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Abstract

In this article we show how to use the result in Jäger and Probst [7] to adapt
the technique of pseudo-hierarchies and its use in Avigad [1] to subsystems of
set theory without foundation. We prove that the theory KPi0 of admissible
sets without foundation, extended by the principle (Σ-FP), asserting the ex-
istence of fixed points of monotone Σ operators, has the same proof-theoretic
ordinal as KPi0 extended by the principle (Σ-TR), that allows to iterate Σ op-
erations along ordinals. By Jäger and Probst [6] we conclude that the meta-
predicative Mahlo ordinal ϕω00 is also the ordinal of KPi0 + (Σ-FP). Hence
the relationship between fixed points and iteration persists in the framework
of set theory without foundation.
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1 Introduction

In classical set theory, the relationship between fixed points and iteration is evident.
Given a monotone operator Γ on the power set P(a) of some set a, a fixed point
is obtained by iterating the operator along the ordinals: Start with an arbitrary
set I0

Γ := x ⊆ a, apply the operator in the successor case, i.e. Iα+1
Γ := Γ(Iα

Γ ) and
take the union at limit stages, i.e. Iλ

Γ :=
⋃
{α<λ} Iα

Γ . The monotonicity of Γ and a
cardinality argument assure that there is an ordinal σ such that Iσ

Γ is a fixed point
of the operator Γ. On the other hand, iterating an operator along a well-ordering
can be seen as the iterative construction of a fixed point of a suitable monotone
operator.

∗The author is supported by the Swiss National Science Foundation.
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In (meta)-predicative subsystems of second order arithmetic things are more com-
plex. One cannot prove the existence of well-orderings long enough for the iteration
process to become stationary. Nevertheless, the existence of fixed points follows if
we assume that the well-orderedness of ≺ implies the existence of a hierarchy H with
(H)α = Iα

Γ for all α in the field of ≺. This principle is called arithmetical transfinite
recursion, or (ATR) for short, and was shown by Avigad [1] to be equivalent over
the theory ACA0 to the principle (FP) that claims the existence of fixed points of
monotone operators defined by an arithmetical formula. To prove the existence of
fixed points given (ATR), Avigad makes use of so called pseudo-hierarchies, i.e. hier-
archies where the underlying ordering is only a linear ordering, not a well-ordering.
Their existence follows from the fact that over ACA0 the Π1

1 formula WO(≺), as-
serting that ≺ is a well-ordering, is not equivalent to any Σ1

1 formula. For the other
direction, Avigad showed that a hierarchy can be obtained as a fixed point of a
suitable monotone operator describing the inductive build-up of the hierarchy.

Our aim is to use pseudo-hierarchies also in the framework of Kripke-Platek set
theory without foundation. The problem is, that it is now consistent to assume that
there is a Σ formula A(≺) equivalent to the statement “≺ is a well-ordering”. Un-
der this assumption, the existence of pseudo-hierarchies is in general not provable.
Moreover, “being a well-ordering” is then a ∆ predicate. Hence Π1

1 comprehesion
is available, and in particular, the ordinal of the theory KPi0 + (Σ-TR), the meta-
predicative Mahlo ordinal ϕω00, becomes provable. To save the pseudo-hierarchy
argument, we observe that the theory KPi0+(Σ-TR) can be consistently extended by
an axiom claiming the existence of a set for which transfinite induction up to ϕω00
fails. As follows from Jäger and Probst [7], the resulting theory [KPi0 + (Σ-TR)]†

still has the same proof-theoretic ordinal as KPi0+(Σ-TR), but being a well-ordering
is no longer a ∆ predicate. Consequently, the technique of pseudo-hierarchies can
be applied to prove the existence of fixed points of monotone Σ operators, given
the iteration principle (Σ-TR). Hence ϕω00 is an upper bound for KPi0 + (Σ-FP).
To show that ϕω00 is also a lower bound, we argue how the well-ordering proof
for the theory KPi0 + (Σ-TR) given in Jäger and Probst [6] can be adjusted to the
theory KPi0 + (Σ-FP). This concludes the argument that extending KPi0 either by
an axiom that allows us to iterate Σ operations along arbitrary well-orderings or an
axiom that asserts the existence of fixed points of monotone Σ operators leads to
theories of the same proof-theoretic strength. It that sense the relationship between
fixed points and iteration persists in the framework of admissible set theory without
foundation.

The plan of this paper is as follows: In the next section we introduce the theories
KPi0 +(Σ-FP) and KPi0 +(Σ-TR). Section 3 recalls some ordinal theoretic facts that
are relevant in the sequel. In section 4 we show how [KPi0 + (Σ-TR)]† proves the
existence of fixed points of monotone Σ operators on the power set of the natural
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numbers. This gives us ϕω00 as an upper bound. That ϕω00 is also a lower bound
is shown in section 5, and section 6 contains some concluding remarks.

2 The theories KPi0 + (Σ-FP) and KPi0 + (Σ-TR)

We start by giving a short review of the theory KPi0. Our version of KPi0 is formu-
lated with the natural numbers as urelements. Accordingly, we let L1 denote a stan-
dard languages of first order arithmetic with variables a, b, c, . . . , u, v, w, x, y, z, . . .
(possibly with subscripts), a constant 0 as well as function and relation symbols for
all primitive recursive functions and relations. The theory KPi0 is formulated in the
extension L∗ = L1(∈, N, S, Ad) of L1 by the membership relation symbol ∈, the set
constant N for the set of natural numbers and the unary relation symbols S and Ad
for sets and admissible sets, respectively.

The number terms of L∗ are inductively generated from the variables, the constant
0 and the symbols for the primitive recursive functions; the terms r, s, t, . . . of L∗

are the number terms of L1 plus the set constant N. The formulas A, B, C, . . . of L∗

as well as the ∆0, Σ, Π, Σn and Πn formulas of L1 are defined as usual. Further,
equality between objects is not represented by a primitive symbol, but defined by

(s = t) :=

{
(s ∈ N ∧ t ∈ N ∧ (s =N t)) ∨
(S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s))

where =N is the symbol for the primitive recursive equality on the natural numbers.
The formula As is the result of replacing each unrestricted quantifier ∃x(. . .) and
∀x(. . .) in A by (∃x ∈ s)(. . .) and (∀x ∈ s)(. . .), respectively. In addition, we freely
make use of all standard set-theoretic notations. So we write Fun(f) and Tran(x)
for the ∆0 formulas expressing that f is a function and that x is a transitive set.
Field(x) is used to denote the field of an ordering x and Dom(f) denote the set
{u : ∃v (u, v) ∈ f}, and Rng(f) denotes the set {v : ∃u (u, v) ∈ f}, where(x, y)
stands for the standard ordered pair, {{x}, {x, y}}. As usual, x ⊆ y states that x is
a subset of the set y, i.e. x ⊆ y := S(x) ∧ S(y) ∧ (∀u ∈ x)(u ∈ y).

