proofs, a fact which is interesting in its own right.

2 Monotone Operators

To facilitate the introduction of SFL we will first briefly review some basic notions
and results from the theory of monotone operators; for all details we refer, for
example, to Moschovakis [12].

Definition 1 (Monotone Operators). Let A be a set. A function F is called
an operator on A if F : P(A) −→ P(A). F is called monotone if for all B,C ⊂ A
such that B ⊂ C we have F (B) ⊂ F (C).



An important notion which we will require in various forms is that of a (poten-
tially transfinite) iteration of a given operator. There are two natural ways of
defining iterations. Firstly, we may start from the empty set and collect up all
elements which are possibly added by repeated applications of a given operator.
Secondly, we may start with the whole domain and throw away any elements
which are possibly removed by a repeated application of the operator. Both these
possibilities are reflected in the next definition.

Definition 2 (Iterations). Let A be a set, F a monotone operator on A and
α an ordinal. Define the sets Iα

F , IF , I<α
F Jα

F , JF and J<α
F as follows:

I<α
F =

⋃
β<α Iβ

F , Iα
F = F (I<α

F ), IF =
⋃

β Iβ
F .

J<α
F =

⋂
β<α Jβ

F , Jα
F = F (J<α

F ), JF =
⋂

β Jβ
F .

The next two theorems state that the sequences of sets determined by iterating
a monotone operator transfinitely many times in the two ways described in
Definition 2 always converge to the least and greatest fixed point of this operator
and that the number of iterations at which convergence is reached is bounded
by the cardinality of the domain.

Theorem 1 (Least Fixed Point). Let A be a set and F a monotone operator
on A. Then the following statements hold:

(i) For any ordinals α, β, if β ≤ α, then Iβ
F ⊂ Iα

F .
(ii) There exists an ordinal α such that α < |A|+ and IF = Iα

F = I<α
F .

(iii) F (IF ) = IF =
⋂
{B : F (B) ⊂ B} =

⋂
{B : F (B) = B}.

A proof of this theorem is given in Moschovakis [12]. This takes care of the least
fixed point case. The analogous situation also holds for greatest fixed points and
their approximations.

Theorem 2 (Greatest Fixed Point). Let A be a set and F a monotone op-
erator on A. Then the following statements hold:

(i) For any ordinals α, β, if β ≤ α, then Jα
F ⊂ Jβ

F .
(ii) There exists an ordinal α such that α < |A|+ and JF = Jα

F = J<α
F .

(iii) F (JF ) = JF =
⋃
{B : B ⊂ F (B)} =

⋃
{B : B = F (B)}.

Finally, for reasons of duality we shall also mention the following statement.

Theorem 3 (Fixed Point Duality). Let F be a monotone operator on a set
A. Then the operator G(X) := A \ F (A \ X) is monotone and the following
properties hold for all B ⊂ A:

(i) If F (B) = B, then G(A \B) = A \B.
(ii) If G(B) = B, then F (A \B) = A \B.
(iii) IG = A \ JF and JG = A \ IF .



3 Stratified Modal Fixed Point Logic

Starting off from the usual language of multi-modal logic, we introduce the
language of SFL in a level-by-level fashion, beginning at level 0, at which we allow
only formulae of modal logic possibly containing a fresh propositional variable
X and its negation ∼X. For all formulae A which are positive in X we then add
constants PA and QA for the least and greatest fixed point of the associated
operator. At level 1 we allow formulae of modal logic possibly containing X and
∼X as well as any constant PA or QA from level 0. Again, for those formulae B
of level 1, which are positive in X we add new constants PB and QB as before
and iterate this procedure inductively, thus obtaining levels 2, 3, 4 and so on.
Each formula A of the language is therefore assigned a level in a natural way,
namely the minimal level of this construction at which A appears. At each level
of the language we also define the negation ¬A for an arbitrary formula A using
De Morgan’s laws, the law of double negation and the law of fixed point duality
stated in Theorem 3.

Definition 3 (Language, Level, Length). Let Φ = {p,∼p, q,∼q, r,∼r, . . .}
be a countable set of atomic propositions, V = {X,∼X} a set containing one
variable and its negation, T = {>,⊥} a set containing symbols for truth and
falsehood and M a set of indices.

1. Define L0 as being the least superset of Φ ∪ V ∪ T closed under ∧,∨,2i,3i

where i ∈ M. Given a formula A ∈ L0, we inductively define ¬A by:

¬p := ∼p, ¬X := ∼X, ¬∼p := p, ¬∼X := X, ¬> := ⊥, ¬⊥ := >,

¬(B ∧ C) := ¬B ∨ ¬C, ¬(B ∨ C) := ¬B ∧ ¬C,

¬2iB := 3i¬B, ¬3iB := 2i¬B.

2. A formula A ∈ L0 is called X-positive if ∼X does not occur in A. In the
following, X-positive formulae will be denoted by symbols A,B, C, . . . (possibly
with primes and subscripts). Given formulae A and B of L0 where A is X-
positive we write A[B] for the formula which is obtained by replacing every
occurrence of X in A by B. We define the dual A of an X-positive formula
A as A = ¬(A[∼X]). Furthermore, define the sets

L0 := {PA : A ∈ L0 X-positive} and G0 := {QA : A ∈ L0 X-positive}.

