
Description Logic Query Answering

with Relational Databases

Masterarbeit

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Norbert Kottmann

2006

Leiter der Arbeit:

Prof. Dr. Gerhard Jäger,

Institut für Informatik und angewandte Mathematik

2

Abstract

A knowledge base system O using description logics should be able to find an answer to

the retrieval problem in reasonable time, returning a sound and complete result. That

means finding all individuals a of a concept C where O entails that a belongs to C. We

present a description logic based solution for a knowledge base where the information and

its consequences, computed by a completion algorithm, are stored in a relational database.

Our system issues simple database lookups to answer description logic queries. We are

able to show that these queries can be answered in constant amount of time even for large

data sets and complex concepts.

Acknowledgements

First, I would like to thank Prof. Dr. Gerhard Jäger, head of the Research Group for

Theoretical Computer Science and Logic, for giving me the opportunity to work in his

group.

Special thanks go to my supervisor Dr. Thomas Studer for his great support and motiva-

tion.

I would also like to thank Yuanbo Guo from Lehigh University, Bethlehem (PA), USA for

his support on LUBM and Dr. Dieter Probst for his help and patience.

Furthermore, many thanks to my best friends Daria Spescha and Marco Robertini for their

encouragement during my studies and for proofreading this thesis.

Finally, I would like to thank all members of the TIL group, it was a pleasure to work with

them.

Norbert Kottmann

July 2006

4

Contents

1 Introduction 7

1.1 Structure of the Document . 8

2 Theory 9

2.1 Web Ontology Language (OWL) . 9

2.1.1 Example . 11

2.2 Description Logic Language (DL) . 13

2.2.1 Syntax . 13

2.2.2 Semantics . 13

2.2.3 Knowledge Base O . 14

2.3 Load and Query Process . 15

2.3.1 OWL to DL Conversion . 16

2.3.2 DL Normalisation . 18

2.3.3 DL Completion . 19

2.3.4 DL to DB Conversion . 23

3 Implementation 25

3.1 Design . 25

3.1.1 Packages . 25

3.1.2 External Libraries . 29

3.1.3 Database . 29

3.2 Algorithms . 31

3.2.1 Completion . 31

3.2.2 DL To Database Conversion . 31

4 Performance Evaluation 41

4.1 Benchmark Setup . 41

4.1.1 Software . 41

5

Contents

4.1.2 Hardware, Operating System and JVM 45

4.2 Performance Metrics . 46

4.2.1 Load Time . 46

4.2.2 Repository Size . 46

4.2.3 Query Response Time . 46

4.2.4 Query Completeness and Soundness 46

4.3 Results and Discussion . 47

4.3.1 Data Loading . 47

4.3.2 Query Response Time . 49

4.3.3 Query Completeness and Soundness 51

5 Conclusion and Further Work 57

5.1 Conclusion . 57

5.2 Further Work . 57

Appendices 59

A Implementation 59

A.1 Directory Tree . 59

B Benchmark 61

B.1 Univ-Bench Ontology . 61

B.2 Example Dataset of UBA . 70

B.3 Test Queries of UBT . 71

B.3.1 SPARQL Format . 71

B.3.2 SQL Format for REAL . 73

B.4 UBT Configuration Files . 78

B.5 Test Results . 78

Bibliography 80

6

1 Introduction

A knowledge base system has to fulfil different needs. On the one hand, it should be

able to store and update existing information, to provide automated deductive reasoning

and to return sound and complete results from queries. On the other hand, the query

answering must be fast. This master thesis describes an implementation of a knowledge

base system which uses description logics for logical inference and a relational database

system for persistent storage. Hereby, the focus should lie on fast, sound and complete

query processing because this is the most extensive feature of knowledge bases. The thesis

builds on the paper “Relational Representation of ALN Knowledge Bases”[12] by Thomas

Studer which provides the main concepts for the implementation.

As mentioned above, description logics and a relational database management system

(RDBMS) will be used in our knowledge base application for information representation.