The L∗ theory KPi0 is based on classical first order logic with equality. Its non-logical
axioms can be divided into the following five groups.

I. Ontological axioms. We have for all terms r, ~s and t of L1, all function symbols H
and relation symbols R of L1 and all axioms A(~a) of group III whose free variables
belong to the list ~a:

(1) a ∈ N ↔ ¬S(a),

(2) ~a ∈ N → H(~a) ∈ N,
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(3) R(~a) → ~a ∈ N,

(4) a ∈ b → S(b),

(5) Ad(a) → (N ∈ a ∧ Tran(a)),

(6) Ad(a) → (∀~x ∈ a)Aa(~x),

(7) Ad(a) ∧ Ad(b) → a ∈ b ∨ a = b ∨ b ∈ a.

II. Number-theoretic axioms. We have for all axioms A(~a) of Peano arithmetic PA
which are not instances of the schema of complete induction and whose free variables
belong to the list ~a:

(Number theory) ~a ∈ N → AN(~a).

III. Kripke Platek axioms. For all ∆0 formulas A(u) and B(u, v) of L∗:

(Pair) ∃x(a ∈ x ∧ b ∈ x),

(Tran) ∃x(a ⊆ x ∧ Tran(x)),

(∆0-Sep) ∃y(S(y) ∧ y = {x ∈ a : A(x)}),

(∆0-Col) (∀x ∈ a)∃yB(x, y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x, y).

IV. Limit axiom. It is used to formalize that each set is element of an admissible set,
hence we claim:

(Lim) ∃x(a ∈ x ∧ Ad(x)).

V. Complete induction on N. The only induction principle included in the axioms of
KPi0 is the following axiom of complete induction on the natural numbers for sets:

(S-IN) 0 ∈ a ∧ (∀x ∈ N)(x ∈ a → x + 1 ∈ a) → N ⊆ a.

The monograph Barwise [2] provides an excellent introduction into general admis-
sible set theory. Theories of admissible sets without foundation, on the other hand,
have been studied, in particular, in Jäger [3, 4]. It is shown there, among other
things, that the proof-theoretic ordinal of KPi0 is Γ0.

In this article, however, we are mainly interested in the relationship between the
theory KPi0 + (Σ-FP) that extends KPi0 by the axiom schema (Σ-FP), claiming the
existence of fixed points of monotone Σ operators on the power set of the natural
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numbers, and the theory KPi0 + (Σ-TR), allowing to iterate Σ operators along ordi-
nals. In order to give a compact formulation of our principle (Σ-FP) we introduce
the following abbreviations: For all formulas A(~u, v, w) of L∗ we set

OpN
A(~a) := (∀x ⊆ N)(∃!y ⊆ N)A(~a, x, y),

MonN
A(~a) := (∀u, v, x, y ⊆ N)[A(~a, u, x) ∧ A(~a, v, y) ∧ u ⊆ v → x ⊆ y].

OpN
A(~a) expresses that for the parameters ~a the formula A(~a, x, y) defines a functional

relation on P(N). If in addition MonN
A(~a) holds, this functional relation is monotone

in the usual sense and we say that A defines a monotone operator for the parameters
~a. The principle (Σ-FP) takes now the following form: For each Σ formula A(~u, v, w)
of L∗ with at most the variables ~u, v, w free we have

(Σ-FP) OpN
A(~a) ∧MonN

A(~a) → (∃x ⊆ N)A(~a, x, x).

Remark 1 The purpose of the restriction to operators on P(N) is to keep the fixed
point axiom persistent. If instead, we add to KPi0 a fixed point principle that claims
arbitrary monotone Σ operators to have fixed points, we do not increase the proof-
theoretic strength. In this case however, a further strengthening, e.g. by foundation
leads to an inconsistent theory. For a further discussion, see section 6.

The theory KPi0 + (Σ-TR) is the extension of the theory KPi0 by the axiom schema
(Σ-TR) that allows to iterate Σ operations along ordinals. In the current context,
ordinals are hereditarily transitive well-founded sets:

Wf(a,∈) := ∀x(x ⊆ a ∧ x 6= ∅ → (∃y ∈ x)(∀z ∈ y)(z /∈ x)),

Ord(a) := Tran(a) ∧ (∀x ∈ a)Tran(x) ∧Wf(a,∈).

To formulate the iteration principle, we introduce for each Σ formula D(~u, x, y, z)
of L∗, with at most the variables ~u, x, y, z free, the formula

HierO
D(~a, b, f) :=

{
Ord(b) ∧ Fun(f) ∧ Dom(f) = b ∧
(∀x ∈ b)D(~a, x, f�x, f(x)).

The iteration principle now takes the form

(Σ-TR) Ord(b) ∧ (∀x ∈ b)∀y∃!zD(~a, x, y, z) → ∃fHierO
D(~a, b, f)

for all Σ formulas D(~u, x, y, z) of L∗ with at most the variables ~u, x, y, z free.

As shown in Jäger and Probst [6] the theory KPi0 + (Σ-TR) enables us also to
iterate Σ operations along arbitrary well-orderings. Given a set a and a binary
relation b ⊆ a × a, we write Lin(a, b) if b is a strict linear ordering on a. A linear
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ordering is a well-ordering if any non-empty subset of its domain has a least element
with respect to this ordering,

Wo(a, b) := Lin(a, b) ∧ ∀x(x ⊆ a ∧ x 6= ∅ → (∃y ∈ x)(∀z ∈ x)((z, y) /∈ b)).

We define for each Σ formula D(~u, x, y, z) of L∗ the formula

HierD(~a, b, c, f) :=

{
Wo(b, c) ∧ Fun(f) ∧ Dom(f) = b ∧
(∀x ∈ b)D(~a, x, {(y, f(y)) : (y, x) ∈ c}, f(x)),

in order to state the theorem below.

Theorem 2 For all Σ formulas D(~u, x, y, z) of L∗ that contain at most the variables
~u, x, y, z free, KPi0 + (Σ-TR) proves

Wo(b, c) ∧ (∀x ∈ b)∀y∃!zD(~a, x, y, z) → ∃fHierD(~a, b, c, f).

In [6] it is also shown that the proof-theoretic ordinal of KPi0 + (Σ-TR) is ϕω00. In
the sequel we will show that the theory KPi0 + (Σ-FP) has the same proof-theoretic
ordinal, and hence unfolds yet another aspect of metapredicative Mahlo. The Mahlo
axiom schema for admissible set theory without foundation claims Π2 reflection on
admissible sets,

(Π2-RefAd) A(~a) → ∃x(~a ∈ x ∧ Ad(x) ∧ Ax(~a))

for all Π2 formulas A(~u) of L∗ with at most the variables ~u free. The theory KPi0 +
(Π2-RefAd) is denoted by KPm0 and is analyzed in detail in Jäger and Strahm [8]
and Strahm [13].

