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ABSTRACT

The retrieval problem for a knowledge baseO and a conceptC is to find all individualsa such thatO entailsC(a).
We describe a method to represent a knowledge baseO as an instancêO of a relational database. To answer
a retrieval query overO, we can execute a corresponding database query overÔ. The main problem of such
an embedding is that the semantics of knowledge bases is characterized by an open world assumption while
traditional databases feature a closed world semantics. Our procedure is sound and complete for knowledge
bases given in the description logicALN .
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1. INTRODUCTION

One of the main reasoning tasks for knowledge base systems is theretrieval problem(Baader & Nutt 2003,
Vitori á et al. 1995): given a knowledge baseO and a concept descriptionC, find all individualsa such thatO
entailsC(a). That is, givenO andC, we are looking for all individualsa for which we can logically infer from
O thata belongs toC. There is a trivial algorithm for this problem, namely to test for each individual occurring
in O whether it is an instance of the conceptC. Of course, such an algorithm is in general not feasible. Thus,
special storage and reasoning techniques are needed in order to efficiently answer retrieval queries.

Description Logicsare expressive languages for knowledge representation (Baader et al. 2003). They deal
with unary predicates (concepts), representing collections of individuals, and binary predicates (roles). A
description logic knowledge base consists of a terminology, which states relationships between concepts, and
of a world description, which makes assertions about individuals. There are a number of systems available
which support reasoning and persistent storage of such knowledge bases, for instance Sesame (Broekstra
et al. 2002), DLDB (Pan & Heflin 2003) and knOWLer (Ciorascu et al. 2003). Often, such systems are
implemented on a common RDBMS and a description logic reasoner like FaCT (Horrocks 1998) or Racer
(Haarslev & M̈oller 2001). However, concerning retrieval queries, these systems either work with the generate
and test method or do not yield complete answers.

We show that for a knowledge baseO that is given in the description logic languageALN , it is possible to
compute an instancêO of a relational database which representsO with respect to the retrieval problem. That
is, for every concept descriptionC, we can run a database query on the instanceÔ which returns exactly the
individuals belonging toC in O. Hence, we do not need a special description logic reasoning engine to answer
retrieval queries. Reasoning only takes place in the initial computation of the database instance. This instance
is built by performing a kind of completion algorithm.

The completion algorithm calculates the extensions of the base concepts which occur in the knowledge
base. That means, for each base conceptA, we determine the set of all individuals belonging toA. Thus, we
can represent the extensions of the base concepts and roles of the knowledge base as instance of a relational
database. The retrieval query for a complex concept descriptionC can now be answered by a simple database
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query on this instance.
The main technical difficulty in representing a description logic knowledge base as relational database

instance is that description logics are characterized by anopen world assumptionwhereas databases work
with a closed world semantics. As a consequence, absence of information in a database is interpreted as
negative information while absence of information in description logics only means lack of knowledge. For
instance, consider a knowledge base with ahasChild role that contains only one tuple, say(Peter, Harry).
Still, we are not allowed to infer≤1.hasChild(Peter) from this knowledge base because there are models
where the interpretation ofhasChild contains more tuples. We cannot identify negative information of our
knowledge base with missing information in its relational representation; instead, we have to introduce special
relations and terms in order to deal with negative information in the database instance.

Vitori á et al. (1995) present an approach to the retrieval problem forALN which is based on finite au-
tomata. Similar to our work, they perform a preprocessing step which produces a completion of the knowledge
base. However, they build a finite automaton instead of constructing a database instance. This automaton can
then be used to answer retrieval queries in a syntax-directed way.

Although ALN is not a very expressive description logic language, it still suffices for many applica-
tions. As Gasdoúe and Rousset notice, ontology designers often do not even exploit the full expressive power
of ALN to model their application domain. In the context of web ontology languages, Antoniou and van
Harmelen (2004) also state that there are reasons to expect that most ontological knowledge will be of a rather
simple nature. Of course, these points are arguable.

