
Wellordering Two Sorts:

a Slow-Growing Proof Theory

for Variable Separation

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Marc Wirz

von Zollikon ZH

Leiter der Arbeit:

Prof. Dr. G. Jäger

Institut für Informatik und angewandte Mathematik

Wellordering Two Sorts:

a Slow-Growing Proof Theory

for Variable Separation

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Marc Wirz

von Zollikon ZH

Leiter der Arbeit:

Prof. Dr. G. Jäger

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 13. Juni 2005
Der Dekan
Prof. Dr. P. Messerli

Contents

Introduction 1

1 The Theory EA(;) 5

1.1 Basic Definitions . 5

1.2 First Steps . 7

2 Induction principles 11

2.1 Input Bounded Outputs . 11

2.2 Variations . 14

3 Input Substitution 17

4 Computing within EA(;) 25

4.1 Arithmetic . 25

4.2 Sequence Numbers . 30

4.3 Induction on Term Structure . 32

4.4 Ordinal Arithmetic . 35

5 Transfinite Induction, Lower Bounds 41

5.1 Bounding Functions . 41

5.2 The WO-Proof . 48

6 Transfinite Induction, Upper Bounds 53

v

vi CONTENTS

6.1 The Slow-Growing Hierarchy . 53

Bibliography 57

Index 59

Introduction

The concept of variable separation forms the nucleus and is still a major branch of the
research program called “implicit computational complexity”, which tries to investigate
complexity theory under a foundational viewpoint, independant of machine models and
explicit resource bounds. It has been used in the study of low complexity classes in numer-
ous contexts for more than 15 years now. The general idea is always to separate variables
into two kinds. The first kind is thought of as the (potential) output of a computation,
which is not yet completed. Having incomplete knowlege on these values only implies that
we should restrict the operations allowed to be performed on them to operations which are
still safe to apply. Thus this kind of variable has variously been named as safe, incomplete,
or output variable. The second kind of variable is meant to represent the input of a compu-
tation, which is given as a complete value (written on the input tape of a Turing machine,
for example), and allows normal access. These variables are called normal, complete, or
input variables.

One particular operation which is considered unsafe, and therefore disallowed for output
values, is to determine the depth of a recursion. For such a value, being the output of some
computation, could itself involve a recursion. But this leads to an uncontrolled nesting
of recursions and therefore to a potential blow-up of the computational complexity. This
explains why, taking a one-sorted formalism, the effect of imposing variable separation is
always a reduction of its power from computable to feasible. By this it allows to transfer
techniques developed in computability theories to the study of feasability.

This idea, present in Nelson [15] and Simmons [21] already, has become widely known due
to the work of Bellantoni and Cook [3], and Leivant. Since then, it has been adapted
to various fields. Following [3], many of the most common complexity classes have been
characterized by “safe” recursion schemes, such as NC1 and polylog space by Bloch [6],
Pspace by Oitavem [16] and others. Leivant characterized the polytime functions as being
the functions provably terminating in systems of second order [10] (refined in [14]) and
first order [12] arithmetic, and the elementary functions by higher type recursion [11, 13].
To obtain also a characterization of polynomial time through higher type recursion, Bel-
lantoni, Niggl and Schwichtenberg [5] added an additional “linearity” constraint. Aehlig,
Berger, Hofmann and Schwichtenberg [1, 20] then used such term systems to construct an
equivalent (under the Curry-Howard isomorphism) arithmetic for non-size-increasing poly-

1

2 CONTENTS

nomial time. Bellantoni and Hofmann [4] gave a comparable arithmetic but used modal
oparators to realize variable separation instead.

Ostrin and Wainer [17] proposed another version of a tiered arithmetic called EA(;) which
realizes variable separation through the distinction between two syntactically different
kinds of variables, one for induction and the other for quantification (as opposed to explicit
predicates as in Leivant’s [12]). Then they reworked the results of [12] and extended them
to a characterization of the whole exponential hierarchy between the Grzegorczyk classes
E2 and E3, but using techniques much nearer to the ones used in the classical proof theory
of Peano Arithmetic. They argue (in [18, Section 5]) that introducing variable separation
basically amounts to replacing the fast growing hierarchy with the slow-growing hierarchy
in the ordinal analysis. Indeed the fast growing hierarchy up to ε0 corresponds to the set
of the provably total recursive functions of Peano Arithmetic, whereas the slow-growing
hierarchy up to ε0 corresponds to E3 which is exactly the set of the provably total functions
of EA(;). This idea became the starting point and guideline for this thesis.

Chapter 1 reviews shortly the formal system EA(;) and its “must-know” properties, fol-
lowing closely Ostrin and Wainer ([18], [17]). Only a few remarks are original, namely the
call-by-name conditional and the remarks on the use of characteristic functions and on the
arithmetizations of propositional logic.

Chapters 2 and 3 deal with a major drawback of the concept of variable separation. While
this has widely been rewarded for its conceptual purity, imposing no a priori bounds like
the smash function of bounded arithmetic, theories obtained from this approach often are
blamed for being awkward to work within. A typical example is the bubble sort algorithm
which indeed is not straightforward to treat. This algorithm nests two recursions, which
is forbidden by variable separation, even though they are safe in this particular example
because they don’t increase the size of the output. Chapter 2 exhibits, as lemma 3, a
principle of bounded induction which is able to deal with this kind of harmless nesting of
recursions. The techniques we use have been used before implicitely, but they have never
been exploited systematically or even made the basis of a concept on its own.

Chapter 3 deals with a restriction which is more specific to EA(;), the problem of substi-
tuting into input positions. EA(;) is very strict in this respect, but we show that more
liberal substitution principles are derivable.

The first section of chapter 4 exploits these new techniques to develop a wide range of
(elementary time) arithmetical principles. The thesis up to this point can be regarded as
an analogue to the bootstrapping of theories of bounded arithmetic, see Buss [7, sections
2.4.–2.6.]. This goal is achieved in a way which entirely stays in a simple and pure setting.
This contrasts with earlier steps in this direction, such as the introduction of Irwin, Royer
and Kapron’s [9] “coercion rule”, and also the above mentioned approaches using the
Curry-Howard isomorphism and higher types.

The remainder of chapter 4 is dedicated to the arithmetizations of ternary sequences and,

CONTENTS 3

relying on this, of ordinal arithmetic. This part, apart from setting the groundwork for the
following well-ordering proof, can also serve as a case study for the use of the enhanced
arithmetical capabilities, as it heavily depends on these. Chapter 5 then presents the
well-ordering proof.

The very short chapter 6 shows that no provable well-ordering of the type considered in the
previous chapters can be any more complex. This is performed by reducing the problem to
the problem of finding upper bounds for the complexity of EA(;)’s provably total functions,
which has already been solved by Ostrin and Wainer [18]. More interesting than the result
itself is the fact that it opens the way to a natural definition of a proof-theoretic ordinal
for two-sorted theories. This definition is based on structured tree ordinals rather than set
theoretic ordinals. There are several reasons why this choice seems to be more adequate in
our context. Following Wainer’s program (as in [18]), introducing variable separation gives
rise to a proof theory based on the slow-growing hierarchy, and we can see tree ordinals as
a slow-growing counterpart to set theoretical ordinals. Secondly, set theoretical ordinals
are simply too coarse. Sommer ([22], [23]) shows that the proof-theoretic ordinal in the
classical sense must be ω2 for all theories between I∆0 (or T 2

1 respectively) and IΣ1, see
Beckmann [2, p. 4] for more details. This in particular means that classical ordinal analysis
can’t separate any of these theories. But EA(;), as well as it’s fragments and extensions
which are also of interest, lie all in that range, at least when comparing the respective
provably total functions: Linspace for I∆0, elementary time for EA(;), and all primitive
recursive functions for IΣ1. A more technical reason finally is that the lower bound we
will give in theorem 35 does not well-order any set-theoretical ordinal at all, but rather
a family of (increasing) suborderings ≺n. This perfectly fits the correspondance between
tree ordinals and their sets of n-predecessors α[n], see Fairtlough and Wainer [8].

Acknowledgements

The first person to thank here is Professor Gerhard Jäger. He gave me the opportunity
to work in proof theory for many years, and his supervision was full of responsability and
understanding.

I’m also grateful to Thomas Strahm, not only for much valuable advice when I was new
to the field of proof theory, but also for the uncountable thankless tasks for the benefit of
the research group he takes care of without being asked for.

I owe a lot to Geoff Ostrin. His expertise on EA(;) influenced me to turn my research
interest into this more successful direction, and he took a great effort to thoroughly proof-
read the mathematics as well as the English. This thesis profited a lot from his detailed
feedback, and the responsability for any remaining faults is clearly mine.

All the other former and present members of our research group deserve my gratitude for
the friendly atmosphere, but in particular my office mates: Luca Alberucci, who was and

4 CONTENTS

still is a great partner in many deep discussions on proof theory and any other aspect of
life, and his worthy successor Thomas Studer.

Stan Wainer gave some useful feedback to a preliminary draft of this thesis.

The Swiss National Science Foundation and the University of Bern supported my work on
variable separation.

Last but not least I would like to thank my friends from music, the mountains, and else-
where for making life a joy even during the periods when mathematical research is frus-
trating.

Chapter 1

The Theory EA(;)

1.1 Basic Definitions

The theory EA(;) is formulated in a language with two sorts of first order variables, output
variables a, b, c, . . ., and input variables x, y, z, Basic terms are terms built up from
variables of either sort, the constant 0, the successor function s and the predecessor function
p. General terms are additionally closed under application of arbitrary function symbols
f, g, h, The atomic formulas are the equations t = t′ and inequalities t 6= t′ between
general terms t and t′, and formulas A, B, . . . are built up from these closing under the
propositional connectives ∧ and ∨, and under quantification ∀a, ∃a over output variables
a. The negation ¬A of a formula A is defined through the De Morgan laws, implication
A → B and double implication A ↔ B are defined as usual to be abbreviations for ¬A∨B
and (A → B)∧ (B → A) respectively. Parentheses are used when necessary, we follow the
usual rule that conjunction and disjunction bind stronger than implication. Furthermore
we adopt the notational convention of writing f(~a) for f(a0, . . . , an−1) where f is a function
symbol of arity n. Similarly, for a unary predicate P we may abbreviate a conjunction
P (a)∧P (b)∧P (c) with P (a, b, c) in some places. This in particular applies to the bounding
relation a ≤ x (when viewed as a unary predicate with parameter x), and to the predicate
Ord for ordinals.

In some places we will use the notion of Σ1-formulas. They are classically defined as
the closure of the atomic formulas under conjuntion, disjunction, existential quantification
and bounded universial and existential quantification ∀a ≤ t and ∃a ≤ t, the latter being
abbreviations for constructs of the form ∀a.a ≤ t → . . . and ∃a.a ≤ t ∧ . . ., where t is an
arbitrary term.

We will present the axioms and rules of EA(;) as a Tait-style calculus, writing sets of
formulas as A0, A1, . . . , An and using capital greek letters Γ, Λ, . . . to denote them. The
logical axioms are the identity axioms Γ,¬A, A and the equality axioms Γ, t = t and

5

6 CHAPTER 1. THE THEORY EA(;)

Γ, t 6= t′,¬A[t], A[t′], for arbitrary formulas A and terms t and t′. There’s one non-logical
axiom, Γ, sb 6= 0. This is merely for convenience, to allow case distinctions of the form
b = 0 ∨ b 6= 0. We could actually do without the axiom by replacing all instances of such
a case distinction with the weaker b = 0 ∨ ∃a.b = sa and applying the cases rule, but then
we would have to be extremely cautious in writing down our formulas. The propositional
rules are the usual ones,

Γ, A Γ, B

Γ, A ∧B
and

Γ, A,B

Γ, A ∨B.

The Quantifier rules are
Γ, A[a]

Γ,∀a.A[a]

where a is not free in Γ, and
Γ, A[t]

Γ,∃a.A[a]

where t is a basic term. The “computational content” of EA(;) is introduced via the
following two rules: The Induction rule,

Γ, A[0] Γ,¬A[a], A[sa]

Γ, A[t]

where a does not appear in Γ, A[0] and t is a basic term without output variables, and the
cases rule

Γ, A[0] Γ, A[sa]

Γ, A[b]

with the same restriction on a as in the induction rule, and for any output variable b – or
even a basic term, as will be immediate from the substitution lemma to come soon. The
free variable a in the premises of the universal, the induction and the cases rule is called
eigenvariable, and the side condition on it the eigenvariable restriction.

Finally we have to mention the cut rule. It takes the usual form,

Γ, A Γ,¬A

Γ.

We don’t need to include contraction and weakening because the former is implicitly built-
in by the use of sets Γ, and the latter can trivially be derived. Similarly we will make free
use of the equality rule

Γ, A[t]

Γ, t 6= t′, A[t′].

We define, as an abbreviation,

t↓ :≡ ∃a.t = a

1.2. FIRST STEPS 7

and say that the term t is defined. Thus, a term is defined if and only if it can be reduced
(i.e. is provably equal) to a basic term. In particular, any basic term is defined. From this
definition we immediately get the following generalized existential rule:

Γ, A[t]

Γ,¬t↓,∃a.A[a]

for any term t, as from the premise we get Γ, t 6= a, A[a] by the equality rule, from which
the conclusion follows by quantifying. In a very similar way we also get a substitution
lemma,

Γ, A[a]

Γ,¬t↓, A[t]
(a not free in Γ, A[0]),

and (∀)-inversion,
Γ,∀a.A[a]

Γ,¬t↓, A[t]
(a not free in Γ, A[0]).

Substitution for input variables is much more restricted. At a first glance it seems that
input variables can only be substituted by basic terms without output variables. However,
we will show that a much more general substitution rule is derivable, see lemma 10.

All functions are introduced via (consistent) Herbrand-Gödel equational programs, like in
Leivant’s theories. However, the behaviour of equality is covered by the equality axioms
already, and we are left with just a set of arbitrary equations. A function f is provably
total from an equational program P , if we can prove

¬∀P, f(~x)↓
where ∀P is the set of the universal closures of the equations in P . When EA(;) proves
the stronger statement ¬∀P, f(~a)↓ for output variables ~a we say that f is provably total on
outputs. We won’t be too specific about what equations P consists of but rather assume
it contains all function definitions used in the sequel, and we will usually omit mentioning
∀P .

1.2 First Steps

In the next step we develop, within EA(;), some of the most basic arithmetic. This also
serves for giving a few examples of function definitions in our theory. Let P contain the
following equations:

a + 0 = a, a + sb = s(a + b),
p(0) = 0, p(sa) = a,
a .− 0 = a, a .− sb = p(a) .− b.

Then we can prove ¬∀P, a + x↓ and ¬∀P, a .− x↓ by using induction, and ¬∀P, p(a)↓ by
using the cases rule, but we can’t prove ¬∀P, a + b↓. Note that we also get

¬∀P, a = 0 ∨ ∃b.a = sb

8 CHAPTER 1. THE THEORY EA(;)

(or even ¬∀P, a = 0 ∨ a = spa) by cases again, and

¬∀P, sa = sb → a = b

by computing a = psa = psb = b.

Another application of cases is the choice function. Add

C (0, a, b) = a C (sc, a, b) = b

to the equational program P to obtain

¬∀P, c = 0 → C (c, a, b) = a,

¬∀P, c 6= 0 → C (c, a, b) = b.

Note that this is a call-by-value conditional, since we can’t conclude c 6= 0 → C (c, t, b) = b
unless t is defined. However, we can also handle call-by-name conditionals, as follows.

Lemma 1. Given an n-ary function p, thought of as the characteristic function of some
predicate, and two functions g and h of the same arity n. Then there is a function

f(~a) =

{
g(~a) if p(~a) = 0

h(~a) else

such that we can prove

p(~a) 6= 0, f(~a) = g(~a) and

¬p(~a)↓, p(~a) = 0, f(~a) = h(~a)

(where we have omitted mentioning the premise ∀P).

Furthermore, if p is provably total and p(~a) 6= 0, g(~a)↓ and ¬p(~a)↓, p(~a) = 0, h(~a)↓ are
provable in EA(;), then f is provably total as well.

Proof. The idea is to introduce a “dummy” pairing function (·, ·) which isn’t given any
numerical extension, and a new conditional C2 which is defined on such pairs. In detail,
let f be defined by the following equational program:

C2(0, (0,~a), (1,~a)) = (0,~a),

C2(sb, (0,~a), (1,~a)) = (1,~a),

f0(~a) = C2(p(~a), (0,~a), (1,~a)),

f1((0,~a)) = g(~a),

f1((1,~a)) = h(~a),

f(~a) = f1(f0(~a)).

1.2. FIRST STEPS 9

Then we have p(~a) 6= 0, f0(~a) = (0,~a) and f0(~a) 6= (0,~a), f(~a) = g(~a), so the first claim
follows by a cut. The second claim is similar. For the totality of f , from the additional
assumptions we immediately can show p(~a) = b → f(~a)↓ by using the cases rule on b. As
p is provably total by assumption we can cut the premise after existentially quantifying
over b.

This conditional in its general form, choosing cases according to a predicate rather than a
simple variable, requires the predicate to be given by its characteristic function. For the
time being, the less-than relations will suffice:

a ≤ b :≡ a .− b = 0,

a < b :≡ sa .− b = 0.

These definitions are tailored to trivially satisfy a < b ↔ sa ≤ b. We also use the comple-
ments a 6≤ b :≡ ¬a ≤ b and a 6< b :≡ ¬a < b.

Characteristic functions are closed under the (arithmetizations of the) boolean operators
if we include the following equations into P :

> = 1, ⊥ = 0, ∼0 = 1, ∼sa = 0,
0 & 0 = 0, 0 & sa = 0, sa & 0 = 0, sa & sb = 1.

Here “∼” is a unary function which acts as a negation, and the binary function “&”
corresponds to conjunction. Both functions are provably total on outputs, and their cor-
respondence with the logic of EA(;) can be proved, e.g.

¬∀P, a 6= 0 ∧ b 6= 0 ↔ a & b 6= 0.

We will sometimes refer to this observation as the “Adequacy of the arithmetization of
propositional logic”.

When defining predicates, the use of characteristic functions makes things even easier
because there is no problem in using recursive function definitions. Examples for such
definitions are the characteristic functions for equality on page 25, for codes of ordinals on
page 32, and the ordinal less-than relation on page 35.

