
Explicit Mathematics: Power Types and
Overloading

Thomas Studer ∗

Abstract

Systems of explicit mathematics provide an axiomatic framework
to represent programs and to prove properties of them. We introduce
such a system with a new form of power types using a monotone power
type generator. These power types allow us to model impredicative
overloading. This is a very general form of type dependent computa-
tion which occurs in the study of object-oriented programming lan-
guages. We also present a set-theoretic interpretation for monotone
power types. Thus establishing the concistency our system of explicit
mathematics.

Keywords: explicit mathematics, proof theory, power types, overloading.

1 Introduction

Systems of explicit mathematics, or theories of types and names, were intro-
duced by Feferman [7, 9] in the seventies. Beyond its original aim to provide
a basis for Bishop style constructive mathematics, the explicit framework
gained considerable importance in proof theory and in the study of vari-
ous forms of abstract computation. More recently, these systems have been
employed to develop a unitary axiomatic framework for representing pro-
grams, stating properties of programs and proving properties of programs.
Important references for the use of explicit mathematics in this context are
Feferman [10, 11, 12], Studer [29] and Turner [36, 37]. A discussion of dif-
ferent evaluation strategies, such as call-by-value and call-by-name, in the
applicative setting of theories of types and names is given by Stärk [25, 26].

∗This paper is a part of the author’s dissertation thesis [29] which has been supported
by the Swiss National Science Foundation.

1

Beeson [2] and Tatsuta [31] make use of realizability interpretations for sys-
tems of explicit mathematics to prove theorems about program extraction.
Most recently, our paper [28] provides an interpretation of Featherweight
Java in a theory of types and names.

Let us now give a short explanation of the two basic kinds of objects
which are present in explicit mathematics. These are operations or rules
and classes or types. The former may be thought as mechanical rules of
computation, which can freely be applied to each other: self-application is
meaningful, though not necessary total. The basic axioms concerning opera-
tions are those of a partial combinatory algebra, thus giving immediate rise
to explicit definitions (λ abstraction) and a form of the recursion theorem.
The standard interpretation of the operations is the domain of the partial
recursive functions. See Jäger, Kahle and Strahm [21] for a survey on the
applicative axioms of explicit mathematics. Classifications or types, on the
other hand, are collections of operations and must be thought of as being
generated successively from preceding ones. In contrast to the simple char-
acter of operations, types can have quite complicated defining properties.
What is essential in the whole explicit mathematics approach is the fact that
types are again represented by operations or, as we will call them in this
case, names, see Jäger [19]. Thus each type U is named or represented by a
name u. In general, a type U may have many different names or representa-
tions. It is exactly this interplay between operations and types on the level
of names which makes explicit mathematics extremely powerful, and, in fact,
witnesses its explicit character.

Weak power type axioms assert that for every type A, there exists a
type P containing at least one name of every subtype of A. Feferman [9]
introduced power type axioms in the context of explicit mathematics and
asked the question of their proof-theoretic strength. A partial answer was
provided by Glass [16] who showed that adding weak power types to many
systems of explicit mathematics without join does not increase their proof-
theoretic strength. In our system the presence of join makes the weak power
type axiom much more powerful. However, Feferman’s question about the
proof-theoretic strength of systems of explicit mathematics with join and a
weak power type axiom is still open.

Of course one can imagine also a strong power type axiom saying that
for every type A there is a type consisting of every name of every subtype
of A. Jäger [20] proved that this principle is inconsistent with uniform ele-
mentary comprehension, but his argument does not work if only separation
is available. Cantini [4] presented a model for non-uniform comprehension
and a strong power type axiom using a variant of Quine’s New Foundations.

In addition to the usual weak power type axioms, we demand that our

2

power type generator pow is a monotone operation on names. With a strong
power type axiom, monotonicity can be proved, but this is not the case if we
have only weak power types. Moreover, the construction of Glass [16] does
not respect our monotonicity axiom. It is this new monotonicity property
that allows us to make use of power types to model impredicative overloaded
functions.

Overloading is an important concept in object-oriented programming. For
example, it occurs when a method is redefined in a subclass or when a class
provides several methods with the same name but with different argument
types. Theoretically speaking, overloading denotes the possibility that sev-
eral functions fi with respective types Si → Ti may be combined to a new
overloaded function f of type {Si → Ti}i∈I . We then say fi is a branch of f .

If an overloaded function f is applied to an argument x, then the type
of the argument selects a branch fi, and the result of f(x) is fi(x), i.e. the
chosen branch is applied to x. If the type at compile time selects the branch,
then we speak of early-binding. If the selection of the branch is based on the
run-time type, i.e. the type of the fully evaluated argument, then we call this
discipline late-binding. Postponing the resolution of overloaded functions
to run-time would not have any effect if types cannot change during the
computation. Therefore we need the concept of subtyping in order to obtain
the real power of overloading. Then types can evolve during the execution
of a program and this may affect the final result.

Ghelli [15] first defined typed calculi with overloading and late-binding to
model object-oriented programming. This approach was further developed
in Castagna, Ghelli and Longo [6] where they introduce λ&, a calculus for
overloaded functions with subtyping.

One of the problems in the construction of a semantics for calculi with
overloading is impredicativity. Consider any term M of the type

{{S → T} → T, S → T}.

This term M can be applied to arguments of type {S → T} as well as to
arguments of the type S and yields a result of the type T . Hence, the term
M also belongs to the type {S → T}. This implies that the term M can be
applied to itself, that is the type {{S → T} → T, S → T} is a part of its own
domain. Therefore, the interpretation of that type refers to itself, whence
the impredicativity. This has the consequence that the interpretation of the
types cannot be given by induction on the type structure.

In his Ph.D. thesis, Tsuiki [34] introduces a typed λ calculus with sub-
typing and a merge operator, which provides a way of defining overloaded
functions. However, it models just coherent overloading which has the re-
striction that the definition of branches with related input types must be

3

related. For example, if we have an overloaded function with two branches
M1 : Int → T and M2 : Real → T , then coherent overloading requires that
for all N : Int we have M1N = M2N since Int is a subtype of Real.

Tsuiki also meets the problem of impredicativity in his merge calculus.
He can give a mathematical meaning to it thanks to the strong relation of
the various branches required by the coherence condition. In [35] he presents
a computationally adequate model for overloading via domain-valued func-
tors. However, he only deals with early-binding and a very restricted form
of coherent overloading. Actually, he does not consider a subtype relation
between basic types like Int and Real and he says that it would be difficult
to extend his model so that it could deal with such a subtype relation.

In this article we introduce the system OTN of explicit mathematics based
on elementary separation, product, join and monotone weak power types. We
present a set-theoretic model for OTN, and we develop in OTN a theory of
impredicative overloading. This continues our work in [30] where we treated
predicative overloading in explicit mathematics which was much simpler since
we had only to deal with a subsystem of λ& without self-application. Hence
we could do with a weaker system of explicit mathematics which did not
feature power types. Moreover, in the construction in [30] we could not
employ names directly to model type dependent computations but we had
to introduce so-called codes for types which had to be mapped to names by
a recursively defined function. The approach in the present paper is much
more natural since now we work directly with names.

