
Elementary Arithmetic

G. E. Ostrin
Inst. für Informatik und angewandte Mathematik, Universität Bern,

Neubrückstrasse 10, CH-3012 Bern, Switzerland.
geoff@iam.unibe.ch

S. S. Wainer
Dept. of Pure Mathematics, University of Leeds,

Leeds LS2 9JT, UK.
s.s.wainer@leeds.ac.uk

October 17, 2001

Abstract. There is a quite natural way in which the safe/normal vari-
able discipline of Bellantoni-Cook recursion (1992) can be imposed on arith-
metical theories like PA: quantify over safes and induct on normals. This
weakens the theory severely, so that the provably recursive functions become
more realistically computable (slow growing rather than fast growing). Ear-
lier results of Leivant (1995) are re-worked and extended in this new context,
giving proof-theoretic characterizations (according to the levels of induction
used) of complexity classes between Grzegorczyk’s E2 and E3.

This is a contribution to the search for “natural” theories, without
explicitly-imposed bounds on quantifiers as in Buss [3], whose provably re-
cursive functions form “more feasible” complexity classes (than for example
the primitive recursive functions). We develop a quite different, alterna-
tive treatment of Leivant’s results in [6], where ramified inductions over N
are cleverly used to obtain proof-theoretic characterizations of PTIME and
Grzegorczyk’s classes E2 and E3; and we further extend the characteriza-
tion up to the first level of exponential complexity in the hierarchy between
E2 and E3. Our emphasis will be on cut elimination in “traditional” the-
ories based on unary numerals, so complexity will in the end be measured
in terms of the numerical input itself rather than its binary length, thus

1

distinguishing E2 from PTIME in the case of polynomial bounds.
Whereas Leivant’s ramified theories codify the proof-principles implicit

in his equational schemes of “ramified recurrence”, the genesis of our theory
described below lies in the “normal-safe” recursion schemes of Bellantoni
and Cook [1]. They show how the polynomial-time functions can be defined
by an amazingly simple, two-sorted variant of the usual primitive recursion
schemes, in which (essentially) one is only allowed to substitute for safe
variables and do recursion over normal variables. So what if one imposes the
same kind of variable separation on Peano Arithmetic ? Then one obtains
a theory with two kinds of number variables – “safe” or “output” variables
which may be quantified over, and “normal” or “input” variables which
control the lengths of inductions and only occur free ! The analogies between
this theory and classical arithmetic are striking, the fundamental difference
being that the associated hierarchy of bounding functions is now the “slow
growing” rather than the “fast growing” one. Thus the functions provably
recursive in the Σ1 inductive fragment are bounded by the slow growing
functions below ωω, i.e. polynomials; and those provably recursive in the
full theory are bounded by slow growing functions below ε0, i.e. exponential
polynomials. The theory is therefore only strong enough to prove totality
of the elementary (E3) functions – hence our title.

A very appealing feature of Leivant’s “intrinsic” theories, which we too
adopt, is that they are based on Kleene’s equation calculus, which allows
for a natural notion of provable recursiveness, completely free of any coding
implicit in the more traditional definition involving the T-predicate. Thus
one is allowed to introduce arbitrary partial recursive functions f by means
of their equational definitions as axioms, but the logical and inductive power
of the theory severely restricts one’s ability to prove termination: f(x) ↓.
In Leivant’s theory over N (he allows for more abstract data types) this is
expressed by N(x)→ N(f(x)). In our theory, specific to N though it could
be generalised, definedness is expressed by

f(x) ↓ ≡ ∃a(f(x) ' a).

This highlights the principal logical restriction which must be applied to
the ∃-introduction and (dually) ∀-elimination rules of our theory EA(I;O)
described below.

If arbitrary terms t were allowed as witnesses for ∃-introduction, then
from the axiom t ' t we could immediately deduce ∃a(t ' a) and hence
f(x) ↓ for every f ! This is clearly not what we want. In order to avoid

2

it we make the restriction that only “basic” terms: variables or 0 or their
successors or predecessors, may be used as witnesses. This is not quite so
restrictive as it first appears, since from the equality rule

t ' a, A(t) ` A(a)

we can derive immediately

t ↓, A(t) ` ∃aA(a).

Thus a term may be used to witness an existential quantifier only when it
has been proven to be defined. In particular, if f is introduced by a defining
equation f(x) ' t then to prove f(x) ↓ we first must prove (compute) t ↓.
Here we can begin to see that, provided we formulate the theory carefully
enough, proofs in its Σ1 fragment will correspond to computations in the
equation calculus, and bounds on proof-size will yield complexity measures.

1 The theory EA(I;O)

There will be two kinds of variables: “input” (or “normal”) variables denoted
x, y, z, . . . , and “output” (or “safe”) variables denoted a, b, c, . . . , both
intended as ranging over natural numbers. Output variables may be bound
by quantifiers, but input variables will always be free. The basic terms are:
variables of either kind, the constant 0, or the result of repeated application
of the successor S or predecessor P . General terms are built up in the
usual way from 0 and variables of either kind, by application of S, P and
arbitrary function symbols f, g, h, . . . denoting partial recursive functions
given by sets E of Herbrand-Gödel-Kleene-style defining equations.