Chapter 2

Induction principles

2.1 Input Bounded Outputs

This section is centered around lemma 3. Call an output variable a appearing in a set Γ
input bounded, if Γ contains a formula ¬a ≤ x. Roughly speaking lemma 3 modifies the
induction rule such that the conclusion is given for input bounded outputs rather than for
(basic terms on) inputs. Notice that this new rule incorporates the original induction rule,
as we always can substitute back x for a, once we have established x ≤ x. The converse
direction, the substitution of input bounded outputs for input variables, is possible as
well and could be shown by a straightforward induction on proofs (just replacing every
induction rule with lemma 3). We don’t give the details but rather wait for lemma 10
whereof this result is just a special case.

We start with a handful of simple technical observations needed for the proof of lemma 3.

Lemma 2. If P contains the defining equations for all functions introduced in chapter 1,
we have (where we omit mentioning the premise ∀P):

1. ` 0 ≤ x,

2. ` a ≤ 0 → a = 0,

3. ` a ≤ b → sa ≤ sb ∧ pa ≤ pb,

4. ` a ≤ x → pa ≤ x.

Proof. The first item is proved by induction for the formula 0 ≤ a, where the induction
step follows from 0 .− sa = p0 .− a = 0 .− a. The second item says a .− 0 = 0 → a = 0
which is immediate from a .− 0 = a. The first part of the third item is immediate from the
equational program, as we have sa .− sb = psa .− b = a .− b, whereas the second part uses the

11

12 CHAPTER 2. INDUCTION PRINCIPLES

cases rule: The case b = 0 then is immediate from item 2, and the successor case follows
from pa .−psb = a .− spsb = a .− sb. The final item follows directly from ∀a.pa .−x = p(a .−x)
which is proved by induction. Here the base case is obtained from pa .− 0 = pa = p(a .− 0),
and the induction step comes from

ppa .− b 6= p(pa .− b), pa .− sb = ppa .− b = p(pa .− b) = p(a .− sb)

by quantification (note that pa is a basic term).

Now we are ready to state and prove the main result of this chapter. It is independant from
Ostrin and Wainer [17, p. 381], which used a similar technique with a specific induction
formula A when proving the totality of the factorial.

Lemma 3 (Induction for input bounded outputs). EA(;) proves, for all formulas
A, the rule

Γ, A[0] Γ,¬a ≤ x,¬A[a], A[sa]

Γ,¬a ≤ x, A[a]

(where a does not appear free in Γ, A[0]).

Proof. By induction on b in the formula ∀a ≤ b.a ≤ x → A[a]. The base case follows from
lemma 2.2 and the first premise. For the induction step we use lemmas 2.3 and 2.4 and
the second premise in the form of Γ,¬pa ≤ x,¬A[pa], A[a] to find

¬(pa ≤ b ∧ pa ≤ x → A[pa]), a ≤ sb ∧ a ≤ x → A[a].

Quantification and the induction rule then lead to ∀a ≤ x.a ≤ x → A[a].

This lemma plays a fundamental role throughout this thesis. For illustrating its application,
recall the equational programs for addition and subtraction. Instead of proving a+x↓ and
a .− x↓ we now get b ≤ x → a + b↓ and b ≤ x → a .− b↓ which in contrast to the former
allows us to perform another induction on the second arguments of both functions – as
long as we take into account the bound x. This will soon pay off, for the first time in
lemma 5.3 where we could neither prove the base case nor the induction step otherwise.

Another few useful applications of the lemma are collected into the following lemma. Notice
that they also hold for input variables in place of the input bounded outputs, as observed
above. The notation a ≤ b ≤ x means a ≤ b∧ b ≤ x, of course. Recall also the abbreviated
notation a, b ≤ x as introduced earlier. Then the third item, for example, would read as
` (a ≤ x ∧ b ≤ x) → a .− b ≤ a ∧ a ≤ a + b, correctly spelled out.

Lemma 4. If P contains the defining equations for all functions introduced in chapter 1,
we have (where we omit mentioning the premise ∀P):

1. ` b ≤ x → a + b↓ ∧ a .− b↓ ∧ 0 + b = b ∧ sa + b = s(a + b) ∧ a .− sb = p(a .− b),

2.1. INPUT BOUNDED OUTPUTS 13

2. ` b ≤ x → b ≤ b ∧ 0 ≤ b ≤ sb,

3. ` a, b ≤ x → a .− b ≤ a ≤ a + b,

4. ` (a ≤ b ≤ x → a ≤ x) ∧ (a ≤ b ≤ c ≤ x → a ≤ c),

5. ` b ≤ x → (a ≤ b → a < b ∨ a = b),

6. ` a, b ≤ x → (a ≤ b ∨ b ≤ a) ∧ (a < b → a ≤ b ∧ b 6≤ a).

Proof. 1. For the first and the second conjunct see above. The third and fourth are
proven by using lemma 3, where both the base cases and the induction steps are
simple. For the final one, notice that we already have shown pa .− x = p(a .− x) in
the proof of lemma 2.4. Replacing the induction rules with applications of lemma 3
turns its proof into a proof of the fifth conjunct, because a .− sb = pa .− b.

2. The first conjunct is immediate from lemma 3 where A[a] :≡ a ≤ a. If we had used
the induction rule instead of lemma 3 we had got x ≤ x. As observed above, this
allows us to replace input bounded outputs with the bounding input variables.

As x ≤ x, the first, third and fourth items of lemma 2 combine into 0 ≤ x ≤ sx.
Replacing the induction rules with applications of lemma 3 in these proofs yields a
proof of the second conjunct.

3. Using the previous items of this lemma and lemma 2.3 we prove the first inequality
by input bounded induction on b, with base case a .− 0 = a ≤ a and induction step
a .− sb = p(a .− b) ≤ pa ≤ a, and the second inequality by input bounded induction
on a, where the base case is 0 ≤ b = 0 + b and induction step sa ≤ s(a + b) = sa + b.

4. The first conjunct is proven by (ordinary) induction on

A[c] :≡ ∀a∀b.a ≤ b ≤ c → a ≤ c.

The base case follows from two applications of lemma 2.2. For the induction step we
assume a ≤ b ≤ sc and use the third item of the same lemma to obtain pa ≤ pb ≤ c.
Then pa ≤ c by induction hypothesis. If a 6= 0 we get a = spa ≤ sc by the same
lemma again. Otherwise, a = 0 means pa = a, so a ≤ c which implies a ≤ sc as
shown in the proof of lemma 2.1, and the induction step is complete.

Using lemma 3 in place of the induction rule turns this proof into a proof of the
second conjunct.

5. We first prove pa = 0 → (a = 0 ∨ a = 1) by using the cases rule. Substituting sa .− b
(which is defined if b ≤ x) for a, and using the fact that a ≤ b implies sa ≤ sb by
lemma 2.3, and thus p(sa .− b) = sa .− sb = 0 by lemma 4.1 and the definition of ≤,

14 CHAPTER 2. INDUCTION PRINCIPLES

we obtain sa .− b = 0 ∨ sa .− b = 1. Back to the main proof, if the first disjunct holds
we have a < b by definition. If the second holds, we are done if we can show

¬b ≤ x, ∀a.sa .− b = 1 → a = b

which we can by using lemma 3: The base case b = 0 is immediate. For the induction
step we assume sa .− sb = 1 and show that a = sb. The case a = 0 is impossible
as the premise by lemma 4.2 would imply that 0 = 0 .− b = 1 .− sb = 1 which isn’t
the case. So a must be a successor. This implies that psa = spa, and we compute
spa .− b = psa .− b = sa .− sb = 1, so the induction hypothesis gives pa = b, thus
a = psa = spa = sb as required.

6. The first conjunct is shown by input bounded induction on a. In the base case we
have a = 0 ≤ b from the second item of this lemma. In the induction step we
distinguish the two cases given by the induction hypothesis. If b ≤ a, as a ≤ sa by
the second item again, we are done by applying the fourth item. (To be precise, we
have to substitute sx for x in 4. beforehand, then the premise sa ≤ sx is met by
lemma 2.3.) The other case, a ≤ b, has two subcases according to item 5. But the
subcase b < a means sa ≤ b by definition, otherwise b = a ≤ sa by 2. once more.

In the second conjunct, a ≤ b is immediate from a ≤ sa ≤ b and the fourth item
of this lemma. For the last claim we show sa .− b 6= 0 ∨ b .− a 6= 0, which is just
another way to express the implication a < b → b 6≤ a, by input bounded induction
on b. In the base case we have trivially sa .− 0 = sa 6= 0. In the induction step we
distinguish the two cases given by the induction hypothesis. If b .− a 6= 0, then sb .− a
can’t equal 0 as this would imply b ≤ sb ≤ a which contradicts the premise by item
4. Otherwise sa .− b doesn’t equal 0, therefore it is the successor of some c. Now if
c 6= 0 we simply compute sa .− sb = p(sa .− b) = psc = c 6= 0 using the first item of
this lemma, and if not, sa .− b = s0. But we have shown in the proof of item 4 that
this implies a = b. Then sb .− a 6= 0 because we can show sa .− a = s0 by an easy
(input bounded) induction.

Lemma 4.4 will be used throughout, usually in the form (t↓ ∧ t′↓ ∧ t ≤ t′ ≤ x) → t ≤ x,
and we will refer to it as the “Transitivity of ≤”.

2.2 Variations

We conclude this chapter by deriving two variants of lemma 3, that is a course-of-value
induction and “induction for a ≥ b”. Again we have to set up a few technical results
beforehand.

Lemma 5. If P contains the defining equations for all functions introduced in chapter 1,
we have (where we omit mentioning the premise ∀P):

2.2. VARIATIONS 15

1. ` a 6< 0,

2. ` c, a + sc ≤ x → a + c ≤ x,

3. ` a ≤ b ≤ x → a + (b .− a) = b.

Proof. 1. This is immediate from lemma 2.2, as sa 6= 0.

2. This is just a variant of lemma 2.4 where we substitute the term s(a + c) (which is
defined if c ≤ x) for a, and apply the defining equations of + and p.

3. By input bounded induction for A[a] :≡ ∀b.a ≤ b ≤ x → a + (b .− a) = b. The
base case is immediate from lemma 4.1. For the induction step, if b = 0, then by
lemma 2.2, a = 0 as well, and the result is trivial. Otherwise spb = b. Assuming
sa ≤ b ≤ x, lemmas 2.3 and 2.4 give us a ≤ pb ≤ x, so we want to substitute pb for
the universal in the induction hypothesis to compute

sa + (b .− sa) = sa + (pb .− a) = s(a + (pb .− a)) = spb = b.

The second step is justified by lemma 4.1 where we substitute pb .− a for b. This is
allowed since we have a ≤ x by transitivity, thus pb .−a↓ and pb .−a ≤ x by lemmas 4.1
and 4.3 (and transitivity again).

This completes the induction step. Lemma 3 gives ¬a≤x, a≤b≤x → a + (b .− a)=b,
but the premise a ≤ x is superfluous due to transitivity.

Corollary 6. EA(;) proves, for all formulas A, the rule

Γ,¬b ≤ x, (∀a < b.A[a]) → A[b]

Γ,¬b ≤ x, A[b]

(where b does not appear free in Γ, A[0]).

Proof. Apply lemma 3 to the formula B[b] :≡ ∀a < b.A[a]. Because of lemma 5.1 the base
case Γ, B[0] is trivial. For the induction step we assume b ≤ x, B[b], and a < sb, we have
to show A[a]. The final assumption says sa ≤ sb by definition, so by lemmas 2.3 and 4.5
we obtain a < b ∨ a = b. In case of the first disjoint, A[a] holds by B[b]. Therefore A[b]
follows from the premise of the corollary, which settles the case of the second disjoint. Now
lemma 3 gives Γ,¬b ≤ x, ∀a < b.A[a] which by the premise leads to Γ,¬b ≤ x, A[b].

Corollary 7. EA(;) proves, for all formulas A, the rule

Γ,¬a ≤ x, A[a] Γ,¬a ≤ b ≤ x,¬A[b], A[sb]

Γ,¬a ≤ b ≤ x, A[b]

(where b does not appear free in Γ, A[0]).

16 CHAPTER 2. INDUCTION PRINCIPLES

Proof. Apply lemma 3 to the formula B[c] :≡ a+c ≤ x → A[a+c], for a new variable c that
does not appear free in Γ, A[0]. Then Γ, B[0] follows immediately from the first premise.
For the induction step assume c ≤ x and a + sc ≤ x. Then lemma 5.2 allows us to obtain
A[a + c] from the induction hypothesis. Furthermore we have a ≤ a + c from lemma 5.2.
Now we can substitute the defined term a+c for b in the second premise to obtain A[a+sc],
which concludes the induction step. Now by lemma 3 we have Γ,¬a, c, a + c ≤ x, A[a + c].
Substitute back the term b .− a, which is defined under the assumption a ≤ x, for c and
use lemma 5.3 to obtain Γ,¬a ≤ b ≤ x,¬a, b .− a ≤ x, A[b], and finally lemma 4.3 and
transitivity to remove the premises b .− a ≤ x and a ≤ x.

Chapter 3

Input Substitution

It is a common criticism that EA(;) doesn’t provide a direct mechanism for subsitute terms
for input variables. That is, its provably total functions aren’t intensionally closed under
(predicative) composition. The fact that they are indeed traditionally is established via
an extensional characterization like being exactly the functions computable in elementary
time. However, we can do better. Ostrin and Wainer [18, lemma 2.2] show that EA(;)
proves A[2k(p(~x))] for every progressive formula A (where 2k(x) is the k-time iterated
exponentiation to the base 2, and p is any polynomial). A straightforward induction
on proofs would show that therefore free input variables always can be substituted with
2k(p(~x)). We are going to show that this argument can be generalized to any provably
total function of EA(;).

The proof idea is to transform, with respect to a fixed progressive formula A, the given
proof of ∃d.f(x) = d into a proof of ∃d.f(x) = d ∧ A[d], roughly speaking, by relativizing
all sequents to A. There remains one technical obstacle: The potential presence of the
predecessor function in the definition of f requires that the relativizing formula be closed
under predecessors, which need not be the case for A. This is the reason why we relativize
the proof to A∗ instead:

A∗[a] :≡ a ≤ a ∧ ∀d ≤ a.pd ≤ a ∧ A[d],

(t = s)A :≡ t = s,

(B ∧ C)A :≡ BA ∧ CA,

(B ∨ C)A :≡ BA ∨ CA,

(¬B)A :≡ ¬BA,

(∀a.B[a])A :≡ ∀a.A∗[a] → BA[a],

(∃a.B[a])A :≡ ∃a.A∗[a] ∧BA[a],

(B0, . . . , Bn)A :≡ BA
0 , . . . , BA

n .

It is worth noticing that A∗[t] implies A[t] for any defined term t, this is the reason for

17

18 CHAPTER 3. INPUT SUBSTITUTION

which we include the clause a ≤ a into the definition of A∗. For better reading we are
going to use a Gentzen-style notation in the following two lemmas, writing A, B ` Γ when
we actually mean ` ¬A,¬B, Γ.

Lemma 8. If EA(;) proves ` Γ(~a), where all free output variables are displayed, then
EA(;) proves

Prog(A), A∗[~a] ` ΓA(~a),

where Prog(A) denotes the formula A[0] ∧ (∀a.A[a] → A[sa]), and the abbreviation A∗[~a]
stands for

∧
a∈~a A∗[a].

Proof. Let us first observe that Prog(A) implies A∗[0] as well as A∗[c] → A∗[t(c)] for any
basic term t. The first claim is immediate, as d ≤ 0 implies d = 0 by lemma 2.2. The
second is shown inductively along the construction of t, where t(c) ≤ t(c) is immediate
from the assumption c ≤ c using lemma 2.3 repeatedly.

As to the the second conjunct of A∗, the base case t(c) ≡ c is trivial. In the case of
a successor term st we assume d ≤ st, and we have to show pd ≤ st ∧ A[d], using the
induction hypothesis A∗[t]. By lemma 2.3 we first deduce that pd ≤ pst = t. From A∗[t]
it follows that ppd ≤ t and A[pd], as pd is defined. As A is progressive we conclude A[d],
the second conjunct. For the first conjunct we apply lemma 2.3 again to obtain sppd ≤ st,
but sppd equals pd, unless pd = 0, in which case pd = 0 ≤ st follows from pd ≤ t by
0 .− st = p0 .− t = 0 .− t.

In the predecessor case we assume d ≤ pt and A∗[t] and show pd ≤ pt ∧ A[d]. The case
t = 0 is trivial because then pt = t. Otherwise spt = t. Thus the first assumption implies
sd ≤ t by lemma 2.3 once again. Instantiating the universal quantifier in A∗[t] with sd
yields d ≤ t (as psd always equals d). Now pd ≤ pt is immediate from lemma 2.3, and A[d]
follows from A∗[t], this time with the universal quantifier instantiated with d.

To prove the lemma we proceed by induction on the length of the derivation of ` Γ(~a).
If Γ(~a) is an axiom, then so is Γ(~a)A. If the last rule applied was a conjunction or a
disjunction rule, we can apply the same rule to the induction hypothesis. The universal
rule is straightforward as well.

If Γ, B[b] was derived by using the cases rule from the premises Γ, B[0] and Γ, B[sc], applying
the same rule to the induction hypothesis gives

Prog(A), A∗[~a] ∧ A∗[c] ` ΓA(~a), BA[~a, t(b)].

Without loss of generality we may assume that b ∈ ~a, otherwise we simply add the premise
A∗[b] by weakening. Now, if c ∈ ~a, we are done. If not, we can substitute 0 for c and cut
the premise A∗[0] which is provable as seen above.

If Γ was derived by a cut from the premises Γ, B and Γ,¬B, we proceed in a similar way,
applying the cut rule to the induction hypothesis possibly followed by removing premises
of the form A∗[b] for output variables b present in B but not in Γ.

19

If Γ,∃b.B[b] was derived from Γ, B[t(c)], we assume by induction hypothesis that

Prog(A), A∗[~a] ∧ A∗[c] ` ΓA(~a), BA[~a, t(c)]

is derivable. From this and the introductory observation we conclude

Prog(A), A∗[~a] ∧ A∗[c] ` ΓA(~a),∃b.A∗[b] ∧BA[~a, b]

by the conjunction rule followed by the existential rule. Now, as in the cases rule, we are
done, if c ∈ ~a. If not, we substitute 0 for c and cut the premise A∗[0].

All that remains is the induction rule. Here applying the induction hypothesis to the
premises gives

Prog(A), A∗[~a] ` ΓA(~a), BA[~a, 0]

and

Prog(A), A∗[~a] ∧ A∗[b] ` ΓA(~a),¬BA[~a, b], BA[~a, sb].

