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Abstract. In relational database systems a combination of privileges
and views is employed to limit a user’s access and to hide non-public
data. The data privacy problem is to decide whether the views leak
information about the underlying database instance. Or, to put it more
formally, the question is whether there are certain answers of a database
query with respect to the given view instance. In order to answer the
problem of provable date privacy, we will make use of query answering
techniques for data exchange. We also investigate the impact of database
dependencies on the privacy problem. An example about health care
statistics in Switzerland shows that we also have to consider dependencies
which are inherent in the semantics of the data.

1 Introduction

Data privacy refers to the relationship between technology and the legal
right to, or public expectation of privacy in the collection and sharing of
data [16]. Although technology alone cannot address all privacy concerns,
it is important that information systems take responsibility for the privacy
of the data they manage [1]. The main challenge in data privacy is to share
some data while protecting other personally identifiable information. Our
aim is to formally prove that under certain circumstances none of the
protected data can be logically inferred from the data which is made
public.

We investigate this problem in the context of relational database sys-
tems. Assume we are given a database whose contents are supposed to
be hidden and a view which is exposed to the public. We want to decide
whether the view leaks information about the underlying database. Leak-
ing of information means that the set of facts which can be inferred with
certainty about the database is non-empty.

Data stored in a relational database system usually is protected from
unauthorized access. Some database system users may be allowed to issue



queries only to a limited portion of the database. This can be achieved
by introducing views. A view can hide data a user does not need to
see. Although, we can deny a user direct access to a relation, that user
may be allowed to access part of that relation through a view. Thus the
combination of privileges and views can limit a user’s access to precisely
the data that the user needs.

Silberschatz et al. [13] present the following banking example. Con-
sider a clerk who needs to know the names of all customers who have a
loan at each branch. This clerk is not authorized to see information re-
garding specific loans that the customers may have. Thus, the clerk must
be denied access to the loan relation. But, if she is to have access to
the information needed, the clerk must be granted access to a view that
consists of only the names of customers and the branches at which they
have a loan. For this example, we want to formally prove that the clerk
cannot infer any information about specific loans from the view instances
to which she has access.

Let us now study a simple example which shows how it can happen
that private data may be derived from a published view instance. Consider
a database schema that consist of a table A with two attributes and a
table P with one attribute. We define two views by the following queries

V1(x)← A(x, y) ∧ P (y) and V2(x)← A(x, x).

Assume that we have a view instance which contains V1(a), V2(a). This
view instance does not allow us to infer that a certain element belongs
to P . The fact V1(a) might stem from entries A(a, b) and P (b) and we
do not know what b is. Hence, there is no way to say something about P
except that it is non-empty. This situation completely changes if we add
a unique key constraint to A. Assume that the first attribute of A is a
unique key for this table. Then V2(a) implies that ∀y.(V (a, y)→ a = y).
Therefore, by V1(a), we get that P (a) must hold in any database instance
which satisfies the key constraint and which yields the view instance.
We see that equality generating dependencies may give rise to unwanted
inferences of private data. Hence, in our setting, we have to take into
account also the constraints of the database schema.

We formally model the problem of provable data privacy in the fol-
lowing framework: a data privacy setting consists of a database schema
R, a set of constraints Σr on R, and a set of view definitions V over R.
In addition, assume we are given a view instance I over V and a query
q over R which is asking for non-public information. In this setting, the
data privacy problem consists of the following question: is there a tuple t



of constants of I such that t ∈ q(J) for every database instance J over R
which satisfies the constraints in Σr and which yields the view instance
I.

Making use of the notion of certain answer, we can state the question
as: is there a tuple t of constants of I such that t is a certain answer of q
with respect to I? That means, is there a tuple t such that t ∈ q(J) for
every ‘possible’ database instance J? The problem of answering queries
against a set of ‘possible’ databases was first encountered in the context
of incomplete databases [15]. Today, certain answer is a key notion in the
theory about data integration [5, 11, 12] and data exchange [8–10].

We show that the techniques employed for query answering in the
area of data exchange can be applied also to the data privacy problem. In
a data exchange setting, we use a standard chase to produce a so-called
universal database instance. The certain answers of a query are then
computed by evaluating the query on this universal instance. We can
make use of the same procedure to find certain answers in the context
of data privacy which solves the data privacy problem. Certain answers
in the presence of key constraints are also studied in [14]. There, we
independently developed a method similar to, but less general than the
one presented in [9] in order to solve the data privacy problem.