Atomic formulas will be equations t1 ' t2 between arbitrary terms, and
formulas A,B, . . . are built from these by applying propositional connectives
and quantifiers ∃a, ∀a over output variables a. The negation of a formula
¬A will be defined as A→⊥.

It will be convenient, for later proof-theoretic analysis, to work with
logic in a sequent-style formalism, and the system G3 (with structural rules
absorbed) as set out on page 65 of Troelstra and Schwichtenberg [8] suits us
perfectly, except that we write ` instead of their ⇒. However we shall work
in their system G3m of “minimal”, rather than “classical”, logic. This is
computationally more natural, and it is not a restriction for us, since (as

3

Leivant points out) a classical proof of f(x) ↓ can be transformed, by the
double-negation interpretation, into a proof in minimal logic of

(∃a((f(x) ' a→⊥)→⊥)→⊥)→⊥

and since minimal logic has no special rule for ⊥ we could replace it through-
out by the formula f(x) ↓ and hence obtain an outright proof of f(x) ↓, since
the premise of the above implication becomes provable.

It is not necessary to list the propositional rules as they are quite stan-
dard, and the cut rule (with “cut formula” C) is:

Γ ` C Γ, C ` A

Γ ` A

where, throughout, Γ is an arbitrary finite multiset of formulas. However,
as stressed above, the quantifier rules need restricting. Thus the minimal
left-∃ and right-∃ rules are:

Γ, A(b) ` B

Γ, ∃aA(a) ` B

Γ ` A(t)
Γ ` ∃aA(a)

where, in the left-∃ rule the output variable b is not free in Γ, B, and in the
right-∃ rule the witnessing term t is basic. The left-∀ and right-∀ rules are:

Γ, ∀aA(a), A(t) ` B

Γ, ∀aA(a) ` B

Γ ` A(b)
Γ ` ∀aA(a)

where, in the left-hand rule the term t is basic, and in the right-hand rule
the output variable b is not free in Γ.

The logical axioms are, with A atomic,

Γ, A ` A

and the equality axioms are Γ ` t ' t and, again with A(.) atomic,

Γ, t1 ' t2, A(t1) ` A(t2)

The logic allows these to be generalised straightforwardly to an arbitrary
formula A and the quantifier rules then enable us to derive

Γ, t ↓, A(t) ` ∃aA(a)

4

Γ, t ↓, ∀aA(a) ` A(t)

for any terms t and formulas A.

Two further principles are needed, describing the data-type N, namely
induction and cases (a number is either zero or a successor). We present
these as rules rather than their equivalent axioms, since this will afford a
closer match between proofs and computations. The induction rule (with
“induction formula” A(.)) is

Γ ` A(0) Γ, A(a) ` A(Sa)
Γ ` A(x)

where the output variable a is not free in Γ and where, in the conclusion, x
is an input variable, or a basic term on an input variable.

The cases rule is
Γ ` A(0) Γ ` A(Sa)

Γ ` A(t)

where t is any basic term. Note that with this rule it is easy to derive
∀a(a ' 0 ∨ a ' S(Pa)) from the definition: P (0) ' 0 and P (Sa) ' a.

Definition. Our notion of Σ1 formula will be restricted to those of the form
∃~aA(~a) where A is a conjunction of atomic formulas. A typical example is
f(~x) ↓. Note that a conjunction of such Σ1 formulas is provably equivalent
to a single Σ1 formula, by distributivity of ∃ over ∧.

Definition. A k-ary function f is provably recursive in EA(I;O) if it can be
defined by a system E of equations such that, with input variables x1, . . . , xk,

Ē ` f(x1, . . . , xk) ↓

where Ē denotes the set of universal closures (over output variables) of the
defining equations in E.

2 Elementary Functions are Provably Recursive

Let E be a system of defining equations containing the usual primitive re-
cursions for addition and multiplication:

a+ 0 ' a, a+ Sb ' S(a+ b)

5

a.0 ' 0, a.Sb ' (a.b) + a

and further equations of the forms

p0 ' S0, pi ' pi0 + pi1 , pi ' pi0 .b

defining a sequence {pi : i = 0, 1, 2 . . .} of polynomials in variables ~b =
b1, . . . , bn. Henceforth we allow p(~b) to stand for any one of the polynomials
so generated (clearly all polynomials can be built up in this way).

Definition. The progressiveness of a formula A(a) with distinguished free
variable a, is expressed by the formula

ProgaA ≡ A(0) ∧ ∀a(A(a)→ A(Sa))

thus the induction principle of EA(I;O) is equivalent to

ProgaA ` A(x).

The following lemmas derive extensions of this principle, first to any poly-
nomial in ~x, then to any finitely iterated exponential. In the next section
we shall see that this is the most that EA(I;O) can do.

Lemma 2.1 Let p(~b) be any polynomial defined by a system of equations
E as above. Then for every formula A(a) we have, with input variables
substituted for the variables of p,

Ē, ProgaA ` A(p(~x))

Proof. Proceed by induction over the build-up of the polynomial p accord-
ing to the given equations E. We argue in an informal natural deduction
style, deriving the succedent of a sequent from its antecedent.