From this and the observation above it is easy to see that we can derive the premises of
the induction rule for the formula A∗[b] ∧BA[~a, b]. We end up with

Prog(A), A∗[~a] ` ΓA(~a), A∗[x] ∧BA[~a, x],

so we are done once we drop the first conjunct A∗[x].

Corollary 9. Let ∆ be a finite set of Σ1 formulas, where all free output variables are
among ~a. If EA(;) proves ` ∆, f(~a, ~x)↓, then EA(;) proves

Prog(A), A∗[~a] ` ∆, f(~a, ~x)↓ ∧ f(~a, ~x) ≤ f(~a, ~x) ∧ A[f(~a, ~x)].

This corollary in particular generalizes lemma 2.2 of Ostrin and Wainer [18] to all provably
terminating functions f , because the (usually hidden) premise ¬∀P consists of Σ1 formulas
only. However, we can apply it even in presence of any side formulas of complexity Σ1.

Proof. From the lemma we get ∆A,∃b.A∗[b]∧ f(~a, ~x) = b (under the assumptions Prog(A)
and A∗[~a]). This logically implies our claim, as BA → B is a tautology for every Σ1 formula
B, and A∗[b]∧ t = b first implies b ≤ b∧A[b] (as b is always defined), which in turn implies
t ≤ t ∧ A[t] by the equality rule.

Theorem 10 (Input Substition). Let ∆ be a finite set of Σ1 formulas, and assume
that z is not free in Γ, A[0]. Then EA(;) proves, for all formulas A, terms t and function
symbols f , the rule

Γ, A[z] ∆, f(~x)↓
Γ, ∆,¬t↓,¬t ≤ f(~x), A[t].

20 CHAPTER 3. INPUT SUBSTITUTION

This theorem has two special cases which are especially interesting. First, if t is f(~x), the
premises t↓ and t ≤ f(~x) become provable (the latter by the previous corollary) and we
are left with

Γ, A[z] ∆, f(~x)↓
Γ, ∆, A[f(~x)].

Notice however that, in contrast to the similar-looking substitution for outputs, this holds
only when f(~x)↓ can actually be proved. In addition, we can’t substitute an f that is
applied to output variables. Although this matches exactly the safe composition scheme
of Bellantoni and Cook [3], one might ask whether we can we generalize further. It seems
plausible for instance that one could even derive A[a] → A[f(a, ~x)] when f(a, ~x) is provably
total.

Secondly, when t is an input variable d and f is the output variable x, then f is provably
total with an empty ∆, and t is trivially defined, so we have

Γ, A[z]

Γ,¬d ≤ x, A[d].

This together with earlier remarks shows that inputs and input bounded outputs are freely
interchangeable. In particular, “provably total” will often be interpreted as “defined on
input bounded outputs”in the sequel.

As a last remark before we are going to prove the theorem we have to mention that it
generalizes to sets Γ, A[z] that are proved in any theory that extends EA(;) by additional
axioms, as long as these axioms are closed under substitution of defined terms for input
variables. An example of such an extension is the variant of EA(;) used in Wainer and
Williams [24] where the condition on the additional axioms is met because they are formu-
lated exclusively over output variables. However, the proof of ∆, f(~x)↓ must be a proof of
EA(;) itself.

Proof. Given the previous corollary, the proof idea is quite simple and has already been
used a few times in proving some items of lemma 4: Replace each induction rule in the
given proof of Γ, A[z] with an application of lemma 3, you end up proving the second
special case. The same procedure, with the corollary playing the role of lemma 3, would
yield the first special case. A slight generalization of this argument proves the theorem
itself, still proceeding by induction on the length of the derivation of Γ, A[z].

If Γ, A[z] is an axiom, so is Γ,¬t↓, A[t], and the claim follows from weakening. The conjunc-
tion and disjunction rules and the cut rule are immediate from the induction hypothesis.
So are the cases and the universal rule, as we can safely assume that the eigenvariable does
not occur in ∆ and t.

If Γ,∃a.A[a, z] was derived from Γ, A[s, z], and s doesn’t contain z, the claim is immediate
from the induction hypothesis again. If s contains z we have to notice that s(t) is defined
under the assumption t↓, thus it can serve as a witness for the (generalized) existential
rule.

21

The last case is when Γ, A[s(y), z] is derived by an induction. Again we can assume that
the eigenvariable doesn’t occur in ∆ and t. Now if y is different from z we simply apply
the induction rule to the induction hypothesis. If not, what we can get from the induction
hypothesis is that A[·, t] is provably progressive (under the assumptions t↓ and t ≤ f(~x)).

Once we have concluded that the formula B[b] :≡ ∀d ≤ b.A[s(d), t] is progressive in b, we
can apply the previous corollary to obtain f(~x)↓ ∧ ∀d ≤ f(~x).A[s(d), t]. The claim then
follows by instantiating d with t.

For the progressiveness of B we notice that s(0) provably equals sn(0) for some natural
number n, so B[0] is immediate from lemma 2.2, applying the progressiveness of A[·, t] n
times. For the induction step we need that EA(;) proves

(∗) t(a) = st(pa) ∨ t(a) = t(pa)

for any basic term t. We show this by induction on the construction of t. It is trivial (using
the cases rule) if t(a) ≡ a. If t(a) ≡ st′(a) we assume that (∗) holds for t′ and compute

t(a) = st′(a) =

{
sst′(pa) = st(pa) if t′(a) = st′(pa),

st′(pa) = t(pa) if t′(a) = t′(pa).

If t(a) ≡ pt′(a) on the other hand we have

t(a) = pt′(a) =

pst′(pa) = t′(pa) =

{
pt′(pa) = t(pa) if t′(pa) = 0,

spt′(pa) = st(pa) if t′(pa) = sb,

pt′(pa) = t(pa).

Returning back to the proof of the induction step for B, we assume B[b] and d ≤ sb in
order to show A[s(d), t]. From lemma 2.3 we get pd ≤ b, so instantiating the universial
with sb in the induction hypothesis yields A[s(pd), t]. Since A is progressive, the claim
follows from (∗).

We have seen that inputs and input bounded outputs are interchangeable. In view of this
it is no surprise that the same substitution principle applies to input bounded outputs as
well, as the following rephrasing shows. It will play no role in the sequel, however.

Corollary 11 (Input bounded Output Substition). Let ∆ be a finite set of Σ1 for-
mulas, and assume that a and x are not free in Γ, ∆, A[0]. Then EA(;) proves, for all
formulas A and all function terms f , the rule

Γ,¬a ≤ x.A[a] ∆, f(x)↓
Γ, ∆,¬a ≤ x, A[f(a)].

Proof. As x ≤ x is provable, and a is not free in Γ, A[0], we immediately get Γ, A[x]. The
first special case of theorem 10 then gives Γ, ∆, A[f(x)], and the claim follows from the
second special case of the same theorem.

22 CHAPTER 3. INPUT SUBSTITUTION

A quite surprising, but extremely useful consequence is the following corollary. Comparing
the first premise to the conclusion you find that it simply allows us to drop a premise of
the form f(~a) ≤ z for a provably total f in favour of ~a ≤ z. Even if looking implausible at
first sight, when thinking of the free input variable z as being universially quantified rather
than a fixed parameter, it turns into a commonly used principle of arithmetic, because we
then just have to instantiate z with any provable common upper bound for ~a and f(~a) in
the premise. Indeed, inspecting the proof reveals that this is exactly what is going on here,
that the bound z in the conclusion is different from the z in the premise.

Corollary 12. Let ∆ be a finite set of Σ1 formulas, and assume that z and ~x are not free
in Γ, ∆(~a). Then EA(;) proves, for all function terms f , the rule

¬~a, f(~a) ≤ z, Γ(~a) ∆, f(~x)↓
¬~a ≤ z, ∆, Γ(~a).

Proof. For notational simplicity we only prove the case where ~a ≡ a, b. The general case
is similar.

Define f ′(a, b) = max(a, b, f(a, b)) such that EA(;) proves

(∗) max(x, y, f(x, y))↓ ∧ x, y, f(x, y) ≤ max(x, y, f(x, y)).

This can be achieved by defining

max(a, b) = a + (b .− a), max(a, b, c) = max(max(a, b), c).

From lemma 4.1 and 4.3 we know that x + y↓, y .− x↓ and x ≤ x + y. By the first
special case of theorem 10 we get max(x, y)↓ and x ≤ max(x, y). Once we have shown
y ≤ max(x, y), which we will do below, we can use the same special case to push this up to
max(x, y, z)↓ ∧ x, y, z ≤ max(x, y, z), and then, using the second premise of this corollary,
also to (∗).

In the main proof we continue using theorem 10. Apply the first special case to the first
premise of this lemma to substitute f ′(x, y) for z, and substitute x and y for a and b
respectively. This leaves us with ¬x, y, f(x, y) ≤ f ′(x, y), ∆, Γ(x, y). Now we can cut the
three bounds, and use the second special case of theorem 10 twice to get ¬a, b ≤ x, ∆, Γ(a, b)
which proves the corollary.

As to the proof of y ≤ max(x, y), it arises by replacing each input bounded induction with
the original induction rule of EA(;) in the following proof of a, b ≤ x → b ≤ max(a, b).
This proceeds by case distinction according to the first conjunct of lemma 4.6. If a ≤ b, we
simply compute max(a, b) = b by lemma 5.3, and the claim is immediate from lemma 4.2.
Otherwise b .− a = 0 by definition, so b ≤ a = a + (b .− a) = max(a, b).

Of course, this corollary can also be applied to remove several functions simultaneously.
For, if we have the premises ¬~a, f(~a), g(~a) ≤ z, Γ(~a) and ∆, f(~x)↓ ∧ g(~x)↓, we can define
f ′(~a) = max(~a, f(~a), g(~a)) like in the proof above and continue in the same way.

23

Even though the corollary removes a premise, its application, by an abuse of terminology,
may rather look like adding one. For, when trying to prove ∆, Γ(~a) from the premise ~a ≤ z,
the corollary allows us to use the additional premise f(~a) ≤ z as well.

Chapter 4

Computing within EA(;)

4.1 Arithmetic

This section uses the results from the previous sections to develop a sufficient amount of
arithmetic needed for the encoding of sequence numbers.

We first define a characteristic function for equality by

χ=(0, 0) = 1, χ=(0, sb) = 0, χ=(sa, 0) = 0, χ=(sa, sb) = χ=(a, b).

This definition satisfies

` b ≤ x → χ=(a, b)↓ ∧ (χ=(a, b) = 1 ↔ a = b)

which we often will refer to as the “Adequacy of χ=”. Notice that we don’t need to
assume a ≤ x, this motivates our choice for the somewhat unusual defining equations
and will be exploited in the sequel. The proof would use input bounded induction for
A[b] :≡ ∀a.χ=(a, b)↓ ∧ (χ=(a, b) = 1 ↔ a = b), where the induction step follows from
χ=(pa, b)↓ → χ=(a, sb)↓ and (χ=(pa, b) = 1 ↔ pa = b) → (χ=(a, sb) = 1 ↔ a = sb). Both
are proven by cases on a.

Next, in addition to the already defined addition and modified subtraction we define mul-
tiplication and exponentiation in the usual way,

a · 0 = 0, a · sb = (a · b) + a, a0 = 1, asb = ab · a.

Under these definitions it is quite straightforward to prove the following results which we
are going to use without always referring to explicitly:

Lemma 13. EA(;) proves

1. b ≤ x → (a + b) .− b = a,

25

26 CHAPTER 4. COMPUTING WITHIN EA(;)

2. a, b ≤ x → a + b = b + a,

3. b, c ≤ x → a + (b + c) = (a + b) + c,

4. a, b ≤ x → a · b↓,

5. a, b ≤ x → a · 1 = a ∧ 0 · a = 0 ∧ sb · a = b · a + a ∧ a · b = b · a,

6. a, b, c ≤ x → (a + b) · c = (a · c) + (b · c) ∧ (a · b) · c = a · (b · c),

7. a, b ≤ x ∧ c < b → a + c < a + b ∧ a · c < a · b ∧ c ≤ c2 < b2,

8. a, b ≤ x → ab↓,

9. a, b, c ≤ x → a(b+c) = ab · ac ∧ (ab)c = ab·c ∧ (c 6= 0 → ac + bc ≤ (a + b)c),

10. a, b ≤ x ∧ c ≤ b ∧ a 6= 0 → ac ≤ ab.

Proof. The first item is immediate by (input bounded output) induction on b, the second
by induction on a, where the base case and the induction step both use lemma 4.1 and the
third by induction on c where the induction step is

(a + b) + sc = s((a + b) + c) = s(a + (b + c)) = a + s(b + c) = a + (b + sc)

and the premise b, c ≤ x is needed to ensure a + b↓ and b + c↓.

In item 4, a · b↓ is proven by using input bounded output induction on b, where in the in-
duction step the induction hypothesis gives a·b↓, so we can substitute it for a in lemma 4.1,
and we are done.

The first conjunct of item 5 is immediate from lemma 4.1, and the second and the third
conjunct are both proven by induction on a, where the induction step of the third uses
previous items of this lemma and lemma 4.1 to ensure b · a↓ and b · a+ a↓, and to compute

sb·sa = sb·a+sb = s((b·a+a)+b) = s(b·a+(a+b)) = s(b·a+(b+a)) = s((b·a+b)+a = b·sa+sa.

Now we are ready to show the fourth conjunct by induction on b. The base case is im-
mediate from the second conjunct, and the induction step from the first and the third by
computing a · sb = a · b + a = b · a + a = sb · a.

The proof of item 6 is interesting because it shows how to apply corollary 12: When proving
the first conjunct by induction on c, for the induction step we want to compute

(a+b)·sc = (a+b)·c+(a+b) = (a·c+b·c)+(a+b) = ((a·c+b·c)+a)+b = (a·c+(b·c+a))+b

= (a · c + (a + b · c)) + b = ((a · c + a) + b · c) + b = (a · c + a) + (b · c + b) = (a · sc) + (b · sc).

This computation is justified by the second and third items of this lemma upon the as-
sumptions that the terms a + b, a · c, b · c, a · c + a and a · c + b · c are all defined and

4.1. ARITHMETIC 27

that a, b, b · c ≤ x. Now definedness follows from previous items and the latter bounds
(augmented with c ≤ x), and finally corollary 12 allows us to remove the premise b · c ≤ x.

All other items are verified in the usual way (after computing b ≤ x → b2 = b0 · b · b = b · b
in item 7), applying corollary 12 whenever we need output bounds for terms that already
have been shown to be defined, except for item 8 which needs some more work.

Here we can’t use induction outright, as for the induction step we would need ab · a↓ for
which we would have to be able to assume ab ≤ x. But we can’t use corollary 12 here
because ab↓ is only the induction hypothesis, but no theorem of EA(;) yet. We need
a principle of function bounded induction instead, with a variant of f(a, b) = a + 2b as
bounding function. This function f has defining equations

f(a, 0) = sa, f(a, sb) = f(f(a, b), b),

and has been shown to be provably total even on outputs in its first argument in Ostrin
and Wainer [17, p. 379]. We first show

b, c ≤ x → f(a + b, c) = f(a, c) + b,(1)

b ≤ x → f(0, sb) = f(0, b) + f(0, b),(2)

a, b ≤ x → f(0, a + b) = f(0, a) · f(0, b).(3)

The first claim is proven by induction for A[c] :≡ ∀a.f(a+b, c) = f(a, c)+b. The base case
is immediate as we have seen b ≤ x → a + b↓ ∧ s(a + b) = sa + b above. For the induction
step we instantiate the universal in the induction hypothesis to a and to f(a, c) (which is
defined) to compute

f(a + b, sc) = f(f(a + b, c), c) = f(f(a, c) + b, c) = f(f(a, c), c) + b = f(a, sc) + b.

The second claim then uses the additional assumption f(0, b) ≤ x allowed by corollary 12,
first to deduce f(0, b) = 0 + f(0, b) from lemma 4.1, then to use (1) in computing

f(0, sb) = f(f(0, b), b) = f(0 + f(0, b), b) = f(0, b) + f(0, b).

The third claim is by induction on a. The base case under the additional assumption
f(0, b) ≤ x is immediate from lemma 4.1 and the fifth item of this lemma, the step uses (2)
and previous items of this lemma for

f(0, a + sb) = f(0, s(a + b)) = f(0, a + b) + f(0, a + b)

= f(0, a) · f(0, b) + f(0, a) · f(0, b) = f(0, a) · (f(0, b) + f(0, b)) = f(0, a) · f(0, sb)

where the necessary bounds are provided by corollary 12.

Now we are ready to return to the main proof. This uses lemma 3, applied to the formula
A[b] :≡ ab↓∧ab ≤ f(0, a·b). The base case is immediate. For the induction step we first use

28 CHAPTER 4. COMPUTING WITHIN EA(;)

(2) to show a ≤ f(0, a) by induction on a. Then, assuming f(0, a · b) ≤ x by corollary 12,
the induction hypothesis and transitivity give ab↓ and ab ≤ x and we compute

asb = ab · a ≤ f(0, a · b) · f(0, a) = f(0, a · b + b) = f(0, a · sb),

using corollary 12 to provide bounds.

Corollary 12 also helps a lot in defining the bounded maximum of a given function, and a
bounded µ-operator that searches for its least null.

Lemma 14. If f(a, b) is a provably total function of EA(;), then there is a function
f0(a, b) = maxd≤a(f(d, b)) such that EA(;) proves

a, b ≤ x → f0(a, b)↓ ∧ f(a, b) ≤ f0(a, b) ∧ ∃d ≤ a.f0(a, b) = f(d, b)

∧ ∀d ≤ a.f0(d, b) ≤ f0(a, b).

Proof. Let f0 be defined by

f0(0, b) = f(0, b),

f0(sa, b) =

{
f0(a, b) if f(sa, b) .− f0(a, b) = 0,

f(sa, b) else.

The conditional construction in the defining equation is meant to stand for the call-by-
name construction of lemma 1, although this is not crucial here. The definitional clause
for the successor case defines f0(sa, b) to be a kind of max(f(sa, b), f0(a, b)). We could have
used the max function defined in the proof of corollary 12, but our choice makes the proof
of the lemma easier.

We show the first three conjuncts by input bounded output induction (lemma 3) on a. In
the base case f0(0, b) is defined because f(0, b) is. Using corollary 12 to assume f(0, b) ≤ x
enables us to get f(0, b) ≤ f(0, b) = f0(0, b) from lemma 4.2. The third conjunct is trivial.

