
Pseudo-Hierarchies in Admissible Set Theory
without Foundation and Explicit Mathematics

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Dieter Probst

von Langnau i. E.

Leiter der Arbeit:

Prof. Dr. G. Jäger

Institut für Informatik und angewandte Mathematik

Contents

Introduction 1
Acknowledgements . 8

I Languages, theories and provable ordinals 9
I.1 General conventions . 9

I.1.1 Mathematical reasoning and formal proofs 9
I.1.2 Notational conventions . 10
I.1.3 Sets, functions and relations 10
I.1.4 Orderings, trees and ordinals 11
I.1.5 Recursive and primitive recursive functions and relations . . . 13
I.1.6 Some primitive recursive functions and relations 14
I.1.7 Indices for the [primitive] recursive functions and relations . . 15

I.2 Languages, theories and structures 16
I.2.1 Languages, theories and structures 16
I.2.2 Theories . 18
I.2.3 The languages L1 and L2 of first and second order arithmetic . 20
I.2.4 The language L∗ of Kripke-Platek set theory 21
I.2.5 The language L for explicit mathematics 22
I.2.6 First and second order predicate logic and the logic of partial

terms . 23
I.2.7 Peano Arithmetic . 24
I.2.8 The semi-formal systems PA∗ 25
I.2.9 The theories BS0 and KPu0 26
I.2.10 ACA and ACA0: Second order theories with arithmetical com-

prehension . 28
I.2.11 The theory EETJ0 . 29
I.2.12 Translations and embeddings 32
I.2.13 On the dispensability of primitive recursive function symbols . 34
I.2.14 Syntactical extensions of L2 35

I.3 Proof-theoretic basics . 36
I.3.1 A notation system based on the ternary Veblen function . . . 36

iii

iv Contents

I.3.2 Cut-Elimination . 37
I.3.3 The proof-theoretic ordinal |T| of a theory T 40

II Pseudo-hierarchies in second order arithmetic 43
II.1 Preliminaries . 43

II.1.1 Universal formulas . 44
II.1.2 Trees and normal forms of Π1

1 and Σ1
1 formulas of L2 46

II.1.3 Hierarchies and choice sequences 52
II.1.4 N-models of Σ1

1-AC and Σ1
1-DC 54

II.1.5 The jump-hierarchy . 58
II.1.6 The hyper-arithmetical sets HYP 62

II.2 Pseudo-hierarchy arguments . 66
II.2.1 On HYP . 66
II.2.2 The theory ACA0 + (∆-TR) 76
II.2.3 Fixed points of monotone and non-monotone operators 78

II.2.4 Fixed points and hyperarithmetical sets 81
II.2.5 The proof-theoretic analysis of FP−

0 87
II.2.6 Additional results on the class FixA 90

IIIPseudo-hierarchy arguments in admissible set theory without foun-
dation and explicit mathematics 95
III.1 Pseudo-hierarchies in admissible set theory 96

III.1.1 Hierarchies and pseudo-hierarchies 96
III.1.2 Admissible sets and the theories KPi0, KPir and KPm0 97

III.1.3 A pseudo-hierarchy principle for KPi0 100
III.1.4 Extending theories by (psh′) 101
III.1.5 Fixed point principles vs. iteration principles 105
III.1.6 On linearity, iteration and choice 110

III.2 Admissible sets and linearity . 111
III.2.1 The constructible hierarchy L 112

III.2.2 A ∆0 formula expressing admissibility 115
III.2.3 On hyp . 120
III.2.4 Admissibles linearly ordered by ∈ 127
III.2.5 Dependent choice in admissible set theory 129

III.3 Pseudo-hierarchies in explicit mathematics 140
III.3.1 Hierarchies and pseudo-hierarchies 140

III.3.2 The theory EMA0 . 142
III.3.3 A pseudo-hierarchy principle for EMA0 143
III.3.4 Choice in explicit mathematics 148
III.3.5 EMA0, OMA and asymmetric interpretations 149

Contents v

Index 161

Introduction

Pseudo-hierarchies have become a powerful tool in several areas of mathematical
logic. They were first applied in the context of hyperarithmetical theory by Spec-
tor [41], Gandy [16] and Feferman and Spector [13]. Especially in second order
arithmetic, the potent and flexible technique of pseudo-hierarchy arguments seems
nowadays virtually indispensable. A typical application for specific fixed point def-
initions is given in Avigad [2], and a rich fund of important results obtained by
working with pseudo-hierarchies, e.g. the pairwise equivalence of (ATR), the Perfect
Set Theorem and Σ0

1 determinacy, can be found in Simpson [40]. Without even
looking at the many more instances of pseudo-hierarchy arguments for second order
arithmetic gathered in [40] and the second chapter of this thesis, it is not presump-
tuous to wish for an equally potent device in subsystems of set theory or explicit
mathematics.

Making the unconfined application of pseudo-hierarchy arguments possible in sub-
systems of admissible set theory without foundation and explicit mathematics has
been the leading goal of this thesis. After a careful analysis of pseudo-hierarchies is
second order arithmetic, firstly to understand this method thoroughly with regard
to its subsequent adaption to the aforementioned frameworks, and secondly to em-
phasis the versatility of this technique by applying it in order to achieve own results,
we pinpoint the obstacles on the road to success and provide effective strategies to
sidestep these difficulties. Besides, we research various fixed point theories: Among
other things, we prove that operations induced by positive arithmetical formulas pos-
sess in general no ∆1

1 definable fixed points, although there are well-know methods to
obtain Σ1

1 as well as Π1
1 definable fixed points (see e.g. [1]). As a nice by-product of

this line of research, we obtain an embedding of ID∗
1 (the theory obtained from ID1 by

restricting fixed point induction to formulas that contain fixed point constants only
positively) into Σ1

1-DC, and thereby answer an old question ask in Feferman’s article
on Hancock’s conjecture [11] about the upper bound of ID∗

1. Claiming fixed points
of monotone, Σ definable operations on the entire universe over KPi0 leads to the
theory KPi0 + (Σ-fp′) with the same proof-theoretic ordinal as KPm0, the standard
theory of strength meta-predicative Mahlo in admissible set theory (cf. Jäger and
Strahm [27]). This result depends crucially on the application of pseudo-hierarchy

1

2 Introduction

arguments. Further, we study a strengthening of KPi0 (cf. Jäger [19]) where not
only the admissibles distinguished by the predicate Ad(x) are linearly ordered by
∈, but all sets reflecting the Kripke-Platek axioms. Surprisingly, this extension has
already the strength of ∆1

2-CA0. Moreover, we elaborate on the connection between
iteration and dependent choice: We demonstrate how the axiom of KPm0 asserting
that the class {x : Ad(x)} is linearly ordered by ∈ is used to embed transfinite de-
pendent choice, and that this axiom can be compensated by claiming Π2 reflection
on admissibles that additionally satisfy dependent choice, which nicely parallels the
situation in second order arithmetic where extending ACA0 by Π1

2-reflection on mod-
els of Σ1

1-DC leads also to a theory of strength meta-predicative Mahlo (cf. Rüede
[37],[38]). Finally, we propose a form of dependent choice suitable for subsystems of
explicit mathematics.

The concept of a hierarchy is based on the notion of an operation: In second order
arithmetic, a formula A(U, u) induces canonically an operation F A acting on the
powerset of the natural numbers and mapping X to {x : A(X, x)}. By iterating
such an operation along a well-ordering ≺, a proper hierarchy G is obtained whose
αth level (G)α := F A((G)≺α) is the F A image of the disjoint union of the levels
(G)β below α. Proper hierarchies on their own constitute a very powerful and
useful concept which is implemented in Friedman’s well-known theory ATR0 (cf. e.g.
Friedman [14], Friedman/McAloon/Simpson[15], Steel [42]) and, at least in second
order arithmetic, are intrinsically tied to pseudo-hierarchies. A pseudo-hierarchy
looks locally like a proper hierarchy, so again (G)α = F A((G)≺α), however, the
underlying ordering ≺ is only a linear ordering but not well-founded.

In subsystems of second order arithmetic comprising arithmetical comprehension,
the existence of a pseudo-hierarchy for A follows already if F A can be iterated along
arbitrary well-orderings. Moreover, such a pseudo-hierarchy can inherit a chosen Σ1

1

definable property of the proper hierarchy: If A(U, u) is an arithmetical and B(U, V)
a Σ1

1 formula of second order arithmetic such that

∀X[Wo(X) → ∃F (HierA(F, X) ∧ B(F, X))],

then the well-known fact that being a well-ordering cannot be expressed by a Σ1
1

formula forces the existence of a linear ordering ≺ that is not a well-ordering and a
hierarchy G that meet HierA(G,≺) ∧ B(G,≺).

Each pseudo-hierarchy argument exploits that the field of the underlying ordering ≺
of the pseudo-hierarchy possesses a set K ⊆ Field(≺) that is open at the bottom, i.e.
K is non-empty, upward closed and has no ≺-least element. To apply its simplest
form, we consider a pseudo-jumphierarchy G along the linear ordering ≺. Basically,
(G)α is the collection of all sets that are Π0

1 in some level (G)γ for γ ≺ α. Then, for
a set K open at the bottom, the collection M of all sets that are contained in each

Introduction 3

level (G)α for α ∈ K is closed under arithmetical comprehension: If the set X is
arithmetical in some set Y ∈̇ M , then X is already Π0

n in Y for some n ∈ N. Given
a fixed but arbitrary α0 ∈ K, there is a sequence α0 � α1 � . . . � αn of elements of
K. Since Y is also in (G)αn

, the definition of the jumphierarchy yields that X is an
element of (G)α0

. Hence, the set X is in each (G)γ for γ ∈ K, thus also in M .

Often, one can boost the above argument by imposing additional properties on the
pseudo-hierarchy. Avigad’s argument in [2] for instance, considers a monotone op-
eration F A induced by an arithmetical formula. Then, there is a monotone pseudo-
hierarchy G where (G)α = F A(

⋃
β≺α(G)β) and further, if x ∈ (G)α, then there is

a ≺-least level α0 where x appears first. For a set K open at the bottom, each
x ∈ Z :=

⋂
α∈K(G)α enters the hierarchy at a least level α0. Clearly, α0 is not in K,

otherwise there is a β ∈ K with β ≺ α0, contradicting that x ∈ Z. Therefore, each
x ∈ Z enters the hierarchy already at some level below K, thus Z =

⋃
α≺K(G)α.

Regarding Z as a union, the monotonicity of the operation and the hierarchy imply
that (G)α ⊆ F A(Z) for all α ≺ K, whereas regarding Z as an intersection yields
F A(Z) ⊆ (G)α for all α ∈ K, thus F A(Z) = Z.

A more general form of the condition imposed on the pseudo-hierarchy above is
to stipulate that the underlying ordering ≺ of a pseudo-hierarchy G, which is not
a well-ordering, looks like a well-ordering in a model D of ACA above G. If G is
a pseudo-jumphierarchy conform with this condition, then the collection M from
our first example is even a model of Σ1

1-AC: If ∀x∃XA(X, x) holds in M for some
arithmetical formula A(U, u), then

{α ∈ Field(≺) : ∀x(∃X ∈̇ (G)α)A(X, x)}

is a superset of K in D. Therefore it has a least element α0, which is already below
K. Hence, Y := (G)α0

∈̇ M , and for each x there is a least index ex such that
A((Y)ex

, x). Applying arithmetical comprehension in M yields a set Z ∈̇ M with
(Z)x = Yex

, thus ∀xA((Z)x, x). The property that the underlying ordering ≺ of a
pseudo-hierarchy G looks like a well-ordering in a model D of ACA above G is indeed
so apt for pseudo-hierarchy arguments that we hardly ever need supplementary
conditions.

Our declared aim is to establish an analogue situation with respect to pseudo-
hierarchies in subsystems of admissible set theory without foundation and explicit
mathematics. In admissible set theory, for instance, there exist initial segments of
the constructible hierarchy L along arbitrary well-orderings, so we ask for a con-
structible hierarchy along a linear ordering that is not wellfounded. Obviously, this
wish is not to fulfill in a well-founded universe, which highlights that the existence
of pseudo-hierarchies is not provable without additional assumptions. In particular,
neither in admissible set theory nor in explicit mathematics one can disprove that

4 Introduction

being a well-ordering is expressible by a Σ or a Σ+ formula, respectively, which un-
dermines the argument applied in second order arithmetic to prove the existence of
pseudo-hierarchies and forces us to come up with new ideas.

In accordance with the setting in second order arithmetic, we base the concept of
a hierarchy in admissible set theory upon the notion of an operation: A formula
A(u, v) induces an operation fA, if for each set x there exists exactly one set y such
that A(x, y). The set y is then denoted by fA(x). When iterating an operation fA

along a well-ordering ≺, we obtain a proper hierarchy, namely a function g with
domain Field(≺) where g(α) = fA(g�α) for each α in the domain of g. Again, a
pseudo-hierarchy g looks locally like a proper hierarchy but its domain is a linear
ordering that is not well-founded. Motivated by the previous example and assured
by experience, we settle for the following pseudo-hierarchy principle:
For all Σ operations fA, such that

∀x[Wo(x) → ∃g hierA(g, x)],

there exists a linear ordering ≺ that is not a well-ordering and a hierarchy g that
meet hierA(g,≺) ∧ Wog+

(≺), where g+ denotes the least admissible above g.

This principle is not provable in a normal theory T of admissible sets, however,
the following strategy offers an excellent workaround: We simply extend T by the
above pseudo-hierarchy principle. Provided that |T| < |Π1

1-CA0|, then this extension
is consistent, and moreover, has still the same proof-theoretic ordinal. Namely,
if we can iterate a Σ operation fA along arbitrary well-orderings but no pseudo-
hierarchy for fA exists, then ∀x[Wo(x) ↔ ∃g(Hierf

A

(g, x)∧Wog+

(x)]. Exploiting the
universal character of the formula Wo(x) and applying ∆ separation then proves the
translation of each instance of (Π1

1-CA) and thus also each ordinal α below |Π1
1-CA0|,

in particular TI�(U, α). Consequently, the pseudo-hierarchy principle is derivable in
T†, the extension of T by the axiom ¬TI�(U, |T|), stating that the relation U does
not have a least element with respect to the underlying ordering � of our notation
system. Finally, |T| = |T†| is a consequence of an extension of Schütte’s famous
boundedness Theorem (cf. [39]) shown in Jäger and Probst [25] and summarized in
subsection III.1.4.

In explicit mathematics, the setting is again slightly different, and additional prob-
lems have to be dealt with. The canonic notion of an operation specifying the transi-
tion from one level of a hierarchy to the next is now an individual term (f : < → <)
that maps names to names. Also a hierarchy for the operation f along the ordering ≺
is represented by an individual term (h : Field(≺) → <) that assigns names of types
to the elements of the field of ≺ in such a way that h(α) = f(j({β : β ≺ α}, h)). Now
the statement that h is a hierarchy for the operation f along the ordering ≺ is a Σ+

formula, a Σ formula that contains the naming predicate < only positively. Unfor-
tunately, the lack of an appropriate form of ∆ separation prevents to infer (Π1

1-CA)

Introduction 5

from the assumption that Wo(≺) is expressible by a Σ+ formula, hence the strategy
enabling pseudo-hierarchies in admissible set theory is not directly applicable.

To circumvent this issue, we consider pseudo-hierarchy arguments in explicit math-
ematics only in the context of the theory EMA0, basically the theory EMA, in-
troduced and analyzed in Jäger and Strahm [27]. Given a name x and an op-
eration (f : < → <) this theory provides a name m(x, f) of a universe, a type
that contains only names and is closed under the basic type generators, so that
(f : m(x, f) → m(x, f)) and x ∈̇ m(x, f). This reflection principle (Mahlo axiom)
then allows to prove that for a suitable closed term hier, hier(f, w) represents a hi-
erarchy for the operation (f : < → <) along a linear ordering w that looks like a
well-ordering in a universe above m(w, f).

To comply with the nature of explicit mathematics, we aim for a uniform pseudo-
hierarchy principle: There is a closed term psh, such that (f : < → <) implies that
psh f is a triple (h, w, k), where w is the name of a linear ordering that looks like
a well-ordering in a universe above m(w, f), h represents a hierarchy for f along w
and k is the name of a type K that is open at the bottom. Again, this principle
is provable in the theory EMA†

0. Its additional axiom, the assertion ¬TI�(U, ϕω00),
excludes that the class O := {α ∈ Field(�) : Wo(��α)} is a type. Otherwise, O were
the least type which is a fixed point of the accessible part operation mapping X to
{α ∈ Field(�) : (∀β�α)(β ∈ X)}, and we could adapt the well-ordering proof for ID1

to show TI�(U, ϕω00). Given an operation (f : < → <), the Mahlo axiom provides
a universe c with (f : c → c). Hence, for universes a, b with c ∈̇ b ∈̇ a, Oa is a proper
subset of Ob, simply because Ob is a type in a whereas Oa is not. Consequently,
there is a least α0 ∈ Field(�) w.r.t. the standard ordering on N, such that ��α0

looks like a well-ordering in the universe b above c, but is only a linear ordering.
Therefore, hier(f, ��α0) is a pseudo-hierarchy for f , and K := Field(�) − Oa is a
type open at the bottom.

Another theme we focus onto is (transfinite) dependent choice. In second order
arithmetic, (Σ1

1-DC) claims the existence of choice sequences along <N for Σ1
1 formu-

las A(U, V), provided that ∀X∃Y A(X, Y), whereas (Σ1
1-TDC) claims the existence

of choice sequences along arbitrary well-orderings. In contrast to a hierarchy, where
the αth level is uniquely determined by the levels below α and an operation F A,
a choice sequence has to satisfy A((G)≺α, (G)α), so out of the possibly many sets
meeting A((G)≺α, Y), one has to be chosen. Thus, dependent choice can be seen as
a combination of iteration and choice. This perception of dependent choice enables
to construct choice sequences for arithmetical formulas A(U, V) in KPi0 extended
by an appropriate iteration principle. The assertion that the admissible sets distin-
guished by the predicate Ad(x) are linearly ordered by ∈ allows to select uniformly
a witness Y for a given parameter X such that A(X, Y) (cf. subsection III.1.6):
The linearity of the class {x : Ad(x)} provides an ∈-least admissible above X that

6 Introduction

still contains witnesses Z with A(X, Z). However, such a witness corresponds to a
path through a tree T A

X ∈ a. The rightmost path through T A
X that is left to all paths

F ∈ a through T A
X then yields a witness Y with A(X, Y). Moreover, this witness is

obtained in a uniform way exploiting the linearity of admissibles. So a Σ operation
fA′

can be found that assigns to X this particular set Y and the existence of a choice
sequence now follows from the existence of a hierarchy for the operation fA′

.

The view of (transfinite) dependent choice as a combination of iteration and choice
also motivates our implementation of dependent choice in explicit mathematics (cf.
III.3.4) by dividing it into an axiom for (transfinite) iteration and one for choice:
To state the choice rule, we extend the language by a constant ch, a term that is
to choose a name of a fixed point of a term f , provided there exists one. For each
finite set Γ of Lch formulas, we have:

(ch)
Γ, ∃x[<(x) ∧ fx =̇ x]

Γ,<(chf) ∧ chf =̇ f(chf)
.

If for instance A(U, V) is an elementary formula, then there is a closed term t such
that <(X, x) and <(Y, y) imply

t(x, y) =̇ {z : (A(X, Y) ∧ z ∈ Y) ∨ (¬A(X, Y) ∧ z /∈ Y)}.

Given <(X, x) and <(Y, y), we have λz.t(x, z) y =̇ y if and only if A(X, Y). More-
over, chλz.t(x, z) names a specific witness if there is one: <(W, chλz.t(x, z)) yields
A(X, W).
Indeed, the suggested form of (transfinite) dependent choice leads to theories of
the expected strength. Combined with the iteration principle (itN) which allows
to iterate operations along <N, we have EETJ0 + (itN) + (ch) = ϕω0 = |Σ1

1-DC0|,
and replacing (itN) by (it) which provides hierarchies along arbitrary well-orderings
yields EETJ0 + (it) + (ch) = ϕω00 = |ACA0 + (Σ1

1-TDC)|. The lower bounds are
obtained by embedding the corresponding theories of second order arithmetic, and
the upper bounds are computed constructing (partial) models, making use of ideas
and techniques developed in [27].

This thesis is organized in the following way: In chapter I, we fix the languages and
theories. A notation system based on the ternary Veblen function is presented, some
words on partial cut-elimination are said and the proof-theoretic ordinal of a theory
is motivated and defined.
Chapter II gives an extensive introduction to pseudo-hierarchies in second order
arithmetic and provides plenty of applications of pseudo-hierarchy arguments. First,
we review how Σ1

1 formulas relate to trees, which leads to normal forms of Σ1
1 and

Π1
1 formulas and yields that being a well-ordering is not expressible by a Σ1

1 formula,
a crucial result for the existence of pseudo-hierarchies. Further, we develop the

Introduction 7

standard results about the jump-hierarchy and the hyperarithmetical sets. Then, we
analyze a conservative extension of the iteration principle (ATR), namely an iteration
principles (∆1

1-TR) for operations defined by a ∆ formula. Next, we combine the
fixed point construction from [2] with techniques developed in Jäger [21] to reason
about fixed points of non-monotone operations. Our research on the relationship
between fixed points and hyperarithmetical sets reveals that there are operations,
given by positive arithmetical formulas, that have no fixed points in HYP and thus,
due to the Kleene-Souslin Theorem, also no ∆1

1 definable fixed points. Finally, we
show that for a positive arithmetical formula A(U+, u), Σ1

1-AC0 proves that the
Π1

1 definable class FixA :=
⋂
{X : F A(X) ⊆ X} is a fixed point of the operation

F A, which gives rise to a new embedding of ÎD1 into Σ1
1-AC. Its advantage over

Aczel’s embedding of ÎD1 into Σ1
1-AC, known as Aczel’s trick (cf. Aczel [1] and

Feferman [11]), is that it extends to the initially mentioned embedding of ID∗
1 into

Σ1
1-DC. Moreover, Σ1

1-DC proves that FixA is the least Π1
1 definable fixed point of

the operation F A.

Chapter III eventually exhibits how pseudo-hierarchy arguments can be applied
outside the framework of second order arithmetic. Section III.1 introduces a pseudo-
hierarchy principle for admissible set theory which then is applied to analyze the
theory KPi0 + (Σ-fp′). Further, we comment on the relationship between iteration,
linearity of admissibles and dependent choice.
Section III.2 focuses on admissible sets. The language of KPi0 is equipped with a
relation symbol Ad(u) that distinguishes a class Ad := {x : Ad(x)} of admissibles.
To reason about the collection of all admissible sets, not just the ones distinguished
by the predicate Ad(u), we introduce a ∆0 formula PAd(u) expressing that the set
u is a transitive model of KPu0 + (IN). A slight modification yields a ∆0 formula
Addc(u), which claims that u is admissible and in addition satisfies dependent choice.
Relying heavily on pseudo-hierarchy arguments, we link the class

hypx :=
⋂

{y : x ∈ y ∧ PAd(y)},

the intersection of all admissibles above x, to the constructible hierarchy by showing
that hypx =

⋃
α∈on(hypx) L

x
α, where on(hypx) denotes the set of all ordinals in hypx

and Lx
α is the αth level of the constructible hierarchy above x. As a consequence,

we obtain that strengthening KPi0 by an assertion that the class {x : PAd(x)} is
linearly ordered by ∈, leads to a theory with the same strength as ∆1

2-CA0 and KPir,
respectively (cf. Jäger [20]). Then, we consider an axiom (∆0-dc) corresponding
to (Σ1

1-DC) and argue that KPu0 extended by Π2 reflection on transitive models of
KPu0 + (IN) + (∆0-dc) is another theory of strength meta-predicative Mahlo.
In section III.3, we finally present a uniform pseudo-hierarchy principle for the theory
EMA0. Besides, we propose and analyze a form of dependent choice suitable for
subsystems of explicit mathematics.

8 Introduction

Acknowledgements

First, I wish to thank my Ph.D. advisor Professor Gerhard Jäger. He initially offered
me the opportunity to immerse into the fascinating realm of proof theory and has
provided invaluable advice throughout the genesis of this thesis. He would not miss
to guide my attention towards promising problems, while at the same time giving
me the freedom to wander in the direction my work would take me.

I would also like to thank Professor Andrea Cantini for his careful refereeing of my
thesis and his useful feedback.

I am grateful to PD Dr. Thomas Strahm. At all times, he had an open ear for my
questions. His comprehensive and profound knowledge ever was a valuable source
of useful advise, adjuvant information or helpful references.

I owe a lot to Dr. Thomas Studer who has always been a patient, attentive and
critical first listener to my proof-ideas. Without him, [33] had not been written.

I appreciate the computer support provided by Mathis Kretz and Peppo Brambilla.

I thank the present and former members of our research group and the people from
the coffee break for the good time.

I acknowledge the financial support of my work by the Swiss National Science Foun-
dation and the University of Bern.

Last but not least I would like to thank my friends and colleagues for their manifold
support. Being with them, I could dump my frustrations in exchange for inspiration,
distraction and comfort.

Dieter Probst
Bern, September 2005

Chapter I

Languages, theories and provable
ordinals

Artists can color the sky red because they know it’s blue. Those
of us who aren’t artists must color things the way they really
are or people might think we’re stupid.

Jules Feiffer

The purpose of this chapter is mainly to fix the notation. After we agree on some
general conventions, the languages and theories of this thesis are introduced and
some of their basic properties are mentioned. Then, a notation system based on the
ternary Veblen function is presented, some words on partial cut-elimination are said
and the proof-theoretic ordinal of a theory is motivated and defined. You probably
want to skip this chapter on your first reading and come back if you encounter
unfamiliar terms. Precise references are provided in the index.

I.1 General conventions

In this section, we collect most of the meta-mathematical abbreviations and nota-
tional conventions that we make use of in the remainder of this thesis.

I.1.1 Mathematical reasoning and formal proofs

The objects of our research are formal theories. On the one hand, we argue within a
formal theory to derive a particular formula of the language of some formal theory T,
applying only the axioms and rules of T. To keep this thesis readable, we hardly ever
give formal derivations in the strict sense, but work informally in a formal theory T.
Rather then writing a proof in the language L of T, we use a mixture of English and L
to present our arguments. However, for a reader with some experience with formal

9

10 Chapter I. Languages, theories and provable ordinals

proofs, it should always be clear how to translate our demonstrations into pure
formal derivations. On the other hand, we apply general mathematical reasoning
to prove a statement about some formal theory. We forgo to specify the exact
requirements of a meta-theory that subsumes the notion of general mathematical
reasoning, but simply assume it is based on classical logic and strong enough to
carry out all our arguments.

We always try to be clear whether we work in a formal theory or the meta-theory.
To facilitate the distinction, we use N always for the set of natural numbers of the
meta-theory, and given two mathematical meaningful statements A and B, A =⇒ B
expresses that A implies B by general mathematical reasoning. Moreover, A ⇐⇒ B
means that A =⇒ B and B =⇒ A.

I.1.2 Notational conventions

We use the vector notation ~ς to denote finite strings ς1, . . . , ςn of symbols whose
length is not important or given by the context. It is possible that ~ς is the empty
string ε. Sometimes, we stretch the vector notation a bit and write, for example, ∀~x
instead of ∀x1, . . . , ∀xn and ~u ∈ U for u1 ∈ U ∧ . . . ∧ un ∈ U . In connection with
the vector notation, the letters i, j are often implicitly used as index variables: Let
~u such that ui has the property P , is a lazy way to state that all symbols u of the
string ~u have the property P . Given expressions X , Y and Z, we write X [Y/Z] for
the result of substituting simultaneously all occurrences of Z in X by Y.
Square brackets are used for alternatives. For example, “[¬](t ∈ U) is a literal” is
to express that both, (t ∈ U) and ¬(t ∈ U), are literals, and “A [A′] implies B [B′]”
is a shortcut for “A implies B” and “A′ implies B′”.

I.1.3 Sets, functions and relations

Regarding sets, functions and relations, we apply the standard terminology: N de-
notes the natural numbers and ∅ the empty set. For the ordered pair {{x}, {x, y}}
of x, y, we write (x, y), and (x1, . . . , xn+1) is defined as (x1, (x2 . . . , xn+1)). Fur-
ther, x1 × . . . × xn denotes the Cartesian product of x1, . . . , xn, namely the set
{(u1, . . . , un) : u1 ∈ x1, . . . , un ∈ xn}. In addition, x1 := x, and xn+1 := x × xn.
Other frequently used operations on sets are intersection, union and difference
x − y := {u ∈ x : u /∈ y}. For subsets of the natural numbers, usually denoted
by X, Y, Z, . . ., we also define the complement X := {x ∈ N : x /∈ X}. The powerset
P(x) consists of all subsets y of x. If two sets x and y contain the same elements,
then we abbreviate this by x = y; x ⊂ y and x ⊆ y express that x is a subset of y
and if x is a proper subset of y we indicate this by x (y. Moreover, we call a set x
transitive, in symbols Tran(x), if (∀y ∈ x)(y ⊆ x).

I.1 General conventions 11

A subset R of x1 × . . . × xn is called an n-ary relation on x1, . . . , xn. Instead of
(u1, . . . , un) ∈ R, we often write R(~u). The field Field(R) of R is the set of all u,
for which there exist ~v with R(~v) and u = vi for some 1 ≤ i ≤ n. The range
Rng(R) of R is the set {v : ∃~uR(~u, v)} and the domain Dom(R) of R is the set
{(u1, . . . , un−1) : ∃vR(~u, v)}. The restriction of a relation R to x, written R�x, is
simply the intersection of R with x. If R ⊆ xn, we call R an n-ary relations on x.
If, in addition, y ⊆ x, then we write R�y for R�yn.
A n+1-ary relation R is called an n-place function, if for all sets ~x, y, R(~x, y) and
R(~x, z) forces y = z. Then working in the meta-theory, functions are usually denoted
by the letters f, g, h. Moreover, (f : x → y) states that f is a function with domain
x whose range is a subset of y.

I.1.4 Orderings, trees and ordinals

Unless explicitly mentioned, the term ordering refers to linear irreflexive orderings.
We call a pair (x, R) a linear irreflexive ordering, if R ⊆ x×x, and for all u, v, w ∈ x,
the following properties hold:

1. R(u, v) ∧ R(u, w) → R(u, w) (Transitivity),

2. R(u, v) ∨ u = v ∨ R(v, u) (Comparability),

3. ¬R(u, u) (Irreflexivity).

We consider mainly (linear irreflexive) orderings of the form (Field(R), R), and sim-
ply speak of the ordering R. In the sequel, orderings are usually denoted by ≺.
Moreover, we write � for the reflexive closure of ≺, i.e. u � v if and only if
u ≺ v ∨ (u = v ∧ u ∈ Field(≺)). By Lin(≺), we express that ≺ is a linear ordering,
and Lin0(≺) states that ≺ is a linear ordering with a least element, usually denoted
by 0≺ or just ≺.
If ≺ is an ordering and u ∈ Field(≺), we write ≺�u for ≺�{v : v ≺ u}. Further, ≺′

is an initial segment of the ordering ≺, if ≺′=≺ or if there exists an u ∈ Field(≺),
such that ≺′=≺�u. In the latter case, ≺′ is called a proper initial segment of ≺. A
subset x of the field of an ordering ≺ is called downward [upward] closed, if u ∈ x
and v ≺ u [u ≺ v] implies v ∈ x. Moreover, if min≺{v : u ≺ v} exists, it is denoted
by u +≺ 1, or u+1 for short, also called the successor of u w.r.t. ≺. A function f is
called a order-isomorphism between ≺ and ≺′, if f is a bijection from the field of ≺
to the field of ≺′, and

∀u, v[u ≺ v ↔ f(u) ≺′ f(v)].

Two orderings ≺ and ≺′ are said to be comparable, if there is an order isomorphism
f between one and an initial segment of the other. This order isomorphism is called

12 Chapter I. Languages, theories and provable ordinals

the comparison map between ≺ and ≺′. Alternatively, we say that f compares ≺
and ≺′.

An ordering ≺ is a well-ordering, denoted by Wo(≺), if each non-empty subset of
its field has a ≺-least element, i.e.

(∀u ⊆ Field(≺))[u 6= ∅ → (∃v ∈ u)(∀w ≺ v)(w /∈ u)].

Alternatively, if x ⊆ Field(≺), we say that x is well-ordered by ≺ if ≺�x is a well-
ordering. A more general notion that applies to arbitrary binary relations is well-
foundedness. A binary relation R ⊆ x × x is called well-founded on x, denoted by
Wf(R), if every non-empty subset of x has a R-minimal element:

(∀y ⊂ x)[y 6= ∅ → (∃z ∈ y)(∀w ∈ y)((w, z) /∈ R)].

A tree T = (x, R) is a pair consisting of a set x of nodes and a relation R ⊆ x × x
such that x has a R-least element, called the root of T , and for each y ∈ x the set
{z ∈ x : R(z, y)} is well-ordered by R. The R-maximal elements of x, i.e. all u ∈ x
such that for no v ∈ x, R(u, v) holds, are called leafs of the tree T . A path through
tree T = (x, R) is a function (f : N → x) such that f(0) is the root of T and for all
n ∈ N, {f(0), . . . , f(n)} = {x : R(x, f(n+1)}. A tree is called well-founded if it has
no path.

Later on, we use ordinals to measure the proof-theoretic strength of theories. An
introduction to ordinals can be found e.g. in Pohlers [28]. Ordinals, usually denoted
by lower case Greek letters α, β, γ, . . ., are hereditarily transitive sets that are well-
founded by the elementhood relation ∈. If ≺ is a well-ordering, there is precisely
one ordinal α such that ≺ is isomorphic to ∈�α, called the ordertype of ≺. The class
of all ordinals is denoted by ON.

The successor of an ordinal α is α ∪ {α}, also denote by α+1. Ordinals of the form
α+1 are called successor ordinals, the other ordinals beside ∅ are called limits or
limit ordinals, often denoted by λ. Finally, we write 0 for ∅, if we regard it as the
least element of ON. We conclude this subsection by mentioning a well-known proof-
technique, transfinite induction along a well-ordering ≺ or a well-founded relation
R:

Lemma I.1.1 (Transfinite Induction) If ≺ is a well-ordering and R a well-
founded relation on Field(R), then we have:

1. (∀u ∈ Field(≺))[(∀v ≺ u)(v ∈ x) → (u ∈ x)] → Field(≺) ⊆ x,

2. (∀u ∈ Field(R))[∀v(R(v, u) → v ∈ x) → (u ∈ x)] → Field(R) ⊆ x.

I.1 General conventions 13

I.1.5 Recursive and primitive recursive functions and rela-
tions

In this paragraph we review the [primitive] recursive functions and relations on
N. The class PRIM of primitive recursive functions is defined inductively by the
following clauses:

1. For all natural numbers m, n ∈ N and 0 ≤ i < n, the successor function
s(x) := x+1, the constant functions csn

m(x1, . . . , xn) := m and the projections
prni (x1, . . . , xn) := xi are in PRIM.

2. If (f : Nm → N) and (~g : Nn → N) are elements of PRIM, then also the
composition Comp(f,~g)(~x) := f(g1(~x), . . . , gm(~x)) of f and ~g.

3. If (f : Nn → N) and (g : Nn+2 → N) are elements of PRIM, then also
the function (Rec(f, g) : Nn+1 → N) obtained from f and g by applying the
schema of primitive recursion: Rec(f, g)(0, ~y) := f(~y) and in the successor
case, Rec(f, g)(x+1, ~y) := g(Rec(f, g)(x, ~y), x, ~y).

So PRIM is the smallest class of functions containing the basic functions s, csn
m

and prni that is closed under composition and the schema of primitive recursion.
Primitive recursive functions are total functions: Their domain is always of the
form Nn. In contrast, the domain of a n-ary partial recursive function f may be a
proper subset of Nn. Thus, for ~x ∈ N, f(~x) may not be defined, which is expressed
by f(~x)↑, and models the fact that some computations do not terminate. If f(~x)
returns a natural number, then we indicate this by f(~x)↓.

The class REC of partial recursive functions contains the same basic functions as
PRIM, but besides composition and primitive recursion, it is also closed under the
µ-schema:

4. If (f : Nn+1 → N) is an element of REC, then also the (partial) function
(µ.f : Nn → N), given by the following case distinction:

µ.f(~x) :=

{
z : f(z, ~x) = 0 ∧ (∀y < z)[f(y, ~x)↓ ∧ f(y, ~x) > 0],

↑ : otherwise.

A (total) function (f : N → {0, 1}) is often called a characteristic function. An
n-ary relation R(~x) is called [primitive] recursive, if there is a [primitive] recursive
characteristic function, such that R(~x) if and only if f(~x) = 0. A relation R(~x) is
recursively enumerable, if there exists a partial recursive function f with domain R,
i.e. if R(~x) holds, if and only if f(~x)↓.

14 Chapter I. Languages, theories and provable ordinals

I.1.6 Some primitive recursive functions and relations

Most of the languages used in this thesis provide function and relation symbols for
all primitive recursive functions and relations. Below we distinguish some primitive
recursive functions and relations that play an important role in the sequel:

1. ([·, ·] : N2 → N) is a bijective pairing function with associated projections [·]0
and [·]1, mapping natural numbers to natural numbers such that [[x, y]]0 = x,
[[x, y]]1 = y and x = [[x]0, [x]1].

2. In order to code finite sequences of natural numbers we introduce for each
n ∈ N a function (〈·, . . . , ·〉 : Nn → N), given by

〈x0, . . . , xn−1〉 :=

{
1, if n = 0,
∏n−1

i=0 p(i)xi+1, if n > 0,

where in this paragraph, p(i) denotes the ith prime, starting with p(0) := 2.
Note, that the constant 〈〉 for the empty sequence in an other name for the
constant 1. Further, (lh : N → N) is a function satisfying lh(〈〉) = 0 and
lh(〈x0, . . . , xn−1〉) = n, for all n and ~x. The projection function (π : N2 → N)
is to meet the condition π(〈x0, . . . , xn−1〉, i) = xi for 0 ≤ i ≤ n. Instead of
π(s, i), we write (s)i, and (s)i,j is a shortcut for ((s)i)j. The unary relation seq
consists of the codes of the finite sequences,

x ∈ seq :⇐⇒ x =
∏

i<lh(x)

p(i)(x)i+1,

and seq0,1 consists of all the codes x of the finite 0, 1-sequences, i.e. x ∈ seq
and (∀i < lh(x))((x)i ∈ {0, 1}).

Often, we do not require the pairing function to be bijective. Then, we regard
pairs as sequences of length 2.

3. By ∗ we denote a primitive recursive function that assigns to the codes of two
finite sequences the code of the concatenation of these two sequences: For all
~x, ~y, 〈~x〉 ∗ 〈~y〉 = 〈~x, ~y〉. 〈~x〉 v 〈~y〉 is the binary relation indicating that ~x is
an initial segment of the sequence ~y. The symbol < is used for proper initial
segments.

4. The Kleene-Brouwer ordering <KB is the following primitive recursive ordering
on seq: For x, y ∈ seq, x <KB y if either y < x, or if

(∃j < min{lh(x), lh(y)})[(x)j < (y)j ∧ (∀i < j)(x)i = (y)i].

I.1 General conventions 15

Thus, x is smaller than y w.r.t to the Kleene-Brouwer ordering, if x extends
the sequence y, or if at the first position i where the sequences differ, (x)i is
smaller than (y)i. If we are only interested in the Kleene-Brouwer ordering as
a set, we denote it simply by KB. Further, if S is a subset of seq, we write
KB(S) or <KB(S) for <KB�S.

I.1.7 Indices for the [primitive] recursive functions and re-

lations

The class [Prim] Rec of indices of [primitive] recursive functions is defined below.
Thereby, we follow basically the presentation in [22]. Note that for an index e in
[Prim] Rec, (e)1 denotes the ariety of the corresponding function. For subsequent use,
we include additional indices 〈10+n, 1〉 (n ∈ N). Later on, these indices are regarded
as characteristic functions of set parameters, but for the time being, 〈10+n, 1〉 are
indices of the function cs1

0.

1. The indices 〈0, 1〉, 〈1, n, m〉 and 〈2, n, i〉 of the functions s, csn
m and prni are in

[Prim] Rec. Further, for each n ∈ N, 〈10+n, 1〉 are also indices of the function
cs10. In subsection II.1.1 theses indices are regarded as characteristic functions
of set parameters.

2. If a,~b with (a)1 = m and (bi)1 = n are indices in [Prim] Rec of f and ~g, then

also the index 〈3, n, a,~b〉 of Comp(f,~g).

3. If a, b with (a)1 = n+2 and b = n are indices in [Prim] Rec of f and g, then
also the index 〈4, n+1, a, b〉 of Rec(f, g).

4. If a with (a)1 = n+1 is an index of f in Rec, then also the index 〈5, n, a〉 of
µ.f .

In the next chapter, formulas that are universal for a certain class of formulas are
required. Since such formulas are built upon Kleene’s T -predicate, we recall briefly
its definition.

Kleene’s T -predicate is a primitive recursive relation T (e, 〈~y〉, z), expressing that
e ∈ Rec and that z is a “proof” that the computation of the (partial) recursive
function with index e terminates on input ~y and yields (z)0,2 as result. Thereby,
a “termination proof” z is a finite sequence of triples of the form 〈e′, 〈~x〉, r〉 with
the intended meaning that the function with index e′ yields the result r on input ~x.
The sequence z starts with the triple 〈e, 〈~y〉, (z)0,2〉, and unless this triple expresses
a true statement about the successor, a projection or a constant function, i.e. is
an “axioms”, all the subsequent triples are justifications of this first or subsequent
statements which are not “axioms”. For example, a “proof” of 〈〈3, 1, a, b〉, 〈y〉, z〉

16 Chapter I. Languages, theories and provable ordinals

consists of a “proof” of 〈a, 〈w〉, z〉 and 〈b, 〈y〉, w〉. This allows to regard each e as a
partial recursive function by defining {e}(~x) := y if there exists a sequence z, such
that T (e, 〈~x〉, z) and (z)0,2 = y, and {e}(~x)↑ otherwise.

I.2 Languages, theories and structures

In this section, we define the languages L1 and L2 of first and second order arith-
metic, the language L∗ of Kripke-Platek set theory and the language L of explicit
mathematics. Then, we introduce Tait-style calculi and fix the axiomatizations of
Peano Arithmetic PA and the semi-formal system PA∗, basic set theory BS0, Kripke-
Platek set theory KPu0, the subsystems ACA and ACA0 of second order arithmetic
and the base system EETJ0 of explicit mathematics. We specify our notion of proof,
(standard) structures and models, and comment on issues like embeddings, the dis-
pensability of primitive recursive function symbols and some syntactic extensions of
our languages.

I.2.1 Languages, theories and structures

A language L is characterized by a set of symbols. The first order languages we
consider comprise infinitely many symbols for variables of a first sort, which we de-
note by lower case Latin letters a, b, c, d, e, k, l, m, n, u, v, w, x, y, z, the second order
languages comprise in addition infinitely many variables of a second sort, denoted by
F, G, H, K, L, M, N, S, U, V, W, X, Y, Z. There are symbols for constants (0-ary func-
tion symbols) and symbols for functions and relations, logical symbols ∼,∧,∨, ∀, ∃
and auxiliary symbols (,). Each variable of the first sort and each constant is a term,
and if f is an n-ary function symbol and t1, . . . , tn are terms, then also f(t1, . . . , tn)
is a term. In the sequel, we let r, s, t, range over terms.

The atoms of a language L are the expressions of the form R(X1, . . . , Xm, t1, , . . . , tn),
where R is a relation symbol of the appropriate ariety for each sort. A literal is an
atom A or its negation ∼A. All literals are formulas, and with A, B, also (A ∨ B),
(A ∧ B), QxA, and dependent on the existence of a second sort of variables, also
QXA, where Q ranges over the quantifiers ∀, ∃. Henceforth, we us mainly the letters
A, B, C, D to denote formulas.

The negation ¬A of a formula A is defined by making use of De Morgan’s laws
and the law of double negation. As usual, A → B abbreviates ¬A ∨ B and A ↔ B
stands for (A → B)∧(B → A). Also ∃!xA(x) is used to express that there is exactly
one x with A(x), i.e. ∃xA(x) ∧ ∀x, y[A(x) ∧ A(y) → x = y]. ∃!XA(X) is defined
accordingly. The set of subformulas Sufo(A) of a formula A of some language L is
defined inductively by Sufo(A) := {A}, if A is a positive or negative atom, if A is

I.2 Languages, theories and structures 17

of the form B ∧ C or B ∨ C, then Sufo(A) := Sufo(B) ∪ Sufo(C) ∪ {A}, and if A is
the formula QxB(x) [QXB(X)], then we set Sufo(A) := {B(t) : t term of L} ∪ {A}
[Sufo(A) := {B(U) : U a variable of L} ∪ {A}]. Subformulas of A that are different
from A are called proper subformulas of A.

The set of all variables that occur in a term t is denoted by FV (t). Its elements
are called free variables of t. Each variable that occurs in a literal A occurs free in
A, and no variable occurs bound in a literal. The set of variables that occur free
[bound] in A is denoted by FV (A) [FB(A)]. If A is of the form B ∨ C or B ∧ C,
then FV (A) := FV (B) ∪ FV (C) and FB(A) := FB(B) ∪ FB(C). If A is of the
form QxB [QXB], then FV (A) := FV (B) − {x} [FV (A) := FV (B) − {X}] and
FB(A) := FB(B) ∪ {x} [FB(A) := FB(B) ∪ {X}]. Note, that in general the sets
FV (A) and FB(B) are not disjoint. A contains u free is used as a synonym for u
occurs free in A. Sometime, we refer to variables occurring free in a formula also as
free variables or as number and set parameters. Finally, a term without free variables
is called closed, and a sentence is a formula that contains no free variables. Note,
that we do not distinguish syntactically between free and bound variables. However,
we manly use the letters X, Y, Z, x, y, z for bound variables and parameters.

Often, we introduce a formula as B(~U, ~u). The formula B(~X, ~x) is then obtained

by replacing simultaneously ~U, ~u by ~X, ~x. However, the notation B(~U, ~u) does not

imply that B(~U, ~u) actually contains all the variables ~U, ~u free or that it does not
contain additional free variables. Finally, a formula B(U) is called positive in U , or
U -positive, denoted by B(U+), if B contains no subformula of the form t /∈ U .

An L-structure for a first [second] order languages L is a pair M = (M, I) [a triple
M = (M,SM , I)], where M is the intended range of the first order variables and
SM the range of the second order variables. Thereby, we require that M and SM are
non-empty, disjoint and that SM is a subset of P(M). I specifies the interpretation
of the function and relation symbols: If f is an n-ary function symbol, then (I(f) :
Mn → M), and for a relation symbol R(U1, . . . , Um, u1, . . . , un), I(R) is a subset of
Sm

M × Mn. Further, we say that the structure M = (M, I) [M = (M,SM , I)] is
countable, if M and SM are countable.

Next, we explain the notion of satisfaction. A valuation E for M is a function that
maps variable symbols of the first [second] sort to M [SM]. To simplify the notation,
we write fM, RM, and uE , UE instead of I(f), I(R) and E(u), E(U). Moreover, for
m ∈ M , E [u = m] updates the evaluation E by replacing the pair (u, uE) in E by
(u, m). If m ∈ SM , then E [U = m] is defined analogously. To each term t, we assign
a value ME(t), namely tE if t is a variable, tM if t is a constant and fM(ME(~s)) if
t is the term f(~s). Inductively on the build-up of formulas, we define below when
M satisfies A under the valuation E , denoted by (M, E) |= A.

If R(~U,~t) is an atom, then (M, E) |= A, if RM(ME(~t), ~UE) holds, otherwise we

18 Chapter I. Languages, theories and provable ordinals

have (M, E) |=∼A. For formulas A, B, (M, E) |= A ∨ B [(M, E) |= A ∧ B] if
(M, E) |= A or (M, E) |= B [(M, E) |= A and (M, E) |= B], (M, E) |= ∀xA(x)
[(M, E) |= ∃xA(x)] if for all m ∈ M , (M, E [u = m]) |= A(u) [if there is an m ∈ M
such that (M, E [u = m]) |= A(u)] and accordingly for ∀XA(X) [∃XA(X)]. If
(M, E) |= A for all valuations E , then we write M |= A and say that A holds in the
structure M.

I.2.2 Theories

In this thesis, a theory T is a set of Tait-style axioms and rules (cf. [44]), which are
used to derive finite sets of formulas, denoted by Γ, ∆, Λ. The intended meaning
of Γ is thereby the disjunction

∨
Γ of all its elements. Further, Γ, A is used as an

abbreviation for Γ ∪ {A} and Γ, ∆ stands for Γ ∪ ∆. The free variables FV (Γ) of Γ
is the set

⋃
{FV (A) : A ∈ Γ}.

We assume that the theory T is formulated in some language L. A Tait-style axiom
is then a finite set Γ of formulas of L, and a rule R is a scheme of the form

(R)
Γi for all i ∈ I

Γ
,

where Γ and Γi are finite sets of L formulas; the sets Γi (i ∈ I) are called the
premises and Γ the conclusion of the rule R. A rule without premises is called
axiom. A theory that consists of a recursive set of Tait-style axioms and rules,
where all rules have only finitely many premises, is called a formal theory, a theory
which possesses rules with infinitely many premises is called semi-formal (cf. [39]).
If each formula in a Γi is the subformula of a formula in Γ, the theory T has the
subformula property. For the theories considered in this thesis, axioms and rules are
introduced in one of the following forms,

Γ, C1, . . . , Cn
Γ, A1, . . . , An

Γ, C
or

Γ, Ai for all i ∈ I

Γ, C
.

The distinguished formulas C1, . . . , Cn in the axiom and the formula C in the con-
clusion of the rules are called main formulas of the corresponding axiom or rule,
whereas the formulas in the sets Γ are referred to as side formulas. Often, we do
not mention the side formulas then introducing an axiom or a rule. The rules of
our formal theories only comprise rules with one or two premises, the semi-formal
systems comprise in addition rules with infinitely many premises.

Below, we define the notion of proof, also called derivation, in a [semi-] formal theory
T.

Definition I.2.1 (Proof) A proof of a set of formulas Γ in a theory T is a well-
founded tree D = (x, R) together with a labeling function f that assigns to the root

I.2 Languages, theories and structures 19

of D the set Γ, all leafs of D are mapped to axioms and if u ∈ x is not a leaf and I
is the set of R-successors of u, then

f(v) : v ∈ I

f(u)

is a rule of T.

A common complexity measure for a proof is the depth of the corresponding tree and
its cut-rank. Thereto, we presuppose a rank function, that assigns to each formula A
of L an ordinal rk(A), called the rank of A, such that for all formulas rk(A) = rk(¬A).
A rule of the form

Γ, A Γ,¬A

Γ

is then called a cut with cut formulas A and ¬A and cut-rank rk(A).

Definition I.2.2 (Depth and cut-rank of proofs) For all ordinal α and ρ, and
all sets ∗ of L formulas closed under negation, we define T

α

ρ
Γ and T

α

∗
Γ by

recursion on α:

(i) If Γ is an axiom of T, then T
α

∗
Γ and T

α

ρ
Γ for all ordinals α and ρ.

(ii) If T
αi

ρ
Γi [T

αi

∗
Γi] and αi < α hold for all premises Γi of a rule that is not

a cut, or a cut whose cut-rank is less than ρ [a cut, whose cut-formulas A,¬A
are elements of the set ∗], then T

α

ρ
Γi holds for the conclusion of this rule.

We write T ` Γ if there are ordinals α′, ρ′ such that T
α′

ρ′
Γ and T

<α

<ρ
Γ, if there

are ordinals α′ < α, ρ′ < ρ, such that T
α′

ρ′
Γ.

T
α

ρ
Γ expresses that there is a proof of the finite set Γ in T of depth α that only

contains cuts with rank less than ρ, and T
α

∗
Γ tells us that the proof of Γ has

depth less than α and contains only cuts whose cut-formulas are in ∗. Note, that
if T is a formal theory and T ` Γ, then there is already an n such that T

n
Γ. In

other words, proofs in formal theories are finite trees.

If the theory T is formulated in the language L, we call the L-structure M a model
of T, also written M |= T if for all axioms Γ of T, M |= Γ and for each rule R, if
M |= Γi for each premise Γi of the rule R, then also M |= Γ for the conclusion Γ of
this rule. Further, we say that M is countable, if the structure M is countable.

20 Chapter I. Languages, theories and provable ordinals

I.2.3 The languages L1 and L2 of first and second order arith-
metic

The languages L1 and L2 serve to speak about the natural numbers and subsets of
the natural numbers, respectively. Our language L1 of first order arithmetic consists
of infinitely many number variables, function and a relation symbol of ariety (e)1 for
each index e ∈ Prim and in addition, two unary relation symbols U and V, required
for technical reasons. Unless explicitly mentioned, the function symbol with the least
index of the primitive recursive function f is meant, then referring to the function
symbol for f , and a corresponding convention applies to the primitive recursive
relation symbols. We use s, + and · for the function symbols of successor, addition
and multiplication. For each natural number we have a constant csn, but often write
0, 1, 2, . . . instead of cs0, cs1, cs2, . . ., unless we like to stress that csi is a closed term
and not an element of N. The relation symbol for the natural numbers is N; <N and
=N are the symbols for the standard ordering and the equality relation on N. Often
however, we drop the subscript N. The letters f, g, h, . . . , are meant to range over
primitive recursive function symbols, whereas Q, R, . . . are to range over primitive
recursive relation symbols. Our language L2 for second order arithmetic extends L1

by infinitely many set variables and a symbol ∈ for elementhood, where t /∈ U is
short for ∼ (t ∈ U). If R is a unary relation symbol, we sometimes write t ∈ R and
t /∈ R for R(t) and ∼R(t), respectively. U = V stands for ∀x[x ∈ U ↔ x ∈ V] and
U 6= V for ¬(U = V). Further, if A(U) and B(u) are formulas of L2, then we write
A({x : B(x)}) for the formula that is obtained from A(U) by replacing each literal
of the form [∼](t ∈ U) in A by [∼]B(t).