3. Define Lk+1 as the least superset of Φ ∪ V ∪ T ∪ Lk ∪ Gk closed under the
symbols ∧,∨,2i,3i where i ∈ M. Again a formula A ∈ Lk+1 is called X-
positive if ∼X does not occur in A. For any formulae A ∈ Lk+1 define ¬A as
before and adding the clauses ¬PA := QA and ¬QA := PA. For X-positive
formulae A ∈ Lk+1 we also define A as before. Similar to the base case we
also define sets of fixed point constants

Lk+1 := {PA : A ∈ Lk X-positive} and Gk+1 := {QA : A ∈ Lk X-positive}.

4. Define the language L by setting L =
⋃

k∈ω Lk.



5. For every formula A ∈ L define level(A) to be the least k so that A ∈ Lk.
6. The length |A| of an A ∈ L is simply the number of symbols occurring in A

with the proviso that fixed point constants PA and QA count (recursively) as
|A|+ 1 many symbols.

Turning to the semantics of L, a Kripke structure, as usual, is a triple K =
(S, R, π) where S is a non–empty set, R a mapping from M to P(S × S) and
π a mapping from Φ ∪ V to P(S); we also require that π(∼X) = S \ π(X) and
π(∼p) = S \ π(p) for all p ∈ Φ. The function R assigns an accessibility relation
to each i ∈ M where we write Ri for the relation R(i). Furthermore, given a set
T ⊂ S we define K[X := T ] to be the the Kripke structure (S, R, π′), where π′

maps X to T , ∼X to S \ T and otherwise agrees with π.

Given a Kripke structure K we now define the denotations of the formulae of L
by main induction on their levels and side induction on their lengths.

Definition 4 (Denotation). Let K = (S, R, π) be a Kripke structure. For every
A ∈ Lk we define the set ‖A‖K ⊂ S inductively as follows:

‖P‖K := π(P ) for all P ∈ Φ ∪ V, ‖>‖K := S, ‖⊥‖K := ∅,
‖B ∧ C‖K := ‖B‖K ∩ ‖C‖K, ‖B ∨ C‖K := ‖B‖K ∪ ‖C‖K,

‖2iB‖K := {w ∈ S : v ∈ ‖B‖K for all v such that wRiv},
‖3iB‖K := {w ∈ S : v ∈ ‖B‖K for some v such that wRiv}.

For every PA and QA we define

‖PA‖K :=
⋂
{T ⊂ S : T ⊃ FK

A(T )} and ‖QA‖K :=
⋃
{T ⊂ S : T ⊂ FK

A(T )}

where FK
A is the operator on S given by FK

A(T ) := ‖A‖K[X:=T ] for every subset T
of S.

Obviously by the main induction hypothesis the operator FK
A is defined and

monotone and ‖PA‖K and ‖QA‖K are the least and greatest fixed points of FK
A

respectively.

Definition 5 (Satisfaction and Validity). Let K = (S, R, π) be a Kripke
structure. We say a formula A ∈ L is satisfied in K if ‖A‖K 6= ∅ and valid in K
if ‖A‖K = S. We say A is satisfiable if there exists a Kripke structures in which
A is satisfied. Furthermore, we say that A is valid if it is valid in all Kripke
structures.

The next definition introduces formulae describing the finite iterations of mono-
tone operators, both from below and above. We also define the stages of such
inductive definitions over a given Kripke structure.

Definition 6 (Iterations). Let A be an X-positive formula.



1. For every k ∈ ω define the formulae Qk
A and P k

A inductively as follows:

P 0
A := ⊥, P k+1

A := A[P k
A], Q0

A := >, Qk+1
A := A[Qk

A].

2. Let K = (S, R, π) be a Kripke structure. For every ordinal α define the subsets
I<α
A,K, Iα

A,K J<α
A,K and Jα

A,K of S as follows:

I<α
A,K := I<α

F K
A

, Iα
A,K := Iα

F K
A
, J<α

A,K := J<α
F K
A

, Jα
A,K := Jα

F K
A
.

Remark 1. We note two facts, which are evident from Definition 6 and which will
be used several times in the subsequent argument. Let A be a formula of L which
is X-positive. Then for all natural numbers k we have level(Qk

A) < level(QA)
and level(P k

A) < level(PA) and, furthermore, for all Kripke structures K we have
‖P k

A‖K = I<k
A,K and ‖Qk

A‖K = J<k
A,K.

Our language L is built up in layers and at each layer we add a set of fixed point
constants for certain formulae of the layer below. The following definition is so
that the rank of a formula at a higher level is strictly greater than the rank of
any formula in a level below.

Definition 7 (Rank). The rank rk(A) of a formula A ∈ L is an ordinal defined
inductively as follows:

1. If A is an element of Φ ∪ V ∪ T, then rk(A) := 0.
2. If A is a fixed point constant PA or QA and level(A) = n, then rk(A) := ωn.
3. If A is a formula B ∧ C or B ∨ C, then rk(A) := max(rk(B), rk(C)) + 1.
4. If A is a formula 2iB or 3iB for some i ∈ M, then rk(A) := rk(B) + 1.

The following lemma summarizes some important properties of the rank func-
tion. Its proof is routine and left to the reader.