2. PRELIMINARIES

In this section, we first present syntax and semantics of the description logicALN . In a second part, we
introduceALN knowledge bases which consist of a terminology and a world description.

The syntax ofALN is given by the following rule, whereA,B are used foratomic concepts, R denotes a
role andC,D stand forconcept descriptions:

C,D→ A | (atomic concept)
> | ⊥ | (top, bottom)
¬A | (atomic negation)
CuD | (conjunction)
∀R.C | (value restriction)
≤n.R | ≥n.R (number restrictions).

The semantics of concept descriptions is given as follows. AninterpretationI is a pair(∆I , ·I ) where∆I

is a non-empty set of individuals called the domain of the interpretation and·I is an interpretation function
assigning to each atomic conceptA a setAI ⊂ ∆I and to each roleR a binary relationRI ⊂ ∆I ×∆I . The
interpretation function is extended to concept descriptions by the following inductive definition:

>I := ∆I , ⊥I := /0
(¬A)I := ∆I \AI

(CuD)I := CI ∩DI

(∀R.C)I := {a∈ ∆I | ∀b((a,b) ∈ RI → b∈CI )}
(≤n.R)I := {a∈ ∆I | ]{b | (a,b) ∈ RI } ≤ n}
(≥n.R)I := {a∈ ∆I | ]{b | (a,b) ∈ RI } ≥ n}

where]Sdenotes the cardinality of the setS.
A knowledge baseO consists of a terminologyOT (called the TBox) and a world descriptionOA (called

the ABox). In this paper we will only consider finite knowledge bases.
The terminologyOT contains concept definitions and restricted inclusion statements. Aconcept definition

is an expression of the formA := C whereA is an atomic concept andC is a concept description. We assume
that an atomic concept appears on the left hand side of at most one concept definition. That is, the set of
definitions is unequivocal.



We divide the atomic concepts occurring inOT into two sets, thename symbolsthat occur on the left-hand
side of some concept definition, and thebase symbolsthat occur only on the right-hand side of the concept
definitions.

Let A andB be atomic concepts. We sayA depends onB if B appears in the concept definition ofA. A set
of concept definitions is calledacyclic if there is no cycle in this dependency relation. For the rest of the paper
we will only consider acyclic TBoxes.

An acyclic set of definitions can be unfolded by the following iterative process: each occurrence of a name
symbol on the right-hand side of a definition is replaced by the concept that it stands for. Since there is no
cycle in the set of definitions, this process eventually stops. We end up with a terminology consisting solely of
definitions of the formA := C′ whereC′ contains only base symbols and no name symbols.

Since we work inALN , we need an additional constraint to make this unfolding possible. We assume that
no name symbol occurs negatively inO. Otherwise we could have a terminology consisting ofA := ¬B and
B := CuD. This would result inA := ¬(CuD) which is not anALN concept description.

The allowedinclusion statementsare of the formAv B andAuBv ⊥ whereA andB are base symbols,
that is atomic concepts for which no definition is included in the TBox. The inclusion statements of the TBox
have to be acyclic. There is no chainL0,L1,L2, . . . ,Ln such thatL0 is the same concept asLn and all statements
Li v Li+1 are included in the TBox.

An interpretationI satisfiesOT if for every inclusionC v D in OT we haveCI ⊆ DI , and if for every
definitionA := C in OT we haveAI = CI .

A world descriptionOA is a set of assertions about the extension of concepts and roles. In the ABox we
introduce a set of individual constantsa,b,c, . . . and we assert properties of these individuals. We can make
the following two kinds of assertions in an ABox:C(a) andR(b,c) whereC is a concept andR is a role. The
first kind, calledconcept assertion, states thata belongs to (the interpretation of)C. The second kind, called
role assertion, states thatb is related toc by R.

We give semantics for the ABox by extending interpretations to individual constants as follows. LetI be
(∆I , ·I ) where the interpretation function·I not only maps atomic concepts and roles to sets and relations,
but in addition maps each individual constanta to an elementaI of ∆I . We assume that distinct individual
constants denote distinct objects in∆I . Therefore, the mapping·I respects theunique name assumption, that
is if a andb are different individual constants, then we haveaI 6= bI .