The L1-structure (N, ·N), where ·N assigns to each primitive recursive function [rela-
tion] symbol the corresponding function [relation] and UN = VN = ∅, is called the
standard structure for L1, and the L2-structure (N,P(N), ·N), where now ∈N is the
standard elementhood relation, is the standard structure for L2. Often, we simply
use N to refer to either of these standard structures. Further, we say that a formula
is true [false] if N |= A [N 6|= A].

If A(u) is a formula of L1 or L2, x a number variable and t a number term that
does not contain x, then we use (∀x < t)A(x) [(∃x < t)A(x)] as a shortcut for
∀x(x < t → A(x)) [∃x(x < t ∧ A(x))]. The quantifiers (∀x < t) and (∃x < t) are
called (numerically) bounded quantifiers. Formulas that are built up from literals
by means of the connectives ∧ and ∨ and (numerically) bounded quantifiers are
called Π0

0, Σ0
0 or also ∆0

0 formulas. If A is a Π0
k [Σ0

k] formula, then A and ∃xA [∀xA]
are Σ0

k+1 [Π0
k+1] formulas. If A is a formula of L2 that does not contain bound set

variables, then we refer to A as an arithmetical formula, and sometimes also as Π1
0,

Σ1
0 or also ∆1

0 formula. If A is a Π1
k [Σ1

k] formula, then A and ∃XA [∀XA] are Σ1
k+1

[Π1
k+1] formulas. The class of Π formulas of L2 is then the smallest class containing

I.2 Languages, theories and structures 21

the arithmetical formulas which is closed under conjunction, disjunction, number
quantification and universal set quantification. If A is a Π formula, then ¬A is a Σ
formula.

Sets (in the meta-mathematical sense) are classified accordingly. If M = 〈M,SM〉 is

a structure for L2 and A(~U, u,~v) is e.g. a Π1
1 formula of L2 with exactly the displayed

variables free, then Y is called Π1
1 in ~X w.r.t. M, if there are ~m ∈ M , such that

Y = {x : (M, E [~U = ~X, u = x,~v = ~m]) |= A(~U, u,~v)}.

If ~X is the empty string, then Y is simply called Π1
1. The number parameters in

the defining formula A(~U, u,~v) are required, since we do not have constants for all
elements in M but all the same want {m} to be a definable set for each m ∈ M .

For k > 0, a set is ∆0
k in ~X [∆1

k in ~X] w.r.t. M, if it is Π0
k [Π1

k] and Σ0
k [Σ1

k]

in ~X. Occasionally, we also speak of ∆0
k and ∆1

k formulas. This notion does not
syntactically describe a class of formulas, but is rather a manner of speaking: By
C(u) is ∆1

1 for instance, we meant there is a Π1
1 formula A(u) and a Σ1

1 formula
B(u), which both may contain additional free variables such that A, B and C are
equivalent.

I.2.4 The language L∗ of Kripke-Platek set theory

The intended use of the language L∗ of Kripke-Platek set theory is to speak about
a universe of sets with the natural numbers as urelements. Urelements are objects
that are outright given to us. They do not contain any elements and are no sets. The
language L∗ = L1(∈,S) is an extension of L1 by the membership relation symbol ∈
and a unary relation symbols S to distinguish sets from urelements. Since primitive
recursive function symbols hardly ever play a role in a formal argument in Kripke-
Platek set theory, we also use the letters f, g, h to denote variables.

Then working in the language L∗, we apply the following short cuts: Equality be-
tween objects is not represented by a primitive symbol, but defined by

(s = t) :=

{
(s ∈ N ∧ t ∈ N ∧ (s =N t)) ∨

(S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s)).

Further, u = N abbreviates ∀x[x ∈ u ↔ N(x)] and ~u ∈ S is an other way to say
S(~u). As usual, u ⊆ v states that u is a subset of the set v, formally, u ⊆ v is
short for S(u) ∧ S(v) ∧ (∀x ∈ u)(x ∈ v). The quantifiers (∀x ∈ a) and (∃x ∈ a) are
called (setwise) bounded quantifier. The formula Au is then the result of replacing
each (setwise) unbounded quantifier Qx(. . .) in A by a (setwise) bounded quantifier
(Qx ∈ u)(. . .), where (∀x ∈ u)B is to abbreviate ∀x(x ∈ u → B) and (∃x ∈ u)B

22 Chapter I. Languages, theories and provable ordinals

stands for ∃x(x ∈ u∧B). Accordingly, for a finite set Γ of L∗ formulas, Γu represents
the set {Au : A ∈ Γ}. Further, we use Tran(u) to express that u is a transitive set,
Fun(u) says that u is a function, Dom(u) denotes the set {x : ∃y[(x, y) ∈ u]} and
Rng(u) the set {y : ∃x[(x, y) ∈ u]}. Then working in L∗, we tend to use the variables
f, g, h to range over functions, and the variables a, b, c as parameters.

Again, formulas that are built up from literals by means of the connectives ∧ and ∨
and (setwise) bounded quantifiers are called ∆0 formulas. The formula classes Πk,
Σk, ∆ as well as Σ and Π are then defined in analogy to the corresponding classes
of L1 formulas.

I.2.5 The language L for explicit mathematics

As the language L2, the language L for explicit mathematics has two sorts of vari-
ables: The lower case variables are called individual variables and the upper case
variables type variables. L is obtained from L2 in the following way: First we drop
the symbols for the primitive recursive functions and relations, keeping only the
constants csn and the unary relation symbols N, U, V. Then additional constants
k, s (combinators), p, p0, p1 (pairing and projections), sN (successor), pN (predeces-
sor), dN (definition by numerical cases) as well as constants called generators, which
will be used for the uniform representation of types, namely, nat, csU, csV (natural
numbers, U, V), id (identity), co (complement), int (intersection), dom (domain), inv
(inverse image) and j (join) are added. Further, there is one binary function symbol
· for (partial) application of individuals to individuals, a unary relation symbols ↓
(defined), a binary relation symbol = (equality on individuals) and a binary relation
symbol < (naming, representation).

The atoms of L are s↓, N(s), s = t, s ∈ U and <(U, s). Since we will work with
a logic of partial terms, it is not guaranteed that all terms have values, and the
intended meaning of s↓ is s is defined or s has a value. Moreover, N(s) says that s
is a natural number, and the formula <(U, s) is used to express that the individual
s represents the type U or is a name of U . We agree to abbreviate s · t simply
as st and adopt the convention of association to the left, so that s1s2 . . . sn stands
for (. . . (s1s2) . . . sn). General n-tupling is defined by induction on n ≥ 2 as follows:
(s1, s2) := ps1s2 and (s1, . . . , sn+1) := (s1, (s2, . . . , sn+1)). Further, we write t+1
for sNt and t↑ for ∼t↓ and define the notion of partial equality between individuals,
s ' t := s↓ ∨ t↓ → s = t.

A formula is called elementary, if it contains neither the relation symbol < nor
bound type variables. The Π and Σ formulas are defined as for the language L2.
Additional formula classes are the Σ+ formulas, i.e. Σ formulas that contain no
subformula of the form ∼ <(X, t) and the Π− formulas, i.e. Π formulas that do not
contain subformulas of the form <(X, t).

I.2 Languages, theories and structures 23

I.2.6 First and second order predicate logic and the logic of
partial terms

With the exception of the theories formulated in L or extensions thereof, which are
built upon Beeson’s [5] logic of partial terms, the underlying logic of the theories
introduced later on is classical first or second order predicate logic. The axioms and
rules of a theory T regarding the underlying logic are called the logical axioms and
rules of T, all the other axioms and rules are referred to as non-logical axioms and
rules. For a theory T, the formulas that T can reason about are called the formulas
of T. Often, if T is formulated in some language L, then the formulas of T are all
the L formulas, but sometimes they may consist of a proper subset, e.g. only the
closed formulas of L. The sets of relation symbols, function symbols and terms of T
are defined accordingly.

Below we list the logical axioms and rules of a theory T based on first or second
order predicate logic. Thereby, Γ, ∆ and Λ range over finite sets of formulas of T,
and A, B, C range over formulas of T.

Basic axioms. For each Γ and each atom A:

Γ, A,¬A.

Propositional rules. For each Γ and each A, B:

Γ, A

Γ, A ∨ B

Γ, B

Γ, A ∨ B

Γ, A Γ, B

Γ, A ∧ B

Quantifier rules. For each ∆, Γ with u /∈ FV (∆) and, if T comprises second order
formulas also for each Λ with U /∈ FV (Λ), each A and each term s of T:

Γ, A(s)

Γ, ∃xA(x)

∆, A(u)

∆, ∀xA(x)

Γ, A(U)

Γ, ∃XA(x)

Λ, A(U)

Λ, ∀XA(X)

Cut rules. For each Γ and each A:

Γ, A Γ,¬A

Γ

The formulas A and ¬A are the cut formulas of the cut.

The logic of partial terms comprises additional axioms for the relation symbol ↓ and
has a different rule for the first order existential quantifier that takes into account the
possible non-definedness of terms. All the other rules are inherited from predicate
logic.

Axioms for ↓. For each Γ, all individual variables u, constants c, individual terms ~t,
relation symbols R and function symbols f of T:

Γ, u↓, Γ, c↓, Γ,∼f(~t)↓,~t↓, Γ,∼R(~X,~t),~t↓,

24 Chapter I. Languages, theories and provable ordinals

where for ~t = t1, . . . , tn, ~t↓ abbreviates t1↓ ∧ . . . ∧ tn↓.

Existential number quantification. For each Γ and each individual term t of T:

Γ, A(t) Γ, t↓

Γ, ∃xA(x)
.

To conclude this paragraph, we remark that the logical axioms and rules do not
distinguish a symbol = that is to be interpreted as equality on the first order objects.
Instead, = or =N are binary relation symbols of our theories, and only the axioms
and rules of T ensure that = or =N are interpreted as equivalence relations on their
intended domain.

I.2.7 Peano Arithmetic

The most prominent first order theory is of course Peano Arithmetic PA. It is used
to reason about the natural numbers. Its non-logical axioms and rules are part of
most of the other theories we introduce, thus we treat them in detail. Besides the
axioms and rules of first order predicate calculus, PA comprises axioms for all the
primitive recursive functions and relations and induction along the natural numbers.

The theory PA is formulated in L1 and the formulas of PA are all the L1 formulas.
Its non-logical axioms and rules are listed below:

Equality axioms. Making use of the shortcut ~s = ~t for
∧

1..n(si = ti), the equality
axioms take the following form: For all finite sets Γ of L1 formulas and all function
and relation symbols f and R of L1,

Γ, u = u, Γ, ~u 6= ~v, f(~u) = f(~v),

Γ, ~u 6= ~v,∼R(~u), R(~v).

Axioms for the primitive recursive functions and relations. If e ∈ Prim ⊆ N, we let fe

be a function symbol of the function {(m, n) : {e}(m) = n}. Similarly, if e ∈ Prim
is an index of a characteristic function, then Re denotes the relation symbol of the
corresponding relation. Below we write s for f〈0,1〉.

For all finite sets Γ of L1 formulas we have the following axioms:

1. The successor axioms:
Γ, 0 6= s(u) and Γ, s(u) = s(v) → u = v and for all n ∈ N: Γ, s(csn) = csn+1.

2. Axioms for the constant functions:
Γ, fe(u1, . . . , un) = csm, if e = 〈1, n, m〉 ∈ Prim.

I.2 Languages, theories and structures 25

3. Axioms for the projections:
Γ, fe(u1, . . . , un) = ui, if e = 〈2, n, i〉 ∈ Prim.

4. Axioms for the composition of functions:
Γ, fe(u1, . . . , un) = fa(fb1(u1, . . . , un), . . . , fbm

(u1, . . . , un)),
if e = 〈3, n, a, b1, . . . , bm〉 ∈ Prim.

5. Axioms for the schema of primitive recursion:
Γ, fe(0, u2, . . . , un) = fa(u2, . . . , un) and
Γ, fe(s(u1), u2, . . . , un) = fb(fe(u1, u2, . . . , un), u1, u2, . . . , un),
if e = 〈4, n, a, b〉 ∈ Prim.

6. Axioms for the primitive recursive relations:
Γ, Re(~u) ↔ fe(~u) = 0, if e ∈ Prim is an index of a characteristic function.

Induction along the natural numbers. For all finite sets Γ of L1 formulas and all
formulas A(u) of L1, we have:

(INDN) Γ, A(0) ∧ ∀x[A(x) → A(x+1)] → ∀xA(x).

I.2.8 The semi-formal systems PA∗

Due to Gödel’s second incompleteness theorem, the formal theory PA is incomplete
w.r.t. the standard structure N, which means that there are true sentences that we
cannot prove. On the other hand, the semi-formal system PA∗ introduced below is
designed in such a way, that the quantified number variables range always over N,
which forces completeness. The completeness of PA∗ w.r.t. to N is shown easily
applying the technique of deduction chains, cf. e.g. [28]. The price we pay to prove
all true sentences is the presence of an ω-rule, a rule with ω many premises, which
turns proofs into infinite objects; the depth of a proof may be greater than ω.

The semi-formal system PA∗ is formulate in the language L1. The formulas of PA∗

are the closed formulas of L1. In order to state the axioms and rules of PA∗, we
assign to each closed number term t of L1 its value tN in the standard model and
say that two literals are numerically equivalent if they are syntactically equivalent
modulo subterms which have the same value. The true [false] literals of L1 are the
closed literals of L1 that evaluate to true [false] in the standard model.

Axioms of PA∗. For Γ, all true literals A and all numerically equivalent literals B
and C of PA∗:

Γ, A and Γ,¬B, C

26 Chapter I. Languages, theories and provable ordinals

The rules of PA∗ are the rules of first order predicate logic with the rule for the
universal number quantifier replaced by the so-called ω-rule:

Γ, A(t) for all closed number terms t

Γ, ∀xA(x)
(ω-rule).

I.2.9 The theories BS0 and KPu0

The theory KPu0 is formulated in the language L∗ and the formulas of KPu0 are all
the L∗ formulas. Its non-logical axioms can be divided into the following groups.

Ontological axioms. We have for all terms r, ~s and t of L1, all function symbols H
and relation symbols R of L1 and all finite sets of L∗ formulas Γ:

1. Γ, u ∈ N ↔ ¬S(u),

2. Γ, ~u /∈ N,H(~u) ∈ N,

3. Γ,∼R(~u), ~u ∈ N,

4. Γ, u /∈ v,S(v),

5. Γ, ∃x(x = N).

Number-theoretic axioms. We have for all axioms ∆(~u) of Peano arithmetic PA which
are not instances of the schema of complete induction and whose free variables belong
to the list ~u and all finite sets of L∗ formulas Γ:

(Number theory) Γ, ~u /∈ N, ∆N(~u).

Equality axioms. For the natural numbers the equality axioms are inherited from PA.
That x and y have the same elements if x = y is due to the definition of =. Still,
an equality axiom for sets is needed.

(Equality) Γ, u = v ∧ u ∈ w → v ∈ w.

Kripke Platek axioms. We have for all ∆0 formulas A(u) and B(u, v) of L∗:

(Pair) Γ, ∃x(w ∈ x ∧ v ∈ x),

(Tran) Γ,S(w) → ∃x(w ⊆ x ∧ Tran(x)),

(∆0-Sep) Γ, ∃y(S(y) ∧ y = {x ∈ w : A(x)}),

(∆0-Col) Γ, (∀x ∈ w)∃yB(x, y) → ∃z(∀x ∈ w)(∃y ∈ z)B(x, y).

I.2 Languages, theories and structures 27

Set induction. The only induction principle included in the axioms of KPu0 is the
following axiom of complete induction on the natural numbers for sets: For all finite
sets of L∗ formulas Γ,

(S-IN) Γ, 0 ∈ u ∧ (∀x ∈ N)(x ∈ u → x+1 ∈ u) → N ⊆ u.

The theory BS0, called basic set theory, is KPu0 without the axiom (∆0-Col) for ∆0

collection. If we replace set induction by formula induction, i.e. for all finite sets Γ
of L∗ formulas and all formulas A(u) of L∗:

(IN) Γ, A(0) ∧ ∀x(A(x) → A(x+1)) → ∀xA(x),

then the resulting theories are simply named BS0+(IN) and KPu0+(IN), respectively.
Later in this thesis, we also consider foundation as an additional axiom, claiming
that each non-empty set has an ∈-least element,

(I∈) Γ, ∅ (u → (∃x ∈ u)(x ∩ u = ∅).

The theory KPu0 + (I∈) goes under the name KPur (cf. [20]). Below, we gather
some elementary properties of KPu0. For proofs, we refer the reader to Barwise [3].

Lemma I.2.3 (Σ Reflection) For each Σ formula A of L∗, we have:

KPu0 ` A ↔ ∃xAx.

In fact, the Σ reflection principle is equivalent to (∆0-Col). Next, we mention two
useful strengthenings of the separation and collection axioms.

Lemma I.2.4 (∆ Separation) For each Σ formula A(u) and each Π formula B(u)
of L∗, the following is provable in KPu0:

(∀x ∈ w)[A(x) ↔ B(x)] → ∃y[y = {z ∈ w : A(z)}].

Lemma I.2.5 (Σ Collection) For each Σ formula A(u, v) of L∗, the following is
provable in KPu0:

(∀x ∈ w)∃yA(x, y) → ∃z(∀x ∈ w)(∃y ∈ z)A(x, y)

Combining the previous to lemmas yields another neat consequence, which comes
in handy then working in KPu0.

Lemma I.2.6 (Σ Replacement) For each Σ formula A(u, v) of L∗, the following
is provable in KPu0:

(∀x ∈ w)∃!yA(x, y) → ∃f [Fun(f) ∧ Dom(f) = w ∧ (∀x ∈ w)A(x, f(x))].

28 Chapter I. Languages, theories and provable ordinals

I.2.10 ACA and ACA0: Second order theories with arithmeti-
cal comprehension

Most of the theories of second order arithmetic that play a role in this thesis are
extensions of ACA0. The acronym ACA stands for arithmetical comprehension. The
axioms of ACA assert the existence of subsets of N which are definable from given sets
by arithmetical formulas. The non-logical axioms and rules of ACA0 are the axioms
and rules of PA without induction adapted to the language L2, the aforementioned
comprehension axioms and an axiom for set induction:

Arithmetical comprehension. For all finite sets Γ of L2 formulas and each arithmetical
formulas A(u) of L2 with X, x /∈ FV (A):

Γ, ∃X[∀x(x ∈ X ↔ A(x))].

Set induction. For all finite sets Γ of L2 formulas:

Γ, 0 ∈ U ∧ ∀x(x ∈ U → x+1 ∈ U) → ∀x(x ∈ U).

The theory ACA is obtained from ACA0 by replacing the axiom for set induction by
an axiom for formula induction.

Formula induction. For all finite sets Γ of L2 formulas and all formulas A(u) of L2:

Γ, A(0) ∧ ∀x(A(x) → A(x+1)) → ∀xA(x).

Sometimes, we consider restrictions of formula induction. By (K-INDN) we denote
the restriction of the above axiom schema, where the formula A has to be an element
of the formula class K.

Sets in theories comprising ACA0 are meant to be subsets of N. However, one
often likes to speak about relations and functions, which are subsets of Nn, or even
sets of sets. A bit of coding makes this possible: For sets ~X, we define the product
X1× . . .×Xn to be the set {〈x1, . . . , xn〉 :

∧
1≤i≤n(xi ∈ Xi)}. Thus, an n-ary relation

R can be identified with the set {〈~x〉 : R(~x)} and an n-ary function f is coded as
{〈~x, y〉 : f(~x) = y}. Moreover, (X)k denotes the set {x : 〈x, k〉 ∈ X}. Hence X can
be seen as the collection of the sets {(X)k : k ∈ N}. This motivates the abbreviation
Y ∈̇ X for the formula ∃z[Y = (X)z]. Finitely many sets X1, . . . , Xn are coded into

a single one by forming their disjoint union ⊕ ~X :=
⋃

1≤i≤n{〈y, csi〉 : y ∈ Xi}.
Further, (∀Y ∈̇ X)A(X) [(∃Y ∈̇ X)A(X)] is a shortcut for ∀zA((X)z) [∃zA((X)z)],

and X =̇ Y is to express that ∀Z[Z ∈̇ X ↔ Z ∈̇ Y]. X /̇∈ Y and X ˙6= Y are defined
accordingly. To any formula A of L2 with Z /∈ FV (A), we assign an arithmetical
formula AZ by replacing each second order quantifier ∀X and ∃X by (∀X ∈̇ Z)
and (∃X ∈̇ Z), respectively. In AZ, the range of the set quantifiers is restricted to

I.2 Languages, theories and structures 29

elements of Z w.r.t. the ∈̇ relation. If ≺ is an ordering and K ⊆ Field(≺), we denote
by (X)≺K the disjoint union of the sets (X)β for β ≺ K, namely.

(X)≺K := {〈x, β〉 : β ≺ K ∧ x ∈ (X)β},

where β ≺ K abbreviates that β is ≺-smaller than all the elements of K. Finally, if
K ⊆ Field(≺) is of the form {α}, we write (X)≺α instead of (X)≺{α}.

I.2.11 The theory EETJ0

Explicit mathematics has been introduced by Feferman [8, 9, 10] for the study of
constructive mathematics. We will not work with Feferman’s original formalization
of these systems; instead we treat them as theories of types and names as developed
by Jäger [18]. All the systems of explicit mathematics that will be used in the
subsequent chapters are extensions of the base theory EETJ0 of explicit elementary
types and join introduced below, which is based on Beeson’s logic of partial terms.
The theory EETJ0 is formulated in L. To state its non-logical axioms and rules, we
use the following abbreviations:

<(s) := ∃X<(X, s),

s ∈̇ t := ∃X(<(X, t) ∧ s ∈ X),

s ⊆̇ t := (∀x ∈̇ s)(x ∈̇ t),

s =̇ t := s ⊆̇ t ∧ t ⊆̇ s,

(f : N → N) := ∀x(N(x) → N(fx)),

Equality axioms. For all finite sets Γ of L formulas and all relation symbols R of L:

Γ, u = u, Γ, u1 = v1 ∧ u2 = v2 → u1u2 ' v1v2,

Γ, ~u = ~v ∧ R(~U, ~u) → R(~U,~v).

Axioms for the constants csn. For each natural number n ∈ N we have

csn+1 = csn+1.

Applicative axioms. These axioms formalize that the individuals form a partial com-
binatory algebra, that we have pairing and projection, the usual closure conditions
on the natural numbers and definition by numerical cases.

1. kuv = u,

2. suv↓ ∧ suvw ' uw(vw),

30 Chapter I. Languages, theories and provable ordinals

3. p0(u, v) = u ∧ p1(u, v) = v,

4. 0 ∈ N ∧ (∀x ∈ N)(x+1 ∈ N),

5. (∀x ∈ N)(x+1 6= 0 ∧ pN(x+1) = x),

6. (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)+1 = x),

7. u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x,

8. u ∈ N ∧ v ∈ N ∧ u 6= v → dNxyuv = y.

Explicit representation and extensionality. The following axioms state that each type
has a name, that there are no homonyms and that types containing the same ele-
ments have the same names.

1. ∃x<(U, x),

2. <(U, u) ∧ <(V, u) → U = V ,

3. <(U, u) ∧ U = V → <(V, u).

Basic type existence axioms. In the following we provide a finite axiomatization of
uniform elementary comprehension plus join.

1. <(nat) ∧ ∀x(x ∈̇ nat ↔ N(x)),

2. <(csU) ∧ ∀x(x ∈̇ csU ↔ U(x)) ∧ csU ⊆̇ nat,

3. <(csV) ∧ ∀x(x ∈̇ csV ↔ V(x)) ∧ csV ⊆̇ nat,

4. <(id) ∧ ∀x(x ∈̇ id ↔ ∃y(x = (y, y))),

5. <(u) → <(co(u)) ∧ ∀x(x ∈̇ co(u) ↔ x /̇∈ u),

6. <(u) ∧ <(v) → <(int(u, v)) ∧ ∀x(x ∈̇ int(u, v) ↔ x ∈̇ u ∧ x ∈̇ v),

7. <(u) → <(dom(u)) ∧ ∀x(x ∈̇ dom(u) ↔ ∃y((x, y) ∈̇ u)),

8. <(u) → <(inv(u, f)) ∧ ∀x(x ∈̇ inv(u, f) ↔ fx ∈̇ u),

9. <(u) ∧ (∀x ∈̇ u)<(fx) → <(j(u, f)) ∧ A(u, f, j(u, f)).

I.2 Languages, theories and structures 31

In this last axiom the formula A(u, v, w) expresses that w names the disjoint union
of v over u, i.e.

A(u, v, w) := ∀x[x ∈̇ w ↔ ∃y, z(x = (y, z) ∧ y ∈̇ vz ∧ z ∈̇ u)].

Type induction. We have complete induction on N for types.

(T-IN) 0 ∈ U ∧ (∀x ∈ N)(x ∈ U → x+1 ∈ U) → (∀x ∈ N)(x ∈ U).

This are all the axioms of EETJ0. If the axiom for join, the 9th of the basic type
existence axioms is omitted, we are left we the theory EET0.

In the original formulation of explicit mathematics, elementary comprehension is
not dealt with by a finite axiomatization but directly as an infinite axiom scheme.
The following result of Feferman and Jäger [12] shows that this scheme of uniform
elementary comprehension is provable from our finite axiomatization.

Lemma I.2.7 (Elementary comprehension) Suppose that A(~U, ~u, v) is an ele-
mentary formula of L with at most the displayed variables free. Then there exists a
closed term t of L such that EETJ0 proves:

∀ ~X, ~x, ~y[<(~X, ~x) → <(t(~x, ~y)) ∧ t(~x, ~y) =̇ {z : A(~X, ~y, z)}].

An other useful observation is that EETJ0 proves λ-abstraction, a recursion theorem
and a lemma about primitive recursion on N that allows us to model primitive
recursive function by closed terms of L.

Definition I.2.8 Let t be a term of L. Then (λx.t) is the term given by the following
inductive definition:

(i) (λx.t) := skk, if t = x,

(ii) (λx.t) := kt, if x is not a free variable of t,

(iii) (λx.t) := s(λx.s1)(λx.s2), if t = s1s2.

Lemma I.2.9 (λ-abstraction) If s, t are terms of L, then the following is provable
in EETJ0:

(λx.t)↓ and (λx.t)x ' t and (λx.t)s ' t[s/x].

Moreover, the free variables of (λx.t) are the free variables of t excluding x.

The next lemma helps us to find fixed points of operations in the specified sense.

32 Chapter I. Languages, theories and provable ordinals

Lemma I.2.10 (Recursion Theorem) There is a closed term rec of L such that
EETJ0 proves:

recy↓ ∧ recyx ' y(recy)x.

Applying the previous lemma helps to find a term modeling the schema of primitive
recursion.

Lemma I.2.11 (Primitive recursion on N) There is a closed term rN of L such
that EETJ0 proves:

(i) (u : N → N) ∧ (v : N3 → N) → (rNuv : N2 → N),

(ii) (u : N → N) ∧ (v : N3 → N) ∧ a, b ∈ N ∧ w = rNuv →

wa0 = ua ∧ wa(b+1) = vab(wab).

This allows us to assign to each primitive recursive function symbol f a closed term
f of L that represents this function in the following sense: Each main formula of
an axiom for the primitive recursive functions of PA (cf. subsection I.2.7) becomes
provable in EETJ0, provided the function symbols f are replaced by the correspond-
ing closed terms f. For instance, the L1 formula pr20(u, v) = u becomes the L formula
pr20(u, v) = u, where in the L formula, (u, v) denotes puv as defined in subsection
I.2.5.

Corollary I.2.12 For each e ∈ Prim ⊆ N, there is a closed term fe of L, such
that each main formula of an axiom for the primitive recursive functions of PA (cf.
subsection I.2.7) becomes provable in EETJ0, provided the function symbols fe are
replaced by the closed terms fe.

Proofs of these theorems can be found in Beeson [5] or Feferman [8].

I.2.12 Translations and embeddings

Sometimes, we need to compare theories T and T′ that are formulated in different
languages L and L′. All the same, we may wish to establish a relation between the
two theories, for instance that both theories prove “basically” the same formulas. To
make such a statement formally precise, we introduce translations and embeddings.

A translation from L to L′ is a function as described in the next paragraph, usually
denoted by ·∗, that maps finite sets of formulas of L to finite sets of formulas of L′.
We call a translation ·∗ an embedding of T into T′, if for all finite sets Γ of L, T ` Γ
implies T′ ` Γ∗. If this implication does not hold for all finite sets of L formulas but
only for a finite sets of formulas from a certain class K, when we say that ·∗ is an
embedding of T into T′ w.r.t. K formulas.

I.2 Languages, theories and structures 33

Many translations are induced by a pretranslation ·? that maps variables, terms
and atoms of L to variables, terms and formulas of L′ and formulas Vi, one for each
sort of L variables, that specify the range of the corresponding sort of variables.
Further, we assume that this pretranslation commutes with variable substitution,
i.e. for atoms A we presuppose (A[v/u])? = A?[v?/u?]. Then, the pretranslation
·? extends to all formulas of L in the expected way, e.g. for an atom A we define
(∼ A)? = ¬A?, and for formulas A, B we agree that (A ∧ B)? is A? ∧ B?, and
(∃uA(u))? is ∃u?(V1(u

?) ∧ A?(u?)). If L contains one sort of variables, the induced
translations ·∗ assigns to the finite set Γ(~u) of L formulas containing exactly the
variables ~u free, the finite set ¬V1(~u

?), Γ?(~u?) of L′ formulas, and if L contains two
sorts of variables, then we have that

(Γ(~U, ~u))∗ := ¬V1(~U
?),¬V2(~u

?), Γ?(~U?, ~u?).

Below, we define translations from the language L2 into L∗ and L. Of course, this
yields also translations from L1 into L∗ and L. We will refer to these translations as
standard translations throughout this thesis.

We start by giving a translation from L2 into L∗. Observe that L2 and L∗ comprise
the same function and relation symbols with the exception of the relation symbol S
of L∗. Due to the above considerations it suffices to define the pretranslation and
the formulas V1(U) and V2(u).

For number variables we set u?
i := u2i, and for set variables, we define U ?

i := u2i+1.
For number terms, (f(~t))? is given by f(~t?). If R is a primitive recursive relation
symbol, then the atom R(~t) is mapped to R(~t?) and to t ∈ U we assign t? ∈ U?. The
first order variables are to range over N, thus V1(u) := N(u) and the set variables
are interpreted as subsets of N, therefore V2(U) := U ⊆ N.

The translation ·∗ induced by the pretranslation ·? is an embedding from PA or ACA0

into KPu0.

Lemma I.2.13 For each finite set Γ of L1 formulas and each finite set ∆ of L2

formulas, we have that

PA ` Γ =⇒ KPu0 ` Γ∗ and ACA0 ` ∆ =⇒ KPu0 ` ∆∗.

Next, we are looking for a translation from L2 to L. This time, we define the
pretranslation ·? to map first order variables to individual variables and set variables
to type variables. Moreover, ·? is the identity on the constants csn. For terms t other
than variables, t? is defined inductively on the built-up of t: If e ∈ Prim ⊆ N, fe is
the function symbol for the primitive recursive function with index e and t is the
term fe(~s), then t? := fe(~s

?), where fe is the term provided by corollary I.2.12. As
pointed out there, the expression (~s?) in the L term fe(~s

?) is the tuple (s?
1, . . . , s

?
n).

34 Chapter I. Languages, theories and provable ordinals

If R is a primitive recursive relation symbol, ·? maps R(~t) to chR(~t?) = 0, where chR

is the closed term that represents the characteristic function of R. t ∈ U is mapped
to t? ∈ U?. Again V1(u) := N(u) and V2(U) := U ⊆ N. This time we have:

Lemma I.2.14 For each finite set Γ of L1 formulas and each finite set ∆ of L2

formulas,

PA ` Γ =⇒ EETJ0 ` Γ∗ and ACA0 ` ∆ =⇒ EETJ0 ` ∆∗.

I.2.13 On the dispensability of primitive recursive function

symbols

Beside the language L which only contains the binary function symbol · and the
constants csn, the function symbols of all the other languages introduced so far
are those for the primitive recursive functions. However, when working within a
theory T that comprises the axioms for the primitive recursive function and relation
symbols, function symbols with an ariety greater than 0 become superfluous. Instead
of working with a primitive recursive function symbol f(~u), we work with its graph
Rf := {(~u, v) : f(~u) = v}, for which there is a relation symbol. In this way some
technical arguments performed later in this thesis can be simplified. This paragraph
shows how to remove primitive recursive function symbols by embedding T into a
theory T− whose formulas contain no primitive recursive function symbols and no
constants.

It is straight forward to embed a theory T comprising the axioms for the primitive
recursive function and relation symbols into a corresponding theory T− whose for-
mulas contain no primitive recursive function symbols except constants. Thereto,
we first assign to each number term t of T a formula Valt(u), expressing that u is
the value of t. If t is a variable then Valt(u) := (u = t). If ~s are number terms
for which Val~s(~u) (our shortcut for Vals1

(u1) ∧ . . . ∧ Valsn
(un)) are already de-

fined, and f a primitive recursive function symbol with ariety bigger than 0, then
Valf(~s)(u) := (∃~y ∈ N)(Val~s(~y) ∧ Rf(~y, u)), where we take care that the variables
~y do not occur free in ~s. This induces a pretranslation on atoms of T. We set
(R(~U,~s))? := (∃~x ∈ N)[Val~s(~x) ∧ R(~U, ~x)]. V1(U) and V2(u) are not required.

The theory T− is then obtained from T by applying the translation induced by the
pretranslation ·? to all its axioms and rules. An induction on the depth of the proof
of a finite set Γ of formulas of T reveals that T ` Γ if and only if T− ` Γ?.

We can also get rid of the constants csn in a formula by adding to the above definition
of Valt(u) the clause Valcsn

(u) := Rcsn
(u) , where Rcsn

is a relation symbol for the set
{n}. The resulting translation ·?c then assigns to a formula A of T the formula A?c

of T that contains neither constants nor function symbols. Moreover, for all finite
sets Γ of formulas of T, the equivalence of

∨
Γ and

∨
Γ?c is provable in T.

I.2 Languages, theories and structures 35

I.2.14 Syntactical extensions of L2

To increase the readability of formal arguments, we enrich the expressibility of the
formal language by adding set terms, sequence and function variables and course
of value notations. Then working in a theory T formulated in L2 that comprises
the axioms and rules of ACA0, it often proves useful to equip the language L2 with
sequence variables σ, τ, ρ, . . . and function variables F ,G,H, The resulting lan-
guage is denoted by LF ,σ

2 . Simultaneously, we extend T to TF ,σ by axioms and rules
for sequence and function variables.

All number and sequence variables are number terms of LF ,σ
2 and if s,~t are number

terms of LF ,σ
2 , F a function variable and f an n-ary function symbol of L2, then

so are F(s) and f(~t), σ[s], U [s] and F [s]. The atoms of LF ,σ
2 are the formulas of

the form R(~s) and t ∈ U , where R is a primitive recursive relation symbol and ~s, t
range over terms of LF ,σ

2 . Formulas are built from literals as described in subsection
I.2.1. The sets of free sequence and function variables in a formula A are defined
analogously to the sets of free number and set variables.

The additional axioms for sequences and functions and the various forms of course
of value notations are listed below. Thereby, we denote by Fun(U) the formula

(∀x ∈ U)(x = 〈(x)0, (x)1〉) ∧ ∀x∃!y(〈x, y〉 ∈ U).

1. Γ, σ ∈ seq and Γ, Fun(F),

2. Γ, σ[u] v σ and Γ, lh(σ[u]) = min{u, lh(σ)},

3. Γ,F [0] = 〈〉 and Γ,F [u+1] = F [u] ∗ 〈F(u)〉,

4. Γ, U [0] = 〈〉 Γ, u /∈ U, U [u+1] = U [u]∗〈0〉 and Γ, u ∈ U, U [u+1] = U [u]∗〈1〉.

The quantifier axioms for the new sort of variables take the following form: For each
∆, Γ, Λ with σ /∈ FV (∆) and F /∈ FV (Λ), each A and each term s of LF ,σ

2 :

Γ, s ∈ seq Γ, A(s)

Γ, ∃σA(σ)

∆, A(σ)

∆, ∀σA(σ)

Γ, Fun(X) Γ, A(X)

Γ, ∃FA(F)

Λ, A(F)

Λ, ∀FA(F)

There is a straight forward embedding of TF ,σ into T: Similarly as in the previous
subsection, we define for each number term of LF ,σ

2 a formula Valt(u) of L2. Thereby
we assume that the variables denoted by uσ, uτ , . . . , UF , UG, . . . are pairwise distinct
and syntactically different from all variables without a subscript. Further, y does
not occur in any of the terms s, t.

1. Valt(u) := (u = t), if t is a term of L2,

2. Valσ(u) := (u = uσ),

36 Chapter I. Languages, theories and provable ordinals

3. ValF(s)(u) := ∃y(Vals(y) ∧ 〈y, u〉 ∈ UF),

4. ValU [t](u) := ∃y[Valt(y) ∧ u ∈ seq0,1 ∧ lh(u) = y ∧ (∀i < y)((u)i = 0 ↔ i ∈ U)],

5. ValF [t](u) := ∃y[Valt(y) ∧ u ∈ seq ∧ lh(u) = y ∧ (∀i < y)(〈i, (u)i〉 ∈ UF)],

6. Valσ[t](u) := ∃y, z[Valt(y) ∧ Valσ(z) ∧ u v z ∧ lh(u) = min{y, lh(z)}].

Again, this yields a pretranslation ·?: Variables F , σ are mapped to variables UF

and uσ of L2 so that no conflicts arise. If R is a primitive recursive relation symbol,
then R(~t) is mapped to ∃~x[Val~t(~x) ∧ R(~x)]. Further, we have VF (U) := Fun(U) and
Vσ(u) := u ∈ seq. The induced translation ·∗ is now an embedding of T into TF ,σ.
This allows us to shift tacitly from T to TF ,σ an back.

We conclude this subsection by a lemma that allows us to define functions F by
recursion within ACA0.

Lemma I.2.15 The following is provable in ACA0: If A(σ, u) is an arithmetical
formula of LF ,σ

2 , then

∀σ∃!xA(σ, x) → ∃F∀yA(F [y],F(y)).

Proof: By arithmetical comprehension, the set

G := {〈x, y〉 : ∃σ[lh(σ) = x ∧ (∀z < x)A(σ[z], (σ)z) ∧ A(σ[x], y)]}

exists. Now we show by set induction that Fun(G), i.e. ∀x∃!y〈x, y〉 ∈ G. We call
this function F and show by an other induction that ∀xA(F [x],F(x)). 2

I.3 Proof-theoretic basics

Proof-theorists want to compare theories in terms of “proof-theoretic strength”. To
obtain a linear ordering on theories, they assign to each theory T its proof-theoretic
ordinal |T|, which has a striking property: The existence of the proof-theoretic
ordinal |T|, or more precisely, the existence of a well-ordering on N of ordertype |T|,
is equivalent to the consistency of T. In this subsection, we review the fundamentals
necessary to detail and understand the concept of proof-theoretic ordinal. More on
this subject can be found e.g in [28] and [39].

I.3.1 A notation system based on the ternary Veblen func-

tion

A notation system for an ordinal Φ is a primitive recursive relation ≺ such that there
is an order-isomorphism |·|≺ : (N,≺) → (Φ,∈), together with primitive recursive

I.3 Proof-theoretic basics 37

functions +≺, ·≺ and exp≺, that perform addition, multiplication and exponentiation
on the codes of the ordinals below Φ, e.g. |α+β|≺ = |α|≺ +≺ |β|≺. A general theory
of notation systems can be found e.g. in Rogers [35].

To denote all the ordinals relevant for this thesis, a notation system based on the
ternary Veblen function suffices. Its development is sketched below.

The standard notation system up to the Feferman-Schütte ordinal Γ0 makes use of
the usual Veblen hierarchy generated by the binary function ϕ, starting off with
the function ϕ0β = ωβ, cf. Pohlers [28] and Schütte [39]. For larger notations,
one simply generalizes the definition principle of the usual binary ϕ function and
generates the ternary ϕ function inductively as follows:

1. ϕ0βγ := ϕβγ,

2. if α > 0, the ϕα0γ denotes the γth ordinal which is strongly critical w.r.t. all
functions λξ, η.ϕα′ξη for α′ < α,

3. if α > 0 and β > 0, then ϕαβγ denotes the γth common fixed point of the
functions λξ.ϕαβ ′ξ for β ′ < β.

For this thesis, we let Φ0 be the least ordinal which is closed w.r.t. the ternary
Veblen function. In [28] it is shown in detail how to obtain a primitive recursive
order relation on N whose ordertype is closed under the binary ϕ function. Similarly,
one constructs a primitive recursive order relation on N of ordertype Φ0, that we
denote in the sequel by �. We agree that |·|� : N → Φ0 is the corresponding
order-isomorphism, and ϕ�, +�, ·� and exp

�
, are the primitive recursive functions

performing the corresponding operations on the natural numbers N seen as codes of
the ordinals below Φ0.

Then working in a formal theory, we rarely distinguish between ordinals and their
codes or the primitive recursive function ϕ�, +�, ·�, exp

�
and the corresponding

functions ϕ, +, ·, exp acting on the ordinals: For example, if we regard x, y as ele-
ments of the field of �, then we write x+y for x +� y, and if α is the ordinal |n|�,
then we often use α for the constant csn. To emphasis that we look upon numbers
as elements of the field of �, we denote them by lower case Greek letters α, β, γ,

I.3.2 Cut-Elimination

It is the cut rule that makes it so hard to detect whether a theory is consistent or
not. At least for theories with the subformula property, a cut-free proof of 0 = 1 is
simply impossible, unless 0 = 1 is itself an axiom. Therefore, one is interested in an
effective procedure to transform a proof within a theory T into a cut-free proof. In

38 Chapter I. Languages, theories and provable ordinals

general, one has to resort to semi-formal systems and accept infinite proofs, however,
theses proofs can still be coded as recursive sets. If one can turn a proof of T into
a proof of PA∗, then the Cut-Elimination Theorem for PA∗ below yields a cut-free
proof, which in turn implies the consistency of T.

Definition I.3.1 (Natural rank) Let L be a language comprising one or two sorts
of variables. To each formula of L we assign its natural rank in the following way:

(i) rk(A) := 0 if A is a literal,

(ii) rk(A ∧ B) := rk(A ∨ B) := max{rk(A), rk(B)} + 1,

(iii) rk(QxA) := rk(A) + 1 and rk(QXA) := rk(A) + 1 if L comprises a second sort
of variables.

Then the following theorem is standard.

Theorem I.3.2 (Cut-Elimination I) Let T1 be the set of axioms and rules of
first or second order predicate logic and and T2 the axioms and rules of the logic of
partial terms. Then for each finite set Γ of Ti formulas (i ∈ {1, 2}), the following
holds:

T1
n

r+1
Γ =⇒ T1

2n

r
Γ and T2

n

r+1
Γ =⇒ T2

3n

r
Γ.

In particular, if Ti ` Γ, then there exists a natural number n such that already
Ti

n

0
Γ.

The two premises of the rule for the individual existential quantifier cause that the
depth of proofs grows a bit faster than in the case of predicate logic. Cut-elimination
holds also for the semi-formal theory PA∗.

Theorem I.3.3 (Cut-Elimination II) For each finite set Γ of formulas of PA∗,
the following holds:

PA∗ α

r+1
Γ =⇒ PA∗ 2α

r
Γ.

If a theory T comprises also non-logical axioms and rules, we no longer can eliminate
all the cuts. However, in many cases partial cut-elimination is still possible: When
we work in a theory whose underlying logic is predicate logic, and apply the standard
procedure to eliminate a cut of the form

Γ, ∀xA(x) Γ, ∃x¬A(x)

Γ
,

we need that for each finite set Γ of formulas of T, each term t of T and u /∈ FV (Γ),

(∗) T
n

m
Γ, A(u) =⇒ T

n

m
Γ, A(t).

I.3 Proof-theoretic basics 39

While this holds for predicate logic, it may fail in the presence of a theory T. For
example, if T is the theory PA as formulated in subsection I.2.6, then u = u is an
equality axiom, but 0 = 0 is not an axiom of T. However, a slight modification of T
fixes this problem. If Γ is an axiom of T, then for all terms t1, . . . , tn of T, we call
Γ[~t/~u] a substitution instance of Γ and

Γi[~t/~u] for all i ∈ I

Γ[~t/~u]
is a substitution instance of

Γi for all i ∈ I

Γ
.

Clearly, a substitution instance of an axiom Γ of T is provable in T. Similar, if for
all i ∈ I a substitution instance Γi[~t/~u] of the premises of a non-logical rule of T
are provable in T, then also Γ[~t/~u], provided the rule has not to meet conditions on
variables or side formulas.

We call a theory T closed under substitution, if T contains all substitution instances
of its non-logical axioms and rules. In many cases, the extension of a theory T by
all substitution instances of its axioms and rules does not prove more formulas than
T, but in this extension (∗) holds and partial cut-elimination becomes provable.

Theorem I.3.4 (Partial cut-elimination I) Let T be a formal theory which is
closed under substitution and whose underlying logic is predicate logic. Further, we
assume that ∗ is a set of formulas of T that is closed under negation and contains
the main formulas of all instance of the non-logical axioms and rules. Moreover, we
assume that each formula in ∗ has rank less than k. Then the following holds for all
natural numbers n, k, r and each finite set Γ of formulas of the language of T:

T
n

k+r+1
Γ =⇒ T

2n

k+r
Γ.

In particular, if T ` Γ, then already T
∗

Γ.

If the underlying logic of a theory T is the logic of partial terms, then partial cut-
elimination is slightly more difficult. To eliminate a cut whose cut formula is of the
form ∀xA(x), we now require that for each finite set Γ of formulas of T, each term
t of T and u /∈ FV (Γ),

(∗∗) T
n

m
Γ, A(u) =⇒ T

n

m
Γ,∼t↓, A(t).

Again, this holds for the logic of partial terms, but may fail in the presence of a
theory T. This time, we solve this problem as done in Glass and Strahm [17]: If Γ is
an axiom of T, then for all individual terms ~t, we call ∼~t↓, Γ[~t/~u] a faithful instance
of Γ and

∼~t↓, Γi[~t/~u] for all i ∈ I

Γ[~t/~u]
is a faithful instance of

Γi for all i ∈ I

Γ
.

40 Chapter I. Languages, theories and provable ordinals

We call a theory T closed under faithful substitution, if T contains all faithful in-
stances of its non-logical axioms and rules. As above, the extension of a theory T
by all faithful instances of its non-logical axioms and rules does in general not prove
more formulas than T, but (∗∗) holds and partial cut-elimination becomes provable.

Theorem I.3.5 (Partial cut-elimination II) Let T be a formal theory that is
closed under faithful substitution and whose underlying logic is the logic of partial
terms. Further, we assume that ∗ is a set of formulas of T that is closed under
negation and contains the main formulas of all instance of the non-logical axioms
and rules. Moreover, we assume that each formula in ∗ has rank less than k. Then
the following holds for all natural numbers n, k, r and each finite set Γ of formulas
of the language of T:

T
n

k+r+1
Γ =⇒ T

3n

k+r
Γ.

In particular, if T ` Γ, then already T
∗

Γ.

I.3.3 The proof-theoretic ordinal |T| of a theory T

The proof-theoretic ordinal |T| of a theory T is a measure of its proof-theoretic
strength. There are several reasonable ways to assign such an ordinal to a theory
T. Four, for many theories equivalent definitions, |T|1, . . . , |T|4 are presented below.
To be specific, we set |T| := |T|3.

For the subsequent definitions, we assume that T is formulated in some language
L and that there exists an embedding ·∗ of PA into T. Further, we presuppose a
Gödelization p·q for the terms and formulas of L1, that assigns to each term t and
formula A of L1 its Gödelnumber ptq and pAq, respectively. Moreover, we introduce
for each primitive recursive well-ordering ≺, the following L1 formulas:

Prog≺(U) := (∀x ∈ Field(≺))((∀y ≺ x)(y ∈ U) → (x ∈ U)),

TI≺(U, u) := Prog≺(U) → (∀y ≺ u)(y ∈ U).

1. The set of axioms and rules of a formal T is recursive, hence there is a ∆0
1

formula ProofT(u, v) of L1 which expresses that u codes a proof of the formula
with Gödelnumber v. Then, we have for each formula A of L1 that

T ` A∗ ⇐⇒ T ` (∃xProofT(x, pAq))∗.

Thus, T is consistent if and only if N |= consT, where consT is the following
L1 sentence excluding that there is a proof of the statement 0 = 1, namely
∀x¬ProofT(x, pcs0 = cs1q).

I.3 Proof-theoretic basics 41

It is well-known, that T or PA cannot prove consT. However, it turns out
that for many theories T, the sentence consT becomes provable in extensions
of PA by certain instances of transfinite induction. Thus, as a first possible
definition, we call the least ordinal α such that PA + TI�(U, α) ` consT, the
proof-theoretic ordinal of T, denoted by |T|1.

2. Gödel’s first incompleteness theorem shows that T does not prove all true
sentences. However, the stronger a theory T, the more true sentences become
provable. We choose the sentences TI�(U, α) as reference sentences and call
the least ordinal α such that T 6` (TI�(U, α))∗, the proof-theoretic ordinal of
T, denoted by |T|2.

3. It could be dangerous to define the proof-theoretic ordinal with respect to a
specific notation system as done in (i) and (ii). Therefore, we generalize the
above setting and say that T proves an ordinal α, if there exists a primitive
recursive well-ordering ≺ of ordertype α such that T ` (∀xTI≺(U, x))∗. The
least ordinal α that is not provable in T is then the proof-theoretic ordinal of
T, denoted by |T|3. This is the standard definition.

4. In contrast to a formal theory, the semi-formal system PA∗ is complete w.r.t.
the standard structure N, i.e. it proves all true sentences. Moreover, each true
sentence is already provable without applying the cut rule. This motivates to
call the least ordinal α such that for all finite sets Γ of L1 formulas,

T ` Γ∗ =⇒ PA∗ <α

0
Γ,

the proof-theoretic ordinal of T, denoted by |T|4. In this case, T is also called
α-equivalent to PA∗, formally expressed by T 'α PA∗ (cf. [25]).

For all sensible theories, in particular for all theories treated in this thesis, the four
aforementioned definitions of the proof-theoretic ordinal are equivalent. Below we
sketch that |T|2 ≤ |T|3 ≤ |T|4 and |T|2 ≤ |T|1 ≤ |T|4. For the theories T appearing
in this thesis, an inspection of their proof-theoretic analysis yields |T|2 = |T|4. Thus,
|T|1 = |T|2 = |T|3 = |T|4.

For all relevant theories we have |T|4 = ω · |T|4. If ≺ is a primitive recursive
well-ordering and Γ = ¬Prog≺(U), β ∈ U, then T ` Γ∗, implies PA∗ <α

0
Γ by

the definition of |T|4. Now Schütte’s famous Boundedness Lemma [39] yields that
β < |T|4, which then implies |T|3 ≤ |T|4. Trivially, we have |T|2 ≤ |T|3.
Since T cannot prove its own consistency, T cannot prove (TI�(U, |T|1))

∗, therefore
|T|2 ≤ |T|1. Moreover, if all closed L1 sentences of T have a cut-free proof in
PA∗ of depth less than |T|4, the argument sketched on page 70 in [28] reveals that
PA + TI�(U, α) ` consT. Thus, |T|1 ≤ |T|4.

For a further comment on the proof-theoretic ordinal, see also remark II.2.40.

42 Chapter I. Languages, theories and provable ordinals

Chapter II

Pseudo-hierarchies in second order
arithmetic

Beware of the man who won’t be bothered with details.
William Feather (1908 - 1976)

After reviewing the standard results about the jump-hierarchy and the hyperarith-
metical sets, we give an extensive introduction to pseudo-hierarchy arguments and
employ them to research various subsystems of second order arithmetic. We com-
bine the fixed point construction from [2] with techniques developed in Jäger [21] to
reason about fixed points of non-monotone operators and show that there are op-
erations, given by positive arithmetical formulas, that have no fixed points in HYP
and thus, by Kleene-Souslin Theorem, also no ∆1

1 definable fixed points. Finally,
we show that for a positive arithmetical formula A(U+, u), Σ1

1-AC0 proves that the
Π1

1 definable class FixA :=
⋂
{X : F A(X) ⊆ X} is a fixed point of the operator F A,

which leads to a new embedding of ÎD1 into Σ1
1-AC, which extends to an embedding

of ID∗
1 into Σ1

1-DC, settling an old question ask in Feferman’s article on Hancock’s
conjecture [11] about the upper bound of ID∗

1.

II.1 Preliminaries

First, we review the notion of universal formulas. Then, we elaborate on the rela-
tionship between trees, Π1

1 and Σ1
1 formulas and make explicit how a path trough

a tree representing a Σ1
1 formula yields a witness for the existential quantified set

variable. Next, coded finite axiomatizations of Σ1
1-AC and Σ1

1-DC are provided and
N-models are defined. It follows a detailed analysis of the jump-hierarchy before
we conclude with an introduction to hyperarithmetical sets. Most results are taken
form Simpson [40], but often, we prove a bit more and use a different notation. In
the sequel, we work mainly in subsystems of second order arithmetic and deal a lot

43

44 Chapter II. Pseudo-hierarchies in second order arithmetic

with linear orderings. Therefore, we agree to use lower case Greek letters not only
for elements in the field of the underlying ordering � of our notation system, but
use α, β, γ, . . . also as number variables to emphasis that they ranges over the field
of an ordering apparent from the context. The letter λ is then used for elements
with no immediate predecessor.