As we have seen, it is important to consider dependencies in a data pri-
vacy setting. This refers not only to constraints on the database schema;
we may also encounter so-called semantic dependencies which are not ex-
plicitly stated but which are inherent in the semantics of the data. We
study the following example: the Swiss Federal Statistical Office annually
creates statistics about health care in Switzerland. The published data
contains semantic dependencies which give rise to equality generating de-
pendencies in the corresponding data privacy setting.

The rest of the paper is organized as follows. In Section 2, we present a
formal definition of the data privacy problem. In Section 3, we summarize
some results of [9] about query answering in the context of data exchange.
We apply these data exchange techniques to solve the data privacy prob-
lem in Section 4. We also investigate the impact of dependencies on the
privacy problem. This is illustrated in Section 5 with an example about
semantic dependencies. Finally, Section 6 concludes the paper.

2 The data privacy problem

In this section, we present the data privacy problem. We need some pre-
liminary definitions in order to formally state the privacy problem.



Definition 1. 1. A schema is a finite collection R = {R1, . . . , Rk} of
relation symbols.

2. An instance I over R is a function that associates to each relation
symbol Ri a relation I(Ri).

3. A view over a schema R is a query of the form

Vi(x)← ∃yφR(x,y)

where φR(x,y) is a conjunction of atomic formulas over R. We say
that Vi belongs to a set of views V if V contains a view Vi(x) ←
∃yφR(x,y).

4. A view instance over a set of views V is a finite collection of facts of
the form Vi(t) where Vi belongs to V and t is a tuple of constants.

5. We say a database instance J over R yields a view instance I over
V if for all facts Vi(t) in I, such that Vi(x)← ∃yφR(x,y) belongs to
V, there exists a tuple s of constants of J such that each conjunct of
φR(t, s) is an element of J .

Consider the following setting for the data privacy problem:

Definition 2. A data privacy setting (R, Σr,V) consists of

1. a schema R,
2. a set of dependencies Σr on R. Each element of Σr is either a tuple

generating dependency [2] of the form

∀x(φR(x)→ ∃yψR(x,y))

or an equality generating dependency [2] of the form

∀x(φR(x)→ (x1 = x2)),

where φR(x) and ψR(x,y) are conjunctions of atomic formulas over
R, and x1, x2 are among the variables of x,

3. a set of views V over R.

The data privacy problem for this setting can be stated as: given a view
instance I over V and a query q over R, are there tuples t of constants
such that t ∈ q(J) must hold for any instance J over R which respects Σr

and which yields the view instance I? In that case, knowledge about R,
Σr, and V together with the data presented in I make it possible to infer
non-public information. Hence, even if a user is denied to issue the query
q, he can infer some of the answers of this query from the information
which is presented to him in the view instance I.

To put this problem more formally, we introduce the notion of a cer-
tain answer in the context of the data privacy setting.



Definition 3. Let (R, Σr,V) be a data privacy setting.

– If I is a view instance over V, then a possible database instance for I
is an instance J over R such that J respects Σr and J yields the view
instance I.

– If I is a view instance over V and q is a query over R, then a certain
answer of q with respect to I, denoted by certainp(q, I), is the set of
all tuples t of constants from I such that for every possible database
instance J for I, we have t ∈ q(J).

– The data privacy problem for this setting is to compute certainp(q, I).

Assume q is a query asking for non-public information. If certainp(q, I)
is empty, that is if there are no certain answers, then it is not possible
to infer any information about tuples in q from the view instance I and
knowledge about the schemaR, the constraints Σr and the view definition
V. Conversely, if there is a tuple t in certainp(q, I), then some hidden
information can be inferred.

3 Query answering for data exchange

Fagin et al. [9] study query answering in the context of data exchange.
We summarize some of their definitions and results which are relevant for
the data privacy problem.

Let S and T be two disjoint schemata. We refer to S as source schema
and to T as target schema. If I is an instance over S (a source instance)
and J is an instance over T (a target instance), then 〈I, J〉 is the corre-
sponding instance over S ∪ T .

A source-to-target dependency is a tuple generating dependency of the
form

∀x(φS(x)→ ∃yψT (x,y)),

where φS(x) is a conjunction of atomic formulas over S and ψT (x,y) is
a conjunction of atomic formulas over T . A target dependency is a tuple
generating dependency or an equality generating dependency:

∀x(φT (x)→ ∃yψT (x,y)), ∀x(φT (x)→ (x1 = x2)).

Here, φT (x) and ψT (x,y) are conjunctions of atomic formulas over T ,
and x1, x2 are among the variables of x.