If p is the constant 1 (that is S0) then A(S0) follows immediately from
A(0) and A(0)→ A(S0), the latter arising from substitution of the defined,
basic term 0 for the universally quantified variable a in ∀a(A(a)→ A(Sa)).

Suppose p is p0 + p1 where, by the induction hypothesis, the result is
assumed for each of p0 and p1 separately. First choose A(a) to be the formula
a ↓ and note that in this case ProgaA is provable. Then the induction
hypothesis applied to p0 gives p0(~x) ↓. Now again with an arbitrary formula
A, we can easily derive

Ē, ProgaA, A(a) ` Progb(a+ b ↓ ∧ A(a+ b))

6

because if a + b is assumed to be defined, it can be substituted for the
universally quantified a in ∀a(A(a)→ A(Sa)) to yield A(a+b)→ A(a+Sb)).
Therefore by the induction hypothesis applied to p1 we obtain

Ē, ProgaA, A(a) ` a+ p1(~x) ↓ ∧ A(a+ p1(~x))

and hence
Ē, ProgaA ` ∀a(A(a)→ A(a+ p1(~x))).

Finally, substituting the defined term p0(~x) for a, and using the induction
hypothesis on p0 to give A(p0(~x)) we get the desired result

Ē, ProgaA ` A(p0(~x) + p1(~x)).

Suppose p is p1.b where b is a fresh variable not occurring in p1. By the
induction hypothesis applied to p1 we have as above, p1(~x) ↓ and

Ē, ProgaA ` ∀a(A(a)→ A(a+ p1(~x)))

for any formula A. Also, from the defining equations E and since p1(~x) ↓,
we have p1(~x).0 ' 0 and p1(~x).Sb ' (p1(~x).b) + p1(~x). Therefore we can
prove

Ē, ProgaA ` Progb(p1(~x).b ↓ ∧ A(p1(~x).b))

and an application of the EA(I;O)-induction principle on variable b gives,
for any input variable x,

Ē, ProgaA ` p1(~x).x ↓ ∧ A(p1(~x).x)

and hence Ē, ProgaA ` A(p(~x)) as required.

Definition. Extend the system of equations E above by adding the new
recursive definitions:

f1(a, 0) ' Sa, f1(a, Sb) ' f1(f1(a, b), b)

and for each k = 2, 3, . . . ,

fk(a, b1, . . . , bk) ' f1(a, fk−1(b1, . . . , bk))

so that f1(a, b) = a+ 2b and fk(a,~b) = a+ 2fk−1(~b). Finally define

2k(p(~x)) ' fk(0, . . . , 0, p(~x))

for each polynomial p given by E.

7

Lemma 2.2 In EA(I;O) we can prove, for each k and any formula A(a),

Ē, ProgaA ` A(2k(p(~x))).

Proof. First note that by a similar argument to one used in the previous
lemma (and going back all the way to Gentzen) we can prove, for any formula
A(a),

Ē, ProgaA ` Progb∀a(A(a)→ f1(a, b) ↓ ∧ A(f1(a, b)))

since the b := 0 case follows straight from ProgaA, and the induction step
from b to Sb follows by appealing to the hypothesis twice: from A(a) we
first obtain A(f1(a, b)) with f1(a, b) ↓, and then (by substituting the defined
f1(a, b) for the universally quantified variable a) from A(f1(a, b)) follows
A(f1(a, Sb)) with f1(a, Sb) ↓, using the defining equations for f1.

The result is now obtained straightforwardly by induction on k. Assum-
ing Ē and ProgaA we derive

Progb∀a(A(a)→ f1(a, b) ↓ ∧ A(f1(a, b)))

and then by the previous lemma,

∀a(A(a)→ f1(a, p(~x)) ↓ ∧ A(f1(a, p(~x))))

and then by putting a := 0 and usingA(0) we have 21(p(~x)) ↓ andA(21(p(~x))),
which is the case k = 1. For the step from k to k+1 do the same, but instead
of the previous lemma use the induction to replace p(~x) by 2k(p(~x)).

Theorem 2.3 Every elementary (E3) function is provably recursive in the
theory EA(I;O), and every sub-elementary (E2) function is provably recur-
sive in the fragment which allows induction only on Σ1 formulas.

Proof. Any elementary function g(~x) is computable by a register machine
M (working in unary notation with basic instructions “successor”, “predeces-
sor”, “transfer” and “jump”) within a number of steps bounded by 2k(p(~x))
for some fixed k and polynomial p. Let r1(c), r2(c), . . . , rn(c) be the values
held in its registers at step c of the computation, and let i(c) be the number
of the machine instruction to be performed next. Each of these functions
depends also on the input parameters ~x, but we suppress mention of these
for brevity. The state of the computation 〈i, r1, r2, . . . , rn〉 at step c + 1 is
obtained from the state at step c by performing the atomic act dictated by

8

the instruction i(c). Thus the values of i, r1, . . . , rn at step c + 1 can be
defined from their values at step c by a simultaneous recursive definition
involving only the successor S, predecessor P and definitions by cases C. So
now, add these defining equations for i, r1, . . . , rn to the system E above,
together with the equations for predecessor and cases:

P (0) ' 0, P (Sa) ' a

C(0, a, b) ' a, C(Sd, a, b) ' b

and notice that the cases rule built into EA(I;O) ensures that we can prove
∀d∀a∀b C(d, a, b) ↓. Since the passage from one step to the next involves
only applications of C or basic terms, all of which are provably defined, it
is easy to convince oneself that the Σ1 formula

∃~a (i(c) ' a0 ∧ r1(c) ' a1 ∧ . . . ∧ rn(c) ' an)

is provably progressive in variable c. Call this formula A(~x, c). Then by the
second lemma above we can prove

Ē ` A(~x, 2k(p(~x)))

and hence, with the convention that the final output is the value of r1 when
the computation terminates,

Ē ` r1(2k(p(~x))) ↓ .