II.1.1 Universal formulas

A formula A(u, v) is called universal for a formula class K, or universal K for short,
if A(u, v) is itself a member of K and if for each formula B(u) in K, there exists a
natural number e such that

∀x[A(x, e) ↔ B(x)].

Universal formulas are used to enumerate an entire class of formulas, a property that
we require to perform diagonalization arguments or to state finite axiomatizations
for various theories.

It is a standard result of basic recursion theory that if L is the language L1 without
the relation symbols U, V, then the primitive recursive sets are precisely the sets
which are definable w.r.t. the standard model N by a ∆0

0 formula, the recursive sets
are exactly the ones which are ∆0

1, and recursive enumerable sets correspond to the
sets that are definable by a Σ0

1 formula of L. Thus, we have that for each Σ0
1 formula

A(u, v) of L, there exists an index e such that

∀x[A(x, e) ↔ {e}(x)↓].

Moreover, the L formulas {e}(x)↓ and {e}(x)↑ are universal Σ0
1 and Π0

1, respectively.

We want a corresponding result to be provable in ACA0. It is clear, that we need to
adjust the definition of {e}, since now indices for the characteristic functions of the
relation symbols U and V are required. We even go a step further and define partial
functions {e}X1,...,Xn. The idea is to regard 〈10, 1〉, 〈11, 1〉, 〈11+1, 1〉, . . . , 〈11+n, 1〉
as indices of the characteristic functions of U, V, X1, . . . , Xn (cf. subsection I.1.7).
Analogously to the proof that Kleene’s T -predicate is primitive recursive, one con-
structs a ∆0

0 formula T (U1, . . . , Un, u, v, w) of L2 such that ACA0 proves the following:

For all ~X, e, ~y, z, if T (~X, e, 〈~y〉, z), then e ∈ Rec and z is a “proof” that the computa-
tion of the (partial) function with index e terminates on input ~y and yields (z)0,2 as
result, where the indices 〈10, 1〉, 〈11+n, 1〉 are interpreted as mentioned above. Now,

we redefine {e}
~U(~u)↓ to stand for the Σ0

1 formula ∃z[(z)0 = 〈~u〉 ∧ T (~U, e, (z)0, (z)1)]

of L2 and {e}
~U(~u)↑ for its negation. This leads to the following definition:

II.1 Preliminaries 45

Definition II.1.1 (Universal Π0
1 formulas) For all k, l ∈ N, set variables ~U =

U1, . . . , Uk and number variables ~u = u1, . . . , ul, we set

π0
1,k,l(

~U, ~u, e) := {e}
~U(~u)↑.

The previously mentioned standard results from basic recursion theory carry over to
the present context. By induction on the build-up of Π0

1 formulas one easily shows
the following lemma.

Lemma II.1.2 (Universal Π0
1 formulas of L2) If A(U1, . . . , Uk, u1, . . . , ul, ~v) is a

Π0
1 formula of L2 with at most the displayed variables free, then the following is

provable in ACA0:

∀~y∃e∀ ~X, ~x[A(~X, ~x, ~y) ↔ π0
1,k,l(~X, ~x, e)].

Sometimes, the variant below is required.

Lemma II.1.3 If A(U1, . . . , Uk, u1, . . . , ul) is a Π0
1 formula of L2 with at most the

displayed variables free, then there is an e ∈ N, such that ACA0 proves

∀ ~X, ~x[A(~X, ~x) ↔ π0
1,k,l(

~X, ~x, cse)].

Having universal Π0
1 formulas at hand enables us to speak within ACA0 about sets

that are Π0
1, Σ0

1 or ∆0
1 in X. For instance, that Y is Π0

1 in ~X is expressed in ACA0

by ∃e[Y = {x : π0
1(~X, x, e)}], and that a set Y is ∆0

1 in ~X is formulated as

∃e, e′[Y = {x : π0
1(

~X, x, e) = ¬π0
1(

~X, x, e′)}].

Observe also, that the definition of the universal formula π0
1,k,l(

~U, ~u, v) entails that

¬π0
1,k,l(

~X, ~x, e) is equivalent to (∃e ∈ Rec)({e}
~X(~x)↓}). Moreover, ACA0 proves that

under the premise π0
1,k,l(

~X, ~x, e) ↔ ¬π0
1,k,l(

~X, ~x, e′), we have

(∃e0 ∈ Rec)({e0}
~X is the characteristic function of {x : π0

1,k,l(
~X, ~x, e)}).

In this sense, the sets ∆0
1 in ~X are precisely the sets recursive in ~X, and the sets

Σ0
1 in X correspond to the recursively enumerable sets in ~X. Unfortunately, we do

not have universal ∆0
0 formulas. We help ourself by defining what we mean by Y is

primitive recursive in ~X, namely that there is an e ∈ Prim, such that {e}
~X is the

characteristic function of Y . However, in a non-standard model of ACA0, the set
Prim may contains also non-standard indices that define functions for which there
are no function symbols in L2. Therefore, if M = (M,SM) is a model of ACA0, there

46 Chapter II. Pseudo-hierarchies in second order arithmetic

is in general an e ∈ PrimM such that for all ∆0
0 formulas A(u, v) of L2 and each

m ∈ M ,

M 6|= ∀x[{e}(x) = 0 ↔ A(x, m)].

Further, we denote by TRec
~X the set of indices {e : ∀x({e}

~X(x)↓} of the total

functions recursive in ~X. Then ACA0 proves that for an index e ∈ TRec
~X , the set

{x : {e}
~X(x) = 0} is ∆0

1 in ~X.

In the sequel, we no longer explicitly mention the number of free number and
set variables in the universal Π0

1 formulas and simply write π0
1 for π0

1,k,l. Given
a universal Π0

1 formula, it is straight forward to construct universal Π0
n formulas:

Suppose that A(u, v, ~w) is a ∆0
0 formula of L2. Then there is an e such that for

all x, ~y, ∃zA(x, ~y, z) ↔ ¬π0
1(x, ~y, e) holds, hence ∀x∃zA(x, ~y, z) is equivalent to

∀x¬π0
1(x, ~y, e), and this equivalence is already provable in ACA0. Thus it makes

sense to define

π0
2(

~U, ~u, e) := ∀x¬π0
1(

~U, x, ~u, e) = ∀x[{e}
~U (x, ~u)↓].

In the same way, universal Π0
n formulas are constructed for all n ∈ N.

II.1.2 Trees and normal forms of Π1

1
and Σ1

1
formulas of L2

This subsection exhibits the close relationship between Π1
1 and Σ1

1 formulas of L2 and
trees. The notion of tree that we use in the framework of second order arithmetic
is a special case of the definition given in subsection I.1.4: A tree is a set T of finite
sequences closed under initial segments, i.e. T ⊆ seq and if τ ∈ T and σ < τ , then
already σ ∈ T . Further, we say that the function F is a path through T , if for all
n, the sequence F [n] is in T . Alternatively, we often say that T has a path or T
has an infinite branch. A tree is finitely branching, if for each σ ∈ T , there are only
finitely many numbers xi such that σ ∗ 〈xi〉 ∈ T .

The following result is a classic. For a proof, see e.g. Simpson [40], Theorem III.7.2.

Lemma II.1.4 (König’s Lemma) The following is provable in ACA0: Every in-
finite, finitely branching tree has a path.

A tree T is called well-founded, if it has no infinite branch. An other way to char-
acterize the well-foundedness of T is revealed in the next lemma, Lemma V.1.3 in
[40].

Lemma II.1.5 The following is provable in ACA0: If T is a tree, then

Wo(KB(T)) ↔ ∀F∃n(F [n] /∈ T).

II.1 Preliminaries 47

It follows the normal form theorem, which corresponds to lemma V.1.4 in [40]. We
show, how to obtain a witness for the original formula form a witness of the normal
form.

Lemma II.1.6 (Normal form lemma) Let A(~U, ~u) be a Σ1
1 formula of L2 with

exactly the displayed variables free and assume that A is of the form ∃Y A′(~U, Y, ~u)
for some arithmetical formula A′. Then there exists a ∆0

0 formula B(~σ, τ, ~u), such
that ACA0 proves:

(i) ∀ ~X, ~x[A(~X, ~x) ↔ ∃F∀nB(~X[n],F [n], ~x)],

(ii) ∀nB(~X[n],F [n], ~x) → A′(~X, {y : (F(y))0 = 0}, ~x).

Proof: First, we prove (i) under the assumption that A is arithmetical. By the
translation presented in subsection I.2.13, there exists a quantifier-free formula C
of L2 which does not contain function symbols and constants, such that A(~X, ~x) is
equivalent to

(1) ∀y1∃z1 . . .∀yl∃zlC(~X, ~x, y1, z1, . . . , yl, zl).

Since no function symbols appear in C, the set variables Xi appear in C only in
the form [∼](t ∈ Xi), there t is one of the variables ~x, ~y, ~z. Due to arithmetical
comprehension, (1) holds if and only if there exist functions Gi, such that

∀y1 . . .∀ylC(~X, ~x, y1,G1(y1), . . . , yl,Gl(〈y1, . . . , yl〉)).

The functions Gi can be coded into a single function F with F(〈csi, y1, . . . , yi〉) =

Gi(〈y1, . . . , yi〉). Therefore, A(~X, ~x) is also equivalent to ∃F∀nD(~X,F , ~x, n), where

D(~U,F , ~u, v) is the ∆0
0 formula

(∀~y < v)[
∧

i=1..l

〈csi, y1, . . . , yi〉 < v ∧ F(〈csi, y1, . . . , yi〉) < v ∧ ~u < v →

C(~U, ~u, y1,F(〈cs1, y1〉), . . . yl,F(〈csl, y1, . . . , yl〉))].

To obtain a formula E(~σ, τ, ~u, v) that only speaks about sequences, we replace in

D(~U,F , ~u, v) all expressions of the form t ∈ Ui by (σi)t = 0, t /∈ Ui by (σi)t = 1 and

F(t) by (τ)t. Then, A(~X, ~x) is equivalent to ∃F∀nE(~X[n],F [n], ~x, n). Note that
all number variables appearing in E are bound by n. Finally, we let B(~σ, τ, ~u) :=
E(~σ, τ, ~u, lh(τ)).

Now we move to the case where A is of the form ∃Y A′(~X, Y) for some arithmetical
A′. By the special case we have proved above, there exists a ∆0

0 formula B′(~σ, σ′, τ)
such that ACA0 proves

∀ ~X, Y [A′(~X, Y) ↔ ∃G∀nB′(~X[n], Y [n],G[n])].

48 Chapter II. Pseudo-hierarchies in second order arithmetic

Next we choose B(~σ, τ) to be a ∆0
0 formula which expresses that the sequence number

τ is of the form 〈〈a1, b1〉, . . . , 〈an, bn〉〉 so that ai ∈ {0, 1} for 1 ≤ i ≤ n, and

B′(~σ, 〈a1, . . . , an〉, 〈b1, . . . , bn〉).

Thus, the following holds for all ~X: If

F(y) =

{
〈0,G(y)〉 : y ∈ Y

〈1,G(y)〉 : y /∈ Y

then ∀nB′(~X[n], Y [n],G[n]) if and only if ∀nB(~X[n],F [n]), which yields

∀ ~X[∃Y A′(~X, Y) ↔ ∃F∀nB(~X [n],F [n])].

Hence, if F is a function such that ∀nB(~X[n],F [n]), it follows form the construction

of B that the set Y := {y : (F(y))0 = 0} satisfies A(~X, Y). 2

In a next step, we use the Normal Form Lemma to transform the question whether
some Σ1

1 formula A(~U, ~u) of L2 holds, to the question whether the tree T A
~U,~u

, that is

uniform in the formula A and the parameters ~U, ~u, has a path. Moreover, a witness
for A(~U, ~u) is then easily obtained from a path through T A

~U,~u
.

Lemma II.1.7 Let A(U1, . . . , Uk, u1, . . . , ul) be a Σ1
1 formula of L2 with exactly the

displayed variables free. Further, assume that A(~U, ~u) is of the form ∃Y A′(~U, Y, ~u)
for some arithmetical formula A′. Then, there are ∆0

0 formulas TREEA(u), WITA(u)
and PROJk,l(U, V1, . . . , Vk, u, v1, . . . , vl) of L2 with exactly the displayed variables free,
such that the following is provable in ACA0: The set T A := {z : TREEA(z)} is a tree,

and for all ~X, ~x,

(i) T A
~X,~x

:= {z : PROJk,l(T A, ~X, z, ~x)} is a tree,

(ii) A(~X, ~x) ↔ T A
~X,~x

has a path,

(iii) if F is a path through T A
~X,~x

, then A′(~X, {z : WIT(F , z)}, ~x).

Proof: Suppose that A(U1, . . . , Uk, u1, . . . , ul) = ∃Y A′(~U, Y, ~u) is a Σ1
1 formula of L2,

and that B(~σ, τ, ~u, v) is a ∆0
0 formula of L2 satisfying (i) and (ii) of lemma II.1.6. In

particularly, for all ~X, ~x,

A(~X, ~x) ↔ ∃F∀nB(~X[n],F [n], ~x).

Now we choose C(ρ) to be a ∆0
0 formula which expresses that ρ is a sequence number

of the form
〈〈a1,1, . . . , ak,1, b1, ~z〉, . . . 〈a1,n, . . . , ak,n, bn, ~z〉〉,

II.1 Preliminaries 49

so that ai,j ∈ {0, 1} for 1 ≤ i ≤ n, 1 ≤ j ≤ k, and

B(〈a1,1, . . . , a1,n〉, . . . 〈ak,1, . . . , ak,n〉, 〈b1, . . . , bn〉, ~z).

Next, we define the tree

T A := {ρ : (∀ρ′ v ρ)C(ρ′)}.

Suppose that F , X1, . . .Xk, x1, . . . , xl are such that ∀nB(~X[n],F [n], ~x). Then, we
define the function G by

G(y) := 〈ξ0, . . . , ξk−1,F(y), ~x〉,

where for 0 ≤ j < k, ξj = 0 if y ∈ Xj and ξj = 1 if y /∈ Xj and ~z = z1, . . . , zl. We
have that G is a path through T A, i.e. ∀nC(G[n]). Further, G is also a path through

the tree T A
~X,~x

relevant for the parameters ~X, ~x, consisting of all ρ ∈ T A which satisfy

for all n ≤ lh(ρ):

〈(ρ)0,0, . . . , (ρ)n−1,0〉 = X1[n]
...

〈(ρ)0,k−1, . . . , (ρ)n−1,k−1〉 = Xk[n],

〈(ρ)0,k+1, . . . , (ρ)0,k+l〉 = 〈x1, . . . , xl〉,
...

〈(ρ)n−1,k+1, . . . , (ρ)n−1,k+l〉 = 〈x1, . . . , xl〉.

Moreover, the definition of C yields that if G is a path through T A
~X,~x

, then the function

F(y) := (G(y))k satisfies ∀nB(~X [n],F [n], ~x). Therefore, (ii) of lemma II.1.6 yields

that Y := {z : (G(z))k,0 = 0} satisfies A′(~X, Y, ~x). 2

In the sequel, we will stick to the notations introduced in the previous lemma. So
if A(U1, . . . , Uk, u1, . . . , ul) is a Σ1

1 formula of L2, we denote by TREEA, PROJk,l and
WITA the formulas defined in the course of its proof. Moreover, we extend the
operation induced by the formula PROJk,l to sets and let

XY1,...,Yk,y1,...,yl
:= {x : PROJk,l(X, Y1, . . . , Yk, x, y1, . . . , yl)}.

Combining the previous lemma with lemma II.1.5 which states that that a tree T has
a path if and only if KB(T) is not a well-ordering yields the following representation
theorem for Π1

1 formulas.

Theorem II.1.8 (Representation Theorem of Π1
1 formulas) Let A(~U, ~u) be a

Π1
1 formula of L2 with exactly the displayed variables free and set B := ¬A. Then

ACA0 proves
∀ ~X, ~x[A(~X, ~x) ↔ Wo(KB(T B

~X,~x
))].

50 Chapter II. Pseudo-hierarchies in second order arithmetic

The above characterization of Π1
1 formulas leads to the insight that there are no

models of ACA0 where the formula Wo(X) is ∆1
1. As we will see later, the existence

of pseudo-hierarchies relies on this fact.

Theorem II.1.9 For each Σ1
1 formula A(U, ~V , ~u) with exactly the displayed vari-

ables free, ACA0 proves:

¬∃~Y , ~y, ∀X[A(X, ~Y , ~y) ↔ Wo(X)].

Proof: We assume that there exist a Σ1
1 formula A(U, ~V , ~u) with exactly the dis-

played variables free, and sets ~Y and numbers ~y such that

(1) ∀X[A(X, ~Y , ~y) ↔ Wo(X)].

Now there is a Σ1
1 formula B(U, ~V , ~u) which is equivalent to

U is a tree → A(KB(UU,~V ,~u),
~V , ~u).

Applying Theorem II.1.8 to the formula ¬B and using (1) yields for all X,

X is a tree ∧ ¬Wo(KB(XX,~Y ,~y)) ↔ Wo(KB(T B
X,~Y ,~y

)).

For X := T B, this is a contradiction! 2

A similar result holds also for the well-orderings that are primitive recursive, recur-
sive or recursively enumerable in X. To speak about such orderings we introduce
the following notation:

≺
~X
e := {〈x, y〉 : {e}

~X(x, y) = 0}.

Lemma II.1.10 ACA0 proves for all Σ1
1 formulas A(U, ~u, v) with exactly the dis-

played variables free: For each X and all ~y, if S is one of the sets N, TRecX or
Prim, then

¬(∀e ∈ S)[Wo(≺X
e) ↔ A(X, ~y, e)].

Proof: We assume that there are ~y, X and a Σ1
1 formula A(U, ~u, v), such that for all

e ∈ S, Wo(≺X
e) ↔ A(X, ~y, e). Now we set B(U, u) := ∀F¬π0

1(U,F , u, u). Theorem
II.1.8 yields that B(X, x) ↔ Wo(KB(T ¬B

X,x)). Since KB(T ¬B
X,x) is ∆0

0 in X, we conclude
that for all x,

B(X, x) ↔ (∃e ∈ S)[A(X, ~y, e) ∧ ≺X
e is isomorphic to KB(T ¬B

X,x)].

II.1 Preliminaries 51

The right hand side of this equivalence is Σ, thus the Normal Form Lemma II.1.6
and our observation about universal Π0

1 formulas (cf. lemma II.1.2) provide an index
e0, such that

∀x[B(X, x) ↔ ∃Fπ0
1(X,F , x, e0)].

However, this implies

B(X, e0) = ∀F¬π0
1(X,F , e0, e0) ↔ ∃Fπ0

1(X,F , e0, e0).

A contradiction! 2

A related result is stated in subsection III.1.4, lemma III.1.13. There, it is shown
that the theory ATR0 + ¬TI�(U, Γ0) proves: If Wo(≺), then ≺ is a proper initial
segment of ��Γ0.

We conclude this subsection by putting on record the universal Π1
1 and universal Σ1

1

formulas one obtains from lemma II.1.2 and lemma II.1.6.

Corollary II.1.11 For each Π1
1 formula A(~U, ~u,~v) of L2 with exactly the displayed

variables free, the following is provable in ACA0:

∀~y∃e∀ ~X, ~x[A(~X, ~x, ~y) ↔ ∀F¬π0
1(

~X,F , ~x, e)].

where π0
1(

~U, V, ~u, e) is the universal Π0
1 formula from definition II.1.1.

Again, we also state the following variant.

Corollary II.1.12 For each Π1
1 formula A(~U, ~u) of L2 with exactly the displayed

variables free, there is an e ∈ N, such that ACA0 proves

∀ ~X, ~x[A(~X, ~x) ↔ ∀F¬π0
1(

~X,F , ~x, cse)].

For further use of universal Π1
1 formulas, we define for each natural number k, l and

~U = U1 . . . , Uk, ~u = u1, . . . , ul,

π1
1,k,l(

~U, ~u, e) := ∀F¬π0
1(

~X,F , ~x, e).

Then in need for universal Σ1
1 formulas, we simply resort to ¬π1

1,k,l(
~U, ~u, e). As with

the universal Π0
1 formulas π0

1,k,l, we forgo to explicitly mention the number of number

parameters, and write π1
1,k,l(

~U, ~u, e) instead of π1
1(

~U, ~u, e).

52 Chapter II. Pseudo-hierarchies in second order arithmetic

II.1.3 Hierarchies and choice sequences

For set and number parameters ~X, ~y, a formula A(U, ~V , u, ~v) of L2 defines canonically
an operator F A

~Y ,~y
on the powerset of the natural numbers, namely

F A
~Y ,~y

(X) := {x : A(X, ~Y , x, ~y)}.

An iteration principle is an axiom schema, asserting that we can iterate a certain
class of operators along a certain class of well-orderings. This means that there
exists a hierarchy, i.e. a sequence of sets with domain ≺ such that the αth element
of this sequence is obtained by applying the operator to the disjoint union of all the
elements below α. Thereby, α itself may appear as a parameter of the operator,
which proves convenient regarding applications of the iteration principle, however,
does not affect its strength.

Moving towards a formal definition, we call F an A-hierarchy along ≺ for the pa-
rameters ~Y , ~y, denoted by HierA(F, ~Y ,≺, ~y), if A(U, ~V , W, u,~v, w) contains exactly
the displayed variables free, and F meets the following properties:

(i) Lin0(≺),

(ii) (∀x ∈ F)[x = 〈(x)0, (x)1〉],

(iii) ∀x[(F)x 6= ∅ → x ∈ Field(≺)],

(iv) (∀α ∈ Field(≺))[(F)α = F A
~Y ,≺,~y,α

((F)≺α)].

If in addition, ≺ is a well-ordering, we call F a proper hierarchy. If ≺ is only a linear
ordering with a least element, but not well-ordered, F is baptized a pseudo-hierarchy,

PSHA(F, ~Y ,≺, ~y) := ¬Wo(≺) ∧ HierA(F, ~Y ,≺, ~y).

Immediately from the definition of a hierarchy, we derive that HierA(F,≺) implies
HierA((F)≺α,≺�α) for all α in the field of the ordering ≺. If the context implies
that α is an element of the field of ≺, then HierA(G, α) is short for HierA(G,≺�α).

An important property of proper hierarchies is stated below.

Lemma II.1.13 For any formula A(U, ~V , u, ~v) of L2 , the following is provable in
ACA0: If ≺ is a well-ordering, then

HierA(F, ~Z,≺, ~z) ∧ HierA(G, ~Z,≺, ~z) → F = G.

Proof: By transfinite induction along the well-ordering ≺ one easily shows that the
set {α ∈ Field(≺) : (F)α = (G)α} is already the entire field of ≺. 2

II.1 Preliminaries 53

Finally, a word on hierarchies whose αth level does not explicitly depend on α and the
ordering ≺. Suppose for instance, that the set F meets conditions (i) and (ii) of the
aforementioned definition, and further satisfies (F)α = F A((F)≺α), where A(U, u)
contains only the displayed variables free. In the strict sense, F is not an A-hierarchy,
but only a B-hierarchy for the formula B(U, V, u, v) := A(U, u) ∧ V = V ∧ v = v,
otherwise, the operator F A could not take the parameters ≺ and α. However, in
this case, the superfluous parameters ≺ and α are discarded, and we call F an
A-hierarchy all the same.

In the literature, iteration principles are often called recursion principles, since the
hierarchy claimed to exist can be viewed as a function defined via recursion. In the
sequel, we distinguish between iteration along the natural numbers (recursion along
<N) and iteration along arbitrary well-orderings (transfinite recursion).

For each formula A(U, ~V , W, u,~v, w) of L2 belonging to the class K, we define

(K-TR) Wo(≺) → ∃FHierA(~Y ,≺, ~y).

The instance, where K is the class of arithmetical formulas of L2 is probably the best
know iteration principle in second order arithmetic and is also denoted by (ATR),
standing for arithmetical transfinite recursion. The corresponding theory ATR0, i.e.
ACA0 + (ATR), goes back to Friedman [14]. A key reference for ATR0 is Friedman,
McAloon, Simpson [15].

Another class of axiom schemas are choice principles and dependent choice princi-
ples, which claim the existence of choice sequences. In contrast to hierarchies, where
the αth level is uniquely determined by the levels below α and an operator, the αth
element of a choice sequence has to be chosen. If the possible choices for the αth
level depends only on α, we speak of a choice principle; if the αth level depends also
on the disjoint union of the levels below α, we speak of dependent choice. As with
iteration, we distinguish dependent choice and transfinite dependent choice.

For all L2 formulas A(U, ~V , ~u, v), B(U, V, ~W, ~u) and C(U, V, ~W, ~u, v) of the class K
we have:

∀n∃XA(X, ~Y , ~y, n) → ∃F∀nA((F)n, ~Y , ~y, n),(K-AC)

∀X∃Y B(X, Y, ~Z, ~y) → ∃F [(F)0 = W ∧ ∀nB((F)n, (F)n+1, ~Z, ~y)],(K-DC)

∀α∀X∃Y C(X, Y, ~Z, ~y, α) ∧ Wo(≺) → ∃F∀αC((F)≺α, (F)α, ~Z, ~y, α).(K-TDC)

Well-known choice principles are (Σ1
1-AC) and (Σ1

1-DC). Together with ACA0 or ACA
they form the theories Σ1

1-AC0, Σ1
1-DC0 or Σ1

1-AC, Σ1
1-DC, respectively. Although

ACA0 and Σ1
1-AC0 prove the same L1 formulas and therefore are proof-theoretically

equivalent (see e.g [4] or [7]), the theory Σ1
1-AC0 proves more L2 formulas. For

instance, over Σ1
1-AC0, the classes of Σ1

1 [Π1
1] definable and Σ [Π] definable sets

coincide as an induction on the build-up of the formula reveals.

54 Chapter II. Pseudo-hierarchies in second order arithmetic

Lemma II.1.14 For each Π formula C of L2 there is a Π1
1 formula C ′ of L2 con-

taining the same free variables as C, such that Σ1
1-AC0 proves: C ↔ C ′.

Another observation is recorded below:

Lemma II.1.15 Over ACA0 the schema (Σ1
1-DC) implies (Σ1

1-AC).

Proof: Assume that A(U, u) is a Σ1
1 formula of L2 such that ∀x∃XA(X, x). Then,

we also have ∀X∃Y B(X, Y), there B(U, V) a the Σ1
1 formula equivalent to

∀n[(U)0 = {n} → (V)0 = {n+1} ∧ A((V)1), n].

Now (Σ1
1-DC) yields a set Z such that (Z)0 = {〈0, 0〉} and ∀nB((Z)n, (Z)n+1). We

let X := {〈x, n〉 : x ∈ (Z)n+1,1} and show by induction that ∀n[(Z)n,0 = {n}], thus
∀xA((X)x, x). 2

An interesting transfinite dependent choice principle is (Σ1
1-TDC). The theory

ACA + (Σ1
1-TDC) is introduced and analyzed in Rüede [36, 37, 38]. In the next

chapter, we also mention a similar system for admissible set theory and discuss how
hierarchies and choice sequences are related. Further, we antedate a result, which
is a consequence of theorem II.2.21, namely that over ACA0 the principle (ATR)
implies the apparently stronger iteration principle (∆-TR).

II.1.4 N-models of Σ1

1
-AC and Σ1

1
-DC

In theories comprising ACA0 it is possible to talk about sets of sets. Therefore, we
can talk about models of theories formulated in L2. Thereby, we say that a set M is
an N-model, or simply a model of T, if M contains only pairs, that is x ∈ M implies
x = 〈(x)0, (x)1〉, and for all instances of an axiom or rule of T with premises Γi and
conclusion Γ, AM holds, where A is the universal closure of

∨
Γ1∧ . . .∧

∨
Γn →

∨
Γ.

Further, we say that a formula B of L2 is a finite axiomatization of T, if BM implies
that M is a model of T, in the sense specified above.

The theorem below tells us that there are finite axiomatizations for ACA, Σ1
1-AC and

Σ1
1-DC:

Theorem II.1.16 (Finite axiomatizations for ACA, Σ1
1-AC and Σ1

1-DC) Con-
sider the formulas listed below:

(i) ∀X, Y ∃Z(Z = X ⊕ Y),

(ii) ∀Z, z, e∃Y ∀x[x ∈ Y ↔ π0
1(Z, x, z, e)],

(iii) ∀Z, z, e[∀x∃Xπ0
2(X, Z, x, z, e) → ∃Y ∀xπ0

2((Y)x, Z, x, z, e)],

II.1 Preliminaries 55

(iv) ∀V, W, z, e[∀X, Y π0
2(X, Y, W, z, e) →

∃Z∀n((Z)0 = V ∧ π0
2((Z)n, (Z)n+1, W, z, e))].

Then the conjunction of (i) and (ii), denoted by AxACA is a finite axiomatization of
ACA, the conjunction of (i),(ii) and (iii), denoted by AxΣ1

1
-AC, is a finite axiomati-

zation of Σ1
1-AC and the conjunction (i),(ii) and (iv), denoted by AxΣ1

1
-DC, is a finite

axiomatization of Σ1
1-DC.

In (iii) and (iv) we actually need a universal Π0
2 formula. Since one finds claims in

the literature (cf. [36, 38]) that already (Π0
1-AC) and (Π0

1-DC) imply (Σ1
1-AC) and

(Σ1
1-DC), respectively, we comment on the pitfall wherein one is easily caught. A

proof of the above theorem then emerges from this considerations. First, we show
that the aforementioned claim is wrong.

Lemma II.1.17 (Strict Π1
1-reflection) For each ∆0

0 formula A(U, ~V , ~u,~v) of L2,

the following is provable in ACA0: If ~Y , ~y are such that ∀X∃~xA(X, ~Y , ~x, ~y), then
there exits an n0 with

(i) ∀X(∃~x < n0)A(X, ~Y , ~x, ~y),

(ii) ∀X(∀~x < n0)[A(X, ~Y , ~x, ~y) ↔ A(X�n0, ~Y , ~x, ~y)],

where X�n0 denotes the set {x ∈ X : x < n0}.

Proof: By the translation presented in subsection I.2.13 and the fact that each
term has a unique value, i.e. for each term t, ∀x[Valt(x) →∼R(x)] is equivalent

to ∃x[Valt(x)∧∼R(x)], we may assume that there is a ∆0
0 formula B(U, ~V , ~u,~v, w)

that does not contain function symbols such that A(U, ~V , ~u,~v) is equivalent to

∃zB(U, ~V , ~u,~v, z). Therefore,

(∗) ∀X, ~Y , ~y[∃~xA(X, ~Y , ~x, ~y) ↔ ∃z(∃~x, w < z)(~y < z ∧ C(X[z], ~Y , ~x, ~y, w))],

where C(σ, ~V , ~u,~v, w) is obtained form B(U, ~V , ~u,~v, w) by replacing each expression
of the form t ∈ U by (σ)t = 0. Note that t is a variable, and that substituting
t ∈ U by (t < z) ∧ (σ)t = 0 would lead to an equivalent formula. Next, we fix the

parameters ~Y , ~y and consider the set

T := {σ ∈ seq0,1 : ¬[(∃~x, w < lh(σ))(~y < lh(σ) ∧ C(σ, ~Y , ~x, ~y, w))]}.

If T is a tree, then ∀X∃~xA(X, ~Y , ~x, ~y) is equivalent to ∀X∃z(X[z] /∈ T). Next, we
argue that T is indeed a tree: Suppose that σ ∈ T and τ < σ. Now τ ∈ T follows,
if ~x, w, ~y < lh(τ)∧¬C(τ, ~Y , ~x, ~y, w) implies ¬C(σ, ~Y , ~x, ~y, w). But this follows, since

C(σ, ~Y , ~x, ~y, w) is a ∆0
0 formula that does not contain function symbols (also no

56 Chapter II. Pseudo-hierarchies in second order arithmetic

constants) and contains σ only in expressions of the form (σ)t = 0 and (σ)t 6= 0.
Because t is a variable bound by lh(τ), and t < lh(τ) → [(σ)t = 0 ↔ (τ)t = 0] we

conclude that C(τ, ~Y , ~x, ~y, w).

Now we assume that ∀X∃~xA(X, ~Y , ~x, ~y) holds. So also ∀X∃z(X[z] /∈ T), which
expresses that T has no path. Therefore, König’s Lemma provides an n0 such that
∀X(∃z ≤ n0)(X[z] /∈ T). Using (∗), (i) and (ii) easily follow. 2

Corollary II.1.18 ACA0 proves each instance of (Π0
1-AC).

Proof: We show the contraposition of (Π0
1-AC). Suppose that A(U, u, v) is ∆0

0 and
that ∀X∃x∃yA((X)x, x, y). Applying lemma II.1.17, provides an n0 with

(i) ∀X(∃x, y < n0)A((X)x, x, y),

(ii) ∀X(∀x, y < n0)[A(X, x, y) ↔ A(X�n0, x, y)].

Now suppose for a moment that

(∗) (∀x < n0)(∃X ⊆ {0, . . . , n0−1})(∀y < n0)¬A(X, x, y).

Now we assume that ≺n0
is a well-ordering on the 2n0 many subsets of {0, . . . , n0−1},

which allows us to define a set Z such that (Z)k is the ≺n0
-least X ⊆ {0, . . . n0−1}

with (∀y < n0)¬A(X, k, y) if k < n0, and (Z)k = ∅ otherwise. According to (i), such
a Z cannot exist. Therefore, the negation of (∗) holds, i.e.

(∃x < n0)(∀X ⊆ {0, . . . , n0−1})(∃y < n0)A(X, x, y).

Now (ii) yields ∃x∀X∃yA(X, x, y). 2

Remark II.1.19 Let us try to prove that (Π0
1-AC) implies already (Σ1

1-AC) and

observe what goes wrong. So we suppose that A(~U, V, ~u, v) is a Σ1
1 formula of L2.

Further, assume that ~X, ~x are such that ∀n∃Y A(~X, Y, ~x, n). The Normal Form
Lemma II.1.6 provides a ∆0

0 formula B(~σ, τ, ~u, v, w) with

(∗) ∀n∃F∀mB(~X [m],F [m], ~x, n, m).

By (Π0
1-AC) we obtain a Z such that ∀nFun((Z)n) and

∀n[F = (Z)n → ∀mB(~X [m],F [m], ~x, n, m)].

By the second part of the Normal Form Lemma we conclude that the set

W := {〈y, n〉 : ∃z[〈y, 〈0, z〉〉 ∈ (Z)n]}

II.1 Preliminaries 57

satisfies ∀nA(~X, (W)n, ~x, n).

However, if we formulate (∗) without function variables, we obtain

∀n∃F [Fun(F) ∧ Dom(F) = N ∧ ∀mB(~X[m],F [m], ~x, n, m)].

Since Dom(F) = N is Π0
2, we actually need (Π0

2-AC) to infer (Σ1
1-AC).

Only the following is correct:

Lemma II.1.20 Over ACA0, (Π0
2-AC) implies (Σ1

1-AC).

Similarly, one obtains:

Lemma II.1.21 Over ACA0, (Π0
2-DC) implies (Σ1

1-DC).

We conclude by stating an important property of model of ACA. Within models of
ACA we have enough comprehension to adapt Russell’s argument which yields that
the collection of all sets is not a set itself.

Lemma II.1.22 The following is provable in ACA0:

(AxACA)M → M /̇∈ M.

Proof: Suppose that M ∈̇ M , and apply arithmetical comprehension within M to
obtain the Russell set

R := {〈x, e〉 : (M)e /̇∈ (M)e ∧ x ∈ (M)e}.

Now R ∈̇ M implies that there is an index r with R = (M)r. Moreover, X := {〈0, 0〉}

is a set in M and meets X /̇∈ X, so we know that R 6= ∅.

On the one hand, we have to refute the assumption that R /̇∈ R, since otherwise,
the definition of R yields

∀x[〈x, r〉 ∈ R ↔ R /̇∈ R ∧ x ∈ R ↔ x ∈ R],

which expresses R = (R)r, thus R ∈̇ R. On the other hand, there is also no index a
such that R = (R)a, for otherwise, again by the definition of R, we obtain

(∗) ∀x[x ∈ R ↔ 〈x, a〉 ∈ R ↔ (M)a /̇∈ (M)a ∧ x ∈ (M)a].

Because R is not empty, we conclude (M)a /̇∈ (M)a. However, then (∗) expresses
that R = (M)a, which in turn yields R /∈ R. Therefore, we have to refute the
supposition that M ∈̇ M . 2

58 Chapter II. Pseudo-hierarchies in second order arithmetic

II.1.5 The jump-hierarchy

A prominent hierarchy is the so-called jump-hierarchy. The first level of a jump-
hierarchy above X consists of the complements of the sets recursively enumerable
in X, and the αth level contains the complements of all the sets that are recursively
enumerable in some level β below α.

For Turing’s jump formula

J (U, V, u) := ∃y, z, e[u = 〈y, 〈z, e〉〉 ∧ π0
1((U)z, V, y, e)],

an ordering ≺ and a set X, a set F satisfying HierJ (F, X,≺) is called a jump-
hierarchy above X along ≺. Such an F is in the sequel also denoted by J X

≺ . If the
context implies that J X

≺ exists and α is an element of the field of ≺, we use J X
α

for the αth level of this jump-hierarchy. Provided that the underlying ordering of
a jump-hierarchy is a well-ordering, there is, provable in ACA0, exactly one jump-
hierarchy J X

≺ . Hence, the formula x ∈ J X
α is ∆1

1.

To compare sets in different stages of the jump-hierarchy, we resort to the following
notation. We write e.g. Y ≤∆0

1
X to state that Y is ∆0

1 in X, and X =∆0
1

Y
to express X ≤∆0

1
Y and Y ≤∆0

1
X. Observe that X =∆0

1
Y and Y =∆0

1
Z im-

plies X =∆0
1

Z, and that Y ≤∆0
1

X can be expressed by the arithmetical formula

∃e, e′[Y = {x : π0
1(X, x, e} ∧ Y = {x : π0

1(X, x, e′)}.

Some basic facts concerning the jump-hierarchy are collected in the lemma below.

Lemma II.1.23 There are numbers a, b, c, d ∈ N (used only in claim (iv)) such that
the following is provable in ACA0: If Lin0(≺) and HierJ (F, X,≺) and α ∈ Field(≺),
then

(i) For all z, (F)α = {〈y, 〈z, e〉〉 : {e}((F)≺α)z ,X(y)↑} and for z 6≺ α, ((F)≺α)z = ∅.

(ii) (F)α is the union of G := {〈y, 〈β, e〉〉 : β ≺ α ∧ π0
1((F)β, X, y, e)} and

H := {〈y, 〈z, e〉〉 : z 6≺ α ∧ π0
1(∅, X, y, e)}. Further, H ⊆̇ G.

(iii) If β ≺ α, then HierJ ((F)≺β, X,≺�β).

(iv) X = (F)α,〈0,csa〉, (F)≺α,z = (F)α,〈z,csb〉, (F)≺α,z = (F)α,〈z,csc〉 and

N = (F)α,〈0,csd〉. Further, if z 6� α, then (F)z = (F)α,〈z,csb〉, and

(F)z = (F)α,〈z,csc〉.

(v) If γ ≺ β � α, then (F)α,〈γ,e〉 = (F)β,〈γ,e〉. In particular, we have (F)β ⊆̇ (F)α.

II.1 Preliminaries 59

(vi) If β ≺ α and Y =Π0
1

(F)β, then Y ∈̇ (F)α. Thus, (F)α is transitive:

Z ∈̇ Y ∈̇ (F)α implies Z ∈̇ (F)α.

(vii) If β ≺ α, then (F)α is not ∆0
1 in (F)β. In particular, (F)α /̇∈ (F)β.

Proof: (i),(ii) and (iii) are immediate from the definition. Note, that if X ∈̇ (F)α,
then (ii) yields that X = (F)α,〈γ,e〉 for a γ ≺ α. We will use this observation tacitly
in the arguments below.

For (iv), recall that π0
1(U, V, u, v) is the formula {u}U,V (v)↑. Now let f, g be the

partial recursive functions with f(0)↑ and f(x) = 0 for x 6= 0; g(1)↑ and g(x) = 0
for x 6= 1, and let ef , eg ∈ Rec be indices of f and g. Then (cf. the definition of Rec in
subsection II.1.1) for a = 〈3, 1, ef , 〈13, 1〉〉, b = 〈3, 1, ef , 〈12, 1〉〉, c = 〈3, 1, eg, 〈12, 1〉〉,
and an index d ∈ Rec of f ◦ chN we have that {a}U,V does not depend on U , {b}U,V

and {c}U,V do not depend on V and {d}U,V is independent of U and V . Hence

X = {y : {a}∅,X(y)↑} = (F)α,〈0,a〉,

((F)≺α)z = {y : {b}((F)≺α)z ,X(y)↑} = (F)α,〈z,b〉,

(F)z = {y : {c}((F)≺α)z ,X(y)↑} = (F)α,〈z,c〉,

N = {y : {d}∅,X(y)↑} = (F)α,〈0,d〉.

For z 6� α, we have (F)z = ((F)≺α)z: If z is not in the field of ≺, then both sides
are empty. The second part of the claim follows.

For (v), we observe that provided γ ≺ β � α,

y ∈ (F)α,〈γ,e〉 ↔ 〈y, 〈γ, e〉〉 ∈ (F)α,

↔ π0
1(((F)≺α)γ , X, y, e),

↔ π0
1(((F)≺β)γ, X, y, e),

↔ 〈y, 〈γ, e〉〉 ∈ (F)β,

↔ y ∈ (F)β,〈γ,e〉.

Next we show (vi). Suppose β ≺ α and that A(U, u) is a Π0
1 formula of L2 such

that Y = {y : A((F)β, y)}. Clearly, there is also a Π0
1 formula B(U, V, u) with

Y = {y : B((F)β, X, y)}. Then there is an e such that Y = {y : π0
1((F)β, X, y, e)},

thus Y = (F)α,〈β,e〉. Further, if Z ∈̇ Y ∈̇ (F)α, we have Y := {y : π0
1((F)γ, X, y, e)}

for some e and γ ≺ α. Hence Y is Π0
1 in (F)γ, which yields that also Z is Π0

1 in
(F)γ. Therefore Z ∈̇ (F)α, according to the argument given above.

A standard diagonalization argument yields (vii). Consider the set

D := {y : {y}(F)β ,X(y)↑}.

60 Chapter II. Pseudo-hierarchies in second order arithmetic

Of course, D is not ∆0
1 in (F)β, otherwise, D = {y : {e0}

(F)β ,X(y)↓} for some index
e0, which implies e0 ∈ D ↔ e0 /∈ D. However, if (F)α were ∆0

1 in (F)β, then so were
D, because y ∈ D ↔ {y}((F)≺α)β ,X(y)↑ ↔ 〈y, 〈β, y〉〉 ∈ (F)α. 2

An immediate consequence of the previous lemma and the choice of b is that a
jump-hierarchy allows us to regain the underlying ordering.

Corollary II.1.24 The following is provable in ACA0: If HierJ (F, X,≺), then we
have

≺ = {〈α, β〉 : (F)α 6= ∅ ∧ (F)β 6= ∅ ∧ (F)β,〈α,csb〉 6= ∅, }

where b ∈ N is as in lemma II.1.23.

Proof: (F)α 6= ∅ and (F)β 6= ∅ are equivalent to α, β ∈ Field(≺) and by (iv) of
the previous lemma, (F)β,〈α,csb〉 6= ∅ is equivalent to (F)≺β,α 6= ∅ which in turn is
equivalent to α ≺ β. 2

Next, we start to compare stages of jump-hierarchies. If two sets X and Y are
recursive in each other, then so are the next levels of the jump-hierarchy above X
and Y . First, an auxiliary lemma:

Lemma II.1.25 The following is provable in ACA0: If Y =∆0
1
X, then

F := {〈x, e〉 : π0
1(X, x, e)} =∆0

1
{〈x, e〉 : π0

1(Y, x, e)} =: G.

Proof: Since Y =∆0
1

X, there are Π0
1 formulas A(U, u) and B(U, u), such that we

have Y = {x : A(X, x)} and Y = {x : B(X, x)}. By replacing in π0
1(Y, x, e)

all literals of the form t ∈ Y by A(X, t) and t /∈ Y by B(X, t), we obtain the
formula D(X, x, e) which is equivalent to a Π0

1 formula. Next, we let D′(U, u) :=
u = 〈(u)0, (u)1〉 ∧ D(U, (u)0, (u)1). There is an index e0 such that for all Y and y,
D(Y, y) is equivalent to π0

1(Y, y, e0). Thus,

y ∈ (F)e0
↔ ∃x, e[y = 〈x, e〉 ∧ D(X, x, e)] ↔ ∃x, e[y = 〈x, e〉 ∧ π0

1(Y, y, e0)] ↔ y ∈ G

Hence G = (F)e0
and G <∆0

1
F . Switching the roles of F and G yields F <∆0

1
G,

i.e. F =∆0
1
G. 2

On a linear ordering ≺, we cannot define addition. However, if there is a sequence
α0 ≺ . . . ≺ αk, then we may say that αk is at least k levels above α0. In this sense,
if a set Z is Π0

k+1 in some level α of a jump-hierarchy, and β is at least k+1 levels
above α, then Z is an element of level β. Since the levels of a jump-hierarchy are
not closed under complements w.r.t. N, this fails for Π0

0 formulas.

Lemma II.1.26 For k ∈ N and each Π0
k+1 formula A(U, V, ~u, v) of L2 with exactly

the displayed variables free, the following is provable in ACA0: If HierJ (F, X,≺),
then there exists for all ~y an e, such that for each sequence α0 ≺ α1 ≺ . . . ≺ αcsk+1

,

{x : A((F)α0
, X, ~y, x)} = (F)αcsk+1

,〈αcsk
,e〉.

II.1 Preliminaries 61

Proof: We prove the claim by meta-induction on l ≤ k: For l = 0, lemma II.1.2 tells
us, that for all ~y, there is an e, such that

{x : A((F)α0
, X, ~y, x)} = {x : π0

1((F)α0
, X, x, e)} = (F)α1,〈α0,e〉.

Now suppose that the lemma holds for l < k and that A(U, V, ~u, v) is the formula
∀zB(U, V, ~u, v, z) and B is Σ0

l+1. The I.H. now provides an e′, such that

{x : x = 〈(x)0, (x)1〉 ∧ ¬B((F)α0
, X, ~y, (x)0, (x)1)} = (F)αcsl+1

,〈αcsl
,e′〉.

Thus
A((F)α0

, X, ~y, x) ↔ ∀z[〈x, z〉 /∈ (F)αcsl+1
,〈αcsl

,e′〉].

Now there is an e, such that

{x : A((F)α0
, X, ~y, x)} = {x : π0

1((F)αcsl+1
, X, x, e)} = (F)αcsl+2

,〈αcsl+1
,e〉.

2

For proper hierarchies we obtain the following corollary:

Corollary II.1.27 For k ∈ N and each Π0
k+1 formula A(U, V, ~u, v) of L2 with exactly

the displayed variables free, the following is provable in ACA0: If HierJ (F, X,≺) and
Wo(≺), then

∀~y∃e∀β[β+csk+1 ∈ Field(≺) → {x : A((F)β, X, ~y, x)} = (F)β+csk+1,〈β+csk,e〉].

Since over ACA0 each arithmetical formula is equivalent to some Π0
n formula, the

ωth stage of the jump-hierarchy above X is a model of ACA above X.

Corollary II.1.28 The following is provable in ACA0: If there exists an F with
HierJ(F, X, ��ω+1), then (F)ω is a model of ACA above X.

For linear orderings a similar result holds:

Corollary II.1.29 The following is provable in ACA0: If HierJ (F, X,≺) and ≺ is
an ordering without a top element, then

M := {〈y, 〈β, e〉〉 : ∃α(β ≺ α ∧ y ∈ (F)α,〈β,e〉)}

is a model of ACA.

Proof: Suppose that the jump-hierarchy F and the set M are as specified above. An
x ∈ M is of the form 〈y, 〈β, e〉〉. Thus, if Y ∈̇ M , then

Y = (M)〈β,e〉 = (F)α0,〈β,e〉,

for some β ≺ α0, by definition of M and lemma II.1.23, (iv). Suppose now, that Z
is Π0

k+1 in Y . Then Z is also Π0
k+1 in (F)α0

. Since ≺ has no top element, there is a
sequence α0 ≺ . . . ≺ αcsk+1

. By lemma II.1.26, Z ∈̇ (F)αcsk+1
. 2

The following is kind of a limit version of lemma II.1.26.

62 Chapter II. Pseudo-hierarchies in second order arithmetic

Corollary II.1.30 For each arithmetical formula A(U, u,~v), the following is prov-
able in ACA0: If HierJ (F, X,≺) and ≺ is an ordering without a top element, then

Z := {〈〈x, ~y〉, α〉 : α ∈ Field(≺) ∧ A((F)α, x, ~y)} =∆0
1
F.

Proof: By the previous lemma there is a k ∈ N, such that ACA0 proves: There is an
e, such that for each β ∈ Field(≺),

∀z[z ∈ (Z)β ↔ B(F, z, β, csk, e)],

where B(F, z, β, csk, e) is a Σ0
1 formula which expresses that there exists an s ∈ seq

such that lh(s) = csk+1 and β = (s)0 ≺ . . . ≺ (s)csk+1 and z ∈ (F)(s)csk+1
,〈(s)csk ,e〉.

Observe, that B(F, z, β, csk, e) is also expressible by a Π0
1 formula. We have

Z = {〈〈x, ~y〉, α〉 : α ∈ Field(≺) ∧ B(F, 〈x, ~y〉, α, csk, e)}.

The claim follows, if Field(≺) is ∆0
1 in F : By the definition of HierJ (F, X,≺) we

have that α ∈ Field(≺) exactly if (F)α 6= ∅, and lemma II.1.23 provides a d ∈ N

such that α ∈ Field(≺) exactly if (F)α,〈0≺,csd〉 = N. 2

Corollary II.1.31 For each arithmetical formula A(U, u,~v), the following is prov-
able in ACA0: If Wo(≺) and there is an F with HierJ (F, X,≺) and λ ∈ Field(≺) is
a limit, then

{〈〈x, ~y〉, α〉 : α ≺ λ ∧ A((F)α, x, ~y)} =∆0
1

(F)≺λ.

II.1.6 The hyper-arithmetical sets HYP

A set is hyperarithmetical in X if it appears in some level of a proper jump-hierarchy
above X. The main result of this subsection is the Kleene-Souslin Theorem which
state that Y is hyper-arithmetical in X if and only if Y is ∆1

1 in X. More on HYP
can be found in the next section.

Definition II.1.32 (Hyperarithmetical in ~X) We say that Y is hyperarithmeti-

cal in ~X, or Y ∈ HYP
~X for short, if there exists an index a with Wo(≺

~X
a), an

α ∈ Field(≺
~X
a) and a hierarchy F , such that HierJ (F, X,≺

~X
a) and Y ∈̇ (F)α. If Y is

hyperarithmetical in ∅ we call Y hyperarithmetical. The class of all hyperarithmetical

sets in ~X is denoted by HYP
~X and HYP∅ is just HYP.

If two well-orderings are arithmetical in X and of the same ordertype, then the
corresponding jump-hierarchies above X are recursive in each other.

Lemma II.1.33 The following is provable in ACA0: If F, X,≺,≺′ and Z are such
that

II.1 Preliminaries 63

(i) HierJ (F, X,≺),

(ii) ≺ and ≺′ are well-orderings arithmetical in X,

(iii) Z is an order isomorphism between ≺ and ≺′,

then there exists a G with HierJ (G, X,≺′) and F =∆0
1

G.

Proof: We assume that F satisfies HierJ (F, X,≺) and let Z be an order isomorphism
between ≺ and ≺′. In this proof, α is assumed to be an element of Field(≺), and β
an element of Field(≺′). By transfinite induction along ≺, we show that the set

{α : ∃β(〈α, β〉 ∈ Z) ∧ ∃!G[(G =∆0
1

(F)≺α) ∧ HierJ (G, X,≺′�β)]}

is the entire field of ≺.

For α = 0≺, the unique set G satisfying HierJ (G, X,≺′�0≺′) is the empty set. Since
(F)≺α is empty as well, the claim holds trivially.

Next, we consider the successor case and assume that 〈α, β〉 ∈ Z and that there
exists a unique G =∆0

1
(F)≺α such that HierJ (G, X,≺′�β). Observe, that for z 6≺′ β,

((G)≺′β)z = ∅ and thus for all z, ((G)≺′β)z = (G)z. Now the unique set H that
satisfies HierJ (H, X,≺′�β+1)) has the form H := G ∪ G′, where

G′ := {〈x, β〉 : x = 〈y, 〈z, e〉〉 ∧ π0
1((G)z, X, y, e)}.

Since also (F)≺α+1 is of the form (F)≺α ∪ F ′, where

F ′ := {〈x, α〉 : x = 〈y, 〈z, e〉〉 ∧ π0
1(((F)≺α)z, X, y, e)},

H =∆0
1

(F)≺α+1 is now due to the I.H. and lemma II.1.25.

Suppose now, that λ is a limit, 〈λ, λ′〉 ∈ Z and that for all α ≺ λ, there exists a
unique set H so that H =∆0

1
(F)≺α ∈̇ (F)λ and 〈α, β〉 ∈ Z implies HierJ (H, X,≺′�β).