The interpretationI satisfies the concept assertionC(a) if aI ∈CI , and if(bI ,cI ) ∈ RI then it satisfies the
role assertionR(b,c). An interpretation satisfies an ABoxOA if it satisfies each assertion in it. We call an
interpretationI amodelof a knowledge baseO, if I satisfiesOT andOA . We will use the following notation:
I |= O means thatI is a model of the knowledge baseO. We call a knowledge baseO satisfiableif there exists
an interpretationI such thatI |= O. We sayO entails C(a), formally O |=C(a), if every modelI of O satisfies
C(a). Similarly, O |= R(a,b) states that every modelI of O satisfiesR(a,b). By O 6|= C(a) andO 6|= R(a,b)
we mean that there exists a modelI of O which does not satisfyC(a) andR(a,b), respectively.

Example 1. Let us have a look at two examples of entailment.

• Let O be a knowledge base which contains the assertions≤1.R(a), R(a,b) andC(b). We find that
O |= ∀R.C(a).

• Let O be a knowledge base which contains∀R.A(a), ∀R.¬B(a) and havingAv B in its TBox. We find
thatO |=≤0.R(a).

3. BUILDING THE DATABASE INSTANCE

We are going to present the construction of the database instance representing anALN knowledge base.
We will considernormalizedknowledge bases. The normalization of a knowledge baseO is achieved by the
following steps:

1. Add the inclusion statement¬Bv ¬A for eachAv B in O.

2. Replace each statementAuBv⊥ by the two inclusion statementsAv ¬B andBv ¬A.



3. If there is a chainL0,L1,L2, . . . ,Ln of concepts such thatLn is the negation ofL0 and all statements
Li v Li+1 are included inO, then addL0 v⊥.

4. If there is a conceptL such thatLv⊥ is an inclusion statement ofO, then replaceL with ⊥ in O.

5. Fully unfold the concept definitions ofO, so that no name symbol occurs on the right-hand side of a
concept definition. Then we exhaustively apply the following normalization rule

∀R.(CuD)→∀R.Cu∀R.D.

Now replace each assertionC(a) ∈ O by C′(a) whereC′ is built from C by substituting each name
symbol with its (unfolded and normalized) definition.

Observe that in a normalized knowledge base, all atomic concepts are base symbols. If an atomic concept
has a definition, then it has been replaced by its definition during the process of normalization. Hence, the
assertional part of a normalized knowledge base contains only concept descriptions built from base symbols.
In the sequel,O will always denote such a normalized knowledge base.

Given a knowledge baseO, let C be the set of all individuals occurring inO. Now we define a set̂C of indi-
vidual constants which will be the domain of our database instance. We need some auxiliary notions. Therole
depth rd(C) of a concept C is given by: rd(>) = rd(⊥) = rd(A) = rd(¬A) = 0,
rd(CuD) = max(rd(C), rd(D)), rd(∀R.C) = rd(C)+1 andrd(≤n.R) = rd(≥n.R) = 1.

Let rd(O) be the maximum of allrd(C) for concept expressionsC occurring inO. Let k be the biggest
natural numbern such that a number restriction≤n.Ror≥n.Roccurs inO. The set̂C is given by:

• every individual constanta∈ C is included inĈ . We definerd(a) := 0 for a∈ C .

• new constants∃R,a,i are added tôC for all role namesR, for all i with 1≤ i ≤ k and for alla∈ Ĉ with
rd(a) < rd(O). We definerd(∃R,a,i) := rd(a)+1.

• new constants∀R,a are added tôC for all role namesR and for alla∈ Ĉ with rd(a) < rd(O). We define
rd(∀R,a) := rd(a)+1.

Note that sinceO is finite, C is finite. Thus,Ĉ is also finite because of the role depth restrictions in its
definition.