Hence the function g given by g(~x) ' r1(2k(p(~x))) is provably recursive.
In just the same way, but using only the first lemma above, we see

that any sub-elementary function (which, e.g. by Rödding [7], is register
machine computable in a number of steps bounded by just a polynomial
of its inputs) is provably recursive in the Σ1-inductive fragment. This is
because the proof of A(~x, p(~x)) by the first lemma only uses inductions on
substitution instances of A, and here, A is Σ1.

3 Provably Recursive Functions are Elementary

Suppose we have a derivation of Ē ` f(~x) ↓ in EA(I;O), and suppose (arbi-
trary, but fixed) numerals n̄1, n̄2, . . . are substituted for the input variables

9

~x = x1, x2, . . . throughout. In the resulting derivation, each application of
induction takes the form:

Γ ` A(0) Γ, A(a) ` A(Sa)
Γ ` A(t(n̄i))

where t(xi) is the basic term appearing in the conclusion of the original
(unsubstituted) EA(I;O)-induction. Let m denote the value of t(n̄i), so m
is not greater than ni plus the length of term t. Furthermore, let ` denote
the length of the binary representation of m. Then, given the premises, we
can unravel the induction so as to obtain a derivation of

Γ ` A(m̄)

by a sequence of cuts on the formula A, with proof-height `+ 1. To see this
we first induct on ` to derive

Γ, A(a) ` A(Sma) and Γ, A(a) ` A(Sm+1a)

by sequences of A-cuts with proof-height `. This is immediate when ` = 1,
and if ` > 1 then either m = 2m0 or m = 2m0 + 1 where m0 has binary
length less than `. So from the result for m0 we get

Γ, A(a) ` A(Sm0a) and Γ, A(Sm0a) ` A(Sma)

by substitution of Sm0a for the free variable a, and both of these derivations
have proof-height `− 1. Therefore one more cut yields

Γ, A(a) ` A(Sma)

as required. The case A(Sm+1a) is done in just the same way.
Therefore if we now substitute 0 for variable a, and appeal to the base

case of the induction, a final cut on A(0) yields Γ ` A(m̄) with height `+ 1
as required.

Definition. For each number n let EA(n;O) be the theory obtained from
EA(I;O) by discarding the induction rule and replacing all input variables
by numerals for numbers no greater than n.

Lemma 3.1 If Ē ` f(~x) ↓ in EA(I;O) then there is a fixed number k deter-
mined by this derivation, such that: for all n1, n2, . . . ≤ n of binary length
≤ `, there is a derivation of Ē ` f(n̄1, n̄2, . . .) ↓ in EA(n;O), with proof-
height ≤ `.k. Furthermore the non-atomic cut-formulas in this EA(n;O)
derivation are the induction-formulas occurring in the original EA(I;O)
derivation.

10

Proof. First, by standard “free cut”-elimination arguments (as below) elim-
inate from the given EA(I;O) derivation all non-atomic cut-formulas which
are not induction formulas. Then pass through the resulting free-cut-free
proof, substituting the numerals for the input variables and unravelling the
inductions in the manner described above. Note that if the conclusion of an
induction rule is A(t(xi)) with t a basic term then, upon substitution of n̄i
for xi, we obtain t(n̄i) ' m̄ and A(m̄), and hence A(t(n̄i)) with proof-height
bounded by a fixed linear function of ` determined by the term t and formula
A, both of which appear in the original EA(I;O) derivation.

Lemma 3.2 (Cut elimination) Define the “cut rank” of a derivation to
be the maximum size of cut formulas appearing in it, where the “size” of
a formula is zero if it’s atomic and at least one greater than that of its
subformulas otherwise.

(i) Let C be a fixed formula of size r+1 and suppose we have derivations
in EA(n;O) of Γ ` C and Γ′, C ` A of proof-heights h1, h2 respectively,
both with cut rank ≤ r. Then a derivation of Γ′, Γ ` A can be obtained,
with proof-height ≤ h1 + h2 and again with cut rank ≤ r.

(ii) Hence any derivation in EA(n;O) with height h and cut rank r + 1
can be transformed into a derivation of the same end sequent, with height
≤ 2h and cut rank ≤ r.

Proof. (i) Suppose for example, that C is a formula of the form ∀aD(a)
with D of size r. In this case proceed by induction on the proof-height h2 of
Γ′, ∀aD(a) ` A, showing, with each rule applied, that we can drop ∀aD(a)
in favour of Γ. Note first that if Γ′, ∀aD(a) ` A is an axiom then so is the
result of replacing ∀aD(a) by Γ.

