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ABSTRACT

The retrieval problem for a knowledge basand a concept is to find all individualsa such thabo entailsc(a).

We describe a method to represent a knowledge basean instance of a relational database. To answer

a retrieval query oveo, we can execute a corresponding database queryamvE&he main problem of such

an embedding is that the semantics of knowledge bases is characterized by an open world assumption while
traditional databases feature a closed world semantics. Our procedure is sound and complete for knowledge
bases given in the description logiza(.
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1. INTRODUCTION

One of the main reasoning tasks for knowledge base systemsiisttieval problem(Baader & Nutt 2003,
Vitoria et al. 1995): given a knowledge ba3and a concept descriptid®) find all individualsa such thatO
entailsC(a). That is, givenO andC, we are looking for all individuala for which we can logically infer from
O thatabelongs taC. There is a trivial algorithm for this problem, namely to test for each individual occurring
in O whether it is an instance of the conc€ptOf course, such an algorithm is in general not feasible. Thus,
special storage and reasoning techniques are needed in order to efficiently answer retrieval queries.

Description Logicsare expressive languages for knowledge representation (Baader et al. 2003). They deal
with unary predicates (concepts), representing collections of individuals, and binary predicates (roles). A
description logic knowledge base consists of a terminology, which states relationships between concepts, and
of a world description, which makes assertions about individuals. There are a number of systems available
which support reasoning and persistent storage of such knowledge bases, for instance Sesame (Broekstra
et al. 2002), DLDB (Pan & Heflin 2003) and knOWLer (Ciorascu et al. 2003). Often, such systems are
implemented on a common RDBMS and a description logic reasoner like FaCT (Horrocks 1998) or Racer
(Haarslev & Moller 2001). However, concerning retrieval queries, these systems either work with the generate
and test method or do not yield complete answers.

We show that for a knowledge badethat is given in the description logic language&a\(, it is possible to
compute an instanae of a relational database which representwith respect to the retrieval problem. That
is, for every concept descriptid®, we can run a database query on the instapeehich returns exactly the
individuals belonging t&€ in O. Hence, we do not need a special description logic reasoning engine to answer
retrieval queries. Reasoning only takes place in the initial computation of the database instance. This instance
is built by performing a kind of completion algorithm.

The completion algorithm calculates the extensions of the base concepts which occur in the knowledge
base. That means, for each base confepte determine the set of all individuals belongingftoThus, we
can represent the extensions of the base concepts and roles of the knowledge base as instance of a relational
database. The retrieval query for a complex concept descriptan now be answered by a simple database
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guery on this instance.

The main technical difficulty in representing a description logic knowledge base as relational database
instance is that description logics are characterized bgmen world assumptiowhereas databases work
with a closed world semanticsAs a consequence, absence of information in a database is interpreted as
negative information while absence of information in description logics only means lack of knowledge. For
instance, consider a knowledge base witaaChild role that contains only one tuple, sé§eter, Harry).

Still, we are not allowed to infek1.hasChild(Peter) from this knowledge base because there are models
where the interpretation afasChild contains more tuples. We cannot identify negative information of our
knowledge base with missing information in its relational representation; instead, we have to introduce special
relations and terms in order to deal with negative information in the database instance.

Vitoria et al. (1995) present an approach to the retrieval problentfaf\’ which is based on finite au-
tomata. Similar to our work, they perform a preprocessing step which produces a completion of the knowledge
base. However, they build a finite automaton instead of constructing a database instance. This automaton can
then be used to answer retrieval queries in a syntax-directed way.

Although ALA is not a very expressive description logic language, it still suffices for many applica-
tions. As Gasdoeand Rousset notice, ontology designers often do not even exploit the full expressive power
of 4L to model their application domain. In the context of web ontology languages, Antoniou and van
Harmelen (2004) also state that there are reasons to expect that most ontological knowledge will be of a rather
simple nature. Of course, these points are arguable.

2. PRELIMINARIES

In this section, we first present syntax and semantics of the descriptionflogi¢. In a second part, we
introducea LA knowledge bases which consist of a terminology and a world description.

The syntax of2 LA is given by the following rule, wherd, B are used foatomic conceptsR denotes a
role andC, D stand forconcept descriptions

C,D— A] (atomic concept)
T|L1] (top, bottom)
—A | (atomic negation)
CnD | (conjunction)
VRC | (value restriction)

<n.R| >n.R (number restrictions).