Also, if H ′ =∆0
1

(F)≺α and HierJ (H ′, X,≺′�β ′), then β = β ′: Otherwise, if e.g.

β ≺′ β ′, then H ′ = J X
≺′�β′ is ∆0

1 in H = J X
≺′�β, hence J X

β′ is ∆0
1 in J X

β by lemma
II.1.25, which contradicts lemma II.1.23 (vii).

Next, we let

W := {〈α, 〈y, β〉〉 : α ≺ λ ∧ ∃H[H =∆0
1

(F)≺α ∧ HierJ (H, X,≺′�β) ∧ y ∈ H].

Since ≺ is arithmetical in X and λ is a limit, ≺ is clearly ∆0
1 in (F)≺λ. Further,

(F)≺α is arithmetical in (F)α. Corollary II.1.30 yields that W =∆0
1

(F)≺λ.

If 〈α, 〈y, β〉〉 ∈ W , then 〈α, β〉 ∈ Z and y ∈ J X
≺′�β. Because β ≺′ β ′ ≺ λ′ yields

J X
≺′�β ⊆ J X

≺′�β, the set G := {(x)1,1 : x ∈ W} satisfies HierJ (G, X,≺′�λ′). 2

As a corollary we obtain that the comparison map of two well-orderings that are
arithmetical in X are recursive in either jump-hierarchy above X.

64 Chapter II. Pseudo-hierarchies in second order arithmetic

Corollary II.1.34 ACA0 proves: If ≺ and ≺′ are well-orderings arithmetical in X,
and HierJ (F, X,≺), then ≺ and ≺′ are comparable. Moreover, the comparison map
is ∆0

1 in F .

Proof: We let

Z := {〈α, γ〉 : α ∈ Field(≺) ∧ γ ∈ Field(≺′) ∧ (∃G =∆0
1

(F)≺α)HierJ (G, X,≺′�γ)}

If ≺ has no top element, then corollary II.1.30 implies that Z is ∆0
1 in F . If ≺

has a top element, let λ be the largest limit in the field of ≺ if such a limit exists
and 0≺ otherwise, and Z ′ the restriction of Z to ≺�λ. As before, we obtain that
Z ′ ≤∆0

1
(F)≺λ. Since Z extends Z ′ only be finitely many pairs, also Z ≤∆0

1
F .

Using lemma II.1.33 we show by transfinite induction that for all α ∈ Field(≺), Z�α
compares ≺�α and ≺′: Assume that S := Rng(Z�α) is not the entire field of ≺′.
Then S has a supremum γ w.r.t. ≺′ and Z�α ∪ {〈α, γ〉} compares ≺�α+1 and ≺′.
Since Z�α is an order isomorphism between ≺�α and ≺′�γ, there exists a G with
HierJ (G, X,≺′�γ) and G =∆0

1
(F)≺α. It follows that Z�α+1 = Z�α∪{〈α, γ〉}. If S is

already the entire field of ≺′, then Z�α has range Field(≺′) and for each γ ∈ Field(≺′)
there is a β ≺ α with 〈β, γ〉 ∈ Z. So G =∆0

1
(F)≺α and HierJ (G, X,≺′�γ) would

imply that (F)≺α is ∆0
1 in (F)≺β, which contradicts lemma II.1.23 (vii). Therefore

Z = Z�α.

If λ is a limit and Z�α compares ≺�α and ≺′ for all α ≺ λ, then Z�λ compares
already ≺�λ and ≺′. 2

The following lemma helps to establish the Kleene-Souslin Theorem. It states that
the ordertypes of a Σ1

1 definable family of recursively enumerable well-orderings is
bounded by the ordertype of a recursively enumerable well-ordering.

Lemma II.1.35 ACA0 proves: If X and Y are such that,

(i) any two well-orderings of the form ≺X
a and ≺X

b are comparable,

(ii) Y is Σ1
1 in X,

(iii) (∀e ∈ Y)Wo(≺X
e),

then there exists an index a with Wo(≺X
a), such that for each e ∈ Y , ≺X

e is isomor-
phic to a proper initial segment of ≺X

a .

Proof: Otherwise, we had

∀a[Wo(≺X
a) ↔ ∃F, e[e ∈ Z ∧ A(F, X, a, e)],

II.1 Preliminaries 65

where A(F , X, a, e) is a Σ1
1 formula of L2 expressing that F is an isomorphism

between ≺X
a and an initial segment of ≺X

e . This, however, contradicts lemma II.1.10.
2

We conclude this section with the well-know Kleene-Souslin theorem, which states
that ACA0 proves that a set Y is in HYPX if and only if Y is ∆1

1 in X, provided that
the jump-hierarchy above X exists for a sufficiently large class of well-ordering.

Theorem II.1.36 (Kleene-Souslin) The following is provable in ACA0:

∀a[Wo(≺X
a) → ∃FHierJ (F, X,≺X

a)] → [Y ∈ HYPX ↔ Y ≤∆1
1
X].

Proof: If Y is hyper-arithmetical in X, there are a, α and e such that

x ∈ Y ↔ ∃F [HierJ (F, X,≺X
a) ∧ x ∈ (F)α,e]

↔ ∀F [HierJ (F, X,≺X
a) → x ∈ (F)α,e].

Thus, Y is also ∆1
1 in X.

For the other direction, assume that there are indices e, e′, such that

∀x[π1
1(X, x, e) ↔ ¬π1

1(X, x, e′)].

We have to show that the set Y := {x : π1
1(X, x, e)} is hyper-arithmetical in X.

Theorem II.1.8 yields there exists a set Z which is ∆0
0 in X, such that

∀x[Wo((Z)x) ↔ π1
1(X, x, e) ↔ ¬π1

1(X, x, e′)].

The index set W := {a : ∃x[≺X
a = (Z)x ∧ ¬π1

1(X, x, e′)]} is Σ1
1 in X. Since the

jump-hierarchy exists along every well-ordering of the form ≺X
a and the proof of

corollary II.1.34 implies the comparability of well-orderings of this form, we are in
the position to apply lemma II.1.35. So we obtain an index b, such that Wo(≺X

b) is
a well-ordering without a top element and a limit λ ∈ Field(≺X

b) such that for each
a ∈ W , ≺X

a is isomorphic to a proper initial segment of ≺X
b �λ. Let G be the set

satisfying HierJ (G, X,≺X
b). Then corollary II.1.34 enables us to describe the set Y

as the collection of all x such that

∃β(∃F ∈̇ (G)λ)[F is an order-isomorphism between (Z)x and ≺X
b �β)].

Thus, Y is arithmetical in (G)λ, hence by corollary II.1.26 there is a k ∈ N, such
that Y ∈̇ (G)λ+csk

. 2

66 Chapter II. Pseudo-hierarchies in second order arithmetic

II.2 Pseudo-hierarchy arguments

A pseudo-hierarchy F looks locally like a proper hierarchy, however, the underlying
ordering ≺ is not a well-ordering, so that there is a non-empty, upward closed
K ⊆ Field(≺) without a ≺-least element. The careful design of the pseudo-hierarchy
then implies that if a selected arithmetical property A(α) holds for all α ∈ K, then
there is a β below K such that A(β) still holds, which essentially accounts for the
expedient closure properties of the intersection

⋂
α∈K(F)α of all the levels α ∈ K of

the pseudo-hierarchy F .

Pseudo-hierarchies have become a powerful tool in several areas of mathematical
logic. They were first applied in the context of hyperarithmetical theory by Spec-
tor [41], Gandy [16] and Feferman and Spector [13]. Especially in second order
arithmetic, the potent and flexible technique of pseudo-hierarchy arguments seems
nowadays virtually indispensable. A typical application for specific fixed point def-
initions is given in Avigad [2], and a rich fund of important results obtained by
working with pseudo-hierarchies is found in Simpson [40].

First, we review results from [40]. We will adapt many of them to the context of
admissible set theory after we have developed the necessary tools to apply pseudo-
hierarchies also in this framework. Then, we combine the fixed point construction
from [2] with techniques developed in Jäger [21] to reason about fixed points of non-
monotone operators. Next, we introduce the theory FP−

0 to research the relationship
between fixed points and hyperarithmetical sets. We prove that there are operators,
given by a positive arithmetical formula, that have no fixed points in HYP. Finally,
we reveal an interesting property of models of Σ1

1-DC0. Given a positive arithmetical
formula A(U+, u), then the class ClA :=

⋂
{X : F A(X) ⊆ X} is the least Π1

1 definable
fixed point of the operator F A. This result leads immediately to the answers an old
question asked by Feferman in his paper on Hancock’s conjecture [11] about the
strength of ID∗

1.

II.2.1 On HYP

The existence of pseudo-hierarchies is a direct consequence of the fact that being
a well-ordering is not expressible by a Σ1

1 formula of L2. Moreover, if a proper
hierarchy and its underlying well-ordering satisfy a Σ1

1 definable property, then this
property holds already for some pseudo-hierarchy and its underlying ordering.

Theorem II.2.1 (Existence of pseudo-hierarchies) Assume that A(U, u) is an
arithmetical and B(U, V) is a Σ1

1 formula of L2. Then ACA0 proves: If

(1) ∀X[Wo(X) → ∃F (HierA(F, X) ∧ B(F, X))],

then there exists an ordering ≺ and a G such that PSHA(G,≺) and B(G,≺).

II.2 Pseudo-hierarchy arguments 67

Proof: Since A(U, u) is arithmetical, the formula ∃F (HierA(F, U)∧B(F, U)) is equiv-
alent to a Σ1

1 formula of L2. Theorem II.1.9 and the assumption (1) yield the claim.
2

Of course, we can relativize this theorem to well-orderings that are primitive re-
cursive, ∆0

1 or Σ0
1 in some set X, by applying lemma II.1.10 in place of theorem

II.1.9.

Lemma II.2.2 Assume that A(U, u) is an arithmetical and B(U, V, u) a Σ1
1 formula

of L2 with at most the displayed set variables free. Then ACA0 proves: If S is one
of the sets N, TRecX or Prim, and

(∀e ∈ S)[Wo(≺X
e) → ∃F (HierA(F,≺X

e) ∧ B(F, X, e))],

then there exists an e′ ∈ S and a G such that PSHA(G,≺X
e′) and B(G, X, e′).

In Σ1
1-AC0, there the formula classes Σ1

1 and Σ coincide, we can strengthen the above
results as follows:

Corollary II.2.3 Let A0(U, ~V , W, u,~v, w) be a Π formula and A1(U, ~V , W, u,~v, w),
B(U, V) be Σ formulas of L2. Then Σ1

1-AC0 proves: If

(i) ∀F, Z, x, α[A0(F, ~Y , Z, x, ~y, α) ↔ A1(F, ~Y , Z, x, ~y, α)],

(ii) ∀Z[Wo(Z) → ∃F (HierA0(F, ~Y , Z, ~y) ∧ B(F, X))],

then there exists an ordering ≺ and a G such that PSHA0(G, ~Y ,≺, ~y) and B(G,≺).

Proof: Assumption (i) yields that ∃F (HierA0(F, ~Y , Z, ~y) ∧ B(F, X)) is equivalent to
a Σ1

1 formula of L2. 2

Next, we employ pseudo-hierarchy arguments to learn more about the class HYP.

Definition II.2.4 (Hyperarithmetically closed sets) We say that M is hyper-
arithmetically closed, if X ∈̇ M and Y ∈ HYPX imply Y ∈̇ M .

A first observation is that each model M of Σ1
1-AC is hyperarithmetically closed.

The following theorem is a first step towards a better understanding of the hyper-
arithmetical sets. It displays how a pseudo-jumphierarchy gives rise to a hyperarith-
metically closed set.

Theorem II.2.5 The following is provable in ACA0: Suppose that PSHJ (F, X,≺),
that K ⊆ Field(≺) is non-empty, upwards closed and has no ≺-least element. Then,
for each α0 ∈ K, the set

M := {〈x, 〈α0, e〉〉 : (∀α ∈ K)∃e′[(F)α0,e = (F)α,e′ ∧ x ∈ (F)α0,e]}

contains X and is hyperarithmetically closed.

68 Chapter II. Pseudo-hierarchies in second order arithmetic

By lemma II.1.23, (v), a jump-hierarchy is monotone, i.e. if β ≺ α and Y ∈̇ (F)β

then Y ∈̇ (F)α. Therefore, we have that X ∈̇ M if and only if (∀α ∈ K)(X ∈̇ (F)α).
In this sense, M is the intersection of the (F)α with α ∈ K. Moreover, M does not
depend on the choice of α0.

Proof: First, we show that M satisfies arithmetical comprehension. So we assume
that A(~U, u) is a Π0

k formula and that ~Y are in M . Now we choose an arbitrary
α ∈ K. Since K has no ≺-least element, there are ~α ∈ K with α � α1 � . . . � αk.
Since ~Y ∈̇ (F)αk

, lemma II.1.26 implies that Z := {x : A(~Y , x)} ∈̇ (F)α. Because
α ∈ K was arbitrary, we have Z ∈̇ (F)β for all β ∈ K, thus Z ∈̇ M .

Next, we assume that ≺′, Y are in M with Wo(≺′). By means of transfinite induc-
tion, we show that

{β ∈ Field(≺′) : (∃H ∈̇ M)HierJ (H, Y,≺′�β)}

is already the entire field of ≺′.

Since M is closed under arithmetical comprehension, we only have to consider
the limit case. So assume that for all β ≺′ λ, there is a (unique) H ∈̇ M with
HierJ (H, Y,≺′�β). Thus, we have for an arbitrary α ∈ K that the set

G := {〈x, β〉 : β ≺′ λ ∧ ∃e[HierJ ((F)α,e, Y,≺′�β+1) ∧ 〈x, β〉 ∈ (F)α,e]}

satisfies HierJ (G, Y,≺′�λ). Again lemma II.1.26 yields a k ∈ N such that for each
sequence α = α0 ≺ . . . ≺ αk, G ∈̇ (F)αk

. Since K has no ≺-least element, this
implies G ∈̇ M . 2

As a corollary, we obtain an additional characterization of HYP.

Corollary II.2.6 The following is provable in ACA0: Provided J X
≺X

a
exists for each

a ∈ Prim with Wo(≺X
a), then Y ∈ HYPX if and only if Y ∈̇ M for each hyperarith-

metically closed set M above X.

Proof: If Y ∈ HYPX , then Y is clearly in each hyperarithmetically closed set M
above X. For the converse direction, we assume that Y /∈ HYPX and show that
there is a hyperarithmetically closed set M above X that does not contain Y .
Because J X

≺X
a

exists for each a ∈ Prim with Wo(≺X
a), we have

(∀a ∈ Prim)[Wo(≺X
a) → ∃F (HierJ (F, X,≺X

a) ∧ B(F, X, a))],

where B(U, V, u) is the Σ1
1 formula

∃Q[Q = {〈x, e〉 : π0
1(U, x, e)} ∧ WoQ(≺V

u)].

Now lemma II.2.2 provides a b ∈ Prim and an F , such that PSHJ (F, X,≺X
b) and

B(F, X, b). For further reference, we set ≺:=≺X
b . Next, we distinguish the following

two cases:

II.2 Pseudo-hierarchy arguments 69

(i) (∃α ∈ Field(≺))[Y /̇∈ (F)α ∧ ¬Wo(≺�α)],

(ii) (∀α ∈ Field(≺))[Y /̇∈ (F)α → Wo(≺�α)].

If the first case applies, then there is already a non-empty, upward closed K ⊆
Field(≺) without a ≺-least element and an α ∈ K with Y /∈ (F)α. According to
theorem II.2.5, this gives rise to a hyperarithmetically closed set M above X that
does not contain Y .

In the second case, there is an β ∈ Field(≺) with Y ∈ (F)β, because ≺ is not a
well-ordering. Since (F)≺β is ∆0

1 in (F)β, the set

{α ≺ β : Y ∈̇ (F)≺β,α}

is Π0
1 in F , therefore it has a least element α0. However, then α0 is also the min-

imum of the set S := {α ∈ Field(≺) : Y ∈ (F)α} which is impossible: Due to the
assumption Y /∈ HYPX , Y ∈̇ (F)α yields that ¬Wo(≺�α0). Thus, there is a β ≺ α

with ¬Wo(≺�β) and Y /̇∈ (F)β. However, this contradicts (ii). Hence, case (ii) never
holds. 2

Consequently, if Y is in HYPX , then Y is in each model M of Σ1
1-AC or Σ1

1-DC above
X. To show the converse is our next goal.

Theorem II.2.1 allows us to impose Σ1
1 definable conditions on the underlying or-

dering ≺ of a pseudo-jumphierarchy F . It proves extremely useful, to force this
underlying ordering to look like a well-ordering in an appropriate collection Q of
sets, i.e. WoQ(≺). When working in ACA0, Q =: {〈x, e〉 : π0

1(F, x, e)} is a good
choice, as we have seen above. If we work in stronger theories that prove the exis-
tence of J F

ω , we simplify things and set Q := J F
ω instead. This property is indeed

so apt for pseudo-hierarchy arguments that we hardly ever omit it. The reason is,
that this condition implies the inseparability of a non-empty K ⊆ Field(≺) without
a ≺-least element with arithmetical formulas:

Lemma II.2.7 (Inseparability) For each arithmetical formula A(~U, u) of L2 with
at most the displayed set variables free, the following is provable in ACA0: If

(i) M is a model of ACA and ~X ∈̇ M ,

(ii) WoM(≺),

(iii) K ⊆ Field(≺) is non-empty, upward closed and has no ≺-least element,

then

(iv) (∀α ∈ K)A(~X, α) → (∃β ≺ K)A(~X, β), and

70 Chapter II. Pseudo-hierarchies in second order arithmetic

(v) (∀α ≺ K)A(~X, α) → (∃β ∈ K)A(~X, β).

Proof: We show (iv). (v) is the contraposition of (iv). If ~X ∈̇ M , then also the set

S := {α ∈ Field(≺) : A(~X, α)} ∈̇ M . The premise (∀α ∈ K)A(~X, α) entails that
K ⊆ S and (ii) implies that S has a ≺-least element β. Therefore (iii) yields that
β ≺ K. 2

We collect some interesting instances of this lemma:

Corollary II.2.8 ACA0 proves: If ∀α, β[α ≺ β → (F)α ⊆ (F)β], M is a model of
ACA above F and WoM , then

⋃

α≺K

(F)α =
⋂

α∈K

(F)α.

If we regard quantified number variables that range over the field of an ordering as a
fresh sort of variables, we can look upon the next corollary as a kind of Σ reflection
for this fresh sort of variables.

Corollary II.2.9 For each arithmetical formula A(U+, ~V) of L2 with at most the
displayed set variables free, the following is provable in ACA0: If

(i) PSHA(F, ~Y ,≺),

(ii) (AxACA)M , WoM(≺) and F, ~Y ∈̇ M ,

(iii) K ⊆ Field(≺) is non-empty, upward closed and has no ≺-least element,

then
A((F)≺K, ~Y) → (∃α ≺ K)A((F)≺α, ~Y).

Proof: Since A((F)≺K, ~Y) implies (∀α ∈ K)A((F)≺α, ~Y), the previous lemma yields
the claim. 2

Another application is given below. If PSH(F,≺), and K ⊆ Field(≺) has no ≺-least
element, K divides the pseudo-hierarchy into an upper and lower part that both
contain the same sets.

Corollary II.2.10 ACA0 proves: If PSHJ (F, X,≺), M is a model of ACA above X
and WoM(≺), then we have for each upward closed K ⊆ Field(≺):

∀X[(∃α ≺ K)(X ∈̇ (F)α) ↔ (∀α ∈ K)(X ∈̇ (F)α)].

Proof: Suppose that (∀α ∈ K)(X ∈̇ (F)α). By lemma II.2.7 there is a β ≺ K with
X ∈̇ (F)β. The other direction is due to the monotonicity of jump-hierarchies (cf.
lemma II.1.23, (v)). 2

Next, we show how a pseudo-jumphierarchy G whose underlying ordering looks like
a well-ordering in an appropriate collection of sets Q gives rise to a model of Σ1

1-DC.

II.2 Pseudo-hierarchy arguments 71

Theorem II.2.11 (Models of Σ1
1-DC) The following is provable in ACA0: If

(i) PSHJ (F, X,≺),

(ii) WoQ(≺), where Q := {〈x, e〉 : π0
5(F,≺, x, e)},

(iii) K ⊆ Field(≺) is non-empty, upward closed and has no ≺-least element,

then
M := MF

≺K := {〈x, 〈γ, e〉〉 : γ ≺ K ∧ 〈x, 〈γ, e〉〉 ∈ (F)γ+1},

is a model of Σ1
1-DC. Further, if ≺′∈̇ M is a well-ordering, then there exists an

order-isomorphism Z ∈̇ M between ≺′ and a proper initial segment of ≺.

Since WoQ(≺) and K has no ≺-least element, γ+1 is well-defined for all γ ≺ K. By
lemma II.1.23, γ ≺ β ≺ α and 〈x, 〈γ, e〉〉 ∈ (F)β implies 〈x, 〈γ, e〉〉 ∈ (F)α. Similar
to the previous lemma, we now infer that X ∈̇ M if and only if (∀α ∈ K)(X ∈̇ (F)α).
Hence, M is hyperarithmetically closed by theorem II.2.5.

Proof: To verify that M satisfies (Σ1
1-DC), it suffices to show dependent choice for

Π0
2 formulas (cf. lemma II.1.21). So let A(U, V) be a Π0

2 formula of L2 and assume
that

(1) (∀X ∈̇ M)(∃Y ∈̇ M)A(X, Y).

If X ∈̇ M , then there exists an index a such that X = (M)a. The definition of M
implies that a is of the form 〈γ, e〉, where e is a natural number and γ an element
of the field of ≺. Now, we set

I := {〈γ, e〉 : e ∈ N ∧ γ ∈ Field(≺)},

and order I by <I, letting 〈γ, e〉 <I 〈δ, e
′〉 if γ ≺ δ, or γ = δ and e <N e′. Note,

that 〈γ, e〉 ∈ I and γ 6≺ K implies (M)〈γ,e〉 = ∅. Therefore, (1) becomes equivalent
to the formula (∀y ∈ I)(∃z ∈ I)A((M)y, (M)z). Moreover, for each y ∈ I, the set
{z ∈ I : A((M)y, (M)z)} has a <I-least element. To see this, we pick an α0 ∈ K
and let

M ′ := MF
≺α0

:= {〈x, 〈γ, e〉〉 : γ ≺ α0 ∧ 〈x, 〈γ, e〉〉 ∈ (F)≺α0,γ+1}.

Then, we have that

S1 := {z ∈ I : A((M)y, (M)z)} ⊆ {z ∈ I : A((M ′)y, (M
′)z)} =: S2.

Since I is ∆0
1 in ≺, M ′ is ∆0

1 in (F)α0
and S2 is Π0

2 in M ′, we have that S2 ∈̇ Q.
Hence S2 has a ≺-least element. This is also the minimum of the set S1, because
z ∈ S1, y ∈ S2 and y <I z yields already y ∈ S1. Therefore, we conclude that

72 Chapter II. Pseudo-hierarchies in second order arithmetic

(∀y ∈ I)(∃!z ∈ I)A′(M, y, z), where A′ is a Π0
3 formula of L2 expressing that z is the

least index w.r.t. our index ordering <I, such that A((M)y, (M)z) holds.
Next, we fix an index w ∈ I with (w)0 ≺ K. and show that there exists a choice
sequence Z ∈̇ M , such that (Z)0 = (M)w and ∀nA((Z)n, (Z)n+1). First, we look
for initial segments of such a choice sequence. In the present setting, this is a finite
sequence σ of indices such that

ChSeqA′(M, σ, w, n) := lh(σ) = n+1 ∧ (σ)0 = w ∧ (∀m < n)A′(M, (σ)m, (σ)m+1).

Assumption (1) allows us to prove by set induction that ∀n∃!σChSeqA′(M, σ, w, n).
Note that ChSeqA′ is equivalent to a Π0

3 formula. Again, we pick an α0 ∈ K. Since
γ ≺ K implies (M)〈γ,e〉 = (MF

≺α)〈γ,e〉 for each α ∈ K, the set

{α ≺ α0 : ∀n∃σChSeqA′(MF
≺α, σ, w, n)}

is not empty. Moreover, it is Π0
5 in (F)α0

, so it has a least element β0. Since β0 ≺ K,

Z := {〈x, n〉 : ∃σ[ChSeqA′(MF
≺β0

, σ, w, n) ∧ x ∈ (MF
≺β0

)(σ)n
]}

is a set in M and serves as a witness for our sought for choice sequence.

Now, we turn to the second part of the theorem. Let ≺′∈̇ M be a well-ordering. We
show that ≺′ is isomorphic to a proper initial segment of ≺. Thereto, we choose an
arithmetical formula A(U, u) expressing that

u ∈ Field(≺) ∧ u /∈ U∧

(∃α ∈ Field(≺′))[U is an order isomorphism between ≺�u and ≺′�α].

Since M is a model of Σ1
1-DC, there is an F ∈̇ M with HierA(F,≺′). By transfinite

induction along ≺′, we show that for each β ∈ Field(≺′), (F)≺′β is an order isomor-
phism between an initial segment of ≺ and ≺′�β: If β = 0≺′ there is nothing to
show. So assume that (F)≺′β is an order isomorphism between an initial segment

of ≺ and ≺′�β. Since WoJ
F
ω (≺), Dom((F)≺′β) has a least upper bound α w.r.t. the

ordering ≺. The definition of A yields that (F)≺′β+1 = (F)≺′β ∪ {〈α, β〉}, which
is an order isomorphism between an initial segment of ≺ and ≺′�β+1. For a limit
λ ∈ Field(≺′), observe that (F)≺′λ =

⋃
β≺′λ(F)≺′β. This easily yields the limit case.

So F compares ≺ and ≺′. However, ≺ cannot be an initial segment of ≺′, since then
the inverse image of K under F would be a subset of Field(≺′) without a ≺′-least
element. 2

The previous theorem tells us how to construct a model M of Σ1
1-DC, if we have a

pseudo-jumphierarchy F along an ordering ≺ with WoQ(≺), for a suitable collection
Q of sets. The next lemma shows that there are such pseudo-jumphierarchies,

II.2 Pseudo-hierarchy arguments 73

provided JX
≺ exists for all well-orderings ≺ that are primitive recursive in X. In the

same go, we show that if Y is not in HYPX , then there are models of Σ1
1-DC above

X which do not contain Y .

Lemma II.2.12 The following is provable in ACA0: If J X
≺X

a
exists for each a ∈ Prim

with Wo(≺X
a) and Y is an arbitrary set, then there is an F and an index e ∈ Prim

such that for Q := {〈x, e〉 : π0
5(F, x, e)},

PSHJ (F, X,≺X
e) and WoQ(≺X

e) and Y /∈ HYPX → ∀α(Y /̇∈ (F)α).

Proof: This is proven as corollary II.2.6. 2

This yields our aimed at characterization of HYP via models of Σ1
1-AC or Σ1

1-DC.

Corollary II.2.13 ACA0 proves: If J X
≺X

a
exists for each a ∈ Prim with Wo(≺X

a),

then Y ∈ HYPX if and only if Y is in each model of Σ1
1-AC or Σ1

1-DC above X

Therefore, if the jumphierarchy along primitive recursive well-orderings exists, then
there exist also A-hierarchies along arbitrary well-orderings in HYP for all arithmeti-
cal formulas A(U, u).

Corollary II.2.14 The following is provable in ACA0: If A(U, ~V , W) is an arith-
metical formula of L2 and J X

≺X
a

exists for each a ∈ Prim with Wo(≺X
a), then

~Y ,≺∈ HYPX ∧ Wo(≺) → ∃FHierA(F, ~Y ,≺).

Proof: If ~Y ,≺∈ HYPX , then there is a model M of Σ1
1-DC with X, ~Y ,≺∈̇ M . Since

Wo(≺), (∃F ∈̇ M)HierA(F, ~Y ,≺) follows by transfinite induction along ≺. 2

Although, we cannot prove that HYP is a set, we obtain that HYP is a model of
Σ1

1-AC, i.e. the class HYP satisfies each instance of (Σ1
1-AC).

Lemma II.2.15 The following is provable in ACA0: If J X
≺X

a
exists for each a ∈ Prim

with Wo(≺X
a), then HYPX is a model of Σ1

1-AC above X.

Proof: We just show that HYPX satisfies (Σ1
1-AC). Lemma II.2.12 yields an in-

dex e and an F such that PSHJ (F, X,≺X
e) and WoQ(≺X

e), where Q is the col-
lection {〈x, e〉 : π0

4(F, x, e)}. To simplify the notation we set ≺:=≺X
e . Now as-

sume that A(U, V, u) is a Π0
2 formula of L2 and that Z ∈ HYPX is such that

∀n(∃Y ∈ HYPX)A(Y, Z, n). Since Z is in each model of Σ1
1-DC above X, there

is an α0 ∈ Field(≺) such that Z ∈̇ (F)α0
. Moreover, there is even an β0 with

Z ∈̇ (F)β0
and Wo(≺�β0): Otherwise, we have

(∀α ∈ Field(≺))[Wo(≺�α) → Z /̇∈ (F)α].

74 Chapter II. Pseudo-hierarchies in second order arithmetic

However, this leads to a contradiction. Since

{α ≺ α0 : Z ∈̇ (F)≺α0,α}

is in Q, it has a ≺-least element γ0. But Z ∈̇ (F)γ0
implies that ¬Wo(≺�γ0), hence

there is a γ ≺ γ0 with ¬Wo(≺�γ) and Z /̇∈ (F)γ. Now a non-empty, upward closed
K ⊆ Field(≺�γ) leads to a model of Σ1

1-DC above X that does not contain Z.

Next, we pick an α0 ∈ Field(≺) with ¬Wo(≺�α0) and observe that the set

{α ≺ α0 : ∀n(∃Y ∈̇ (F)≺α0,α)A(Y, Z, n)}

is Π0
4 in (F)α0

and thus has a ≺-least element δ0. Further, Wo(≺�δ0). Otherwise,
there is a model M of Σ1

1-DC with ¬∀n(∃Y ∈̇ M)A(Y, Z, n). Such a model is
constructed using a non-empty, upward closed K ⊆ Field(≺) without a ≺-least
element that contains a γ ≺ δ0. 2

Since models of Σ1
1-DC are hyperarithmetically closed, the second part of theorem

II.2.11 yields that each well-ordering that is hyperarithmetical in X is already sur-
passed by a well-ordering that is primitive recursive in X.

Corollary II.2.16 The following is provable in ACA0: If J X
≺X

a
exists for a ∈ Prim

with Wo(≺X
a), ≺∈ HYPX and Wo(≺), then there exists an index e ∈ Prim, such that

≺ is isomorphic to an initial segment of ≺X
e .

Proof: By lemma II.2.12 and theorem II.2.11 there is a model of Σ1
1-DC above X of

the form M := MF
≺X

b
K

. Since ≺∈ HYPX , ≺ is also in M . So Wo(≺) together with

the second part of theorem II.2.11 yields that ≺ is isomorphic to a proper initial
segment of ≺X

b . 2

This gives yet another characterization of HYP.

Corollary II.2.17 ACA0 proves: If J X
≺X

a
exists for each a ∈ Prim with Wo(≺X

a),

then Y ∈ HYPX if and only if

(∗) (∃e ∈ Prim)[Wo(≺X
e) ∧ (∃α ∈ Field(≺X

e))∃F (HierJ (F, X,≺X
e) ∧ Y ∈̇ (F)α)].

Proof: Assume that Y is an element of HYPX , but fails to meet (∗). Lemma II.2.2
provides an index b ∈ Prim and an F such that PSHJ (F, X,≺X

b) and WoQ(≺X
b) for

the set Q := {〈x, e〉 : π0
5(F,≺, x, e)}. Now Y ∈̇ (F)α yields ¬Wo(≺X

b �α). Lemma
II.2.12 yields a model of Σ1

1-DC above X that does not contain Y . 2

From the next lemma emerges a well-ordering test: In order to verify whether an
ordering ≺ in HYP is well-founded, it suffices to check if a jump-hierarchy F along
≺ is in HYP.

II.2 Pseudo-hierarchy arguments 75

Lemma II.2.18 The following is provable in ACA0: If J X
≺X

a
exists for each a ∈ Prim

with Wo(≺X
a), then we have for all orderings ≺∈ HYP,

Wo(≺) ↔ (∃F ∈ HYPX)HierJ (F, X,≺).

In particular, no pseudo-jumphierarchy above X is in HYPX .

Proof: First we prove the direction from left to right. Since J X
≺X

a
exists for each

a ∈ Prim with Wo(≺X
a), lemma II.2.12 and theorem II.2.11 imply that there are

models of Σ1
1-DC above X. Now Wo(≺) and ≺∈ HYPX yields that the hierarchy F

with HierJ (F, X,≺) is in each model of Σ1
1-DC above X, thus also in HYPX .

For the converse direction no additional assumptions are required. Assume that
there is an F ∈ HYPX with PSHJ (F, X,≺). However, then there is a K ⊆ Field(≺)
without a ≺-least element. By theorem II.2.5, we obtain a hyperarithmetically
closed set M such that

∀Y [Y ∈̇ M ↔ (∀α ∈ K)(Y ∈̇ (F)α)].

Lemma II.1.23 yields that if β+1 ∈ Field(≺), then (F)β+1 /̇∈ (F)β, thus if α0 ∈ K,

(F)α0
/̇∈ M . Therefore, (F)α0

is not hyperarithmetical in X. This contradicts
F ∈ HYPX . 2

We close this subsection by presenting the Hyperarithmetical Quantifier Theorem
(cf. e.g. [40]). It generalizes the situation of lemma II.2.18. The quest for a witness
Y for an arithmetical formula A(X, Y) can be reduced to check an arithmetical
property for all sets in HYPX .

Theorem II.2.19 (Hyperarithmetical Quantifiers)
For each Σ formula A(U, V), there is a Σ formula B(U), and for each arithmetical

formula C(~U, V), there is an arithmetical formula D(~U, V), such that ACA0 proves:
If J X

≺ exists for each well-ordering ≺ that is primitive recursive in X, then

(i) (∀Y ∈ HYPX)A(X, Y) ↔ B(X),

(ii) ∃Y C(~X, Y) ↔ (∀Y ∈ HYP
~X)D(~X, Y).

Proof: For (i), observe that (∀Y ∈ HYPX)A(X, Y) is equivalent to

∀a, α, b[Wo(≺X
a) → ∃F (HierJ (F, X,≺X

a) ∧ A(X, (F)α,b))].

For (ii), let C ′(~U) := ∃Y C(~U, Y). By Theorem II.1.8 we have that C ′(~X) is equiva-

lent to ¬Wo(KB(T C′

~X
)). There is an index b such that KB(T

~X
C′) =≺

~X
b , and by lemma

II.2.18, C ′(~X) is equivalent to

¬(∃F ∈ HYP
~X)HierJ (F, ~X,≺

~X
b).

76 Chapter II. Pseudo-hierarchies in second order arithmetic

2

We have seen, that HYP is a model of Σ1
1-AC. To prove that HYP is a model of

Σ1
1-DC requires (Π1

1-INDN).

Lemma II.2.20 The following is provable in ACA0 + (Π1
1-INDN): If J X

≺ exists for
each well-ordering ≺ that is primitive recursive in X, then HYPX is a model of
Σ1

1-DC above X.

Proof: We just show that HYPX satisfies (Σ1
1-DC). So assume that A(U, V) is a

Π0
2 formula of L2 such that (∀Y ∈ HYPX)(∃Z ∈ HYPX)A(Y, Z). By lemma II.2.12,

there is an F and an index e ∈ Prim such that for Q := {〈x, e〉 : π0
5(F, x, e)},

PSHJ (F, X,≺X
e) and WoQ(≺X

e).

Next, we let ≺:=≺X
e and fix a non-empty, upward closed K ⊆ Field(≺) without a

≺-least element and denote by M := MF
≺X

e K the model of Σ1
1-DC defined in theorem

II.2.11. Also the index set I and the corresponding ordering <I are defined as there.

Now we proceed similar as in the proof of theorem II.2.11. If W ∈ HYPX , then the
proof of lemma II.2.15 tells us that W = (M)w for an index w with Wo(≺�(w)0).
Then (Π1

1-INDN) induction yields

∀n∃!σ[ChSeqA′(M, σ, w, n) ∧ (∀n < lh(σ))Wo(≺�(σ)n)].

Note that ChSeqA′ is equivalent to a Π0
3 formula. Again, we pick an α0 ∈ K. Since

γ ≺ K implies (M)〈γ,e〉 = (MF
≺α)〈γ,e〉 for each α � γ, the set

{α ≺ α0 : ∀n∃σChSeqA′(MF
≺α, σ, w, n)}

is not empty. Further, it is Π0
5 in (F)α0

, so it has a least element β0. Moreover,
Wo(≺�β0). Therefore,

Z := {〈x, n〉 : ∃σ[ChSeqA′(MF
≺β0

, σ, w, n) ∧ x ∈ (MF
≺β0

)(σ)n
]}

is a set in HYPX and serves as a witness for our sought for choice sequence. 2

II.2.2 The theory ACA0 + (∆-TR)

In this subsection we combine theorem II.2.11 and the Kleene-Souslin Theorem to
show that the iteration principle (∆-TR) is provable in ATR0. By (∆-TR) we denote
the iteration principle where the operator F A to iterate is specified by a formula
that is in a certain sense Π and Σ. More precisely, (∆-TR) is the axiom schema that

II.2 Pseudo-hierarchy arguments 77

claims for each Σ formula A(U, ~V , W, u,~v, w) and each Π formula B(U, ~V , W, u,~v, w)
of L2 the following:

If Wo(≺) and ~Y , ~y are so that

(∀α ∈ Field(≺))∀X, x[A(X, ~Y ,≺, x, ~y, α) ↔ B(X, ~Y ,≺, x, ~y, α)],

then there exists an F with HierA(F, ~Y ,≺, ~y).

Another way of looking at (∆-TR) is to see it as a restricted form of the choice
principle (Σ1

1-TDC), whose thorough analysis is carried out in Rüede [37] and [38]. If
we remove the choice aspect from this principle by postulating a functional character
of the formula defining the choice sequence, we obtain the following axiom schema:
For each Σ1

1 formula C(U, V, ~W, ~u, v) of L2,

(∗) ∀α∀X∃!Y C(X, Y, ~Z, ~y, α),

and Wo(≺) imply the existence of a choice sequence F with

(∀α ∈ Field(≺))C((F)≺α, (F)α, ~Z, ~y, α).

This principle, however, is an immediate consequence of (∆1
1-TR): We fix sets ~Z and

numbers ~y and assume that (∗) holds. Then for the formulas

A(U, ~V , u, ~v, w) := ∃Y [C(U, Y, ~V ,~v, w) ∧ u ∈ Y],

B(U, ~V , u, ~v, w) := ∀Y [C(U, Y, ~V ,~v, w) → u ∈ Y],

we have
(∀α ∈ Field(≺))∀X, x[A(X, ~Z, x, ~y, α) ↔ B(X, ~Z, x, ~y, α)].

Moreover, Y := F A
~Z,~y,α

(X) yields C(X, Y, ~Z, ~y, α). Given Wo(≺), an application

of the iteration principle (∆-TR) yields the existence of a hierarchy F such that

HierA(F, ~Z,≺, ~y). Now we conclude

(∀α ∈ Field(≺))C((F)≺α, (F)α, ~Z, ~y, α).

Here we supplement the proof of (∆-TR) in ATR0.

Theorem II.2.21 For each formula Π formula A(U, ~V , W, u,~v, w) and each Σ for-

mula B(U, ~V , W, u,~v, w) of L2, the following is provable in ATR0: If Wo(≺) and ~Y , ~y
are such that for all α ∈ Field(≺) and all X, x,

A(X, ~Y ,≺, x, ~y, α) ↔ B(X, ~Y ,≺, x, ~y, α)

then we have
(∃F ∈ HYP

~Y ,≺)HierA(F, ~Y ,≺, ~y).

78 Chapter II. Pseudo-hierarchies in second order arithmetic

Proof: We show that the F with HierA(F, ~Y ,≺, ~z) is a set in each model M of Σ1
1-AC

above ~Y ,≺. Theorem II.2.11 then yields that F is in HYP
~Y ,≺.

We suppose that M is a model of Σ1
1-AC above ~Y ,≺ and prove by transfinite induc-

tion along ≺ that the set

S := {α ∈ Field(≺) : (∃F ∈̇ M)HierA(F, ~Y ,≺�α, ~y)}

is already the entire field of ≺. So assume that all β ≺ α are in S. Since M is a
model of Σ1

1-AC and proper hierarchies are unique, also (F)≺α ∈̇ M . Now

(F)α = {x : A((F)≺α, ~Y ,≺�α, ~y, α)}

is already ∆1
1 in ~Y ,≺. By the Kleene-Souslin Theorem II.1.36 and because M is

hyperarithmetically closed, α ∈ S. Hence S = Field(≺). Similarly, it follows that
F ∈̇ M . 2

II.2.3 Fixed points of monotone and non-monotone opera-
tors

In this subsection, we apply pseudo-hierarchy arguments to construct fixed points
of monotone and non-monotone operators. We start by introducing some notation.
Suppose that A(U, u) is such that F A is a monotone operator. When iterating this
operator along an ordering ≺, it seems natural to form the αth level by applying F A

to the union, rather than the disjoint union of all the levels β ≺ α. This motivates
the definition of a fixed point hierarchy : If A(U, ~V , u, ~v) is a formula of L2, then the

set F is called a fixed point hierarchy along ≺ for A w.r.t. the parameters ~Y , ~y,
denoted by FHierA(F, ~Y ,≺, ~y), if

(i) Lin0(≺),

(ii) (∀x ∈ F)[x = 〈(x)0, (x)1〉],

(iii) ∀x[(F)x 6= ∅ → x ∈ Field(≺)],

(iv) (∀α ∈ Field(≺))[(F)α = F A
~Y ,~y

(
⋃

β≺α(F)β)].

Again, a fixed point hierarchy is called proper, if the underlying ordering is a well-
ordering, and a pseudo fixed point hierarchy otherwise, denoted by FPSHA(F,≺).

Before we turn to non-monotone operators, we review Avigad’s result given in [2],
namely that ATR0 proves the fixed point principle (FP) claiming the existence of
fixed points of monotone operators induced by arithmetical formulas.

II.2 Pseudo-hierarchy arguments 79

Theorem II.2.22 If A(U, ~V ,~v) is an arithmetical formula of L2 with exactly the
displayed variables free, then the following is provable in ATR0:

(FP) ∀X, Y [X ⊆ Y → F A
~Z,~z

(X) ⊆ F A
~Z,~z

(Y)] → ∃S[S = F A
~Z,~z

(S)].

Proof: As usual, theorem II.2.1 provides a F and an ordering ≺ such that

FPSHA(F, ~Z,≺, ~z) ∧ WoJ
F
ω (≺).

Note, that WoJ
F
ω (≺) enables us to show by transfinite induction that the hierarchy

is monotone, i.e. α ≺ β implies (F)α ⊆ (F)β. Hence, for a non-empty, upward
closed subset K ⊆ Field(≺) without a ≺-least element, we have by corollary II.2.8
that the sets S :=

⋃
α≺K(F)α and S ′ :=

⋂
α∈K(F)α are equal. By the monotonicity

of the operator F A we obtain S ⊆ F A(S) and F A(S ′) ⊆ S ′, thus F A(S) = S. 2

Combining the above argument with techniques developed in Jäger [21] allows us
also to deal with non-monotone operators. Of course, non-monotone operators have
in general no fixed points. Therefore, we assign to each arithmetical formula A(U, u)
of L2 the formula A◦(U, u) := A(U, u) ∨ u ∈ U , hence F A◦

(X) = F A(X) ∪ X. The
operator F A◦

is still not monotone, however, it is inclusive, i.e. we have for all
sets X that X ⊆ F A◦

(X). For sure, inclusive operators have fixed points, namely
N = F A◦

(N). However, such fixed points are not very interesting. What we are
interested in is not so much the fixed point itself, but rather its step-by-step build-
up. There exists in general no well-ordering long enough to reach the fixed point
from below. Looking for the next best thing, we try to reach the fixed point from
below via a fixed point hierarchy F along an ordering that looks like a well-ordering
at least in J F

ω . As we learn from theorem II.2.22, this works for a monotone operator
induced by arithmetical formula, and as the next theorem exhibits, it works also for
a non-monotone operator F A◦

induced by a Π0
1 formula A(U, u) of L2. For its prove,

we borrow an auxiliary lemma 6 from [21].

Lemma II.2.23 Let A(U+, V +, u) be a Π0
1 formula of L2. Then ATR0 proves: If ≺

is an ordering, γ � 0 and G satisfies ∀α, β[β ≺ α → (G)β ⊆ (G)α], then

(∀α ≺ γ)(∃β ≺ γ)A((G)β, (G)α, x) → A(
⋃

ξ≺γ

(G)ξ,
⋃

ξ≺γ

(G)ξ, x).

Proof: Due to the positivity of U in A(U+, V +, u) and the monotonicity of G we
conclude that

(∀α ≺ γ)(∃β ≺ γ)[A((G)β, (G)α, x) → (∀α ≺ γ)(A(
⋃

ξ≺γ

(G)ξ, (G)α, x))].

80 Chapter II. Pseudo-hierarchies in second order arithmetic

It remains to show that

(∀α ≺ γ)(A(
⋃

ξ≺γ

(G)ξ, (G)α, x)) → A(
⋃

ξ≺γ

(G)ξ,
⋃

ξ≺γ

(G)ξ, x),

which is done by induction the build-up of A(U+, V +, u).

If V does not occur in A(U, V, u), then there is nothing to prove. If A(U, V, u)
is t ∈ V , the claim follows since (∀α ≺ γ)(t /∈ (G)α) implies t /∈

⋃
α≺γ(G)α. If

A(U, V, u) is a conjunction, a disjunction or begins with a unbounded or bounded
universal number quantifier, the claim follows easily form the I.H.

Hence, it remains to consider the case where the formula A(U, V, u) is of the form
(∃y < t)B(U, V, u, y). The I.H. implies that

(∃y < t)(∀α ≺ γ)[B(
⋃

ξ≺γ

(G)ξ, (G)α, x, y)] → A(
⋃

ξ≺γ

(G)ξ,
⋃

ξ≺γ

(G)ξ, x).

Now we simplify the notation by setting C(α, x, y) := B(
⋃

ξ≺γ(G)ξ, (G)α, x, y). and
show by complete induction along N that for each t ∈ N,

(∀α ≺ γ)(∃y < t)C(α, y) → (∃y < t)(∀α ≺ γ)C(α, y).

Assume that the claim holds for t and that (∀α ≺ γ)(∃y < t+1)C(α, y). We proceed
by a case distinction: If (∀α ≺ γ)C(α, t) we are done. In the other case, we have
(∃α ≺ γ)¬C(α, t). But this implies (∀α ≺ γ)(∃y < t)C(α, y) and the I.H. can
be applied: If there is a β ≺ λ such that (∀y < t)¬C(β, y) but C(β, t), then also
(∀α � β)C(α, t). Since t is not a witness for all α below γ, there is a β ′ with
β ≺ β ′ ≺ γ such that ¬C(β ′, t). But then, there is a y < t with C(β ′, y), hence
already (∀α � β)C(α, y). A contradiction. 2

Also in the case of suitable non-monotone operators, a pseudo fixed-point-hierarchy
leads to a fixed point. In addition, we have some kind of fixed point induction.

Lemma II.2.24 For each Π0
1 formula A(U, u) of L2, the following is provable in

ACA0: If FPSHA◦

(G,≺), J G
ω exists and WoJ

G
ω (≺), then Z :=

⋃
α≺K(G)α is a fixed

point of F A◦

for each non-empty, upward closed K ⊆ Field(≺) without a ≺-least
element. Moreover, if X ∈̇ J G

ω with F A(X) ⊆ (X), then Z ⊆ X.

In particular, if x belongs to the fixed point Z, then there is a ≺-least level α0 such
that x ∈ (G)α0

. Otherwise, K ′ := {α ∈ Field(≺) : x ∈ (G)α} were a non-empty set
in J G

ω , and thus Z ′ :=
⋃

β≺K′(G)β were a fixed point in J G
ω properly contained in

Z. Hence A((G)≺α0
, x), or in other words, x belongs to the fixed point for a specific

reason.

II.2 Pseudo-hierarchy arguments 81

Proof: We choose a Π0
1 formula B(U+, V +, u) of L2 such that for all numbers x and

sets X, A◦(X, x) ↔ B(X, X, x), and aim to show that F A◦

(Z) ⊆ Z. So we pick an
x ∈ F A(Z) and argue that x ∈ Z.

If α ≺ K, the positivity of B in both arguments yields (∀β ∈ K)B((G)β, (G)α, x).
The inseparability of K (lemma II.2.7) and lemma I.2.15 provide a function F ∈̇ J G

ω

with F(0) = 0≺ and

F(n+1) = min≺{β � F(n) : B((G)β, (G)F(n), x)}.

Moreover, ∀n(F(n) ≺ K) is easily shown by induction. Thus, the ≺-least element
of the set {α ∈ Field(≺)) : (∀n ∈ N)(F(n) ≺ α)} exists and is below K. Therefore,

(∀α ≺ λ)(∃β ≺ λ)[B((G)β, (G)α, x)].

Now lemma II.2.23 yields

B(
⋃

ξ≺λ

(G)ξ,
⋃

ξ≺λ

(G)ξ, x).

By the choice of B, we have

x ∈ F A◦

(
⋃

ξ≺λ

(G)ξ) = (G)λ ⊆ Z.

Finally, if X ∈̇ J G
ω with F A(X) ⊆ (X), then it follows by transfinite induction along

≺ that (∀α ∈ Field(≺))((G)α ⊆ X). 2

Working in ATR0, we can state the following result:

Theorem II.2.25 Let A(U, ~V , u) be a Π0
1 formula of L2 with exactly the displayed

set variables free. Then ATR0 proves: There is a set Z such that F A◦

~Y
(Z) = Z and

for all Z ′ ∈ HYP
~Y with F A

~Y
(Z ′) ⊆ Z ′ we have Z ⊆ Z ′.

Proof: Given sets ~Y , there is a model M of Σ1
1-DC with ~Y ∈̇ M . Further, there

are G,≺∈̇ M such that FPSHA(G, ~Y ,≺) and WoM(≺). Because Z ′ ∈̇ HYP
~Y entails

Z ′ ∈̇ M , the claim follows by the previous lemma. 2

II.2.4 Fixed points and hyperarithmetical sets

In this subsection we research the question of how complex fixed points are in terms
of definability in L2. For that purpose, we introduce the theory FP−

0 , an extension of
ACA0 which formalizes the existence of fixed points of operators defined by positive
arithmetical formulas without set parameters. We will see that HYP is not a model

82 Chapter II. Pseudo-hierarchies in second order arithmetic

of any theory comprising FP−
0 . As we will see later, FP−

0 proves a parameter free
version of (Σ1

1-AC). Therefore, the following serves as motivation to research the
question of how complex fixed points are.

Aczel’s embedding of ÎD1 into Σ1
1-AC (cf. Aczel [1] and Feferman [11]) introduces

what become known as Aczel’s trick: Due to lemma II.1.14, there is for each Π
formula C of L2 a Π1

1 formula C ′ of L2 such that Σ1
1-AC0 proves C ↔ C ′. Hence,

there is a universal Π1
1 formula π1

1(u, v, w) of L2 (see corollary II.1.12), such that for
each Π formula B(u, v) of L2 without free set variables, there exists an e ∈ N such
that

Σ1
1-AC0 ` B(x, y) ↔ π1

1(x, y, cse).

This means in particular, that for an arithmetical formula A(U+, u) with exactly
the displayed variables free, there is an eA ∈ N such that

Σ1
1-AC0 ` A({z : π1

1(x, x, z)}, y) ↔ π1
1(x, y, cseA

).

Letting C(u) be the Π1
1 formula π1

1(u, cseA
, cseA

), Σ1
1-AC0 proves:

A({z : C(z)}, x) ↔ A({z : π1
1(z, cseA

, cseA
)}, x)

↔ π1
1(x, cseA

, cseA
)

↔ C(x).

This means that {z : C(z)} is a Π1
1 definable fixed point of the operator F A. Using

a universal Σ1
1 formula instead yields a Σ1

1 definable fixed point of F A. So the
question arises, whether, by some ingenious trick, one could obtain a fixed point
which is both, Π1

1 and Σ1
1 at the same time?

We will answer this question negatively. Fixed points are in general not ∆1
1 defin-

able sets: If a theory T of second order arithmetic comprises for each U positive,
arithmetical formula A(U+, u) an axiom that asserts the existence of a fixed point
of the operator F A, then there is a U positive, arithmetical formula C(U+, u) such
that no fixed point of the operator F C is ∆1

1.

The theory FP−
0 is formulated in the language L2 and comprises, besides the axioms of

ACA0, for each U positive, arithmetical formula A(U+, u) with exactly the displayed
variable free, an axiom asserting the existence of a fixed point of the operator F A.

(FP−) ∃X∀x[x ∈ X ↔ A(X, x)].

To facilitate the subsequent proof-theoretic treatment of FP−
0 we did not permit

number parameters in the formula A(U+, u) specifying the operator F A for which we
claim the existence of fixed points. However, the existence of fixed points of operators
defined by arithmetical formulas A(U+, u, ~v) containing number parameters is easily
proved:

II.2 Pseudo-hierarchy arguments 83

Lemma II.2.26 For each U positive, arithmetical formula A(U+, u, ~v) with exactly
the displayed variables free, the following is provable in FP−

0 :

∀~y∃X[X = F A
~y (X)].

Proof: Suppose that A(U+, u, ~v) contains exactly the displayed variables free. Now
we define

B(U+, u) := ∃x, ~y[u = 〈x, 〈~y〉〉 ∧ A((U)〈~y〉, x, ~y)].