In order to model type dependent computations, it is essential that there
are first-order values acting for types. In explicit mathematics, each type
is represented by a name on the first-order level and hence, the types can
participate in the computations via their names. Therefore theories of types
and names naturally contain type dependent computations. Still we do not
get an interpretation of λ& since the application operation in λ calculi, like
λ&, is total whereas in our system OTN we work with a partial application.
Unfortunately, the definition of λ abstraction in partial applicative theories
does not commute with substitutions, see Example 3 below or, for a detailed
account on this topic, the paper by Strahm [27]. Therefore, we cannot prove
that reduction in the sense of λ& preserves the interpretation of terms in
OTN. However, a weaker version of the substitution principle still holds (see
Lemma 4), which will suffice for most applications in computational practice.

4

2 Explicit Mathematics

In this section we introduce a system of explicit mathematics based on el-
ementary separation, join, product and weak power types. We will not use
Feferman’s original formalization of explicit mathematics but treat it as a
theory of types and names as developed by Jäger [19].

We work with a two-sorted language L which comprises individual vari-
ables a, b, c, f, g, x, y, z as well as type variables S, T, U, V,X, Y (both possibly
with subscripts).

Further, L includes the individual constants k, s (combinators), p, p0, p1

(pairing and projections), 0 (zero), sN (successor), pN (predecessor), dN (defi-
nition by numerical cases) and the individual constant sub (subset decidabil-
ity). There are additional individual constants, called generators, which will
be used for the uniform naming of types, namely nat (natural numbers), for
every natural number e a generator sepe (elementary separation), un (union),
j (join), prod (product) and pow (power type).

Every individual variable and every individual constant is an individual
term (r, s, t, . . .) of L and the individual terms are closed under the binary
function symbol · for (partial) application.

In the following we often abbreviate (s · t) simply as (st), st or sometimes
also as s(t); the context will always assure that no confusion arises. We fur-
ther adopt the convention of association to the left so that s1s2 . . . sn stands
for (. . . (s1 · s2) . . . sn). Finally, we define general n tupling by induction on
n ≥ 2 as follows: (s1, s2) := ps1s2 and (s1, . . . , sn+1) := ((s1, . . . , sn), sn+1).

The atomic formulas of L are the formulas s↓, N(s), s = t, s ∈ U , U = V
and <(s, U). Since we work with a logic of partial terms, it is not guaranteed
that all terms have values, and s↓ is read as s is defined or s has a value.
Moreover, N(s) says that s is a natural number, and the formula <(s, U) is
used to express that the individual s represents the type U or is a name of
U . The formulas of L (φ, ψ, . . .) are generated from the atomic formulas by
closing against the usual propositional connectives as well as quantification
in both sorts. A formula φ of L is called elementary if it contains neither the
relation symbol < nor bound type variables. The following table contains a
useful list of abbreviations:

s ' t := s↓ ∨ t↓ → s = t,

s ∈ N := N(s),

(∃x ∈ S)φ(x) := ∃x(x ∈ S ∧ φ(x)),

(∀x ∈ S)φ(x) := ∀x(x ∈ S → φ(x)),

5

U ⊂ V := ∀x(x ∈ U → x ∈ V),

(∀X ⊂ N)φ(X) := ∀X(X ⊂ N → φ(X)),

f ∈ (S → T) := (∀x ∈ S)fx ∈ T,
s ∈̇ t := ∃X(<(t,X) ∧ s ∈ X),

(∃x ∈̇ s)φ(x) := ∃x(x ∈̇ s ∧ φ(x)),

(∀x ∈̇ s)φ(x) := ∀x(x ∈̇ s→ φ(x)),

s =̇ t := ∃X(<(s,X) ∧ <(t,X)),

s ⊂̇ t := ∃X∃Y (<(s,X) ∧ <(t, Y) ∧X ⊂ Y),

f ∈̇ (s→ t) := (∀x ∈̇ s)fx ∈̇ t,
<(s) := ∃X<(s,X).

The vector notation ~Z is sometimes used to denote finite sequences Z1, . . .Zn

of expressions. The length of such a sequence ~Z is then either given by the
context or irrelevant. For example, for ~U = U1, . . . , Un and ~s = s1, . . . , sn we
write

<(~s, ~U) := <(s1, U1) ∧ . . . ∧ <(sn, Un),

<(~s) := <(s1) ∧ . . . ∧ <(sn).

Now we introduce the theory OTN of overloading, types and names which
will provide a framework for the study of impredicative overloading. It’s logic
is Beeson’s classical logic of partial terms (cf. Beeson [1] or Troelstra and van
Dalen [32]) for individuals and classical logic with equality for types. The
non-logical axioms of OTN can be divided into the following five groups.

I. Applicative axioms. These axioms formalize that the individuals form a
partial combinatory algebra, that we have paring and projections and the
usual closure conditions on the natural numbers as well as definition by
numerical cases. The theory consisting of the axioms of this group is called
basic theory of operations and numbers BON, see Feferman and Jäger [13].

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc),

(3) p0(a, b) = a ∧ p1(a, b) = b,

(4) 0 ∈ N ∧ (∀x ∈ N)(sNx ∈ N),

(5) (∀x ∈ N)(sNx 6= 0 ∧ pN(sNx) = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ sN(pNx) = x),

6

(7) a ∈ N ∧ b ∈ N ∧ a = b→ dNxyab = x,

(8) a ∈ N ∧ b ∈ N ∧ a 6= b→ dNxyab = y.

II. Explicit representation and extensionality. The following are the usual on-
tological axioms for systems of explicit mathematics. They state that each
type has a name, that there are no homonyms and that equality of types is
extensional.

(9) ∃x<(x, U),

(10) <(a, U) ∧ <(a, V) → U = V ,

(11) ∀x(x ∈ U ↔ x ∈ V) → U = V .

III. Basic type existence axioms. These include axioms for the natural numbers,
elementary separation, union, join and product types.

Natural numbers

(12) <(nat) ∧ ∀x(x ∈̇ nat ↔ N(x)).

Elementary separation. Let φ(x, ~y, ~Z) be an elementary formula of L with
at most the indicated free variables and with Gödelnumber e for any fixed
Gödelnumbering, then we have the following axioms:

(13) <(c,~b) → <(sepe(~a, c,~b)),

(14) <(c,~b, S, ~T) → ∀x(x ∈̇ sepe(~a, c,~b) ↔ x ∈ S ∧ φ(x,~a, ~T)).

Union

(15) <(a) ∧ <(b) → <(un(a, b)) ∧ ∀x(x ∈̇ un(a, b) ↔ x ∈̇ a ∨ x ∈̇ b).