The semantics of concept descriptions is given as followsingerpretationT is a pair(A’,-7) whereA!
is a non-empty set of individuals called the domain of the interpretation ‘aisdan interpretation function
assigning to each atomic concepta setA’ c A’ and to each rol® a binary relatiorR! C A’ x Al. The
interpretation function is extended to concept descriptions by the following inductive definition:

T = AL 1T =0
- 1 — AI AI
(c(m Dil = CI;DI
(VRC)! = {aeA!|vb((ab)eRl —beC!)}
(<n.R)! = {acA’|#{b](ab)cR}<n}
(Zn.R)I = {ae A' |#{b| (a,b) € RI} >n}

wheretS denotes the cardinality of the s&t
A knowledge base consists of a terminolog@y (called the TBox) and a world descriptiap, (called
the ABox). In this paper we will only consider finite knowledge bases.
TheterminologyOs contains concept definitions and restricted inclusion statemerdenéept definition
is an expression of the ford:= C whereA is an atomic concept ar@is a concept description. We assume
that an atomic concept appears on the left hand side of at most one concept definition. That is, the set of
definitions is unequivocal.



We divide the atomic concepts occurring into two sets, th@ame symbolthat occur on the left-hand
side of some concept definition, and thase symbolghat occur only on the right-hand side of the concept
definitions.

Let A andB be atomic concepts. We s&ydepends o if B appears in the concept definitionAf A set
of concept definitions is calleatyclicif there is no cycle in this dependency relation. For the rest of the paper
we will only consider acyclic TBoxes.

An acyclic set of definitions can be unfolded by the following iterative process: each occurrence of a name
symbol on the right-hand side of a definition is replaced by the concept that it stands for. Since there is no
cycle in the set of definitions, this process eventually stops. We end up with a terminology consisting solely of
definitions of the formA := C’ whereC’ contains only base symbols and no name symbols.

Since we work inZ LA, we need an additional constraint to make this unfolding possible. We assume that
no name symbol occurs negativelydn Otherwise we could have a terminology consistingho= —B and
B :=CrD. This would result iPA := —(CnD) which is not an4 LA concept description.

The allowedinclusion statementare of the formA C B andAr B C | whereA andB are base symbols,
that is atomic concepts for which no definition is included in the TBox. The inclusion statements of the TBox
have to be acyclic. There is no chaig L1,Lo,...,L, such thatg is the same concept &g and all statements
Li C Lj.1 are included in the TBox.

An interpretation/ satisfiesO; if for every inclusionC C D in Oy we haveC! C D/, and if for every
definitionA:=C in Oy we haveA! =C/.

A world descriptionOg4 is a set of assertions about the extension of concepts and roles. In the ABox we
introduce a set of individual constardgh, c,... and we assert properties of these individuals. We can make
the following two kinds of assertions in an ABogia) andR(b,c) whereC is a concept an®is a role. The
first kind, calledconcept assertigrstates thaa belongs to (the interpretation df). The second kind, called
role assertionstates thab is related tac by R.

We give semantics for the ABox by extending interpretations to individual constants as followsbkeet
(A1) where the interpretation functio not only maps atomic concepts and roles to sets and relations,
but in addition maps each individual constarto an elemena’ of A’. We assume that distinct individual
constants denote distinct objectsih. Therefore, the mapping respects thenique name assumptipthat
is if aandb are different individual constants, then we hae# b’.

The interpretatiorn’ satisfies the concept assertio(®) if @ € C!, and if (b’,c’) € R! then it satisfies the
role assertiorR(b,c). An interpretation satisfies an ABa®4 if it satisfies each assertion in it. We call an
interpretation/ amodelof a knowledge base, if I satisfiesOy and O4. We will use the following notation:

I = O means thaf is a model of the knowledge base We call a knowledge base satisfiablef there exists
an interpretatiorf such that/ = 0. We sayO entails Qa), formally O |= C(a), if every modell of O satisfies
C(a). Similarly, O = R(a,b) states that every modélof O satisfiesR(a,b). By O [~ C(a) and O (= R(a,b)
we mean that there exists a modedf O which does not satisf@(a) andR(a,b), respectively.

Example 1. Let us have a look at two examples of entailment.

e Let O be a knowledge base which contains the assertioh&(a), R(a,b) andC(b). We find that
0 = VRC(a).

e Let O be a knowledge base which contaifR A(a), YR —B(a) and havingA C B in its TBox. We find
that O = <0.R(a).