This combination leads to a problem: A database works as a closed world, where ab-

sence of information is interpreted as negative information whereas description logics are

characterised by an open world assumption, where absence of information means lack of

knowledge. Therefore, we can not simply store the information in the database and issue

queries on it as this may lead to incomplete query results, for example for the query “find

me all individuals a which are of type C”. In description logics, this task is known as the

retrieval problem [2] and it is formulated as: “find all individuals a (of a given knowledge

base O and a concept C) such that we can logically infer from O that a belongs to C”.

Figure 1.1 shows two different approaches to solve the retrieval problem: completion during

loading or reasoning at query time.

Most of the existing knowledge base systems use a reasoner such as RacerPro1 or FaCT2

to answer the queries. Some of them solve the retrieval problem by a trivial generate and

test method at query time, which tests for each individual in O whether it is an instance

of the concept C or not.

Thomas Studer presents in his paper a completion based approach. The proposed solu-

1http://www.racer-systems.com/
2http://www.cs.man.ac.uk/∼horrocks/FaCT/

7

http://www.racer-systems.com/
http://www.cs.man.ac.uk/~horrocks/FaCT/

1 Introduction

Loading
@

@R

Query

?
6

Reasoning
�

�	�
��

RDBMS

Loading

?
Query
�

�	�
��

Completion
@

@R
RDBMS

Figure 1.1: Load and query procedure of two different approaches. On the left hand side,
the reasoning is done at query time and on the right hand side the completion
happens at load time.

tion is formulated for the description logic language ALN where a completion algorithm

computes the missing consequences before the information is stored in the database. The

main advantage of this completion approach is, that even complex queries can be answered

fast by a simple database query because the reasoning has already been done. Moreover,

database optimisations can even improve the performance. One obvious disadvantage of

such a system is the bad load time and storage complexity. Of course, a performance

evaluation is needed in order to verify these assumptions.

1.1 Structure of the Document

Chapter 2 of this thesis introduces all necessary theoretical background for understanding

the completion approach. A specific implementation is then presented in Chapter 3 which

is based on the theoretical concepts. Furthermore, the performance evaluation of the

implemented knowledge base application and a comparison to another system is given in

Chapter 4. Finally the conclusions drawn from the results as well as thoughts about future

work are summarised in Chapter 5.

8

2 Theory

As mentioned in the introduction, our aim is to build a knowledge base using a relational

database. A knowledge base “is a special kind of database for knowledge management

[. . .]. It provides the means for the computerized collection, organization, and retrieval of

knowledge. [. . .] A knowledge base may use an ontology to specify its structure (entity

types and relationships) and its classification scheme. An ontology, together with a set of

instances of its classes constitutes a knowledge base.”[5] “In general, an ontology describes

formally a domain of discourse. Typically, an ontology consists of a finite list of terms and

the relationships between these terms”[1].

First, to build a knowledge base, we need an ontology language to formalise the do-

main. The Web Ontology Language (OWL) is ideal for this purpose, because it is machine

processable. Thus, a short description of OWL will be given in Section 2.1.

Since a description logic based completion algorithm will compute the knowledge base

consequences, we have to define a description logic language for knowledge representation

and completion. This is done in Section 2.2.

Finally, the completed knowledge base has to be stored in a relational database. This

database conversion and the conversion between the OWL- and description logic represen-

tation layer as well as the completion rules will be presented in Section 2.3.

An ontology about the domain “species”will be used as an example throughout the

chapter.

2.1 Web Ontology Language (OWL)

The Web Ontology Language (OWL) was developed by the W3C Web Ontology Working

Group1 in the context of the Semantic Web [1]. They describe OWL as a language which is

“intended to be used when the information contained in documents needs to be processed

by applications, as opposed to situations where the content only needs to be presented

1http://www.w3.org/2001/sw/WebOnt/

9

http://www.w3.org/2001/sw/WebOnt/

2 Theory

to humans”[9]. OWL allows us to formalise information of a domain by creating classes,

individuals and properties about the classes and individuals. OWL builds on RDF2 and its

syntax is based on RDF’s XML syntax. A formal semantic is a prerequisite for reasoning

tasks and was a requirement of OWL [8]. OWL allows references to other ontologies since

every resource in an ontology is defined by an ID (rdf:ID, rdf:about) and a namespace

(xmlns:prefix) to avoid name clashes [4] (rdf in rdf:about is the namespace prefix for

the RDF ontology).