We will employ S ∪ T and S ∩ T to denote the union of S and T , and the
intersection of S and T , respectively. The same notation will also be used
for names.

Join

(16) <(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f)) ∧ Σ(a, f, j(a, f)).

In this axiom the formula Σ(a, f, b) means that b names the disjoint union
of f over a, i.e.

Σ(a, f, b) := ∀x(x ∈̇ b↔ ∃y∃z(x = (y, z) ∧ y ∈̇ a ∧ z ∈̇ fy)).

7

Product

(17) <(a) ∧ (∀x ∈̇ a)<(fx) → <(prod(a, f)) ∧ Π(a, f, prod(a, f)).

Here the formula Π(a, f, b) says that b represents the product of all f(x) for
x ∈̇ a, i.e.

Π(a, f, b) := ∀g(g ∈̇ b↔ (∀x ∈̇ a)gx ∈̇ fx).
The axioms (1) – (17) plus formula induction on the natural numbers corre-
spond to Feferman’s theory S0 (introduced in [9]) without inductive gener-
ation. We are going to extend this system by axioms for weak power types
and for the subset decidability operation on these power types.

IV. Power type axioms. These axioms state that weak power types exist and
that the generator pow is a monotone operation on names.

(18) <(a) → <(pow(a)),

(19) <(a) → ∀x(x ∈̇ pow(a) → x ⊂̇ a),

(20) <(a) → ∀x∃y(x ⊂̇ a→ y =̇ x ∧ y ∈̇ pow(a)),

(21) a ⊂̇ b→ pow(a) ⊂̇ pow(b).

V. Subset decidability on power types. We can decide the subtype relation
between elements of a power type.

(22) <(c) ∧ a ∈̇ pow(c) ∧ b ∈̇ pow(c) → (subab = 0 ∨ subab = 1),

(23) <(c) ∧ a ∈̇ pow(c) ∧ b ∈̇ pow(c) → (subab = 1 ↔ a ⊂̇ b),

(24) subab = 1 → a ∈̇ pow(b).

We will consider the extension of OTN by complete induction on the natural
numbers. We introduce the schema of formula induction (full induction).

Formula induction on the natural numbers

(L-IN) φ(0) ∧ (∀x ∈ N)(φ(x) → φ(sNx)) → (∀x ∈ N)φ(x)

for all formulas φ of L.
In the following we are going to discuss the axioms of OTN. There are two

crucial principles following already from the axioms of a partial combinatory
algebra, that is the axioms (1) and (2) of BON: λ abstraction and a recursion
theorem, cf. e.g. Beeson [1] or Feferman [7].

Definition 1. We define the L term (λx.t) by induction on the complexity
of t as follows:

8

1. If t is the variable x, then λx.t is skk.

2. If t is a variable different from x or a constant, then λx.t is kt.

3. If t is an application (t1t2), then λx.t is s(λx.t1)(λx.t2).

Next we have the expected theorem about λ abstraction, whose proof
is standard. Using our definition of λx.t, the first assertion of the theorem
below is immediate by an easy inductive argument and by making use of
axioms (1) and (2) of BON. The second assertion follows from the first by
straightforward reasoning in the logic of partial terms.

Theorem 2 (λ abstraction). For each L term t and all variables x there
exists an L term (λx.t), whose variables are those of t, excluding x, so that

1. BON ` λx.t↓ ∧ (λx.t)x ' t;

2. BON ` s↓ → (λx.t)s ' t[s/x].

The definition of λ abstraction in the context of a partial combinatory
algebra has the drawback that it does not commute with substitutions.

Example 3. If x and y are distinct variables and x does not occur in the
term s, then the two terms (λx.t)[s/y] and (λx.t[s/y]) are in general not
provably equal in BON. For a counterexample let t be the variable y and s
the term (zz) for some variable z. Then (λx.t)[s/y] is the term k(zz) and
(λx.t[s/y]) is s(kz)(kz).

However, in BON, a weaker form of the substitution principle for λ terms
is provable, which states that the substitution into λ expressions is not prob-
lematic if the result of the substitution is immediately applied.

Lemma 4. For all L terms s and t and different variables x and y of L we
have

BON ` (λx.t)[s/y]x ' t[s/y].

As usual, we generalize λ abstraction to several arguments by iterating ab-
straction for one argument, i.e. λx1 . . . xn.t abbreviates λx1.(. . . (λxn.t) . . .).
Using λ abstraction we can define a recursion combinator in our system of
explicit mathematics.

Theorem 5 (Recursion). There exists a closed L term rec so that

BON ` recf↓ ∧ recfx ' f(recf)x.

9

Now we come to the type existence axioms. Usually, theories of explicit
mathematics are based on elementary comprehension rather than separation.
In this case, there is a universal type available which contains everything.
Together with join, this universal type can be used to prove the product
axiom. Since separation does not prove the existence of a universal type, we
have to add an axiom for product types (see Feferman [9]).

Note that for elementary comprehension, there is a finite axiomatization
available, see Feferman and Jäger [14]. Jäger and Studer [23] present an
inductive model construction for this finite axiomatization which exhibits
nicely the constructive character of theories of types and names. For elemen-
tary separation no such axiomatization is known in the literature.

The weak power type axiom states that for every type A there exists a
type B containing at least one name of every subtype of A and each element
of B is a name for a subtype of A. By a simple diagonalization argument
we can see that in the presence of join this axiom is inconsistent with the
existence of a universal type. Assume that there is a weak power type C of
the universal type, so

∀x(x ∈ C → <(x)) ∧ ∀X∃y(y ∈ C ∧ <(y,X)). (1)

Let c be a name for C and let J be the join represented by j(c, λx.x). Hence
(a, x) ∈ J ↔ x ∈̇ a. Let A := {x | x ∈ C ∧ (x, x) 6∈ J}. By (1), this type has
a name a so that a ∈ C. We get

a ∈̇ a↔ a ∈ A↔ a ∈ C ∧ (a, a) 6∈ J ↔ a ∈ C ∧ a 6∈̇ a↔ a 6∈̇ a,

which gives a contradiction. Therefore we dispense with the universal type
and include only elementary separation in our list of axioms.

Subset decidability on power types will turn out to be crucial for the
development of overloaded functions in OTN. These axioms state that if
we have two names a and b such that both of them are elements of a given
power type, then the term sub decides whether the type represented by a is
a subtype of the type represented by b. Moreover, axiom (24) states that
if two names a and b are in the subtype relation with respect to sub, then
a must be an element of the power type of b. That is the L term sub is
compatible with pow. This subset decidability operator will be employed
to model applications of overloaded functions. There, one has to select the
best matching branch, which requires that the subtype relation is decidable.
This will be the task of the term sub. This term may also be regarded as
very special quantification operation since for elements a, b ∈ pow(c) we have
subab = 0 ↔ (∃x ∈̇ a)x 6∈̇ b. This point of view is supported by our model

10

construction in the next section, where the term sub is dealt with in the first-
order part. The proof theory of several quantification functionals in explicit
mathematics has been studied in various papers by Feferman, Jäger, Glass,
Strahm and Kahle [13, 14, 18, 22, 24].