By (FP−) we obtain a fixed point F of the operator F B. The definition of B implies
readily that (F)〈~y〉 = F A

~y ((F)〈~y〉) for all ~y. 2

Next, we apply an argument given in Avigad [2] that shows how the existence of
fixed points allows to construct hierarchies:

Lemma II.2.27 Let A(U, u) be an arithmetical formula of L2 with exactly the dis-
played set variable free. Then the following is provable in FP−

0 : If Lin0(≺
∅
a), then

there exists a downward closed subset S ⊆ Field(≺∅
a) and an F such that

(i) HierA(F,≺∅
a�S),

(ii) Wo(≺∅
a�α) → α ∈ S.

In particular, this implies that Wo(≺∅
a) → ∃FHierA(F,≺∅

a).

Proof: Suppose that ≺:=≺∅
a is a linear ordering with a least element denoted by 0,

and that A(U, u) is an arithmetical formula of L2 containing no other set variables
than U . Our aim is to construct sets S and F meeting the properties (i) and (ii).
Let us explore the proof idea first. It is not hard to see that a fixed point F of the
operator

X 7→ {〈x, α〉 : A((X)≺α, x)}

satisfies HierA(F,≺). Unfortunately, this operator is in general not even monotone,
and therefore the existence of its fixed point is not guaranteed by the axioms of FP−

0 .
Therefore we attempt to obtain the characteristic function of the hierarchy F from
a fixed point of an operator F C for some U positive, arithmetical formula C(U, u).
First we let B1(U

+, V +, u) be the formula that we obtain from A(U, u) by replacing
all literals of the form t /∈ U by t ∈ V , and B2(U

+, V +, u) the formula we obtain
from ¬A(U, u) by replacing all literals of the form t /∈ U by t ∈ V . Observe, that
we have

(∗) {x : B1(X, X, x)} = F A(X) and {x : B2(X, X, x)} = N − F A(X).

Note that for any X, the set (X)1,≺α contains only pairs of the form 〈y, β〉 with
β ≺ α. Suppose that for all β ≺ α, (X)1,β is the complement of (X)0,β. To obtain
the complement of (X)0,≺α, we have to add to (X)1,≺α the elements of the set

Hα := {〈y, z〉 : z 6≺ α} ∪ {x : x 6= 〈(x)0, (x)1〉}.

84 Chapter II. Pseudo-hierarchies in second order arithmetic

Next, we consider the operator that assigns to a set X the union of the two sets
given below:

{〈〈x, α〉, 0〉 : B1((X)0,≺α, (X)1,≺α ∪ Hα, x)},

{〈〈x, α〉, 1〉 : B2((X)0,≺α, (X)1,≺α ∪ Hα, x)}.

Clearly, this operator can be defined by a U positive arithmetical formula C(U+, u).

Let G be a fixed point of F C and set S := {α ∈ Field(≺) : (∀β � α)[(G)0,β = (G)1,β]}
and F := {〈x, α〉 ∈ (G)0 : α ∈ S}. (i) follows now directly from the definition of
F C and (ii) is shown by transfinite induction: Suppose that Wo(≺�α). For β = 0,
observe that for any set Z, (Z)0,≺β = ∅ and H0 = N. Hence (G)0,0 = F A(∅) and
(G)1,0 = F A(∅) = N − F A(∅), thus 0 ∈ S. Similarly, if all β ′ ≺ β are elements of S,
then 〈y, β ′〉 is in (G)0,≺β if and only if it is not in (G)1,≺β. Hence the complement
of (G)0,β is given by (G)1,β ∪Hβ. Thus, the definition of F C and (∗) yield β ∈ S. 2

Knowing that the jump-hierarchy above the empty set along a Σ0
1 definable well-

ordering exists, we can apply lemma II.2.12 and theorem II.2.11 to obtain the fol-
lowing:

Corollary II.2.28 The following is provable in FP−
0 :

(i) There exists a model M of Σ1
1-DC.

(ii) There exists an index a ∈ Prim with Lin0(≺
∅
a), such that for all ≺∈ HYP,

Wo(≺) implies that there is an order isomorphism in HYP that maps ≺ onto
a proper initial segment of ≺∅

a,

(iii) (∀X,≺∈ HYP)[Wo(≺) → (∃F ∈ HYP)HierJ (F, X,≺)].

Proof: Lemma II.2.12 provides an index e and an F such that PSHJ (F, ∅,≺∅
e) and

WoQ(≺∅
e) for Q := {〈x, e〉 : π0

5(F, x, e)}. Now theorem II.2.11 yields a model MF
≺∅

eK

of Σ1
1-DC. Further, if ≺∈ HYP, ≺ is isomorphic to an initial segment of ≺∅

e and
the corresponding order isomorphism Z is in M . If Z were not in HYP, then
there is an α0 ∈ Field(≺∅

e) (cf. the proof of lemma II.2.15) such that Z /̇∈ (F)α0

and ¬Wo(≺∅
e�α0). Thus there is a non-empty, upward closed K ′ ⊆ Field(≺∅

e) that
contains α0. But then, MF

≺∅
eK′

is a model of Σ1
1-DC which does not contain Z. If

X,≺∈ HYP and Wo(≺), then a hierarchy F with HierJ (F, ∅,≺) exists in each model
of Σ1

1-DC, thus F is already in HYP. 2

Next we show that FP−
0 implies already (Σ1

1-AC) restricted to formulas without set
parameters.

II.2 Pseudo-hierarchy arguments 85

Lemma II.2.29 For each Σ1
1 formula A(U, u) of L2 with at most the displayed set

variable free, the following is provable in FP−
0 :

∀x∃XA(X, x) → ∃Y ∀yA((Y)y, y).

Let us first explain the idea of the proof. The normal form theorem lets us reformu-
late the assumption ∀x∃XA(X, x) as follows: For each n, the tree T A

n has a path.
Our task is to select a path through each of these trees. Thereto, we define an
operator F B that collects the leafs of trees. In general, the operator F B has no least
fixed point, so it may collect some infinite branches. However, we can assure that
not the entire tree ends up in the fixed point of F B. After the trees T A

n are stripped
of their leafs, we can pick their leftmost branches.

Proof: Suppose that A(U, ~u, v) is a Σ1
1 formula of L2 with no other free set variable

than U . Further, assume that the numbers ~x are such that ∀y∃XA(X,~x, y) holds.
Due to theorem II.1.8, we also have that for each y, there is a path trough the tree
T A

~x,y. Now we set S := {〈σ, n〉 : σ ∈ T A
~x,n}. Next, we define an operator that collects

the leafs of the trees (S)n:

B(U, u) := ∃n[u = 〈σ, n〉 ∧ σ ∈ (S)n ∧ (∀τ ∈ (S)n)(τ ⊃ σ → τ ∈ (U)n)].

Note, that we can replace the parameter S in the definition of the formula B(U, u)
by its ∆0

0 definition. Provided that Wo(≺∅
a) holds, lemma II.2.27 yields an F such

that HierB(F,≺∅
a). Moreover, since each of the trees (S)n has an infinite path, our

leaf collector never picks the root of (S)n,

∀n(∀β ∈ Field(≺∅
a))(〈〈〉, n〉 /∈ (F)β).

A consequence of lemma II.2.27 is also that J F
ω exists. Recall that J F

ω is a model
of ACA above F . Due to theorem II.2.1 there is an index b and a G, such that
PSHB(G,≺∅

b) and also ∀n(∀β ∈ Field(≺∅
b))(〈〉, n〉 /∈ (G)β), i.e. of each tree (S)n, an

infinite part remains. Moreover, (G)β ⊆ (G)α for β ≺∅
b α. Of course, there is also a

K ⊆ Field(≺∅
b) without ≺∅

b -least element, and as in the proof of theorem II.2.22 we
obtain that

L := {〈σ, n〉 : (∃α ≺∅
b K)(σ ∈ (G)α,n)}

is a fixed point of the operator F B. Thus, each of the trees (S)n − (L)n contains
no more leafs, therefore we can select their leftmost branches: Let W be such that
(W)n is the function

{〈m, σ〉 : lh(σ) = m ∧ σ ∈ ((S)n − (L)n) ∧ (∀τ ∈ (S)n)(τ <KB((S)n) σ → τ ⊃ σ)}.

Lemma II.1.7 now tells us that if F = (W)n, then the set Y with

(Y)n := {y : WITB(F , y)}

86 Chapter II. Pseudo-hierarchies in second order arithmetic

constitutes a choice sequence satisfying ∀nA((Y)n, ~x, n). 2

As a consequence, we obtain that a ∆1
1 definable class is already a set.

Corollary II.2.30 The following is provable in FP−
0 : If A(u,~v) and B(u,~v) are Π1

1

formulas of L2 with exactly the displayed variables free, then

∀x[A(x, ~y) ↔ ¬B(x, ~y)] → ∃Y [Y = {x : A(x, ~y)}].

Proof: First, we observe that the formula

(U = {0} ∧ ¬A(u,~v)) ∨ (U = {1} ∧ ¬B(u,~v))

is equivalent to a Σ1
1 formula C(U, u,~v) of L2. Further, ∀x[A(x, ~y) ↔ ¬B(x, ~y)] im-

plies that ∀x∃XC(X, x). The previous lemma yields a set Z such that ∀xC((Z)x, x).
So Y := {x : 1 ∈ (Z)x} = {x : A(x, ~y)}. 2

Now the stage is set to prove the main theorem of this subsection.

Theorem II.2.31 There is a U positive, arithmetical formula C(U+, u) of L2 with
exactly the displayed set variables free, such that no fixed point of the operator F C

is ∆1
1. In other words: For each Π1

1 formula A(u) and each Σ1
1 formula B(u) of L2

without free set variables, the following is provable in FP−
0 :

∀x[A(x) ↔ B(x)] → F C({x : A(x)}) 6= {x : A(x)}.

Proof: Let a ∈ Prim be an index as provided by corollary II.2.28, such that ≺∅
a is

an ordering that is longer than any well-ordering ≺ in HYP. If each operator given
by an arithmetical formula C(U+, u) with only the displayed set variable free had
a fixed point in HYP, then the proof of lemma II.2.27 would provide a downward
closed subset S ∈ HYP of the field of ≺∅

a and an F ∈ HYP, such that HierJ (F,≺∅
a�S)

as well as Wo(≺∅
a�α) → α ∈ S. However, lemma II.2.18 tells us that F is a proper

hierarchy. Hence, by the choice of ≺∅
a and corollary II.2.28, an ordering ≺∅

b is a
well-ordering exactly if it is isomorphic to an initial segment of ≺∅

a whose field is a
subset of S. This contradicts lemma II.1.10. 2

The theory FP−
0 also proves the existence of fixed points of monotone operators.

Lemma II.2.32 For each arithmetical formula A(U, u) of L2 with exactly the dis-
played set variables free, the following is provable in FP−

0 :

∀X, Y [X ⊆ Y → F A(X) ⊆ F A(Y)] → ∃Z[F A(Z) = Z].

Proof: Lemma II.2.27 and lemma II.1.10 provide an a ∈ Prim and a G such that
PSHA(G,≺a). Now, for a non-empty, upward closed K ⊆ Field(≺a) without a ≺a-
least element, Z :=

⋃
α≺aK(G)α is a fixed point of F A. This is show as theorem

II.2.22. 2

II.2 Pseudo-hierarchy arguments 87

II.2.5 The proof-theoretic analysis of FP−
0

In this subsection, we show that the proof-theoretic ordinal |FP−
0 | of the theory FP−

0

equals ϕε00, the proof-theoretic ordinal of Σ1
1-AC (cf. e.g. [6]). An easy induction

on the depth of the proof immediately yields the following:

Lemma II.2.33 For each finite set Γ(~U) of L2 formulas with exactly the set vari-

ables ~U free, we have:

Σ1
1-AC ` Γ(~U) =⇒ FP−

0 ` ¬(AxΣ1
1
-AC)M ,¬(~U ∈̇ M), ΓM .

By corollary II.2.28, FP−
0 proves the existence of models M of (Σ1

1-AC) above sets
in HYP, therefore we conclude that Σ1

1-AC proves the same arithmetical formulas
without free set variables as FP−

0 .

Theorem II.2.34 If Γ is a finite set of arithmetical formulas without free set vari-
ables, then the following holds:

Σ1
1-AC ` Γ =⇒ FP−

0 ` Γ.

Remark II.2.35 For the reader familiar with well-ordering proofs we point out that
for each α < ϕε00, Σ1

1-AC ` TI�(X, α), but only FP−
0 ` X /∈ HYP, TI�(X, α):

There are sets X /∈ HYP, for which TI�(X, α) fails. Therefore, the restriction
to arithmetical formulas without set variables in the previous theorem cannot be
omitted.

It remains to show that ϕε00 is also a lower bound. We use the occasion to exhibit
a new method to interpret fixed points into Σ1

1-AC.

The standard way to perform this embedding would consist in applying Aczel’s trick
to gain Σ definitions of the fixed points of the operators in the fixed point axioms
(FP−), and then proceed similar to the embedding of ÎD1 into ACA0, confer e.g.
Feferman [11]. It seems to us that there is a more natural way to interpret fixed
points, namely by the Π1

1 definition of their least fixed point. Of course, some work
is required to prove in Σ1

1-AC that this class indeed satisfies the fixed point equation.
The advantage of our approach is that one has much more information about this
intuitive least fixed point definition than then applying Aczel’s trick, where the fixed
point property stems from a diagonalization, and not much more can be extracted
from this argument. The Π1

1 translation proves to be superior in cases their one has
to model additional properties of fixed points, see Probst [30].

The canonic candidate to interpret the fixed point of the operator F A, provided
A(U+, u) is an arithmetical formula of L2 that contains only the displayed variables
free, is the intersection of all A-closed sets, namely the Π1

1-definable class

FixA :=
⋂

{X : F A(X) ⊆ X}.

88 Chapter II. Pseudo-hierarchies in second order arithmetic

Of course, we cannot prove in Σ1
1-AC that FixA is a set, yet F A(FixA) ⊆ FixA is

still immediate: For all A-closed sets X, the U -positivity of A(U+, u) allows us to
conclude F A(FixA) ⊆ F A(X) ⊆ X. For the other direction, though, we can no
longer argue that F A(FixA) is A-closed, and therefore a superset of FixA. To show
that Σ1

1-AC0 proves FixA ⊆ F A(FixA), a more refined argument is required.

We prove F A(FixA) = FixA in a slightly more general context. For an U -positive,

arithmetical formula A(U+, ~V , ~v, u) of L2, we set

ClA~Y ,~y
(U) := ∀x(A(U, ~Y , ~y, x) → x ∈ U),

FixA
~Y ,~y

:= {x : ∀X[ClA~Y ,~y
(X) → x ∈ X]}.

Often, we do not explicitly mention the parameters in the formula A, and write
ClA(X), FixA and F A instead of ClA~Y ,~y

(X), FixA
~Y ,~y

and F A
~Y ,~y

. The context provides

always enough information to identify the dropped parameters. Below, we prove
within Σ1

1-AC0 that for each arithmetical formula A(U+, u), FixA is a fixed point of
the operator F A. The direction from right to left is again immediate. For the other
direction, the following lemma almost handles the job.

Lemma II.2.36 (Separation Lemma) For all arithmetical, U-positive formulas

A(U+, ~V , u, ~v) and B(U+, ~u) of L2, Σ1
1-AC0 proves:

∀X[ClA~Y ,~y
(X) → B(X,~x)] → B(FixA

~Y ,~y
, ~x).

Proof: We prove the lemma by induction on the build-up of the formula B(U+).
If U does not occur in B, then there is nothing to prove, and if B is the formula
t ∈ U , then the claim follows from the definition of FixA. If B is a conjunction or a
disjunction, a similar argument applies as in the cases treated below.

(i) B(U) is of the form ∃yB1(U
+, y). We assume ∀X[ClA(X) → B(X)] and

∀y¬B1(FixA, y), and argue for a contradiction. The contraposition of the I.H.
reads

¬B1(FixA, y) → ∃X[ClA(X) ∧ ¬B1(X, y)],

hence our assumptions yield that

∀y∃X[ClA(X) ∧ ¬B1(X, y)].

Applying (Σ1
1-AC) gives us a set X such that

∀y[ClA((X)y) ∧ ¬B1((X)y, y)].

Now we set
Z := {z : ∀y(z ∈ (X)y)},

II.2 Pseudo-hierarchy arguments 89

and observe that ClA(Z): From A(Z, z) we conclude that ∀yA((X)y, z), and
so ∀yClA((X)y) yields ∀y(z ∈ (X)y). Hence, by the positivity of B1, we have

ClA(Z) ∧ ∀y¬B1(Z, x, y),

which contradicts our assumptions.

(ii) B(U) is of the form ∀yB1(U, y). Now ∀X[ClA(X) → B(X)] implies that
∀y∀X[ClA(X) → B1(X, y)], and the claim follows by the I.H.

2

Our claim is now obtained effortlessly.

Lemma II.2.37 For all arithmetical U-positive formulas A(U+, ~V , u, ~v) of L2, the
theory Σ1

1-AC0 proves:

∀x[x ∈ FixA
~Y ,~y

↔ A(FixA
~Y ,~y

, ~Y , x, ~y)].

Proof: It remains to show that x ∈ FixA implies A(FixA, x). Due to lemma II.2.36
it suffices to show that x ∈ FixA implies ∀X[ClA(X) → A(X, x)]. Assume for a
moment, that there is an x ∈ FixA and a set Z with ClA(Z) and x /∈ F A(Z).
Because also F A(Z) is A-closed, this contradicts x ∈ FixA. 2

An upper bound for FP−
0 is provided by the following lemma:

Lemma II.2.38 We let a formula A belong to the set ∗, exactly if A or ¬A is the
main formula of an instance of a non-logical axiom of FP−

0 . Then, for all finite sets
Γ(U1, . . . , Un) of arithmetical formulas of L2 and all formlas C1(u), . . . , Cn(u) of L2

which may contain other free variables,

FP−
0

n

∗
Γ(~U) =⇒ Σ1

1-AC ` Γ[~C/~U],

where Ci denotes the set term {x : Ci(x)}, (1 ≤ i ≤ n).

Proof: We prove the lemma by (meta-) induction on n. If Γ is an axiom, then the
claim is due to formula induction and the fact that Σ1

1-AC ` C(u),¬C(u) for all
formulas C of L2. For rules, the only cases where the claim does not follow directly
by the I.H. is then Γ(~U) was obtained by a cut with an instance of a comprehension
axiom or a fixed point axiom. So assume that for an n′ < n,

FP−
0

n′

∗
Γ(~U),¬∃X[X = {x : B(~U, x)}].

∀-inversion yields FP−
0

n′

∗
Γ(~U), V 6= {x : B(~U, x)}, for a V /∈ FV (Γ, B(~U, u)). The

I.H. now yields that

Σ1
1-AC ` Γ[~C/~U], {x : B(~C, x)} 6= {x : B(~C, x)},

90 Chapter II. Pseudo-hierarchies in second order arithmetic

where V has been replaced by {x : B(~C, x)}. Since, {x : D(x)} = {x : D(x)} is
provable in Σ1

1-AC for all formulas D of L2, the claim follows by a cut.
If the last inference was a cut with a fixed point axiom, there is an n′ < n, so that

FP−
0

n′

∗
Γ(~U),¬∃X[X = F A(X)], for an arithmetical formula A(U+, u) with at most

the displayed variables free. Then ∀-inversion yields FP−
0

n′

∗
Γ(~U), V 6= F A(V), for

a V /∈ FV (Γ(~U)). The I.H. now yields that Σ1
1-AC Γ[~C/~U], FixA 6= F A(FixA).

Lemma II.2.37 and a cut yield the claim. 2

Note that the above lemma fails in Σ1
1-AC0. Γ(U) might be an instance of set

induction.

If FP−
0 ` Γ for a finite set Γ of L2 formulas, then lemma I.3.4 tells us that there

is also a k ∈ N such that FP−
0

k

∗
Γ, where ∗ is the set from the previous lemma.

Together with theorem II.2.34 we conclude:

Theorem II.2.39 The theories FP−
0 and Σ1

1-AC prove the same arithmetical for-
mulas of L2 without free set variables. Moreover,

|FP−
0 | = |Σ1

1-AC| = ϕε00.

Remark II.2.40 For the reader familiar with well-ordering proofs, we like to com-
ment on the definition of proof-theoretic ordinal again. It is well-known that there
is a Π0

1 formula A(U, u) of L2 such that

ACA0 ` TI�(F A(X), α) → TI�(X, ωα).

Thus, if we set ω0 := 0 and ωn+1 := ωωn, we obtain immediately that for each n ∈ N,

FP−
0 ` Wo(��ωn) and thus FP−

0 ` (∀X ∈ HYP)∃FHierJ (F, X, ωn).

Hence, standard well-ordering techniques yield FP−
0 ` WoHYP(��ϕωn0), in partic-

ular FP−
0 ` TI�(U, ϕωn0). Note, that WoHYP(��α) does not imply ∃FHierJ (F, α).

Observe in particular, that FP−
0 does not prove ∀XTI�(X, ε0) which is Wo(��ε0),

otherwise we had also FP−
0 ` TI�(U, ϕε00), contradicting |FP−

0 | = ϕε00. We only
have that for each n ∈ N, FP−

0 ` Wo(��ωn). This point is also addressed in [23].

II.2.6 Additional results on the class FixA

The theory Σ1
1-AC0 proves that for an arithmetical formula A(U+, u) of L2, the class

FixA is a subclass of every A-closed set. When we move to the slightly stronger theory
Σ1

1-DC0 we can even prove that FixA is contained in every A-closed, Π1
1-definable

class. As a consequence, we also obtain induction along the natural numbers for
Π1

1 formulas. Also, the aforementioned embedding of ÎD1 into Σ1
1-AC extends to an

embedding of ID∗
1 into Σ1

1-DC which yields a sharp upper bound and finally answers
an old question concerning the proof-theoretic strength of ID∗

1 (cf.[30]).

II.2 Pseudo-hierarchy arguments 91

Theorem II.2.41 For all arithmetical U-positive formulas A(U+, ~V , u, ~v) of L2 and
each Π1

1 formula C(u) of L2, the following is provable in Σ1
1-DC0:

ClA~Y ,~y
({x : C(x)}) → FixA

~Y ,~y
⊆ {x : C(x)}.

Before we give the proof, we consider a simpler case to illustrate the proof idea:
Suppose that A(U+, u) and B(U+, u) are arithmetical formulas and that FixB is
A-closed. We assume that there is an x ∈ FixA that is not an element of FixB,
and argue for a contradiction. Thereto, we construct a sequence V0 ⊇ V1 ⊇ . . . of
B-closed sets, such that for all n ∈ N, we have x /∈ Vn and F A(Vn) ⊆ Vn+1. Then
W :=

⋂
n∈N Vn is A-closed, but does not contain x.

To apply this argument in the general case, we require that every Π1
1-definable class

{x : C(x)} is ∆0
0 in a fixed point.

Lemma II.2.42 (Representation Lemma) For each Π1
1 formula C(U, u) of L2,

there exists an U-positive arithmetical formula A(U+, V, u) and an U-positive ∆0
0

formula D(U+, u) of L2, such that Σ1
1-AC0 proves: For all sets Y , there exists a set

S, such that
∀x[D(FixA

S , x) ↔ C(Y, x)].

Proof: Theorem II.1.8 provides a set S, depending on the number and set parameters
occurring in C, such that for all n,

(S)n is a tree, and C(Y, n) ↔ [(S)n is well-founded.]

As in the proof of lemma II.2.29, we set

A(U+, u) := ∃n, σ[u = 〈σ, n〉 ∧ σ ∈ (S)n ∧ (∀τ ∈ (S)n)(τ = σ → τ ∈ (U)n)].

Recall that the operator F A picks the leafs of the trees (S)n. If the tree (S)n is
well-founded, then the root 〈〉 of the tree (S)n is an element of FixA, otherwise the
infinite branches and therefore the root do not enter FixA. It is now easy to see that

∀x[〈〈〉, x〉 ∈ FixA
S ↔ C(Y, x)].

2

Next we return to the proof of theorem II.2.41.
Proof: We assume ClA({x : C(x)}), and aim to prove that x ∈ FixA implies C(x).
Lemma II.2.42 provides a set S, an arithmetical formula B(U+, V, u) and a ∆0

0

formula D(U+, u) of L2 such that

∀x[D(FixB
S , x) ↔ C(x)].

92 Chapter II. Pseudo-hierarchies in second order arithmetic

Hence our assumption reads ClA({x : D(FixB
S , x)}). We show that this implies

(1) ∀X∃Z[F D(X) 6= N ∧ ClBS (X) → ClBS (Z) ∧ Z ⊆ X ∧ F A ◦ F D(Z) ⊆ F D(X)],

where F A ◦ F D(Z) is an alternative notation for F A(F D(Z)). Fix an arbitrary X
such that ClBS (X) and suppose that F D(X) does not contain all natural numbers.
If x /∈ F D(X), then x /∈ F D(FixB

S), so our assumption yields x /∈ F A ◦ F D(FixB
S),

and lemma II.2.36 provides a set Y that is B-closed with respect to S, such that we
have x /∈ F A ◦ F D(Y). If ClBS (X) and ClBS (Y) then also ClBS (X ∩ Y), thus we may
assume that Y ⊆ X. Summarizing, we obtain

∀x∃Y [x /∈ F D(X) → ClBS (Y) ∧ Y ⊆ X ∧ x /∈ F A ◦ F D(Y)].

Now (Σ1
1-AC) gives us a set Y such that for all x /∈ F D(X)

ClBS ((Y)x) ∧ (Y)x ⊆ X ∧ x /∈ F A ◦ F D((Y)x).

Therefore, if we set

Z :=
⋂

x/∈F D(X)

(Y)x,

we have ClBS (Z) and Z ⊆ X and

∀x[x /∈ F D(X) → x /∈ F A ◦ F D(Z)],

which means F A ◦ F D(Z) ⊆ F D(X). Thus we have shown claim (1).

Now we suppose that there is an x ∈ FixA that is not an element of x /∈ F D(FixB
S)

and argue for a contradiction. Again, lemma II.2.36 provides a set Q that is B-closed
with respect to S and x /∈ F D(Q). Applying (Σ1

1-DC) to (1) gives us a set V such
that (V)0 = Q and

∀n[ClBS ((V)n) → ClBS ((V)n+1) ∧ (V)n+1 ⊆ (V)n ∧ F A ◦ F D((V)n+1) ⊆ F D((V)n)].

One easily proves by induction that

∀n[ClBS ((V)n) ∧ (V)n+1 ⊆ (V)n ∧ F A ◦ F D((V)n+1) ⊆ F D((V)n)].

Hence, for W :=
⋂

n∈N(V)n, we have that

F A ◦ F D(W) ⊆
⋂

n∈N

F D((V)n) = F D(
⋂

n∈N

(V)n) = F D(W).

The second but last equality follows from the fact that D is ∆0
0. So W ⊆ Q and

ClA(F D(W)), i.e. FixA ⊆ F D(W). Now x /∈ F D(Q) yields x /∈ F D(W), thus
x /∈ FixA. A contradiction! 2

The following corollary is an immediate consequence of theorem II.2.41. To enhance

readability, we let Fix
~B stands for FixB1, . . . , FixBn .

II.2 Pseudo-hierarchy arguments 93

Corollary II.2.43 For all arithmetical formulas A(U+, u) and ~B(U+, u) and each
~U-positive arithmetical formula C(~U+, u) of L2, Σ1

1-DC0 proves:

ClA({x : C(Fix
~B, x)}) → FixA ⊆ {x : C(Fix

~B, x)}.

Proof: Note that C(Fix
~B, x) is equivalent to a Π1

1 formula of L2. 2

Remark II.2.44 Consider the formula

A(U+,≺, u) := (∀x ≺ u)(u ∈ U].

Observe, that ClA≺(X) is the formula Prog≺(X) and the formula Wo(≺) can be written
as ∀Y [ClA≺(Y) → Field(≺) ⊆ Y]. It is immediate, that Wo(≺) is equivalent to
FixA

≺ = Field(≺). Due to theorem II.2.41, Σ1
1-DC0 proves for each Π1

1 formula C(u)
of L2 that

Wo(≺) → [ClA≺({z : C(z)}) → Field(≺) ⊆ {z : C(z)}],

which is normally written as

(Π1
1-TI) Wo(≺) → TI≺({z : C(z)}).

It is shown, e.g. in [40], that (Π1
1-TI) is provable in Σ1

1-DC0. In this sense, corollary
II.2.41 is a generalization of this result.

By the above corollary we obtain an embedding of ID∗
1 into Σ1

1-DC. The theory
ID∗

1 is formulated in the language LFix that extends L1 by fixed point constants PA

for each U -positive arithmetical formula A(U+, u,) of L2 with exactly the displayed
variables free. Technically, we treat fixed point constants as unary relation symbols,
but write t ∈ PA instead of PA(t). The axioms of ID∗

1 consist of the axioms of PA
without induction, complete induction along the natural numbers for all formulas of
LFix as well as the following two fixed point axioms: For each arithmetical formula
A(U+, u) of L2 with exactly the displayed variables, we have

(FIX) ∀x[A(PA, x) ↔ x ∈ PA],

and for all arithmetical formulas A(U+, u), A1(U
+, u), . . . , An(U+, u) of L2 with ex-

actly the displayed free variables, and each ~V -positive formula B(~V , u, ~v) of L2 with
exactly the displayed free variables, we have

(IND+
FIX) ∀x[A({z : B(P

~A, z, ~y)}, x) → B(P
~A, x, ~y)] → ∀x[x ∈ PA → B(P

~A, x, ~y)].

Note that we wrote P
~A for the string PA1 , . . . , PAn and that A may be syntactically

identical to some Ai. The axiom (FIX) asserts that PA is indeed a fixed point of the

94 Chapter II. Pseudo-hierarchies in second order arithmetic

operator F A and (IND+
FIX) is the scheme for proof by induction on PA restricted to

formulas of LFix that contain fixed point constants only positively.

If we translate an LFix formula B to a L2 formula B∗ by substituting each fixed point
constant PA by the Π1

1-definable class FixA, then the following is due to the previous
corollary:

Theorem II.2.45 For each finite set Γ of LFix formulas,

ID∗
1 ` Γ =⇒ Σ1

1-DC ` Γ∗.

Since ÎD1 is contained in ID∗
1 and |ÎD1| = ϕε00 = |Σ1

1-DC|, this answers the question
for a sharp upper bound of ID∗

1:

Corollary II.2.46
|ID∗

1| = ϕε00.

Chapter III

Pseudo-hierarchy arguments in
admissible set theory without
foundation and explicit
mathematics

Some luck lies in not getting what you thought you wanted but
getting what you have, which, once you have got it, you may
be smart enough to see is what you would have wanted had
you known. Garrison Keillor (1942 -)

The previous chapter has hinted at the many possibilities that pseudo-hierarchies
offer to fruitfully investigate subsystems of second order arithmetic. There is no
doubt that pseudo-hierarchies would serve as a potent device in admissible set theory
without foundation and explicit mathematics as well, once a way to adapt this
technique to these frameworks has been discovered.

In subsystems of second order arithmetic, the existence of pseudo-hierarchies follows
from the theorem that “being a well-ordering” is not expressible by a Σ formula
of L2. In the standard models of admissible set theories, initial segments of the
constructible hierarchy L, an ordering ≺ is well-ordered if there exists a collapsing
function for ≺. Therefore, it is consistent to assume that “≺ is a well-ordering” is
expressible by a Σ formula. Hence, the existence of pseudo-hierarchies cannot be
inferred by the methods used in second order arithmetic.

In this chapter, we start by presenting a method to apply pseudo-hierarchy argu-
ments in theories for admissible sets. This technique also sheds new light on the
situation in second order arithmetic and opens additional ways to apply pseudo-
hierarchy arguments there, which we will briefly discuss. Then, as a first applica-
tion, we establish the equivalence of a fixed point principle and an iteration principle

95

96 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

over a conservative extension of KPi0. Further, we comment on the relationship of
iteration, linearity of admissibles and dependent choice.
Next, we define a ∆0 formula PAd(u) of L∗ expressing that a set satisfies the axioms
of KPu0 + (IN). Results about the class hypx, the intersection of all models of
KPu0 + (IN) above x follow, before we have a look at an extension of KPu0 with the
same proof-theoretic strength as ∆1

2-CA0. In this extension, models of KPu0 + (IN)
exists above arbitrary sets and in addition, are linearly ordered by ∈.
The results gathered so far allow as to treat dependent choice in admissible set
theory. We consider an axiom (∆0-dc) corresponding to (Σ1

1-DC) and argue that
KPu0 extended by Π2 reflection on models of KPu0 +(IN)+(∆0-dc) is another theory
of strength meta-predicative Mahlo. Finally, we consider pseudo-hierarchies and
dependent choice in explicit mathematics.

III.1 Pseudo-hierarchies in admissible set theory

In this section, we first specify what exactly we aim to achieve under the heading
pseudo-hierarchies in admissible set theory. After a method is presented on how
to apply pseudo-hierarchy arguments, we use them to establish the equivalence of
an iteration principle (Σ-tr) that allows to iterate an operation specified by a Σ
formula along a well-ordering and a fixed point principle (Σ-fp′) that claims the
existence of fixed points of monotone operators acting on the entire universe. It
turns out, that the theory KPi0 + (Σ-fp′) is inconsistent with foundation, however,
proves the existence of pseudo-hierarchies. We conclude giving an embedding of
ACA0 + (Σ1

1-TDC) into KPi0 + (Σ-tr).

III.1.1 Hierarchies and pseudo-hierarchies

The concepts of hierarchies and pseudo-hierarchies are adapted straight forward to
the framework of Kripke-Platek set theory. Again, a hierarchy is induced by an
operation that determines a certain level of the hierarchy given its predecessors. In
the present context, we associate with a formula A(u1, . . . un, v, ~w) of a language
comprising L∗ and parameters ~a with the property that

Opn
A(~a) := (∀x1, . . . , xn ∈ S)(∃!y ∈ S)A(~x, y,~a),

an n-ary operator fA
~a . Strictly speaking, we use fA

~a (~x) = y as an abbreviation for
A(~x, y,~a), and B(fA

~a (~x)) is seen as a short cut for ∃y[fA
~a (~x) = y ∧ B(y)], which is

equivalent to ∀y[fA
~a (~x) = y → B(y)] under the assumption Opn

A(~a). If A(u, v, ~w) is
a Σ formula and Opn

A(~a), then fA
~a is called a Σ operation.

An operation fA then induces an A-hierarchy. We call a function g an A-hierarchy
along ≺ for the parameters ~a, denoted by hierA(g,~a,≺), if A(u1, u2, v, ~w, z) contains

III.1 Pseudo-hierarchies in admissible set theory 97

exactly the displayed variables free, ~a are such that Op2
A(~a,≺), and g meets the

following properties:

(i) Fun(g) ∧ Dom(g) = Field(≺) ∧ Lin0(≺),

(ii) (∀α ∈ Field(≺))[g(α) = fA
~a,≺(g�α, α)].

Thereby, g�α denotes the restriction of g to the elements of its domain below α,
namely the function {(β, g(β)) : β ≺ α}. As in second order arithmetic, if the
αth level does not explicitly depend on α, i.e. if Op1

A(~a,≺), then (ii) is adjusted
accordingly. In case that Op2

A(~a) is not guaranteed, g(α) = fA
~a,≺(g�α, α) in the

formula (ii) above is read as A(g�α, α, g(α),~a,≺), hence in any case, if A is Σ, then
so is the formula hierA(f,≺).

Also, we use lowercase Greek letters to range over the field of an ordering. As before,
a hierarchy g along ≺ is called proper if ≺ is a well-ordering and a pseudo-hierarchy,
pshA(g, ~y,≺), otherwise.

III.1.2 Admissible sets and the theories KPi0, KPir and KPm0

The standard approach to talk about admissible sets is to extend the language L∗ to
the language L∗

Ad by a new relation symbol Ad(u) that is to distinguish admissible
sets, i.e. transitive models of KPu0 + (IN). This approach is realized with the
theory KPi0, introduced and analyzed in Jäger [19], where it is also shown that
|KPi0| = Γ0. The theory KPi0 comprises, besides the axioms and rules of KPu0

adapted to the new language, additional axioms for the predicate Ad(u). First of
all, the sets distinguished by Ad(u) are transitive sets above N that reflect the axioms
of KPu0 +(IN). Thus, for all Kripke-Platek axioms A(~u) (cf. subsection I.2.9), whose
free variables belong to the list ~u, we have

Ad(a) → (∀~x ∈ a)Aa(~x) and Ad(a) → (N ∈ a ∧ Tran(a)).

Moreover, the admissibles in the class Ad := {x : Ad(x)} are linearly ordered by ∈.
Particularly in extensions of KPi0, this axiom proves very convenient, although, by
itself, does not increase the proof-theoretic strength. As shown in Jäger [20], KPi0

without the axiom (lin) has still the ordinal Γ0.

(lin) Ad(a) ∧ Ad(b) → a ∈ b ∨ a = b ∨ b ∈ a.

Finally, the limit axiom guarantees the existence of admissibles above arbitrary sets,

(lim) ∃x(a ∈ x ∧ Ad(x)).

The linearity axiom (lin) also plays an important role in the standard theory KPm0 of
strength meta-predicative Mahlo in admissible set theory. KPm0 has been introduced

98 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

and analyzed by Jäger and Strahm [27]. It is formulated in the language L∗
Ad and

extends KPi0 by an axiom for Π2 reflection on admissibles:

For each ∆0 formula A(u, v, ~w) of L∗
Ad,

(Π2-Ref)Ad ∀x∃yA(x, y, ~z) → ∃a[Ad(a) ∧ ~z ∈ a ∧ (∀x ∈ a)(∃y ∈ a)A(x, y, ~z)].

Finally, the theory KPi0 + (I∈) is named KPir. It is introduce and analyzed in [20].
There, it is also shown that |KPir| = |∆1

2-CA0|.

Some basic properties of the theory KPi0 are gathered in the next paragraph. We
start by mentioning a result due to Jäger.

Lemma III.1.1 Let A(u,~v) be a ∆0 formula of L∗
Ad with at most the variables u,~v

free. Then KPi0 proves that the class

C := {x : A(x,~a) ∧ ~a ∈ x ∧ Ad(x)}

is empty or has a ∈-least element.

Proof: We assume that C is not empty and has no ∈-least element, and argue for
a contradiction. Since admissibles are linearly ordered by ∈, we have for b, c ∈ C
with b ∈ c that the set z :=

⋂
(C ∩ b) equals

⋂
C and that z ∈ c. Since C has

no ∈-least element, z is in an element of each admissible in C, thus also the set
r := {u ∈ z : u /∈ u} is an element of each admissible in C and therefore in z.
However, r ∈ z implies r ∈ r ↔ r /∈ r. 2

The previous lemma implies for example that in KPi0, for any set x, the intersection
of all the sets y with x ∈ y and Ad(y) is an element of the class Ad itself. In the
sequel, we denote this least admissible in Ad above x by x+,

x+ :=
⋂

{y : x ∈ y ∧ Ad(y)}.

Also, the hierarchy that iterates the operation ·+ will play an important role.
Therefore, we write hier+(f, z,≺) for hierA(f, z,≺), when A(u, v, w) is the formula
v = {u, w}+.

Another property of KPi0 is that we can iterate Σ definable operations on admissibles
along well-orderings.

Lemma III.1.2 Let a A(u1, u2, v, ~w, z) be a Σ formula of L∗
Ad. Then the following

is provable in KPi0: Suppose that ~a,≺ are such that Op2
A(~a,≺). Further, assume

that b is admissible, ~a,≺∈ b and [Op2
A(~a,≺)]b. Then

Wob+(≺) → (∃!f ∈ b)hierA(f,~a,≺).

III.1 Pseudo-hierarchies in admissible set theory 99

Proof: Using transfinite induction, we aim to show that

(∗) {α ∈ Field(≺) : (∃f ∈ b)hierAb

(f,~a,≺�α)} ∈ b+

is already the entire field of ≺. The claim then follows by persistence. So suppose
that we have shown that

(∀β ≺ α)(∃!g ∈ b)hierA
b

(g,~a,≺�β),

Then, we define
c := {g ∈ b : (∃β ≺ α)hierAb

(g,~a,≺�β)}.

The I.H. yields that
⋃

c is a function with domain Field(≺�α), and once we have

shown that c ∈ b, we obtain that h := fAb

~a,≺(
⋃

c, α) ∈ b and hierA
b

(h,~a,≺�α). To
show that c ∈ b, we set

B(u1, u2, v, ~w, z) := ∀x[A(u1, u2, x, ~w, z) → x = v].

Observe that B is a Π formula of L∗
Ad and that [Op2

A(~a,≺)]b yields

(∀x1, x2, y ∈ b)[Aa(x1, x2, y,~a,≺) ↔ Bb(x1, x2, y,~a,≺)],

which in turn yields

(∀β ≺ α)(∀g ∈ b)[hierAb

(g,~a,≺�β) ↔ hierB
b

(g,~a,≺�β)].

That c ∈ b follows now by ∆ separation within b. This shows (∗). Hence, there is for

each α ∈ Field(≺) a hierarchy f ∈ b such that hierAb

(f,~a,≺�α). Therefore, we have
for all β ≺ α that Ab(f�β, β, f(β),~a,≺). Persistence yields A(f�β, β, f(β),~a,≺) and
Op2

A(~a,≺) implies f(β) = fA(f�β, β,~a,≺). This yields hierA(f,~a,≺�α). The lemma
follows now by a similar argument. 2

As a consequence, the standard translation of every instance of the axiom (ATR) is
provable in KPi0.

As mentioned before, the existence of pseudo-hierarchies is not provable in KPi0 or
common extensions thereof that are valid in the standard model of Kripke-Platek
set theory. In KPi0, we call a set x an ordinal, denoted by Ord(x), if

Tran(x) ∧ (∀y ∈ x)Tran(y) ∧ Wo(∈�x).

For every well-ordering ≺, there exists an ordinal x, such that ≺ is order-isomorphic
to ∈�x. The corresponding order isomorphism f is called the collapse of ≺,

Clp(f,≺) :=

{
Fun(f) ∧ Dom(f) = Field(≺)∧

(∀x ∈ Field(≺))(f(x) = {f(y) : y ≺ x}).

The following lemma states that for each well-ordering ≺, there exists exactly one
collapsing function f .

100 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Corollary III.1.3 The following is provable in KPi0:

Wo(≺) → ∃!f [Clp(f,≺) ∧ Ord(Rng(f))].

Proof: Let A(u, v) be a ∆0 formula of L∗ such that A(x, y) implies y = Rng(x). If
Wo(≺), then the previous lemma provides an f such that hierA(f,≺). By transfinite
induction along ≺ we obtain that (f : Field(≺) → Rng(f)) is an order-isomorphism
and that Rng(f) is an ordinal. 2

An extension of KPi0 equipped with foundation, for instance KPir, proves Wo(x� ∈),
thus Ord(x) becomes equivalent to Tran(x) ∧ (∀y ∈ x)Tran(y) and Wo(≺) becomes
equivalent to a Σ formula of L∗

Ad.

Corollary III.1.4 The following is provable in KPir:

Wo(≺) ↔ ∃f [Clp(f,≺) ∧ Tran(Rng(f)) ∧ (∀y ∈ Rng(f))Tran(y)].

Further, we remark that an admissible set does not contain itself.

Lemma III.1.5 The following is provable in KPi0:

Ad(a) → a /∈ a.

Proof: Russell’s argument applies: If a ∈ a, then r := {x ∈ a : x /∈ x} ∈ a by ∆0

separation in a. It follows r ∈ r ↔ r /∈ r. 2

III.1.3 A pseudo-hierarchy principle for KPi0

Of course, there exist pseudo-hierarchies also in admissible set theory. Applying
the standard translation ·∗ to a theorem of ATR0 from the previous chapter yields
a theorem of KPi0. What we mean, however, when we speak about showing the
existence of pseudo-hierarchies in admissible set theory, is a bit more. Whenever we
have a Σ operation fA that we can iterate along an arbitrary well-ordering, then we
ask for a pseudo-hierarchy g whose underlying ordering looks like a well-ordering in
g+. For each Σ formula A(u1, u2, v, ~w, z) of L∗

Ad,

(psh′) ∀xOp2
A(~a, x)∧∀x[Wo(x) → ∃fhierA(f,~a, x)] → ∃g, y[pshA(g,~a, y)∧Wog+

(y)].

The pseudo-hierarchy principle is adequate for theories formulated in the language
L∗

Ad comprising the axioms and rules of KPi0. The requirement that the underlying
ordering of the pseudo-hierarchy g looks like a well-ordering in g+ is motivated
by the condition that we have usually imposed on the underlying ordering ≺ of a
pseudo-hierarchy G in second order arithmetic, namely that WoJG

ω (≺). It is actually
sufficient to demand that the underlying ordering of g looks like a well-ordering in

III.1 Pseudo-hierarchies in admissible set theory 101

the ωth level of the constructible hierarchy above g, but for the time being, the above
pseudo-hierarchy principle serves its purpose. Only later, then we have introduced
the constructible hierarchy and are working in theories formulated in the language
L∗ that does not contain the predicate Ad(u) and where the existence of a least
admissible above some set x is not provable, we will consider this more refined
variant of the pseudo-hierarchy principle.

Sometimes, we can apply pseudo-hierarchy arguments without actually using a par-
ticular instance of (psh′). For example, assume that we can iterate a Σ operation
fA along an arbitrary well-ordering, and that the existence of sets ≺, g such that
pshA(g,≺), would imply our claim. The existence of such a pseudo-hierarchy is not
provable, but the supposition that there are no ≺, g with pshA(g,≺), turns Wo(≺)
into a Σ definable predicate. In some cases, this implies our claim as well, and we
are done. For an application of this procedure, see subsection III.2.3.

Unfortunately, this method is not always applicable. However, if the theory T is
an extension of KPi0 with |T| < Φ0, then T + (psh′) is consistent, and moreover,
|T| = |T + (psh′)|. This is the main result of the next subsection.

III.1.4 Extending theories by (psh′)

In order to show that extending a subsystem of admissible set theory by the principle
(psh′) does not increase its proof-theoretic ordinal, we apply a more general result by
Jäger and Probst [25]. In this article, an extension of Schütte’s famous Boundedness
Theorem (cf. [39]) is proved, which then yields that |T| = |T†| for a wide range of
theories, where T† is the theory T + ¬TI∗

�
(U, |T|). For completeness’ sake and since

we use a slightly different definition of the proof-theoretic ordinal of a theory T, we
summarize the ideas and theorems from [25].

Schütte’s Boundedness Theorem states that there is a close relationship between the
cut-free provability of the assertion TI≺(U, t) within PA∗ and the ordinal |t|≺, i.e.
the ordertype of the primitive recursive well-ordering ≺�tN, where tN is the value of
the closed term t in the standard model. A cut-free PA∗ proof of depth, more or
less, |t|≺ is required in order to establish within PA∗ that the initial segment of ≺�t
is well-ordered.

Theorem III.1.6 (Boundedness Theorem) Let ≺ be some primitive recursive
well-ordering. For any closed number term t of L1 and any ordinal α we have that

PA∗ α

0
TI≺(t) =⇒ |t|≺ ≤ ωα.

The proof of this lemma is given in Schütte [39] in all details; alternatively it can
also be found in Pohlers [28].

102 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Now we turn to the variation or extension of Schütte’s theorem. The crucial step is
the following lemma whose proof is tailored according to a corresponding lemma in
Schütte [39].

Lemma III.1.7 Let ≺ be a primitive recursive well-ordering, F the set of all false
literals of PA∗ and α, β ordinals less than the ordertype |≺| of ≺. Further, suppose
that we are given two sets Γ and ∆ of closed formulas of L1 and two finite sets
M+ and M− of closed number terms of L1, so that the following assumptions are
satisfied:

(i) M+ 6= ∅ and β = min{|r|≺ : r ∈ M+},

(ii) {|r|≺ : r ∈ M+} ∩ {|r|≺ : r ∈ M−} = ∅,

(iii) ∆ ⊆ {¬Prog≺(V)} ∪ {r ∈ V : r ∈ M+} ∪ {r /∈ V : r ∈ M−} ∪ F,

(iv) the relation symbol V does not occur in Γ,

(v) PA∗ α

0
Γ, ∆ and ωα ≤ β.

Then we even have that PA∗ α

0
Γ.

Proof: Almost literally as the corresponding proof in [25]. 2

To state the following theorem we introduce the notion of a normal theory.

Definition III.1.8 A theory T is called normal, if |T| is ω-closed, i.e. α < |T|
implies that ωα < |T|, and if for each finite set Γ of closed formulas of L1

T ` Γ∗ =⇒ PA∗ <|T|

0
Γ,

where ·∗ is the standard translation from L1 to the language of T.

Each theory T that we treat in this thesis is normal according to the above definition.
This claim is proved as soon as it becomes relevant, i.e. then we consider the theory
T†.

For our purposes, the following variant of the main theorem in [25] suffices.

Theorem III.1.9 For each normal theory we have that |T| = |T†|.

Proof: Suppose that Φ0 > |T†| > |T| =: λ and that T is a normal theory. Then
there is a primitive recursive well-ordering ≺ and an l ∈ N, such that |csl|≺ = λ and
T† proves TI∗≺(V, csl). Since T is a normal theory, we also obtain that

PA∗ <λ

0
TI�(U, λ), TI≺(V, csl),

III.1 Pseudo-hierarchies in admissible set theory 103

which readily implies that

PA∗ <λ

0
¬Prog

�
(U), λ ∈ U,¬Prog≺(V), csl ∈ V.

An application of the main lemma yields thus

PA∗ <λ

0
¬Prog

�
(U), λ ∈ U,

hence PA∗ <λ

0
TI�(U, λ), which contradicts the definition of |T|. 2

Next, we show that KPi0 extended by ¬TI�(U, |KPi0|) proves the principle (psh′),
which implies |KPi0| = |KPi0 + (psh′)|. That KPi0 is a normal theory follows form
its proof-theoretic analysis carried out in [19].

Lemma III.1.10 Let T be a normal theory formulated in L∗
Ad that comprises the

axioms and rules of KPi0 with |T| < Φ0. Then, for all Σ formulas A(u,~v) of the
language of T, the following is provable in the theory T†:

∀~y¬∀x[A(x, ~y) ↔ Wo(x)].

Proof: The claim cannot hold, otherwise we could prove the ordinal |T| in T†:
Assume, that there is a Σ formula A(u,~v) and sets ~z such that for all orderings
≺, we have A(≺, ~z) ↔ Wo(≺). However, this implies that the standard translation

of (Π1
1-CA) becomes provable in T†: If B(~V , u, ~v) is a Π1

1 formula of L2, then the

representation theorem II.1.8 for Π1
1 formulas yields that for all ~Y ⊆ N and ~y ∈ N,

X := {x ∈ N : B(~Y , x, ~y)} = {x ∈ N : Wo(KB(T ¬B
~Y ,x,~y

))}.

Our assumption and (∆-Sep) imply that X is a set. But ACA0 +(Π1
1-CA) proves |T|

(cf. e.g. [6]), hence also T†. 2

A slightly more sophisticated argument yields that we have pseudo-hierarchies along
our notation system.

Lemma III.1.11 Let T be a normal theory with |T| < Φ0 formulated in a language
comprising L∗. Further, we assume that T proves the standard translation of each
axiom and rule of ACA0. Then the following is provable in T†:

{α ∈ Field(�) : Wo(��α)} is not a set.

Proof: Since ACA0 is contained in T, we prove the claim in ACA0 + ¬TI�(U, |T|).
Assume that S := {α ∈ Field(�) : Wo(��α)} is a set. Then |T| < Φ0 implies that
S (Field(�). But now, we have that S is the least fixed point FixA of the accessible
part operator induced by A(U, u) := (∀β �u)(β ∈ U). Moreover, we have Wo(��S).

104 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

By induction on n, we now show that Sn := {α : (∀β ∈ S)(ϕnαβ ∈ S)} ⊇ S. To
perform the induction step, it suffices to show Prog

�
(Sn+1). We fix an α and assume

that (∀α′ � α)(α′ ∈ Sn+1) and then show that Prog
�
({β ∈ S : ϕ(n+1)αβ ∈ S}),

which yields α ∈ Sn+1. We just consider the case where α is of the form α′+1. Then
ξ := ϕ(n+1)α0 ∈ S follows because ξ is the limit of the sequence γ0 = 0 and γn+1 :=
ϕ(n+1)α′γn. That η := ϕ(n+1)α(β+1) ∈ S follows because η is the limit of the
sequence γ0 = ϕ(n+1)αβ+1 and γn+1 := ϕ(n+1)α′γn. Finally, ϕ(n+1)αλ ∈ S for a
limit λ follows from the continuity of the function ξ 7→ ϕ(n+1)αξ. So we have that
T† proves (∀α < ϕω00)(α ∈ S). Since Wo(��S), this yields (∀α < ϕω00)TI�(U, α),
which in turn forces TI�(U, ϕω00).

Similarly, one shows that Φ0 ⊆ S. If we had introduced a notation system with
ordertype |ID1|, we could prove for each ordinal below |ID1| that its corresponding
notation is in S by following the well-ordering proof for ID1 given in [28]. Because
|T| < Φ0 < |ID1|, T† proves TI�(U, |T|), contradiction ¬TI�(U, |T|). 2

The existence of pseudo-hierarchies along � and the principle (psh′) are immediate
from the lemma below.