A class in OWL (owl:Class) describes a set of individuals which share some prop-

erties. For example lion and zebra are both instances (rdf:type) of the class Animal.

OWL contains two predefined classes, the universal class (owl:Thing) containing all el-

ements and the empty class (owl:Nothing). Subclass (owl:subClassOf), equivalence

(owl:equivalentClass), intersection (owl:intersectionOf) and union (owl:unionOf)

are axioms, which relate classes to others. For example Plant is a subClassOf Creature. A

class can also be defined as a restriction on a property (owl:Restriction). This particu-

lar restriction could be a cardinality (owl:cardinality) or a type (owl:someValuesFrom,

owl:allValuesFrom) restriction. Such a class is called “anonymous class”because it has

no name. A value restriction for example could be: The class Carnivore is equivalent to

the anonymous class of those individuals, which eat only individuals of the class Animal.

An object property (owl:ObjectProperty) can be used to state relationships between

individuals whereas a datatype property (owl:DatatypeProperty) links individuals to

data values. A lion can eat (object property) a zebra. Furthermore, a lion is related

to the number 150 by the datatype property averageWeight. Properties can also have

a hierarchy (owl:subPropertyOf), be equivalent (owl:equivalentProperty) or inverse

(owl:inverseOf). For example the inverse of the object property eats may be defined as

eatenBy.

Annotations, such as rdfs:comment, can be used to add additional information to

classes, individuals or properties. It is also possible to define new annotations.

There are many other OWL and RDF statements defined by W3C. For a full list of

available axioms, see the “OWL Web Ontology Language Reference”[3].

In order to meet different requirements concerning expressiveness and computational

complexity in reasoning, OWL was divided into three sublanguages:

OWL Full: OWL Full contains the entire OWL language which uses all axioms. In OWL

Full, one can even change the meaning of the predefined OWL or RDF primitives.

2http://www.w3.org/RDF/

10

http://www.w3.org/RDF/

2.1 Web Ontology Language (OWL)

Furthermore, a class can be treated as an individual. Therefore, OWL Full has the

maximum expressivness but is undecidable.

OWL DL: As a sublanguage of OWL Full, OWL DL (DL for Description Logic) is designed

as a trade-off between computational efficiency and expressiveness, which corresponds

to the one of description logics. Unlike OWL Full, classes, properties, individuals and

datatypes are disjoint.

OWL Lite: OWL Lite has minimal expressiveness and is a sublanguage of OWL DL.

Compared to OWL DL, arbitrary cardinality constrains are for example not allowed.

As we will see in Section 2.3.1, a subset of OWL Lite is sufficient for building our knowledge

base.

2.1.1 Example

The OWL code in Listing 2.1 shows a small ontology about species. Lines 10 to 18 set the

RDF namespaces and their prefixes. The class hierarchy between Animal and Creature is

given in lines 21 to 26 where Animal is defined as a subclass of Creature. Lines 27 to 51

formalise that any Omnivore eats at least one individual of the class Plant and the class

Animal. This is defined by an equivalence to an anonymous class which is a conjunction

of two restrictions. There is also a comment annotation in line 50. The object property

(lines 52 to 61) introduces a role eats with its domain and range being individuals from

the class Creature.

1 <?xml version=” 1 .0 ”?>

< !DOCTYPE owl [

3 <!ENTITY c r e a tu r e s ” h t tp : //www. iam . unibe . ch/˜kottmann/ c r e a tu r e s#”>

< !ENTITY dc ” h t tp : // pur l . org /dc/ e lements /1 .1/ ”>

5 < !ENTITY xsd ” h t tp : //www.w3 . org /2001/XMLSchema#”>

< !ENTITY rdf ” h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”>

7 < !ENTITY owl ” h t tp : //www.w3 . org /2002/07/ owl#”>

< !ENTITY rdfs ” h t tp : //www.w3 . org /2000/01/ rdf−schema#”>

9]>

<rdf:RDF

11 xmln s : c r ea tu r e s=” ht tp : //www. iam . unibe . ch/˜kottmann/ c r e a tu r e s#”

xmlns:dc=” ht tp : // pur l . org /dc/ e lements /1 .1/ ”