For the induction step we assume sa ≤ x by corollary 12. By the induction hypothesis,
f0(a, b) is defined and equals f(d, b) for some d ≤ a, where d ≤ sa by lemma 4.2 and
transitivity. This d by transitivity also satisfies d ≤ x, so we have f(d, b)↓, and we can use
corollary 12 to add the premise f(d, b) ≤ x. Then the term f(sa, b) .− f0(a, b) is defined
and we distinguish cases according to lemma 1. If it equals 0, then f0(sa, b) = f0(a, b)
which we already have shown to be defined and to equal f(d, b) for some d ≤ sa, and we
have f(sa, b) ≤ f0(a, b) = f0(sa, b) by definition of ≤. Otherwise f0(sa, b) = f(sa, b) which
is defined by assumption on f , and sa can serve as witness for the existential quantifier.
Finally, under the additional premise f(sa, b) ≤ x which is allowed by corollary 12 we
immediately get f(sa, b) ≤ f(sa, b) = f0(sa, b) from lemma 4.2.

4.1. ARITHMETIC 29

The fourth conjunct is proven by applying corollary 7 to A[a] :≡ f0(d, b) ≤ f0(a, b). The
base case a = d is immediate from lemma 4.2 as we can assume f0(a, b) ≤ x by corol-
lary 12. The induction step uses the same case distinction as above. Either we have
f(sa, b) ≤ f0(a, b), where f0(d, b) ≤ f0(a, b) = f0(sa, b) by induction hypothesis and the
defining equation, otherwise f0(a, b) ≤ f(sa, b) = f0(sa, b) by the first conjunct of lemma 4.6
(assuming f0(a, b), f(sa, b) ≤ x by corollary 12) and the claim then follows from the induc-
tion hypothesis and transitivity.

Lemma 15. If f(a, b) is a provably total function of EA(;), then there is a function
f1(a, b) = µd ≤ a.(f(d, b) = 0) such that EA(;) proves

a, b ≤ x → f1(a, b)↓ ∧ (f(a, b) = 0 → f1(a, b) ≤ a)

∧ (f(a, b) = 0 ∧ ∀d < a.f(d, b) 6= 0 → ∀d ≤ x.d ≥ a → f1(d, b) = a).

Proof. Let f1 be defined by

f1(0, b) =

{
0 if f(0, b) = 0,

1 else,

f1(sa, b) =

{

sa if f(sa, b) = 0

ssa else
if χ=(f1(a, b), sa) = 1,

f1(a, b) else.

Assuming a, b ≤ x, we first show

f1(a, b)↓ ∧ f1(a, b) ≤ sa ∧ (∀d ≤ a.f(d, b) 6= 0) → f1(a, b) = sa

by input bounded induction on a, assuming b ≤ x. The base case is immediate from
lemma 1 (and lemma 2.2 for the third claim), as f(0, b) is defined by assumption.

For the induction step we can additionally assume sa ≤ x by corollary 12, thus f(sa, b)↓,
and the induction hypothesis ensures χ=(f1(a, b), sa)↓. By lemma 1 and adequacy of χ=

we get

f1(a, b) = sa ∧ f(sa, b) = 0 → f1(sa, b) = sa,(4)

f1(a, b) = sa ∧ f(sa, b) 6= 0 → f1(sa, b) = ssa,(5)

f1(a, b) 6= sa → f1(sa, b) = f1(a, b).(6)

One of the three cases must hold, and each satisfies f1(sa, b)↓ and f1(sa, b) ≤ ssa (in
case of (6), use the induction hypothesis and transitivity). For the third conjunct we
assume ∀d ≤ sa.f(d, b) 6= 0. This by lemma 4.2 implies ∀d ≤ a.f(d, b) 6= 0 as well as
f(sa, b) 6= 0. From the former we get f1(a, b) = sa by induction hypothesis, so by (5) we
get f1(sa, b) = ssa which completes the induction step.

30 CHAPTER 4. COMPUTING WITHIN EA(;)

We now can show f(a, b) = 0 → f1(a, b) ≤ a by case distinction on a. The case a = 0 is
immediate from the defining equations, in the successor case the premise excludes impli-
cation (5), whereas implication (4) implies f1(sa, b) = sa ≤ sa with help of lemma 4.2, and
in case of (6) we have f1(sa, b) = f1(a, b) ≤ sa by the above.

Finally we show

(f(a, b) = 0 ∧ ∀d < a.f(d, b) 6= 0 ∧ a ≤ d ≤ x) → f1(d, b) = a

by using corollary 7 for A[d] :≡ f1(d, b) = a, still under the assumption b ≤ x. This will
be enough to prove the third conjunct of the lemma.

The base case d = a uses cases on a. If a = 0 we immediately have f1(0, b) = 0 = a. In
the successor case the premise ∀d < sa.f(d, b) 6= 0 by definition of < and lemma 2.3 is
equivalent to ∀d ≤ a.f(d, b) 6= 0, so from the above we have f1(a, b) = sa, and by (4) we
conclude f1(sa, b) = sa.

In the induction step the induction hypothesis says f1(d, b) = a. Notice that a ≤ d implies
a 6= sd (for example by observing that a = sd would imply sd ≤ a, thus contradicting
a < sd by lemma 4.6). Then implication (6) yields f1(sd, b) = f1(d, b) = a.

4.2 Sequence Numbers

To continue towards the encoding of ordinal arithmetic this section introduces an arith-
metization of ternary sequences 〈·, ·, ·〉 including the corresponding projection functions
and its characteristic function. It is given by the following equations which, as always, we
assume to be part of the (suppressed) equational program P :

〈a, b〉 = (a + b)2 + sb, 〈a, b, c〉 = 〈〈a, b〉, c〉,
f ′(a, b) = µc ≤ a.(b .− (sc)2 = 0), h(a) = f ′(a, a),

(a)1 = p(a .− h(a)2), (a)0 = h(a) .− (a)1,

3Seq(a) = χ=(〈〈(a)0,0, (a)0,1〉, (a)1〉, a).

In the last equations (a)0,0 and (a)0,1 stand for ((a)0)0 and ((a)0)1 respectively and we will
usually write 3Seq(a) instead of 3Seq(a) = 1. These definitions satisfy

Lemma 16. EA(;) proves

1. a, b, c ≤ x → 〈a, b〉↓ ∧ 〈a, b, c〉↓ ∧ f ′(a, b)↓ ∧ h(a)↓ ∧ (a)0↓ ∧ (a)1↓ ∧ 3Seq(a)↓.

2. a, b, c ≤ x → h(〈a, b〉) = a + b ∧ (〈a, b〉)0 = a ∧ (〈a, b〉)1 = b ∧ 3Seq(〈a, b, c〉).

3. a, b, c ≤ x → 〈a, b, c〉 6= 0 ∧ (a′ ≤ a∧ b′ ≤ b∧ c′ ≤ c → a′, b′, c′ < 〈a′, b′, c′〉 ≤ 〈a, b, c〉).

4.2. SEQUENCE NUMBERS 31

4. a, b, c, c′≤x → s(a+b)2≤〈a, b〉∧〈a, b, sc〉≤(a+b+ssc)4∧〈a, b, c+c′〉≤〈〈a, b, c〉, b, c′〉.

5. d ≤ x ∧ 3Seq(d) → ∃a, b, c < d.d = 〈a, b, c〉.

Proof. 1. This is fairly immediate, making extensive use of corollary 12. For example,
as a + b↓ is provable, we can use the additional assumption a + b ≤ x. This gives
(a + b)2↓ and 〈a, b〉↓, which in turn allows us to add the premise 〈a, b〉 ≤ x, and we
can conclude 〈a, b, c〉↓. To continue, as f ′(a, b) is defined by lemma 15, so is h(a), we
can assume h(a) ≤ x again, so h(a)2↓, thus (a)1↓ by assuming h(a)2 ≤ x and so on.

2. Let f(a, b) = b .− (sa)2. Then f ′(a, b) = µc ≤ a.(f(c, b) = 0). Using the abbreviations
c := a + b and d := 〈a, b〉 = c2 + sb we are going to show

f(c, d) = 0 and ∀c′ < c.f(c′, d) 6= 0,

always assuming a, b ≤ x. As we can add the premise 〈a, b〉 ≤ x by corollary 12, and
c ≤ c2 + sb is provable, we then get f ′(d, d) = c from lemma 15 which will prove the
first conjunct.

But f(c, d) = 0 follows immediately from

d = c2 + sb ≤ c2 + sc ≤ sc · c + sc = (sc) · (sc) = (sc)2,

the definition of ≤, and transitivity (assuming (sc)2 ≤ x by corollary 12). On the
other hand, for c′ < c we have sc′ ≤ c and (sc′)2 ≤ c2 ≤ c2 + b < s(c2 + b) = d, so
d 6≤ (sc′)2 by lemma 4.6.

The remaining parts are now immediate: Compute first, under the additional premise
(a + b)2 ≤ x justified by corollary 12,

(〈a, b〉)1 = p((a+b)2+sb) .−(a+b)2 = ((a+b)2+b) .−(a+b)2 = (b+(a+b)2) .−(a+b)2 = b,

then (〈a, b〉)0 = (a+b) .−b = a, and finally 3Seq(〈a, b, c〉) = χ=(〈〈a, b〉, c〉, 〈a, b, c〉) = 1.

3. By simple computations, still using corollary 12 many times. In the first conjunct
we observe (〈a, b〉+ sc)2↓, this allows us to compute

〈a, b, c〉 = (〈a, b〉+ c)2 + sc = s((〈a, b〉+ c)2 + c) 6= 0.

For the second we first establish a′, b′ ≤ (a′ + b′)2 + b′ < s((a′ + b′)2 + b′) = 〈a′, b′〉 and
a′+b′ ≤ a+b, so (a′+b′)2 ≤ (a+b)2 and 〈a′, b′〉 = (a′+b′)2+sb′ ≤ (a+b)2+sb = 〈a, b〉,
and the result immediately lifts up to the ternary sequences.

4. Some more easy computations, using corollary 12 extensively. The first conjunct is
given by s(a + b)2 ≤ s(a + b)2 + b = (a + b)2 + sb = 〈a, b〉, and the second by

〈a, b, sc〉 = ((a + b)2 + sb + sc)2 + ssc ≤ ((a + b)2 + b + ssc + ssc)2

≤ ((a + b)2 + 2 · (a + b) · ssc + (ssc)2)2 = (a + b + ssc)4.

32 CHAPTER 4. COMPUTING WITHIN EA(;)

As a preparation for the third conjunct we compute

〈a, b + c〉 = (a + (b + c))2 + s(b + c) = ((a + b) + c)2 + b + sc

≤ ((a+b)+c+b)2 +sc ≤ ((a+b)2 +c+sb)2 +sc = ((a+b)2 +sb+c)2 +sc = 〈〈a, b〉, c〉.

Then

〈a, b, c+c′〉 = 〈〈a, b〉, c+c′〉 ≤ 〈〈a, b〉, c+(b+c′)〉 ≤ 〈〈〈〈a, b〉, c〉, b〉, c′〉 = 〈〈a, b, c〉, b, c′〉.

5. This is trivial for d = 0 because 〈〈(0)0,0, (0)0,1〉, (0)1〉 = 〈〈0, 0〉, 0〉 = 〈1, 0〉 = 2 6= 0
shows that 3Seq(0) doesn’t hold. For the successor case we first show the general
principle 0 6= a ≤ x → (a)0, (a)1 < a. This is easy for the right projection, as
(a)1 = p(a .−h(a)2) ≤ pa < a for a 6= 0 (uses corollary 12 in order to add the premise
h(a)2 ≤ x). For the left projection we observe that a .−(spa)2 = a .−a2 = 0 for a 6= 0, so
f ′(pa, a) ≤ pa < a by lemma 15, and (a)1 = h(a) .−(a)0 ≤ h(a) = f ′(a, a) = f ′(a, pa).

To prove the lemma choose a := (d)0,0, b := (d)0,1, c := (d)1 as witnesses for the
existential. By the above we get a, b, c < d. This implies a, b, c ≤ x by transitivity, so
〈〈a, b〉, c〉↓, and the assumption 3Seq(a) by adequacy of χ= implies 〈〈a, b〉, c〉 = d.

4.3 Induction on Term Structure

In this section we introduce the coding of ordinals as terms and develop a principle of
induction over term structure, stated as lemma 18.

1. left(〈c, a, b〉) = c,
exp(〈c, a, b〉) = a,
coeff (〈c, a, b〉) = b.

2. Ord(a) =

1 if a = 0,

Ord ′(a) if 3Seq(a),

0 if ∼3Seq(a).

Ord ′(〈c, a, 0〉) = 0,

Ord ′(〈c, a, sb〉) =

Ord(a) if c = 0,

Ord(c) & Ord(a) &∼(χ=(exp(c), a)) if 3Seq(c),

0 if ∼3Seq(c).

Ord(a) :≡ Ord(a) = 1.

It is important to notice that the conditionals used to define Ord and Ord ′ are call-by-
name as in lemma 1. We further observe that a ≤ x ∧ 3Seq(a) → exp(a)↓ ∧ exp(a) ≤ x is
immediate from lemma 16.5. While Ord(0) holds trivially, ¬Ord(1) follows from ¬3Seq(1)

4.3. INDUCTION ON TERM STRUCTURE 33

which we simply compute by the equational program. Since 3Seq(a)↓ for a ≤ x according
to the previous lemma, it’s legal to use the case distinction a = 0 ∨ 3Seq(a) ∨ ∼3Seq(a)
when proving properties of Ord and Ord ′.

Ord(a) is meant to be true if and only if a is (the code of) an ordinal (in some weak
normal form), with a triple 〈c, a, b〉 coding the ordinal c + ωa · b when c and a are codes
of ordinals again and b is an ordinary natural number. This makes clear the meaning of
the functions left , exp and coeff , as left(c + ωa · b) then evaluates to c, exp(c + ωa · b) to a
and coeff (c + ωa · b) to b, but it’s true only when 〈c, a, b〉 really encodes an ordinal. This
restriction is necessary if we want equality of ordinals to be expressed by equality on their
codes. Otherwise 〈c, a, 0〉 (which doesn’t code an ordinal) and c would denote the same
ordinal, but they are definitively different numbers. We will make all this more explicit in
the next section.

For the time being we content ourselves with exposing the following observations which
are needed in the proof of lemma 18. The first says that Ord is a (total) characteristic
function, and the other two reflect the inductive structure of ordinal terms.

Lemma 17. EA(;) proves

1. a ≤ x → Ord(a) = 0 ∨Ord(a) = 1.

2. a ≤ x ∧Ord(a) → a = 0 ∨ (3Seq(a) ∧Ord(left(a)) ∧Ord(exp(a))).

3. c, a, b ≤ x ∧Ord(〈c, a, b〉) → b 6= 0 ∧ (c = 0 ∨ (3Seq(c) ∧ ∼χ=(rgt(c), a))).

Proof. 1. By course-of-value induction (lemma 6). Under the assumptions a ≤ x and
∀b < a.Ord(b) = 1 ∨ Ord(b) = 0, we are going to show Ord(a) = 1 ∨ Ord(a) = 0 by
using the case distinction mentioned after the defining equations for Ord . If a = 0
we have Ord(a) = 1, if ∼3Seq(a) then Ord(a) = 0.

For the remaining case, 3Seq(a), we can assume a = 〈c, a′, b〉 for some c, a′, b < a by
lemma 16.5, and we have Ord(a) = Ord ′(a). If b = 0 then Ord(a) = 0, so we are left
with the successor case, which uses another case distinction, now on c ≤ x. If c = 0
we are done by the induction hypothesis. If 3Seq(c) then exp(c)↓, so χ=(exp(c), a′))↓
by adequacy of χ=, and therefore (Ord(c) & Ord(a′) & χ=(exp(c), a′)) is defined and
evaluates to 1 or to 0, provided that Ord(c) and Ord(a′) are defined, which is the case
due to the induction hypothesis. If ∼3Seq(b) finally we trivially have Ord(b) = 0.

Now we can apply lemma 6 which concludes the proof.

2. and 3. are proven together. We will prove

i) a ≤ x ∧Ord(a) → a = 0 ∨ 3Seq(a),

ii) c, a, b ≤ x∧Ord(〈c, a, b〉) → b 6= 0 ∧ Ord(c, a) ∧ (c = 0∨(3Seq(c)∧exp(c) 6= a)),

34 CHAPTER 4. COMPUTING WITHIN EA(;)

which together are equivalent to the conjunction of both items (recall that Ord(c, a)
abbreviates Ord(c)∧Ord(a)). For i), assume a ≤ x which allows us to carry out the
following case distinction: If a = 0 or 3Seq(a), we are done, and if ∼3Seq(a) we have
¬Ord(a) from the defining equations.

For ii) assume c, a, b ≤ x and Ord(〈c, a, b〉), so we have 〈c, a, b〉↓ and 3Seq(〈c, a, b〉)
by lemma 16. Thus lemma 1 gives Ord(〈c, a, b〉) = Ord ′(〈c, a, b〉). Now b = 0 would
contradict the assumption Ord(〈c, a, b〉), so by the cases rule we can assume that b
is a successor, and by lemma 1 again we have

c = 0 → Ord(〈c, a, b〉) = Ord(a),

3Seq(c) → Ord(〈c, a, b〉) = (Ord(c) & Ord(a) &∼χ=(exp(c), a)),

∼3Seq(b) → ¬Ord(〈b, c, d〉).
Furthermore we have Ord(b, c)↓, 3Seq(c)↓ and χ=(exp(c), a)↓ by the first item of this
lemma, lemma 16.1 and adequacy of χ=.

Now we distinguish the three cases on c mentioned just prior to this lemma. If c = 0
then Ord(c)∧Ord(a)∧c = 0 follows immediately from the first line. The case 3Seq(c)
implies Ord(c) ∧ Ord(a) ∧ 3Seq(c) ∧ exp(c) 6= a by the second line and adequacy of
both the encoding of propositional logic and of χ=. Finally, the case ∼3Seq(c) is
excluded by the third line.

Lemma 18 (induction on ordinal terms). EA(;) proves, for all formulas A, the rule

Γ, A[0] Γ,¬α, γ, a ≤ x,¬Ord(〈γ, α, sa〉),¬A[γ],¬A[α], A[〈γ, α, sa〉]
Γ,¬α ≤ x,¬Ord(α), A[α].

In this lemma and in the sequel, greek minuscules α, β, γ, . . . stand for output variables
that are intended to range over (codes of) ordinals.

Proof. We show the conclusion by course-of-value induction (lemma 6), applied to the
formula B[a] :≡ Ord(a) → A[a]. To do so we assume a ≤ x, ∀b < a.Ord(b) → A[b] and
Ord(a) and we have to show A[a].