Secondly, suppose Γ′, ∀aD(a) ` A comes about by a final application
of any rule in which ∀aD(a) is an inactive “side-formula”. Then (possibly
renaming a free output variable in a premise if it happens to clash with one
in Γ) we can apply the induction hypothesis to the premise(s), replacing
∀aD(a) by Γ and resulting in a derivation (or two) of proof-height less than
h1 + h2. Then by re-applying this final rule one gets the desired result.

The only case remaining is where Γ′, ∀aD(a) ` A comes from the
premise Γ′, ∀aD(a), D(t) ` A by application of the lefthand ∀-rule, with
t some basic term. Then, applying the induction hypothesis to this premise
yields a derivation of Γ′, Γ, D(t) ` A with height less than h1 + h2 and
cut rank ≤ r. Furthermore the given derivation of Γ ` ∀aD(a) can be
inverted and weakened to a derivation of Γ′, Γ ` D(t) without increasing

11

the height or cut rank. Therefore by a final cut on the formula D(t) we
retrieve Γ′, Γ ` A with height no greater than h1 + h2 and cut rank r as
required.

For other kinds of formulas C the proof is similar, but one may need to
induct on h1 instead of h2, for example when C is ∃aD(a).

(ii) The proof of this is now easy, given part (i). By induction on the
height h of a EA(n;O) derivation with cut rank r + 1, we only need show
how cuts:

Γ ` C Γ, C ` A

Γ ` A

with cut formula C of size r+1, can be replaced by cuts of rank r at the ex-
pense of an exponential increase in proof-height. So suppose we encounter
such a cut. First apply the induction hypothesis to each premise, reduc-
ing their cut ranks to r. Then the resulting derivations will have height
no greater than 2h−1. We can then apply part (i) above to these, in or-
der to obtain a derivation of Γ, Γ ` A with cut rank r and proof-height
≤ 2h−1 + 2h−1 = 2h. The system allows contraction of the two occurrences
of Γ into one, without increasing the rank or height, and so this completes
the proof.

These two lemmas now provide the following crucial result:

Theorem 3.3 If Ē ` f(~x) ↓ in EA(I;O) then there are fixed numbers
k and r determined by its derivation, such that: for all numerical inputs
~n = n1, n2, . . . ≤ n of binary length ≤ `, there is a derivation of Ē ` f(~n) ↓
in EA(n;O) with proof-height at most 2r(`.k), and in which all the cut for-
mulas are Σ1. If the original EA(I;O) derivation contains only Σ1 induction
formulas then we can take r = 0.

Proof. The first lemma provides a EA(n:O) derivation of Ē ` f(~n) ↓ with
height `.k in which the cut formulas are the induction formulas appearing in
the EA(I:O) proof. If they are all Σ1 nothing more needs to be done. Oth-
erwise they have fixed bounded size r modulo Σ1 formulas (counted here as
having size 0). Then cut elimination uniformly reduces them to Σ1 cuts at
the expense of r successive exponential increases in the height.

12

Why is this important ? Because a EA(n:O) derivation of f(~n) with
only Σ1 cut formulas is a computation of f(~n) !

Definition. Given a system of defining equations E, call an equation t1 ' t2
“E-true” if Ē ` t1 ' t2. By the equality axioms, the relation “t1 ' t2 is
E-true” is an equivalence between terms, and a congruence with respect to
the function symbols. A set or conjunction of equations is E-true if each one
is.

Lemma 3.4 Suppose that in EA(n;O) we have a derivation, with proof-
height h and involving only Σ1 cut formulas, of

Ē, Γ(~a) ` ∃~bA(~a,~b)

where Γ (respectively A) is a multiset (respectively conjunction) of equations
t1 ' t2 with output variables among those displayed, and all function symbols
come from the given system of defining equations E. We assume that any
input variables have already been substituted by numerals n̄1, n̄2, . . . with ni ≤
n. Let m > 1 be a fixed number, greater than the length of any basic term
occurring as an existential witness or in the conclusion of a cases rule.

Then from any numerical assignment to the variables ~a, and from the
given inputs n1, n2, . . . , we can compute (via E) numerical witnesses ~b such
that if Γ(~a) is E-true, so is A(~a,~b). Furthermore the computation of each
witness bi takes no more than mh register machine steps.

Proof. By induction on h with a case-analysis according to the last rule
applied in deriving the given sequent

Ē, Γ(~a) ` ∃~bA(~a,~b)

which we shall refer to as S. We assume that, in addition to the inputs
n1, n2, . . ., an arbitrary assignment of numerals to the variables ~a has been
made. Then we must show how to compute values for ~b so that A(~a,~b) is
E-true if Γ(~a) is. For brevity we simply say in this case that the sequent
S is E-true. The variables ~a,~b play the role of working-registers in the
computation.

If S is an axiom, or if there are no existential quantifiers ∃~b, then there is
nothing to compute, and the sequent is automatically E-true. In particular,
for the equality axioms we appeal to the fact that “t1 ' t2 is E-true” is a
congruence relation.