13 xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”

xmlns:rdf=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

15 xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

xmlns:rdfs=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

17 xml:base=” ht tp : //www. iam . unibe . ch/˜kottmann/ c r e a tu r e s#”

>

11

2 Theory

19 <owl:Ontology rdf:about=””>

</owl:Ontology>

21 <owl:Class rdf:about=”#Animal”>

<rdfs:subClassOf>

23 <owl:Class rdf:about=”#Creature ”>

</owl:Class>

25 </rdfs:subClassOf>

</owl:Class>

27 <owl:Class rdf:about=”#Omnivore”>

<owl:equivalentClass>

29 <owl:Class>

<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

31 <owl:Restriction>

<owl:onProperty rdf:resource=”#eat s ” />

33 <owl:someValuesFrom>

<owl:Class rdf:about=”#Plant ”>

35 </owl:Class>

</owl:someValuesFrom>

37 </owl:Restriction>

<owl:Class rdf:about=”#Animal”>

39 </owl:Class>

<owl:Restriction>

41 <owl:onProperty rdf:resource=”#eat s ” />

<owl:someValuesFrom>

43 <owl:Class rdf:about=”#Animal”>

</owl:Class>

45 </owl:someValuesFrom>

</owl:Restriction>

47 </owl:intersectionOf>

</owl:Class>

49 </owl:equivalentClass>

<rdfs:comment>Animal that ea t s p l ant s and meat .</rdfs:comment>

51 </owl:Class>

<owl:ObjectProperty rdf:about=”#eat s ”>

53 <rdfs:domain>

<owl:Class rdf:about=”#Creature ”>

55 </owl:Class>

</rdfs:domain>

57 <rdfs:range>

<owl:Class rdf:about=”#Creature ”>

59 </owl:Class>

</rdfs:range>

61 </owl:ObjectProperty>

</rdf:RDF>

Listing 2.1: Example of an OWL ontology about species.

12

2.2 Description Logic Language (DL)

2.2 Description Logic Language (DL)

As basis for our knowledge base, we need to define the syntax and semantics of the under-

lying description logic language. The language differs from ALN employed in the paper

“Relational Representation of ALN Knowledge Bases”[12], because the final benchmark

test uses the “Univ-Bench”ontology (Section 4.1.1), which has different requirements of

the description logic language. For a detailed introduction to description logics, read “The

Description Logic Handbook”[2].

2.2.1 Syntax

The syntax of our description logic language is given by the following rules, where A denotes

an atomic concept, C, D are used for concept descriptions, S, T represent atomic roles and

R stands for a role:

C, D → A | (atomic concept)

> | (top concept)

C uD | (conjunction)

∃R.C | (full existential quantification)

∀R.C | (value restriction)

R → S | (atomic role)

S− | (inverse role)

Additionally, we consider a subset R+ of roles. The elements of R+ are called transitive

roles.

Note that there is neither an atomic negation nor a bottom concept. We use full ex-

istential quantification where arbitrary concepts are allowed to occur in the scope of the

existential quantifier. Furthermore, a role can either be atomic, inverse or transitive.

2.2.2 Semantics

An interpretation I consists of a pair (∆I , ·I). ∆I is called the domain of interpretation

and is a non-empty set of individuals and ·I is an interpretation function assigning to each

atomic concept A a set AI ⊂ ∆I and to each atomic role S a binary relation SI ⊂ ∆I ×∆I

where a role R ∈ R+ must be mapped to a transitive role RI . We extend the interpretation

function to concept descriptions and roles by the following inductive definition:

13

2 Theory

>I := ∆I

(C uD)I := CI ∩DI

(∀R.C)I := {a ∈ ∆I : ∀b((a, b) ∈ RI → b ∈ CI)}
(∃R.C)I := {a ∈ ∆I : ∃b((a, b) ∈ RI ∧ b ∈ CI)}

(S−)I := {(b, a) ∈ ∆I ×∆I : (a, b) ∈ SI}

Note that the interpretation of the transitive role is not equal to the transitive closure.

As we will see later, we only need to mark a role as transitive for the completion rules

(Section 2.3.3).

2.2.3 Knowledge Base O

We are now able to define a description logic knowledge base O. The knowledge base O

consists of a terminology OT called TBox and a world description OA called ABox.