Next, we are going to define the relationO α swheres is an ABox assertion andα is a natural number. The
intended meaning ofO α s is “s follows from O in at mostα steps”. We will employ this relation to compute
the atomic concept assertions which are entailed byO. They will serve as a basis to build the database instance
we are aiming at.

1. O 0 C(a) if C(a) ∈ O.

2. O 0 >(a), for all a∈ Ĉ .

3. O 0 ¬A(a), for all a∈ Ĉ if Av⊥ ∈ O.

4. O 0 R(a,b) if R(a,b) ∈ O.

5. O 0 R(a,∀R,a) if ∀R,a ∈ Ĉ .

6. O α+1 C(a) if O α CuD(a) or O α DuC(a).

7. O α+1 C(a) if there exists a constantb∈ Ĉ such thatO α ∀R.C(b) andO α R(b,a).

8. O α+1 C(a) if O α D(a) andDvC∈ O.

9. O α+1 R(a,∃R,a,i) if the following two conditions hold:

• O α ≥n.R(a)



• 1≤ i ≤ n− ]{x∈ C | R(a,x) ∈ O}.

10. O α+1 ∀R.C(a) if O α ∀R.D(a) as well asDvC∈ O.

11. O α+1 ≤0.R(a) if we haveO α ∀R.A(a) andO α ∀R.¬A(a) for some base conceptA.

12. O α+1 ≤0.R(a) if we haveO α ∀R.≤n.R2(a) andO α ∀R.≥m.R2(a) for some roleR2 and natural
numbersn andm with n < m.

13. O α+1 ≤0.R(a) if O α ∀R.⊥(a).

14. O α+1 C(a) if O α C(a).

15. O α+1 R(a,b) if O α R(a,b).

We will write O `C(a) andO ` R(a,b) for ∃α.O α C(a) and∃α.O α R(a,b), respectively.
Let us briefly discuss the different cases in the definition ofO α s.

• Cases 1 to 4 deal with assertions directly included inO.

• In case 5 we include special constants∀R,a to the extension of a roleR. If we later get thatO ` ∀R.C(a),
then this impliesO `C(∀R,a) (see case 7). Our database instance will be defined such that if∀R,a is in
the answer to a query about the conceptC, thenO entails∀R.C(a).

• Cases 6 to 8 compute the immediate consequences of assertions of the formCuD(a), ∀R.C(a) and
Cv D.

• Case 9 treats the consequences of≥n.R(a). Such an assertion demands the existence of a certain number
of elements of the form(a,x) in R. However, it does not impose any condition on whatx has to be. So
we can simply include new individual constants∃R,a,i in order to witness these existential commitments.
We only have to take care that we do not include too many new elements, as this could contradict a
statement of the form≤n.R(a) ∈ O.

• Cases 10 to 13 deal with the relationship between statements of the form≤0.R(a) and the constructor
for value restriction∀R (see Example 1).

• Finally, cases 14 and 15 are included to make the definition monotone with respect toα.

Note that the algorithm does nothing in the case≤n.R(a) ∈ O. An assertion of this form does not enforce the
existence of more elements in the interpretation ofR. However, it may imply facts of the form∀R.C(a). This
will be reflected in Definition 3 where(a,∀R,a) may be included in the extension of the complementRof R.

The following theorem states that the computation ofO ` s terminates. It can easily be seen by a simple
cardinality argument.

Theorem 2. AssumeO is finite. There exists a natural numberα depending onO such that

1. O `C(a)⇔ O α C(a),

2. O ` R(a,b)⇔ O α R(a,b).

Definition 3. We define the relational database instanceÔ by:

• A(a) is included inÔ if O ` A(a) for a base symbolA,

• A(a) is included inÔ if O ` ¬A(a) for a base symbolA,

• R(a,b) is included inÔ if O ` R(a,b) andb 6= ∀R,a,



• R(a,b) is included inÔ if O ` ≤n.R(a) andb is one ofs1, . . . ,sm which are defined as follows. Let
S:= {x∈ Ĉ | O 6` R(a,x)}. Let s1, . . . ,sl be an enumeration ofS. Let k be the least natural number such
thatO ` ≤k.R(a). The indexm is defined as]Ĉ −k. If the cardinalityl of S is only ]Ĉ −k−1, then we
let sm be the constant∀R,a.