Definition 4. [9, Def. 1] A data exchange setting (S, T , Σst, Σt) consists
of a source schema S, a target schema T , a set Σst of source-to-target



dependencies, and a set Σt of target dependencies. The data exchange
problem associated with this setting is the following: given a finite source
instance I, find a finite target instance J such that 〈I, J〉 satisfies Σst and
J satisfies Σt. Such a J is called a solution for I.

Next, we specify the class of so-called universal solutions which have sev-
eral ‘good’ properties. Before presenting its definition, we introduce some
terminology and notation.

Let Const denote the set of all values, called constants, that occur
in source instances. In addition, we assume an infinite set Var of values,
called labeled nulls, such that Const ∩ Var = ∅. If K is an instance over
a schema R with values in Const ∪ Var, then Var(K) denotes the set of
labeled nulls occurring in relations in K.

Definition 5. [9, Def. 2] Let K1 and K2 be two instances over a schema
R with values in Const∪Var. A homomorphism h : K1 → K2 is a mapping
from Const ∪ Var(K1) to Const ∪ Var(K2) such that

1. h(c) = c, for every c ∈ Const,
2. for every fact Ri(t) of K1, we have that Ri(h(t)) is a fact of K2,

where, if t = (t1, . . . , tn), then h(t) = (h(t1), . . . , h(tn)).

Definition 6. [9, Def. 3] Let (S, T , Σst, Σt) be a data exchange setting.
If I is a source instance, then a universal solution for I is a solution J
for I such that for every solution J ′ for I, there exists a homomorphism
h : J → J ′.

Fagin et al. [9] show that the classical chase can be used to produce a
universal solution: start with an instance 〈I, ∅〉 that consists of I, for the
source schema, and of the empty instance, for the target schema; then
chase 〈I, ∅〉 by applying the dependencies in Σst and Σt for as long as
they are applicable. This process may fail (for instance, if an attempt
to identify two constants is made) or it may not terminate. However, if
it does terminate and if it does not fail, then the resulting instance is
guaranteed to satisfy the dependencies and to be universal.

Theorem 1. [9, Th. 1] Let (S, T , Σst, Σt) be a data exchange setting. Let
〈I, J〉 be the result of some successful finite chase of 〈I, ∅〉 with Σst ∪Σt.
Then J is a universal solution.

Definition 7. [9, Def. 7] Let (S, T , Σst, Σt) be a data exchange setting.
Let q be a k-ary query over the target schema T and I a source instance.
The certain answers of q with respect to I, denoted by certaine(q, I), is
the set of all k-tuples t of constants from I such that for every solution J
of this instance of the data exchange problem, we have t ∈ q(J).



There are situations in which the certain answers of a query q can be
computed by evaluating q on a particular fixed solution and then keeping
only the tuples that consist entirely of constants. If q is a query and J is
a target instance, then q(J)↓ is the set of all tuples t of constants such
that t ∈ q(J).

Theorem 2. [9, Prop. 2] Let (S, T , Σst, Σt) be a data exchange setting
such that the dependencies in the sets Σst and Σt are arbitrary. Let q be
a union of conjunctive queries over the target schema T . If I is a source
instance and J is a universal solution, then certaine(q, I) = q(J)↓.

4 Proving Privacy

We can reduce the data privacy problem to the data exchange problem:
starting from a data privacy setting (R, Σr,V), we create a corresponding
data exchange setting (S, T , Σst, Σt) such that R = T , Σr = Σt, and V
defines S and Σst. Hence, a query q over R may be issued to T . Moreover,
a view instance I over V is a valid database instance over the schema S.
We will show that the certain answers of q with respect to I under the
data privacy setting will be the same as the certain answers of q with
respect to I under the corresponding data exchange setting.

Definition 8. The data exchange setting (S, T , Σst, Σt) that corresponds
to a data privacy setting (R, Σr,V) is given by:

– S consists of all relation symbols Vi which belong to V,
– Σt := Σr,
– Σst contains Vi(x) → ∃yφ(x,y) if Vi(x) ← ∃yφ(x,y) is an element

of V,
– T := R.

Obviously, if q is query over R, then it is also a query over T ; and if I
is a view instance over V, then it is also a database instance over S. The
previous definition immediately leads to the following theorem:

Theorem 3. Let (R, Σr,V) be a data privacy setting and (S, T , Σst, Σt)
its corresponding data exchange setting. Assume q is a query over R and
I is a view instance over V. The certain answers certainp(q, I) of q with
respect to I for (R, Σr,V) are exactly the certain answers certaine(q, I)
for (S, T , Σst, Σt).