Terminology OT

The TBox contains concept definitions and inclusions, whereas inclusions can be concept

inclusions or role inclusions:

• Concept Definitions: A := C

• Inclusions: C v D, S v T

Before we can introduce the terms acyclic or cyclic, we need to divide the atomic concepts

occuring in OT into two sets:

• name symbols NT : atomic concepts that occur on the left hand side of a concept

definition.

• base symbols BT : atomic concepts that occur only on the right hand side of the

concept definitions.

For example if OT := {A := B u C, B := C uD} then NT := {A, B} and BT := {C, D}.
Let A and B be atomic concepts. A depends on B if B appears in the concept definition

of A. A terminology OT is called acyclic if there is no cycle in this dependency relation.

Otherwise the terminology is called cyclic. For example OT := {A := B uC, B := A uD}
is cyclic whereas OT := {A := B u C, B := C uD} is acyclic.

14

2.3 Load and Query Process

As we do not restrict concept inclusions to atomic concepts, it is necessary that there

is no cycle in the inclusion hierarchy (there is no chain L0, L1, L2, ..., Ln such that L0 is

the same concept as Ln and all statements Li v Li+1 are included in the TBox. The same

condition must hold for role inclusions.

The semantics of the TBox is given as follows: an interpretation I satisfies OT if:

• for every concept definition A := C we have AI = CI

• for every concept inclusion C v D we have CI ⊆ DI

• and for every role inclusion S v T we have SI ⊆ T I

World Description OA

The world description introduces a set of individuals and assertions about them. The set of

individual constants are denoted by a, b, c, The ABox contains the following assertions:

• Concept Assertions: C(a)

• Role Assertions: R(b, c)

A concept assertion states that an individual a belongs to the interpretation of C, whereas

a role assertion means that b is related to c by the role R.

For formulating the semantics of the ABox, the interpretation function ·I is extended by

mapping each individual constant a to an element aI of ∆I . The interpretation function

should respect the unique name assumption, that distinct individual constants denote

distinct elements in ∆I . Therefore, if a and b are different individuals, then they have a

different interpretation aI 6= bI . Altogether, the semantics of the ABox assertions is given

as follows: an interpretation I satisfies OA if:

• for every concept assertion C(a) we have aI ∈ CI

• for every role assertion R(b, c) we have (bI , cI) ∈ RI

2.3 Load and Query Process

After defining the syntax (Section 2.2.1), the semantics (Section 2.2.2) of the description

logic language, the corresponding knowledge base (Section 2.2.3) and the OWL ontology

language (Section 2.1), we can now describe the whole loading process (Figure 2.1).

15

2 Theory

OWL Ontology

?

OWL to DL Conversion

?

DL KB

?

Normalisation

?

Completion

?

DL to DB Conversion

?

6

DB KB

Query

?

6

Query to DL Conversion

?

6

Figure 2.1: Load and query process.

In a first step, an OWL ontology will be converted to a description logic knowledge base

O. Before calculating the extensions of the base concepts with the completion rules defined

in Section 2.3.3, we have to normalise the knowledge base. Finally, a database instance has

to be built from the completed ABox. The following sections will explain each conversion

step in detail.

2.3.1 OWL to DL Conversion

As we have seen in Section 2.1, OWL offers a great flexibility in formalising information.

Because OWL is based on description logics, the conversion from an OWL ontology into a

description logic knowledge base is straightforward. There is no need to convert all possible

OWL axioms because the defined description logic language does not support all possible

16

2.3 Load and Query Process

OWL axioms. The mapping we are using can be found in Table 2.1.

OWL-Axiom DL-Axiom

Conversion for Classes
owl:Class Concept C
owl:subClassOf Inclusion v
owl:equivalentClass Equivalence ≡
owl:intersectionOf Conjunction u
owl:Thing Top Concept >
owl:Restriction (see restrictions)

Conversion for Individuals
rdf:Description Individual a
rdf:type Concept Assertion C(a)
〈Property〉 Role Assertion R(a, b)

Conversion for Properties
owl:ObjectProperty Role S
owl:TransitiveProperty Transitive Role S and S ∈ R+

owl:inverseOf Inverse Role S−

rdf:subPropertyOf Role Inclusion v

Conversion for Restrictions
owl:allValuesFrom Value Restriction ∀R.C
owl:someValuesFrom Full Existential Quantification ∃R.C

Table 2.1: OWL and RDF to description logic mapping table.