Lemma 1. For all formulae A,B ∈ L the following statements hold:

(i) ω · level(A) ≤ rk(A) < (ω · level(A)) + ω.
(ii) rk(A) = rk(¬A).
(iii) rk(A), rk(B) < rk(A ∧B), rk(A ∨B).
(iv) rk(A) < rk(2iA), rk(3iA) for all i ∈ M.

The right hand inequality of the following Lemma is a straightforward conse-
quence of Remark 1 and Lemma 1, the left hand one is an induction on k.

Lemma 2. For all fixed point constants QA and all k ∈ ω we have

rk(Qk
A) ≤ rk(Qk+1

A ) < rk(QA).

The preceding considerations show that the rank of a formula A as given in
Definition 7 allow us to prove certain claims – for example the next one – by a
simple induction on rk(A).

Lemma 3. For all formulae A of L and all Kripke structures K = (S, R, π) we
have ‖¬A‖K = S \ ‖A‖K.



4 A Hilbert System for SFL

In this section we briefly introduce the Hilbert system HSFL for stratified modal
fixed point logic. We mention HSFL because it is simple and easily accessible
from an intuitive point of view. The system is basically Kozen’s axiomatization
of the modal µ–calculus [11] adapted to our more restrictive setting. It consists
of the standard axioms and rules for multi–modal logic plus axioms and rules
for the fixed point constants. Given X-positive formulae A the additional axioms
express the fact that the constants PA stand for fixed points and the additional
induction rules state that these fixed points are minimal. Indeed, as we are about
to see we only require additional axioms and rules for least fixed points. Their
counterparts with respect to greatest fixed points may be derived due to the
syntactic duality of least and greatest fixed points in our language.

Definition 8 (The System HSFL). The system HSFL is defined by adding the
following axioms and rules to any suitable Hilbert–style axiomatization for a
multi–modal formulation of the logic K:

Closure axioms For every X-positive formula A:

A[PA] → PA

Induction rules For every X-positive formula A and every formula B:

A[B] → B

PA → B

It is easily checked that for greatest fixed points the duals of the closure axioms
and induction rules are derivable in HSFL. Basically all we need is the fixed point
duality formulated in Theorem 3.

Lemma 4. The system HSFL derives the formula QA → A[QA] and the rule:

B → A[B]
B → QA

We may use the system HSFL to gain some intuition about the expressive strength
of SFL. To this end we will briefly discuss three notable fragments of SFL, namely
logic of common knowledge, computational tree logic CTL and propositional
dynamic logic PDL. Logic of common knowledge [6] is a multi–modal logic which
can be used to talk about certain epistemic situations among a group of agents.
The index set M is interpreted as standing for a finite set of agents and a modal
formula 2iA is taken to mean that agent i knows the statement A. If A is known
by all agents in M, we write EA which, formally speaking, is just an abbreviation
for the conjunction

∧
i∈M 2iA. If A is common knowledge among all agents –

all agents know A and all agents know that all agents know A and so on ad
infinitum – then we write CA. More formally, the logic of common knowledge
can be axiomatized as a multi–modal version of K plus the following axioms and
rules to treat the common knowledge operator C:



Closure axioms For every formula A:

CA → E(A ∧ CA)

Induction rules For every formula A and B:

B → E(A ∧B)
B → CA

It can easily be seen that the logic of common knowledge is a fragment of SFL
by defining a syntactic embedding from the former into the latter: we translate
atomic, propositional and modal formulae as themselves and a formula CA as
QE(A∗∧X) where A∗ denotes the translation of A. By Lemma 4 it is clear that
we then obtain the following theorem stating that the translations of the axioms
and rules for common knowledge are derivable in HSFL. Since the rest of the
axioms and rules of logic of common knowledge are also a part of HSFL, this
already takes care of the embedding result.

Theorem 4. For all formulae A and B of logic of common knowledge we have:

1. HSFL derives (CA → E(A ∧ CA))∗.
2. If HSFL derives (B → E(A ∧B))∗, then HSFL also derives (B → CA)∗.

The next fragment of SFL we consider is computational tree logic or CTL for short
[4]. CTL is based on mono–modal logic and may be used to talk about the set of
all possible runs of a system. Using this logic we may express such properties as
“in all runs extending from the current state A holds in the next state”, written
as 2A, or “in some runs extending from the current state A holds in the next
state”, written as 3A. More importantly we may also express behavior which is
in a sense unbounded like “in all runs extending from the current state A holds
until B is the case”, denoted by ∀(AUB) or “in some runs extending from the
current state A holds until B is the case”, written as ∃(AUB). Axiomatically
we obtain CTL by extending a suitable axiomatization for K by the following
axioms and rules governing the use of the ∀(AUB) and ∃(AUB) constructs:

Closure axioms For every formula A and B
(1) B ∨ (A ∧2∀(AUB)) → ∀(AUB)
(2) B ∨ (A ∧3∃(AUB)) → ∃(AUB)

Induction rules For all formulae A, B and C

(3)
C → (¬B ∧3C)
C → ¬∀(AUB)

(4)
C → (¬B ∧ (A → 2C))

C → ¬∃(AUB)
An embedding of CTL into SFL can be obtained again by translating atomic,
propositional and modal constructs as themselves and using in this case least
fixed point constants to translate formulae of the form ∀(AUB) and ∃(AUB).
More precisely we translate a formula of the form ∀(AUB) into PB∗∨(A∗∧2X∧3>)

and a formula of the form ∃(AUB) into PB∗∨(A∗∧3X) where in both cases A∗

and B∗ stand for the translations of A and B respectively. Using this translation
and Definition 8 we again immediately get the following theorem which ensures
that CTL is embeddable into HSFL.