3 A Set-Theoretic Model for OTN + (L-IN)

There is a general set-theoretic model construction for systems of explicit
mathematics. We are going to extend it so that our axioms for weak power
types and subset decidability will be satisfied. Starting with any model M of
set theory we generate a model Gen(M) of the applicative axioms such that
the natural numbers are interpreted by ω and every set-theoretic function
F of M is represented in Gen(M). Over Gen(M), there is a natural model
construction for systems of explicit mathematics. We can inductively gener-
ate codes for the types and simultaneously we can also create a membership
relation satisfying the type existence axioms. This iterative process, where
the interpretation of a type is given in terms of previously defined types,
reflects the constructive content of explicit mathematics.

These standard set-theoretic model constructions for applicative theories
and systems of explicit mathematics are carried out at various places, for
instance in Feferman [7, 8, 9], Beeson [1], Glass, Rathjen and Schlüter [17]
as well as Troelstra and van Dalen [33]. Since this procedure for generating
models of explicit mathematics is already well described in the literature, we
do not present the full details. Only the cases concerning power types and
the subset decidability operation will be emphasized.

For simplicity, we will first give the construction for a model Gen(M)
satisfying only the axioms of BON. Let M be any model of set theory; let
P, P0, P1 be the pairing and projection functions ofM and let 0 be the natural
number 0 in M. Choose codes k, s, p, p0, p1, sN, pN, dN, kx, sx, sxy, dNa

, dNab
,

dNabx
, p

x
and F for every set-theoretic function F ofM and all a, b, x, y ∈M.

These codes are all distinct from the natural number 0 and from each other
for all a, b, x, y ∈ M. Then we take App to be the least ternary relation
satisfying:

• App(k, x, kx) and App(kx, y, x),

• App(s, x, sx), App(sx, y, sxy) and if App(x, z, w), App(y, z, v) as well as
App(w, v, u) hold, then also App(sxy, z, u),

• App(p, x, p
x
), App(p

x
, y, P (x, y)), App(p0, x, P0(x)), App(p1, x, P1(x)),

• App(sN, x, x+ 1) and App(pN, x+ 1, x) for x ∈ ω,

11

• App(dN, a, dNa
), App(dNa

, b, dNab
), App(dNab

, x, dNabx
) and if x = y, then

App(dNabx
, y, a) as well as if x 6= y, then App(dNabx

, y, b),

• App(F, x, F (x)) for each set-theoretic function F in M.

That is we regard the applicative axioms as closure conditions on the in-
ductively generated relation App(x, y, z). This is done so that pairing is
interpreted by set-theoretic pairing and the natural numbers are modeled by
ω, which are the natural numbers in M. Additionally, App(x, y, z) is closed
under a condition expressing that the code F represents the function F . The
resulting structure Gen(M) is an applicative model and App(x, y, z) can be
employed to interpret xy ' z.

Now we will adapt this construction so that it will be compatible with
the axioms for power types and subset decidability. First, we have to require
that each code F is a set-theoretic pair whose first component is the natural
number 0; otherwise we would have a conflict in the model with the type
existence axioms. These codes F will possibly be names for types and we
have to ensure that they are different from the names constructed by the
type existence axioms. Moreover, we introduce a code sub for the subset
decidability operation and auxiliary codes subF for every function F and for
the empty set ∅. Then we need three more closure conditions for the relation
App so that we will get a model for the subset decidability operation. These
conditions are:

• If F is a partial function of M so that its range is a subset of {1}, and
if x = sub and y = F as well as z = subF , then App(x, y, z) holds.

• If F and G are partial functions of M so that their respective range is
a subset of {1} and x = subF and y = G as well as

∃a¬(F (a) = 1 → G(a) = 1),

then App(x, y, 0) holds.

• If F and G partial functions of M so that their respective range is a
subset of {1} and x = subF and y = G as well as

∀a(F (a) = 1 → G(a) = 1),

then App(x, y, 1) holds.

This relation App(x, y, z) will interpret the partial application xy ' z. In
this way the first order part of OTN + (L-IN) is modeled by Gen(M).

12

Note that in applicative theories, sets are usually encoded as total func-
tions from the natural numbers to {0, 1}. In our definition of the relation
App with the terms subF we consider partial functions as sets. We will have
that x ∈ F if F (x) = 1 and x 6∈ F if F (x) is undefined. This is important for
the construction of the model for the type structure. There we will interpret
these partial functions as names for types. This is done in the sequel.

Feferman [9] presents a set-theoretic model for S0 plus a weak power type
axiom over Gen(M). We will modify this construction so that it satisfies all
axioms of OTN + (L-IN). To build the set-theoretic model, one defines two
relations

Cl :=
⋃
α

Clα and ∈ :=
⋃
α

∈α

by transfinite induction on the ordinal α. The predicate Cl(a) means that a
is a name for a type in the model and the relation x ∈ a states that in the
model, x is an element of the type represented by a. We begin with assigning
to each generator of L a code in Gen(M), e.g. such that:

nat := (1, 0), sep
e
(~a) := (2, e, (~a)), un(a, b) := (3, a, b),

j(a, f) := (4, a, f), prod(a, f) := (5, a, f), pow(a) := (6, a).

These codes will be the names for the corresponding types in the model.
They are chosen so that no conflicts arise with the representations F of set-
theoretic functions F , i.e. none of these sequences starts with the natural
number 0. We define the relations Clα and ∈α by transfinite induction on α.
At stage α one has a structure (Gen(M),Clα,∈α) in which the formulas of L
are interpreted by taking ∈α for ∈ and letting the names range over Clα. For
example, at stage 0 we have

Cl0(nat) and x ∈0 nat if x is a natural number in M.

At later stages, we can define the interpretation of a type based on the
interpretation of previously constructed types. The simplest case are union
types. If we have Clβ(a) and Clβ(b) for some β < α, then we get

Clα(un(a, b)) and x ∈α un(a, b) if x ∈β a ∨ x ∈β b.

Similarly, one can define the interpretation of elementary separation, join
and product types. Details can be found in the above mentioned literature.
The following two cases deal with the power type axioms.

• For each partial function F in M so that the range of F is a subset of
{1} we have Cl0(F) and x ∈0 F if and only if F (x) = 1.

13

• For each a ∈ Clα we have Clα+1(pow(a)) and x ∈α+1 pow(a) if and only
if x is an F such that the domain of F is a subset of {y | y ∈α a} and
the range of F is a subset of {1}.

The first condition ensures that the code of a partial functions whose range
is a subset of {1} is interpreted as a name. The code F represents the type
of all x with F (x) = 1, that is F represents its domain. This condition
guarantees that all elements of power types will indeed by names.