Lemma III.1.12 Let T be a normal theory formulated in L∗
Ad that comprises the

axioms and rules of KPi0 with |T| < Φ0. Further, assume that A(u1, u2, v, ~w, z) and
B(u, ~w, z) are Σ formulas of L∗ or L∗

Ad, respectively. Then T† proves: If ∀xOp2
A(~a, x)

and

(i) if for all orderings ≺, Wo(≺) → ∃f(hierA(f,~a,≺) ∧ B(f,~a,≺)), then there
exists an ordering ≺′ and a function g such that pshA(g,~a,≺′) and B(g,~a,≺′).

(ii) if for all α ∈ Field(�), Wo(α) → ∃f(hierA(f,~a, α) ∧ B(f,~a, α)), then there
exists a β ∈ Field(�) and a function g such that pshA(g,~a, ��β) and B(g,~a, β).

Proof: The failure of (i) contradicts lemma III.1.10. If (ii) fails for some Σ formulas
A, B, then (∆-Sep) yields that {α : Wo(��α)} is a set, contradicting the lemma
above. 2

In T†, we not only can apply standard pseudo-hierarchy arguments, i.e. arguments
that involve (psh′), but also perform pseudo-hierarchy arguments on the field of �,
as justified by (ii) of the previous lemma. These kind of pseudo-hierarchy argu-
ments prove also useful in subsystems of second order arithmetic. For example, we
immediately obtain the following lemma:

Lemma III.1.13 ATR†
0 proves:

Wo(≺) → ∃α[≺ is isomorphic to ��α].

III.1 Pseudo-hierarchies in admissible set theory 105

Proof: Suppose that Wo(≺). Lemma II.2.12 in combination with theorem II.2.11
yields a model M of Σ1

1-AC above ≺. Since {α ∈ Field(�) : Wo(��α)} is not a set,
there is an α ∈ Field(�) such that WoM(��α) but ¬Wo(��α). As in the proof of
theorem II.2.11, we conclude that ≺ is isomorphic to a proper initial segment of
(��α). The claim follows. 2

Moreover, we can define proper initial segments of the natural numbers without
a top element which enable us to carry out yet another kind of pseudo-hierarchy
arguments. As an example, we work in Σ1

1-AC†
0 and construct a “very small” Σ1

1

definable class which is a fixed point of the accessible part operator F A induced
by A(U, u) := (∀β � u)(β ∈ U). In particular, this Σ1

1 definable fixed point is
smaller than the Π1

1 definable fixed point FixA := {x : ∀X[ClA(X) → x ∈ X]} from
subsection II.2.5.

The notation introduced in subsection II.2.3 comes in handy. Recall that we write
FHierA(F, n) to express that for all m < n, (F)m = F A(

⋃
m′<m(F)m′), and that

(F)k 6= ∅ implies k < n. Now we consider the class

N := {n : ∃FHierJ (F, n)}.

Clearly, N is inductive, it contains 0 and n ∈ N implies that n+1 ∈ N. Moreover,
N 6= N, for otherwise we had that ∃FHierJ (F, ω), which in turn yields TI�(ε0).
Since |Σ1

1-AC0| = ε0, this contradicts ¬TI�(U, |Σ1
1-AC0|). Therefore, N is a proper

subclass of N.

Using lemma I.2.15, Σ1
1-AC0 proves that there exists an F with FHierA(F, ��ω). It

follows that
FIXA := {x : (∃n ∈ N)∃FFHierA(F, n)}

is a fixed point of F A: The monotonicity of the operator F A yields FIXA ⊆ F A(FIXA).
However, if there is an x ∈ F A(FIXA), again by the monotonicity of F A, we have
x ∈ (F)n for each n > N. But {n : x ∈ (F)n} has a least element n0 which is in N.
Therefore FIXA = F A(FIXA). Clearly, FIXA is a proper subclass of FixA.

If we work in KPi0 +(psh′), then N := {n ∈ N : ∃fhier+(f, ∅, n)} is a proper subclass
of N, that allows to perform similar arguments. The class N cannot equal N, for
otherwise we could prove the ordinal Γ0.

To illustrate the use of standard pseudo-hierarchy arguments, we show that there is
a close connection between fixed point and iteration principles.

III.1.5 Fixed point principles vs. iteration principles

In this subsection, we investigate the relationship between an iteration and a fixed
point principle over KPi0. A similar question has been researched by Avigad [2]. In

106 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

this article, Avigad shows among other things, that over ACA0 the iteration principle
(ATR) and the fixed point principle (FP) are equivalent. The following material is
partly taken from Probst [32].

The iteration principle that we consider allows us to iterate a Σ operation fA along
an arbitrary well-ordering: For all Σ formulas A(u1, u2, v, ~w, z) of L∗

Ad that contain
at most the displayed variables free,

(Σ-tr) Wo(≺) ∧ Op2
A(~a,≺) → ∃fhierA(f,~a,≺).

An equivalent iteration principle is analyzed in Jäger and Probst [24]. It is shown
there, that |KPi0 + (Σ-tr)| = ϕω00.

The corresponding fixed point principle (Σ-fp′) claims the existence of fixed points
of monotone Σ operations acting on the entire universe. Looking for a compact
formulation, we set for all formulas A(u, v, ~w) of L∗

Ad,

MonA(~a) := ∀x, y[x ⊆ y → fA
~a (x) ⊆ fA

~a (y)],

to express that fA
~a is monotone. The principle (Σ-fp′), takes the following form: For

each Σ formula A(u, v, ~w) of L∗
Ad with at most the variables u, v, ~w free, we have

(Σ-fp′) Op1
A(~a) ∧ MonA(~a) → ∃x[S(x) ∧ fA

~a (x) = x].

Below, we argue that over KPi0 + (psh′) the iteration principle (Σ-tr) and the fixed
point principle (Σ-fp′) are equivalent.

Theorem III.1.14 For each Σ formula A(u, v, ~w) of L∗
Ad with at most the variables

u, v, ~w free, we have that KPi0 + (Σ-tr) + (psh′) proves:

Op1
A(~a) ∧ MonA(~a) → ∃x[S(x) ∧ fA

~a (x) = x].

Proof: Suppose that A(u, v, ~w) is a Σ formula of L∗
Ad and ~a is such that Op1

A(~a) and
MonA(~a). In order to obtain a hierarchy g where the αth level g(α) is the result of
applying fA

~a to the union
⋃

β≺α g(β) of the levels below α rather than to g�α, we let
the formula B(u, v, ~w) be the formula ∃y[y =

⋃
Rng(u) ∧ A(y, v, ~w)], which implies

that fB
~a (x) = fA

~a (
⋃

Rng(x)). Now, the pseudo-hierarchy principle (psh′) yields a g
and an ordering ≺ such that

pshB(g,~a,≺) ∧ Wog+

(≺).

The choice of B implies that for each α ∈ Field(≺), g(α) = fA
~a (

⋃
β≺α f(β)). Since

that set
{α : (∀β ≺ α)(g(β) ⊆ g(α))}

III.1 Pseudo-hierarchies in admissible set theory 107

is in g+, transfinite induction along ≺ in g+ yields that the pseudo-hierarchy is still
monotone, i.e. that we have g(α) ⊆ g(β) if α ≺ β. For a non-empty, upward closed
k ⊆ Field(≺) without a ≺-least element, we now set b :=

⋃
α≺k g(α) and argue that b

is a fixed point of fA
~a : By the monotonicity of the hierarchy we have for each α ≺ k

and each β ∈ k that g(α) ⊆ b ⊆ g(β). By the monotonicity of the operation fA
~a we

conclude that b ⊆ fA
~a (b) ⊆ g(α), for each α ∈ k. On the other hand, if x ∈ fA

~a (b),
then {α : x ∈ g(α)} is a non-empty set in g+ that has a ≺-least element α0. Since
k has no least element, we infer α0 ≺ k, thus x ∈ b. 2

For the converse direction we need an auxiliary lemma.

Lemma III.1.15 There is a Σ formula A(u, v) of L∗
Ad with only the displayed vari-

ables free, such that KPi0 proves: Op1
A and MonA and

∀x[fA(x) =
⋂

{z : x ⊆ z ∧ Ad(z)}].

This justifies the notation x◦ for the set
⋂
{z : x ⊆ z ∧ Ad(z)}.

Proof: There is a Σ formula A(u, v) of L∗ such that A(x, y) implies that

y =
⋂

{z ∈ (x+)+ : x ⊆ z ∧ Ad(z)}.

Since x+ ∈ (x+)+ and x ⊆ x+ ∧ Ad(x+) we are not forming the intersection of the
empty set. Because admissibles are linearly ordered by ∈, an admissible z that is
not an element of (x+)+ satisfies already x ⊆ x+ ⊆ z. Thus, A(x, y) implies y = x◦.
Op1

A and MonA are now obvious. 2

The set x◦ is the intersection of admissible sets, therefore it is a model of (∆0-Sep).
However, Ad(x◦) may not hold, although, as we will prove later (see lemma III.2.36),
x◦ is a model of (∆0-Col). For instance, let f and ≺ be such that psh+(f,≺). Then,
for a non-empty k ⊆ Field(≺) without a ≺-least element, a :=

⋃
α≺k f(α) does not

satisfy Ad(a), because otherwise, a were an element of each admissible f(α) for
α ∈ k, therefore also a ∈ a. Due to (lin), there is for each admissible b with a ⊆ b,
an α ∈ k with f(α) ∈ b, hence we conclude a◦ = a. As we will prove later, (see
lemma III.2.36), x◦ is also a model of (∆0-Col).

Lemma III.1.16 KPi0 + (Σ-fp′) proves each instance of (Σ-tr).

Proof: Suppose that A(u1, u2, v, ~w, z) is a Σ formula of L∗
Ad and ~a,≺ are sets, such

that Op2
A(~a,≺) and Wo(≺) holds. We aim to show ∃fhierA(f,~a,≺).

By the previous lemma, there is a Σ formula B(u, v, ~w, z) such that Op1
B(~a,≺) and

MonB(~a,≺) and

fB
~a,≺(x) = ({fA

~a,≺(y1, y2) : y1 ∈ x ∧ y2 ∈ Field(≺)} ∪ {≺})◦.

108 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

The principle (Σ-fp′) yields a set b that is a fixed point of fB
~a,≺. By transfinite

induction along ≺, we show that

(∗) (∀α ∈ Field(≺))(∃!f ∈ b)hierA(f,~a,≺�α).

So assume that for each β ≺ α, there is exactly one g ∈ b with hierA(g,~a,≺�β). Since
Wo(≺�β), we also know that there is exactly one g with g ∈ b and hierA(g,~a,≺�β).
By Σ replacement, there is a unique function h with domain α, such that for all
β ≺ α, we have h(β) ∈ b and hierA(h(β),~a,≺�β). Further, h is an element of each
admissible c with b ⊆ c, thus h ∈ b. The I.H. yields also that

⋃
ξ≺α h(ξ) is a function

with domain Field(≺�α). For f := fA
~a,≺(

⋃
ξ≺α h(ξ), ξ) we thus have hierA(f,~a,≺�α).

Moreover, the choice of b implies that f ∈ b. This shows (∗). Similarly, we obtain
∃fhierA(f,~a,≺). 2

Since KPi0 + (Σ-tr) is easily embedded into KPm0, an upper bound is immediate.
That |KPi0 + (Σ-tr)| = ϕω00 is shown in [24]. Moreover, the normality of the theory
KPi0 + (Σ-tr) follows from the normality of KPm0, which is sketched in [27] or is
obtained by methods used in Rathjen [34]. Hence we obtain:

Theorem III.1.17

|KPi0 + (Σ-tr)| = |KPi0 + (Σ-fp′)| = |KPm0| = ϕω00.

The fixed point principle (Σ-fp′) that claims the existence of fixed points of monotone
Σ operations on the universe is somewhat problematic: If we extend the theory
KPi0 + (Σ-fp′) e.g. by (I∈) to KPir + (Σ-fp′), then monotone operations become
definable by Σ formulas of L∗

Ad which cannot have fixed points. However, this
drawback comes along with an additional feature: All instances of (psh′) are provable
in KPi0 + (Σ-fp′).

Below, we define a Π1
1 operation that has no fixed point:

o(x) :=
⋃

{α ∪ {α} : α ∈ x ∧ Ord(α)}.

Lemma III.1.18 KPi0 proves that the operation x 7→ o(x) ∪ {o(x)} is monotone
but has no fixed point.

Proof: Note that o(x) is an ordinal and that o(α) = α for all ordinals α. Ordinals are
linearly ordered by the ∈ relation, hence the operation is monotone. Since ordinals
are well-founded by ∈, the above operation has no fixed point. 2

We have already mentioned in subsection III.1.2, that in KPir, being an ordinal is
equivalent to a ∆0 formula of L∗. Thus, the aforementioned operation becomes
definable by a Σ formula of L∗, which implies the inconsistency of KPir + (Σ-fp′).

III.1 Pseudo-hierarchies in admissible set theory 109

Moreover, the operation x 7→ o(x) ∪ {o(x)} is definable by a Σ formula of L∗
Ad in

any extension of KPi0 where there exists a Σ formula A(u, v, ~w) of L∗
Ad such that

∃~y∀x[Wo(x) ↔ A(x, ~y)]

is provable. Due to the previous lemma, such an extension cannot consistently be
further extended by the principle (Σ-fp′).

We proceed by relating the consistency of T+(Σ-fp′) to the consistency of T+(Σ-tr)
for theories T comprising KPi0. Namely, one can consistently extend a theory T by
the principle (Σ-fp′) if and only if it is consistent to assume that Wo(≺) is not
expressible by a Σ formula of T + (Σ-tr).

Lemma III.1.19 Let T be a theory that comprises KPi0. Then T + (Σ-fp′) is con-
sistent if and only if there is no Σ formula A(~u, v, w) of L∗ for which T + (Σ-tr)
proves ∃~y∀x[A(x, ~y) ↔ Wo(x)].

Proof: Suppose that T + (Σ-fp′) is consistent. Then lemma III.1.16 yields (Σ-tr). If
Wo(≺) is equivalent to some Σ formula of L∗

Ad, then the operation of lemma III.1.18
is definable by a Σ formula of L∗

Ad as well, which contradicts (Σ-fp′).
If we assume the right hand side, we can consistently extend T+(Σ-tr) by a principle
that claims that we have for every Σ formula A(u, v, ~w) of L∗

Ad that

∀~y¬∀x[A(x, ~y) ↔ Wo(x)].

But this implies (psh′), thus we can use the proof of theorem III.1.14 to show (Σ-fp′).
2

A reformulation of the previous lemma yields that KPi0+(Σ-fp′) proves each instance
of (psh′).

Theorem III.1.20 For each Σ formula A(u1, u2, v, ~w, z) of L∗
Ad, the following is

provable in KPi0 + (Σ-fp′):

∀xOp2
A(~a, x) → ∃g, x[pshA(g,~a, x) ∧ Wog+

(x)].

Proof: Suppose that there is a Σ formula A such that the theorem fails. But then,
the extension of KPi0 + (Σ-fp′) by

∃~a[∀xOp2
A(~a, x) ∧ ∀g, x(hierA(g,~a, x) → (Wo(x) ∨ ¬Wog+

(x))]

is consistent. Since KPi0 + (Σ-fp′) proves (Σ-tr), this extension of KPi0 + (Σ-fp′)
proves also

∃~a∀x[Wo(x) ↔ ∃g(hierA(g,~a, x) ∧ Wog+

(x))],

110 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

which contradicts the previous lemma. 2

As a further consequence, we observe that in KPi0 + (Σ-fp′) the class Ad is not
well-ordered. Otherwise, we have that Wo(≺) is equivalent to ∃fhier+(f,≺), due to
lemma III.1.16. More surprisingly, if we close the class Ad under union, the resulting
class Ad := {

⋃
x : x ⊆ Ad} is not linearly ordered by ∈:

Lemma III.1.21 The following is provable in KPi0 + (Σ-fp′):

¬∀a, b[a ∈ Ad ∧ b ∈ Ad → a ∈ b ∨ a = b ∨ b ∈ a].

Proof: If Ad is linearly ordered by ∈, then the operation

a 7→ â ∪ {â},

where â :=
⋃
{x+ : x ∈ a}, is Σ definable and monotone. But if a = â ∪ {â}, a is in

Ad and contains itself. A contradiction. 2

To avoid the aforementioned problems, a restricted fixed point principle is considered
in [32], that only claims the existence of fixed points for monotone, Σ definable
operations on the power set of the natural numbers. There, we set for all formulas
A(u, v, ~w) of L∗

Ad,

OpN
A(~a) := (∀x ⊆ N)(∃!y ⊆ N)A(x, y,~a),

MonN
A(~a) := (∀x1, x2, y1, y2 ⊆ N)[A(x1, y1,~a) ∧ A(x2, y2,~a) ∧ x1 ⊆ x2 → y1 ⊆ y2].

The restricted fixed point principle (Σ-fp) then takes the following form: For each
Σ formula A(u, v, ~w) of L∗

Ad with at most the variables u, v, ~w free, we have

(Σ-fp) OpN
A(~a) ∧ MonN

A(~a) → (∃x ⊆ N)A(x, x,~a).

Although, the theory KPi0 + (Σ-fp) no longer proves the iteration principle (Σ-tr),
it still has the proof-theoretic strength of KPm0 (cf. [32]).

III.1.6 On linearity, iteration and choice

We end this section by illustrating how the linearity of the class Ad in combination
with some form of iteration is a substitute for dependent choice. Its two constituents,
iteration and choice become visible.

Suppose that A(~W, U, V) is an arithmetical formula of L2 and that the sets ~Z are

such that ∀X∃Y A(~Z, X, Y). The requirement for a choice axiom stems from the
fact that there is no uniform way to select a witness Y for a given set X, such that
A(~Z, X, Y). However, in the theory KPi0 we can, thanks to the axiom (lin). To

III.2 Admissible sets and linearity 111

simplify the notation, we identify below L2 formulas with their standard translation
into L∗, and upper case variables are to range over subsets of N.

We fix the set X and the parameters ~Z. Now lemma III.1.1 tells us that there is a
unique least admissible a that still contains a witness Y :

a :=
⋂

{b : Ad(b) ∧ ~Z, X ∈ b ∧ (∃Y ∈ b)A(~Z, X, Y)}.

By lemma II.1.7 we have that

(∃Y ∈ a)A(~Z, X, Y) ↔ (∃F ∈ a)∀n(F [n] ∈ T A
~Z,X

).

Now we define a specific path F0 through T A
~Z,X

by F0(0) := 〈〉 and F0(n+1) := m,

where m is the least natural number such that

(∃G ∈ a)(G is a path through T A
~Z,X

∧ G(n+1) = F0(n) ∗ 〈m〉).

Clearly, F0 ∈ a+ is a path through T A
~Z,X

that is left to all paths G ∈ a through

T A
~Z,X

. Again by lemma II.1.7 we conclude that Y := {y : WITA(F0, y)} satisfies

A(~Z, X, Y).

It is not hard to find a Σ formula B(u, v, ~w) of L∗
Ad, such that OpN

B(~Z) and moreover,
fB

~Z
(x) is the unique witness Y obtained by the above procedure. Depending on

the iteration principles available in T, we can derive different forms of dependent
choice. For instance KPi0 +(Σ-IN) proves each instance of (Σ1

1-DC), and accordingly
KPi0 + (Σ-tr) proves each instance of (Σ1

1-TDC).

Theorem III.1.22 Let ·∗ be our standard translation form L2 to L∗. Then the
following holds for all finite sets Γ of L2 formulas:

(i) ATR0 + (Σ1
1-DC) ` Γ =⇒ KPi0 + (Σ-IN) ` Γ∗,

(ii) ACA0 + (Σ1
1-TDC) ` Γ =⇒ KPi0 + (Σ-tr) ` Γ∗.

III.2 Admissible sets and linearity

The language of KPi0 is equipped by a relation symbol Ad(u) that distinguishes a
class Ad := {x : Ad(x)} of admissibles which are linearly ordered by ∈ due to the
axiom (lin). In this section, we introduce a ∆0 formula PAd(u) of L∗ expressing that
the set u is admissible, i.e. a transitive model of KPu0 + (IN). We study ways to
construct admissible sets and examine the class hypx :=

⋂
{y : x ∈ y∧PAd(y)}. Then,

we analyse what happens if we claim the class {x : PAd(x)} of all the admissible
sets to be linearly ordered by ∈. Finally, we extend KPu0 by an axiom (∆0-dc)
for dependent choice together with a formula Addc(u) stating that u is a transitive
model of KPu0 +(IN)+ (∆0-dc), which enables us to study Π2 reflection on the class
Addc := {x : Addc(x)}. For all this, we need the constructible hierarchy L.

112 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

III.2.1 The constructible hierarchy L

In chapter two, the jump-hierarchy played a dominating role. Its counterpart in
admissible set theory is the constructible hierarchy. Although the constructible
hierarchy plays a very similar role as the jump-hierarchy in many respects, its defi-
nition is more complicated. This reflects the issue that we are no longer restricted to
subsets of N but also have to deal with sets containing sets, sets of sets and possibly
also non-wellfounded sets.

The step from one level of the constructible hierarchy to the next is determined by
an operation fD(u) that is defined by a ∆ formula D(u, v) of KPu0, which in turn
is composed of a couple of relatively simple operations fAi that are again defined
by ∆ formulas Ai(u, v, w) of L∗, where i ranges over an appropriate index set I. We
borrow the formulas Ai, the definition of the constructible hierarchy and most of
the proofs concerning its properties from Barwise [3], p.57ff. Only small changes are
required to adapt things to our set-up. Given the formulas Ai, there is a ∆ formula
D(u, v) of L∗ such that

fD(u) = u ∪
⋃

i∈I

{fAi(v, w) : v, w ∈ u}.

A constructible hierarchy h along the ordering ≺ above the set x is then a function
which meets the conditions:

(i) Dom(h) = Field(≺) ∧ h(0) = x ∪ N,

(ii) (∀α ∈ Field(≺))[α+1 ∈ Dom(h) → h(α+1) = fD(
⋃

h(α) ∪ h(α) ∪ {h(α)})],

(iii) (∀λ ∈ Field(≺))[λ ∈ Dom(h) ∧ limit(λ) → h(λ) =
⋃

α≺λ h(α)].

To be in sync with the notation in [3] we handle the limit case separately. If h(α) is
transitive, then

⋃
h(α) ⊆ h(α) and the union with

⋃
h(α) adds nothing new to the

argument of fD of (ii). However, if we build the constructible hierarchy above a set
x that is not transitive, then (ii) ensures that the level h(ω) is transitive.

Next, we choose a Σ formula L(u1, u2, v, w) of L∗ such that for all sets y, z we have
Op2

L(y, z), and moreover, for all sets g, fL
x,≺(g, 0≺) = x, if α+1 is a successor in

the field of the linear ordering ≺ then fL
x,≺(g, α+1) = fD(

⋃
g(α) ∪ g(α) ∪ {g(α)}),

and fL
x,≺(g, λ) =

⋃
Rng(g), if λ ∈ Field(≺) is a limit. With this setting, we obtain

that h is a constructible hierarchy along ≺ above x according to the aforementioned
definition exactly if hierL(h, x,≺).

In analogy to the jump-hierarchy, we write Lx
≺ for a constructible hierarchy above

x along ≺. Again, if the context implies that α is an element of the field of ≺,
then we use Lx

α for the αth level of this constructible hierarchy. Provided that the

III.2 Admissible sets and linearity 113

underlying ordering of a constructible hierarchy is a well-ordering, there is, provable
in KPu0, exactly one jump-hierarchy Lx

≺. Hence, the formula x ∈ Lx
α is ∆.

The formulas Ai have been chosen such that the following lemmas hold. Their proofs
are contained in the proofs of Lemma 6.1 and Theorem 6.4 on page 62ff in [3]. To
be precise, we note that Barwise works in a language without function symbols,
whereas we have function symbols for all the primitive recursive functions. Observe
however, that the translation introduced in subsection I.2.13 can be applied to get
rid of these function symbols.

Lemma III.2.1 The following is provable in KPu0: If ≺ is a linear ordering and h
is such that hierL(h, x,≺) holds, then

(i) ∀α, β[α ≺ β → h(α) ⊆ h(β)],

(ii) (∀α ∈ Field(≺))[h(α) ∈ h(α+1)],

(iii) (∀α ∈ Field(≺))[Tran(h(α)) → Tran(h(α+1))].

The following lemma corresponds to lemma II.1.26.

Lemma III.2.2 For each ∆0 formula B(u,~v) of L∗ there exists an n ∈ N, such that
the following is provable in KPu0: If ≺ is a linear ordering without a top element and
h is such that hierL(h, x,≺) holds, then we have for all sequences α ≺ α1 ≺ . . . ≺ αcsn

that a,~b, c ∈ h(α) implies

{y ∈ a : B(y,~b)} ∈ h(αcsn
) and {a, c} ∈ h(α1) and

⋃
a ∈ h(α1).

Corollary III.2.3 For each ∆0 formula A(u,~v) of L∗, there is an n ∈ N such that
KPu0 proves:

hierL(h, x, ��ω) ∧ m � ω ∧ a,~b ∈ h(m) → {y ∈ a : A(y,~b)} ∈ h(m+csn).

Moreover, we have that the ωth level of a constructible hierarchy is always transitive,
no matter with what set x we start.

Lemma III.2.4 The following is provable in KPu0: For any set x, Lx
ω is a transitive

set.

Proof: Suppose that z ∈ y ∈ Lx
ω. Then there in an n ∈ N with y ∈ Lx

n. This yields
z ∈

⋃
Lx

n, hence z ∈ Lx
n+1. 2

Remark III.2.5 Please note, that for a non-transitive x, Lx
ω is in general not a

model of BS0 + (IN). For instance, if we define z0 := z and zn+1 := {zn}, and let
x := {nn : n ∈ N}, then Lx

ω does not contain a transitive hull of x.

114 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Now we are ready to give a more refined version of the pseudo-hierarchy principle
(psh′) for theories T with |T| < Φ0 that comprise KPu0 and prove the existence of
Lx

ω for each set x. For each Σ formula A(u1, u2, v, ~w, z) of L∗,

(psh) ∀xOp2
A(~a, x) ∧∀x[Wo(x) → ∃fhierA(f,~a, x)] → ∃g, y[pshA(g,~a, y)∧WoL

g
ω(y)].

Examining the proofs in the previous section, we find that using (psh) instead of
(psh′) does not affect the arguments given there. Also the following lemma is ob-
tained in the same way as lemma III.1.12.

Lemma III.2.6 If T is a theory with |T| < Φ0 that comprises KPu0 and proves for
each set x the existence of Lx

ω, then |T| = |T + (psh)|.

However, we need more detailed information about the build-up of the constructible
hierarchy when analyzing dependent choice in admissible set theory in subsection
III.2.5. Thus, we cannot avoid the explicit mentioning of the formulas Ai(u, v, w).
These are the formulas from [3] specialized to the present situation. For each i from
the set I := {1, . . . , 16}, we choose Ai(u, v, w) such that the conditions below are
satisfied.

fA1(x, y) = {x, y} fA2(x, y) =
⋃

x fA3(x, y) = x − y
fA4(x, y) = x × y fA5(x, y) = Dom(x) fA6(x, y) = Rng(x)

The next two operations are needed for technical reasons to handle the asymmetry
in the forming of ordered pairs (cf. [3] p. 63 ff).

fA7(x, y) = {(u, v, w) : (u, v) ∈ x ∧ w ∈ y}

fA8(x, y) = {(u, w, v) : (u, v) ∈ x ∧ w ∈ y}

For the primitive recursive relations, we have the operation

fA9(x, y) = {〈u1, . . . , un〉 : ~u ∈ N ∧ x ∈ Prim ∧ π(x, 1) = n ∧ {x}(~u) = 0},

if π(x, 1) > 1, and otherwise

fA9(x, y) = {u : u ∈ N ∧ x ∈ Prim ∧ π(x, 1) = n ∧ {x}(u) = 0},

where π(x, y) is the projection functions I.1.5 and Prim the set of indices of the prim-
itive recursive function defined in subsection I.1.7. Recall from subsection II.1.1,
that 〈10, 1〉 and 〈11, 1〉 are indices of the characteristic functions of U and V, respec-
tively. The non-primitive recursive relation symbols of L∗ are taken care of by the
next group of operations.

fA10(x, y) = {(u, v) ∈ x × y : u = v}, fA11(x, y) = {(u, v) ∈ x × y : u ∈ v}.

III.2 Admissible sets and linearity 115

In order to satisfy claim (iii) of lemma III.2.2 above, we need some additional op-
erations. Hence we choose A12(u, v, w), . . .A16(u, v, w) such that fA12(x, y) = (x, y)
and

fA13(x, y) =

{
(u, v, y) if x = (u, v)
∅ otherwise

fA14(x, y) =

{
{u, (v, y)} if x = (u, v)
∅ otherwise

fA15(x, y) =

{
(u, y, v) if x = (u, v)
∅ otherwise

fA16(x, y) =

{
{u, (y, v)} if x = (u, v)
∅ otherwise

So much to the constructible hierarchy for the moment. We will come back to it in
the next subsection where we reason about the class hypx, i.e. the intersection of
all models of KPu0 + (IN) above x. Thereto, we require a ∆0 formula PAd(u) of L∗

expressing that u satisfies the axioms of KPu0 +(IN). This formula will play the role
of the formula AxΣ1

1
-AC of L2 in second order arithmetic.

III.2.2 A ∆0 formula expressing admissibility

The goal of this subsection is to reformulate the theory KPi0 stripped by the axiom
(lin) in the language L∗. Since L∗ does not contain the relation symbol Ad(u), we
will define a ∆0 formula PAd(a) of L∗ that expresses that the set a is admissible.
To be precise, PAd(a) is to imply that a is a transitive set containing N, and that a
reflects the Kripke-Platek axioms: For each instance A(~u) of a Kripke-Platek axiom
(cf. subsection I.2.9), we have that KPu0 ` PAd(a)∧ ~x ∈ a → Aa(~x). To obtain such
a formula PAd(u), we make use of the techniques developed in Barwise [3] to define
a universal Σ formula. However, our job is a bit harder, since we are working in a
considerably weaker theory.

To begin with, we let (∆0-Sep′) be the sentence
∧

i∈I

∀x, y∃z(z = fAi(x, y)),

where for i ∈ I = {1, . . . , 16}, Ai(u, v, w) is the formula chosen in the previous
subsection while specifying the build-up of the constructible hierarchy. The following
is then an immediate consequence of corollary III.2.3.

Lemma III.2.7 For each instance A(~u) of (∆0-Sep), the following is provable in
KPu0:

~x ∈ a ∧ (∆0-Sep′)a → Aa(~x).

In the course of the subsequent argument, we require transitive sets that are closed
under (∆0-Sep′), (Pair) and union. We distinguish sets with slightly stronger closure
properties, namely models of BS0. The ∆0 formula

PBS0(u) := Tran(u) ∧ N ∈ u ∧ (∆0-Sep′)u ∧ (∀x ∈ u)(∃y ∈ u)(x ⊆ y ∧ Tran(y)).

116 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

is to state that u is a model of BS0 + (IN).

If n ∈ N, we denote by N�n the set {x ∈ N : x < n}. Further, we say that
card(x) = n if there exists a bijective function (f : N�n → x), and x is called finite if
there is an n ∈ N with card(x) = n. The set x is finite in b, if there exists a bijection
(f : N�n → x) with f ∈ b. Below, we observe that a set a with PBS0(a) contains all
its finite subsets.

Lemma III.2.8 The following is provable in KPu0:

PBS0(a) ∧ y ⊆ a ∧ card(y) = n → y ∈ a.

Proof: Suppose that there is an n ∈ N such that (f : N�n → y) is a bijection. Using
induction, one shows that (∀m <N n+1)(∃g ∈ a)(g = f�(N�m)). 2

Therefore, if a, b are transitive sets satisfying (∆0-Sep′) with x ∈ a ∈ b, then we
have for each n ∈ N, that the set of all subsets of x with n elements,

{y ⊆ x : card(y) = n} = {y ∈ a : y ⊆ x ∧ (∃f ∈ a)[(f : N�n → y) is a bijection]}

is an element of b.

Our next step is to define formulas ∆0-Sat(u,~v) of L∗ (for each ariety one), such
that for all ∆0 formulas A(~v) of L∗ that contain no other function symbols than the
constants csn, the following is provable in KPu0: If PBS0(a), PBS0(b) and a ∈ b, then

(∀~x ∈ a)[A(~x) ↔ ∆0-Sat(~x, pAq)],

where pAq ∈ N is the Gödelnumber of the formula A. Among other things, we
assume that Fml is the primitive recursive set {pAq : A is a formula of L∗}, and
that there is a function FV(pAq) that returns the set of the Gödelnumbers of the
free variables occurring in A, i.e. FV(pAq) = {puq : u ∈ FV (A)}. Further, we make
use of a function Val satisfying Val(pcsnq) = csn.

We say that c is a structure for L∗, denoted by Struct(c), if c is a transitive set that
contains N. Given a structure c and a formula A of L∗, we denote by

EV(c, pAq) := {g ∪ Val : Fun(g) ∧ Dom(g) = FV(pAq) ∧ Rng(g) ⊆ c}

the set of possible evaluations of the free variables of A in c. Because EV(c, pAq) is
a collection of subsets of N× c with the cardinality of FV(pAq), the previous lemma
yields the following:

Lemma III.2.9

KPu0 ` c ∈ a ∈ b ∧ PBS0(a) ∧ PBS0(b) → (∀n ∈ Fml)(EV(c, n) ∈ b).

III.2 Admissible sets and linearity 117

Next, we define the set Sat(c, pAq). It is supposed to contain all the valuations
s ∈ EV(c, pAq) under which A evaluates to true. The idea is to define EV(c, pAq)
inductively on the build-up of A. More precisely, Sat(c, pAq) is the unique set
satisfying the equations listed below.

The following clauses are to be read as formulas of L∗. So for instance “A is the
formula Re(t)” translates to n ∈ Fml is of the form 〈0, e, s〉 and s ∈ Term”, assuming
that Term is the primitive recursive set {psq : s is a term of L1} and 〈0, e, psq〉 is
the Gödelnumber of the formula Re(s).

1. If A is the formula [∼]Re(~t), where Re is a primitive recursive relation symbol
of the relation {~x : {e}(~x) = 0}, then Sat(c, pAq) is the set

{s ∈ EV(c, pAq) : [¬](s(p~tq) ∈ N ∧ {e}(s(p~tq)) = 0)}.

2. If A is the formula [∼]R(t), where R is one of the relation symbols U, V,S,
then Sat(c, pAq) is the set

{s ∈ EV(c, pAq) : [∼]R(s(ptq))}.

3. If A is the formula [∼](t1 ∈ t2), then Sat(c, pAq) is the set

{s ∈ EV(c, pAq) : [∼](s(pt1q) ∈ s(pt2q))}.

4. If A is of the form B ∨ C, then Sat(c, pAq) is the set

{s ∈ EV(c, pAq) : s�FV(pBq) ∈ Sat(c, pBq) ∨ s�FV(pCq) ∈ Sat(c, pCq)}.

5. If A is of the form B ∧ C, then Sat(c, pAq) is the set

{s ∈ EV(c, pAq) : s�FV(pBq) ∈ Sat(c, pBq) ∧ s�FV(pCq) ∈ Sat(c, pCq)}.

6. If A is of the form ∃xB and x occurs free in B, then Sat(c, pAq) is the set

{s ∈ EV(c, pAq) : (∃y ∈ c)(s ∪ {(pxq, y)}) ∈ Sat(c, pBq)}.

If x does not occur free in B, then Sat(c, pAq) := Sat(c, pBq).

7. If A is of the form ∀xB and x occurs free in B, then Sat(c, pAq) is the set

{s ∈ EV(c, pAq) : (∀y ∈ c)(s ∪ {(pxq, y)}) ∈ Sat(c, pBq)}.

If x is not free in B, then Sat(c, pAq) := Sat(c, pBq).

118 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

The relevant property of Sat(c, pAq) in view of the definition of the formulas ∆0-Sat
is put on record below.

Lemma III.2.10 KPu0 proves:

c ∈ a ∈ b ∧ PBS0(a) ∧ PBS0(b) → (∀n ∈ Fml)(Sat(c, n) ∈ b).

Proof: We only give a rough sketch: Assume that we have a primitive recursive
function rk that assigns the to the Gödelnumber of a formula its natural rank. Then
we show by induction that

(∀n ∈ N)(∀m ∈ Fml)[rk(m) <N n → Sat(c, m) ∈ b].

2

Next, we require that if x ∈ a ∈ b with PBS0(a) and PBS0(b), then the transitive
closure TC(x) of x,

TC(x) :=
⋂

{y : Tran(y) ∧ x ⊆ y},

is an element of b.

Lemma III.2.11

KPu0 ` x ∈ a ∈ b ∧ PBS0(a) ∧ PBS0(b) → TC(x) ∈ b.

Proof: Let a be such that x ∈ a and PBS0(a). Induction yields that for all n ∈ N,
there exists a unique f ∈ a such that

A(f, n) := Fun(f) ∧ Dom(f) = N�(n+1) ∧ f(0) = x ∧ (∀m < n)f(m+1) =
⋃

f(m).

It follows that TC(x) = {y ∈ a : (∃n ∈ N)(∃f ∈ a)(A(f, n) ∧ y ∈
⋃

Rng(f))} is an
element of b. 2

Given a formula A(u1, . . . , un) of L∗ and sets x1, . . . , xn, we write sA
~x for the valuation

that maps the Gödelnumbers of the free variables in A to the set {x1, . . . , xn}.

Definition III.2.12 Let ∆0-Sat(~u, v) be the following formula of L∗:

v ∈ Fml ∧ Dom(sA
~u) = FV(v) ∧ sA

~u ∈ Sat(TC({N, ~u}), v).

Clearly, ∆0-Sat(~u, v) is equivalent to a Σ formula of L∗. A (meta-) induction on the
build-up of the formula A now yields:

Lemma III.2.13 Let A(~u) be a ∆0 formula of L∗. Then KPu0 proves: If PBS0(a),
PBS0(b) and a ∈ b, then

(∀~x ∈ a)[A(~x) ↔ ∆0-Sat(~x, pAq)].

III.2 Admissible sets and linearity 119

This leads immediately to a universal Σ formula of L∗:

Lemma III.2.14 (Universal Σ formula for L∗) For each Σ formula A(~u) of L∗,
there is an e ∈ Fml ⊆ N, such that KPu0 + ∀x∃y(x ∈ y ∧ PBS0(y)) proves:

∀~x[A(~x) ↔ ∃y∆0-Sat(~x, y, cse)].

Towards the definition of our ∆0 formula PAd(u) of L∗ expressing admissibility, we
let (∆0-Col′) be the sentence

(∀e ∈ Fml)∀a, b[(∀x ∈ a)∃y∆0-Sat3(x, y, b, e) →

∃z(∀x ∈ a)(∃y ∈ z)∆0-Sat3(x, y, b, e)],

and finally define define

PAd(u) := PBS0(u) ∧ (∀y ∈ u)(∃z ∈ u)(y ∈ z ∧ PBS0(z)) ∧ (∆0-Col′)u.

Clearly, PAd(u) is ∆0, and moreover, satisfies the other expected properties.

Lemma III.2.15 If A(~u) is an instance of a Kripke-Platek axiom, then the theory
KPu0 proves:

~x ∈ a ∧ PAd(a) → Aa(~x).

Proof: This follows since PAd(a) implies that (∀x ∈ a)(∃y ∈ a)(x ∈ y ∧ PBS0(y)),
hence KPu0 proves

PAd(a) → [∀x(∆0-Sat(~x, pAq) ↔ A(~x))]a,

for all ∆0 formulas A of L∗. The claim follows. 2

Of course, a distinguished admissibles Ad(a) satisfies PAd(a) as well.

Lemma III.2.16
KPu0 ` Ad(a) → PAd(a).

Proof: Clearly, Ad(a) implies PBS0(a) and (∀y ∈ x)(∃z ∈ x)(y ∈ z ∧ PBS0(z)). And
(∆0-Col′)a follows by Σ collection in a. 2

The efforts taken in this subsection led us to a ∆0 formula Ad(u) of L∗ that allows us
to talk about admissible sets, which enables us to formulate the theory KPi0 without
the linearity axiom in the language L∗. We call this reformulation KPj0. It extends
KPu0 by the following axiom:

(lim′) ∃y(x ∈ y ∧ PAd(y)).

The next theorem states that the theory KPi0 stripped by the axiom (lin), below
denoted by KPi−, proves the same L∗ formulas as KPj0. A formula A of L∗

Ad translates
to the L∗ formula A[PAd/Ad] that is obtained from A by substituting every literal
of the form Ad(t) by PAd(t) and every literal of the form ∼Ad(t) by ¬PAd(t).

120 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Theorem III.2.17 For all finite sets Γ of L∗ formulas and all finite sets ∆ of L∗
Ad

formulas we have:

(i) KPj0 ` Γ =⇒ KPi− ` Γ,

(ii) KPi− ` ∆ =⇒ KPj0 ` ∆[PAd/Ad].

Proof: (i) follows from lemma III.2.15. (ii) follows from lemma III.2.16 and the fact
that PAd(x) is ∆0. 2

It seems natural to ask, how the assertion that the class {x : PAd(x)} is linearly
ordered by ∈, affects the proof-theoretic strength of the theory KPj0. Since the
class of all admissible sets {x : PAd(x)} is in general bigger than the class Ad of
admissibles distinguished by the predicate Ad(u), this assertion is much stronger
than the axiom (lin). After the next subsection, we learn that KPj0 extended by
such a linearity axiom has the same proof-theoretic strength as ∆1

2-CA0. A closer
look at the class hyp leads to this result.

III.2.3 On hyp

The formula PAd(u) introduced in the previous subsection allows us to speak about
admissible sets. Whenever we say that a set x is admissible, we mean that PAd(x)
holds. In this subsection we examine the class hypx, the intersection of all admissible
sets that contain x,

hypx :=
⋂

{a : x ∈ a ∧ PAd(a)}.

A similar class HYPM, the intersection of all admissibles above M, has been studied
exhaustively in Barwise [3]. However, Barwise’s notion of an admissible is different:
He calls a set a admissible if it is a transitive model of KPu0 + (IN) plus full ∈
induction, i.e. for all formulas A(u) of L∗

Ad,

∀x[(∀y ∈ x)A(y) → A(x)] → ∀xA(x).

Moreover, he assumes that a is an element of the cumulative hierarchy and that the
interpretation of the element relation in a is the restriction of the ∈ relation of the
cumulative hierarchy to a. In particular, his admissibles are well-founded.

In the present context, admissibles can be seen as equivalents of models of Σ1
1-AC

in second order arithmetic. Indeed, hypx shares many of the properties of HYPX

presented in subsection II.2.1. Our first result is that already KPu0 proves that hypx

is an admissible class, which corresponds to theorem II.2.20. To structure the proof,
we distinguish between the following three cases: There is no admissible above x,
hypx is a set, and there are admissibles above x but hypx is not a set. We start with
the first case which is trivial:

III.2 Admissible sets and linearity 121

Lemma III.2.18 The following is provable in KPu0: If there is no admissible above
x, then hypx is an admissible class.

Proof: If there is no admissible set above x, then hypx = {u : u = u}, which is
obviously an admissible class. 2

In the remaining cases, there are admissibles above x, hence for each well-ordering
≺∈ hypx, also the constructible hierarchy Lx

≺ exists and is an element of hypx.

Pseudo-hierarchies play an important role in the subsequent arguments. However,
a pseudo-hierarchy principle is not required: On the one hand, hypx is admissible
follows from the assumption that hypx is a set. On the other hand, the assumption
that hypx is not a set, implies the existence of a pseudo-hierarchy which helps us to
prove that hypx is an admissible class. How pseudo-hierarchies are used to construct
admissible sets is the subject of the next lemma.

Lemma III.2.19 (Construction of admissible sets) The following is provable

in KPu0: Suppose that pshL(f, x,≺), that Lf
ω exists and WoL

f
ω(≺). For a non-empty

k ⊆ Field(≺) without a ≺-least element,

a :=
⋃

ξ≺k

f(ξ)

is an admissible set that does not contains f . Moreover, if ≺′∈ a is a well-ordering,
then ≺′ is isomorphic to a proper initial segment of ≺, and the corresponding order
isomorphism is an element of the admissible set a.

Proof: Since the field of ≺�k has no biggest element, a is a transitive set that satisfies
(∆0-Sep′) by lemma III.2.2. To show that a satisfies each instance of (∆0-Col), let
A(u, v, ~w) be a ∆0 formula of L∗

Ad and b,~c ∈ a such that

(∀y ∈ b)(∃z ∈ a)A(y, z,~c).

Then k is a subset of

{α ∈ Field(≺) : (∀y ∈ b)(∃z ∈ f(α))A(y, z,~c)}.

Now WoL
f
ω(≺) yields that this set has a ≺-least element α0 ≺ k, which yields that

(∀y ∈ b)(∃z ∈ f(α0))A(y, z,~c). If f were an element of a, then
⋃

Rng(f) ∈ a and⋃
Rng(f) = a. However, an admissible cannot contain itself. The second part of

the lemma is proved as the corresponding claim of theorem II.2.11.

2

122 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Lemma III.2.20 The following is provable in KPu0: If there is an admissible above
x, then we have for all orderings ≺∈ hypx,

Wo(≺) ↔ (∃f ∈ hypx)[hierL(f, x,≺) ∧ WoL
f
ω(≺)].

Proof: Since the existence of admissibles above x is assumed, f ∈ hypx yields that
f is in an admissible above x, thus Lf

ω exists.
The direction from left to right is straight forward. If the converse direction fails,

then there are ≺, f ∈ hypx with pshL(f, x,≺) and WoL
f
ω(≺). Lemma III.2.19 pro-

vides now an admissible that does not contain f , contradicting the definition of
hypx. 2

Next, we consider the case where hypx is a set and show that this implies that hypx

is admissible. In this case, the ordinals in hypx provide a lot of information about
hypx. Thereto, we define

on(a) := {α ∈ a : Ord(α)}.

In the next paragraphs, ordinals appear quite frequently. If the context implies that
α is an ordinal, we often write hierL(f, x, α) instead of hierL(f, x,∈�α), where ∈�α
is the set {(y, z) : y ∈ z ∧ y, z ∈ α}. In connection with ordinals, we also speak of
hereditarily transitive sets, sets that are transitive and contain only transitive sets:
HTran(u) := Tran(u) ∧ (∀x ∈ u)Tran(u).

Lemma III.2.21 The following is provable in KPu0: If hypx is a set, then on(hypx)
is a set as well. Moreover,

⋃
on(hypx) is the least ordinal not in hypx.

Proof: If hypx is a set, then, by the previous lemma, on(hypx) is a set by ∆ separation.
Thus α :=

⋃
on(hypx) is an ordinal. Because an ordinal does not contain itself,

α /∈ hypx. 2

If a is an admissible and on(a) is a set, then λ :=
⋃

on(a), the least ordinal not in
a, is called the ordinal of a. The ordinal λ is admissible in the following sense:

Lemma III.2.22 The following is provable in KPu0: If x ∈ a ∧ PAd(a) and on(a)
is a set, then λ :=

⋃
on(a) is an ordinal and Lx

λ is an admissible subset of a.

Proof: Since λ is a limit, Lx
λ satisfies (∆0-Sep′), and it remains to show that Lx

λ

satisfies (∆0-Col). First, we show this under the assumption that for all α ∈ a,

(∗) Ord(α) ↔ (∃f ∈ a)[hierL(f, x, α) ∧ OrdLf
ω(α)].

Suppose that A(u, v) is ∆0, that b ∈ Lx
λ and (∀y ∈ b)(∃z ∈ Lx

λ)A(y, z). This implies
readily that (∀y ∈ b)(∃α ∈ a)(Ord(α)∧ (∃z ∈ Lx

α)A(y, z). Using (∗) and applying Σ
collection in a then yields an ordinal γ ∈ a such that

(∀y ∈ b)(∃α ∈ γ)(∃z ∈ Lx
α)A(y, z).

III.2 Admissible sets and linearity 123

If the direction from right to left of (∗) fails, then there are f, α ∈ a with OrdLf
ω(α)

and pshL(f, x, α). Further, the second part of lemma III.2.19 yields λ ⊆ α. Now
again, suppose that A(u, v) is a ∆0 formula of L∗, that b ∈ Lx

λ and moreover,
(∀y ∈ b)(∃z ∈ Lx

λ)A(y, z). Now

{γ ∈ α : (∀y ∈ b)(∃z ∈ f(γ))A(y, z)}

has a least ∈-element γ0. Since α− γ := {β ∈ α : β /∈ γ} has no ∈-least element, γ0

is already below λ, so f(γ0) = Lx
γ0

∈ Lx
λ.

Because λ is an ordinal, α ∈ λ implies Lx
α ∈ a. Lx

λ ⊆ a follows. 2

As a consequence, we obtain the following corollary, which settles case two.

Corollary III.2.23 KPu0 proves: If hypx is set, then hypx is admissible and for
λ :=

⋃
on(hypx), we have hypx = Lx

λ.

To show that hypx is an admissible class in the case where hypx is not a set, we first
observe that in this case all ordinals are already contained in hypx.

Lemma III.2.24 The following is provable in KPu0: If there is an admissible above
x, and hypx is not a set, then

Ord(α) → α ∈ hypx.

Proof: We assume that there is an ordinal β /∈ hypx and argue for a contradiction.
Since there are admissible sets above x, there is also an admissible a above x with
β /∈ a. Then,

on(a) = {α ∈ β : (∃f ∈ a)hierL(f, x, α)}.

For λ :=
⋃

on(a), lemma III.2.22 yields that Lx
λ is an admissible above x. Hence,

the set
{γ ∈ β+1 : PAd(L

x
γ)}

is not empty, thus it has a ∈-least element γ0. But then, hypx = Lx
γ0

, contradicting
the assumption that hypx is not a set. 2

Now we are in the position to clear case three. Note, that the conclusion of the next
lemma follows also without the assumption “hypx is not a set”, as we have seen in
the above corollary. However, it is required for the proof.

Lemma III.2.25 The following is provable in KPu0: If there is an admissible above
x, and hypx is not a set, then

hypx =
⋃

α∈on(hypx)

Lx
α,

and hypx is an admissible class.

124 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Proof: First, we argue that the two classes are equal: It is easy to see that the class
on the right hand side is a subclass of hypx. For the other direction, we pick a y
such that for all ordinals α ∈ hypx, y /∈ Lx

α and establish that then also y /∈ hypx.
If α is an ordinal, then α ∈ hypx by the previous lemma. Further, in each admissible
above x, there exists and f with hierL(f, x, α). Since such an f is unique, we have
f ∈ hypx, hence y /∈ Rng(f). Therefore, if a is an admissible above x, we have for
all sets α ∈ a,

(∗) Ord(α) → (∃f ∈ a)[hierL(f, x, α) ∧ OrdLf
ω(α) ∧ y /∈ Rng(f)].

Next, we argue, that the implication from right to left of (∗) fails: Otherwise, on(a)
were a set by ∆ separation. Then, λ :=

⋃
on(a) were an ordinal not in a, contra-

dicting the previous lemma. Hence, there are α0, g ∈ a, such that pshL(g, x, α0),

OrdLg
ω(α0) and y /∈ Rng(g). Moreover, there is a non-empty k ⊂ α0 without an

∈-least element. But then, according to lemma III.2.19, b :=
⋃

ξ∈
T

k g(ξ) is an
admissible above x that does no contain y.

Next, we make use of the above g and α0 to show that hypx an admissible class.
The second part of lemma III.2.19 yields Ord(β) → β ∈ α0, thus also Lx

β = g(β).
To see that hypx satisfies (∆0-Col), let A(u, v) be a ∆0 formula of L∗ and c an
element of hypx, such that we have (∀y ∈ c)(∃z ∈ hypx)A(y, z). By the first part of
this lemma and the above considerations, we conclude that

(∀y ∈ c)(∃γ ∈ on(hypx))(∃z ∈ g(γ))A(y, z).

Since all ordinals are elements of α0, the set

{γ ∈ α0 : (∀y ∈ c)(∃z ∈ g(γ))A(y, z)}.

is not empty and has a ∈-least element γ0. It follows that γ0 is an ordinal. Otherwise,
there were a β ∈ γ0 that is also not an ordinal, contradicting the choice of γ0. 2

Hence, we managed to prove in all three cases that hypx is an admissible class. This
result is summarized in the next theorem.

Theorem III.2.26 The following is provable in KPu0: hypx is an admissible class.
If there is an admissible above x, then hypx =

⋃
α∈on(hypx) L

x
α.

Next, we strengthen lemma III.2.20 such that it corresponds to lemma II.2.18. For
its proof, we require weak admissibles.

Definition III.2.27 (Weak admissible sets) We call a transitive set b weakly
admissible, if it satisfies (∆0-Sep′) and if x,≺∈ b and Wo(≺) imply Lx

≺ ∈ b.

III.2 Admissible sets and linearity 125

Lemma III.2.28 The following is provable in KPu0: Suppose that pshL(f, x,≺) and
that k ⊆ Field(≺) is non-empty, upward closed and has no ≺-least element. Then
the set

a :=
⋂

ξ∈k

f(ξ),

is weakly admissible and does not contain f .

Proof: Similar to the proof of theorem II.2.5. We only show that

x,≺∈ a ∧ Wo(≺) → Lx
≺ ∈ a.

This is done by transfinite induction on ≺. Assume that for all β ≺ α we have
Lx

≺�β ∈ f(ξ) for all ξ ∈ k. Since ≺∈ a yields that ≺∈ f(ξ) for all ξ ∈ k, lemma
III.2.2 yields an n ∈ N such that for each sequence αn ≺ . . . ≺ α1 with elements
from k, Lx

≺�α ∈ f(α1). Since k has no least element, Lx
≺�α ∈ a follows. If f were in

a, then we had a = Rng(f), so a ∈ a. However, the proof of lemma III.1.5 tells us
that (∆0-Sep′)a yields a /∈ a. 2

Lemma III.2.29 The following is provable in KPu0: If there is an admissible above
x, then

hypx =
⋂

{a : a is weakly admissible }.