3. BUILDING THE DATABASE INSTANCE

We are going to present the construction of the database instance represenfidg\aknowledge base.
We will considernormalizedknowledge bases. The normalization of a knowledge loaiseachieved by the
following steps:

1. Add the inclusion statemenB C —A for eachAC Bin O.

2. Replace each statemexiti B C | by the two inclusion statemerntsC —B andB C —A.



3. If there is a chairLg,L,Lo,...,Ly of concepts such thdt, is the negation of ¢ and all statements
Li C Lj.1 are included in0, then add_g C L.

4. If there is a conceflt such that. C | is an inclusion statement @f, then replacé with L in O.

5. Fully unfold the concept definitions @, so that no name symbol occurs on the right-hand side of a
concept definition. Then we exhaustively apply the following normalization rule

YR.(CMD) — YRCMVRD.

Now replace each asserti@(a) € O by C'(a) whereC' is built from C by substituting each name
symbol with its (unfolded and normalized) definition.

Observe that in a normalized knowledge base, all atomic concepts are base symbols. If an atomic concept
has a definition, then it has been replaced by its definition during the process of normalization. Hence, the
assertional part of a normalized knowledge base contains only concept descriptions built from base symbols.
In the sequelO will always denote such a normalized knowledge base. R

Given a knowledge base, let C be the set of all individuals occurring . Now we define a sef of indi-
vidual constants which will be the domain of our database instance. We need some auxiliary notionke The
depth rd(C) of a concept C is given by: rd(T) = rd(L) = rd(A) = rd(-A) = 0,
rd(CM D) = max(rd(C),rd(D)), rd(VRC) = rd(C) + 1 andrd(<n.R) = rd(>n.R) = 1.

Let rd(O) be the maximum of altd(C) for concept expressiors occurring inO. Letk be the biggest
natural numben such that a number restrictioen.R or >n.R occurs inO. The setC is given by:

e every individual constard € C is included inC. We definerd(a) := 0 forae C.

e new constantsr,; are added t@ for all role namesR for alli with 1 <i <k and for allae C with
rd(a) < rd(0). We definerd(3ra,) :=rd(a) +

e new constantsr, are added t@ for all role namesR and for alla € C with rd(a) < rd(0). We define
rd(Vra) :=rd(a)+1

Note that since0 is finite, C is finite. Thus,( is also finite because of the role depth restrictions in its
definition.

Next, we are going to define the relati% swheresis an ABox assertion aralis a natural number. The
intended meaning aﬂﬁ sis “sfollows from O in at mosta steps”. We will employ this relation to compute
the atomic concept assertions which are entaile@byhey will serve as a basis to build the database instance
we are aiming at.

1. Oz C(a)if C(a) € O

2. Ol T(a), forallac C.

3. Oy —A(a), forallae CifAC Leo.

4. Ol R(a,b) if R(a,b) € 0.

5. OP (a,VRra) if VRa € C.

6. Olgz1 C(a) if Olg Cr1D(a) or Ol DMC(a).

7. Olgzr C(a) if there exists a constabte C such thato I+ VRC(b) andO |5~ R(b, a).
8. Olgzr C(a)if Ol D(a)andDCCe 0.

9. Olgzr R(a,3Rraj) if the following two conditions hold:

e O} >nR(a)



e 1<i<n—f{xe C|R(ax) € O}
10. Olgzt YRC(a) if Olg YRD(a) aswellaD C C € O.
11. Olg <O0.R(a) if we haveO |5 YR A(a) andO |5~ VR.—A(a) for some base concept

12. Ol <O0.R(a) if we have O |- YR <n.Ry(a) and O}5- VR.>m.Ry(a) for some roleR, and natural
numbers andmwith n < m.

13. Olgrr <O.R(@) if Ol5 VR L(a).
14. Ol C(a) if Ol C(a)
15. Olg R(a,b) if O} R(a,b).

We will write O+ C(a) andO - R(a, b) for 3a. 0|5 C(a) andJa.O k5 R(a, b), respectively.
Let us briefly discuss the different cases in the definitioméf- s.

e Cases 1to 4 deal with assertions directly include@in

¢ In case 5 we include special constalits, to the extension of a rolR. If we later get thaO - VR.C(a),
then this impliesO - C(Vra) (see case 7). Our database instance will be defined such taf i§ in
the answer to a query about the cond@pthenO entailsVR.C(a).