Theorem 5. For all formulae A, B and C of CTL we have:

1. HSFL derives [B ∨ (A ∧2∀(AUB)) → ∀(AUB)]∗.
2. HSFL derives [B ∨ (A ∧3∃(AUB)) → ∃(AUB)]∗.
3. If HSFL derives [C → (¬B ∧3C)]∗, then also [C → ¬∀(AUB)]∗.
4. If HSFL derives [C → (¬B ∧ (A → 2C))]∗, then also [C → ¬∃(AUB)]∗.

The last fragment of SFL which we mention is propositional dynamic logic, ab-
breviated as PDL [7, 8]. It is once again a multi–modal logic this time featuring
an infinite set M of indices. The logic is primarily used for reasoning about
programs in the following sense: a formula 2iA is interpreted as the statement
“whenever an i action is executed in the current state, we terminate in a state
which satisfies A”. Consequently, 3iA is taken to mean “in the current state it
is possible to execute an i action and terminate in a state which satisfies A”.
Similar to our two previous examples PDL also features constructs for express-
ing “unbounded” properties. 2∗

i A is used to state that for any finite iteration
of the action i we end up in a state satisfying A. Dually, 3∗

i A states that there
exists a finite iteration of i actions after which we end up in a state satisfying A.
Again we may axiomatize PDL by taking suitable axioms for multi–modal K and
extending them by the following axioms and rules for the 2∗

i and 3∗
i operators:

Closure axioms For every formula A

(1) 2∗
i A → (A ∧2i2

∗
i A)

(2) (A ∨3i3
∗
i A) → 3∗

i A

Induction rules For all formulae A, B

(3)
B → (A ∧2iB)

B → 2∗
i A

(4)
(A ∨3iB) → B

3∗
i A → B

The above axioms and rules suggest a translation of a formula 2∗
i A as a greatest

and 3∗
i A as a least fixed point. More precisely, in order to embed PDL into SFL

we translate atomic, propositional and modal formulae as themselves, 2∗
i A as

QA∗∧2iX and 3∗
i A as PA∗∨3iX where A∗ stands for the translation of A. Using

this translation, Definition 8 and Lemma 4 we prove the following embedding
theorem.

Theorem 6. For all formulae A and B of PDL we have:

1. HSFL derives [2∗
i A → (A ∧2i2

∗
i A)]∗.

2. HSFL derives [(A ∨3i3
∗
i A) → 3∗

i A]∗.
3. If HSFL derives [B → (A ∧2iB)]∗, then HSFL derives [B → 2∗

i A]∗.
4. If HSFL derives [(A ∨3iB) → B]∗, then HSFL derives [3∗

i A → B]∗.



5 The Infinitary Calculus Tω
SFL

In the following we introduce the system Tω
SFL for deriving valid formulae of

stratified modal fixed point logic. For ease of presentation we shall restrict the
remainder of our account to the case where we are dealing with just one modality,
that is to say where M is a singleton set. A generalization of the subsequent
arguments to the full multi–modal case is an easy exercise. Consequently, we
drop the indices when writing the symbols 2 and 3. Furthermore, given a Kripke
structure K = (S, R, π) we henceforth treat R as a single relation R ⊂ S × S.

The calculus Tω
SFL is designed in Tait–style, that is to say, using it we derive

finite sets of formulae of L. It is infinitary in the sense that in order to apply
the rule for a greatest fixed point constant QA we must derive infinitely many
premises. As a consequence of this, proofs in Tω

SFL can become infinite in length.
Our calculus will not include a cut rule although such a rule could be added for
convenience.

Definition 9 (Sequents). A sequent is a finite set of formulae of L. Hence-
forth, unless otherwise stated capital Greek letters Γ,∆,Σ, . . . (possibly with
primes and subscripts) shall be used to denote sequents. Given a formula A we
write Γ,A for Γ ∪{A}. By

∨
Γ we denote the formula ((. . . (A1∨A2)∨ . . .)∨An)

if Γ is the set {A1, . . . , An} or the formula ⊥ if Γ is empty. Furthermore, by
3Γ we denote the sequent obtained by prefixing each formula in Γ by 3.

We are now in a position to state the rules of Tω
SFL. These rules are to be read

in the following way: if all sequents displayed in the premise have already been
derived, then the sequent displayed in the conclusion may also be derived. In this
sense, rules with an empty premise correspond to sequents which may always be
derived, that is to say they are axioms of Tω

SFL.

Definition 10 (The System Tω
SFL). The system Tω

SFL is defined by the follow-
ing set of inference rules:

Γ, p,∼p
(ID1)

Γ, X,∼X
(ID2)

Γ,>
(ID3)

Γ,A, B

Γ,A ∨B
(∨)

Γ,A Γ,B

Γ,A ∧B
(∧)

Γ,A

3Γ,2A,Σ
(2)

Γ,A[PA]
Γ, PA

(PA)
Γ,Qk

A for all k ∈ ω

Γ,QA
(Qω

A)



Provability of a sequent Γ in Tω
SFL is defined as usual and denoted by Tω

SFL ` Γ .
It is obvious from the formulation of the system that Tω

SFL satisfies weakening in
the sense that if Γ is provable and Γ ⊂ ∆, then ∆ is also provable.