We distinguish cases according to lemma 17.2. If a = 0 we have A[a] from the first
premise. Otherwise, a = 〈γ, α, b〉 for some γ, α, b < a satisfying Ord(γ, α) and b 6= 0 by
lemmas 16.5, 17.2 and 17.3, so by the induction hypothesis A[γ] and A[α], and A[a] follows
from the second premise.

Lemma 18 is mainly used to show that certain functions are total on codes of ordinals.
Corollary 12 applies to such functions as well. For, if f is a function such that EA(;)

proves (α ≤ x ∧ Ord(α)) → f(α)↓, simply define f ′(a) =

{
f(a) if Ord(a)

0 else
. Then a

premise Ord(α) ∧ f(α) ≤ x can be replaced by Ord(α) ∧ f ′(α) ≤ x, and f ′ is provably
total by lemma 1. So corollary 12 applies and we are done.

4.4. ORDINAL ARITHMETIC 35

4.4 Ordinal Arithmetic

In this section we will develop the amount of formalized ordinal arithmetic we need for the
well-ordering proof. We start with introducing some operations and relations on ordinals,
the intuitions behind them being explained below.

Definition 19.

1. 0 = 0,
ωa = 0 + ωa · 1,
c + ωa · 0 = c,
0 + ωa · sb = 〈0, a, sb〉,

〈c, a′, b′〉+ ωa · sb =

{
〈c, a′, s(b′ + b)〉 if χ=(a′, a) = 1,

〈〈c, a′, b′〉, a, sb〉 else.

2. Lim(α) :≡ Ord(α) ∧ ∃c, a, b.α = 〈c, sa, b〉,
Succ(α) :≡ Ord(α) ∧ ∃c, b.α = 〈c, 0, b〉.

3. pred(0, e) = 0,
pred(〈γ, 0, 1〉, e) = γ,
pred(〈γ, 0, ssa〉, e) = 〈γ, 0, sa〉,
pred(〈γ, 〈a, 0, b〉, 1〉, e) = γ + ωpred(〈a,0,b〉,e) · e,
pred(〈γ, 〈a, 0, b〉, ssa〉, e) = 〈γ, 〈a, 0, b〉, sa〉+ ωpred(〈a,0,b〉,e) · e,
pred(〈γ, 〈a, sc, b〉, 1〉, e) = γ + ωpred(〈a,sc,b〉,e) · 1,
pred(〈γ, 〈a, sc, b〉, ssa〉, e) = 〈γ, 〈a, sc, b〉, sa〉+ ωpred(〈a,sc,b〉,e) · 1.

4. ≺e(α, β) =

0 if ¬Ord(β),

0 if β = 0,

1 if Ord(β) & β 6= 0 & χ=(α, pred(β, e)) = 1,

≺e(α, pred(β, e)) else.

α≺e β :≡ ≺e(α, β) = 1,
α�e β :≡ α≺e β ∨ α = β.

The first group ensures that the ordinal 0 is encoded by the constant 0, and defines the
ternary function (γ, α, b) 7→ γ + ωα · b. This function, in which ω is no variable, but
thought of as part of the function symbol, combines ordinal addition, multiplication and
exponentiation, and is strong enough to reach all ordinals up to ε0. This encoding is a
little bit more efficient with respect to the sizes of codes than the Cantor Normal Form
because it collects ω-powers with the same exponent, i.e. γ + ωα + . . . + ωα is coded into
the compact form 〈γ, α, n〉 of constant length in contrast to the long sequence 〈γ, α, . . . , α〉
which corresponds to the Cantor Normal Form and whose length depends on n. As another
difference to the Cantor Normal Form we don’t require the exponents to be ordered.

36 CHAPTER 4. COMPUTING WITHIN EA(;)

In a few places we want to use a shorthand notation for ordinal exponentiation alone. The
second equation defines it as a unary function in terms of the ternary one. The three
defining equations of the latter indicate how to prove its properties: By a case distinction
on its third argument, where the successor case is divided into the two subcases on the
first argument given by lemma 17.2, provided this is (a code of) an ordinal. Here a last
sub-subcase distinction has to deal with the conditional construction in the third equation.

Lim(α) and Succ(α) are true if and only if α is (code of) a limit or successor ordinal
respectively. We won’t use them in any function definition (e.g. to select branches in a
choice function) thus there’s no need to define their characteristic functions. pred(α, e)
computes the immediate e-predecessor of α with respect to the standard fundamental
sequence for α, and ≺e is its transitive closure, i.e. α ≺e β holds if and only if α belongs
to the set of all e-predecessors of β (i.e. if α ∈ β[e]).

The inductive structure of the equational program for pred(α, e) reveals that its properties
will be proven by applying lemma 18 where the induction step only uses the induction
hypothesis for exp(α), but distinguishes three cases depending on the structure of exp(α),
each of which being divided into subcases on coeff (α). Note also that α ≤ x means that
the code of the ordinal α is less than the number x, whereas α �e β says that the ordinal
α is less than the ordinal β.

Most of the remainder of this thesis is dedicated to the proof of the wellfoundedness of ≺x

(or of ≺d, for any input bounded parameter d). We conclude this section with setting up
the technical groundwork.

Lemma 20. ` β ≤ x ∧Ord(β) → β = 0 ∨ Succ(β) ∨ Lim(β).

Proof. Immediate from lemmas 17.2 and 16.5, the definitions of Succ and Lim and the
cases rule.

Lemma 21. ` γ, α, a, b ≤ x → (Ord(〈γ, α, sa〉) ↔ Ord(〈γ, α, sb〉)).

Proof. The premises (augmented with sa, sb ≤ x with the help of corollary 12) according
to lemma 16.2 ensure that both 3Seq(〈γ, α, sa〉) and 3Seq(〈γ, α, sb〉) hold. The claim then
is immediate from the defining equations for Ord and Ord ′, observing that the defining
term for Ord ′(〈c, a, sb〉) only depends on c and a, but not on b.

Lemma 22. The following formulas are provable in EA(;).

1. γ, α, a ≤ x ∧Ord(γ) →
γ + ωα · a↓ ∧ γ ≤ γ + ωα · a ≤ 〈γ, α, a〉 ∧ γ + ωα · sa 6= 0 ∧ exp(γ + ωα · sa) = α.

2. γ, α, a ≤ x ∧Ord(γ, α) → Ord(γ + ωα · a).

3. γ, β ≤ x ∧Ord(γ) →
∃δ.∃b.γ + ωβ · 1 = 〈δ, β, sb〉 ∧ (b = 0 → γ = δ) ∧ (b 6= 0 → γ = 〈δ, β, b〉).

4.4. ORDINAL ARITHMETIC 37

4. γ + ωα · 0 = γ ∧ (γ, α, a ≤ x ∧Ord(γ) → (γ + ωα · a) + ωα · 1 = γ + ωα · sa).

Proof. 1. We actually show a 6= 0 → γ + ωα · a 6= 0∧ exp(γ + ωα · a) = α in place of the
third and fourth conjuncts, whereas the first and the second remain unchanged. The
proof uses the above mentioned case distinctions. The case a = 0 is trivial, and the
case γ = 0 immediate from lemma 16.1 and 16.3 (and lemma 4.2 which guarantees
α ≤ α and a ≤ a). If γ 6= 0 we can assume γ = 〈δ, β, b〉 for some δ, β, b ≤ x by
lemmas 17.2 and 16.5, where b 6= 0 by lemma 17.3 and b ≤ b+a by lemma 4.3. Then,
assuming b + a ≤ x, which is allowed by corollary 12, the claims hold in both cases,
χ=(β, α) = 1 and χ=(β, α) = 0, To verify the inequalities observe that the former
case implies γ + ωα · a = 〈δ, β, b + a〉, so by lemmas 16.3 and 16.4 we can compute

γ = 〈δ, β, b〉 ≤ 〈δ, β, b + a〉 ≤ 〈〈δ, β, b〉, β, a〉 = 〈γ, α, a〉,

whereas in the latter γ + ωα · a = 〈γ, α, a〉, so γ ≤ 〈γ, α, a〉 ≤ 〈γ, α, a〉 holds trivially.

2. By a case distinction similar to the previous item. As Ord(γ + ωα · 0) = Ord(γ) = 1,
by the cases rule it suffices to show Ord(γ + ωα · sa) = 1, where sa ≤ x. We proceed
by case distinction according to lemmas 17.2 and 17.3. If γ = 0 we have

Ord(γ + ωα · sa) = Ord(〈0, α, sa〉) = Ord(α) = 1.

If γ = 〈δ, β, b〉 we have b 6= 0 and δ, β, b ≤ x as in the previous item, and therefore
χ=(β, α)↓. Now if χ=(β, α) = 1 then γ + ωα · sa = 〈δ, β, s(b + a)〉 which is an ordinal
because of lemma 21 (assuming (b + a) ≤ x by corollary 12). If χ=(α, β) = 0 finally,
γ + ωα · sa = 〈γ, α, sa〉 where 3Seq(γ) and (Ord(γ) & Ord(α) &∼χ=(exp(γ), α)) = 1
by adequacy of the arithmetization of propositional logic, thus Ord(〈γ, α, sa〉).

3. By case distinction according to lemma 17.2. If γ = 0 we have γ + ωβ · 1 = 〈0, β, 1〉,
so we choose δ = γ and b = 0. If γ = 〈δ, α, sa〉 where α ≤ x we distinguish two
cases. Either χ=(α, β) = 1, which means that γ + ωβ · 1 = 〈δ, α, ssa〉, otherwise
γ + ωβ · 1 = 〈γ, β, 1〉. In both cases the claim holds.

4. The first conjunct is trivial, and the second is proved by cases on a. The case a = 0
is immediate from the defining equations. For the successor case we proceed by case
distinction on γ according to lemma 17.2, and we notice that χ=(α, α) = 1. If γ = 0,
then we are done by using the defining equations.

If γ = 〈δ, β, b〉, then χ=(a, β)↓. In the case χ=(β, α) = 0 we can compute

(γ + ωα · sa) + ωα · 1 = 〈γ, α, sa〉+ ωα · 1 = 〈γ, α, ssa〉 = γ + ωα · ssa.

On the other hand if χ=(β, α) = 1 we compute

(γ + ωα · sa) + ωα · 1 = 〈δ, β, s(b + a)〉+ ωα · 1 = 〈δ, β, ss(b + a)〉 = 〈δ, β, b〉+ ωα · ssa.

The computations make use of lemma 1, and further require that s(b + a)↓, which is
a consequence of the premise a ≤ x.

38 CHAPTER 4. COMPUTING WITHIN EA(;)

Lemma 23. ` β, e ≤ x ∧Ord(β) → pred(β, e)↓ ∧Ord(pred(β, e)).

Proof. Define

dpt(0) = 1, dpt(〈a, b, c〉) = sdpt(b), f(a, d) = (a + d)4dpt(a)

.

We easily get (a ≤ x ∧ Ord(a)) → dpt(a)↓ by term induction (lemma 18). With the
help of corollary 12, which applies to dpt as we remarked after lemma 18, this entails
(a, d ≤ x ∧Ord(a)) → f(a, d)↓.

Now we are going to prove the lemma by term induction again, this time applied to the
formula

A[β] :≡ pred(β, e)↓ ∧Ord(pred(β, e)) ∧ pred(β, e) ≤ f(β, e).

The last conjunct of A[β] makes the proof a kind of bounded induction, using a technique
comparable to the termination proof for the exponential in lemma 13.

If β = 0 we are done. For the induction step, we assume γ, α, a ≤ x, Ord(〈γ, α, sa〉) and
A[α] to show A[〈γ, α, sa〉]. Assuming f(α, e) ≤ x by corollary 12 the induction hypothesis
implies α 6= 0 → pred(α, e) ≤ x, and we have Ord(γ, α), and also a 6= 0 → Ord(〈γ, α, a〉),
by lemmas 17.2 and 21 respectively.

Using the abbreviation β := 〈γ, α, sa〉 and the additional premise 〈γ, α, sa〉 ≤ x we aim
at proving pred(β, e)↓ ∧ Ord(pred(β, e)) ∧ pred(β, e) ≤ 〈β, pred(α, e), e〉. To do so we
distinguish cases on α according to lemma 20, where each case is divided into the subcases
a = 0 and a 6= 0. If α = 0 the claim is a trivial consequence of lemma 16.3, and the
cases Succ(α) and Lim(α) follow immediately from the induction hypothesis for α and
lemmas 22.1 and 22.2.

As to the bound, we need to show 〈β, pred(α, e), e〉 ≤ f(β, e) which is done, using the
abbreviation c := 4dpt(α) (notice that c ≥ 4), by computing

〈β, pred(α, e), e〉 ≤ (β + pred(α, e) + se)4 ≤ ((γ + α + ssa)4 + f(α, e) + se)4

= ((γ + α + ssa)4 + (α + e)c + se)4 ≤ ((γ + α + ssa)c + (α + se)c)4

≤ (γ + α + ssa + α + se)c)4 ≤ (〈γ, α, sa〉+ e)c)4 = (〈γ, α, sa〉+ e)4sdpt(α)

= f(β, e),

where the first and the second inequalities are justified by lemma 16.4 and the induction
hypothesis A[α], the third by (a+b)c +sb ≤ (a+b)c +(a+b)+1 ≤ ((a+b)+1)c = (a+sb)c,
the fourth by lemma 13 and the fifth by the general principle

c + a + sb + a + 1 = c + 2 · sa + b ≤ c + 2 · s(c + a) · b + b2

≤ (s(c + a)2)2 + 2 · s(c + a)2 · b + b2 = (s(c + a)2 + b)2 ≤ 〈〈c, a〉, b〉 = 〈c, a, b〉

for b 6= 0, here applied to c := γ, a := α and b := sa. The bound on pred(β, e) now follows
by transitivity, after adding the premise f(β, e) ≤ x by using corollary 12, which is also
used to provide other bounds needed in the computation.

4.4. ORDINAL ARITHMETIC 39

Lemma 24.

` β, e ≤ x ∧Ord(β) ∧ β 6= 0 → pred(β, e)≺e β ∧ (∀δ.δ ≺e β ↔ δ �e pred(β, e)).

Proof. We have pred(β, e)↓ by lemma 23, so after adding the premise pred(β, e) ≤ x by
corollary 12 we get χ=(pred(β, e), pred(β, e)) = 1. The first conjunct then is immediate
from the defining equations for ≺e and lemma 1.

For the second conjunct, observe χ=(δ, pred(β, e))↓, so by adequacy of the arithmetization
of propositional logic and lemma 1 we can distinguish the four cases ¬Ord(β), β = 0,
Ord(β) ∧ β 6= 0 ∧ χ=(δ, pred(β, e)) = 1 and Ord(β) ∧ β 6= 0 ∧ χ=(δ, pred(β, e)) = 0. Now
the first two are excluded by the premises. In the third we have δ = pred(β, e) by adequacy
of χ=, thus δ≺e β and δ�e pred(β, e) are both true. In the last case we have δ 6= pred(β, e)
by adequacy of χ= again, thus

δ ≺e β ↔ δ ≺e pred(β, e) ↔ δ �e pred(β, e).

Lemma 25.

1. ` γ ≤ x ∧Ord(γ) → pred(γ + ω0 · 1, e) = γ.

2. ` 1 ≤ e ≤ x ∧ β, γ ≤ x ∧Ord(β, γ) ∧ β 6= 0 →
∃α≺e β.∃a ≤ e.Ord(α) ∧ α = pred(β, e) ∧ pred(γ + ωβ · 1, e) = γ + ωα · a.

Proof. 1. This is immediate from lemma 22.3 and the defining equations for pred .

2. By lemma 22.3 again we have that γ + ωβ · 1 = 〈δ, β, sb〉 for some δ and b, where
γ equals δ or 〈δ, β, b〉 depending on whether b is 0 or a successor respectively. We
distinguish cases according to lemma 20. In the first case β = 0 there is nothing
to do. In the second case, when Succ(β), we distinguish cases on b. If b = 0, then
pred(γ+ωβ ·1, e) = δ+ωpred(β,e) ·e, otherwise pred(γ+ωβ ·1, e) = 〈δ, β, b〉+ωpred(β,e) ·e.
Hence in both cases pred(γ + ωβ · 1, e) = γ + ωpred(β,e) · e. Now lemmas 23 and 24 say
that pred(β, e)↓∧pred(β, e)≺eβ∧Ord(pred(β, e)), and e ≤ e follows from lemma 4.2,
so the claim follows by existential quantification. The last case where β is a limit is
very similar, but using 1 ≤ e given in the premise in place of e ≤ e.

Chapter 5

Transfinite Induction, Lower Bounds

5.1 Bounding Functions

In this purely technical section we define the function h(α, d) and an auxiliary formula G
which both will be used for providing the bounds on outputs needed in the main proof and
establish their relevant properties. They are explained more in detail below.

Definition 26.

1. f0(0) = 〈0, 0, 1〉 = 6,
f0(〈γ, α, a〉) = 〈〈γ, α, a〉, f0(α), 1〉,
f(a) = max{f0(β) : Ord(β) & β ≤ a},
g(0, e) = 0,

g(〈γ, α, a〉, e) = g(γ, e) + (se)g(α,e) · a,
h̃(0) = 0,
h̃(sa) = sf(h̃(a)),
h0(a, b, c, d) = h̃(a + (sb)c · d),
h(α, e) = h̃(g(α, e)).

2. DptBd(α, e, x) :≡ ∀δ �e α.Ord(δ) ∧ h(δ, e)↓ ∧ δ, g(δ, e) ≤ h(δ, e) ≤ x.

3. Mon(α, e) :≡ ∀δ.∀ε.ε≺e δ �e α → g(ε, e)↓ ∧ g(δ, e)↓ ∧ g(ε, e) < g(δ, e) ≤ g(α, e).

4. Tran(α, e) :≡ ∀γ.∀δ.∀ε.ε≺e δ ≺e γ �e α → ε≺e γ.

5. G[α, e, x] :≡ Tran(α, e) ∧Mon(α, e) ∧DptBd(α, e, x).

The main purpose of h(α, d) is to provide an upper bound for the values of (the codes of)
all ordinals below α with respect to ≺d. This is achieved by brute force: f0 is constructed
such that β ≤ f0(pred(β, d)) as shown in lemma 27.4 below, g(α, d) extensionally equals

41

42 CHAPTER 5. TRANSFINITE INDUCTION, LOWER BOUNDS

the slow-growing hierarchy at level α, and h(α, d) basically iterates f0 g(α, d)-many times.
h0 provides an alternative characterization for h which is easier to handle in some places.
As g and h are non-elementary functions, we won’t be able to prove their totality for
arbitrary input, but we can show definedness for all relevant ordinals simultaneously with
the wellordering proof.