The relationsA andR in Ô are needed in order to deal with negated concepts and negative information
about roles.

4. SOUNDNESS AND COMPLETENESS

We introduce a special consequence relationÔ |=DB C(a) for our database instancêO and ALN concept
descriptionsC. This gives us a translation of description logic retrieval queries to queries on our relational
database instance.

Definition 4. The consequence relation|=DB is defined by:

1. Ô |=DB A(a) if A(a) ∈ Ô,

2. Ô |=DB ¬A(a) if A(a) ∈ Ô,

3. Ô |=DB CuD(a) if Ô |=DB C(a) andÔ |=DB D(a),

4. Ô |=DB ∀R.C(a) if Ô |=DB C(∀R,a) or R(a,∀R,a) ∈ Ô ∧∀x.(R(a,x) ∈ Ô → Ô |=DB C(x)),

5. Ô |=DB ≥n.R(a) if ]{x | R(a,x) ∈ Ô} ≥ n,

6. Ô |=DB ≤n.R(a) if ∃x∈ Ĉ .R(a,x) ∈ Ô and]{x | R(a,x) ∈ Ô} ≥ ]Ĉ −n.

By a canonical model construction, we obtain that the relational representation is complete with respect to
ALN .

Theorem 5. Let O be a satisfiable knowledge base. We have

O |= C(a)⇒ Ô |=DB C(a).

Now we are going to show soundness of our database instance. Every statement we can infer from the
database instance is a consequence of the knowledge base. In order to prove soundness, we need a series of
lemmas and definitions. All the lemmas are shown by induction on the lengthα of O α derivations.

Lemma 6. Assume a,b are individuals ofC .

1. ∀α(O α C(a)⇒ O |= C(a))

2. ∀α(O α R(a,b)⇒ O |= R(a,b))

We need some auxiliary definitions to cope with terms of the form∀R,a.

Definition 7. The∗ unfoldingof concept assertions is given by:

• C(s)∗ := C(S) if s is not of the form∀R,t for someRandt,

• C(s)∗ := (∀R.C(t))∗ if s≡ ∀R,t for someRandt.

Definition 8. The functionbasis determines the individual constant occurring in the∗ unfolding of a concept
assertion. It is defined by:

• basis(a) := a if a∈ C or a is of the form∃R,b,i for someRandb,

• basis(a) := basis(b) if a is of the form∀R,b for someRandb.



Lemma 9. Assumebasis(∀R,a) ∈ C . Then we haveO `C(∀R,a)⇒ O |= C(∀R,a)
∗.

Lemma 10. Let∃R,a,i be an element of̂C . We haveO `C(∃R,a,i)⇒ O `C(∀R,a).

Now we can state the soundness theorem for the database instance that we have constructed. We want to
showÔ |=DB C(a)⇒ O |= C(a) for all a∈ C . In order to prove this statement, we have to formulate it more
generally. This is done in the following theorem.

Theorem 11. Assumebasis(a) ∈ C . We have

Ô |=DB C(a)⇒ O |= C(a)∗.

Proof. We show the statement by induction on the structure ofC. We have the following cases.

• If C is a base symbol, we getC(a)∈ Ô. That isO `C(a). Using Lemmas 6 and 9, we obtainO |=C(a)∗.

• If C is of the form¬D, then we findO `C(a). Again by Lemmas 6 and 9, we obtainO |= C(a)∗.

• AssumeC is of the formDuE. By the induction hypothesis we obtainO |= D(a)∗ as well asO |= E(a)∗.
ThereforeO |= DuE(a)∗ holds.

• AssumeC is of the form∀R.D. We have the following two possibilities given by the definition of the
|=DB relation.

– Ô |=DB D(∀R,a): We apply the induction hypothesis to inferO |= D(∀R,a)
∗. By the∗ unfolding we

getO |= (∀R.D(a))∗ which is the same asO |= C(a)∗.