The second clause states that the power type of any type A is interpreted
by the collection of all partial functions F from A to {1} in M. In order
to make this work, we need the fact that the interpretation of a type of
our system of explicit mathematics is a set in M. This would not be the
case if we allow elementary comprehension since this implies the existence
of the universal type. Hence, we have to restrict our system to elementary
separation.

As mentioned above, the first order part of OTN + (L-IN) is interpreted
over Gen(M). In order to give the semantics of the type structure of OTN +
(L-IN) we have defined the relations Cl :=

⋃
α Clα and ∈ :=

⋃
α ∈α. For a ∈ Cl

the set of all x ∈ a is denoted by ext(a). Hence, the second order quantifiers
of L will range over all ext(a) for a ∈ Cl and the naming relation < will be
interpreted by the collection of all pairs (a, ext(a)) for a ∈ Cl. We get the
following soundness result.

Theorem 6. For every formula φ of L we have

OTN + (L-IN) ` φ =⇒ (Gen(M),Cl,∈) |= φ.

Proof. The only critical axioms are the power type axioms and the axioms
for the subset decidability operation. All other axioms can be verified in a
straightforward way, see Feferman’s model for S0 [9]. Observe that ext(a) is
a set in M for all a ∈ Cl. Moreover, we have for all α, all a ∈ Clα and all x

x ∈ ext(a) ↔ x ∈α a.

That is if a represents a type at stage α, then this type is completely defined
at that stage. Later, no new elements will be included to it. Now we can
check the power type axioms.

(18) If a ∈ Cl, then we immediately obtain pow(a) ∈ Cl.

(19) If x ∈ ext(pow(a)) and y ∈ ext(x), then App(x, y, 1) holds, and x rep-
resents a set-theoretic function whose domain is a subset of ext(a).
Therefore we conclude y ∈ ext(a).

14

(20) Let a, x be elements of Cl such that ∀z(z ∈ ext(x) → z ∈ ext(a)). Since
ext(x) is a set in M, there exists a function F := {(z, 1) | z ∈ ext(x)}
in M. Then F ∈ ext(pow(a)). Moreover, F ∈ Cl holds and z ∈ ext(F)
if and only if App(F, z, 1). By the construction of F this is the case if
and only if z ∈ ext(x).

(21) Let a, b be in Cl such that ∀x(x ∈ ext(a) → x ∈ ext(b)) as well as
y ∈ ext(pow(a)). Hence, y represents a set-theoretic function whose
domain is a subset of ext(a). But then its domain is also a subset of
ext(b) and we conclude y ∈ ext(pow(b)).

Now we turn to the axioms for the subset decidability operation. Assume
c ∈ Cl and a ∈ ext(pow(c)) and b ∈ ext(pow(c)). Hence, a and b are repre-
sentations of partial set-theoretic functions from ext(c) to {1}. By the def-
inition of ∈0 and App we obtain the equivalences x ∈ ext(a) ↔ App(a, x, 1)
and x ∈ ext(b) ↔ App(b, x, 1) for all x. This yields that ext(a) ⊂ ext(b)
holds if and only if we have ∀x(App(a, x, 1) → App(b, x, 1)). Therefore, by
the definition of App and our interpretation of sub the first two axioms for
subset decidability are satisfied. In order to verify the last axiom about
subset decidability assume that our model satisfies subab = 1. In order
to define App, one takes the least fixed point of the inductively defined
application. This implies that we have two set-theoretic functions F and
G whose ranges are a subsets of {1}. The terms a and b are then inter-
preted by the codes F and G, respectively. We have App(sub, F , subF) and
App(subF , G, 1). By the construction of the set-theroretic model for the type
structure we get G ∈ Cl with ∀x(x ∈ ext(G) ↔ G(x) = 1). Moreover,
we have ∀x(F (x) = 1 → G(x) = 1). Hence, the domain of F is a subset
of ext(G) and therefore, we get F ∈ pow(G) which is the interpretation of
a ∈̇ pow(b).

4 Impredicative Overloading in OTN

In this section we are going to develop a theory of impredicative overloading
and late-binding in OTN. This examines the relationship of power types
and impredicative overloaded function types. It shows that the monotonicity
axiom for power types is a key principle to extend the range of possible
applications of power types.

To implement overloading and late-binding it is necessary that terms
carry their run-time type information. This can be achieved if terms are
ordered pairs, where the first component shows the type information and the
second component is the computational aspect of the term. So the run-time

15

type of a term is explicitly displayed and can be used to evaluate expressions
in the context of late-bound overloading (see Castagna [5] or Studer [30]).

If t is a name in OTN, then we define t∗ to be the name j(pow(t), λx.x); and
if T is a type with name t, then T ∗ is the type represented by t∗, i.e. T ∗ is the
disjoint union of all subtypes of T . We have the following property of the type
named t∗ for any name t. If x ∈̇ t∗, then p0x ⊂̇ t and p1x ∈̇ p0x. Therefore
p0x can be viewed as the run-time type and p1x as the computational aspect
of the term x.

Now we will define the overloaded function types. Let S1, T1, . . . , Sn, Tn

be types of OTN. Then we write {S1 → T1, . . . , Sn → Tn} for the overloaded
function type

{f | (∀x ∈ S∗
1)fx ∈ T ∗

1 ∧ . . . ∧ (∀x ∈ S∗
n)fx ∈ T ∗

n}. (2)

This type exists by the product axiom and elementary separation. It can be
named uniformly in the names of S1, T1, . . . , Sn, Tn. Often, we will employ a
notation with index sets and write {Si → Ti}i∈I for the overloaded function
type {S1 → T1, . . . , Sn → Tn} where I is the set {1, . . . , n}.

The general intuition of this type construction is the following. The type
S∗ is the disjoint union of all subtypes of S. In order the build this disjoint
union, we have to know all subtypes of a given type. Therefore, we need the
power type axioms, which are the essential impredicative feature of OTN.
The elements of S∗ are pairs (a, x) so that a represents a subtype of S and
x is an element of this subtype. Hence we also have x ∈ S and a may be
regarded as the run-time type of x. Hence, the formula

(∀x ∈ S∗)fx ∈ T ∗ (3)

states that the function f maps any subtype of S to some subtype of T so
that it respects the run-time type information which is explicitly shown in
the elements of S∗ and T ∗. If f is an overloaded function, then it has to
satisfy several formulas of the form of (3). This is the meaning of (2).