G[α, e, x] in particular entails a monotonicity property for g and transitivity of ≺e. As ≺e

is a transitive closure we can’t prove the latter outright either, so we have to establish it
simultaneously to the wellfoundedness property as well.

Lemma 27. The following are theorems of EA(;).

1. a, b, c, d ≤ x → h0(a, b, c, d)↓ ∧ a + (sb)c · d ≤ h0(a, b, c, d) ≤ h0(a, b, c, sd)
∧ (c′ < c ∧ d ≤ b → h0(a, b, c′, d) ≤ h0(a, b, c, 1) ∧ f(h0(a, b, c′, d)) ≤ h0(a, b, c, 1)).

2. a, e, γ, α, g(γ, e), g(α, e) ≤ x ∧ g(γ, e)↓ ∧ g(α, e)↓
→ g(γ + ωα · a, e)↓ ∧ h(γ + ωα · a, e)↓ ∧ h(γ + ωα · a, e) = h0(g(γ, e), e, g(α, e), a).

3. b ≤ x → f(b)↓ ∧ b ≤ f(b) ∧ (a ≤ b → f(a) ≤ f(b)).

4. γ, β ≤ x ∧Ord(γ, β) → γ + ωβ · 1 ≤ f(pred(γ + ωβ · 1, e)).

Proof. We are first going to show

a, b, c, d ≤ x → a + (sb)c · d↓ ∧ a + (sb)c · d ≤ a + (sb)c · sd(1)

∧ (c′ < c ∧ d ≤ b → a + (sb)c′
· d < a + (sb)c · 1),

a ≤ x → f(a)↓ ∧ (Ord(a) → f0(a)↓ ∧ f0(a) ≤ f(a)) ∧ ∀b ≤ a.b ≤ f(b) ≤ f(a),(2)

a ≤ x → h̃(a)↓ ∧ a ≤ h̃(a) ∧ ∀b ≤ a.h̃(b) ≤ h̃(a),(3)

a < b ≤ x → f(h̃(a)) < h̃(b),(4)

γ, α, a, e ≤ x ∧ g(γ, e), g(α, a) ≤ x ∧ g(γ, e)↓ ∧ g(α, a)↓(5)

→ g(γ + ωα · a, e) = g(γ, e) + (se)g(α,e) · a.

In the first claim, a+(sb)c ·d↓ and a+(sb)c ·d ≤ a+(sb)c · sd are immediate from lemma 13,
and the last conjunct is easily verified by

a + (sb)c′
· d < a + (sb)c′

· sb = a + (sb)sc′
· 1 ≤ a + (sb)c · 1.

For the second claim we first show, by combining the technique of function bounded in-
duction with induction on ordinal terms (lemma 18),

(∗) a ≤ x ∧Ord(a) → f0(a)↓ ∧ a ≤ f0(a) ∧ (a 6= 0 → f0(a) ≤ a8).

More explicitly, we apply lemma 18 to the formula

A[a] :≡ f0(a)↓ ∧ a ≤ f0(a) ∧ (a 6= 0 → f0(a) ≤ a8).

5.1. BOUNDING FUNCTIONS 43

A[0] is immediate. For the induction step we show A[〈c, a, b〉] for b 6= 0, assuming c, a, b ≤ x
and A[a], and additionally 〈c, a, b〉 ≤ x and a8 ≤ x by using corollary 12. Then f0(a) ≤ x
by the induction hypothesis and transitivity (except when a = 0 in which case adding the
premise 6 ≤ x suffices, as f0(0) = 〈0, 0, 1〉 = 6). First, f0(〈c, a, b〉) equals 〈〈c, a, b〉, f0(a), 1〉
which is defined under the assumed bounds, and satisfies 〈c, a, b〉 ≤ 〈〈c, a, b〉, f0(a), 1〉 by
lemma 16.3.

The upper bound on f0(〈c, a, b〉) is simple for the case a = 0 because 6 = 〈0, 0, 1〉 ≤ 〈c, 0, b〉
(recall that b 6= 0) implies

f0(〈c, 0, b〉) = 〈〈c, 0, b〉, 6, 1〉 ≤ (〈c, 0, b〉+ 6 + 2)4 ≤ 〈c, 0, b〉8,

where the first inequality is given by lemma 16.4, and the second by the computation
(d + 8)4 ≤ (3 · d4 ≤ (d · d)4 = d8 which is valid for all d ≥ 6 (in our case d = 〈c, 0, b〉).

If a 6= 0 we can use the induction hypothesis and compute

f0(〈c, a, b〉) = 〈〈c, a, b〉, f0(a), 1〉 ≤ 〈〈c, a, b〉, a8, 1〉 ≤ ((c + a + sb)4 + a8 + 2)4

= (ss(c + a + sb)4 + a8)4 ≤ (s(s(c + a)2 + b)4)4 ≤ (s(s(c + a)2 + b)2)8 ≤ (〈〈c, a〉, b〉)8.

The steps are justified as follows. The first inequality is due to the induction hypothesis
and lemma 16.3, the second to lemma 16.4. The third is proven below. In the fourth we
recall that for all d ≤ x (in our case d = s(c + a)2 + 2, with the bound brought in by
corollary 12) d < sd, so d2 < (sd)2, i.e. sd2 ≤ (sd)2 and (sd4)4 ≤ ((sd2)2)4 = (sd2)8. For the
fifth we use lemma 16.4 twice.

Back to the third inequality, if c 6= 0 notice that sa ≤ 2 · c · a (as we still are in the case
a 6= 0), so we can use lemma 13 to compute

s(c + a + sb)4 + a8 ≤ (c + sa + sb + a2)4 ≤ (c2 + 2 · c · a + a2 + sb)4 = (s(c + a)2 + b)4.

If c = 0 on the other hand we simply compute that 〈〈0, a, b〉, a8, 1〉−(〈〈0, a〉, b〉)8 expands to
a (tremendously long) positive polynomial. This is checked preferably by using a computer
algebra system, but doesn’t involve any high-level principles.

This completes the induction step and therefore the proof of (∗). Returning back to the
proof of (2) we show a ≤ x → f(a)↓ ∧ a ≤ f(a) ∧ (a ≥ 2 → f(a) ≤ a8) as follows. Let

f1(a) =

{
f0(a) if Ord(a),

a else,
and f2(a) = max

b≤a
(f1(b)).

Then f2(a) = f(a), a ≤ f1(a), and by lemma 14 f(a) is defined, f1(a) ≤ f(a), and
f(a) = f1(c) for some c ≤ a. Now, if Ord(c) we have f1(c) = f0(c) ≤ c8 ≤ a8 (unless c = 0,
in which case f1(c) = f0(0) = 6 ≤ a8 for a ≥ 2), otherwise f1(c) = c ≤ a ≤ a8.

Then (a ≤ x ∧ Ord(a)) → f0(a) ≤ f(a) is immediate from Ord(a) → f1(a) = f0(a), and
a ≤ x → ∀b ≤ a.f(b) ≤ f(a) from lemma 14.

44 CHAPTER 5. TRANSFINITE INDUCTION, LOWER BOUNDS

The first two conjuncts of the third claim are proven by applying lemma 3 to the formula
A[a] :≡ h̃(a)↓ ∧ a ≤ h̃(a) ≤ 29a

. A[0] is immediate, and for the induction step we may
assume 29a ≤ x by corollary 12. The induction hypothesis and transitivity then give
h̃(a) ≤ x and therefore h̃(sa) = sf(h̃(a)) which is defined, and the lower bound follows
from (3) and the last conjunct of (2) due to sa ≤ sh̃(a) ≤ sf(h̃(a)) = h̃(sa). For the upper
bound, if h̃(a) ≤ 1, then h̃(sa) = sf(h̃(a)) ≤ sf(1) = sf0(0) = s6 ≤ 29 ≤ 29sa

(where the
second equality holds by definition of f , because 0 is code of an ordinal whereas 1 isn’t),
otherwise

h̃(sa) = sf(h̃(a)) ≤ sf(29a

) ≤ s(29a

)8 = s(28·9a

) ≤ 2 · 28·9a

= 2s(8·9a) ≤ 28·9a+9a

= 29sa

.

Here the first inequality holds by (2) and the induction hypothesis, and the second because
we have seen above a ≥ 2 → f(a) ≤ a8.

For the third conjunct apply corollary 7 to A[a] :≡ h̃(b) ≤ h̃(a). Under b ≤ x and the
additional assumption h̃(b) ≤ x which is allowed by corollary 12 we immediately get A[b],
this settles the base case. For the induction step we add the assumption h̃(a) ≤ x. This
entails h̃(a) ≤ f(h̃(a)) < sf(h̃(a)) = h̃(sa), so we are done by using transitivity and the
induction hypothesis.

To prove (4) we observe that a < b implies sa ≤ b by definition, so the previous claim
immediately gives sf(h̃(a)) = h̃(sa) ≤ h̃(b), and the last claim can finally be verified by
easy computations, distinguishing cases according to the several defining equations for
γ + ωα · a. Notice that we can’t remove the premises g(γ, e) ≤ x and g(α, e) ≤ x by using
corollary 12 because definedness of both terms is not provable outright.

Now we are ready to prove the lemma.

1. The first item is immediate from (1), (3), (4), and the definition of h0, using corol-
lary 12 to add the premise a + (sb)c · d ≤ x.

2. g(γ + ωα · a, e)↓ follows directly from (5) and (1). We verify the third conjunct by
computing

h(γ+ωα ·a, e) = h̃(g(γ+ωα ·a, e)) = h̃(g(γ, e)+(se)g(α,e) ·a) = h0(g(γ, e), e, g(α, e), a)

using (5) and the fact that γ + ωα · a is defined by lemma 22.1, and definedness of
h(γ + ωα · a, e) now follows directly from the first item of this lemma.

3. This has already been done in (2).

4. We first prove

(6) β ≤ x ∧Ord(β) → (β 6= 0 → β ≤ f0(pred(β, e)))

by induction on the ordinal term β (lemma 18). The base case is trivial. For the
induction step we have to prove the claim for β = 〈γ, α, sa〉, where γ, α, a ≤ x and
Ord(γ, α) by lemma 17.2, assuming that it holds for α.

5.1. BOUNDING FUNCTIONS 45

If α = 0 then we use cases on a, dividing the case a = 0 further into two sub-
cases γ = 0 and 3Seq(γ) according to lemma 17.2. The first subcase is trivial as
f0(pred(〈0, 0, 1〉, e) = f0(0) = 〈0, 0, 1〉 = β. In the other we notice that f0(exp(γ))
by (2) is defined, so we may assume 0 ≤ f0(exp(γ)) ≤ x by using lemma 4.2 and
corollary 12, and by lemma 16 we can compute

β = 〈γ, 0, 1〉 ≤ 〈γ, f0(exp(γ)), 1〉 = f0(γ) = f0(pred(β, e)).

The case of a successor sa (while still α = 0) follows, using lemma 16 again and
transitivity, from

β =〈γ, 0, ssa〉≤〈〈γ, 0, sa〉, 0, 1〉≤〈〈γ, 0, sa〉, f0(0), 1〉=f0(〈γ, 0, sa〉)=f0(pred(β, e)).

As to the case α 6= 0 of the induction step, we have that pred(α, e) is defined and
(a code of) an ordinal by lemma 23. So we can apply corollary 12 first to assume
pred(α, e) ≤ x, which allows us to obtain f0(pred(α, e))↓ from (2), then once more
to add the premise f0(pred(α, e)) ≤ x.

Then we check that β ≤ 〈pred(β, e), α, 1〉 holds in all cases left by lemma 20. Namely,
if Succ(α) then a = 0 implies β = 〈γ, α, 1〉 ≤ 〈γ+ωpred(α,e) ·e, α, 1〉 = 〈pred(β, e), α, 1〉
by lemmas 22.1 and 16.3, and in the successor case

β = 〈γ, α, ssa〉 ≤ 〈〈γ, α, sa〉, α, 1〉 ≤ 〈〈γ, α, sa〉+ ωpred(α,e) · e, α, 1〉 = 〈pred(β, e), α, 1〉

(where the first inequality follows from lemma 16.4 when substituting 1 for c′).
The case when Lim(α) holds is analogous. Furthermore, all of these cases satisfy
exp(pred(β, e)) = pred(α, e) by lemma 22.1. All this together with the induction
hypothesis justifies the computation

β ≤ 〈pred(β, e), α, 1〉 ≤ 〈pred(β, e), f0(pred(α, e)), 1〉 = f0(pred(β, e)).

After adding the premise pred(β, e) ≤ x by corollary 12 we can use transitivity to
complete the induction step and the proof of (6).

The next step is to show β ≤ x ∧ Ord(β) → (β 6= 0 → β ≤ f(pred(β, e))).
Since pred(β, e) is defined and an ordinal by lemma 23 we can additionally as-
sume that it is bounded by x by using corollary 12. We then apply (2) to obtain
f0(pred(β, e)) ≤ f(pred(β, e)) and f(pred(β, e))↓. Now the claim is immediate from
(6) and transitivity, as we can add the premise f(pred(β, e)) ≤ x by corollary 12
again.

Item 4 of the lemma itself now follows by another application of corollary 12: The
premises according to lemma 22.1 guarantee γ + ωβ · 1↓ and Ord(γ + ωβ · 1), and by
the above we are done when adding the premise γ + ωβ · 1 ≤ x.

46 CHAPTER 5. TRANSFINITE INDUCTION, LOWER BOUNDS

Lemma 28.

1. ` G[α, e, x] → Ord(α) ∧ g(α, e)↓ ∧ h(α, e)↓ ∧ α, g(α, e) ≤ x ∧ α ≤ h(α, e) ≤ x.

2. ` G[0, e, x].

3. ` α≺e β → (G[β, e, x] → G[α, e, x]).

4. ` 1 ≤ e ≤ x ∧ h(γ + ωβ · 1, e) ≤ x ∧Ord(γ, β) →
(G[γ, e, x] ∧G[β, e, x] ∧G[pred(γ + ωβ · 1, e), e, x] → G[γ + ωβ · 1, e, x]).

Proof. 1. This is immediate from the definition of G[α, e, x].

2. This item is trivial as well (notice that δ�e 0 implies δ = 0, as ≺e(δ, 0) = 0, and that
h(0, e) = 0 ≤ x).

3. In order to prove Tran(α, e) assume ε ≺e δ ≺e γ �e α and we have to show ε ≺e γ.
If γ = α we trivially have ε ≺e δ ≺e α �e β and the claim follows from Tran(β, e).
Otherwise we apply Tran(β, e) first to γ ≺e α ≺e β �e β to obtain γ ≺e β, then to
ε≺e δ ≺e γ �e β which yields ε≺e γ as desired.

For DptBd(α, e, x) assume δ �e α. In order to exploit the premise G[β, e, x] we first
show δ ≺e β. This holds trivially if δ = α. If not, we have δ ≺e α ≺e β �e β, so the
claim follows from Tran(β, e). Now Ord(δ), h(δ, e)↓ and δ, g(δ, e) ≤ h(δ, e) ≤ x are
immediate from DptBd(β, e, x).

All that remains is to show Mon(α, e). To do so, assume ε ≺e δ �e α. If δ = α
we have ε ≺e δ = α �e β, so the claim follows from Mon(β, e), as soon as we have
established g(δ, e) ≤ g(δ, e) which we do as follows: Since δ �e β, from Mon(β, e) we
get g(δ, e)↓, so by DptBd(β, e, x) and transitivity g(δ, e) ≤ x, and we are done by
using lemma 4.2.

If δ ≺e α we have δ ≺e α ≺e β �e β, so from Tran(β, e) we get ε ≺e δ ≺e β, and we
get g(ε, e)↓ ∧ g(δ, e)↓ ∧ g(ε, e) < g(δ, e) by instantiating the universal quantifiers in
Mon(β, e) to ε and δ. On the other hand, instantiating the universal quantifiers
in Mon(β, e) to δ and α gives g(δ, e) < g(α, e), so g(δ, e) ≤ g(α, e) by lemma 4.2,
transitivity, and lemma 2.3.

4. The premises G[γ, e, x] and G[β, e, x] by the first item of this lemma entail g(γ, e)↓,
g(β, e)↓ and γ, β, g(γ, e), g(β, e) ≤ x, so we have γ + ωβ · 1↓, γ + ωβ · 1 6= 0, and
Ord(γ +ωβ ·1) by lemma 22, and g(γ +ωβ ·1, e)↓ and h(γ +ωβ ·1, e)↓ by lemma 27.2.

Furthermore, if β 6= 0, then by lemma 25

pred(γ + ωβ · 1, e) = γ + ωα · a

for some α ≺e β satisfying Ord(α) and some a ≤ e, where G[α, e, x], g(α, e)↓ and
α, g(α, e) ≤ x by items 3 and 1 of this lemma. This implies pred(γ + ωβ · 1, e)↓ and

5.1. BOUNDING FUNCTIONS 47

Ord(pred(γ + ωβ · 1, e)) by lemma 22 again, and also g(pred(γ + ωβ · 1, e), e)↓ and
h(pred(γ + ωβ · 1, e), e)↓ by lemma 27.2. Now the premise G[pred(γ + ωβ · 1, e), e, x]
by lemma 28.1 entails pred(γ + ωβ · 1, e) ≤ h(pred(γ + ωβ · 1, e), e) ≤ x, and from
Mon(β, e) we get g(α, e) < g(β, e). This allows us, using all items of lemma 27, to
compute

γ + ωβ · 1 ≤ f(pred(γ + ωβ · 1, e)) ≤ f(h(pred(γ + ωβ · 1, e), e)) = f(h(γ + ωα · a, e))

= f(h0(g(γ, e), e, g(α, e), a)) ≤ h0(g(γ, e), e, g(β, e), 1) = h(γ + ωβ · 1, e).

This computation, together with the premise of the lemma, by transitivity also yields
γ + ωβ · 1 ≤ x, and, since h(pred(γ + ωβ · 1, e), e) ≤ f(h(pred(γ + ωβ · 1, e), e)), also

h(pred(γ + ωβ · 1, e), e) ≤ h(γ + ωβ · 1, e).

To complete our preparatory computations, first

g(pred(γ +ωβ ·1, e), e) = g(γ, e)+(se)g(α,e) ·a < g(γ, e)+(se)g(β,e) ·1 = g(γ +ωβ ·1, e)

and second, using (5), the second conjunct of lemma 27.1, and the final conjunct of
lemma 27.2,

g(γ + ωβ · 1, e) = g(γ, e) + (se)g(β,e) · 1 ≤ h0(g(γ, e), e, g(β, e), 1) = h(γ + ωβ · 1, e),

which also entail g(γ + ωβ · 1, e) ≤ x and g(pred(γ + ωβ · 1, e), e) ≤ x.