– Ô 6|=DB D(∀R,a): Then we have

R(a,∀R,a) ∈ Ô and (1)

∀x.(R(a,x) ∈ Ô → Ô |=DB D(x)). (2)

By Definition 3 we infer from (1) that≤k.R(a) ∈ O wherek is the least numbern such that
≤n.R(a) ∈ O. Additionally, there existk many individualsb j ∈ Ĉ such thatR(a,b j) ∈ Ô. Since
Ô 6|=DB D(∀R,a), we know by (2) thatb j 6= ∀R,a for all thoseb j . Moreover, Lemma 10 implies by
(2) thatb j 6= ∃R,a,i . Thereforeb j ∈ C and hencea∈ C by the definition ofO α R(a,b). Summing
up, we haveO |= ≤k.R(a) as well asO |= R(a,b j) and O |= D(b j) for the k many individuals
b j ∈ C . Taking these facts together we finally obtainO |= ∀R.D(a). That isO |= C(a)∗ since
a∈ C .

• AssumeC is of the form≥n.R, again we have two cases:

– Assume there aren many individualsb1, . . . ,bn ∈ C such thatR(a,bi) ∈ Ô. Note that this implies
a∈ C . Then we haveR(a,bi) ∈ O for 1≤ i ≤ n. Hence, we also haveO |= R(a,bi) for 1≤ i ≤ n.
Therefore, we concludeO |=≥n.R(a) which isO |=≥n.R(a)∗.

– If there are onlym < n many individual constantsbi ∈ C with R(a,bi) ∈ Ô, thenÔ |=DB ≥n.R
implies that there are at leastn−m many constant∃R,a,i such thatR(a,∃R,a,i) ∈ Ô. This only is
possible ifO ` ≥n.R(a) holds. We concludeO |=≥n.R(a)∗ by Lemmas 6 and 9.

• AssumeC is of the form≤n.R. We have]{x | R(a,x) ∈ Ô} ≥ ]Ĉ −n and there exists an individualx
such thatR(a,x) ∈ Ô. Then by Definition 3 there exists ak≤ n such thatO ` ≤k.R(a). This implies
O |=≤k.R(a)∗. Becausek≤ n, we can finally concludeO |=≤n.R(a)∗ which isO |= C(a)∗. 2

Corollary 12. Let O be a satisfiable knowledge base, C be a concept description ofO, a be an individual of
C andÔ be the database instance as above. Then we have

O |= C(a) ⇐⇒ Ô |=DB C(a).



5. DISCUSSION AND CONCLUSION

We have considered the retrieval problem for knowledge bases which are formulated in the description logic
languageALN . We have shown that it is possible to represent such a knowledge baseO as relational database
instancêO. A description logic retrieval query can be translated to a corresponding relational database query
over Ô which provides exactly the answers to the original query overO. That is, our procedure is sound and
complete.

Let us discuss the complexity of our relational knowledge base representation. First, we have defined the
domainĈ of our database instance. We need as many new constants as the biggest number k which occurs in a
number restriction. Given a binary encoding of numbers, this means that the size of our domain is exponential
in the size of the original knowledge base. In Theorem 2, the closure ordinalα is polynomial in the size ofO
andĈ . This can be seen by a simple cardinality argument. Donini et al. (1994) have shown that the retrieval
problem forALN is solvable in polynomial time. Our approach does not yield a polytime solution since
Ĉ grows too fast. However, we need to build the database instance only once. Then several queries can be
answered over this instance. Hence, the performance of query processing may be increased by using database
caching mechanisms to reuse intermediate results. Of course, this needs to be experimentally verified.

We are looking for a relational representation in which we do need that many new individuals for the
database domain. This could then yield a polytime solution to theALN retrieval problem in our framework.
Further directions for continuing our work are database representations of more expressive description logics
as well as optimization techniques for retrieval queries. Last but not least, the impact of updating a knowledge
base on its relational representation is an important point for future research.
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