Proof: If y ∈ hypx, then theorem III.2.26 yields an ordinal α ∈ hypx such that
y ∈ Lx

α. Thus, y is an element of each weak admissible set above x. For the converse
direction, assume that y /∈ hypx. But then there is already an admissible a that
with y /∈ a. Since each admissible is also weakly admissible, the claim follows. 2

Lemma III.2.30 The following is provable in KPu0: If there is an admissible above
x, then

α ∈ hypx ∧ Ord(α) ↔ HTran(α) ∧ (∃f ∈ hypx)hierL(f, x, α).

Proof: It remains to show the direction from right to left. Assume that there is a
hereditarily transitive α and an f ∈ hypx with pshL(f, x, α). Then lemma III.2.28
yields a weak admissible above x that does not contain f . A contradiction to the
assumption f ∈ hypx. 2

We conclude this subsection by drawing some conclusions on how admissibles relate
to each other, depending on whether hypx is a set.

Lemma III.2.31 The following is provable in KPu0: If there is an admissibles above
x, and hypx is not a set, then there are admissibles a, b above x such that we have
a /∈ b ∧ a 6= b ∧ b /∈ a.

126 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Proof: Otherwise, the admissibles above x were linearly ordered by ∈, and we could
adapt the proof of lemma III.1.1 to show that hypx is a set. 2

Lemma III.2.32 The following is provable in KPu0: If there is an admissible above
x, and hypx is not a set, then no admissible above x is well-founded.

Proof: If hypx is not, then an admissible a above x contains already each ordinal.
Further, on(a) is not a set, due to theorem III.2.26. Hence, there is a hereditarily
transitive set α and a function f with α, f ∈ a and pshL(f, x, α) and Orda(α). But
then, an admissible constructed according to lemma III.2.19 contains a β such that
β ∈ α with Orda(β) and ¬Ord(β). 2

Lemma III.2.33 The following is provable in KPu0: If hypx is a set, then x is
well-founded if and only if hypx is well-founded.

Proof: Recall that hypx =
⋃

α∈on(hypx) L
x
α. The claims follows now by transfinite

induction on λ :=
⋃

on(hypx). 2

Then working in KPj0 + (psh) we can strengthen e.g. lemma III.2.24:

Lemma III.2.34 The following is provable in KPj0 + (psh): If Wo(≺), then ≺ is
isomorphic to an initial segment of �.

Proof: Due to lemma III.1.10 (ii), there is an α ∈ Field(�) and an f such that

pshL(f,≺, ��α) and WoL
f
ω(��α). The claim now follows by the second part of

lemma III.2.19. 2

This allows us to characterize hypx as follows:

Corollary III.2.35

KPj0 + (psh) ` hypx =
⋃

{Lx
α : α ∈ Field(�) ∧ Wo(��α)}.

Finally, we answer a question asked in the previous section. There, we claimed that
x◦ is admissible, although KPi0 does not prove Ad(x◦).

Lemma III.2.36 We have that

KPi0 ` PAd(x
◦).

Proof: It remains to show that x◦ satisfies (∆0-Col). We only need consider the case
where ¬Ad(x◦). Then, the set s := {a ∈ (x+)+ : Ad(a) ∧ x ⊆ a} has no ∈-least
element. Now let A(u, v) be a ∆0 formula of L∗

Ad and assume that b ∈ x◦ is such
that (∀y ∈ b)(∃z ∈ x◦)A(y, z). Lemma III.1.1 tells us that

{c : (∀y ∈ b)(∃z ∈ c)A(y, z) ∧ b ∈ c ∧ Ad(c)}

has an ∈-least element c0 which is admissible, contains b and moreover, satisfies
(∀y ∈ c0)(∃z ∈ c0)A(y, z). Because s has no ∈-least element, we conclude that
c0 ∈ x◦. 2

III.2 Admissible sets and linearity 127

III.2.4 Admissibles linearly ordered by ∈

In this subsection, we analyze what happens if we force admissible sets to be linearly
ordered by ∈, i.e. we are interested in the extension of KPj0 by the axiom:

(lin′) PAd(a) ∧ PAd(b) → a ∈ b ∨ a = b ∨ b ∈ a.

In KPi0, the admissibles of the class Ad are linearly ordered by ∈. In general,
however, there are many more admissible sets. Thus, it is no surprise that KPj0 is
much stronger as KPi0. In fact, it turns out that |KPj0 + (lin′)| = |∆1

2-CA0|.

To obtain this result, we show in a first step, that well-foundedness of a set is –
provably in KPj0 + (lin′) – equivalent to a Σ formula of L∗. This allows to embed
KPj0+(I∈) into KPj0+(lin′). On the other hand, there is an asymmetric interpretation
of KPj0 +(lin′) into KPir, which yields |KPj0 + (I∈)| = |KPir|. That |KPir| = |∆1

2-CA0|
is shown in Jäger [20].

We start with the observation that due to lemma III.2.31, (lin′) implies that hypx is
a set. Hence KPj0 + (lin′) proves the existence of a least admissible y = hypx above
each set x. Then working in KPj0 + (lin′), we denote the set hypx also by x+. Since
the relation symbol Ad(u) is not part of the language L∗ of KPj0 +(lin′), this should
not conflict with our previous use of ·+ in theories formulated in L∗

Ad.

Next, we conclude by lemma III.2.30 that in KPj0 + (lin′), Ord(α) is equivalent to
the Σ formula of L∗ asserting that HTran(α) and (∃f ∈ α+)hierL(f, ∅,∈�α). This
leads then to a Σ formula of L∗ that is equivalent to Wf(∈�x), asserting that x is
well-founded with respect to ∈. To define such a formula, we extend the notion of
collapse to sets:

Clp′(f, x) :=

{
Fun(f) ∧ Dom(f) = x ∧

(∀y ∈ x)(f(x) = {f(z) : z ∈ y}).

Lemma III.2.37 The following is provable in KPj0 + (lin′):

Wf(∈�x) ↔ (∃f ∈ x+)[Clp′(f, x) ∧ Ord(Rng(f))].

Proof: Assume that x is well-founded. Then Clp′(f, x) ∧ Clp′(g, x) implies f = g.
Otherwise, there were an ∈-least element x0 ∈ x for which f(x0) 6= g(x0). But then
already f(y) 6= g(y) for some y ∈ x0.
Using this and Σ replacement in x+, we similarly obtain that for each y ∈ TC({x}),
there exists an f ∈ x+ with Clp′(f, y) and Ord(Rng(f)).

If Clp′(f, x) and y ⊆ x has no ∈-least element, then also {f(z) : z ∈ y} has no
∈-least element, thus Rng(f) is not an ordinal. 2

128 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Therefore, if a formula is derivable in KPj0 + (I∈), it holds also in the well-founded
part of KPj0 +(lin′). In the lemma below, Wf denotes the class {x : S(x)∧Wf(∈�x)}
of well-founded sets, and AWf is the formula obtained form A by relativizing bound
set variables to the class Wf.

Lemma III.2.38 For all finite sets Γ(~u) of L∗ formulas with exactly the displayed
variables free, we have:

KPj0 + (I∈) ` Γ(~u) =⇒ KPj0 + (lin′) ` ~u /∈ Wf, ΓWf(~u).

Proof: The lemma is proved by induction on the depth of the proof in KPj0 +
(I∈). Since Wf(∈�x) is ∆, the Kripke-Platek axioms cause no problems. By lemma
III.2.33, Wf(∈�x) yields Wf(∈�hypx), hence (lim′) holds when relativized to the class
Wf. Because well-founded sets only contain well-founded sets, also the relativization
of the Kripke-Platek axioms to well-founded admissibles are provable in KPj0+(lin′).
And (I∈) comes for free in Wf. 2

Observe that KPj0+(I∈) is the reformulation of KPir in the language L∗. Analogously
to theorem III.2.17, we obtain:

Lemma III.2.39 For all finite sets Γ of L∗ formulas and all finite sets ∆ of L∗
Ad

formulas we have:

(i) KPj0 + (I∈) ` Γ =⇒ KPir ` Γ,

(ii) KPir ` ∆ =⇒ KPj0 + (I∈) ` ∆[PAd/Ad].

The converse direction of lemma III.2.38 fails, since (I∈) does not imply (lin′), how-
ever, an asymmetric interpretation does the job. Thereby we write Ba,b for the
formula that is obtained from B by relativizing all unbounded universal quantifiers
in B to a and all unbounded existential quantifiers to b.
It remains to adjust a technical detail. To successfully perform the asymmetric
interpretation, we require that a proof of a finite set Γ of L∗ formulas can be trans-
formed into a proof of Γ, where the cut rule is applied only to Σ and Π formulas of
L∗. According to Theorem I.3.4, cuts that are neither Π nor Σ can be eliminated,
provided the main formulas of each axiom and rule are only Σ or Π formulas of L∗.
To achieve this, we reformulate (∆0-Col) as a rule: For each ∆0 formula B(u, v) of
L∗,

Γ, (∀x ∈ w)∃yB(x, y)

Γ, ∃z(∀x ∈ w)(∃y ∈ z)B(x, y)
.

The asymmetric interpretation is now straight forward.

III.2 Admissible sets and linearity 129

Lemma III.2.40 We let ∗ be the set of all Π and Σ formulas of L∗ and assume
that Γ(~u) is a finite set of formulas of L∗, such that for some natural number n ∈ N,
KPj0 + (lin′)

n

∗
Γ(~u). Then, we have for all natural numbers m ∈ N:

KPj0 + (I∈) ` ¬hier+(f, ∅, m+2n), ~u /∈ f(m), Γf(m),f(m+2n)(~u).

For each natural number n ∈ N, KPj0 + (lin′) proves the existence of a hierarchy f
with hier+(f, ∅, n). This immediately implies that KPj0 +(lin′) and KPj0 +(I∈) prove
the same Π2 formulas of L∗. Putting things together, we conclude that also KPir

and KPj0 + (lin′) prove the same Π2 formulas of L∗. Applying the aforementioned
result in [20], we can state the following theorem.

Theorem III.2.41

|KPir| = |KPj0 + (lin′)| = |∆1
2-CA0|

III.2.5 Dependent choice in admissible set theory

In subsection III.1.6, we have seen that the axiom (lin), asserting that the elements
of the class Ad are linearly ordered by ∈, is some substitute for dependent choice.
In this subsection, we take this matter further. We introduce the theory KPd0, that
extends KPu0 by an axiom for dependent choice and then prove in KPm0, making
use of the axiom (lin) and pseudo-hierarchy arguments, the existence of so-called
n-inaccessible models KPd0 + (IN). This yields that KPu0 extended by an axiom for
Π2 reflection on models of KPd0 + (IN) is another theory with the meta-predicative
Mahlo ordinal ϕω00.

We start by introducing the theory KPd0, which is formulated in L∗ and extends
KPu0 by an axiom for dependent choice: For each ∆0 formula A(u, v, ~w) of L∗,

(∆0-dc) ∀x∃yA(x, y, ~z) → ∃f [Fun(f) ∧ f(0) = a ∧ (∀n ∈ N)A(f(n), f(n+1), ~z)].

It is easy to show that KPd0 proves already the following form of (Σ-dc).

Lemma III.2.42 For each Σ formula A(u, v, n) of L∗, the following is provable in
KPd0:

(∀n ∈ N)∀x∃yA(x, y, n) →

∃f [Fun(f) ∧ Dom(f) = N ∧ f(0) = a ∧ ∀nA(f(n), f(n+1), n)].

To speak about models of KPd0, we define a ∆0 formula Addc(u) of L∗, expressing
that u is a model of KPd0 + (IN):

Addc(u) := PAd(u) ∧ (∀e ∈ Fml)(∀a, b ∈ u)[∀x∃y∆0-Sat(x, y, a, e) →

∃f(Fun(f) ∧ f(0) = b ∧ (∀n ∈ N)∆0-Sat(f(n), f(n+1), a, e))]u.

130 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

The properties of the formula ∆0-Sat (cf. lemma III.2.13) guarantee that Addc(u)
distinguishes admissibles that satisfy (∆0-dc):

Lemma III.2.43 For each instance A(~u) of (∆0-dc), the following is provable in
KPu0:

Addc(a) ∧ ~z ∈ a → Aa(~z).

Now we are ready to present the theory KPdm0. It is also formulated in L∗ and
extends KPu0 by axioms for Π2 reflection on models of KPd0 + (IN): For each ∆0

formula of L∗

(Π2-Ref)Addc ∀x∃yA(x, y, ~z) → ∃a[Addc(a) ∧ ~z ∈ a ∧ (∀x ∈ a)(∃y ∈ a)A(x, y, ~z)].

We will show that KPdm0 is yet another theory with |KPdm0| = ϕω00. This the-
ory corresponds to the theory ATR0 + (Π1

2-REF)Σ1
1-DC of second order arithmetic,

introduced and analyzed in [37, 38] that extends ATR0 by the following axiom:

(Π1
2-REF)Σ1

1
-DC ∀X∃Y A(X, Y, ~Z) →

∃M [(AxΣ1
1
-DC)M ∧ ~Z ∈̇ M ∧ (∀X ∈̇ M)(∃Y ∈̇ M)A(X, Y, ~Z)].

Also ATR0 + (Π1
2-REF)Σ1

1-DC has strength ϕω00, and it seems that this theory is
contained in KPdm0, which is indeed the case as we will see below. However, it is
not as simple as it appears at first sight: If A(U, V, ~W) is an arithmetical formula
of L2 and ~z ⊆ N are such that (∀x ⊆ N)(∃y ⊆ N)A∗(x, y, ~z), then (Π2-Ref)Addc

provides a set a above ~z with Addc(a) and [(∀x ⊆ N)(∃y ⊆ N)A∗(x, y, ~z)]a. Also, if
Addc(a), then a ∩ P(N) satisfies each instance of (Σ1

1-DC). But for the translation
of (Π1

2-REF)Σ1
1
-DC to hold, we need a subset of N that codes such a model, i.e. an

M ⊆ N such that X ∈ a ∩ P(N) ↔ ∃e[(M)e = X]. The existence of such an M
depends on the existence of a function f that enumerates a ∩ P(N).

When we establish an upper bound of KPdm0, we observe that strengthening KPdm0

by an axiom asserting that each set is enumerable does not increase its proof-
theoretic ordinal. All the same, to prove the standard translation of an instance
of (Π1

2-REF)Σ1
1-DC, such an additional assertion is not required. We alternatively

succeed by applying a nice argument that goes back to Jäger and Strahm [26] and
results from [37]. But let us make some remarks on well-orderings first.

If �1 and �2 are reflexive orderings, then we use �1 + �2 for the ordering with field
�1 ×{0}∪ �2 ×{1} where (α, m) is smaller than (β, n) if m <N n or if m = n = 0
and α ≺1 β or if m = n = 1 and α ≺2 β. Since in KPdm0 well-orderings are
comparable, it makes sense to define a partial binary operation +≺ on the field of
a well-ordering ≺ in the following way: For α, β ∈ Field(≺), we let α +≺ β be the

III.2 Admissible sets and linearity 131

≺-least γ such that the ordering ��α+ ��β is isomorphic to ��γ, provided such a
γ exists. If such a γ exists for all α, β ∈ Field(≺), then we call the operation +≺

total.

Theorem III.2.44 For each Σ formula A(u, v) of L∗, the following is provable in
KPdm0: If ≺⊆ N × N is a well-ordering so that the operation +≺ is total and ≺′ is
a proper initial segment of ≺, then

∀x∃yA(x, y) → ∃f [Fun(f) ∧ Dom(f) = Field(≺′) ∧ (∀α ∈ Field(≺′))A(f�α, f(α))].

Proof: The restriction to well-orderings whose field is a subset of N stems form the
need for fundamental sequences. For each limit λ in the field of ≺, we depend on
a function lλ with domain N such that for all n, we have lλ(n) ≺ λ, but for each
β ≺ λ there is a m such that lλ(m) � β. It is not hard to see, that for each limit
λ ∈ Field(≺), where exists a unique fundamental sequence lλ for λ that meets the
conditions below:

(i) lλ(0) = 0≺,

(ii) if n+1 ≺ λ, then lλ(n+1) = min≺{α ∈ Field(≺) : n+1 ≺ α ∧ lλ(n) ≺ α},

(iii) if n+1 6≺ λ, then l(n+1) = min≺{α ∈ Field(≺) : lλ(n) ≺ α}.

In the sequel, we write λ[n] for lλ(n) and use λ−[n] to denote the unique γ such that
λ[n] +≺ γ = λ[n+1].

Next, we introduce some auxiliary formulas to reason about choice sequences. If
B(u, v) is a Σ formula of L∗, then

ChSeqB(f, x,≺, α) := Fun(f) ∧ Dom(f) = Field(��α) ∧ (∀β ≺ α)B(f�β, f(β)),

is to express that f is a choice sequence for B along ��α. The next formula states
that if f is a choice sequence for B along ��α, then g is a choice sequence for B
along ��(α +≺ β) that extends f .

HB(f, g,≺, α, β) := ChSeqB(f,≺, α) → [ChSeqB(g,≺, α +≺ β) ∧ (f�α = g�α)].

This concludes the preparation and we can start to prove the theorem: Assume that
∀x∃yA(x, y). By (Π2-Ref)Addc , we obtain a set b with Addc(b) that contains ≺ and
the parameters appearing in A, such that (∀x ∈ b)(∃y ∈ b)Ab(x, y). Then transfinite
induction along ≺ yields that

S := {β ∈ Field(≺) : (∀α ∈ Field(≺))(∀f ∈ b)(∃g ∈ b)HAb

(f, g,≺, α, β)}

132 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

is the entire field of ≺: The successor case is straight forward; we just treat the limit
case. So assume that λ ∈ Field(≺) is a limit and that for all n ∈ N, λ[n] ∈ S. We
fix an α and conclude

(∀n ∈ N)(∀f ∈ b)(∃g ∈ b)HAb

(f, g,≺, α +≺ λ[n], λ−[n]).

Now we choose f0 such that ChSeqA(f0, α). Using dependent choice in the form of
lemma III.2.42 yields a choice function h such that induction along N yields

(∀n ∈ N)[ChSeqAb

(h(n),≺, α +≺ λ[n]) ∧ (h(n)�(α +≺ λ[n]) = h(n+1)�(α +≺ λ[n]))].

For g :=
⋃

n∈N h(n) we have ChSeqAb

(g,≺, α +≺ λ), thus λ ∈ S. By persistence, we
obtain that

Field(≺) = {β ∈ Field(≺) : (∀α ∈ Field(≺))(∀f ∈ b)(∃g ∈ b)HA(f, g,≺, α, β)}.

The claim follows. 2

The restriction in the previous theorem to orderings ≺ where the operation +≺

is total is not really an issue. As detailed in [36], we can assign to each well-
ordering ≺ a well-ordering ≺′ such that +≺′ is total and ≺ is isomorphic to an
initial segment of ≺′. The field of the ordering ≺′ consists of all the finite sequences
(f : N�(n + 1) → Field(≺)), where (∀m <N n)(f(m+1) ≺ f(m)). And f is ≺′-
smaller than g, if either the sequence g properly extends f , or if there is an n ∈
Dom(f)∩Dom(g) such that f(n) ≺ g(n) and f�n = g�n. It is now straight forward
to embed ACA0 + (Σ1

1-TDC) into KPdm0: Given a Σ1
1 formula A(U, V, W) of L2 and

a set Z such that (the translation of) ∀X∃Y A(X, Y, Z) holds, we have to find for
each well-ordering ≺ on N a choice sequence F that satisfies (the translation of)
(∀α ∈ Field(≺))A((F)≺α, (F)α, Z). By the above comment, there is an ordering ≺′

that extends ≺ and +≺′ is total. Thus, a choice sequence F as desired is obtained
using the previous lemma. The slightly more general form of (Σ1

1-TDC) given in
subsection II.1.3 then follows.

Further, it is shown in [37] that the theory ACA0 + (Σ1
1-TDC) proves each instance

of the rule (Π1
2-REF)Σ1

1
-DC. Therefore we conclude:

Lemma III.2.45 The standard translation of each instance of (Π1
2-REF)Σ1

1
-DC is

provable in KPdm0.

Next, we determine the upper bound of KPdm0. The standard way to handle Π2

reflection on admissibles, as demonstrated e.g. by Jäger and Strahm in [27], is
to reduce the reflection axiom to axioms asserting the existence of n-inaccessibles,
admissible sets, that contain with a set x also an n−1-inaccessible above x. We

III.2 Admissible sets and linearity 133

aim to adapt this strategy to reduce Π2 reflection on models of KPd0 + (IN) to n-
inaccessible models of KPd0 +(IN). Then, in a next step, we look for a theory where
we can build such n-inaccessible models of KPd0 + (IN). To do so, we need to figure
out how to handle the base case, the construction of models of (∆0-dc).

In second order arithmetic, we have seen that a pseudo jumphierarchy may give rise
to a model of Σ1

1-DC. On the other hand, a similar construction in admissible set
theory, where we replaced the jump-hierarchy by the constructible hierarchy, only
lead to an admissible set. The extra ingredient available in second order arithmetic
is that every set in some level of a jump-hierarchy can be addressed by an index,
and picking the set with the least index helps to handle dependent choice.

We adapt this idea to the present context and resort to enumerable sets. Thereby, we
say that f enumerates x, if f is a function with Rng(f) = x and Dom(f) ⊆ N. The
set x is then called enumerable. Further, we call a set a locally countable, denoted
by `c(a), if each set x ∈ a is enumerable by an function f ∈ a.

This leads to the following notion of n-inaccessibility. For each n ∈ N, we define
a ∆0 formula Ian(a) that declares a as a locally countable n-inaccessible model of
KPd0 + (IN):

(i) Ia0(u) := Addc(u) ∧ `c(u),

(ii) Ian+1(u) := Addc(u) ∧ `c(u) ∧ (∀x ∈ u)(∃y ∈ u)(x ∈ y ∧ Ian(y)).

This set-up allows us even to reduce the following stronger form of Π2 reflection on
locally countable models of KPd0 + (IN). The extension of KPu0 by the rule below
is called KPdm`c0.
For all finite sets of L∗ formulas and each ∆0 formula A(u, v, ~w),

Γ, ∀x∃yA(x, y, ~z)

Γ, ∃a[~z ∈ a ∧ Addc(a) ∧ `c(a) ∧ (∀x ∈ a)(∃y ∈ a)A(x, y, ~z)]
.

Note, that this rule implies in particular that all sets are enumerable.

To obtain an upper bound for the theory KPdm`c0, we first show, making once again
use of pseudo-hierarchies and exploiting the axiom (lin), that for each n ∈ N,

KPm0 + ¬TI�(U, |KPm0|) ` ∃a Ian(a).

Next, we show that if A is a Σ sentence of L∗ and KPdm`c0 n
A, then already

KPu0 ` ¬Ian(a), A. Combining the two steps yields

|KPdm0| ≤ |KPdm`c0| ≤ |KPm0 + ¬TI�(U, |KPm0|)| = |KPm0|.

A level (F)α of the jump-hierarchy is basically an enumeration of that level via
e 7→ (F)α,e. Towards the construction of locally countable models of KPd0 + (IN)

134 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

we proceed accordingly and build a hierarchy h such that for each α in the field
of the underlying ordering ≺ on N, h(α) is a function that enumerates – more or
less – the αth level of the constructible hierarchy. At limit levels, we also add the
enumerating functions as sets, i.e. if f := h(λ), then there is for each α ≺ λ an
e ∈ N with f(e) = h(α). We build this hierarchy only along orderings on the
natural numbers to ensures that we do not run out of codes for our sets. Further,
we choose the enumeration functions h(α) so that each index of a set x that enters
the hierarchy first at level α is of the form 〈α, e〉, where e ∈ N is a sequence number
with lh(e) = 2 or lh(e) = 3. In the case that lh(e) = 3, e is of the form 〈i, m1, m2〉,
indicating that 〈α, e〉 is a code of the set fAi(y, z), provided that m1 and m2 are
codes of y and z, respectively. If lh(e) = 2, then 〈α, e〉 is a code of a set added for
another reason: So 〈α+1, 〈2, 0〉〉 is a code of the set enumerated by h(α), namely
Rng(h(α)), and if α is below the limit λ, then 〈λ, 〈3, α〉〉 is a code of the function
h(α). The first level h(0≺) is such that 〈0≺, 〈0, n〉〉 is a code of the natural number
n (cf. the definition of fN in the definition below) and 〈0≺, 〈1, n〉〉 is a code of g(n),
where g is a given enumeration. Moreover, we take care that if for all β ≺ α, h(β)
enumerates a transitive set, then also h(α) enumerates a transitive set.

That a function h is such a hierarchy above an enumeration g along an ordering ≺
on N is described by the formula hierLF(h, g,≺). Thereby, we let LF(u1, u2, v, w)
be a Σ formula of L∗, such that hierLF(h, g,≺) implies for all α and limits λ with
α+1, λ ∈ Field(≺),

(i) h(0≺) = {(〈0≺, 〈1, n〉〉, g(n))) : n ∈ Dom(g)} ∪ fN,

(ii) h(α+1) = fD′

(h(α) ∪ {(〈α+≺1, 〈2, 0〉〉, Rng(h(α)))}, α),

(iii) h(λ) =
⋃

α≺λ h(α) ∪
⋃

α≺λ{(〈λ, 〈3, α〉〉, h(α))},

where fN := {(〈0≺, 〈0, n〉〉, n) : n ∈ N} is an enumeration of N and D′(u, v, w) is a Σ
formula of L∗ such that Op2

D′ and

fD′

(u, α) = u ∪
⋃

i∈I

{(〈α+≺1, 〈i, v0, w0〉〉, f
Ai(v1, w1)) : (v0, v1), (w0, w1) ∈ u}.

I is again the set {1, . . . , 16}, and for each i ∈ I, the formula Ai(u, v, w) is as chosen
in subsection III.2.1. If the underlying ordering ≺ is a well-ordering, then there is
exactly one h with hierLF(h, g,≺). As with the jump-hierarchy and the constructible
hierarchy, we then denote this hierarchy by LF g

≺ and if α is an element of Field(≺),
then we write LF g

α for its αth level, i.e. z = LFg
α means that hierLF(h, g,≺) and

z = h(α).

The next lemma collects the relevant properties of this hierarchy.

III.2 Admissible sets and linearity 135

Lemma III.2.46 The following is provable in KPu0: Let ≺ be an ordering on the
natural numbers. Suppose, that the function f enumerates a transitive set x, and

(i) hierLF(g, f,≺) and Wog+

(≺),

(ii) h is the function with Dom(h) = Field(≺) and h(α) = Rng(g(α)),

Then we have for all α ∈ Field(≺) that

(iv) h(α) is transitive, g(α) enumerates h(α) and h(α+1) = fD(h(α)),

(v) if λ ∈ Field(≺) is a limit with α ≺ λ, then g(α) ∈ h(λ),

(vi) z ∈ Dom(g(α)) −
⋃

β≺α Dom(g(β)) implies z = 〈α, e〉 with e ∈ N.

Proof: We show the claims simultaneously by transfinite induction along ≺. Clearly,
g(0≺) is a function that enumerates x∪N which is a transitive set and the elements
of Dom(g(0≺)) have the requested form.

Suppose that we have shown the claims for α. Since 〈α+1, 〈2, 0〉〉 is not in the domain
of g(α), the addition of the pair {(〈α+1, 〈2, 0〉〉, Rng(g(α)))} does not destroy the
functional character of g. Applying the definition of fD′

, we obtain

Rng(g(α+1)) = Rng(g(α)) ∪
⋃

i∈I

{fAi(v, w) : v, w ∈ Rng(g(α))}.

The I.H. yields that Rng(g(α)) = h(α) is transitive, hence
⋃

h(α) ⊆ h(α), thus the
definition of fD implies h(α+1) = fD(h(α)), which in turn yields by lemma III.2.1
that h(α+1) is transitive. The other properties easily follow.

For the limit case, we have to show that the addition of the enumerations for the
levels α ≺ λ does not affect the transitivity of h(λ). But if y ∈ g(α) ∈ h(λ), then y
is of the form (e, z) with e ∈ N and z ∈ h(α). By the definition of the hierarchy g,
this yields (e, z) ∈ h(α+2) ⊆ h(λ). 2

The following lemma exploits the linearity of the class Ad to obtain in a uniform
way a non-empty, upward closed set k ⊆ Field(�) without a �-least element. Again,
� is the underlying ordering of our notation system.

Lemma III.2.47 The following is provable in KPm0 + ¬TI�(U, |KPm0|): Suppose
that Ad(a) and g ∈ a enumerates the transitive set x. Then we have

(i) {α ∈ Field(�) : Woa(��α)} /∈ a,

(ii) {α ∈ Field(�) : Woa+

(��α)} ({α ∈ Field(�) : (∃h ∈ a)hierLF(h, g, α)},

136 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

(iii) {α ∈ Field(�) : (∃h ∈ a)hierLF(h, g, α) ∧ ¬Woa+

(��α)} is non-empty and has
no �-least element.

Proof: (i) is a consequence of lemma III.1.11. The inclusion in (ii) follows from
lemma III.1.2, and that the inclusion is proper follows from ∆ separation in a+ and
the fact that {α ∈ Field(�) : Woa+

(��α)} is not a set in a+. (iii) is due to (ii) and

the observation that {α ∈ Field(�) : ¬Woa+

(��α)} cannot have a least element. 2

Another auxiliary observation: (Π2-Ref)Ad implies also the following form of Π2

reflection.

Lemma III.2.48 The following is provable in KPm0: If A(u, v, ~w) is a Σ formula
of L∗

Ad, then KPm0 proves:

∀x∃yA(x, y, ~z) → ∃a[Ad(a) ∧ ~z ∈ a ∧ (∀x ∈ a)(∃y ∈ a)Aa(x, y, ~z)].

Proof: Σ reflection yields that ∀x∃yA(x, y, z) ↔ ∀x∃y[y = (y0, y1) ∧ Ay1(x, y0, z)].
Applying (Π2-Ref)Ad and persistence yields the claim. 2

Now the stage is set to adapt the construction of models of Σ1
1-DC from Theorem

II.2.11 to the present context. The lemma below tells us, under which circumstances
a pseudo-hierarchy gives rise to a model of KPd0 + (IN). In the lemma below, h is
a pseudo-hierarchy and g is the corresponding hierarchy of functions where g(α)
enumerates the set h(α).

Lemma III.2.49 The following is provable in KPu0: Suppose that k ⊆ Field(�)
is non-empty, upward closed and has no �-least element. Further, a is an admis-
sible that contains the functions g, h with Dom(g) = Dom(h) ⊇ Field(�) − k and
Woa(Dom(g)). Moreover, for all α, β ∈ Dom(g):

(i) g(α) enumerates h(α) and α � β → g(α) ⊆ g(β) ∧ fD(h(α)) ⊆ h(β),

(ii) z ∈ Dom(g(α)) −
⋃

β≺α Dom(g(β)) implies z = 〈α, e〉 with e ∈ N.

Then b :=
⋃

α�k h(α) is a model of KPd0 + (IN).

Proof: The set {α : α � k} has no top element. Together with the assertion that
α � β implies fD(h(α)) ⊆ h(β), this yields that b satisfies (∆0-Sep′). It remains to
show that b is a model of (∆0-dc). The assertion that g(α) enumerates h(α) allows
us to adapt the proof of theorem II.2.11.
Let A(u, v) be a ∆0 formula of L∗ and assume that

(1) (∀x ∈ b)(∃y ∈ b)A(x, y).

We let I :=
⋃

α∈Dom(g) Dom(g(α)). Observe that i ∈ I is of the form 〈γ, e〉, where

e ∈ N and γ ∈ Field(�), and that 〈γ, e〉 ∈ Dom(g(α)) implies γ � α. Moreover,

III.2 Admissible sets and linearity 137

I ∈ a. Now we order I by <I, letting 〈γ, e〉 <I 〈δ, e
′〉 if γ � δ, or γ = δ and e <N e′.

Further, let I′ :=
⋃

α�k Dom(g(α)). Note that I′ ⊆ I, but I ′ may not be in a.

Assumption (i) ensures that g∗ :=
⋃

Rng(g) ∈ a is a function with domain I so that
we have g∗(〈γ, e〉) = g(γ)(〈γ, e〉) for all 〈γ, e〉 ∈ I. Now (1) becomes equivalent to
the formula (∀y ∈ I′)(∃z ∈ I′)A(g∗(y), g∗(z)). Moreover, for each y ∈ I′, the set
{z ∈ I : A(g∗(y), g∗(z))} has a <I-least element z0, which is already in I′. Hence, we
conclude that (∀y ∈ I′)(∃!z ∈ I)A′(g∗, y, z), where A′(g∗, y, z) expresses that z is the
least index w.r.t. our index ordering <I, such that A(g∗(y), g∗(z)) holds. Next, we
fix an index z with g∗(z) ∈ b and show that there exists a function f ∈ b, such that
f(0) = g∗(z) and (∀n ∈ N)A(f(n), f(n+1)). First, we look for initial segments of
choice sequences σ ∈ seq, such that ChSeqA′(g∗, σ, z, n), where ChSeqA′(g∗, σ, z, n) is
the formula

n ∈ N ∧ lh(σ) = n+1 ∧ (σ)0 = z ∧ (∀m <N n)A′(g∗, (σ)m, (σ)m+1).

Then, assumption (1) allow us to prove by set induction along N that

(∀n ∈ N)[(∃!σ ∈ seq)ChSeqA′(g∗, σ, z, n)].

So the set

{α ∈ Field(�) : (∀n ∈ N)[(∃σ ∈ seq)ChSeqA′(g∗, σ, z, n)]}

has a least element α0 � k. If we set g∗
α0

:=
⋃

β�α0
g(β), then the function

f := {(n, x) : (∃σ ∈ seq)[ChSeqA′(g∗
α0

, σ, z, n) ∧ g∗
α0

((σ)n) = x]}

is a set in b and serves as a witness for our sought for choice sequence. 2

The above lemma enables us to construct locally countable n-inaccessible models
of KPd0 + (IN). We even prove a stronger statement, namely that for each n ∈ N,
there is a Σ formula An(u, v) of L∗, such that Op1

A, and whenever f enumerates a
transitive set x, then Ian(Rng(fAn(f))).

Lemma III.2.50 For each n ∈ N, there is a Σ formula An(u, v) of L∗
Ad, such that

KPm0 + ¬TI�(U, |KPm0|) proves:

(i) ∀x∃!yAn(x, y),

(ii) if x is transitive and f enumerates x, then An(f, g) implies f ⊆ g, Ian(Rng(g))
and x ∈ Rng(g).

Proof: We proof the claim by (meta-) induction on n making use of a uniform
pseudo-hierarchy argument.

138 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Let us first consider the base case n = 0. We aim to find a Σ formula A0(u, v) such
that whenever the function f enumerates a transitive set x, then A0(f, g) implies
that g is a function whose range contains x and is a model of KPd0 + (IN). Thereto,
we let a := f+ and set

{α ∈ Field(�) : (∃h ∈ a)hierLF(h, f, α) ∧ ¬Woa+

(��α)}.

Lemma III.2.47 tells us that k has no �-least element. Then, we set

g :=
⋃

α�k

{h ∈ a : hierLF(h, f, α)}.

The lemma previous lemma together with III.2.46 implies that Ia0(Rng(g)). The
uniformity of the construction leads to a Σ formula A0(u, v) as desired.

The induction step is performed similarly. Assume that f enumerates the transi-
tive set x. Then, by (Π2-Ref)Ad and lemma III.1.1, we know that there is a least
admissible a ∈ Ad such that f ∈ a and (∀y ∈ a)(∃!z ∈ a)Aa

n(y, z). Now we choose
a Σ formula Bn(u, v, w) such that Op1

Bn
(f) and HierBn(h, f, �) implies h(0) = f ,

h(α+1) = fAn(h(α)) and h(λ) =
⋃

α�λ h(α), for limits λ ∈ Field(�). This time, we
set

k := {α ∈ Field(�) : ∃h hierBn(h, f, α) ∧ ¬Woa+

(��α)}

and conclude again by the previous lemma that

g := {z : (∃α � k)(∃h ∈ a)[hierBn(h, f, α) ∧ z ∈ h]}

enumerates an n+1-inaccessible model of KPd0 + (IN) above x. Again, the unifor-
mity of the above construction yields to a Σ formula An+1(u, v) with the required
properties. 2

So for each n ∈ N, KPm0 +¬TI�(U, |KPm0|) proves the existence sets a with Ian(a).
This concludes the first step of our reduction. For the next step, we replace the
axiom (∆0-Col) by a rule, as we did it for lemma III.2.40. Due to partial cut-
elimination we now may assume that in a proof in the theory KPdm`c0 the cut rule
applies only to cut-formulas which are Σ or Π. The next theorem corresponds to
Theorem 9 in [27].

Theorem III.2.51 Let ∗ be the set of all Π and Σ formulas of L∗ and assume that
Γ(~u) is a finite set of Σ formulas of L∗ with exactly the displayed variables free.
Then

KPdm`c0 n

∗
Γ(~u) =⇒ KPu0 ` ~u /∈ a,¬Ian(a), Γa(~u).

III.2 Admissible sets and linearity 139

Proof: The claim is shown by (meta-) induction on n. The only interesting cases
are cut and reflection.

If Γ(~u) is the conclusion of a cut, then there are n0, n1 < n and a ∆0 formula B(v, ~u)
such that

KPdm`c0 n0

∗
Γ(~u), ∃xB(x, ~u) and KPdm`c0 n1

∗
Γ(~u),¬B(v, ~u),

for v /∈ FV (Γ). The I.H. yields

(i) KPu0 ` ~u /∈ a,¬Ian0
(a), Γa(~u), (∃x ∈ a)B(x, ~u),

(ii) KPu0 ` ~u /∈ a,¬Ian1
(a), Γa(~u), v /∈ a,¬B(v, ~u).

Since ¬Ian(a), Iam(a) is provable in KPu0 for each m <N n, the claim follows.

If Γ(~u) is the conclusion of reflection, then there is an n0 < n and a ∆0 formula
B(v, w, ~u) such that

KPdm`c0 n0

∗
Γ(~u), ∃yB(v, y, ~u),

for v /∈ FV (Γ). Applying the I.H. and quantifying v yields

(1) KPu0 ` ~u /∈ a,¬Ian0
(a), Γa(~u), (∀x ∈ a)(∃y ∈ a)B(x, y, ~u).

Due to the definition of the formula Ian(u), we have that

(2) KPu0 ` ~u /∈ b,¬Ian(b), (∃a ∈ b)[Ian0
(a) ∧ ~u ∈ a].

Combining (1) and (2) and applying persistence yields then that KPu0 derives

~u /∈ b,¬Ian(b), Γb(~u), (∃a ∈ b)[Addc(a) ∧ `c(a) ∧ ~u ∈ a ∧ (∀x ∈ a)(∃y ∈ a)B(x, y, ~u)].

2

So if A is a Σ sentence of L∗ that is provable in KPdm`c0, then according to the
above theorem, there is an n ∈ N such that KPu0 ` ¬Ian(a), Aa, therefore also
KPu0 ` ¬Ian(a), A. Since KPm0 + ¬TI�(U, |KPm0|) proves the existence of an n-
inaccessible model of KPd0 + (IN), we conclude that KPm0 + ¬TI�(U, |KPm0|) ` A.
This completes our analysis of the theory KPdm`c0.

Theorem III.2.52

|KPdm`c0| = |KPdm0| = |KPm0|.

140 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Remark III.2.53 The above considerations also yield the ordinal of the theory
KPd0 + (IN). Clearly, KPd0 + (IN) contains Σ1

1-DC. For an upper bound, we in-
terpret KPd0 + (IN) into the theory KPu0 + (Ad1) + (psh), that extends KPu0 + (psh)
by an axiom asserting the existence of one admissible set. It is formulated in the
language L∗ and extends KPu0 by the axiom ∃xPAd(x). It follows from results in
[20] that |KPu0 + (Ad1)| = ϕε00 and that it is a normal theory. Using the methods
above, KPu0 + (Ad1) + (psh) proves the existence of set a with Ia0(a). Moreover, if ∗
is the set of all Π and Σ formulas of L∗, then we have for each finite set Γ(~u) of Σ
formulas of L∗ with exactly the displayed variables free,

KPd0 + (IN)
∗

Γ(~u) =⇒ KPu0 ` ¬Ia0(a), ~u /∈ a, Γa(~u).

Thus, it follows that |KPd0 + (IN)| = ϕε00. Similarly, we can interpret KPd0 into
the theory T†, where T is KPu0 + (Σ-IN). We remark that |KPu0 + (Σ-IN)| = ϕω0.
So T† proves that

C := {α � ωω : ∃g hierLF(g, ∅, ��α)}

is a proper subclass of C. Adapting the proof of lemma III.2.49 allows us to show
that the class

M := {x : (∃α ∈ C)∃g[hierLF(g, ∅, ��α) ∧ x ∈ Rng(g(α))]}

is model of KPd0. (Σ-IN) is required to show (∀n ∈ N)[(∃!f ∈ M)ChSeqA′(f, z, n)].

III.3 Pseudo-hierarchies in explicit mathematics

In section III.3, we present a uniform pseudo-hierarchy principle for a suitable sub-
system of explicit mathematics. Then, we apply it to derive a uniform fixed point
principle. Finally, we propose a form of (transfinite) dependent choice for explicit
mathematics and verify that it leads to theories of the expected strength.

III.3.1 Hierarchies and pseudo-hierarchies

In contrast to second order arithmetic or admissible set theory, a hierarchy is no
longer represented by a function, but by an individual term, that maps the elements
of the field of an ordering to names of types. Also, the canonic notion of an operator
specifying the transition from one level to the next, is now an individual term that
maps names to names. The concept of a hierarchy is adjusted accordingly: If b is the
name of an ordering and (f : < → <), then we say that the pair (h, b) is a hierarchy
for f along the ordering b, denoted by Hierf(h, b), if the following conditions are
met: There exists a type ≺ such that

III.3 Pseudo-hierarchies in explicit mathematics 141

(i) <(≺, b) ∧ Lin0(≺) ∧ (h : Field(≺) → <),

(ii) (∀α ∈ Field(≺))[h(α) = f(j({β : β ≺ α}, h))].

To enhance the readability, we only mentioned the type {β : β ≺ α} in (ii), instead of
its name int(field(b), inv(b, λy.(y, α))), where field is a closed term of L that assigns
to the name of an ordering a name of its field. Such a term exists by lemma
I.2.7. Again, (h, b) is a proper hierarchy if b names a well-ordering and a pseudo-
hierarchy, denoted by PSHf(h, b), if Hierf (h, b) and ¬Wo(b), where Wo(b) is short for
∃X(<(X, b) ∧ Wo(X)). Note, that f may contain free variables. Observe also, that
Hierf(h, b) is a Σ+ formula of L. If b is the name of an ordering, we write x ≺b y for
(x, y) ∈̇ b and 0b for the least element of the field of b, provided it exists. As before,
we use α, β, γ for individual variables that are meant to range over the field of some
ordering.

A non-uniform version of a pseudo-hierarchy principle might take the form

∀b[Wo(b) ∧ (f : < → <) → ∃g Hierf(g, b)] → ∃h, c PSHf(h, c).

However, in explicit mathematics, we have an additional difficulty to overcome when
attempting to show that adding a pseudo-hierarchy principle to a theory T with
|T| < Φ0 does not result in a theory with a bigger proof-theoretic ordinal. The
assumption that for a certain operation (f : < → <) only proper hierarchies exist,

(∗) Wo(b) ↔ ∃h Hierf (h, b),

no longer permits us to derive (Π1
1-CA), due to the lack of an appropriate form of

comprehension or separation involving Σ+ formulas, unless we have a strong enough
reflection principle at hand: Suppose that A(U, u) is a Π1

1 formula of L2 and X an
arbitrary set. If we can find a universe a (a type that contains only names and is
closed under the type generators of EETJ0) which contains a name x of the type
X and the name b, and satisfies (f : a → a), then (Π1

1-CA) follows from (∗): Let
t be a closed term such that for all n ∈ N, t(x, n) is a name of the type KB(T A

X,n).
Assuming the above equivalence, we conclude that

{n : A(X, n)} = {n ∈ N : Wo(t(x, n))} = {n ∈ N : ∃h Hierf(h, t(x, n))}.

Due to the choice of a, (h : field(t(x, n)) → <) is equivalent to (h : field(t(x, n)) → a),
thus the collection on the right is a type.
Therefore, we analyze the pseudo-hierarchy principle only in connection with the
theory EMA0, which provides an suitable reflection principle and is introduced in
the next subsection.

142 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

III.3.2 The theory EMA0

The theory EMA0 extends the theory EETJ0 by a reflection principle that corresponds
to the Mahlo axiom (Π2-Ref)Ad of admissible set theory. EMA0 is basically the theory
EMA, introduced in Jäger and Strahm [27], but we omit some axioms for the type
generators and set aside an assertion that claims linearity and connectivity for so-
called normal universes. The proof-theoretic analysis of EMA is carried out in detail
in [27] and Strahm [43], which entails that |EMA| = ϕω00. We will argue below that
EMA0 has still the same proof-theoretic ordinal as EMA.

To state the reflection principle of EMA0, we have to introduce the notion of uni-
verses, types that contain only names and are closed under the type generators of
EETJ0. The precise closure condition is expressed by the formula C(U, u) of L, which
is the disjunction of the L formulas given below:

1. u = nat ∨ u = csU ∨ u = csV ∨ u = id,

2. ∃x(u = co(x) ∧ x ∈ U),

3. ∃x, y(u = int(x, y) ∧ x ∈ U ∧ y ∈ U),

4. ∃x(u = dom(x) ∧ x ∈ U),

5. ∃x, f(u = inv(x, f) ∧ x ∈ U),

6. ∃x, f [u = j(x, f) ∧ x ∈ U ∧ (∀y ∈̇ x)(fy ∈ U)].

Thus, the formula ∀x(C(X, x) → x ∈ X) states that X is a type which is closed
under the type generators of EETJ0. If, in addition, all elements of X are names,
we call X a universe, in symbols, U(X). Moreover, we write U̇(x) to express that
the individual x is the name of a universe.

U(U) := ∀x(C(U, x) → x ∈ U) ∧ (∀x ∈ U)<(x),

U̇(u) := (∃X)(<(X, u) ∧ U(X)).

The theory EMA0 is now formulated in the language Lm that extends L by the
constant m and extends EETJ0 by the so-called Mahlo axiom

<(x) ∧ (f : < → <) →

U̇(m(x, f)) ∧ x ∈̇ m(x, f) ∧ (f : m(x, f) → m(x, f)).(f -Ref)U̇

For instance, if a is a name, then m(a, λx.x) is the name of a universe that contains
a. The Mahlo axiom implies that we can iterate operations on names along arbitrary
well-orderings. Moreover, we can do this in a uniform way:

III.3 Pseudo-hierarchies in explicit mathematics 143

Lemma III.3.1 There exists a closed term hier of L such that the following is
provable in EMA0:

(f : < → <) ∧ <(b) ∧ a = m(b, f) ∧ a′ = m(a, λx.x) ∧ Woa′

(b) → Hierf(hier(f, b), b).

Proof: Using λ-abstraction and the recursion theorem, we find a closed term hier
such that EMA0 proves:

(i) ∀f, b(hier(f, b)↓),

(ii) ∀f, b, c[hier(f, b)(c) ' f(j(prec bc, hier(f, b)))],

where prec is a closed term so that prec bc names the type {y : (y, c) ∈̇ b}, given b is a
name. For the construction of the term hier, we set t := λxyz.(y)0(j(prec (y)1z, xy)).
By lemma I.2.10, we know that for hier := rec t,

hier(f, b) ' (t hier)(f, b) ' λz.f(j(prec bz, hier(f, b))).

Due to lemma I.2.9, λx.s is defined for all terms s, thus also hier(f, b)↓ for all terms
f and names b.

It remains to show that (hier(f, b) : field(b) → a). Since

{x ∈̇ field(b) : hier(f, b)(x) ∈̇ a} ∈̇ a′,

this follows by transfinite induction along b. 2

III.3.3 A pseudo-hierarchy principle for EMA0

In this subsection, we show that the theory EMA0 can be conservatively extended by
a uniform pseudo-hierarchy principle (u-psh). The proof of this result relies heavily
on the Mahlo axiom.

Given an operation (f : < → <) and a name b of an ordering ≺ that is not a well-
ordering but looks like a wellordering in a universe m(a, λx.x) above the universe
a := m(b, f), lemma III.3.1 yields that h := hier(f, b) is a pseudo-hierarchy along
the ordering ≺, i.e. PSHf(h, b). However, when performing an argument involving a
pseudo-hierarchy, also a non-empty, upward closed K ⊆ Field(≺) without a ≺-least
element is required. Therefore, we regard the name k of such a set K as an integral
part of a uniform pseudo-hierarchy. Since we can iterate any operation on names
along an arbitrary well-ordering, we suggest the following uniform pseudo-hierarchy
principle: For the closed term psh constructed in the next lemma,

(u-psh) (f : < → <) → ∃h, b, k[

psh f = (h, b, k) ∧ PSHf(h, b) ∧ Wom(m(b,f),λx.x)(b)∧

k ⊆̇ field(b) is non-empty, upward closed and has no b-least element].

144 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Again, the principle (u-psh) provable in the theory EMA†
0 that extends EMA0 by the

axiom TI∗
�
(U, |EMA0|), where ·∗ is the standard translation from L2 to L. Further,

we will choose the term psh so that it yields a pseudo-hierarchy whose underlying
ordering is an initial segment of the underlying ordering � of our notation system.
Strictly speaking, the language L is not equipped with a relation symbol for the
primitive recursive relation �. However, corollary I.2.12 provides a closed term
f
�

such that ∀x, y(x � y ↔ f
�
xy = 0). In the sequel, we regard � as the type

{(x, y) : f
�
xy = 0}.

The main ingredient beside the assertion TI∗
�
(U, |EMA0|) used to prove the pseudo-

hierarchy principle (u-psh) is lemma III.1.11, which implies that for universes a and
b with a ∈̇ b, there is an α ∈ Field(�) such that ��α looks like a well-ordering in a
but not in b.

Lemma III.3.2 (Pseudo-hierarchies principle) There is a closed term psh of

Lm, such that EMA†
0 proves (u-psh). Moreover, if (f : < → <) and psh f = (h, b, k)

then b is an initial segment of �.

Proof: We assume that (f : < → <) and let a := m(nat, f), a′ := m(a, λx.x)
and a′′ := m(a′, λx.x). By lemma III.3.1, it suffices to select in a uniform way an
α0 ∈ Field(�) such that Woa′

(��α0) and ¬Woa′′

(��α0). Since a universe satisfies
the standard translation of each axiom and rule of ACA, we conclude by lemma
III.1.11 that the type {α ∈ Field(�) : Woa′

(��α)} has no name in a′, which in turn
yields that

{α ∈ Field(�) : Woa′′

(��α)} ({α ∈ Field(�) : Woa′

(��α)}.

Therefore, the type {α ∈ Field(�) : Woa′

(��α) ∧ ¬Woa′′

(��α)} is not empty and
has a <N-least element α0. It is now straight forward to construct a term psh such
that psh f = (h, b, k), where b is a name of the type ��α0, h = hier(f, b) and k is a

name of the type K := {α ∈ Field(�) : ¬Woa′′

(��α)}. Again, if K had a �-least
element β0, then {α ∈ Field(�) : Woa′′

(��α)} = {α : α � β0} were a type in a′′,
which is impossible by the argument given above. 2

As a first application of the pseudo-hierarchy principle, we prove that there is a
closed term fix that assigns to a monotone operation the name of one of its fixed
points.

Lemma III.3.3 (Uniform fixed points) There is a closed term fix of Lm such
that the following is provable in EMA0 + (u-psh):

(f : < → <) ∧ ∀x, y(x ⊆̇ y → fx ⊆̇ fy) → <(fixf) ∧ fixf =̇ f(fixf).

III.3 Pseudo-hierarchies in explicit mathematics 145

Proof: Suppose that (f : < → <) is a monotone operation. To obtain a hierarchy,
where the αth level is the union, rather than the disjoint union, of all the stages
below α, we consider the operation g := λx.f(union x), where union is a closed term
of L such that for each name a, we have

union a =̇ {x : ∃y[(x, y) ∈̇ a]}.

Recall, that then forming a hierarchy, f is applied to a name of the form j(t, f). The
corresponding type consists of pairs (x, y) where x ∈̇ ft and y ∈̇ t. Therefore, the
type with name union j(t, f) is indeed the union of the extensions of the types fy for
y ∈̇ t. With (f : < → <), we have that (g : < → <), and if Wo(b), then hier(g, b) is
monotone, i.e. α ≺b β implies hier(g, b)(α) ⊆̇ hier(g, b)(β).

Now let a := m(nat, f), a′ := m(a, λx.x) and a′′ := m(a′, λx.x). The pseudo-
hierarchy principle provides a name b with Woa′

(b) and ¬Woa′′

(b), a term h such
that Hierg(h, b) as well as a type with name k without a ≺b-least element. Moreover,
(Hierg(h, b) : field(b) → a). As in the proof of theorem II.2.22, one shows that if K
is the type with name k, then X := {x : (∃α ≺b K)(x ∈̇ h(α))} is a fixed point of
the operator f . The uniformity of the fixed point construction allows to extract a
term fix such that fixf is a name of the fixed point X. 2

It remains the question whether EMA0 is a normal theory. So far, we only know
that ϕω00 is an upper bound. Maybe, the omission of the axioms for uniqueness
of generators and the linearity and connectivity of normal universes weakens the
theory EMA. However, this is not the case. The theory EMA0 proves the ordinal
ϕω00. Since uniform pseudo-hierarchy arguments cannot be applied in EMA0, we
make use of a case distinction. Thereto, let C be the following sentence of Lm:

∀a, b[U̇(a) ∧ U̇(b) ∧ a ∈̇ b →

{α ∈ Field(�) : Wob(��α)} ({α ∈ Field(�) : Woa(��α)}].