However, it is not immediately obvious that Tω
SFL is sound. Problems might occur

in connection with the infinitary rule (Qω
A) whose premises are exactly the finite

stages of greatest fixed points, whereas in arbitrary Kripke structures transfinite
stages cannot be ruled out. However, in Section 7 we will prove the soundness of
a system TSFL which contains Tω

SFL. Thus we do not elaborate on the soundness
proof for Tω

SFL here.

From the completeness of Tω
SFL which will be shown in Section 6 we can imme-

diately deduce that the Hilbert system HSFL is contained in Tω
SFL. More formally

and moving from Hilbert–style to a Tait–style framework, completeness implies
the following Theorem

Theorem 7. For all formulae A and B of L where A is X-positive we have:

(i) Tω
SFL ` ¬A[PA], PA.

(ii) Tω
SFL ` ¬A[B], B =⇒ Tω

SFL ` ¬PA, B.

6 A Completeness Proof for Tω
SFL

We now aim to prove completeness for the system Tω
SFL, that is the claim that

any valid formula of L must be provable in Tω
SFL. In order to arrive at this result,

we will in fact show its contrapositive. That is we will show that given a non–
provable formula A, we may always construct a Kripke structure in which A is
not satisfied. Such a formula A can thus never be valid. To show completeness
we use an extension of the method of saturated sequents. A sequent is saturated
if it is in a sense maximally non–provable. The first major step in proving the
completeness of Tω

SFL is thus to show that any non–provable sequent can be
expanded to a saturated sequent. The second step is then to show that from
the set of all saturated sequents we may construct a suitable countermodel for a
non–provable formula. We thus first need to state what saturated sequents are.

Definition 11 (Saturated Sequents). Let k be a natural number.

1. A sequent Γ ⊂ L is called k–presaturated if all of the following properties
hold:

(i) Tω
SFL 0 Γ

(ii) For all formulae A∧B with level(A∧B) ≥ k, if A∧B ∈ Γ , then A ∈ Γ
or B ∈ Γ .

(iii) For all formulae A∨B with level(A∨B) ≥ k, if A∨B ∈ Γ , then A ∈ Γ
and B ∈ Γ .

(iv) For all formulae QA with level(QA) ≥ k, if QA ∈ Γ , then Qn
A ∈ Γ for

some n ∈ ω .
2. Γ is called k–saturated if it is k–presaturated and in addition the following

property holds



(v) For all formulae PA with level(PA) ≥ k, if PA ∈ Γ , then A[PA] ∈ Γ .

In general Γ is simply called saturated if it is 0–saturated. To show that any
non–provable sequent Γ may be expanded to a saturated one we will use the
strategy of choosing a formula in Γ which violates one of the conditions (ii) to
(v) of Definition 11, adding suitable formulae to make the respective condition
satisfied, then iterating this with a new formula which violates the conditions
and so on. The essential step in the proof is then to show that this procedure
converges after finitely many steps, thus yielding a saturated sequent. What
makes matters complicated is condition (v) since satisfying this condition – in
contrast to conditions (ii) to (iv) – means increasing formula complexity. In
order to tackle these complications we need to make two technical definitions.
The first one introduces a notation for the set of all those formulae in a sequent
Γ which prevent Γ from being k–presaturated. The second definition introduces
the set csub(A) of critical subformulae of formula A of L. The intended meaning
of csub(A) is being the set of all subformulae of A which could be considered
during the process of saturation.

Definition 12 (k–Deficiency Set). Let Γ be a sequent such that Tω
SFL 0 Γ

and k a natural number. Define the k–deficiency set dsk(Γ ) of Γ as the empty
set if Γ is k–presaturated and otherwise as the set of all elements of Γ of level
k which violate one of the conditions (ii) – (iv) of Definition 11.

Definition 13 (Critical Subformulae). For any A ∈ L define the set csub(A)
of critical subformulae of A inductively as follows:

1. If A is an element of Φ ∪ V ∪T, a fixed point constant PA, a formula 3B or
a formula 2B, then define csub(A) as the set {A}.

2. If A is a fixed point constant QA, then csub(A) := {QA} ∪ {Qn
A : n ∈ ω}.

3. If A is a formula B ∨C or B ∧C, then csub(A) := {A}∪ csub(B)∪ csub(C).

For any sequent Γ = {A1, . . . , An} set csub(Γ ) := csub(A1) ∪ . . . ∪ csub(An).

In order to saturate an arbitrary non–provable sequent Γ we proceed as follows:
Start with Γ and find the least number k for which Γ is k–saturated. If k = 0,
then Γ is saturated and we are done. Thus assume k = l + 1 for some number l.
Now we iteratively satisfy conditions (ii) to (iv) of Definition 11, producing in a
finite number of steps a sequent Γ ′ which is l–presaturated, but not necessarily l–
saturated. To achieve the latter, we add A[PA] to Γ ′ for each fixed point constant
of level l and thus obtain a sequent Γ ′′. Unfortunately Γ ′′ need not necessarily
be l–presaturated any longer but we notice that it is still l + 1–saturated. Thus
we again iteratively satisfy conditions (ii) to (iv) of Definition 11 where after we
arrive at an l–saturated sequent Γ ′′′. Repeating this procedure yields a strictly
decreasing sequence of saturation numbers and thus after finitely many steps of
adding formulae we reach a sequent which is saturated. We will now set about
formalizing the saturation argument just described in the shape of the next three
lemmata.