If β = 0 on the other hand, then pred(γ + ωβ · 1, e) = γ, and the same results hold:
γ↓ ∧ Ord(γ) are trivial, g(γ, e)↓, h(γ, e)↓ and γ ≤ h(γ, e) ≤ x are immediate from
the first item of this lemma, and we compute

γ + ωβ · 1 ≤ f(pred(γ + ωβ · 1, e)) = f(γ) ≤ f(h(γ, e)) ≤ sf(h(γ, e))

= sf(h̃(g(γ, e))) = h̃(sg(γ, e)) = h̃(g(γ, e) + (se)0 · 1) = h(γ + ωβ · 1, e)

and
g(γ, e) < sg(γ, e) = g(γ, e) + (se)0 · 1 = g(γ + ωβ · 1, e).

This completes our preparations, we are going to proof item 4. We have to show
G[γ + ωβ · 1, e, x] which we do separately for each of its three conjuncts.

In order to prove Tran(γ + ωβ · 1, e), assume ε ≺e δ ≺e γ′ �e γ + ωβ · 1. In the
case γ′ ≺e γ + ωβ · 1 we have γ′ �e pred(γ + ωβ · 1, e) by lemma 24 (this needs
γ + ωβ · 1 ≤ x, but not γ′ ≤ x which we are unable to show at this stage), thus
ε≺e γ′ by Tran(pred(γ +ωβ ·1, e), e). In the other case, when γ′ = γ +ωβ ·1, we have
δ�e pred(γ +ωβ · 1, e) by lemma 24 again. Now in the subcase δ≺e pred(γ +ωβ · 1, e)
we have ε≺e δ≺e pred(γ + ωβ · 1, e)�e pred(γ + ωβ · 1, e), thus ε≺e pred(γ + ωβ · 1, e)
by Tran(pred(γ + ωβ · 1, e), e) and ε ≺e γ + ωβ · 1 = γ′ by lemma 24. Finally, if

48 CHAPTER 5. TRANSFINITE INDUCTION, LOWER BOUNDS

δ = pred(γ + ωβ · 1, e) we trivially have ε ≺e pred(γ + ωβ · 1, e), and we continue as
in the previous subcase.

For DptBd(γ +ωβ ·1, e, x) we assume δ�e γ +ωβ ·1. If δ = γ +ωβ ·1 we have already
shown everything we have to. In the case δ≺e γ+ωβ ·1 we have δ�e pred(γ+ωβ ·1, e)
by lemma 24, so we immediately get Ord(δ), h(δ, e)↓ and δ, g(δ, e) ≤ h(δ, e) ≤ x from
DptBd(pred(γ + ωβ · 1, e), e, x).

For Mon(γ+ωβ ·1, e) we assume ε≺eδ�eγ+ωβ ·1. We first settle the case δ≺eγ+ωβ ·1.
As we have δ�e pred(γ +ωβ ·1, e) by lemma 24, g(ε, e)↓, g(δ, e)↓ and g(ε, e) < g(δ, e)
follow directly from Mon(pred(γ+ωβ ·1, e), e). So does g(δ, e) ≤ g(pred(γ+ωβ ·1, e), e)
which together with the above implies g(δ, e) ≤ g(γ +ωβ · 1, e) by transitivity. In the
other case, when δ = γ+ωβ ·1, we have ε�epred(γ+ωβ ·1, e) by lemma 24 once more.
We have already shown everything we need for the case ε = pred(γ + ωβ · 1, e), so
assume ε≺epred(γ+ωβ ·1, e). Then we have ε≺epred(γ+ωβ ·1, e)�epred(γ+ωβ ·1, e)
and we are done by using Mon(pred(γ + ωβ · 1, e), e) and transitivity.

5.2 The WO-Proof

We are now ready to carry out the well-ordering proof for EA(;). Our proof is strongly
inspired from the traditional well-ordering proof for Peano Arithmetic as in Pohlers [19]
and also its adaptation to bounded arithmetic by Beckmann [2]. Two modifications are
worth being explained. First, as ≺e is defined as a transitive closure, proving many of its
properties like transitivity already needs transfinite induction. Therefore we collect them
into the formula G[α, e, x] which is proved simultaneously with the wellfoundedness prop-
erty. Second, working with input bounded outputs requires a bound of input type which
is large enough to bound all input bounded outputs appearing in the proof. We achieve
this by choosing a fresh input variable x and adding the additional premise h(α, e) ≤ x to
each sequent containing the input variable α. This property is then passed on to all β�e α
via G[α, e, x] and in particular implies DptBd[α, e, x].

This partly motivates our choice for the jump A∗ below. The premise OBd(α, ξ, e) present
in Ã is included for technical reasons. It becomes weaker and weaker when α runs up
the ordinals and vanishes completely as soon as α completes the jump and reaches ωξ.
Prog[A, e, α] and TI[A, e, α] formalise progressiveness of and transfinite induction for A
with respect to the order ≺e and are quite standard. The additional premise on x can
finally be removed with the help of corollary 12.

Definition 29.

1. OBd(α, ξ, e) :≡ ∀δ �e α.δ �e ωξ.

2. Ã(γ, α, a, ξ, e) :≡ OBd(γ + ωα · a, ξ, e) ∧ ∀δ ≺e γ.A[δ] → ∀δ ≺e γ + ωα · a.A[δ].

5.2. THE WO-PROOF 49

3. A∗[α, ξ, e, x] :≡ ∀γ.h(γ + ωα · 1, e) ≤ x ∧G[γ, e, x]
→ G[γ + ωα · 1, e, x] ∧ γ ≺e γ + ωα · 1 ∧ Ã(γ, α, 1, ξ, e).

4. Prog(A, e, β) :≡ (∀α≺e β.A[α]) → A[β].

5. TI(A, e, α) :≡ (∀δ �e α.Prog(A, e, δ) → ∀δ ≺e α.A[δ].

Lemma 30.

1. Assume h(γ + ωα · a, e), a ≤ x, α≺e β, and G[α, e, x]. Then

` (∀α≺e β.A∗[α, ξ, e, x]) ∧G[γ, e, x]

→ G[γ + ωα · a, e, x] ∧ γ �e γ + ωα · a ∧ Ã(γ, α, a, ξ, e).

2. Assume 1 ≤ e ≤ x, h(γ + ωβ · 1, e) ≤ x, β 6= 0, β �e ξ, and G[ξ, e, x]. Then

` (∀γ �e ωξ.Prog(A, e, γ)) ∧ (∀α≺e β.A∗[α, ξ, e, x]) ∧G[γ, e, x] →
G[γ + ωβ · 1, e, x] ∧ γ ≺e γ + ωβ · 1 ∧ Ã(γ, β, 1, ξ, e).

3. Assume 1 ≤ e ≤ x and h(γ + ω0 · 1, e) ≤ x. Then

` ∀γ�eω
ξ.Prog(A, e, γ)∧G[γ, e, x] → G[γ+ω0 ·1, e, x] ∧ γ≺eγ+ω0 ·1 ∧ Ã(γ, 0, 1, ξ, e).

Proof. 1. By input bounded induction on a for

B[a] :≡ h(γ + ωα · a, e) ≤ x → G[γ + ωα · a, e, x] ∧ γ �e γ + ωα · a ∧ Ã(γ, α, a, ξ, e).

In the base case we have γ +ωα · 0 = γ by lemma 22.4, so there is nothing to do. For
the induction step we may assume a ≤ x, and the premises G[γ, e, x] and G[α, e, x]
by lemma 28.1 imply Ord(γ, α), g(γ, e)↓, g(α, e)↓ and γ, α, g(γ, e), g(α, e) ≤ x. So
γ + ωα · a↓, Ord(γ + ωα · a), and (γ + ωα · a) + ωα · 1 = γ + ωα · sa by lemma 22, and

h(γ+ωα ·a, e)=h0(g(γ, e), e, g(α, e), a)≤h0(g(γ, e), e, g(α, e), sa)=h(γ+ωα ·sa, e) ≤ x

by lemmas 27.1 and 27.2 (and one of the premises for the final inequality).

To prove B[sa] we assume h(γ + ωα · sa, e) ≤ x. Then h(γ + ωα · a, e) ≤ x by
transitivity, and the induction hypothesis gives

G[γ + ωα · a, e, x] ∧ γ �e γ + ωα · a ∧ Ã(γ, α, a, ξ, e).

From A∗[α, ξ, e, x] we obtain (instantiating γ with γ + ωα · a)

G[γ + ωα · sa, e, x] ∧ γ + ωα · a�e γ + ωα · sa ∧ Ã(γ + ωα · a, α, 1, ξ, e).

50 CHAPTER 5. TRANSFINITE INDUCTION, LOWER BOUNDS

This in particular implies Tran(γ + ωα · sa), and therefore γ �e γ + ωα · sa. Finally,
to show Ã(γ, α, sa, ξ, e), we assume OBd(γ + ωα · sa, ξ, e) and ∀δ ≺e γ.A[δ]. This
implies OBd(γ + ωα · a, ξ, e) by Tran(γ + ωα · sa) again. Now from Ã(γ, α, a, ξ, e) we
can deduce ∀δ ≺e γ + ωα · a.A[δ], which together with Ã(γ + ωα · a, α, 1, ξ, e) leads
to ∀δ ≺e γ + ωα · sa.A[δ]. This completes the induction step, and an application of
lemma 3 completes the proof.

2. By lemma 28.3 we also can assume G[β, e, x]. This and the premise G[γ, e, x] ensure
Ord(γ, β) and γ, β ≤ x, so we also have γ +ωβ ·1↓, Ord(γ +ωβ ·1), and γ +ωβ ·1 6= 0
by lemma 22. From lemma 25 we get pred(γ + ωβ · 1, e) = γ + ωα · a for some
a ≤ e and some α ≺e β that satisfies Ord(α). This α by lemmas 28.1 and 28.3 and
by Mon(β, e) also satisfies G[α, e, x], g(α, e) < g(β, e) and α ≤ x. Furthermore the
premise h(γ + ωβ · 1, e) ≤ x by lemmas 27.1 and 27.2 and by transitivity implies
h(γ + ωα · a, e) ≤ x. This means that we have can apply item 1 of this lemma to
obtain G[γ+ωα ·a, e, x], γ�e γ+ωα ·a and Ã(γ, α, a, ξ, e). From this, by lemmas 28.4
and 24, we conclude G[γ + ωβ · 1, e, x] and γ ≺e γ + ωβ · 1, the first and the second
conjunct.

For the third assume OBd(γ + ωβ · 1, ξ, e), ∀δ≺e γ.A[δ] and δ≺e γ + ωβ · 1, and show
that A[δ] holds. G[γ + ωβ · 1, e, x] entails Tran(γ + ωβ · 1, e) and also γ + ωβ · 1 ≤ x.
But by the former we get OBd(γ + ωα · a, e), which in turn entails γ + ωα · a �e ωξ

and, using the premises, Prog(A, e, γ + ωα · a). The latter together with lemma 24
δ �e γ + ωα · a. Now if δ ≺e γ + ωα · a we get A[δ] from Ã(γ, α, a, ξ, e), therefore
A[γ + ωα · a] holds by Prog(A, e, γ + ωα · a).

3. Somewhat similar to the previous item: G[γ, e, x] ensures Ord(γ) and γ ≤ x, so
γ+ω0 ·1↓, Ord(γ+ω0 ·1) and (γ+ω0 ·1) 6= 0 by lemma 22, and pred(γ+ω0 ·1, e) = γ
by lemma 25. Notice that G[0, e, x] holds by lemma 28.2, so by lemmas 28.4 and 24
we can conclude G[γ + ω0 · 1, e, x] and γ ≺e γ + ω0 · 1.

For the third conjunct assume OBd(γ + ω0 · 1, ξ, e), ∀δ ≺e γ.A[δ] and δ ≺e γ + ω0 · 1,
and we want to show that A[δ] holds. G[γ +ω0 · 1, e, x] entails Tran(γ +ω0 · 1, e) and
γ + ω0 · 1 ≤ x again, and the former via OBd(γ, e) entails γ �e ωξ and Prog(A, e, γ).
The latter by lemma 24 again implies δ �e γ. Now if δ ≺e γ we get A[δ] from
Ã(γ, α, a, ξ, e), therefore A[γ] holds by Prog(A, e, γ).

Lemma 31. Assume 1 ≤ e ≤ x and G[ξ, e, x]. Then

` (∀γ �e ωξ.Prog(A, e, γ)) → ∀β �e ξ.Prog(A∗[·, ξ, e, x], e, β),

where the notation Prog(A∗[·, ξ, e, x], e, β) means that the formula A∗[α, ξ, e, x] satisfies
Prog with respect to its free variable α.

Proof. Assume β �e ξ, ∀α ≺e β.A∗[α, ξ, e, x], h(γ + ωβ · 1, e) ≤ x and G[γ, e, x]. Then we
have to show G[γ +ωβ · 1, e, x], γ≺e γ +ωβ · 1 and Ã(γ, β, 1, ξ, e), which is immediate from
lemma 30.

5.2. THE WO-PROOF 51

Lemma 32. Assume 1 ≤ e ≤ x and h(ωα, e) ≤ x. Then

` G[α, e, x] ∧ TI(A∗[·, α, e, x], e, α) → TI(A, e, ωα).

Proof. Fairly standard: Assume G[α, e, x], TI(A∗[·, α, e, x], e, α) and ∀δ�eω
α.Prog(A, e, δ),

we have to show ∀δ ≺e ωα.A[δ].

Lemma 31 tells us that ∀β �e α.Prog(A∗[·, α, e, x], e, β). From this we get, when using
TI(A∗[·, α, e, x], e, α), that ∀δ ≺e α.A∗[δ, α, e, x] holds, and also the particular instance
Prog(A∗[·, α, e, x], e, α). These together immediately lead to A∗[α, α, e, x]. Expanding def-
initions and instantiating γ by 0 (which is defined) we are done, as soon as we have shown
G[0, e, x], OBd(ωα, α, e) and ∀δ ≺e 0.A[δ]. But all three are immediate, the first from
lemma 28, the second from the definition of OBd, and the third from the fact that ¬δ≺e 0
follows from the equational program.

Lemma 33. Let >(δ) :≡ δ = δ, and assume 1 ≤ e ≤ x and h(ωα, e) ≤ x. Then

` G[α, e, x] ∧ TI(>∗[·, α, e, x], e, α) → G[ωα, e, x].

Proof. Almost the same as for the previous lemma. Notice that ∀δ �e ωα.Prog(>, e, δ) is
trivially provable, so applying lemma 31 and using the premise TI(>∗[·, α, e, x], e, α) yields
>∗[α, α, e, x], and the claim follows by expanding definitions as above.

The n-fold ω-towers are defined as usual by

ω0(α) = α ωn+1(α) = ωωn(α).

Then ωn(0), for all n, is a closed term, and thus trivially defined. Almost as trivial, ωn(0)
is a code of an ordinal, formally to be shown by a straightforward (meta-)induction on n.

Lemma 34. For all formulas A and for any fixed n,

` 1 ≤ e ≤ x ∧
∧

m≤n

h(ωm(0), e) ≤ x → G[ωn(0), e, x] ∧ TI(A, e, ωn(0)).

Proof. As usual, by (meta-)induction on n. G[0, e, x] ∧ TI(A, e, 0) is immediate from
lemma 28 and the definition of TI, as ¬δ ≺e 0. Now the induction hypothesis gives
G[ωn(0), e, x], TI(>∗[·, ωn(0), e, x], e, ωn(0)) and TI(A∗[·, ωn(0), e, x], e, ωn(0)), so from the
two previous lemmas we get G[ωn+1(0), e, x] ∧ TI(A, e, ωn+1(0)), which concludes the in-
duction step.

Theorem 35. For all formulas A and for any fixed n, if x is a fresh input variable, then

` TI(A, x, ωn(0)).

52 CHAPTER 5. TRANSFINITE INDUCTION, LOWER BOUNDS

This is the main theorem. It states that for all formulas, EA(;) can uniformly prove
transfinite induction up to ωn(0) with respect to the orderings ≺x.

Proof. The first step is to show e ≤ x → g(ωm(0), e)↓ ∧ h(ωm(0), e)↓ by (meta-)induction
on m. The base case is trivial. For the induction step we use corollary 12 and the induction
hypothesis to assume g(ωm(0), e), h(ωm(0), e) ≤ x. Then the claim is immediate from
lemma 27.2.

To prove the theorem, the previous lemma gives

1 ≤ e ≤ x ∧
∧

m≤n

h(ωm(0), e) ≤ x → TI(A, e, ωn(0)).

Drop the premise
∧

m≤n h(ωm(0), e) ≤ x by using corollary 12, and substitute x for e. We
are left with 1 ≤ x → TI(A, x, ωn(0)). So all that remains to show is TI(A, 0, ωn(0)).

The proof of TI(A, 0, ωn(0)) relies on the fact that δ≺0 ωn+2(0) is equivalent to δ�0 ωn(0).
This will be clear from lemma 24, once we have seen that pred(ωn+2(0), 0) = ωn(0), since
we can assume ωn+2(0) ≤ x by using corollary 12, and ωn+2(0) 6= 0 holds by lemma 22.1.

But pred(ωn+2(0), 0) = ωn(0) is easily verified by (meta-)induction on n. Before doing
this, observe that ωn+2(0) = 〈0, 〈0, ωn(0), 1〉, 1〉 is immediate from the equational program.
Then so is the base case, because ω0(0) = 0 implies pred(ω2(0), 0) = 0+ωpred(〈0,0,1〉,0) ·0 = 0,
and the induction step as well, computing

pred(ωn+3(0), 0) = 0 + ωpred(ωn+2(0),0) · 1 = 0 + ωωn(0) · 1 = ωn+1(0).

Returning to the proof of TI(A, 0, ωn(0)), this is trivial for the base cases n = 0 and n = 1,
because we have ¬δ ≺0 0 and δ ≺0 〈0, 0, 1〉 ↔ δ �0 pred(〈0, 0, 1〉, 0) ↔ δ = 0. For the
induction step we assume ∀δ.Ord(δ) → Prog(A, 0, δ). This by the induction hypothesis
gives ∀δ≺e ωn(0).A[δ] and therefore, as Ord(ωn(0)) holds, A[ωn(0)] as well. These together
say ∀δ �0 ωn+2(0).A[δ] which by the remarks above is all we have to show.