e Cases 6 to 8 compute the immediate consequences of assertions of the fdbta), YR.C(a) and
CCD.

e Case 9 treats the consequencespfR(a). Such an assertion demands the existence of a certain number
of elements of the fornfa, x) in R. However, it does not impose any condition on wkais to be. So
we can simply include new individual constagtg,  in order to witness these existential commitments.
We only have to take care that we do not include too many new elements, as this could contradict a
statement of the formen.R(a) € O.

e Cases 10 to 13 deal with the relationship between statements of thef@Rga) and the constructor
for value restrictiorVR (see Example 1).

¢ Finally, cases 14 and 15 are included to make the definition monotone with respect to

Note that the algorithm does nothing in the caseR(a) € O. An assertion of this form does not enforce the
existence of more elements in the interpretatioRoHowever, it may imply facts of the foriR.C(a). This
will be reflected in Definition 3 wherga, Vg a) may be included in the extension of the complenfeof R.

The following theorem states that the computatiorOdf s terminates. It can easily be seen by a simple
cardinality argument.

Theorem 2. Assume0 is finite. There exists a natural numbeidepending orO such that
1. 0FC(a) < Ol C(a),
2. OFR(a,b) & Oz R(a,b).

Definition 3. We define the relational database instaodey:
e A(a) is included inO if O+ A(a) for a base symboh,

e A(a) is included inOif O+ —A(a) for a base symbaA,

e R(a,b) isincluded inO if O+ R(a,b) andb # Vra,



e R(a,b) is included inO if O+ <n.R(a) andb is one ofsy,...,sy which are defined as follows. Let
S:={xe C| OR(a,x)}. Lets,, ...,s be an enumeration & Letk be the least natural number such
that O+ <k.R(a). The indexmis defined a$2— k. If the cardinalityl of Sis onIyﬁE— k—1, then we
let sm be the constantr a.

The relationsA andR in O are needed in order to deal with negated concepts and negative information
about roles.

4. SOUNDNESS AND COMPLETENESS

We introduce a special consequence relaﬁbh:DB C(a) for our database instana@ and 4L\ concept
description<C. This gives us a translation of description logic retrieval queries to queries on our relational
database instance.

Definition 4. The consequence relati¢apg is defined by:
1. O =pg A(a) if A(a) € O,
2. 0 =pp —A(a) if A(a) € O,
3. O=pg CMND(a) if O =pg C(a) andO =pg D(a),
4. 0 =pp YRC(a) if O =pg C(Vra) OF R(a,Vra) € OAVX.(R(a,X) € O — O |=pg C(X)),
5. 0 =ps >N.R(@) if ${x| R(a,x) € O} >n,
6. O =ps <n.R(a) if Ixe C.R(a,x) € O andt{x | R(a,x) € O} > #C—n.

By a canonical model construction, we obtain that the relational representation is complete with respect to
ALN.

Theorem 5. Let O be a satisfiable knowledge base. We have
0}=C(a) = O =ps C(a).

Now we are going to show soundness of our database instance. Every statement we can infer from the
database instance is a consequence of the knowledge base. In order to prove soundness, we need a series of
lemmas and definitions. All the lemmas are shown by induction on the lengttO |- derivations.

Lemma 6. Assume & are individuals ofC.

1. Va(Ol5 C(a) = 0 =C(a))

2. Ya(Ols R(a,b) = O = R(a,b))

We need some auxiliary definitions to cope with terms of the fagm
Definition 7. The* unfoldingof concept assertions is given by:

e C(s)" :=C(9) if sis not of the formvg; for someR andt,

e C(9)" 1= (VRC(t))" if s= VR, for someR andt.

Definition 8. The functionbasis determines the individual constant occurring in thenfolding of a concept
assertion. It is defined by:

e basis(a) :=aif ae C orais of the form3ry; for someR andb,

e basis(a) := basis(b) if ais of the formvg, for someR andb.



Lemma 9. Assumébasis(Vra) € C. Then we hav@® - C(Vra) = O =C(Vra)".

Lemma 10. Let3r4; be an element of. We haveO - C(Jrai) = OFC(Vra).