We conclude the section by mentioning a result about KPi0 that plays an important
role in section 5 where we derive a lower bound for KPi0 + (Σ-FP). This result is
due to Jäger and a detailed proof is given e.g. in [6].

Lemma 3 Let D(~u, v) be a ∆0 formula of L∗ with at most the variables ~u, v free.
Then KPi0 proves that

∃x(D(~a, x) ∧ ~a ∈ x ∧ Ad(x)) →
∃y(y =

⋂
{x : D(~a, x) ∧ ~a ∈ x ∧ Ad(x)} ∧D(~a, y) ∧ ~a ∈ y ∧ Ad(y)).

This lemma implies for example that in KPi0 for any set x the intersection x+ of all
admissibles containing x is an admissible itself,

x+ :=
⋂
{y : x ∈ y ∧ Ad(y)}.
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3 Ordinal-theoretic preliminaries

The aim of this section is to review some ordinal-theoretic facts that will be relevant
in the sequel. As in, for example, Jäger and Strahm [8] we work with the ternary
Veblen function, that is obtained from the binary ϕ function as follows:

(1) ϕ0βγ is ϕβγ,

(2) if α > 0, then ϕα0γ denotes the γth ordinal which is strongly critical with
respect to all functions λξ.λη.ϕδξη for δ < α,

(3) if α > 0 and β > 0, then ϕαβγ denotes the γth common fixed point of the
functions λη.ϕαδη for δ < η.

Let Ξ0 be the least ordinal greater than 0 which is closed under addition and the
ternary ϕ function. In the following we will work with a standard primitive recur-
sive notation system (OT, �) for all ordinals less than Ξ0. All required definitions
are straightforward generalizations of those used for building a notation system for
Γ0 (cf. [9, 11]) and are omitted. In the reminder of this article we let a, b, c, . . .
range other the set OT and the terms 0̂, 1̂, 2̂, . . . act as codes for the finite ordinals.
Moreover, ordinal constants such as 0, 1, ω and ϕω00 are often used instead of the
corresponding ordinal notations.

We set for all primitive recursive relations ≺ and all number terms s:

Prog(≺, x) := (∀u ∈ Field(≺))[∀v(v ≺ u → v ∈ x) → u ∈ x],

TI(≺, x) := Prog(≺, x) → Field(≺) ⊆ x.

TI(≺, x, s) := Prog(≺, x) → (∀n ≺ s)(n ∈ x).

To be consistent with the notation in [6] we often write TI(a, x) instead of TI(�, a, x),
where � is the special well-ordering of our notation system. An ordinal α is called
provable in the theory T - formulated in L∗ or a similar language - if there exists a
primitive recursive well-ordering ≺ of order-type α such that

T ` ∀xTI(≺, x).

The least ordinal which is not provable in T is called the proof-theoretic ordinal of
T and denoted by |T|.

4 Upper bound

To determine an upper bound for the theory KPi0 + (Σ-FP), we show that the fixed
point axiom (Σ-FP) is provable in a theory denoted by [KPi0 + (Σ-TR)]† which is a
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conservative extension of KPi0 +(Σ-TR) in the sense that its proof-theoretic ordinal
is still ϕω00. The theory [KPi0 + (Σ-TR)]† is designed to prove the existence of so
called pseudo-hierarchies. This allows us to adapt Avigad’s argument in [1] to show
that [KPi0 + (Σ-TR)]† proves the existence of fixed points of monotone Σ operators.

As shown in [6], KPi0 + (Σ-TR) has proof-theoretic ordinal ϕω00. Therefore the
sentence

∀xTI(x, ϕω00)

is not provable in KPi0 +(Σ-TR) and hence the theory [KPi0 +(Σ-TR)]† that extends
the theory KPi0 + (Σ-TR) by the axiom

∃x¬TI(x, ϕω00)

is consistent. Moreover, this extension still has the same proof-theoretic ordinal.

Lemma 4
|KPi0 + (Σ-TR)| = |[KPi0 + (Σ-TR)]†|.

Proof: This result is a consequence of results in Jäger and Probst [7]. For the reader’s
convenience we summarize the main steps. Assume that there is a primitive recursive
well-ordering ≺ such that

[KPi0 + (Σ-TR)]† ` ∀xTI(≺, x).

Our aim is to show that the ordertype of ≺ is less than ϕω00. Since KPm0 proves
the iteration principle (Σ-TR) (cf. [6]) we have that

KPm0 ` ∃x¬TI(x, ϕω00) → ∀yTI(≺, y).

It follows from the proof-theoretic analysis of KPm0 given in Jäger and Strahm [8]
that a standard semi-formal system PA∞ for second order arithmetic proves

(∗) PA∞ α0

0
TI(ϕω00, X), TI(≺, Y )

for an α0 < ϕω00.
Inspecting the proof of the boundedness lemma (cf. e.g. Pohlers [9]) we observe
that also the following slightly more general statement holds:

Lemma 5 (Boundedness Lemma) Suppose that ≺1 and ≺2 are primitive recur-
sive well-orderings, Γ is a finite set of U-positive formulas of PA∞, ∆ is a finite set
of V -positive formulas of PA∞, V does not occur in Γ and U does not occur in ∆.
Further, let Λ~s := {s1 /∈ U, . . . , sk /∈ U} and Λ~t := {t1 /∈ V, . . . , tl /∈ V }. If

PA∞ α

0
¬Prog(≺1, U), Λ~s, Γ, ¬Prog(≺2, V ), Λ~t, ∆
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then it follows that

N |=
∨
{F [(≺1)γ1/U ] : F ∈ Γ} or N |=

∨
{F [(≺2)γ2/V ] : F ∈ ∆},

where we have γi = βi+2α and β1 = max{|sN
1 |≺1

, . . . , |sN
k |≺1

} and β2 = max{|tN
1 |≺2

, . . . , |tN
l |≺2

}.

As in [9], if ≺ is a well-ordering we assign to each natural number in the field
of ≺ an ordinal by the recursion |n|≺ := {|m|≺ : m ≺ n}, and (≺)σ is the set
{n ∈ N : |n|≺ ∈ σ}. We write tN for the value of the closed term t and N |= F [S/U ]
to indicate that F holds in the standard model provided the relation symbol U is
interpreted by the set S.

Applying the above lemma to (∗) yields that

N |= ∀x ∈ Field(ϕω00)(|x|� ≤ ωα0) or N |= ∀x ∈ Field(≺)(|x|≺ ≤ ωα0).