13

If S arises by a left-∀ rule from

Ē, e(t), Γ(~a) ` ∃~bA(~a,~b)

where e(t) is one of the defining equations with basic term t substituted, this
merely expresses the fact that e(t) is used in the computation of ~b. Since
e(t) is E-true, so must be S.

If S arises by the cases rule then the values of ~b are computed by a jump
instruction: test the appropriate ai to see if its value is zero or not, and
then (by the induction hypothesis) proceed with the computation (in no
more than mh−1 steps) of the appropriate ~b according to the left or right
premise of the rule. S will then be E-true since the premises are, and the
computation of ~b takes no more than m+mh−1 ≤ mh steps in all.

If S arises by an ∃ rule from the premise (with proof-height h− 1)

Ē, Γ(~a) ` ∃~bA(~a, t0,~b)

where t0 witnesses the outermost quantifier ∃b0 in S, then we can already
compute the values of ~b in mh−1 steps so as to make the premise E-true.
The conclusion S will be made E-true by computing b0 := t0 and since t0
is a basic term (constructed out of successor and predecessor symbols only)
of length less than m, this requires a further m register-machine steps at
most. So the whole computation of b0,~b in this case takes no more than
m+mh−1 ≤ mh steps.

Finally suppose S arises by a Σ1 cut, from premises

Ē, Γ(~a) ` ∃~c C(~a,~c)

and
Ē, Γ(~a), ∃~c C(~a,~c) ` ∃~bA(~a,~b)

of maximum proof-height h − 1. Without increasing proof-height, we can
invert the ∃~c in the antecedent of the second premise, leaving the ~c as fresh
free variables, and invert the conjunction C so that it becomes an added set
of equations. Then, by the induction hypothesis, the first premise allows us
to compute values of ~c (in mh−1 steps) making it E-true, and the second
premise allows computation of ~b from the values of ~a and ~c, making it E-true
also. Sequencing these two computations gives a computation of ~b from ~a
alone, in mh−1 + mh−1 ≤ mh steps, and making S E-true. This final case
completes the proof.

14

Theorem 3.5 If f(~x) is provably recursive in EA(I;O) then it is elementary
(E3). If it is provably recursive in the Σ1-inductive fragment then it is sub-
elementary (E2).

Proof. By the preceding theorem, if in EA(I;O) we have Ē ` f(~x) ↓, then
there are fixed numbers k and r such that for all inputs ~n with maximum
binary length `: Ē ` ∃b (f(~n) ' b) is derivable in EA(max~n;O) with proof-
height ≤ 2r(`.k), and with only Σ1 cut formulas. By the lemma, the correct
value b of f(~n) is then register-machine computable (via E) in a number
of steps bounded by m to the power 2r(`.k), where m is a fixed number
(independent of ~n) greater than the length of any basic term occurring in
the original EA(I;O) derivation. Therefore f is elementary.

If the given termination proof of f takes place in the Σ1-inductive frag-
ment of EA(I;O), then we can take r to be zero. Thus f is computable in a
number of steps bounded by m`.k, which is less than some fixed polynomial
of ~n. This means f is sub-elementary.

3.1 PolyTime Functions

If, instead, the theory EA(I;O) were formulated on the basis of binary
(rather than unary) number-representation, with two successors S0(a) = 2a,
S1(a) = 2a + 1, one predecessor P (0) = 0, P (S0(a)) = a, P (S1(a)) = a,
and an induction rule of the form

Γ ` A(0) Γ, A(a) ` A(S0a) Γ, A(a) ` A(S1a)
Γ ` A(x)

then the number of induction steps needed to “climb up” to A(x) would
be n where n is now the binary length of x. Thus a similar analysis to
that given here, but with n corresponding to the binary length of the input,
rather than the actual input itself, would show that the functions provably
recursive in the Σ1 inductive fragment of this binary theory are now those
with complexity bounds polynomial in the binary length of their inputs, i.e.
PTIME. cf. Leivant [6].

4 Exponential Complexity

In this section we begin to study the complexity hierarchy, between E2 and
E3, that is induced by increasing levels of induction complexity. Here, we
shall only attend to the “next” level after Σ1 induction, by showing that

15

the functions computable in exponential time 2p(x) are exactly those prov-
ably recursive in the fragment of EA(I;O) corresponding to Π2 induction.
(The first author plans a more complete investigation of successive levels
in a later paper). We must be careful however, about just what is meant
by a Π2 formula, since our theory is based on minimal (not classical) logic,
and constructive logics are of course more sensitive to the precise logical
structure of formulas (see e.g. Wehmeier [9]). We slightly modify Troelstra
and Schwichtenberg (page 265) in making the following definition.

Definition. A Σ1 formula is said to be of level-1 and a level-2 formula is
one of the form

∀a(C(a)→ D(a))

where C and D are Σ1. We could allow a string of universal quantifiers ∀~a
in the prefix, but don’t need to for what follows.

Note that level-2 formulas are classically equivalent to Π2 formulas. The
work of Burr [2] suggests that, if we were to work with classical logic and
Π2 induction, then the provably recursive functions might be the same as
those provable in EA(I;O) with level ≤ 2 induction. However it remains
to be seen whether his results do in fact carry over to the present, more
restrictive, setting.