Castagna, Ghelli and Longo [6] remark that overloaded types are strongly
related to intersection types: an intersection type T ∩ U is a type whose
elements can play both the role of an element of T and of an element of
U . This also holds for overloaded types. In the case of intersection types
a coherence condition is additionally imposed, which basically means that a
value can freely choose any of these roles without affecting the final result of
a computation. This is not the case with overloaded functions in λ&: there is
no such condition and it is essential that the type of an argument can affect
the result of a computation. The overloaded type {S1 → T1, . . . , Sn → Tn}
is simply defined as the intersection

{S∗
1 → T ∗

1 } ∩ . . . ∩ {S∗
n → T ∗

n}

16

without any condition being imposed. If we considered this type not as an
overloaded function type, but as an intersection type, then the additional
coherence condition would state the following: let f be an element of this
intersection type and let x be either an element of Si or Sj (1 ≤ i, j ≤ n), then
the result of fx must not depend on the type of x. If we drop this condition,
then the computation may depend on the argument type, which is an essential
feature of overloaded function types in λ&. Our model of overloading in
explicit mathematics reflects this relationship between intersection types and
overloaded function types.

We obtain the following result about subtyping which corresponds to the
subtyping rule of λ& in Castagna, Ghelli and Longo [6].

Theorem 7. Let {Uj → Vj}j∈J and {Si → Ti}i∈I be overloaded function
types. If for all i ∈ I there exists j ∈ J so that both Si ⊂ Uj and Vj ⊂ Ti

hold, then the following can be proven:

{Uj → Vj}j∈J ⊂ {Si → Ti}i∈I .

Proof. By the monotonicity of the power type generator pow we know that
the operation ∗ is monotone, i.e.

S ⊂ T → S∗ ⊂ T ∗. (4)

Assume now f ∈ {Uj → Vj}j∈J and let x ∈ S∗
i for an i ∈ I. Then there

exists j ∈ J so that Si ⊂ Uj and Vj ⊂ Ti hold. Hence, by (4) we get x ∈ U∗
j

and therefore fx ∈ V ∗
j . Again by (4) we conclude fx ∈ T ∗

i .

Next, we investigate overloaded function terms. In order to construct
them, we need a term that serves at selecting the best matching branch.
Assume we are given types S1, . . . , Sn. Then there are names s1, . . . , sn of
S1, . . . , Sn, respectively, so that s1, . . . , sn ∈̇ pow(s1 ∪ · · · ∪ sn). Let t be
the name pow(s1 ∪ · · · ∪ sn). Then sub satisfies subssi = 0 ∨ subssi = 1 as
well as subssi = 1 ↔ s ⊂̇ si for all s ∈̇ t and every si. Using sub we build
for each j ≤ n a term Minj

s1,...,sn
of L so that for all names s ∈̇ t we have

Minj
s1,...,sn

(s) = 0 ∨Minj
s1,...,sn

(s) = 1 and Minj
s1,...,sn

(s) = 1 if and only if

subssj = 1
∧

1≤l≤n
l 6=j

(subssl = 1 → subslsj = 0).

If the name sj is a minimal element of the set {si | s ⊂̇ si for 1 ≤ i ≤ n},
then Minj

s1,...,sn
(s) = 1 holds and otherwise Minj

s1,...,sn
(s) = 0.

Assume now we are given two function terms f1 and f2 as well as names
s1, t1, s2, t2 so that f1 ∈̇ (s∗1 → t∗1) and f2 ∈̇ (s∗2 → t∗2). Using definition by

17

cases on natural numbers we can combine f1 and f2 to an overloaded function
f so that

fx '

{
f1x Min1

s1,s2
(p0x) = 1,

f2x Min2
s1,s2

(p0x) = 1 ∧Min1
s1,s2

(p0x) 6= 1.

Of course it is also possible to combine more than two functions. Let us
introduce the following notation for overloaded function terms. Assume
we have functions f1 ∈ (S∗

1 → T ∗
1), . . . , fn ∈ (S∗

n → T ∗
n), then the term

overS1,...,Sn(f1 . . . , fn) denotes the overloaded function built up from the branches
f1, . . . , fn as above. Overloaded functions overS1,...,Sn(f1 . . . , fn) behave ac-
cording to the reduction rule of λ&, where the run-time type of the argument
selects the best matching branch.

Castagna, Ghelli and Longo [6] introduce two consistency conditions
concerning good type formation for overloaded function types, so that the
static typing of a term can assure that the computation will be type-error
free, although it is based on run-time types. An overloaded function type
{Si → Ti}i∈I is called well-formed if and only if it satisfies the following
conditions for all i, j ∈ I:

(1) Si ⊂ Sj → Ti ⊂ Tj,

(2) if the intersection of Si and Sj is nonempty, then there exists a unique
k ∈ I so that Sk = Si ∩ Sj.

The condition (2) is very much adapted to our explicit mathematics frame-
work. In λ& it has to be formulated as

(2′) if there exists i ∈ I and a (pre)type S so that S ≤ Si, then there exists a
unique z ∈ I such that Sz is a minimal element of {Sj |S ≤ Sj∧j ∈ I},

see for instance Studer [30]. This condition is much closer to “real” object-
oriented programming. However, since we have arbitrary intersection types
in OTN, the conditions (2) and (2′) are equivalent in OTN and we think that
(2) corresponds more to the set-theoretic spirit of explicit mathematics.

With the notion of a well-formed overloaded function type, we can prove
the following theorem about typing of overloaded functions.

Theorem 8. Let {S1 → T1, . . . , Sn → Tn} be a well-formed overloaded
function type, i.e. it satisfies the consistency conditions (1) and (2), and
let f1, . . . , fn be L terms so that f1 ∈ (S∗

1 → T ∗
1), . . . , fn ∈ (S∗

n → T ∗
n). Then

the following can be proven:

overS1,...,Sn(f1, . . . , fn) ∈ {S1 → T1, . . . , Sn → Tn}.

18

Proof. First, let s1, . . . , sn be names of S1, . . . , Sn, respectively, so that s1, . . . , sn ∈̇
pow(s1 ∪ · · · ∪ sn). Assume we are given an x ∈ S∗

i for 1 ≤ i ≤ n. Then
x = (p0x, p1x), p1x ∈̇ p0x and p0x is an element of the power type of Si. By
condition (2) there is a unique j ∈ {1, . . . , n} so that

Minj
s1,...,sn

(p0x) = 1. (5)

The uniqueness of j can be seen as follows: assume that Minj
s1,...,sn

(p0x) = 1

as well as Mink
s1,...,sn

(p0x) = 1 hold. Then we have p0x ⊂̇ sj and p0x ⊂̇ sk.
Since p1x ∈̇ p0x holds we know that sj ∩ sk is nonempty. Therefore by
consistency condition (2) there is a unique l so that sl =̇ sj ∩ sk. By the
minimality of sj and sk we obtain j = l = k. Hence, there is a unique j so
that (5) holds. Therefore we get overS1,...,Sn(f1, . . . , fn)x = fjx. By (5) and
the axioms for subset decidability we find that p0x is an element of the power
type of Sj and therefore x ∈ S∗

j . By our premise for fj we conclude

overS1,...,Sn(f1, . . . , fn)x ∈ T ∗
j . (6)

From x ∈ S∗
i and Minj

s1,...,sn
(p0x) = 1 we conclude as above by consistency

condition (2) that there exists a unique k so that Sk = Si ∩ Sj. The name
p0x represents a subset of Sk. Suppose Sj 6⊂ Si. This implies Sk (Sj which
contradicts Minj

s1,...,sn
(p0x) = 1. Therefore we have Sj ⊂ Si and applying

consistency condition (1) yields Tj ⊂ Ti. By (6) and the monotonicity of ∗

we finally get
overS1,...,Sn(f1, . . . , fn)x ∈ T ∗

i .