The first statement is obviously wrong and hence the ordertype of ≺ is less than
ϕω00. 2

Pseudo-hierarchies are hierarchies where the underlying ordering is not a well-
ordering. If D(~u, x, y, z) is a formula of L∗ we write

PSHD(~a, b, c, f) :=

{
Lin(b, c) ∧ ¬Wo(b, c) ∧ Fun(f) ∧ Dom(f) = b ∧
(∀x ∈ b)D(~a, x, {(y, f(y)) : (y, x) ∈ c}, f(x))

to express that f is a pseudo-hierarchy for D(~u, x, y, z) with parameters ~a along the
ordering c on b.

The next lemma is a key step in showing that [KPi0 + (Σ-TR)]† proves the existence
of pseudo-hierarchies for Σ formulas of L∗. It states that there is no Σ formula
A(u, v) that is equivalent to the assertion that b is a well-ordering. The proof of
the lemma exhibits the role of the axiom ∃x¬TI(�, x, ϕω00): It is to exclude that
Wo(x, y) is a ∆ predicate.

Lemma 6 For all Σ formulas A(~u, v, w) of L∗ the theory [KPi0 + (Σ-TR)]† proves:

∀~x¬ (∀y, z[A(~x, y, z) ↔ Wo(y, z)]) .

Proof: Assume that there are sets ~a and a Σ formula A(~u, v, w) such that

(∗) ∀y, z[A(~a, y, z) ↔ Wo(y, z)]

holds. We show that under this assumption we could embed Π1
1-CA0 into the theory

[KPi0+(Σ-TR)]†. Thus the theory [KPi0+(Σ-TR)]† would prove (∀x ⊆ N)TI(x, ϕω00).
Since our ordinal notations are elements of N and Π1

1-CA0 proves the ordinal ϕω00,
this contradicts ∃x¬TI(x, ϕω00).
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Let Ψ(u,~v, ~V ) be a Π1
1 formula of L2 . As shown e.g. in [12], ACA0 proves that for

all natural numbers ~m and all subsets ~Y of N there is a set T dependent on Ψ and
the parameters ~m and ~Y such that for all x,

(1) (T )x is a tree,

(2) (T )x is recursive in ~Y ,

(3) Ψ(x, ~m, ~Y ) ↔ WO(KB((T )x)),

where KB(S) denotes the restriction of the Kleene/Brower ordering to the tree S,
WO(X) is the L2 formula saying that {(x, y) : 〈x, y〉 ∈ X} is a linear ordering that is
well-founded and (X)t := {x : 〈x, t〉 ∈ X}, where 〈·, ·〉 is a standard primitive recur-
sive pairing function. To simplify the notation we also use capital letters X, Y, Z, . . .
in L∗ formulas to denote subsets of N.
If we write Wo(z) for Wo(Field(z), z) and let Ψ∗ denote the translation of Ψ to the
language L∗ then [KPi0 + (Σ-TR)]† proves that

(∀x ∈ N)[Ψ∗(x, ~m, ~Y ) ↔ Wo({(u, v) : 〈u, v〉 ∈ KB((T )x)})].

Now the assumption (∗) puts us in position to apply ∆ separation, i.e. there is a
set Z ⊆ N with

∀x[x ∈ Z ↔ x ∈ N ∧Ψ∗(x, ~m, ~Y )].

But this means that we could embed Π1
1-CA0 into [KPi0 + (Σ-TR)]†. 2

The ordering underlying a hierarchy is by definition a well-ordering. This fact allows
us to prove properties of the hierarchy by transfinite induction along this well-
ordering. For pseudo-hierarchies we can not apply this method of proof. Fortunately
this does not matter, since [KPi0+(Σ-TR)]† proves the existence of pseudo-hierarchies
with “nice” properties:

Lemma 7 (Existence of pseudo-hierarchies) Assume that D(~u, x, y, z) and B(~u, x, y, z)
are Σ formulas of L∗ and let A be an arbitrary formula of L∗ such that [KPi0 +
(Σ-TR)]† proves

A → ∀b, c [Wo(b, c) → ∃f(HierD(~a, b, c, f) ∧B(~a, b, c, f))].

Then [KPi0 + (Σ-TR)]† also proves

A → ∃d, e, g [PSHD(~a, d, e, g) ∧B(~a, d, e, g)].

Proof: Let A and ~a such that [KPi0 + (Σ-TR)]† proves

(∗) A → ∀b, c[Wo(b, c) → ∃f(HierD(~a, b, c, f) ∧B(~a, b, c, f))].
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Now we define

Hier′D(~a, b, c, f) : =

{
Lin(b, c) ∧ Fun(f) ∧ Dom(f) = b ∧
(∀x ∈ b)D(~a, x, {(y, f(y)) : (y, x) ∈ c}, f(x))

E(~a, b, c) : = ∃f [Hier′D(~a, b, c, f) ∧B(~a, b, c, f)].

Note that E(~a, b, c) is a Σ formula of L∗. Hence lemma 6 yields that

¬∀x, y[E(~a, x, y) ↔ Wo(x, y)].

So there are sets d and e such that

[¬Wo(d, e) ∧ E(~a, d, e)] ∨ [Wo(d, e) ∧ ¬E(~a, d, e)].

Assuming A, the second disjunct contradicts (∗), and the first disjunct is equivalent
to

∃g[PSHD(~a, d, e, g) ∧B(~a, d, e, g)].

2

To prove the existence of a fixed point of a given monotone Σ operation on the
powerset of N, we first show that there is a pseudo-hierarchy such that the Σ op-
eration specifies the transition from one stage of the hierarchy to the next. Then
this pseudo-hierarchy is divided into an upper part that contains no least stage, and
the corresponding lower part. The careful definition of the pseudo-hierarchy then
implies that the union of the stages in the lower part equals the intersection of the
stages in the upper part and is also a fixed point of the given operation. The details
of this argument are carried out in the proof of the following theorem.

Theorem 8 (Existence of fixed points) Let F (~u, x, y) be a Σ formula of L∗.
Then [KPi0 + (Σ-TR)]† proves

OpN
F (~a) ∧MonN

F (~a) → (∃x ⊆ N)F (~a, x, x).

Proof: Suppose that OpN
F (~a) and MonN

F (~a) hold. Next we set

D(~u, x, y, z) :=

{
(
⋃

Rng(y) 6⊆ N ∧ z =
⋃

Rng(y))∨
(
⋃

Rng(y) ⊆ N ∧ x = x ∧ F (~u,
⋃

Rng(y), z)) .

Now assume that Wo(b, c). Since OpN
F (~a) and MonN

F (~a) it follows immediately from
the definition of D that

(∀x ∈ b)∀y∃!zD(~a, x, y, z).

Hence Theorem 2 yields that there is a hierarchy f such that HierD(~a, b, c, f) holds.
Moreover we can prove that f has the following properties expressed by the Σ
formula B(~a, b, c, f) that is the conjunction of the three formulas below:

11



(1) (∃x ∈ b)(∀y ∈ b)((y, x) /∈ c),

(2) (∀x, y ∈ b)[(x, y) ∈ c → f(x) ⊆ f(y) ⊆ N],

(3) (∀x ∈ b)(∀n ∈ N)[n ∈ f(x) → (∃y ∈ b)(x = y ∨ (y, x) ∈ c) ∧ (n ∈ f(y) ∧
(∀z ∈ b)(z, y) ∈ c → (n /∈ f(z)))].