Lemma 4.1 Every function computable in a number of steps bounded by
2p(~x) with p a polynomial, is provably recursive in the fragment of EA(I;O)
allowing induction only on level-1 or level-2 formulas.

Proof. This is just the particular case of Lemma 2.2 and Theorem 2.3
where k = 1. As in the proof of 2.3, suppose g(~x) is computable by a
register machine working in unary notation on registers r1, r2, . . . , rn within
a number of steps bounded by 21(p(~x)). Let E be the system of equations
defining the state of the computation at step c:

〈 i(c), r1(c), r2(c), . . . , rn(c) 〉

and let A(~x, c) be the Σ1 formula

∃~a (i(c) ' a0 ∧ r1(c) ' a1 ∧ . . . ∧ rn(c) ' an)

which is provably progressive in variable c. Then we must prove, by level
≤ 2 induction,

(?) Ē ` A(~x, 21(p(~x)))

16

from which Ē ` g(~x) ↓ follows by the definition g(~x) ' r1(21(p(~x))).

To prove (?) by level ≤ 2 induction, we simply have to analyse the proofs
of lemmas 2.1 and 2.2 a little more carefully. For any polynomial term p let
B(p) be the formula

∀c (A(~x, c)→ p ↓ ∧f1(c, p) ↓ ∧A(~x, f1(c, p)))

and notice that although it isn’t quite a level-2 formula, it is trivially and
provably equivalent to one. (Recall that our notion of Σ1 formula is re-
stricted to an existentially quantified conjunction of equations, and the con-
junction occurring after the implication inside B is equivalent to a single
Σ1 formula by distribution of ∃ over ∧). Notice also that B(b) is provably
progressive since A(~x, c) is. Hence by lemma 2.1 we can prove Ē ` B(p(~x))
for any polynomial p, and by setting c := 0 we obtain (?) as required. It
only remains to check that this application of lemma 2.1 requires nothing
more than level-2 induction. In fact the inductions required are on formu-
las of shape q ↓ ∧B(p) with q other polynomial terms, but since we can
prove A(~x, 0) the subformulas q ↓ can also be shifted after the implication
inside B, yielding provably equivalent level-2 forms. Thus level-2 induction
suffices, and this completes the proof.

Lemma 4.2 (Cut Reduction) A derivation in EA(n;O) in which all cut
formulas are of level ≤ 2 can be transformed into one with only Σ1 cuts.
Furthermore, if the original derivation has proof-height h then the new one
has height ≤ 3h.

Proof. First, suppose B is any fixed level-2 formula, say ∀a(C(a) →
D(a)), and suppose we are given derivations in EA(n;O) of Γ ` B and
Γ, B, {C(ti) → D(ti)}i<k ` A, of heights h1 and h2 respectively, both
containing only Σ1 cut formulas, and where the terms ti are basic. (k may
be zero, in which case the C(ti)→ D(ti) don’t appear). Then we can derive
Γ ` A with proof-height ≤ h1 + 2.h2 and the derivation involves only Σ1

cuts.
The proof is by induction over the second given derivation of height h2.

The only crucial case is where one of the implications C(tj) → D(tj) is
introduced on the left of `. Then the immediate premises are

Γ, B, {C(ti)→ D(ti)}i<k ` C(tj)

17

and
Γ, B, {C(ti)→ D(ti)}i<k, D(tj) ` A

so by the induction hypothesis we have derivations of Γ ` C(tj) and
Γ, D(tj) ` A of heights ≤ h1 + 2.h2 − 2. But by inverting the other given
derivation we have also Γ, C(tj) ` D(tj) with proof-height h1. Therefore
by two successive cuts on C(tj) and then D(tj), both of which are Σ1, we
obtain the required derivation of Γ ` A with height ≤ h1 + 2.h2. All
other cases follow immediately by applying the induction hypothesis to the
premises and then (if necessary) re-applying the final rule. In the case of
axioms the formulas B, {C(ti) → D(ti)} can be deleted since they are not
atomic.

Now let Γ ` A be derived with height h, and suppose all the cuts are on
level ≤ 2 formulas. Then by induction on h we obtain another derivation of
height ≤ 3h in which all cut formulas are Σ1. For if the last rule applied is a
cut with level-2 cut formula B then the premises are Γ ` B and Γ, B ` A.
By the induction hypothesis these are both derivable with only Σ1 cuts and
with proof-height ≤ 3h−1. But then the result above gives a derivation of
Γ ` A with only Σ1 cuts and height ≤ 3h. For all other rule applications,
simply apply the induction hypothesis to the premises and then re-apply
that rule. This completes the proof.

Theorem 4.3 A function is computable within a number of steps bounded
by 2p(~x) for some polynomial p if and only if it is provably recursive in
EA(I;O) by a derivation involving induction only on formulas of level ≤ 2.