We argue that EMA0 proves for each n ∈ N,

(i) C → TI∗
�
(U, ϕn00),

(ii) ¬C → TI∗
�
(U, ϕn00).

Case (ii) is taken care of by lemma III.1.11: If there are universes a and b with a ∈̇ b,
so that

S := {α ∈ Field(�) : Wob(��α)} = {α ∈ Field(�) : Woa(��α)}

then the type S has a name in b. Following the proof of lemma III.1.11 yields
TI∗

�
(U, ϕω00). To show case (i), we first argue that |EMA0 + C| = |EMA0 + (u-psh)|:

146 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

A look at the proof of lemma III.3.2 reveals that for each instance A of (u-psh),
EMA0 + C ` A. Next, we embed for each n ∈ N, the theory In-RFN0 into EMA0 +
(u-psh). In [38], it is shown that |In-RFN0| = ϕn00, which settles case (i).

To introduce the theories In-RFN0, we define for each n ∈ N an arithmetical formula
In(U):

I0(U) := (AxΣ1
1
-AC)U ,

In+1(U) := (AxΣ1
1
-DC)U ∧ (∀X ∈̇ U)(∃Y ∈̇ U)(X ∈̇ Y ∧ In(Y).

We call a set Y satisfying In(Y) n-inaccessible. The theory In-RFN0 formalizes the
existence of n-inaccessible sets Y above each set X. It extends ACA0 by the axiom

(In-RFN) ∀X∃Y [X ∈̇ Y ∧ In(Y)].

Our strategy to perform the aforementioned embedding is to define for each n ∈ N

a closed term in of Lm, that yields a name of an n-inaccessible Y above X, provided
that X ⊆ N.

Lemma III.3.4 For each n ∈ N, there exists a closed term in of Lm, such that
EMA0 + (u-psh) proves:

<(X, x) ∧ X ⊆ N → (∃Y ⊆ N)[<(Y, inx) ∧ (X ∈̇ Y)? ∧ I?n(Y)],

where ·? is our standard pretranslation from L2 to L of subsection I.2.12.

Proof: The lemma is proven by (meta-) induction on n. We start with the case
n = 0. Lemma I.2.7 provides a closed term t such that for <(X, x), <(Y, y) and
X, Y ⊆ N,

t(y, x) =̇ {z : J ?(Y, X, z)},

where J ?(U, V, u) is pretranslation of Turing’s Jump formula from subsection II.1.5
to the language L. To build the jump-hierarchy, we have to consider the different
forming of disjoint unions in second order arithmetic and explicit mathematics:
Thereto, we let s be a closed term of L, such that for <(V, v) and <(W, w),

sw =̇ {u : ∃x, y(u = 〈x, y〉 ∧ (x, y) ∈ W)}.

In the above formula 〈u, v〉 = w is to read as f 〈〉uv = w, where f〈〉 is a closed
term that represents the primitive recursive function 〈·, ·〉. So sw is a name of
a type that codes the pairs in W using the function 〈·, ·〉 instead of (·, ·). Thus,
if <(X, x), X ⊆ N, <(b,≺), Wo(≺) and f := λz.t(sz, x), then hier(f, b)(0b) is a
name of f(j(∅, hier(f, b))) = t(∅, x). If 0b 6= α ∈ Field(≺), then hier(f, b)(α) equals

III.3 Pseudo-hierarchies in explicit mathematics 147

f(j({β : β ≺ α}, hier(f, b))), which in turn is t(z, x), where z is a name of the type
{〈y, γ〉 : γ ≺ α ∧ y ∈̇ hier(f, b)(γ)}. Hence, if for each β ≺ α, hier(f, b)(β) is the
name of the type J X

β , then hier(f, b)(α) is the name of the type J X
α .

If x is a name, then (f : < → <) and psh f equals a term of the form (g, c, k) where
the ordering with name c is an initial segment of � and k names a set K without a
�-least element. As in the proof of theorem II.2.11, one shows that

M0 := {〈z, 〈γ, e〉〉 : γ � K ∧ 〈z, 〈γ, e〉〉 ∈̇ g(γ+1)}

is a model of Σ1
1-AC above X. The uniformity of the construction yields a term

(i0 : < → <) and if x is a name of the type X ⊆ N, then i0x is a name of the model
M0 of Σ1

1-AC above X.

Suppose now, that we already have a term (in : < → <) that maps a name x to
a name inx of an n-inaccessible above the type named x. To build a hierarchy of
n-inaccessibles above a type X, we let r be a closed term of L, such that for <(V, v)
and <(W, w),

r(v, w) =̇ {u : (u ∈ V ∧ W = ∅) ∨ (∃x, y(u = 〈x, y〉 ∧ (x, y) ∈ W) ∧ W 6= ∅)}.

So r(v, w) is a name of V if w names the empty type, and a name of a type that codes
the pairs in W using the function 〈·, ·〉 instead of (·, ·), otherwise. Thus, if <(X, x),
X ⊆ N, <(b,≺), Wo(≺) and h := λz.in(r(x, z)), then hier(h, b)(0b) is a name of
h(j(∅, hier(h, b))) =̇ h(∅), which is the name of an n-inaccessibles above X. And if
0b 6= α ∈ Field(≺), then hier(h, b)(α) equals h(j({β : β ≺ α}, hier(h, b))), which in
turn is in(z), where z is a name of the type {〈x, γ〉 : γ ≺ α ∧ x ∈̇ hier(h, b)(γ)}.
In particular, hier(h, b)(α) is a name of an n-inaccessibles above the type named
hier(f, b)(β) for each β ≺ α. Again, if x is a name, then (h : < → <) and psh h
equals a term of the form (g, c, k) where the ordering with name c is an initial
segment of � and k names a set K without a �-least element. The methods used
in the proof of theorem II.2.11 readily imply that the type

Mn+1 := {〈z, 〈γ, e〉〉 : γ � K ∧ 〈z, 〈γ, e〉〉 ∈̇ g(γ+1)}

is a model of Σ1
1-DC. Its construction yields that it is n+1-inaccessible. A term in+1

as desired is obtained as before. 2

Corollary III.3.5
|EMA0| = |EMA| = ϕω00.

So we conclude that EMA0 is a normal theory: Clearly, |EMA0| is ω-closed. Further,
if Γ is a finite set of L1 formulas such that EMA0 ` Γ∗, then Theorem 6 in combination
with Theorem 11 of [27] yields PA∗ <ϕω00

0
Γ.

Theorem III.3.6
|EMA0| = |EMA0 + (u-psh)|.

148 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

III.3.4 Choice in explicit mathematics

In subsection III.1.6 we argued that a dependent choice principle constitutes of a
“choice” part and an “iteration” part. This view motivates us to propose a form of
choice for explicit mathematics, which, together with an axiom for iteration along
N, yields a form of dependent choice. Combined with an axiom for iteration along
arbitrary well-orderings, a form of transfinite dependent choice is the result.

To formalize the choice rule, we extend the language L by a constant ch, a term
that is to choose a name of a fixed point of a term f , provided there exists one. For
each finite set Γ of Lch formulas, we have:

(ch)
Γ, ∃x[<(x) ∧ ux =̇ x]

Γ,<(chu) ∧ chu =̇ u(chu)
.

If for instance A(U, V) is an elementary formula of Lm, then there is a closed term
t such that <(X, x) and <(Y, y) imply

t(x, y) =̇ {z : (A(X, Y) ∧ z ∈ Y) ∨ (¬A(X, Y) ∧ z /∈ Y)}.

Given <(X, x) and <(Y, y), we have λz.t(x, z) y =̇ y if and only if A(X, Y). More-
over, chλz.t(x, z) names a specific witness if there is one: <(W, chλz.t(x, z)) yields
A(X, W).

Nonetheless, without an iteration principle, the choice rule (ch) does not strengthen
the theory EETJ0. For a proof, we refer to the next subsection.

Lemma III.3.7
|EETJ0| = |EETJ0 + (ch)| = ε0.

Over ACA0, dependent choice, (Σ1
1-DC), and weak dependent choice, claiming that

for each Σ1
1 formula A(U, V) of L2,

weak-(Σ1
1-DC) ∀X∃!Y A(X, Y) → ∃F [(F)0 = Q ∧ ∀nA((F)n, (F)n+1)],

lead to theories of the same strength. Only in combination with transfinite recursion,
(ATR), the two principles are separated: ACA0 + (ATR) + weak-(Σ1

1-DC) is provable
in the theory ACA0 + (∆-TR) analyzed in subsection II.2.2 which proves only the
ordinals below Γ0, whereas the theory |ACA0 + (ATR) + (Σ1

1-DC)| = ϕ1ω0 as shown
in Jäger and Strahm [26]. In explicit mathematics, we have an analogue situation.
An iteration principle corresponding to weak-(Σ1

1-DC) has been analyzed in [31]. In
the formulation given below, we wrote nat< for the name the type {(m, n) : m <N n}
and hier is the closed term constructed in the proof of lemma III.3.1. For each finite
set Γ of L formulas, we have:

(itN)
Γ, (u : < → <)

Γ, Hieru(hier(u, nat<), nat<)
.

III.3 Pseudo-hierarchies in explicit mathematics 149

An extension of the language by the constant ch and the addition of the choice rule
(ch) does not strengthen the theory. The asymmetric interpretation justifying this
result is given in the next subsection.

Lemma III.3.8

|EETJ0 + (itN)| = |EETJ0 + (itN) + (ch)| = ϕω0.

Only in the presence of a principle corresponding to (ATR) that allows to iterate
operations along well-orderings, the choice rule (ch) unfolds its power.

(it) (u : < → <) ∧ Wo(b) → Hieru(hier(u, b), b),

The proof-theoretical ordinal of the theory EETJ0 + (it) is that of ATR0, (cf. [29]).
But the theory EETJ0 + (it) + (ch) formulated in Lch, proves each ordinal below
ϕω00.

Lemma III.3.9

|EETJ0 + (it)| = Γ0 |EETJ0 + (it) + (ch)| = ϕω00.

Proof: For a lower bound, observe that (Σ1
1-TDC) is contained in EETJ0 +(it)+(ch).

An upper bound is computed in the subsection below. 2

III.3.5 EMA0, OMA and asymmetric interpretations

In this subsection we supplement the embeddings and asymmetric interpretations
referred to in the previous subsection. Thereby, we make constant use of ideas and
techniques developed in Jäger and Strahm [27]. In particular the embedding of
EMA0 + (ch) into EMA is a direct consequence of Theorem 6 in [27]. We subsume
the argument and refer to the aforementioned article for additional informations.

In all the interpretations performed below, the first order part plus the type variables
of L are translated into L1: The number and type variables of L are mapped into
the number variables of L1 such that no conflicts arise. In the sequel, type variables
of L are often identified with their translations. Application u · v of L is translated
to {u}(v) in L1. It is then possible to assign pairwise different numerals to the
constants k, s, p, p0, p1, sN, pN and dN so that the applicative axioms of EETJ0 are
satisfied. Further, the constants csn of L translate to the corresponding constants
of L1 and sNu of L becomes u+1 in L1. In addition, we let pairing and projections
of L go over into the primitive recursive pairing function 〈·, ·〉 and the associated
projections. Similar as in subsection I.2.13, we assign to each term t of L a formula
Valt(u) of L2 expressing that u is the value of t under the interpretation described

150 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

above. Accordingly, the atomic formulas t↓, s = t and N(t) are given their obvious
interpretations in L2 with the translation of N ranging over all natural numbers.

To the generators, we assign constants nat, id, co, int, dom, inv and j such that the
following properties are met:

nat = 〈0, 0〉, csU = 〈1, 0〉, csV = 〈2, 0〉, id = 〈3, 0〉, {co}(u) = 〈4, u〉,

{int}(〈u, v〉) = 〈5, u, v〉, {dom}(u) = 〈6, u〉, {inv}(〈u, v〉) = 〈7, u, v〉,

{j}(〈u, v〉) = 〈8, u, v〉, {m}(u) = 〈9, u〉, {ch}(u) = 〈10, u〉, {e0}(u) 6= e1

for all natural numbers u, v and all e0 and e1 from the set ranging over the constants
nat, csU, csV, id, co, int, dom, inv, j, m and ch. In order to model the names and the
extensions of the corresponding types, we define a collection C of triples (u, v, w)
and translate <(u) as (u, 0, 0) ∈ C and <(u) ∧ v ∈̇ u as (u, v, 1) ∈ C. The means we
use to define the collection C and the exact implementation of the ideas sketched
above depend on the theory we are embedding into.

First, we show that ϕω00 is also an upper bound for EETJ0 +(it)+(ch). Thereto, we
embed EETJ0 +(it)+(ch) into the theory OMA, which is introduced in [27]. OMA is
a first order theory with ordinals, tailored for dealing with non-monotone inductive
definitions. The theory OMA is formulated in the language LO

1 which extends L1 by
countably many ordinal variables α, β, γ, . . ., a new binary relation symbol ≺O for
the less relation on ordinal variables, a unary relation symbol Ad(α) to distinguish
admissible ordinals and a n+1-ary relation symbol PA(α, u1, . . . , un) for each formula
A(P, u1, . . . , un) of L1(P) with at most u1, . . . , un free. In the sequel, L1(P) formulas
are referred to as operator forms. The atoms of LO

1 are the atoms of L1 together
with the expressions of the form α ≺O β, α = β and PA(α, ~u), which is usually
written PA

α (~u). Further, PA
≺Oα(~u) abbreviates (∃β ≺O α)PA

β (~u). The subscript O of

the relation ≺O is subsequently omitted. The ∆O

0 formulas of LO

1 are the formulas
that contain only bounded ordinal quantifiers and the ΣO formulas are the formulas
without unbounded universal ordinal quantifiers. Moreover, if A is a formula of
LO

1 , then Aα is the formula obtained from A by replacing each unbounded ordinal
quantifier ∀β and ∃β in A by (∀β ≺ α) and (∃β ≺ α), respectively.

Beside the axioms of PA and an axiom assuring that ≺ is a linear ordering on the
ordinal variables, the theory OMA comprises an axiom PA

α (~u) ↔ A(PA
≺α, ~u) for each

relation symbol PA, and an axiom claiming Σ reflection for each ΣO formula A of
LO

1 , i.e. A → ∃αAα. Further, induction on N is available for ∆O

0 formulas, whereas
induction on ordinals is omitted completely. Moreover, we have the following axioms
for admissible ordinals: For each ∆O

0 formula A(α, β,~γ) and each ΣO formula B(~ξ)

III.3 Pseudo-hierarchies in explicit mathematics 151

of LO

1 with exactly the displayed variables free, we have

∀α∃βA(α, β,~γ) → ∃δ[Ad(δ) ∧ ~γ < δ ∧ (∀α < δ)(∃β < δ)A(α, β,~γ)],

Ad(δ) ∧ ~ξ < δ ∧ Bδ(~ξ) → (∃α < δ)Bα(~ξ).

To describe the aforementioned class C specifying the interpretation of the ele-
menthood and naming predicates, we use the class {(x, y, z) : ∃αPA

α (x, y, z)} for
an appropriate formula A(P, u, v, w). Thereby, we basically use the operator form
A(P, u, v, w) introduced in section 4 of [27]. Towards its definition, we first intro-
duce the auxiliary formula A0(u, v, w). It is given by the disjunction of the clauses
(1)–(23). The clauses (19)–(21) deal with the constant ch.

(1) u = 〈0, 0〉 ∧ v = 0 ∧ w = 0,

(2) u = 〈0, 0〉 ∧ w = 1,

(3) u = 〈1, 0〉 ∧ v = 0 ∧ w = 0,

(4) u = 〈1, 0〉 ∧ U(v) ∧ w = 1,

(5) u = 〈2, 0〉 ∧ v = 0 ∧ w = 0,

(6) u = 〈2, 0〉 ∧ V(v) ∧ w = 1,

(7) u = 〈3, 0〉 ∧ v = 0 ∧ w = 0,

(8) u = 〈3, 0〉 ∧ ∃x(v = 〈x, x〉) ∧ w = 1,

(9) ∃x[u = 〈4, x〉 ∧ P(x, 0, 0)] ∧ v = 0 ∧ w = 0,

(10) ∃x[u = 〈4, x〉 ∧ P(x, 0, 0)∧∼P(x, v, 1)] ∧ w = 1,

(11) ∃x, y[u = 〈5, x, y〉 ∧ P(x, 0, 0) ∧ P(y, 0, 0)] ∧ v = 0 ∧ w = 0,

(12) ∃x, y[u = 〈5, x, y〉 ∧ P(x, 0, 0) ∧ P(y, 0, 0) ∧ P(x, v, 1) ∧ P(y, v, 1)]
∧w = 1,

(13) ∃x[u = 〈6, x〉 ∧ P(x, 0, 0)] ∧ v = 0 ∧ w = 0,

(14) ∃x, y[u = 〈6, x〉 ∧ P(x, 0, 0) ∧ P(x, 〈v, y〉, 1)] ∧ w = 1,

(15) ∃x, f [u = 〈7, x, f〉 ∧ P(x, 0, 0)] ∧ v = 0 ∧ w = 0,

(16) ∃x, f [u = 〈7, x, f〉 ∧ P(x, 0, 0) ∧ P(x, {f}(v), 1)] ∧ w = 1,

152 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

(17) ∃x, f [u = 〈8, x, f〉 ∧ P(x, 0, 0) ∧ ∀y(P(x, y, 1) → P({f}(y), 0, 0))]
∧ v = 0 ∧ w = 0,

(18) ∃x, f [u = 〈8, x, f〉 ∧ P(x, 0, 0) ∧ ∀y(P(x, y, 1) → P({f}(y), 0, 0))
∧∃a, z(v = 〈a, z〉 ∧ P(x, z, 1) ∧ P({f}(z), a, 1))] ∧ w = 1,

The clauses (19)–(21) below handle the translation of the constant ch.

(19) P(u, 0, 0) ∧ P({u}(v), 0, 0)∧ ∀y[P(v, y, 1) ↔ P({u}(v), y, 1)] ∧ w = 2,

(20) u = 〈10, f〉 ∧ ∃x[P(f, x, 2) ∧ (∀y < x)∼P(f, y, 2)] ∧ v = 0 ∧ w = 0,

(21) u = 〈10, f〉 ∧ ∃x[P(f, x, 2) ∧ (∀y < x)∼P(f, y, 2) ∧ P(x, v, 1)] ∧ w = 1,

To express that the names given by P form a universe, the abbreviation

Univ(P) := ∀x, y, z[A(P, x, y, z) → P(x, y, z)]

is introduced. A1(P, u, v, w) is then the disjunction of A0(P, u, v, w) with the follow-
ing clauses for the constant m:

(22) ∃x, f [u = 〈9, x, f〉 ∧ P(x, 0, 0) ∧ ∀y(P(y, 0, 0) → P({f}(y), 0, 0))]
∧Univ(P) ∧ v = 0 ∧ w = 0,

(23) ∃x, f [u = 〈9, x, f〉 ∧ P(x, 0, 0) ∧ ∀y(P(y, 0, 0) → P({f}(y), 0, 0))]
∧Univ(P) ∧ P(v, 0, 0) ∧ w = 0.

To ensure that each triple belongs the a unique level of PA, the operator form
A(P, u, v, w) takes the following form:

A(P, u, v, w) := A1(P, u, v, w)∧∼P(u, v, w).

Exactly as in [27], we set

Rep(u) := ∃αPA
α (u, 0, 0), E(v, u) := ∃αPA

α (u, v, 1),

and let the type variables of L range over Rep. The translation ·? of the atoms of
Lch,m involving types is as follows:

<(U, t)? := ∃x[Valt(x) ∧ Rep(x) ∧ Rep(U) ∧ ∀y(E(y, x) ↔ E(y, U))],

(t ∈ U)? := ∃x[Valt(x) ∧ E(x, U)],

(U = V)? := ∀x[E(x, U) ↔ E(x, V)].

The following is basically Theorem 6 in [27]. In this article, it is also shown that
|OMA| = ϕω00. Hence, lemma III.3.9 follows.

III.3 Pseudo-hierarchies in explicit mathematics 153

Theorem III.3.10 For each finite set Γ(~U, ~u) of Lch,m formulas with exactly the

variables ~U, ~u free,

EMA0 + (ch) ` Γ(~U, ~u) =⇒ OMA ` ¬Rep(~U), Γ?(~U, ~u).

Proof: To see that the above theorem is still correct, we have to verify that the
translation of the choice rule (ch) holds: So assume that there is a name x such
that ux =̇ x. This translates to Rep(x) ∧ ∀y[E(y, x) ↔ E(y, {u}(x))]. Thus, there
is an ordinal α such that PA

≺α(x, 0, 0) and PA
≺α({u}(x), 0, 0), hence A1(P

A
≺α, u, x, 2)

holds. Therefore, PA
≺β(u, x, 2) for some ordinal β. Because OMA is equipped with

∆O

0 induction on the natural numbers, {y : PA
≺β(u, y, 2)} has a <N-least element.

Thus A1(P
A
≺β, 〈10, u〉, 0, 0) holds and so either PA

β (〈10, u〉, 0, 0) or PA
≺β(〈10, u〉, 0, 0).

Now there is a unique ordinal γ with PA
γ (〈10, u〉, 0, 0). The definition of A yields

that PA
γ (〈10, u〉, y, 1) if and only if PA

≺γ(a, y, 1), where a is the <N-least element of
{z : PA

≺γ(u, z, 2)}. Moreover, we have that PA
≺γ(a, y, 1) exactly if PA

≺γ({u}(a), y, 1).
Thus, the translation of chu =̇ u(chu) holds. 2

Next, we consider the asymmetric interpretations of the theories EETJ0 + (ch) and
EETJ0 + (itN) + (ch) into ACA0 and Σ1

1-DC0, respectively. The translation of the
first order part of Lch into L2 is exactly the the translation ·? described above. The
translation of formulas involving type variables works similar, however, instead of
the relation PA, a hierarchy F along an initial segment of � is used. We modify the
setup in such a way that PA

α (x, y, z) and PA
≺α(x, y, z) correspond to the L2 formulas

(〈x, y, z〉 ∈ (F)α) and (∃β � α)(〈x, y, z〉 ∈ (F)β), respectively. To obtain such
a hierarchy, we let B1(P, u, v, w) be the disjunction of the clauses (1)–(21) and
B(P, u, v, w) := B1(P, u, v, w)∧∼P(u, v, w). Now we transform the L1(P) formula
B(P, u, v, w) to the L2 formula A(U, u), by defining

A(U, u) := ∃x, y, z[u = 〈x, y, z〉 ∧ A1(U, x, y, z)],

where A1(U, u, v, w) is obtained from B(P, u, v, w) by replacing all literals of the form
[∼]P(r, s, t) by [∼](〈r, s, t〉 ∈ U). Below, F will be so that HierA(F, ∅, ��γ) for some γ
in the field of �. Note also, that if β�γ, then 〈x, y, z〉 ∈ (F)β ↔ A((F)�α, 〈x, y, z〉),
which corresponds to the axiom PA

α (~u) ↔ A(PA
≺α, ~u) of OMA. The definition of A

also entails, that if HierA(F, ∅, ��γ), then all the levels (F)β for β � γ are disjoint.
To prepare for the definition of the asymmetric interpretation into L2, we let

Rep(U, u, w) := (∃α � w)(〈u, 0, 0〉 ∈ (U)α),

E(U, v, u, w) := (∃α � w)(〈u, v, 1〉 ∈ (U)α).

Then {x : Rep(F, x, β)} is the set of codes of names below the βth level of the hierar-
chy. Similar to the translation of Lch,m into LO

1 , we now define for each formula B of

154 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

Lch its asymmetric translation Bα,β,F . The idea is to let range universally bounded
type variables over {u : Rep(F, u, α)} and existentially bounded type variables over
{u : Rep(F, u, α+β)} for a suitable β. Recall that type variables of L go over to
number variables of L2. If we want to be precise, we write U ? for the number variable
of L2 that is the translation of the type variable U .

To specify the asymmetric interpretation, we extend the language L2 by constants
pu for each number variable u of L2. The constants pu serve as placeholders and are
later replaced by elements of the field of �. If B is a formula that does not contain
type variables then Bα,β,F := B?.

<(U, t)α,β,F := ∃x[Valt(x) ∧ Rep(F, x, pU?) ∧

∀y(E(F, y, x, pU?) ↔ E(F, y, U, pU?))],

(t ∈ U)α,β,F := ∃x[Valt(x) ∧ E(F, x, U, pU?)],

(U = V)α,β,F := ∀x(E(F, x, U, pU?) ↔ E(F, x, V, pV ?)).

The asymmetric interpretation is distributive over conjunction, disjunction and num-
ber quantification. Further, the translation of the negation of an atom is the nega-
tion of the translation of the atom. Quantification over type variables is handled as
follows:

(∀X?B)α,β,F := ∀X?(Rep(F, X?, α) → Bα,β,F [α/pX?]),

(∃X?B)α,β,F := ∃X?(Rep(F, X?, β) ∧ Bα,β[β/pX?]).

Now the following is easily proved by induction on the build-up of formulas.

Lemma III.3.11 (Persistence) Assume that A(U, u) is the formula defined above.

Then, for each Σ+ formula B(~V) of L with exactly the displayed type variables free,
the following is provable in ACA0: If HierA(F, ∅, ��γ) and α � α′ � β ′ � β � γ, then

~y ∈ {x : Rep(F, x, α)} ∧ BF,α,β(~y) → BF,α′,β′

(~y).

To carry out the asymmetric interpretations, we require that derivations in EETJ0 +
(ch) and EETJ0 +(ch)+(itN) can be transformed to derivations applying the cut rule
only to formulas that are Σ+ or Π−. Such a partial cut-elimination is guaranteed
by theorem I.3.5, if the main formulas of all axioms and rules are Σ+ or Π−. This
is not the case with the axiomatization given in subsection I.2.11. Most of the basic
type existence axioms are not Σ+ or Π− formulas. However, with the exception of
the axiom for join, it is obvious how the replace it by a rule whose main formula
is Σ+. For join, we use a rule similar to the one given in Glass and Strahm [17].
Thereto, we define B(U, V, v) to be the formula

∀x(x ∈ V ↔ x = (p0x, p1x) ∧ p0x ∈ U ∧ ∃X(<(X, v(p0x)) ∧ p1x ∈ X)).

III.3 Pseudo-hierarchies in explicit mathematics 155

Note, that if <(X, x), (f : X → <) and <(Y, j(x, f)), then we have B(X, Y, f).
Further, we define A1(U, V, u, v) := <(V, j(u, v)) ∧ B(U, V, v). It is now immediate
that <(U, u) ∧ (f : U → <) → ∃Y A1(U, Y, u, f) is equivalent to the axiom for join
given in I.2.11. Moreover, we let A2(U, V, u, v) be the following Σ+ formula of L:

∃X, Y ∀z[<(V, j(u, v))∧

(z ∈ V → z = (p0z, p1z) ∧ p0z ∈ U ∧ <(X, f(p0z)) ∧ p1z ∈ X)∧

(z = (p0z, p1z) ∧ p0z ∈ U ∧ (<(Y, f(p0z)) → p1z ∈ Y) → z ∈ V)].

Lemma III.3.12 The following is provable in EET0:

(f : U → <) → [∃ZA1(U, Z, y, f) ↔ ∃ZA2(U, Z, y, f)].

Therefore, we can replace the axiom for join by the following rule: For each finite
set Γ of L formulas,

Γ,<(U, u) ∧ (f : U → <)

Γ, ∃ZA2(U, Z, u, f)
.

So we can assume for the following, that we have reformulations of EETJ0 + (ch)
and EETJ0 + (ch)(itN) that allow to eliminated all cuts that are neither Σ+ nor Π−.

Lemma III.3.13 Suppose that A(U, u) is the L2 formula defined above. Then, for
each finite set Γ of Σ+ and Π− formulas of Lch, the following holds for all m, n ∈ N

and all ordinals α < ωω:

EETJ0 + (ch)
n

∗
Γ(~U) =⇒ ACA0 ` ¬B(F, ~U?, m, n), Γm,m+2n,F [~m/~pU?],

EETJ0 + (it) + (ch)
n

∗
Γ(~U) =⇒ ACA0 ` ¬C(F, ~U?, α, n), Γα,α+ωn,F [~α/~pU?],

where ∗ stands of the set of Σ+ and Π− formulas of Lch, and

B(F, ~u, m, n) := HierA(F, ∅, ��m+2n) ∧ ~u ∈ {z : Rep(F, z, m)},

C(F, ~u, α, n) := HierA(F, ∅, ��α+ωn) ∧ ~u ∈ {z : Rep(F, z, α)}.

Further, if ~U = U1, . . . Ul, then Γ[~m/~pU?] is short for Γ[m, . . . , m/pU?
1
, . . . pU?

l
], and

Γ[~α/~pU?] is defined accordingly.

Proof: Both claims are show by (meta-) induction on n. For the first statement,
we consider the choice rule (ch), for the second statement we have a look at the
iteration rule. The cut is treated in the standard way exploiting persistence. Below,
we let T1 be the theory EET0 + (ch) and T2 the theory T1 + (itN).

156 Chapter III. Pseudo-hierarchy arguments outside second order arithmetic

So assume that T1
n

∗
Γ, chf =̇ f(chf) was obtained by applying a faithful instance

of the choice rule. Thus, there is an n′ < n and a term f of Lch, so that we have

T1
n′

∗
Γ,∼f↓, ∃x[<(x) ∧ fx =̇ x]. By the I.H. we conclude that ACA0 proves

¬B(F, ~U?, m, n′),¬∃xValf(x), Γm,m+2n′
,F [~m/~pU?], (∃x[<(x) ∧ fx =̇ x])m,m+2n′

,F .

Now we assume that B(F, ~U?, m, n′), Valf(e) and (∃x[<(x) ∧ fx =̇ x])m,m+2n′
,F .

This implies that there are k1 ≤ k2 < m+2n′

and a z, such that Rep(F, z, k1),
Rep(F, {e}(z), k2) and ∀y[E(F, y, z, k2) ↔ E(F, y, {e}(z), k2)]. Arguing analogously
to the proof of theorem III.3.10, the definition of the hierarchy F yields that
Rep(F, 〈10, e〉, k2+1) and that ∀y[E(F, y, z, k2+1) ↔ E(F, y, 〈10, e〉, k2+1)].

If T2
n

∗
Γ, Hierf (hier(f, nat<), nat<) was obtained by the application of faithful in-

stance of the iteration rule, then we have T2
n′

∗
∼f↓, Γ, (f : < → <) for some n′ < n.

By the I.H. we conclude that ACA0 proves

¬C(F, ~U?, α, n′),¬∃xValf(x), Γα,α+ωn′
,F [~α/~pU?], (f : < → <)α,α+ωn′

,F .

This time, we assume that C(F, ~U?, α, n′), Valf(e) and (f : < → <)α,α+ωn′
,F . Due to

the definition of the hierarchy F , we have ∀x[Rep(F, x, α) → Rep(F, {e}(x), α+ωn′

)].
Observe, that

a := hier(f, nat<)(0) = f(j(int(field(nat<), inv(nat<, λy.(y, 0))), hier(f, nat<)))

is a name and that Vala(y) yields Rep(F, y, k+ωn′

) for some k ∈ N. Next, we let e′

so that Valhier(f,nat<)(e
′) and show by set induction that

(∀x ∈ N)[Rep(F, {e′}(x), k+ωn′

·(1+x))].

Thus, (∀x ∈ N)[Rep(F, {e′}(x), α+ωn)], which is (Hierf(hier(f, nat<), nat<))α,α+ωn,F .
2

If we identify each natural number n ∈ N with the notation of the ordinal n, then
we can state the following lemma:

Lemma III.3.14

ACA0 ` ∃FHierA(F, ∅, ��n) and Σ1
1-DC0 ` ∃FHierA(F, ∅, ��ωn).

Together with the previous lemma, this yields the upper bounds for EETJ0 + (ch)
and EETJ0 + (ch) + (itN) mentioned in the lemmas III.3.7 and III.3.8.

Theorem III.3.15 For each finite set Γ of Σ+ of L without free type variables,

EETJ0 + (ch) ` Γ =⇒ ACA0 ` Γ?,

EETJ0 + (it) + (ch) ` Γ =⇒ Σ1
1-DC0 ` Γ?.

Bibliography

[1] Peter Aczel, The strength of Martin-Löf ’s type theory with one universe, Tech.
report, Dept. of Philosophy, University of Helsinki, 1977.

[2] Jeremy Avigad, On the relationship between ATR0 and ÎD<ω, The Journal of
Symbolic Logic 61 (1996), no. 3, 768–779.

[3] Jon Barwise, Admissible sets and structures: An approach to definability theory,
Springer, Berlin, 1975.

[4] Jon Barwise and Jon Schlipf, On recursively saturated models of arithmetic,
Model Theory and Algebra, Lecture Notes in Mathematics, vol. 498, Springer,
1975, pp. 42–55.

[5] Michael J. Beeson, Foundations of constructive mathematics: Metamathemati-
cal studies, Springer, Berlin, 1985.

[6] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg, It-
erated inductive definitions and subsystems of analysis: Recent proof-theoretical
studies, Lecture Notes in Mathematics, vol. 897, Springer, Berlin, 1981.

[7] Andrea Cantini, On the relationship between choice and comprehension princi-
ples in second order arithmetic, Journal of Symbolic Logic 51 (1986), 360–373.

[8] Solomon Feferman, A language and axioms for explicit mathematics, Alge-
bra and Logic (J.N. Crossley, ed.), Lecture Notes in Mathematics, vol. 450,
Springer, Berlin, 1975, pp. 87–139.

[9] , Recursion theory and set theory: a marriage of convenience, Gener-
alized recursion theory II, Oslo 1977 (J. E. Fenstad, R. O. Gandy, and G. E.
Sacks, eds.), Stud. Logic Found. Math, vol. 94, North Holland, Amsterdam,
1978, pp. 55–98.

[10] , Constructive theories of functions and classes, Logic Colloquium ’78
(M. Boffa, D. van Dalen, and K. McAloon, eds.), North Holland, Amsterdam,
1979, pp. 159–224.

157

158 Bibliography

[11] , Iterated inductive fixed-point theories: application to Hancock’s conjec-
ture, The Patras Symposion (G. Metakides, ed.), North Holland, Amsterdam,
1982, pp. 171–196.

[12] Solomon Feferman and Gerhard Jäger, Systems of explicit mathematics with
non-constructive µ-operator. Part II, Annals of Pure and Applied Logic 79
(1996), no. 1, 37–52.

[13] Solomon Feferman and Clifford Spector, Incompleteness along paths in progres-
sions of theories, The Journal of Symbolic Logic 27 (1960), no. 4, 383–390.

[14] Harvey Friedman, Some systems of second order arithmetic and their use, Pro-
ceedings of the International Congress of Mathematicians, Vancouver 1974,
vol. 1, Canadian Mathematical Congress, 1975, pp. 235–242.

[15] Harvey Friedman, Kenneth McAloon, and Stephen Simpson, A finite combi-
natorial principle which is equivalent to the 1-consistency of predicative analy-
sis, Patras Symposion (G. Metakides, ed.), North Holland, Amsterdam, 1982,
pp. 197–230.

[16] Robin O. Gandy, Proof of Mostowski’s conjecture, Bulletin de l’Academie Polon-
aise des Sience, Série des Siences Mathematiques, Astronomiques et Physiques
8 (1960), 571–575.

[17] Thomas Glass and Thomas Strahm, Systems of explicit mathematics with non-
constructive µ-operator and join, Annals of Pure and Applied Logic 82 (1996),
193–219.

[18] G. Jäger, Induction in the elementary theory of types and names, Computer Sci-
ence Logic ’87 (E. Börger, H. Kleine Büning, and M.M. Richter, eds.), Lecture
Notes in Computer Science, vol. 329, Springer, Berlin, 1988, pp. 118–128.

[19] Gerhard Jäger, Die konstruktible hierarchie als hilfsmittel zur beweistheoretis-
chen untersuchung von teilsystemen der mengenlehre und analysis, Ph.D. thesis,
Universität München, 1979.

[20] , Theories for admissible sets: A unifying approach to proof theory, Bib-
liopolis, Napoli, 1986.

[21] , First order theories for nonmonotone inductive definitions: Recursive
and inaccessible mahlo, Journal of Symbolic Logic 66 (2001), no. 3, 1073–1089.

[22] , Einführung in die theoretische informatik, 2004, Lecture Notes.

Bibliography 159

[23] Gerhard Jäger and Barbara Primo, About the proof-theoretic ordinals of weak
fixed point theories, Journal of Symbolic Logic 57 (1992), no. 3, 1108–1119.

[24] Gerhard Jäger and Dieter Probst, Iterating Σ operations in admissible set theory
without foundation: a further aspect of metapredicative Mahlo, One Hundred
Years of Russell’s Paradox: Mathematics, Logic, Philosophy (Godehard Link,
ed.), de Gruyter, Berlin, 2004, pp. 119–134.

[25] , Variation on a theme of Schütte, Mathematical Logic Quarterly 50
(2004), no. 3, 258–264.

[26] Gerhard Jäger and Thomas Strahm, Fixed point theories and dependent choice,
Archive for Mathematical Logic 39 (2000), 493–508.

[27] , Upper bounds for metapredicative Mahlo in explicit mathematics and
admissible set theory, The Journal of Symbolic Logic 66 (2001), no. 2, 935–958.

[28] Wolfram Pohlers, Proof theory: An introduction, Lecture Notes in Mathematics,
vol. 1407, Springer, Berlin, 1989.

[29] Dieter Probst, Iteration, choice and reflection in explicit mathematics, In prepa-
ration.

[30] , The proof-theoretic analysis of transfinitely iterated quasi least fixed
points, To appear in the Journal of Symbolic Logic.

[31] , Dependent choice in explicit mathematics, Master’s thesis, Institut für
Informatik und angewandte Mathematik, 1999.

[32] , On the relationship between fixed points and iteration in admissible
set theory without foundation, Archive for Mathematical Logic (2005), no. 44,
561–580.

[33] Dieter Probst and Thomas Studer, How to normalize the jay, Theoretical Com-
puter Science 1–2 (2001), no. 254, 677–681.

[34] Michael Rathjen, The strength of Martin-Löf type theory with a superuniverse.
Part II, Archive for Mathematical Logic 40 (2001), no. 3, 207–233.

[35] H. Rogers, Theory of recursive functions and effective computability, McGraw-
Hill, New York, 1967.

[36] Christian Rüede, Metapredicative subsystems of analysis, Ph.D. thesis, Institut
für Informatik und angewandte Mathematik, Univeristät Bern, 2000.

160 Bibliography

[37] , Transfinite dependent choice and omega-model reflection, Journal of
Symbolic Logic 67 (2002), no. 3, 1153–1168.

[38] , The proof-theoretic analysis of Σ1
1 transfinite dependent choice, Annals

of Pure and Applied Logic 121 (2003), no. 1, 195–234.

[39] Kurt Schütte, Proof theory, Springer, Berlin, 1977.

[40] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in
Mathematical Logic, Springer-Verlag, 1998.

[41] Clifford Spector, Hyperarithmetic quantifiers, Fundamenta Mathematicae 48
(1959), 313–320.

[42] John R. Steel, Determinanteness and subsystems of analysis, Ph.D. thesis, Uni-
versity of California at Berkely, 1976.

[43] Thomas Strahm, Wellordering proofs for metapredicative Mahlo, The Journal
of Symbolic Logic 67 (2002), no. 1, 260–278.

[44] William Tait, Normal derivability in classical logic, The Syntax and Semantics
of Infinitary Languages (Jon Barwise, ed.), Springer, Berlin, 1968, pp. 204–236.

Index

∆ separation, 27
Π2 reflection

on Ad, 98
on models of KPd0 + (IN), 129
on models of Σ1

1-DC, 130
Σ collection, 27
Σ operation, 96
Σ reflection, 27
Σ replacement, 27
λ-abstraction, 31
n-inaccessible

model of KPd0 + (IN), 133

A-closed, 87
Aczel’s trick, 87
admissible set, 97
arithmetical comprehension, 28
arithmetical transfinite recursion, 53
atom, 16
axiom, 18

faithful instance, 39
logical, 23
non-logical, 23
substitution instance, 39

bounded quantifier, 21
numerically, 21
setwise, 22

choice sequence, 53
collapse, 99
collapsing function, 99
comprehension

elementary, 31
conclusion, 18
constructible hierarchy, 112
course of value, 35
cut, 19

cut-rank, 19
cut-elimination, 37

partial, 39

dependent choice, 53
derivation, 18

embedding, 32
enumerable, 133
explicit mathematics

applicative axioms, 29

false, 20
finite axiomatization, 54
fixed point hierarchy, 78
formula, 16

U -positive, 17
∆ in ~X, 21
∆0

k formula, 21

∆1
k in ~X, 21

arithmetical, 21
elementary, 22
of T, 23
rank, 19
universal, 119

function, 11
characteristic, 13
collapsing, 99

161

162 Index

partial recursive, 13
primitive recursive, 13
recursive, 13

hierarchy, 52
proper, 52
pseudo, 52

hyperarithmetical, 62
in X, 62

hyperarithmetically closed, 67

Indices, 15
recursive functions, 15

iteration principle, 52

jump-hierarchy, 58

language, 16
literal, 16

false, 25
numerically equivalent, 25
true, 25

locally countable, 133
logic of partial terms, 23

Mahlo axiom, 98
main formulas, 18
meta-predicative Mahlo, 98
µ-schema, 13

negation, 16
normal form, 46
notation system, 36

operator, 96
inclusive, 79

order-isomorphism, 11
ordering, 11

comparable, 11
comparison map, 12
initial segment, 11
Kleene-Brouwer, 14
ordertype, 12

proper initial segment, 11
reflexive closure, 11
well-ordered, 12
well-ordering, 12

ordinal, 12
admissible, 122
limit, 12
successor, 12

path through a tree T , 46
premise, 18
pretranslation, 32
primitive recursive in ~X, 45
proof, 18

cut-free, 37
cut-rank, 18
depth, 18

proof-theoretic ordinal, 36, 40
proof-theoretic strength, 12, 36, 40
proof-tree, 18
pseudo fixed point hierarchy, 78
pseudo-hierarchy, 43, 52
pseudo-hierarchy principle, 100, 114,

143

rank, 38
recursion principle, 53
recursion theorem, 31
relation, 11

domain, 11
field, 11
primitive recursive, 13
range, 11
recursive, 13
recursively enumerable, 13
restriction, 11
well-founded, 12

rule, 18
faithful instance, 39
logical, 23
non-logical, 23

Index 163

substitution instance, 39

satisfaction, 17
sentence, 17
sequence numbers, 14
set

∆ in ~X, 21
∆0

k formula, 21

∆1
k in ~X, 21

Cartesian product, 10
downward closed, 11
Π1

1, 21

Π1
1 in ~X, 21

powerset, 10
transitive, 10
upward closed, 11

side formulas, 18
standard translation, 33
strict Π1

1-reflection, 55
structure, 17

standard, 20
subformula, 16

proper, 16
subformula property, 18

term, 16
closed, 17

theory, 18
formal, 18
normal, 102
semi-formal, 18

transfinite dependent choice, 53
transfinite induction, 12
transfinite recursion, 53
transitive closure, 118
translation, 32
tree, 12

leaf, 12
nodes, 12
path, 12
root, 12

well-founded, 12
tree, second order arithmetic, 46

branch, 46
finitely branching, 46
path, 46

true, 20

universal formula, 44
Π0

1, 44
Π0

n, 46
Π1

1, 51
Σ1

1, 51
urelements, 21

valuation, 17
variable

bound, 17
free, 17
function, 35
individual, 22
number, 20
sequence, 35
set, 20, 21
type, 22

Veblen function, 36
binary, 36
ternary, 36

weakly admissible, 124

Languages

L1, first order arithmetic, 16, 20
L2, second order arithmetic, 16, 20
LF ,σ

2 , L2 with function and sequence
variables, 35

LFix, L1 with fixed point constants, 93

L∗, Kripke-Platek set theory, 16, 21
L∗

Ad, L
∗ extended by Ad(u), 97

L, explicit mathematics, 16, 22
Lm, L with constant m, 142

164

Axioms

(ACA), 28
(ATR), 53
(∆-TR), 54, 76
(K-TR), 53
(Π0

1-AC), 55
(Σ1

1-AC), 53
(K-AC), 53
(Π0

1-DC), 55
(Σ1

1-DC), 53
weak-(Σ1

1-DC), 148
(K-DC), 53
(Σ1

1-TDC), see (K-TDC), 54, 77
(K-TDC), 53

(FP), 78
(FP−), 82

(Π1
2-REF)Σ1

1-DC, 130

(INDN), 25
(Π1

1-INDN), 28
(Π1

1-INDN), 28
(K-INDN), 28

(Π1
1-TI), 93

(FIX), 93
(IND+

FIX), 93

(∆0-Col), 27
(∆0-Col′), 119
(∆0-Sep), 27
(∆0-Sep′), 115
(Pair), 27

(Tran), 27

(S-IN), 27
(IN), 27
(Σ-IN), 111
(K-INDN), 27
(I∈), 27

(lin), 97
(lin′), 127
(lim), 97
(lim′), 119

(Ad1), 140

(∆0-dc), 129
(Σ-dc), 129

(Π2-Ref)Ad, 98
(Π2-Ref)Addc , 130

(Σ-fp), 110
(Σ-tr), 106

(psh′), 100
(psh), 114

(itN), 148
(it), 149
(ch), 148

(f -Ref)U̇ , 142

(T-IN), 31

(u-psh), 143

ω-rule, 25

165

Theories

ACA, 16, 28
ACA0, 16, 28
ATR0, 53
ATR†

0, 105
FP−

0 , 82
In-RFN0, 146
PA, 16
PA, Peano arithmetic, 24
Σ1

1-AC, Σ1
1-AC0, 53

Σ1
1-DC, Σ1

1-DC0, 53

ÎD1, 82, 87
ID∗

1, 66, 90, 93

BS0, 16, 26
KPdm`c0, 133
KPdm0, 130
KPd0, 129
KPi0, 97
KPj0, 119
KPm0, 98
KPu0, 16, 26
KPur, 27

EETJ0, 16, 29
EET0, 31
EMA, 142
EMA0, 142

PA∗, 16, 25
T† := T + ¬TI�(U, |T|)), 101

166

Notations and abbreviations

α, β, γ, . . ., as elements of Field(≺), 44
α, β, γ, . . ., as elements of Field�, 37
α, β, γ, . . ., ordinals, 12
0, least ordinal, ∅, 12
�, the underlying ordering of our no-

tation system, 37
Φ0, ordertype of �, 36
ϕαβ, Veblen function, 37

A(U+), U occurs only positively, 17
A({x : B(x)}), 20
A[PAd/Ad], 119
AZ , 29
AWf, 128
Ad, the class {x : Ad(x)}, 97
Ad(u), admissible set, 97
Ad, 110
Addc(u), 130

card(y) = n y has cardinality n, 116
ch, choice constant, 148
ClA~Y ,~y

(X), X is A-closed, 88

Clp(f,≺), f is collapse ≺, 99
consT, 40
csn

m, constant m function, 13

D = (x, R), proof-tree, 18
∆0, 22
(∆0-Col′), 119
∆0-Sat(~u, v), 118
Dom(x), domain, 11
(∆0-Sep′), 115

E , evaluation, 17

E [u = m], 17
∃!XA(X), exactly one X, 16
∃!xA(x), exactly one x, 16
EV(c, pAq), 116
{e}(~x), Kleene brackets, 16

(f : x → y), 11
FB(A), bound variables in A, 17
FV (A), free variables in A, 17
FV (Γ), free variables in Γ, 18
F(s), 35
F ,G,H, . . ., functions from N to N, 35
Fun(U), U is a function, 35
f(~x)↓, defined, 13
f(~x)↑, undefined, 13
fD(u), underlying operation of L, 112
F A

~Y ,~y
(X), 52

fA
~a , 96

FHierA(F, ~Y ,≺, ~y), fixed point hierar-
chy, 78

Field(R), field of a relation, 11
field(b), 141
FixA

~Y ,~y
, fixed point of F A

~Y ,~y
, 88

fix, term of Lm, 145
Fml, 116
FPSHA(F, ~Y ,≺, ~y), pseudo fixed point

hierarchy, 78
Fun(u), 22
FV(pAq), 116

Γ, ∆, Λ, finite sets of formulas, 18
Γ∗, 33
Γu, 22

167

168 Notations and abbreviations

g�α, g restricted to α, 97

HierA(F, ~Y ,≺, ~y), 52
Hierf(h, b), 141
HierJ (F, X,≺), jump-hierarchy, 58
hier+(f, z,≺), 98
hierA(g,~a,≺), 96
hierL(h, x,≺), 112
hierLF(h, g,≺), 134
hier, term of L, 143
HTran(x), x is hereditarily transitive,

122
Y ∈ HYP

~X , 62
HYP, 62

HYP
~X , 62

hypx, 120

I0(X), 146
In(X), 146
Ian(x), 133

J (U, V, u), jump formula, 58
JX

α , αth level of J X
≺ , 58

JX
≺ , jump-hierarchy, 58

<KB(S), see <KB�S
<KB�S, KB restricted to S, 15
KB, Kleene-Brouwer ordering, 15
KB(S), see <KB�S

λ, limit, 44
λ, limit ordinal, 12
L, constructible hierarchy, 112
Lx

α, 112
Lx

≺, 112
LF(u, v, w), 134
`c(a), a is locally countable, 133
lh(s), length of the sequence s, 14
Lin(≺), ≺ is a linear ordering, 11
Lin0(≺), ≺ is a linear ordering with a

least element, 11

(M, E) |= A, satisfaction, 17

M = (M, I), structure, 17
M = (M,SM , I), structure, 17
M |= A, 18
MF

≺K , model of Σ1
1-DC formed accord-

ing to theorem II.2.11, 71
min≺, minimum w.r.t. ≺, 11
MonN

A(~a), 110
MonA(~a), A defines a monotone oper-

ator, 106
µ.f , 13

(N,P(N), ·N), standard structure, 20
(N, ·N), standard structure, 20
N-model, 54
N, natural numbers, 10
N, proper inductive subclass of N, 105
N�n, the set {0, . . . n−1}, 116

ON, class of ordinals, 12
OpN

A(~a), 110
Opn

A(~a), A defines n-ary operation, 96
Ord(x), x is an ordinal, 99
on(x), set of ordinals in x, 122

Π, 21
Π−, 22
Π1

0, 21
Π1

k, 21
Πk, 22
PAd(u), 115, 119
PBS0(u), model of BS0 + (IN), 115
PA, fixed point constant, 93
P(x), powerset, 10
π(s, i), ith element of the sequence s,

14
π1

1,k,l(
~U, ~u, e), π1

1(~U, ~u, e) universal Π1
1

formula, 51
Prim, indices of prim. rec. functions,

15
PRIM, class of prim. rec. functions,

13
prni projection on ith input, 13

Notations and abbreviations 169

Prog≺(U), 40
PROJk,l, 48
ProofT(x, pAq), 40
PSHA(F,≺), pseudo-hierarchy, 52
PSHf (h, b), 141
pshA(g, ~y,≺), pseudo-hierarchy, 97
psh, term of L, 143

Rf , 34
rk(A), rank of A, 19
Rec, indices of rec. functions, 15
REC, class of rec. functions, 13
R�x, restriction, 11
Rng(x), range, 11

Σ, 21
Σ+, 22
Σ1

0, 21
Σ1

k, 21
Σk, 22
σ, τ, ρ, . . ., sequence numbers, 35
σ[s], 35
Sufo(A), subformulas of A, 16
s↓, defined, 22
sA

~x , 118
Sat(c, pAq), 116
seq, sequence numbers, 14
seq0,1, seq. numbers of 0, 1-seq., 14
Struct(c), 116
s(x), successor, 13

T (e, 〈~x〉, z), Kleene’s T -predicate, 16
|T|, proof-theoretic ordinal of T, 36
|T|1, 41
|T|2, 41
|T|3, 41
|T|4, 41
tN, 25
T A, 48
T A

~X,~x
, 48

TC(x), transitive closure, 118
TI≺(U, u), 40

Tran(x), transitive set, 10

TRec
~X , 46

TREEA(u), 48

U [s], 35
U,V, free relation symbols, 20
UN,VN, 20
U(U), 142
U̇(u), 142

Val, 116
Valt(u), u is the value of t, 34

Wf, class of well-founded sets, 128
Wf(R), R is wellfounded, 12
WITA(u), 48
Wo(≺), ≺ is a well-ordering, 12

WoL
g
ω , 114

Wo(b), 141

(X)≺K, 29
(X)≺α, 29

⊕ ~X, 29
X ≤∆0

1
Y , 58

X =∆0
1
Y , 58

X�n0, for {x ∈ X : x < n0}, 55
XY1,...,Yk,y1,...,yl

, 49
Y ∈̇ X, 29
X [Y/Z], substitution, 10
X, complement w.r.t. N, 10
〈x1, . . . , xn〉, sequence number, 14
x − y, set difference, 10
〈x1, . . . , xn〉, sequence number, 14
x+, next admissible above x, 98
x◦, 107
x̂, 110
x1 × . . . × xn, Cartesian product, 10

ε, empty string, 10
∗, sequence concatenation, 14
<, proper initial segment, 14
v, initial segment, 14

170 Notations and abbreviations

≺�u, restriction, 11
≺

~X
e , 50

�1 + �2, 131