Thus B(~a, b, c, f) states that the set b has a least element with respect to the ordering
c, that the function f is monotone with Rng(f) ⊆ P(N) and that if n is an element
of f(x) for some x ∈ b, then there is a least y with respect to the ordering c such
that n ∈ f(y).
The first and the third property follow directly from that fact that c is a well-ordering
on b. The second property is shown by transfinite induction along c on b: We set

C(v) := (∀x, y ∈ b)[(x, y) ∈ c ∧ (y, v) ∈ c → f(x) ⊆ f(y) ⊆ N]

and assume that w ∈ b and that for all v ∈ b with (v, w) ∈ c we have C(v). We
aim to show that C(w). So assume that x, y ∈ b with (x, y) ∈ c and (y, w) ∈ c.
HierD(~a, b, c, f) implies that D(~a, y, {(z, f(z)) : (z, y) ∈ c}, f(y)). Now C(y) implies
that

⋃
{f(z) : (z, y) ∈ c} ⊆ N. Hence the definition of D and MonN

F (~a) yield
f(x) ⊆

⋃
{f(z) : (z, y) ∈ c} ⊆ f(y) ⊆ N. But this is C(w).

So we have shown that OpN
F (~a) and MonN

F (~a) imply

∀b, c[Wo(b, c) → ∃f(HierD(~a, b, c, f) ∧B(~a, b, c, f))].

By lemma 7 we conclude that there exist sets d, e and a function g such that

PSHD(~a, d, e, g) ∧B(~a, d, e, g).

Next, we divide d in an upper part u and a lower part l. Because ¬Wo(d, e) there is
a set u ⊆ d that has no least element with respect to the linear ordering e. Further
we can assume that the set u is upwards closed, i.e. if x ∈ u and if (x, y) ∈ e then
also y ∈ u. The lower part l ⊆ d is now defined as l := {x ∈ d : (∀y ∈ u)(x, y) ∈ e}.
Since d has a least element with respect to the ordering e, l is not empty.

Looking for a candidate for a fixed point of the operator F , we set

w :=
⋃
x∈l

g(x),

w′ :=
⋂
x∈u

g(x).

The monotonicity of g implies w ⊆ w′, but also w′ ⊆ w holds: If y ∈ w′ there is a
least element x0 ∈ d with respect to the ordering e such that y ∈ g(x0). Because u

12



has no least element with respect to the ordering e, x0 belongs already to l, yielding
y ∈ w. This means that w = w′. Next we argue that w is indeed a fixed point of F .

First, we fix a set z such that F (~a, w, z) holds, and then we choose an arbitrary
x ∈ l. We have that

F (~a,
⋃
{g(y) : (y, x) ∈ e}, g(x)).

Further, MonN
F (~a) and the definition of w imply g(x) ⊆ z. This means that for all

x ∈ l we have g(x) ⊆ z, hence w ⊆ z.

Similarly, for an arbitrary x ∈ u,

F (~a,
⋃
{g(y) : (y, x) ∈ e}, g(x))

holds. This time we conclude that z ⊆ g(x). So for all x ∈ u we have z ⊆ g(x),
hence z ⊆ w′. But since w = w′ we have z = w and therefore F (~a, w, w). 2

This concludes the argument that [KPi0 + (Σ-TR)]† proves the principle (Σ-FP).
Due to lemma 4, the theories KPi0 + (Σ-TR) and [KPi0 + (Σ-TR)]† have the same
proof-theoretic ordinal.

Theorem 9
|KPi0 + (Σ-FP)| ≤ ϕω00.

5 Lower bound

The purpose of this section is to prove that ϕω00 is also a lower bound for the theory
KPi0 + (Σ-FP). Our strategy is to adapt the well-ordering proof for KPi0 + (Σ-TR)
given in [6] to the present context. This well-ordering proof is based on the well-
ordering proof in Jäger, Kahle, Setzer and Strahm [5]. Also Rüede [10] adopts this
proof for the treatment of Σ1

1 transfinite dependence choice.

In the well-ordering proof in [6], one defines for each natural number n, a ∆0 formula
Kn+1(x) of L∗ that satisfies the following property:

Kn+1(y) → (∀x ∈ y)TI(x, ϕn̂00).

Then one proves the so called Main Lemma, claiming that for every set x, there
exists a set y, such that x ∈ y and Kn+1(y). As an immediate consequence, the
ordinal ϕn̂00 is provable for every natural number n.

We start by repeating the definitions of the ∆0 formulas Kn(y). They express that
y respects certain closure properties regarding hierarchies. So K0(a) says that a is
an admissible, and Kn+1(a) states that a is a limit of admissibles that contains with
a set x also a Kn-hierarchy f above x, whose domain is the set of notations a ∈ OT
that look like a well-ordering in a. The formal definitions are given below.
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Definition 10

Ad(a) := Ad(a) ∨ (∃u(u ∈ a) ∧ (∀x ∈ a)(∃y ∈ a)(x ∈ y ∧ Ad(y)))

T (f) := Fun(f) ∧ Dom(f) = OT,

K1(a) := Ad(a),

Kn+1(a) := Ad(a) ∧ [∀x∃f(T (f) ∧ ∀a(Wo(a) → Hn(a, x, f)))]a,

Hn(a, u, f) := T (f) ∧ (∀b ≺ a)(f�b ∈ f(b) ∧ u ∈ f(b) ∧ Kn(f(b))).

The closure properties expressed by the ∆0 formulas Kn(x) are tailored such that
the following lemma holds. For a proof see lemma 11 in [6].

Lemma 11 KPi0 proves for each natural number n that

Kn+1(y) → (∀x ∈ y)TI(x, ϕn̂00).

An inspection of the proof of the Main Lemma in [6] yields that one needs to iterate
Σ operations that map elements of the class Ad on elements of Ad along (primitive)
recursive well-orderings on N. Since our axiom (Σ-FP) only claims the existence of
fixed points of monotone Σ operators on the powerset of N, we only can iterate Σ
operations that map subsets of N to subsets of N (cf. lemma 15). To adapt the well-
ordering proof, we code elements of a suitable subclass of Ad as subsets of natural
numbers. Thereto we draw upon the additional assumption that there exists a set
for which transfinite induction up to ϕω00 fails. Hence our Main Lemma takes the
following form.

Lemma 12 (Main Lemma) For every natural number n greater than 0 we have
that KPi0 + (Σ-FP) proves:

∃x¬TI(x, ϕω00) → ∀x∃y(x ∈ y ∧ Kn(y)).