Lemma 5. For every sequent Γ with Tω
SFL 0 Γ there exists a natural number k

such that Γ is k–saturated.

Proof. By Definition 11 it is clear that the claim holds if we take k as the
maximum level of all formulae in Γ plus 1. ut

Lemma 6. Suppose that k is a natural number and Γ a (k + 1)–saturated se-
quent. Then there exists a k–presaturated sequent ∆ so that

Γ ⊂ ∆ and (∆ \ Γ ) ⊂ csub(dsk(Γ )).

Proof. The proof of this lemma is routine and will thus not be carried out. An
almost identical claim is shown by Alberucci and Jäger [1] in full detail. ut

Lemma 7. Suppose that k is a natural number and Γ a (k + 1)–saturated se-
quent. Then there exists a k–saturated sequent ∆ such that Γ ⊂ ∆.

Proof. In a first step we apply Lemma 6 in order to obtain a k–presaturated
sequent ∆0 so that Γ ⊂ ∆0 and (∆0 \ Γ ) ⊂ csub(dsk(Γ )). This sequent need
not necessarily be k–saturated as condition (v) could be violated for some fixed
point constants PA of level k. To rectify this problem, our next step is to define
the sequent ∆1 := ∆0 ∪ {A[PA] : level(PA) = k and PA ∈ ∆0}. Now, in turn,
∆1 need not be k–presaturated since we have no guarantee that

dsk(∆1) = dsk({A[PA] : level(PA) = k and PA ∈ ∆0})

is empty. However, again by using Lemma 6 we can extend ∆1 to a k–presatur-
ated sequent ∆ with the properties ∆1 ⊂ ∆ and (∆ \ ∆1) ⊂ csub(dsk(∆1)).
Thus all elements of (∆ \∆1) belong to the set

csub({A[PA] : level(PA) = k and PA ∈ ∆0})

with the consequence that all fixed point constants of level k which are elements
of ∆ are already elements of ∆0. Hence ∆ is k–saturated and the lemma is
shown. ut

Combining Lemmata 5 and 7 now takes care of the first part of our completeness
proof for Tω

SFL.

Lemma 8. For every sequent Γ which is not provable in Tω
SFL there exists a

saturated sequent ∆ such that Γ ⊂ ∆.

Proof. Assume Tω
SFL 0 Γ . Then by Lemma 5 we know that Γ is k–saturated

for a suitably chosen k. Moreover, according to Lemma 7 there are sequents
Γk−1, . . . , Γ1, Γ0 so that each Γi is i–saturated for 0 ≤ i ≤ k − 1 and

Γ ⊂ Γk−1 ⊂ . . . ⊂ Γ1 ⊂ Γ0.

To conclude the proof simply set ∆ := Γ0. ut



Based on the collection of all saturated sequents we now define a Kripke structure
Ksat which will turn out to be a suitable countermodel for any non–provable
formula of L. The worlds of Ksat are just the saturated sequents themselves.
Accessibility is defined to treat formulae of the form 2B and 3B correctly and
the valuation function makes a primitive proposition true in any world which
does not contain it. This is possible since the non–provability of any saturated
sequent Γ guarantees that not both p and ∼p are elements of Γ at once. The
same is also true for the symbols X and ∼X.

Definition 14 (Canonical Countermodel). Set Ksat := (Ssat, Rsat, πsat) and

Ssat := {Γ ⊂ L : Γ saturated},
Rsat := {(Γ,∆) ∈ Ssat × Ssat : {B ∈ L : 3B ∈ Γ} ⊂ ∆},

πsat(P ) := {Γ ∈ Ssat : P /∈ Γ} for P ∈ Φ ∪ V.

It is easily verified that Ksat is a Kripke structure in our sense. Given a formula
A ∈ L and a set T ⊂ Ssat we will write ‖A‖sat for ‖A‖Ksat and ‖A‖sat[X:=T ] for
‖A‖Ksat[X:=T ].

The completeness proof for Tω
SFL will effectively be finished once we have shown

for an arbitrary formula A of L that if A is an element of a saturated set Γ , then
Ksat is a countermodel for A at the world Γ . The next lemma shows that with
respect to this property the construction of Ksat consistently treats formulae of
the form 2B and 3B.

Lemma 9. Assume Γ ⊂ L is a saturated sequent.

(i) If 2A ∈ Γ , then there exists a sequent ∆ such that ΓRsat∆ and A ∈ ∆.
(ii) If 3A ∈ Γ , then A ∈ ∆ for all sequents ∆ such that ΓRsat∆.