Remark 9. Both consistency conditions are necessary premises in the above
theorem. Let s1, s2, t1, t2 be names for the classes {1}, {1, 2}, {1} and {2},
respectively, so that s1 ∈̇ pow(s2), t1 ∈̇ pow(t1) and t2 ∈̇ pow(t2). We find
that s1 ⊂̇ s2 holds but not t1 ⊂̇ t2, that is the type {s1 → t1, s2 → t2} does
not satisfy the first consistency condition. We see that

f1 := λx.(t1, 1) ∈̇ (s∗1 → t∗1) and f2 := λx.(t2, 2) ∈̇ (s∗2 → t∗2)

However, we find (s1, 1) ∈̇ s∗2 but overs1,s2(f1, f2)(s1, 1) yields (t1, 1) which
is not an element of t∗2. Hence, overs1,s2(f1, f2) does not belong to the type
{s1 → t1, s2 → t2}.

Let s1, s2, s3, t2, t3 be names for {1}, {1, 2}, {1, 3}, {2} and {3}, respec-
tively, so that s1 ∈̇ pow(s1), t2 ∈̇ pow(t2) and t3 ∈̇ pow(t3). By the mono-
tonicity of the generator pow we get s1 ∈̇ pow(s2) and s1 ∈̇ pow(s3). Note
that the type {s2 → t2, s3 → t3} does not satisfy the condition (2). We find

19

that f2 := λx.(t2, 2) ∈̇ (s∗2 → t∗2) as well as f3 := λx.(t3, 3) ∈̇ (s∗3 → t∗3)
hold. We get (s1, 1) ∈̇ s∗3, but overs2,s3(f2, f3)(s1, 1) yields (t2, 2) which is
not in t∗3. Hence, the type {s2 → t2, s3 → t3} does not contain the function
overs2,s3(f2, f3).

Remark 10. Now we will explain why we do not give an interpretation of λ&
in OTN. Basically, there are two problems. The first is, as already mentioned,
that OTN is formalized in a partial setting and therefore, the definition of
λ abstraction does not commute with substitutions, see Example 3. This
has the consequence that reduction would not preserve a straightforward
interpretation of λ& terms in OTN.

The second problem is more subtle. As we have seen in the previous
remark, if an overloaded function type has two branches with respective
domains {1, 2} and {1, 3}, then it must have also a third branch with the
domain {1} in order to be well-formed. Assume that we have in λ& two
atomic types A and B, which are modeled by the types {1, 2} and {1, 3},
respectively. Assume further, that A and B do not have a common subtype
in λ&. Then an overloaded function type consisting of two branches with
the domains A and B would be well-formed in λ& but its interpretation in
OTN would not be well-formed since in OTN the type {1} exists.

Of course, one could require that two atomic types of λ& that do not
have a common subtype have to be modeled by disjoint types in OTN. Still,
it would remain to show by induction that the same also holds for overloaded
function types. Probably, it would only be possible to prove that if two types
A and B of λ& do not have a common subtype, then there is no type C of
λ& so that the interpretation of C is contained in both the interpretation
of A and the interpretation of B. If this is the case, then one would have
to find a weaker version of the consistency condition (2) which takes into
account only the interpretations of λ& types but not all types of OTN. Then
Theorem 8 might be reformulated as a soundness theorem with respect to
typing. However, this construction would be non-trivial and a lot of details
would have to be checked.

Remark 11. In many natural models for second order λ calculi one faces
the problem of “too many subtypes”: the only closed term f of the type
(∀X ⊂ N)(X → X) is the identity function on the natural numbers, see
Bruce and Longo [3]. This is for the following reason: consider the type {n}
for each natural number n. Of course {n} ⊂ N holds (hence the name of the
problem) and therefore f : {n} → {n} for each n. Since in these models the
type of the argument affects only the type of the result, but not its value, we
obtain that the term f must be the identity function.

This is not the case if we look at overloaded functions in explicit mathe-

20

matics. For example, choose names s1, s2, s3, n ∈ pow(nat) representing the
types {1}, {2}, {1, 2} and N, respectively. Now consider the term

t := overs1,s2,s3,n(λx.x, λx.x, λx.(s3, 1), λx.x).

This term is not the identity function since it maps (s3, 2) to (s3, 1). Never-
theless, the term t satisfies

(∀X ⊂ N)t ∈ (X∗ → X∗). (7)

If we restrict the universe of types to subtypes of the natural numbers, i.e.
to elements of the power type of N, and if we let function types contain
overloaded functions, then OTN provides a natural model for a (partial)
second order λ calculus. As shown before, the identity function is not the
only function satisfying (7) in this model; but there are also many other
functions of this type.

5 Conclusion

We have introduced the system OTN+(L-IN) of types and names based on el-
ementary separation, product, join and power types; and we have presented
a set-theoretic model for this theory. Then we have shown how to define
in OTN late-bound overloaded functions with a corresponding impredica-
tive type structure à la λ&. The key ingredient to make this work was the
existence of monotone power types in explicit mathematics.

Due to the naming relation, systems of explicit mathematics naturally
contain type-dependent computations. However, up to now, this feature has
not been used to model programming language concepts. In this paper we try
to clarify the relation between the explicit naming of types in explicit math-
ematics and calculi with late-bound overloaded functions like λ&. We can-
not provide an actual interpretation of λ& in OTN since systems of explicit
mathematics are based on partial applicative theories. Nevertheless, our con-
struction provides a set-theoretic model for partial impredicative overloading
without restricting itself to early-binding or coherent overloading. We have
proven two theorems that exhibit the strong relationship between our con-
struction and λ&. Theorem 7 about subtyping of overloaded function types
in OTN is an exact copy of the subtyping rule of λ&. Theorem 8 about
typing corresponds to the typing rule of λ&. It shows why there are some
consistency conditions needed for the soundness of this rule.

One direction of future work is to continue the study of type systems for
modern programming languages in the framework of explicit mathematics.

21

For example, it would be interesting to explore the combination of late-bound
overloading with parametric polymorphism. Another direction of research
lies in the proof-theoretic analysis of the power type axiom. As Feferman [9]
noticed, join makes the power type axiom much more effective. Hence, it is
natural to ask what is the proof-theoretic strength of the power type axiom
in the context of uniform elementary separation and join. Also, it is an open
question whether the monotonicity axiom for pow affects the proof-theoretic
strength of the underlying system of explicit mathematics.