Proof. One half is already done in lemma 4.1. For the converse suppose
Ē ` f(~x) ↓ by a derivation involving only level ≤ 2 inductions. Then for
inputs ~n of binary length at most `, Ē ` f(~n) ↓ is derivable in EA(max~n;O)
with height at most `.k for some fixed k, and with only level≤ 2 cut formulas.
By the lemma just above, this derivation can be transformed into one with
only Σ1 cuts, but its height will then be at most 3`.k, which is less than
p(~n) for some polynomial p. Now apply lemma 3.4 to obtain an exponential
bound on the register-machine computation of f(~n).

5 Slow Growing Bounding Functions

Though technically unnecessary, it is nevertheless interesting to bring out
the connection here, with the slow growing hierarchy. Its use comes about

18

by analogy with a standard procedure for reading off “fast growing” bounds
in the case of classical Peano Arithmetic (see e.g. Fairtlough and Wainer
[5]). However in the present situation, where the induction variables are
kept separate from the quantified ones, things are much simpler.

Let us consider the collection of “ordinal structures” (below ε0) built up
from 0, 1 and ω by repeated application of addition:

α+ 0 = α, α+ (β + 1) = (α+ β) + 1, α+ λ = sup
i

(α+ λi)

and exponentiation to any fixed finite base, for example

20 = 1, 2β+1 = 2β + 2β, 2λ = sup
i

2λi

where λ = supi λi signifies the assignment of the fixed fundamental sequence
λ0, λ1, λ2, . . . to the limit λ. Note however, that we do not choose the
obvious fundamental sequence for ω, but rather the weakly increasing one
given by ωi = log i, the length of the binary representation of i.

Furthermore, for each fixed i let ≺i be the transitive closure of

0 �i α, α ≺i α+ 1, λi ≺i λ

where λ = supi λi denotes any limit so generated.

Now “dress up” the theory EA(n;O) defined above, by allowing ordinal
superscripts as bounds on the proof-height thus `α, and adding a new rule
of “accumulation”:

Γ `α A

Γ `β A

under the condition α ≺n β. Then lemma 3.1 becomes

Lemma 5.1 If Ē ` f(~x) ↓ in EA(I;O) then there is a fixed k such that for
all inputs n1, n2, . . . ≤ n, Ē `ω.k f(n̄1, n̄2, . . .) ↓ in EA(n;O).

The cut elimination lemma 3.2 works in just the same way with ordinal
bounds, and then theorem 3.3 becomes

Theorem 5.2 If Ē ` f(~x) ↓ in EA(I;O) then there are fixed numbers k
and r such that: for all numerical inputs n1, n2, . . . ≤ n there is a derivation
in EA(n;O) of Ē `α f(n̄1, n̄2, . . .) ↓ in which all cut formulas are Σ1, and
where α = 2r(ω.k).

19

This supplies a uniform ordinal bound on the derivations, for all inputs
~n, and it then only remains to retrieve the finite bounds so as to apply
lemma 3.4 and then obtain theorem 3.5.

The point is that these finite bounds arise immediately by collapsing the
ordinal bound under the Slow Growing Function Gn given by

Gn(0) = 0, Gn(α+ 1) = Gn(α) + 1, Gn(λ) = Gn(λn)

and sinceGn homomorphically maps ordinal arithmetic down onto its number-
theoretic part, we have Gn(ω) = log n and hence

Gn(2r(ω.k)) = 2r(`.k)

where, as before, ` is the maximum binary length of the inputs.

The use of G is brought out in more detail in [4], where a preliminary
treatment of the results of section 3 is given, but in terms of a functional
interpretation rather than the more direct cut-elimination arguments used
here.

References

[1] S. Bellantoni and S. Cook, A new recursion theoretic characterization of
the polytime functions, Computational Complexity Vol. 2 (1992) pp. 97 -
110.

[2] W. Burr, Fragments of Heyting arithmetic, Journal of Symbolic Logic
Vol. 65 (2000) pp. 1223 - 1240.

[3] S.R. Buss, Bounded arithmetic, Bibliopolis (1986).

[4] N. Cagman, G. E. Ostrin and S.S. Wainer, Proof theoretic complexity of
low subrecursive classes, in F. L. Bauer and R. Steinbrueggen (Eds) Foun-
dations of Secure Computation, NATO ASI Series F Vol. 175, IOS Press
(2000) pp. 249 - 285.

[5] M. Fairtlough and S.S. Wainer, Hierarchies of provably recursive func-
tions, in S. Buss (Ed) Handbook of Proof Theory, Elsevier Science BV (1998)

20

pp. 149 - 207.

[6] D. Leivant, Intrinsic theories and computational complexity , in D. Leivant
(Ed) Logic and Computational Complexity, Lecture Notes in Computer Sci-
ence Vol. 960, Springer-Verlag (1995) pp. 177 - 194.

[7] D. Rödding, Klassen rekursiver funktionen, in M. H. Löb (Ed) Proc. of
Summer School in Logic, Leeds 1967, Lecture Notes in Mathematics Vol.
70, Springer-Verlag (1968) pp. 159 - 222.

[8] A. S. Troelstra and H. Schwichtenberg, Basic proof theory , Cambridge
Tracts in Theoretical Computer Science Vol. 43, CUP (1996).

[9] K.F. Wehmeier, Fragments of HA based on Σ1- induction, Archive for
Mathematical Logic Vol. 37 (1997) pp. 37 - 49.

21