Proof. To show (i) consider that since Γ is saturated, we have Tω
SFL 0 Γ and

thus also Tω
SFL 0 {B ∈ L : 3B ∈ Γ}, A. Thus by Lemma 8 there exists a

saturated sequent ∆ such that {B ∈ L : 3B ∈ Γ}, A ⊂ ∆ and thus A ∈ ∆ and
ΓRsat∆. Part (ii) of the claim is obvious by Definition 14. ut

The proofs of the lemmata leading up to the completeness theorem formally
proceed as an induction along the levels of the language L. That is to say we
prove that for all formulae A of level 0 if A is an element of a saturated sequent
Γ , then Ksat is a countermodel for A at Γ . Then we show that if this claim holds
for all formulae at level k, then it also holds for all formulae at level k + 1. For
this purpose we introduce the notion of k–adequacy of the Kripke structure Ksat.

Definition 15 (k–Adequacy). Let k be a natural number. We call the Kripke
structure Ksat k–adequate if for all saturated sequents Γ and all formulae A of
L we have

level(A) ≤ k and A ∈ Γ =⇒ Γ /∈ ‖A‖sat.



The naive approach to showing that if a formula A is in a saturated sequent Γ ,
then Ksat is a countermodel for A at world Γ would be an induction on rk(A).
However, this argument breaks down in the case where A is a constant PA. For
this reason we must treat the case of constants PA separately in the shape of
the next lemma.

Lemma 10. Suppose that Ksat is k–adequate for the natural number k and let
PA be a fixed point constant of level k + 1. Then we have for all X-positive
formulae B such that level(B) ≤ k, all saturated sequents Γ and all ordinals α
that

B[PA] ∈ Γ =⇒ Γ /∈ ‖B‖sat[X:=I<α
A,Ksat

].

Proof. We prove this claim by main induction on α and side induction on rk(B).
The atomic and truth value symbol cases are trivial, the propositional cases
follow by hypothesis of the side induction and the modal cases by Lemma 9
and the hypothesis of the side induction. We are thus left with the fixed point
and variable cases: In case B = PC or B = QC we have B[PA] = B and since
level(B) ≤ k and Ksat is k–adequate, we get

Γ /∈ ‖B‖sat = ‖B‖sat[X:=I<α
A,Ksat

].

In the case where B = X from B[PA] ∈ Γ , i.e. PA ∈ Γ , we immediately obtain
A[PA] ∈ Γ . Now we apply the hypothesis of the main induction and conclude
that we have

Γ /∈ ‖A‖sat[X:=I<β
A,Ksat

]

for all β < α. Semantic reasoning yields

Γ /∈ ‖X‖sat[X:=Iβ
A,Ksat

]

for all β < α. Consequently we have

Γ /∈ ‖X‖sat[X:=I<α
A,Ksat

],

and the claim is shown. ut

Corollary 1. Suppose that Ksat is k–adequate for the natural number k and let
PA be a fixed point constant of level k+1. Then we have for all saturated sequents
Γ that

PA ∈ Γ =⇒ Γ /∈ ‖PA‖sat.

The next lemma takes care of the induction step, showing that if the Kripke
structure Ksat is k–adequate, then it is also (k +1)–adequate. This property will
shortly lead us to the statement that indeed Ksat is k–adequate for all natural
numbers k.

Lemma 11. Suppose that Ksat is k–adequate for the natural number k. Then
for all formulae A of L and all saturated sequents Γ we have

A ∈ Γ and level(A) ≤ k + 1 =⇒ Γ /∈ ‖A‖sat.



Proof. We show this lemma by induction on rk(A). The atomic, variable and
truth value symbol cases are trivial. The propositional and modal cases follow
by induction hypothesis, the latter using Lemma 9. We are thus left with the
fixed point cases: For the first case assume that A = QB, QB ∈ Γ and that
level(QB) ≤ k + 1. Then by saturation of Γ we have Ql

B ∈ Γ for some l ∈ ω and
level(Ql

B) < level(QB) ≤ k + 1. Thus by induction hypothesis Γ /∈ ‖Qk
B‖sat and

thus also Γ /∈ ‖QB‖sat. For the second case assume that A = PB, PB ∈ Γ and
level(PB) ≤ k + 1. In the case where level(PB) ≤ k it follows that Γ /∈ ‖PB‖sat
by k–adequacy of Ksat, in the case where level(PB) = k + 1 the claim follows by
Corollary 1. ut

We are now ready to prove the crucial lemma establishing the fact that any
formula contained in a saturated sequent Γ is not satisfied in Ksat at Γ .

Lemma 12. For any natural number k, the Kripke structure Ksat is k–adequate;
i.e. for all formulae B ∈ L and all saturated sequents Γ ⊂ L we have

B ∈ Γ =⇒ Γ /∈ ‖B‖sat.

Proof. This lemma is shown by a straightforward induction on k using Lemma
11 in the induction step. ut

Theorem 8 (Completeness of Tω
SFL). The system Tω

SFL is complete, that is
for all formulae A ∈ L if A is valid, then Tω

SFL ` A.

Proof. We show the claim by contraposition. Assume Tω
SFL 0 A. Then by Lemma

8 there exists a saturated set Γ ⊂ L such that A ∈ Γ . Therefore by Lemma 12
we have Γ /∈ ‖A‖sat and thus A cannot be valid. Hence we have shown the
completeness of Tω

SFL. ut

7 Finitizing Tω
SFL

We will now use the so–called small model property of SFL to reduce the number
of premises of the greatest fixed point rule (Qω

A) down to a single premise. Doing
so will result in a truly finitary system in which all proofs are finite in length.
Before we address the soundness proof of Tω

SFL we state the small model property
in its customary form.