To remove the additional assumption, observe that we have for all natural numbers
n:

(1) KPi0 + (Σ-FP) ` ∀xTI(x, ϕω00) → ∀xTI(x, ϕn̂00),

(2) KPi0 + (Σ-FP) ` ∃x¬TI(x, ϕω00) → ∀xTI(x, ϕn̂00).

(1) is a trivial observation and (2) follows from lemma 11 and lemma 12. Together,
they imply that KPi0 + (Σ-FP) proves the ordinal ϕn̂00 for each natural number n.

Next we introduce the class Ad◦ of good admissibles, i.e. admissibles that contain a
set for which transfinite induction up to ϕω00 fails,

Ad◦(a) :⇔ Ad(a) ∧ (∃x ∈ a)¬TI(x, ϕω00).

14



Of course, good admissibles are also linearly ordered and there is always a next
good admissible. It is clear that the existence of good admissibles is an immediate
consequence of the assumption ∃x¬TI(x, ϕω00). Below we show how to represent
good admissibles as subsets of the natural numbers. For that purpose, we assign to
an admissible a the set p(a) ⊆ N given by

{e ∈ N : (∀x ∈ N){e}(x) ∈ {0, 1} ∧Woa({(m, n) ∈ N : {e}(〈m, n〉) = 0})}.

So p(a) is the set of all indices of characteristic functions whose associated relations
are well-orderings in a. As usual {·} denotes Kleene brackets.

Lemma 13 KPi0 + (Σ-FP) proves:

Ad◦(a) → p(a) /∈ a.

Proof: Suppose that a is a good admissible. We argue that p(a) ∈ a implies that a
is a model of Π1

1-CA−
0 , i.e. the theory that extends ACA0 by comprehension for Π1

1

formulas that do not contain set parameters. However this contradicts the definition
of Ad◦, namely that (∃x ∈ a)¬TI(x, ϕω00).

Let Ψ(u,~v) be a Π1
1 formula of L2 without set parameters. As in the proof of lemma

6, ACA0 proves that for all natural numbers ~m there is a set T dependent on Ψ and
the parameters ~m such that for all x:

(1) (T )x is a tree,

(2) (T )x is recursive ,

(3) Ψ(x, ~m) ↔ WO(KB((T )x)).

Since a is a model of ACA0, KPi0 + (Σ-FP) proves that

(∀x ∈ N)[(Ψ∗)a(x, ~m) ↔ Woa({(u, v) : 〈u, v〉 ∈ KB((T )x)})].

On the other hand, the definition of p(a) yields that for any recursive ordering
S ⊆ N , we have that Woa({(u, v) : 〈u, v〉 ∈ S}) is equivalent to

(∃e ∈ p(a))(∀u, v ∈ N)[{e}(〈u, v〉) = 1 ↔ 〈u, v〉 ∈ S].

For all x ∈ N the set KB((T )x) is recursive. Since a is also a model of (∆0-Sep) and
p(a) ∈ a, there exists a set Y ∈ a such that

∀x[x ∈ Y ↔ x ∈ N ∧ (Ψ∗)a(x, ~m)].

This means that a is a model of Π1
1-CA−

0 . 2
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So if a is a good admissible, p(a) /∈ a holds. Since p(a) ∈ a+, the linearity of
admissibles yields that p(a)+ = a+. This allows us to regain the admissible a from
the set p(a). We define

q(x) :=

{
∅+ : x ∈ ∅+

the unique y with Ad(y) ∧ y+ = x+ : otherwise

and obtain the following corollary.

Corollary 14 The following is provable in KPi0 + (Σ-FP):

Ad◦(a) → a = q(p(a)).

Next we show that KPi0+(Σ-FP) enables us to iterate Σ operations that map subsets
of natural numbers to subsets of natural numbers along well-orderings on subsets of
N. First we introduce some auxiliary notions.

FunN(f) := f ⊆ N ∧ (∀x ∈ f)(∃y, z)(x = 〈y, z〉),
SupportN(f) := {x ∈ N : (∃y ∈ N)(〈x, y〉 ∈ f)}.

FunN(f) expresses that f is a subset of N consisting of codes of ordered pairs. Such
an f can be seen to represent a function g : N → P(N),

g := {(x, y) : x ∈ N ∧ y = {n ∈ N : 〈x, n〉 ∈ f} }.

If n /∈ SupportN(f) then g(n) = ∅. Further, we say that f is an N-hierarchy for
the L∗ formula D(~u, x, y, z) with parameters ~a along the well-ordering c on b, if
HierND(~a, b, c, f), where HierND(~a, b, c, f) is the formula

FunN(f) ∧ SupportN(f) ⊆ b ∧
(∀x ∈ b)D(~a, x, {〈v, w〉 ∈ f : (v, x) ∈ c}, {w : 〈x, w〉 ∈ f}).

Lemma 15 For all Σ formulas D(~u, x, y, z) of L∗, KPi0 + (Σ-FP) proves: If b ⊆ N
and Wo(b, c) then

(∀x ∈ b)(∀y ⊆ N)(∃!z ⊆ N)D(~a, x, y, z) → ∃fHierND(~a, b, c, f).

Proof: We adapt Avigad’s argument from [1], which shows that ATR0 proves the
existence of fixed points of monotone operators given by an arithmetical formula, to
the present context.

Assume that we have sets ~a, b ⊆ N and c satisfying the left hand side of the impli-
cation. We aim to find an f ⊆ N such that HierND(~a, b, c, f). Thereto, a monotone
operator is defined, whose fixed point g ⊆ N codes the characteristic function of f .
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First, we introduce two auxiliary operations mapping P(N)× P(N) → P(N), mono-
tone in each component. Thereby, if x ⊆ N, we write 〈x〉 for the set {〈m,n〉 :
〈m,n〉 ∈ x} and x for the set {n ∈ N : n /∈ x}.

B1(~u, w, x, y, z) :=


(z = N ∧ 〈x〉 ∪ 〈y〉 = 〈N〉 ∧ 〈x〉 ∩ 〈y〉 6= ∅) ∨
(D(~u, w, x, z) ∧ 〈x〉 ∪ 〈y〉 = 〈N〉 ∧ 〈x〉 ∩ 〈y〉 = ∅) ∨
(z = ∅ ∧ 〈x〉 ∪ 〈y〉 6= 〈N〉),

B2(~u, w, x, y, z) :=


(z = N ∧ 〈x〉 ∪ 〈y〉 = 〈N〉 ∧ 〈x〉 ∩ 〈y〉 6= ∅) ∨
(D(~u, w, x, z) ∧ 〈x〉 ∪ 〈y〉 = 〈N〉 ∧ 〈x〉 ∩ 〈y〉 = ∅) ∨
(z = ∅ ∧ 〈x〉 ∪ 〈y〉 6= 〈N〉).