With the help of lemma 34 we can apply a similar procedure to see that we could rephrase
all results on input bounded (codes of) ordinals to hold for all δ≺x ωn(0). We perform this
for a specific example that we will need in the next chapter.

Lemma 36. EA(;) proves, for all n,

∀δ �x ωn(0).(δ = 0 ∨ Lim(δ) ∨ Succ(δ)) ∧ (δ 6= 0 → pred(δ, x)↓ ∧ pred(δ, x)≺x δ).

Proof. Let A(δ, e) :≡ (δ = 0 ∨ Lim(δ) ∨ Succ(δ)) ∧ (δ 6= 0 → pred(δ, e)↓ ∧ pred(δ, e)≺e δ).
The first step is to observe (G[α, e, x]∧δ�eα) → Ord(δ)∧δ ≤ x which follows directly from
lemmas 28.1 and 28.3. Then (G[α, e, x]∧δ�eα) → A(δ, e) is immediate from lemmas 20, 23
and 24. Apply lemma 34, and we can remove premises and substitute x for e exactly the
same way as in the proof of the theorem.

Chapter 6

Transfinite Induction, Upper Bounds

6.1 The Slow-Growing Hierarchy

In this chapter we define a notion of provable ordinal for two-sorted arithmetic and show
that the slow-growing hierarchy along these ordinals is always provably total. This implies
that the lower bound ε0 given in the previous chapter is a sharp one, as the slow-growing
hierarchy up to (and including) ε0 is a non-elementary function, see [8] for details. On
the other hand we know from Ostrin and Wainer [18, Theorem 3.5] that all provably total
functions of EA(;) are elementary.

Our definition of a provable ordinal is based on structured tree ordinals rather than set
theoretic ordinals. There are several reasons why this choice seems to be more adequate in
this context. Following Wainer’s program (as in [18]), introducing variable separation gives
rise to a proof theory based on the slow-growing hierarchy, and we can see tree ordinals as
a slow-growing counterpart to set theoretical ordinals. Secondly, set theoretical ordinals
are simply too coarse. Sommer ([22], [23]) shows that the proof-theoretic ordinal in the
classical sense must be ω2 for all theories between I∆0 (or T 2

1 respectively) and IΣ1, see
Beckmann [2, p. 4] for more details. This in particular means that classical ordinal analysis
can’t separate any of these theories. But EA(;), as well as it’s fragments and extensions
which are also of interest, lie all in that range, at least when comparing the respective
provably total functions: Linspace for I∆0, elementary time for EA(;), and all primitive
recursive functions for IΣ1. A more technical reason finally is that the lower bound we gave
in theorem 35 didn’t well-order any set-theoretical ordinal at all, but rather a family of
(increasing) suborderings ≺n. This perfectly fits the correspondance between tree ordinals
and their sets of n-predecessors α[n], cf. Fairtlough and Wainer [8].

Our definition of the structured tree ordinals exactly follows [8], but for convenience we
repeat the most relevant facts in the following definition and in lemma 38, which is copied
from their corollary 2.9.

53

54 CHAPTER 6. TRANSFINITE INDUCTION, UPPER BOUNDS

Definition 37. The set Ω of the countable tree ordinals is inductively defined as the closure
of the zero ordinal 0 under successor α + 1 := α∪ {α} and limits sup(αx) := 〈αx〉x∈N. The
letter λ will denote limit ordinals λ = 〈λx〉.

This definition gives raise to a natural (partial) ordering ≺ on the set of the countable
tree ordinals, defined as the transitive closure of the rules α≺ α + 1 and λm ≺ 〈λx〉 (for all
natural numbers m).

For each α ∈ Ω the restriction ≺α of this ordering below α is wellfounded. The ordinal
height |α| of α is defined to be the set-theoretic ordinal height of ≺α.

For each natural number n the set of n-predecessors α[n] of a tree ordinal α is defined
inductively by

• 0[n] := ∅,

• (α + 1)[n] := α[n] ∪ {α},

• λ[n] := λn[n].

A tree ordinal α is called a structured tree ordinal if every λ � α satisfies, for all n, the
inclusion λn ∈ λ[n + 1].

Lemma 38. For each non-zero structured tree ordinal α the set {β : β≺α} is well-ordered
by ≺, with least element 0 and such that β ≺ α implies β + 1 � α. This well-ordering is
the direct union of its finite sub-orderings α[n] for n ∈ N.

Definition 39.

1. A model of EA(;) is called a standard model, if both the input and output variables are
interpreted as (standard) natural numbers, the symbols 0, s and = are interpreted
as the constant 0, the successor function and the equality relation on the natural
numbers, and the function symbols are assigned any partial functions on the natural
numbers that make all equations in P true.

2. An arithmetization of a tree ordinal α consists of formulas Ord , Succ, Lim and A≺
in the language of EA(;), an equational program P containing a binary function pred
and a constant 0, and an injection d·e from {β : β � α} into the closed terms of the
language of EA(;) + P such that

(a) For all δ, β≺α and for all natural numbers n, δ∈β[n] if and only if A≺ [dδe, dβe, n]
is true in every standard model. Here n denotes the n-th numeral, and we usually
write a≺e b for A≺ [a, b, e].

(b) For all β, λ≺ α and for all n, both Succ(dβ + 1e) ∧ pred(dβ + 1e, n) = dβe and
Lim(dλe) ∧ pred(dλe, n) = dλne are true in every standard model.

6.1. THE SLOW-GROWING HIERARCHY 55

(c) For all β ∈ α[n] and for all n, EA(;) proves Ord(dβe, n).

(d) EA(;) proves both ∀δ.Ord(δ, x) → (δ = 0 ∨ Lim(δ) ∨ Succ(δ)) and
∀δ.Ord(δ, x) ∧ δ 6= 0 → (pred(δ, x)↓ ∧ A≺ [pred(δ, x), δ, x]).

3. An ordinal α is provable in EA(;) if and only if there is an arithmetization of α such
that EA(;) ` TI(A,≺, x, dαe) for all formulas A, where

TI(A,≺, e, α) :≡ (∀δ.Ord(δ, e) → Prog(A,≺, e, δ)) → ∀δ ≺e α.A[δ]

and
Prog(A,≺, e, β) :≡ (∀α≺e β.A[α]) → A[β].

We don’t require that EA(;) proves ≺x ⊆ ≺sx (theorem 2.8 of Fairtlough and Wainer [8])
for α being provable. For then, EA(;) would even prove the wellfoundedness of ≺, i.e.
transfinite induction over set theoretic ordinals up to ε0, which would be much too strong
a result.

We notice that all ordinals up to ε0 are indeed provable in EA(;) in the sense of defini-
tion 39 above, if we take them as being the closure of 0 under successor, addition and
exponentiation with base ω := 〈x〉x. This is clear from lemma 36 and theorem 35, when
we choose δ �e dαe as the formula Ord(δ, e) in definition 39 for any such ordinal α.

Lemma 40. Let α be a provable ordinal of EA(;), and assume that P contains the equation

g(β, a) =

0 β = 0,

sg(pred(β, a), a) Succ(β),

g(pred(β, a), a) Lim(β).

Then ` g(dαe, x)↓.

Proof. Let A[β] :≡ g(β, x)↓, we want to apply TI(A,≺, x, dαe). In order to prove the
premise assume Ord(β, x) and ∀δ ≺x β.A[δ], and show A[β]. By the assumptions on the
arithmetization of α we can distinguish the cases β = 0, Lim(β) and Succ(β). Furthermore,
if β 6= 0, then pred(β, x)↓ and pred(β, x) ≺x β, thus g(pred(β, x), x) is defined by the
induction hypothesis. Therefore all three cases satisfy A[β]. This means that we have
shown ∀β.Ord(β, x) → Prog(A,≺, e, β). Now we can apply TI(α,≺, x, dαe) to obtain
∀δ ≺x dαe.A[δ]. As dαe, being a closed term, is defined, and Ord(dαe, x) holds, we have
also Prog(A, dαe) which implies A[dαe].

As shown in the introduction to this chapter this result provides an upper bound for the
provably total ordinals of EA(;):

Corollary 41. If a structured tree ordinal α is a provable ordinal of EA(;), then its height
|α| is smaller than ε0.

56 CHAPTER 6. TRANSFINITE INDUCTION, UPPER BOUNDS

Proof. By (part 2(b) of) definition 39 g(dαe, ·), indeed defines the slow-growing hierarchy
at level α. But for |α| ≥ ε0 this is a non-elementary function!

Corollary 42. Define the proof theoretic ordinal of a two-sorted theory T to be

sup
α∈Ω

{|α| : α is provable in T}.

Then the proof theoretic ordinal of EA(;) is ε0.

Bibliography

[1] Aehlig, K., Berger, U., Hofmann, M., and Schwichtenberg, H. An arith-
metic for non-size-increasing polynomial-time computation. Theor. Comput. Sci. 318,
1-2 (2004), 3–27.

[2] Beckmann, A. Separating Fragments of Bounded Arithmetic. PhD thesis, Univerität
Münster, 1996.

[3] Bellantoni, S., and Cook, S. A new recursion-theoretic characterization of the
polytime functions. Computational Complexity 2 (1992), 97–110.

[4] Bellantoni, S., and Hofmann, M. A new “feasible” arithmetic. J. Symb. Log.
67, 1 (2002), 104–116.

[5] Bellantoni, S. J., Niggl, K.-H., and Schwichtenberg, H. Higher type re-
cursion, ramification and polynomial time. Ann. Pure Appl. Logic 104, 1-3 (2000),
17–30.

[6] Bloch, S. A. Functional characterizations of uniform log-depth and polylog-depth
circuit families. In Structure in Complexity Theory Conference (1992), pp. 193–206.

[7] Buss, S. R. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[8] Fairtlough, M., and Wainer, S. S. Hierarchies of provably recursive functions.
In Handbook of Proof Theory, S. R. Buss, Ed. Elsevier Science Publishers, Amsterdam,
1998, pp. 149–207.

[9] Irwin, R. J., Royer, J. S., and Kapron, B. M. On characterizations of the
basic feasible functionals (part i). J. Funct. Program. 11, 1 (2001), 117–153.

[10] Leivant, D. A foundational delineation of computational feasability. In Proceedings
of the Sixth IEEE Conference on Logic in Computer Science (Amsterdam). IEEE
Computer Society Press, Washington, 1991.

[11] Leivant, D. Predicative recurrence in finite types. In LFCS (1994), A. Nerode
and Y. Matiyasevich, Eds., vol. 813 of Lecture Notes in Computer Science, Springer,
pp. 227–239.

57

58 BIBLIOGRAPHY

[12] Leivant, D. Intrinsic theories and computational complexity. In Logic and Compu-
tational Complexity, D. Leivant, Ed., vol. 960 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[13] Leivant, D. Ramified recurrence and computational complexity iii: Higher type
recurrence and elementary complexity. Ann. Pure Appl. Logic 96, 1-3 (1999), 209–
229.

[14] Leivant, D. Calibrating computational feasibility by abstraction rank. In LICS
(2002), pp. 345–.

[15] Nelson, E. Predicative Arithmetic. Princeton University Press, Princeton, N.J.,
1986.

[16] Oitavem, I. Implicit characterizations of Pspace. In Proof Theory in Computer
Science (2001), pp. 170–190.

[17] Ostrin, G. E., and Wainer, S. S. Proof theoretic complexity. In Logic and
Computational Complexity, J. Tiuryn and R. Steinbruggen, Eds., vol. 960 of Proof
and System Reliability. Kluwer, 2002, pp. 369–397.

[18] Ostrin, G. E., and Wainer, S. S. Elementary arithmetic. Ann. Pure Appl. Logic
133, 1-3 (2005), 275–292.

[19] Pohlers, W. Proof Theory: An Introduction, vol. 1407 of Lecture Notes in Mathe-
matics. Springer, Berlin, 1988.

[20] Schwichtenberg, H. An arithmetic for polynomial-time computation. to appear.

[21] Simmons, H. The realm of primitive recursion. Archive for Mathematical Logic 27
(1988), 177–188.

[22] Sommer, R. Transfinite Induction and Hierarchies Generated by Transfinite Recur-
sion within Peano Arithmetic. PhD thesis, UC Berkeley, 1990.

[23] Sommer, R. Ordinals in bounded arithmetic. In Arithmetic, Proof Theory, and
Complexity, P. Clote and J. Kraj́ıček, Eds., vol. 23 of Oxford Logic Guides. Oxford
University Press, 1993, pp. 320–363.

[24] Wainer, S. S., and Williams, R. S. Inductive definitions over a predicative
arithmetic. Ann. Pure Appl. Logic (to appear).

[25] Williams, R. S. Proof Theoretic Ordinals and Hierarchies. PhD thesis, University
of Leeds, 2005.

Index

α, β, γ, . . ., see arithmetization, of ordi-
nals

|α|, see tree ordinal, height
β[n], see tree ordinal, set of predecessors
Ω, see tree ordina
p(a), see arithmetical functions, predeces-

sor
s(a), see arithmetical functions, successor
a + b, see arithmetical functions, addition
a .− b, see arithmetical functions, subtrac-

tion
a · b, see arithmetical functions, multipli-

cation
ab, see arithmetical functions, exponenti-

ation
(a)i, see projection functions
g(α, e) (direct definition), 41, 42
g(α, e) (definition by transfinite recursion),

55
h(α, e), 41, 42
coeff (α), see arithmetization, of ordinals
exp(α), see arithmetization, of ordinals
left(α), see arithmetization, of ordinals
pred(α, e), see predecessor, function, on

ordinals
µ, see arithmetical operators, bounded µ
χ=, see characteristic function, for equal-

ity
<, see characteristic function, for inequal-

ity
≤, see characteristic function, for inequal-

ity
≺e, 35, 39
�e, 35, 39
Σ1, see formlula, Σ1

t↓, see term, defined
A∗ (jump formula), see jump formula
A∗ (relativization), see relativization of a

formula
Ã, 48
3Seq(a), see characteristic function, of ter-

nary sequences
Lim(α), see limit ordinal
Succ(α), see successor ordinal
Prog(A), 18
Prog(A, e, β), 49
BA, see relativization of a formula
G[α, e, x], 41, 46
OBd(α, ξ, e), 48
TI(A, e, α), see induction, transfinite

adequacy
of χ=, see characteristic function, for

equality
of propositional logic, see arithmeti-

zation, of propositional logic
arithmetical functions

addition, 7, 12
computing with, 25
exponentiation, 25
maximum, 22
multiplication, 25
predecessor, 7
subtraction, 7, 12
successor, 5

arithmetical operators
bounded µ, 29
bounded maximum, 28

arithmetization
of boolean operators, see arithmetiza-

tion, of propositional logic

59

60 INDEX

of ordinal arithmetic, 35, 36, 39
of ordinals, 32, 34, 35
of propositional logic, 9
of ternary sequences, see sequences
of tree ordinals, see tree ordinal, arith-

metization of
auxiliary formula, see G[α, e, x]

basic term, see term, basic
bounded µ, see arithmetical operators,

bounded µ
bounded formula, see formula, Σ1

bounded maximum, see arithmetical op-
erators, bounded maximum

bounding functions, see h(α, e)

call by name, see conditional, call by name
call by value, see conditional, call by value
cantor normal form, 35
cases rule, see EA(;), rules and axioms
characteristic function, 9

for e-predecessors, see ≺e

for equality, 25
for inequality, 9, 11, 12
of ordinals, see arithmetization, of or-

dinals
of ternary sequences, see sequences

conditional
call by name, 8
call by value, 8

contraction rule, see EA(;), derived rules
course of value induction, see induction,

course of values
cut rule, see EA(;), rules and axioms

defined term, see term, defined

EA(;)
derived rules, 6–7
model of, 54
rules and axioms, 5–6

eigenvariable, 6
restriction, 6

equality rule, see EA(;), derived rules

equational program, 7

formula, 5
Σ1, 5

function bounded induction, see induction,
function bounded

fundamental sequence, 36

generalized existential rule, see EA(;), de-
rived rules

Herbrand-Gödel, see equational program

induction
above b, 15
course of values, 15
function bounded, 27, 38, 42, 44
input bounded, 12
on ordinal terms, 34

function bounded, see induction,
function bounded

rule, see EA(;), rules and axioms
transfinite, 48, 49, 52

input bounded output
induction, see induction, input boun-

ded
substitution, see substitution, input

bounded output
variable, see variable, input bounded

output
input substitution, see substitution, input
input variable, see variable, input
inversion for ∀, see EA(;), derived rules

jump formula, 48, 49

least null, see arithmetical operators, boun-
ded µ

limit ordinal, 35, 36

maximum
function, see arithmetical functions,

maximum
operator, see arithmetical operators,

bounded maximum

INDEX 61

ordinal, see arithmetization, of ordinals
provable, see provable ordinal
tree ordinal, see tree ordinal, arithme-

tization of
ordinal arithmetic, see arithmetization, of

ordinal arithmetic
ordinal term, see arithmetization, of ordi-

nals
output substitution, see substitution
output variable, see variable, output

pairing, see sequences
dummy, 8

predecessor
function

on numbers, see arithmetical func-
tions, predecessor

on ordinals, 35, 36, 38, 39
set of, see tree ordinal, set of prede-

cessors
progressiveness, 48, 50

formalized, see Prog(A), Prog(A, e, β)
projection fuctions, 30
proof theoretic ordinal, see provable ordi-

nal
propositional logic, see arithmetization, of

propositional logic
propositional rules, see EA(;), rules and

axioms
provable ordinal, 55, 56
provably total, 7

on input bounded outputs, 20
on outputs, 7

quantifier rules, see EA(;), rules and ax-
ioms

relativization of a formula, 17

sequences, 30
slow-growing hierarchy, 41, 53, 55

formalized, see g(α, e)
standard model, see EA(;), model of

structured tree ordinal, see tree ordinal,
structured

substitution, 7, 17
input, 19
input bounded output, 21
lemma, see EA(;), derived rules

successor ordinal, 35, 36

term
basic, 5
defined, 7
general, 5
ordinal, see arithmetization, of ordi-

nals
term induction, see induction, on ordinal

terms
ternary sequences, see sequences
total function, see provably total
transfinite induction, see induction, trans-

finite
transitivity

of ≺e and �e, 41, 42
of ≤ and <, 14

tree ordinal, 53
arithmetization of, 54
height, 55
set of predecessors, 53, 54

formalized, see ≺e

structured, 53

variable
input, 5, 20
input bounded output, 11, 20
output, 5

weakening, see EA(;), derived rules