Remark 2 (Small model property). There exists an exponential function f on the
natural numbers such that for every formula A ∈ L if A is satisfiable, then there
exists a Kripke structure K = (S, R, π) with |S| < f(|A|) which satisfies A.

The small model property holds for stratified modal fixed point logic since it
holds for the modal µ–calculus. A candidate for the exponential function f men-
tioned in Remark 2 can be reconstructed from results presented in [9] or [16]. The
exact shape of f or indeed a minimal candidate with respect to our framework
shall not concern us in the current study.



Definition 16 (The System TSFL). The system TSFL is defined by replacing
the rule (Qω

A) in the system Tω
SFL by the rule

Γ,Qk
A

Γ,QA, Σ
(QA)

where k = f(|
∨

(Γ,QA)|).

The function f guaranteed to exists by Remark 2 is used to bound the number
of iterations Qk

A for which we need to check the derivability of Γ,Qk
A before

applying the rule (QA) to conclude Γ,QA. Indeed f supplies us with the only
such iteration we need to check explicitly, as the subsequent argument will show.
In order to obtain weakening the conclusion of the rule (QA) needs to weakened
by an arbitrary sequent Σ explicitly.

The structure of the rule (QA) makes it clear that completeness of TSFL is implied
by completeness of Tω

SFL. With completeness of TSFL taken care of the only task
that remains is to show soundness. Before we proceed to show the soundness of
TSFL we establish some consequences of the small model property. The first fact
we note is essentially just the contraposition of Remark 2.

Lemma 13. Let A ∈ L. If A is valid in all Kripke structures K with |K| ≤
f(|A|), then A is valid.

Proof. The proof of this claim is trivial by the fact that |¬A| = |A|. ut

The second fact we require in order to show the soundness of TSFL states that in
order to check the validity of greatest fixed point in all Kripke structures with at
most k worlds, we only need to check the validity of its k-th approximation. The
essential ingredient to proving this claim is the boundedness of closure ordinals
established in Theorem 2.

Lemma 14. If the formula
∨

(Γ,Qk
A) is valid, then the formula

∨
(Γ,QA) is

valid in all Kripke structures K with |K| ≤ k.

Proof. Let k ∈ ω be arbitrary and K be a Kripke structure with |K| ≤ k. Since
the formula

∨
(Γ,Qk

A) is valid it is also valid in K. Since |K| ≤ k, Theorem 2
guarantees that the formula Qk

A ↔ QA is valid in K. Thus
∨

(Γ,QA) is valid in
K and the claim is shown. ut

We are now ready to state and prove the soundness of the system TSFL.

Theorem 9 (Soundness of TSFL). The system TSFL is sound, that is for all
sequents Γ ⊂ L if TSFL ` Γ , then the formula

∨
Γ is valid.

Proof. We must show that all axioms of TSFL are valid and that all rules of
TSFL preserve validity. However, in view of the definition of TSFL we merely
need to check the rules (PA) and (QA). For the rule (PA) assume the formula∨

(Γ,A[PA]) representing the premise of (PA) is valid. By the semantics of L the



formula A[PA] ↔ PA is also valid and hence the formula
∨

(Γ, PA) representing
the conclusion of (PA) is valid and thus the rule is sound. For the rule (QA)
assume that the formula

∨
(Γ,Qk

A) where k = f(|
∨

(Γ,QA)|) representing the
premise of (QA) is valid. Therefore by Lemma 14 the formula

∨
(Γ,QA) is valid

in all Kripke structures K with |K| ≤ k. Therefore by Lemma 13 the formula∨
(Γ,QA) representing the conclusion of (QA) is valid and thus the rule is sound.

This concludes the soundness proof for the system TSFL. ut

8 Concluding Remarks

The approach to stratification presented in this paper can be easily general-
ized to a form of stratification which permits, at each level, the introduction
of simultaneously defined least and greatest fixed points. To give a simple ex-
ample, extend our language L0 so that it comprises countably many variables
X1,X2,X3, . . . and their negations ∼X1,∼X2,∼X3, . . .. Now assume that we are
given a system of, say, three formulas

A1[X1,X2,X3], A2[X1,X2,X3], A3[X1,X2,X3],

all positive in X1,X2,X3. Then we add three new constants PA
, PA

and PA

as well as three constants QA
, QA

and QA
to represent the least and greatest

fixed points simultaneously generated by these three formulas.

In the Hilbert system for stratified simultaneous modal fixed point logic the
corresponding closure axioms read as follows:

A1[PA
, PA

, PA
] → PA

,

A2[PA
, PA

, PA
] → PA

,

A3[PA
, PA

, PA
] → PA

.

Furthermore, for all formulas B1, B2, B3 we have as induction rules:

(A1[B1, B2, B3] → B1) ∧ (A2[B1, B2, B3] → B2) ∧ (A3[B1, B2, B3] → B3)
PAi

→ Bi

where i ∈ {1, 2, 3}. This can be done for arbitrary (finite) systems of positive
formulas and analogously carried through for all levels of stratification.

Even though the languages thus obtained and the corresponding systems are
strictly more expressive than the ones studied in this article (cf. e.g. [2, 3]), all
our methods remain applicable in this more general framework.
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