Now we can state the soundness theorem for the database instance that we have constructed. We want to
showO =pg C(a) = O |=C(a) for allac C. In order to prove this statement, we have to formulate it more
generally. This is done in the following theorem.

Theorem 11. Assuméasis(a) € C. We have

O =pe C(a) = O =C(a)".

Proof. We show the statement by induction on the structu d¥e have the following cases.

If Cis a base symbol, we géta) € O. ThatisO+ C(a). Using Lemmas 6 and 9, we obtain=C(a)*.
If Cis of the form-D, then we findO + C(a). Again by Lemmas 6 and 9, we obtain=C(a)".

AssumeC is of the formDE. By the induction hypothesis we obtain= D(a)" as well asO = E(a)".
ThereforeO = DME(a)” holds.

AssumeC is of the formVR.D. We have the following two possibilities given by the definition of the
Epg relation.

— O=pg D(Vra): We apply the induction hypothesis to infer= D(Vra)". By the* unfolding we
getO = (VR.D(a))" which is the same a8 |=C(a)".

-0 Fps D(VRa): Then we have

R(a,Vra) € O and (1)
¥x.(R(a,X) € 0 — O =pg D(X)). @)

By Definition 3 we infer from (1) thaick.R(a) € O wherek is the least numben such that
<n.R(a) € 0. Additionally, there exisk many individualsh; < C such thatR(a, bj) € 0. Since
6) Fps D(VRa), we know by (2) thab; # Vr 4 for all thosebj. Moreover, Lemma 10 implies by
(2) thatb;j # Jr ;. Thereforeb; € C and henca € C by the definition ofO - R(a,b). Summing
up, we haveO |= <k.R(a) as well asO = R(a,bj) and O = D(b;) for the k many individuals
b; € C. Taking these facts together we finally obtain= vYR.D(a). That isO = C(a)" since
acC.

AssumeC is of the form>n.R, again we have two cases:

— Assume there are many individuald, ..., b, € C such thaR(a, b;) € O. Note that this implies
ac C. Then we hav&(a,b;) € O for 1 <i < n. Hence, we also hav@ = R(a,b;) for 1L <i <n.
Therefore, we conclud® = >n.R(a) which is O = >n.R(a)".

— If there are onlym < n many individual constantl; € C with R(a,b;) € 0, thenO Eps >n.R
implies that there are at least- m many constanBra; such thatR(a,3rai) € O. This only is
possible ifO + >n.R(a) holds. We conclud® = >n.R(a)" by Lemmas 6 and 9.

AssumeC is of the form<n.R. We have:{x | R(a,x) € O} > #C —n and there exists an individual
such thafR(a,x) € 0. Then by Definition 3 there existska< n such thatO  <k.R(a). This implies
O = <k.R(a)". Becausé& < n, we can finally conclud® = <n.R(a)* which isO = C(a)". O

Corollary 12. Let O be a satisfiable knowledge base, C be a concept description abe an individual of
C and O be the database instance as above. Then we have

0}=C(a) <= 0 =psC(a).



5. DISCUSSION AND CONCLUSION

We have considered the retrieval problem for knowledge bases which are formulated in the description logic
languagea LAL. We have shown that it is possible to represent such a knowledg@tzseelational database
instanceO. A description logic retrieval query can be translated to a corresponding relational database query
over O which provides exactly the answers to the original query @vemhat is, our procedure is sound and
complete.

Let us discuss the complexity of our relational knowledge base representation. First, we have defined the
domainC of our database instance. We need as many new constants as the biggest number k which occurs in a
number restriction. Given a binary encoding of numbers, this means that the size of our domain is exponential
in the size of the original knowledge base. In Theorem 2, the closure oadisglolynomial in the size 0®
andC. This can be seen by a simple cardinality argument. Donini et al. (1994) have shown that the retrieval
problem forA LA is solvable in polynomial time. Our approach does not yield a polytime solution since
C grows too fast. However, we need to build the database instance only once. Then several queries can be
answered over this instance. Hence, the performance of query processing may be increased by using database
caching mechanisms to reuse intermediate results. Of course, this needs to be experimentally verified.

We are looking for a relational representation in which we do need that many new individuals for the
database domain. This could then yield a polytime solution toathé\_ retrieval problem in our framework.

Further directions for continuing our work are database representations of more expressive description logics
as well as optimization techniques for retrieval queries. Last but not least, the impact of updating a knowledge
base on its relational representation is an important point for future research.
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