So if x contains exactly those pairs not in y and the operation defined by D assigns
z to x, then the operations given by B1 and B2 assign to x and y the sets z and z,
respectively. The other cases are defined to assure monotonicity in both components.

For s ⊆ N and w ∈ b, we further set

lev(s, w, c) := {〈v, n〉 : 〈〈v, n〉, 0〉 ∈ s ∧ (v, w) ∈ c},
lev(s, w, c) := {〈v, n〉 : 〈〈v, n〉, 1〉 ∈ s ∨ (v, w) /∈ c}.

Under the assumption that s codes the characteristic function of a hierarchy and
w ∈ b, then lev(s, w, c) is the disjoint union of all levels below w, and lev(s, w, c)
is its complement w.r.t. pairs. Now we choose C(~u, v, w, x, y) to be a Σ formula
expressing that y is the union of the two sets

{〈〈v, n〉, 0〉 : v ∈ b ∧ n ∈ N ∧ ∃z[n ∈ z ∧B1(~a, v, lev(x, v, c), lev(x, v, c), z)]},
{〈〈v, n〉, 1〉 : v ∈ b ∧ n ∈ N ∧ ∃z[n ∈ z ∧B2(~a, v, lev(x, v, c), lev(x, v, c), z)]}.

It is not hard to see that OpN
C(~a, b, c) and MonN

C(~a, b, c), which yields a g with
C(~a, b, c, g, g). By transfinite induction we show that for all v ∈ b,

(∗) (∀n ∈ N)(〈〈v, n〉, 0〉 ∈ g ↔ 〈〈v, n〉, 1〉 /∈ g).

Obviously, if 0 is the c-least element of b, then lev(g, 0, c) = ∅ and lev(g, 0, c) = 〈N〉.
Thus the claim follows from the definition of C. And if (∗) holds for all v′ ∈ b with
(v′, v) ∈ c, then lev(g, v, c)∪ lev(g, v, c) = 〈N〉 and lev(g, v, c)∩ lev(g, v, c) = ∅, which
yields the induction step.

Thus, if we let f := {〈v, n〉 : 〈〈v, n〉, 0〉 ∈ g} and v ∈ b, then the set z := {n :
〈v, n〉 ∈ f} satisfies D(~a, v, lev(g, v, c), z), therefore HierND(~a, b, c, f). 2

Next we show that we can iterate Σ operations, whose range consists of good ad-
missibles only, along well-orderings on subsets of N.
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Lemma 16 If D(~u, x, y, z) is a Σ formula of L∗, then KPi0 + (Σ-FP) proves that
the following two assertions

(1) b ⊆ N ∧Wo(b, c) ∧ (∀x ∈ b)∀y∃!zD(~a, x, y, z),

(2) (∀x ∈ b)∀y, zD(~a, x, y, z) → Ad◦(z),

imply

(3) ∃fHierD(~a, b, c, f).

Proof: We assume that (1) and (2) hold, and set

u∗ := {(x, z) : x ∈ SupportN(u) ∧ z = q({y : 〈x, y〉 ∈ u}) }.

The idea behind this definitions is the following: If h ⊆ N and FunN(h), then h∗ is
a function that maps elements of SupportN(h) to admissibles. Now let

D′(~u, x, y, z) := ∃r(D(~u, x, y∗, r) ∧ z = p(r)).

By lemma 15 there exists a g ⊆ N such that HierND′(~a, b, c, g). Then the function

f := {(x, y) : x ∈ b ∧ y = {z : 〈x, z〉 ∈ g} }.

satisfies HierD(~a, b, c, f): That Fun(f) and Dom(f) = b is obvious. It remains to
show that

(∀x ∈ b)D(~a, x, {(y, f(y)) : (y, x) ∈ c}, f(x)).

We fix an x ∈ b. HierND′(~a, b, c, g) implies that

D′(~a, x, {〈v, w〉 : (v, x) ∈ c}, {w : 〈x, w〉 ∈ g}).

By the definition of D′ there is a set r such that

D(~a, x, {〈v, w〉 : (v, x) ∈ c}∗, r) ∧ {w : 〈x, w〉 ∈ g} = p(r).

The definition of f implies that f(x) = q({w : 〈x, w〉 ∈ g}) = r and that

{〈v, w〉 : (v, x) ∈ c}∗ = {(y, f(y)) : (y, x) ∈ c}.

Therefore, we have for all x ∈ b,

D(~a, x, {(y, f(y)) : (y, x) ∈ c}, f(x)),

which is HierD(~a, b, c, f). 2
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In his well-ordering proof for second order arithmetic with Σ1
1 transfinite dependent

choice, Rüede makes use of Π1
2 reflection on ω-models of ACA0 to prove the Main

Lemma. In our present context, this part is taken over by Π2 reflection on a suitable
subclass of Ad. This suitable subclass of Ad comprises those elements of Ad that are
the limits of increasing ω-sequences of good admissibles,

SeqAd◦(f) :=

{
Fun(f) ∧ Dom(f) = N∧
(∀n ∈ N)[Ad◦(f(n)) ∧ f(n) ∈ f(n + 1)].

Thus a sequence f in SeqAd◦ represents the limit
⋃

Rng(f), which in turn is coded
by the following set of natural numbers, {〈n, x〉 : x ∈ p(f(n))}. It is not hard to
obtain the following generalization of the previous lemma.

Lemma 17 If D(~u, x, y, z) is a Σ formula of L∗, then KPi0 + (Σ-FP) proves that
the following two assertions

(1) b ⊆ N ∧Wo(b, c) ∧ (∀x ∈ b)∀y∃!zD(~a, x, y, z),

(2) (∀x ∈ b)∀y, zD(~a, x, y, z) → SeqAd◦(z),

imply

(3) ∃fHierD(~a, b, c, f).

By means of lemma 16, we get the following uniform variant of Π2 reflection on Ad.

Lemma 18 (Π2 reflection on Ad) For any Σ formula A(~u, v, w) of L∗ with at
most the displayed variables ~u, v, w free, there exists a Σ formula A](~u, v) of L∗ with
at most the variables ~u, v free, so that the following two assertions can be proved in
KPi0 + (Σ-FP) + ∃z¬TI(z, ϕω00):

(1) ∀x∃yA(~a, x, y) → ∃!fA](~a, f),

(2) ∀x∃yA(~a, x, y) →
∀f(A](~a, f) → SeqAd◦(f) ∧ ~a ∈

⋃
Rng(f) ∧ [∀x∃yA(~a, x, y)]

S
Rng(f).

Proof: Using lemma 16, the proof of lemma 7 in [6] easily translates to the present
context. 2

Now the stage is set to prove the Main Lemma. Actually we show a bit more, so
that we can prove the lemma by meta-induction on the natural numbers.