Acknowledgments. We would like to thank Gerhard Jäger and Thomas
Strahm for many helpful comments on an earlier version of this paper.

References

[1] Michael J. Beeson. Foundations of Constructive Mathematics: Meta-
mathematical Studies. Springer, 1985.

[2] Michael J. Beeson. Proving programs and programming proofs. In
R. Barcan Marcus, G.J.W. Dorn, and P. Weingartner, editors, Logic,
Methodology and Philosophy of Science VII, pages 51–82. North-
Holland, 1986.

[3] Kim B. Bruce and Giuseppe Longo. A modest model of records, in-
heritance, and bounded quantification. In C. Gunter and J. Mitchell,
editors, Theoretical Aspects of Object-Oriented Programming, pages 151–
195. MIT Press, 1994. First appeared in Information and Compuation,
87:196–240, 1990.

[4] Andrea Cantini. Relating Quine’s NF to Feferman’s EM. Studia Logica,
62:141–163, 1999.

[5] Giuseppe Castagna. Object-Oriented Programming: A Unified Founda-
tion. Birkhäuser, 1997.

[6] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus
for overloaded functions with subtyping. Information and Computation,
117(1):115–135, 1995.

[7] Solomon Feferman. A language and axioms for explicit mathematics. In
J.N. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in
Mathematics, pages 87–139. Springer, 1975.

22

[8] Solomon Feferman. Recursion theory and set theory: a marriage of
convenience. In J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors,
Generalized Recursion Theory II, Oslo 1977, pages 55–98. North Hol-
land, 1978.

[9] Solomon Feferman. Constructive theories of functions and classes. In
M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium ’78,
pages 159–224. North Holland, 1979.

[10] Solomon Feferman. Polymorphic typed lambda-calculi in a type-free ax-
iomatic framework. In W. Sieg, editor, Logic and Computation, volume
106 of Contemporary Mathematics, pages 101–136. American Mathe-
matical Society, 1990.

[11] Solomon Feferman. Logics for termination and correctness of functional
programs. In Y. N. Moschovakis, editor, Logic from Computer Science,
volume 21 of MSRI Publications, pages 95–127. Springer, 1991.

[12] Solomon Feferman. Logics for termination and correctness of functional
programs II: Logics of strength PRA. In P. Aczel, H. Simmons, and S. S.
Wainer, editors, Proof Theory, pages 195–225. Cambridge University
Press, 1992.

[13] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part I. Annals of Pure and Applied
Logic, 65(3):243–263, 1993.

[14] Solomon Feferman and Gerhard Jäger. Systems of explicit mathematics
with non-constructive µ-operator. Part II. Annals of Pure and Applied
Logic, 79(1):37–52, 1996.

[15] Giorgio Ghelli. A static type system for late binding overloading. In
A. Paepcke, editor, Proc. of the Sixth International ACM Conference on
Object-Oriented Programming Systems and Applications, pages 129–145.
Addison-Wesley, 1991.

[16] Thomas Glass. On power set in explicit mathematics. The Journal of
Symbolic Logic, 61(2):468–489, 1996.

[17] Thomas Glass, Michael Rathjen, and Andreas Schlüter. On the proof-
theoretic strenght of monotone induction in explicit mathematics. An-
nals of Pure and Applied Logic, 85:1–46, 1997.

23

[18] Thomas Glass and Thomas Strahm. Systems of explicit mathematics
with non-constructive µ-operator and join. Annals of Pure and Applied
Logic, 82:193–219, 1996.

[19] Gerhard Jäger. Induction in the elementary theory of types and names.
In E. Börger, H. Kleine Büning, and M.M. Richter, editors, Computer
Science Logic ’87, volume 329 of Lecture Notes in Computer Science,
pages 118–128. Springer, 1988.

[20] Gerhard Jäger. Power types in explicit mathematics? The Journal of
Symbolic Logic, 62(4):1142–1146, 1997.

[21] Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative
theories. In A. Cantini, E. Casari, and P. Minari, editors, Logic and
Foundations of Mathematics, pages 83–92. Kluwer, 1999.

[22] Gerhard Jäger and Thomas Strahm. The proof-theoretic analysis of
the Suslin operator in applicative theories. In W. Sieg, R. Sommer,
and C. Talcott, editors, Reflections on the Foundations of Mathematics:
Essays in Honor of Solomon Feferman. A K Peters, 2002.

[23] Gerhard Jäger and Thomas Studer. Extending the system T0 of explicit
mathematics: the limit and Mahlo axioms. Annals of Pure and Applied
Logic, 114:79–101, 2002.

[24] Reinhard Kahle. N-strictness in applicative theories. Archive for Math-
ematical Logic, 39(2):125–144, 2000.

[25] Robert Stärk. Call-by-value, call-by-name and the logic of values. In
D. van Dalen and M. Bezem, editors, Computer Science Logic ’96,
volume 1258 of Lecture Notes in Computer Science, pages 431–445.
Springer, 1997.

[26] Robert Stärk. Why the constant ‘undefined’? Logics of partial terms
for strict and non-strict functional programming languages. Journal of
Functional Programming, 8(2):97–129, 1998.

[27] Thomas Strahm. Partial applicative theories and explicit substitutions.
Journal of Logic and Computation, 6(1):55–77, 1996.

[28] Thomas Studer. Constructive Foundations for Featherweight Java. In
R. Kahle, P. Schröder-Heister, and R. Stärk, editors, Proof Theory in
Computer Science, volume 2183 of Lecture Notes in Computer Science,
pages 202–238. Springer, 2001.

24

[29] Thomas Studer. Object-Oriented Programming in Explicit Mathematics:
Towards the Mathematics of Objects. PhD thesis, Institut für Informatik
und angewandte Mathematik, Universität Bern, 2001.

[30] Thomas Studer. A semantics for λ
{}
str: a calculus with overloading and

late-binding. Journal of Logic and Computation, 11(4):527–544, 2001.

[31] Makoto Tatsuta. Realizability for constructive theory of functions and
classes and its application to program synthesis. In Proceedings of Thir-
teenth Annual IEEE Symposium on Logic in Computer Science, LICS
’98, pages 358–367, 1998.

[32] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathemat-
ics, vol I. North Holland, 1988.

[33] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathemat-
ics, vol II. North Holland, 1988.

[34] Hideki Tsuiki. A Record Calculus with a Merge Operator. PhD thesis,
Keio University, 1992.

[35] Hideki Tsuiki. A computationally adequate model for overloading via
domain-valued functors. Mathematical Structures in Computer Science,
8:321–349, 1998.

[36] Raymond Turner. Constructive Foundations for Functional Languages.
McGraw Hill, 1991.

[37] Raymond Turner. Weak theories of operations and types. Journal of
Logic and Computation, 6(1):5–31, 1996.

Address
Thomas Studer
Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
tstuder@iam.unibe.ch

25