This theorem, together with Theorem 2, provides a solution for the data
privacy problem. Given a data privacy setting (R, Σr,V), a query q over
R, and a view instance I over V. We can compute the certain answers of
q with respect to I for (R, Σr,V) as follows:



1. compute the corresponding data exchange setting (S, T , Σst, Σt),
2. construct a universal solution J for I with respect to (S, T , Σst, Σt),
3. take q(J)↓, that is evaluate q on J and keep only the tuples that

consist entirely of constants.

5 Semantic dependencies

A standard way to guarantee privacy while sharing data is to publish data
only in the aggregate. However, this practice does not necessarily ensure
data privacy. It is still possible that there are semantic dependencies which
may lead to unwanted leaking of information.

If we only have view definitions, it is easy to see what information they
reveal. However, if views can interact with dependencies, then it is less
obvious what amount of information one may obtain. In a privacy setting,
it is important to consider as many dependencies as possible: the more
dependencies there are, the more data may be inferred. A dependency can
be a constraint which is defined on a database schema. For example, as
we have seen in the introduction, the presence of a unique key constraint
can make it possible to derive private data. However, it is possible that a
dependency is not explicitly stated; maybe it is inherent in the semantics
of the data.

Let us investigate the following example of a semantic dependency.
The Swiss Federal Statistical Office (SFSO) annually creates statistics
on health care in Switzerland [3]. The collected data includes sociodemo-
graphic information about the patients (age, sex, region of residence, etc.)
as well as administrative data (kind of insurance, length of stay in hospi-
tal, disease, etc.). Naturally, these data are highly sensitive and there are
strict privacy policies about their treatment. For instance, only the year
of birth and the region of residence of a patient are recorded; the date of
birth and the precise place of residence are considered as too detailed.

The latest results about health care are from 2002. One of the pub-
lished tables [4] contains information about the length of stay in hospital.
The table has a row for each disease (encoded according to ICD-10 [17]);
and basically three columns (the ICD-10 code, the number of inpatients
with the corresponding disease, the average length of stay). In that table,
we have 7644 rows with different ICD-10 codes. 903 of them are diseases
which occurred only once; the corresponding number of inpatients is 1.
Let us restrict the view to these rows. Then the value of the attribute
‘average length of stay’ is the precise length of stay of the one patient
with the corresponding disease. Hence, the length of stay depends on the



ICD-10 code and is uniquely determined by it. This dependency may be
used in a data privacy setting to infer more information.

On an abstract level, the situation is as follows: consider a relation R
with two attributes A and B. Let V be the view defined by the query

select A, count(A), avg(B) from R group by A.

Assume we have a view instance I over V. We can restrict I to an instance
I ′ which contains only those rows where the value of count(A) is 1. If we
use I ′ instead of I to compute the possible instances of R, then each value
of the A attribute determines a unique value for the B attribute. Hence,
we can add the equality generating dependency

∀x, y, z(R(x, y) ∧ R(x, z)→ y = z)

to the data privacy setting. It is possible that more data may be inferred
by making use of this additional dependency.

Semantic dependencies are not easy to find. In the above example,
the reason for their occurrence is that the view is defined by a query with
small counts [6, 7]. That means the grouping is too fine grained. There are
many rows where the value of count(A) is 1. We can assign the average
values of those rows as B values to the corresponding A values; and the
A value uniquely determines the B value. It is important that we also
consider this kind of semantic dependencies when we are studying data
privacy settings.

6 Concluding remarks

We have defined the data privacy problem to be the problem of decid-
ing whether information about a database instance can be inferred from a
given view instance. There is a related problem, namely to decide whether
already the data privacy setting guarantees that there is no possible leak-
ing of information. That is, whether certainp(q, I) is empty for every possi-
ble view instance I. In this case, we do have data privacy, no matter what
the view instance is. Privacy follows already from the setting (R, Σr,V).
We call such a setting safe with respect to q.

There is a trivial example of a data privacy setting which ensures
privacy. Let R be a schema with a non-public relation symbol P . Further,
let V be a set of views over V such that every view V in V satisfies: if
P (x) is an atom occurring in the definition of V , then each variable of x
is existentially quantified in V . Let q be the query

q(x)← P (x).



Given the data privacy setting (R, ∅,V), we find that certainp(q, I) must
be empty for every view instance I. Hence, (R, ∅,V) is safe with respect
to q. The reason for this is that the information stored in P is hidden
by the existential quantifier in the view definitions and that there are no
dependencies to infer that information.

We plan to further investigate safe data privacy settings. It would
be nice to have a collection of patterns for safe privacy settings. Finally,
an important direction is extending the data privacy problem to more
complex view definitions and other forms of dependencies.
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