Lemma 19 For every natural number n greater than 0 there exists a Σ formula
Fn(u, v) of L∗ such that KPi0 + (Σ-FP) + ¬TI(x, ϕω00) proves:

(1) ∀x∃!fFn(x, f),

19



(2) ∀x∀f [Fn(x, f) → SeqAd◦(f) ∧ x ∈
⋃

Rng(f) ∧ Kn(
⋃

Rng(f))].

Proof: Again, we refer to the proof of the corresponding Main Lemma in [6]. Replace
their theorem 6 by our lemma 17. 2

From the discussion at the beginning of this section we obtain the lower bound.

Theorem 20
|KPi0 + (Σ-FP)| ≥ ϕω00.

Further we can conclude from theorem 9 and results of Jäger and Strahm in [8] that
the theories KPi0+(Σ-TR), KPi0+(Σ-FP) and KPm0 all have the same proof-theoretic
ordinal.

Corollary 21

|KPi0 + (Σ-TR)| = |KPi0 + (Σ-FP)| = |KPm0| = ϕω00.

6 Concluding remarks

As mentioned earlier, the restriction in the formulation of the axiom (Σ-FP) to
operators on the powerset of the natural numbers is to keep the theory persistent.
We will elaborate on this point a bit further.

This time, we set for all formulas A(~u, v, w) of L∗,

OpA(~a) := ∀x∃!y[S(x) → S(y) ∧ A(~a, x, y)],

MonA(~a) := ∀u, v, x, y[A(~a, u, x) ∧ A(~a, v, y) ∧ u ⊆ v → x ⊆ y].

The principle (Σ-FP′), claiming the existence of fixed points of monotone Σ operators
on the whole universe, takes now the following form: For each Σ formula A(~u, v, w)
of L∗ with at most the variables ~u, v, w free, we have

(Σ-FP′) OpA(~a) ∧MonA(~a) → ∃x[S(x) ∧ A(~a, x, x)].

From the proof of theorem 8 it follows that [KPi0 +(Σ-TR)]† proves also all instances
of the principle (Σ-FP′). However, if we further strengthen the theory KPi0+(Σ-FP′)
by an axiom claiming foundation

(Foundation) ∀x(∃u(u ∈ x) → (∃y ∈ x)(y ∩ x = ∅)),

it becomes inconsistent.

To see this, we consider the operation

o(x) :=
⋃
{α + 1 : α ∈ x ∧ Ord(α)}.

Note that o(x) is an ordinal and that o(α) = α for all ordinals α. The theory KPi0

also proves that ordinals are linearly ordered by the elementhood relation ∈.
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Lemma 22 KPi0 proves that the operation x 7→ o(x) ∪ {o(x)} is monotone but has
no fixed point.

Proof: Ordinals are linarly ordered by the ∈ relation, hence the operation is mono-
tone. Since ordinals are well-founded by ∈, it has no fixed point. 2

In the presence of foundation, being an ordinal is a ∆ predicate, i.e. Ord(α)
is equivalent to Tran(α) ∧ (∀x ∈ α)Tran(x). Thus, the aforementioned opera-
tion becomes definable by a Σ formula of L∗, which implies the inconsistency of
KPi0 + (Σ-FP′) + (Foundation). Moreover, the operation x 7→ o(x)∪ {o(x)} is defin-
able by a Σ formula of L∗ in any extension of KPi0 where Wo(u, v) is a ∆ formula,
i.e. where there exists a Σ formula A(~u, v, w) of L∗ such that

∃~x∀y, z[Wo(y, z) ↔ A(~x, y, z)]

is provable. Due to the previous lemma, such an extension cannot consistently be
further extended by the principle (Σ-FP′).

We conclude this section by relating the consistency of T+(Σ-FP′) to the consistency
of T + (Σ-TR) for theories T comprising KPi0.

Lemma 23 There is a Σ formula A(u, v) of L∗ such that KPi0 proves

A(x, y) → y =
⋂
{z : x ⊆ z ∧ Ad(z)}.

This justifies the notation x◦ for the set
⋂
{z : x ⊆ z ∧ Ad(z)}.

Proof: There is a Σ formula A(u, v) of L∗ such that A(x, y) implies that

y =
⋂
{z ∈ (x+)+ : x ⊆ z ∧ Ad(z)}.

Since admissibles are linearly ordered by ∈, an admissible z that is not an element
of (x+)+ satisfies already x ⊆ x+ ⊆ z. Thus, A(x, y) implies y = x◦. OpN

A and MonN
A

are now obvious. 2

Lemma 24 KPi0 + (Σ-FP′) proves each instance of (Σ-TR).

Proof: Suppose that A(~u, v, w) is a Σ formula of L∗ and ~a are sets, such that OpN
A(~a)

and MonN
A(~a) hold. Further, assume Ord(b). We show that ∃fHierA(~a, b, f).

By the previous lemma there is a Σ formula B with OpN
B(~a, b) and MonN

B(~a, b), such
that B(~a, b, x, y) implies

y = ({v : A(~a, u, v) ∧ u ∈ x} ∪ {b})◦.
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Now (Σ-FP′) yields a set z satisfying B(~a, b, z, z). By transfinite induction along
b we show that (∀w ∈ b)(∃!f ∈ z)HierA(~a, w, f). So suppose that w ∈ b and for
all v ∈ w, there is exactly one g ∈ z satisfying HierA(~a, v, g). By Σ replacement,
there is a unique function h with domain w, such that for v ∈ w, h(v) ∈ z and
HierA(~a, v, h(v)). Moreover, h is an element of each admissible that is a superset of
z, thus h ∈ z. For the induction step, let s := {(v′, c) ∈ h(v) : v′ ∈ v ∈ w} and f the
set with A(~a, s, f). This yields HierA(~a, w, f). Similarly, we obtain ∃fHierA(~a, b, f).
2

Hence one can consistently extend a theory T by the principle (Σ-FP′) if and only
if it is consistent to assume that Wo(u, v) is not a ∆ formula of T + (Σ-TR).

Theorem 25 Let T be a theory that comprises KPi0. Then T+(Σ-FP′) is consistent
if and only if there is no Σ formula A(~u, v, w) of L∗ for which T + (Σ-TR) proves
∃~x∀y, z[A(~x, y, z) ↔ Wo(y, z)].

Proof: Suppose that T+(Σ-FP′) is consistent. Lemma 24 yields (Σ-TR). If Wo were
a ∆ predicatae, the operation of lemma 22 would be definable by a Σ formula of L∗,
which contradicts (Σ-FP′).
If we assume the right hand side, we can consistently extend T + (Σ-TR) by a
principle that claims that we have for every Σ formula A(~u, v, w) of L∗ that

∀~x¬ (∀y, z[A(~x, y, z) ↔ Wo(y, z)]) .

Now we can use the proof of theorem 8 to show (Σ-FP′). 2

References

[1] Jeremy Avigad, On the relationship between ATR0 and ÎD<ω, The Journal of
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