The set of the mapped OWL axioms is a subset of OWL Lite [9], where the following

axioms of OWL Lite are not included:

• owl:equivalentProperty, owl:sameAs, owl:differentFrom, owl:AllDifferent

and owl:distinctMembers because our defined description logic semantics respects

the unique name assumption.

• owl:DatatypeProperty, owl:SymmetricProperty, owl:FunctionalProperty and

owl:InverseFunctionalProperty

• owl:minCardinality, owl:maxCardinality and owl:cardinality

17

2 Theory

• any annotation because they only contain additional information on an existing re-

source which is not relevant for the completion algorithm.

Furthermore, the defined description logic language does not contain the bottom concept.

As a result, there is no mapping from the empty class owl:Nothing to the ⊥ bottom

concept.

Example

Listing 2.2 shows the OWL class Carnivore which is equivalent to an anonymous class. The

anonymous class is a conjunction of the class Animal and a restriction. This restriction

limits the set of individuals to those, which are related by the property eats to members

of the class Animal only.

<owl:Class rdf:about=”#Carnivore ”>
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

<owl:Class rdf:about=”#Animal”>
</owl:Class>
<owl:Restriction>

<owl:onProperty rdf:resource=”#eat s ” />
<owl:allValuesFrom>

<owl:Class rdf:about=”#Animal”>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

Listing 2.2: Example of the ontology about species in OWL format which formalises the
fact: “A carnivore is an animal which only eats Animals”.

With the help of Table 2.1, we can map the OWL species example to the following

description logic axiom:

Carnivore ≡ Animal u ∀eats.Animal

An equality whose left hand side is an atomic concept, is a concept definition. Therefore,

the equivalence will be converted into a definition:

Carnivore := Animal u ∀eats.Animal

2.3.2 DL Normalisation

Before applying the completion rules, we need to convert O into a normalised knowledge

base. The following iterative process describes the normalisation of an acyclic knowledge

18

2.3 Load and Query Process

base O:

1. Fully unfold the concept definitions of OT by replacing each occurence of a name

symbol on the right hand side of a definition with the concepts it stands for.

2. Replace concept descriptions of the form ∀R.(C uD) by ∀R.C u ∀R.D.

3. Replace each concept assertion C(a) ∈OA by C ′(a) where C ′(a) is built from C by

substituting each name symbol with its (unfolded and normalised) definition.

The normalised knowledge base contains only atomic concepts which are base symbols,

because each atomic concept that has a definition has been replaced by its definition.

Therefore, there are only base symbols in all concept descriptions and thus, in all concept

assertions.

Example

Assume that the knowledge base O is given by:

OT := {Carnivore := Animal u ∀eats.Animal} and

OA := {Carnivore(lion)}
After appling the normalisation rules on the knowledge base, we will get:

OT := {Carnivore := Animal u ∀eats.Animal} and

OA := {Animal u ∀eats.Animal(lion)}

2.3.3 DL Completion

The most important step in the loading process is the completion procedure. The aim of

the completion is to compute all atomic concept and role assertions which are entailed by

the knowlege base O. For this purpose, we define a new relation O ` s where s is an ABox

assertion and means that “s follows from O”:

(R1) O ` C(a) if C(a) ∈ O

(R2) O ` R(a, b) if R(a, b) ∈ O

(R3) O ` >(a), for all individuals a ∈ O

(R4) O ` C(a) if O ` C uD(a) or O ` D u C(a)

(R5) O ` C(x) and O ` R(a, x) and O ` >(x) if O ` ∃R.C(a), (x new constant)

19

2 Theory

(R6) O ` C(a) if ∃b ∈ O such that O ` ∀R.C(b) and O ` R(b, a)

(R7) O ` C(∀R.a) and O ` >(∀R.a) if O ` ∀R.C(a)

(R8) O ` C(a) if O ` D(a) and D v C ∈ O

(R9) O ` T (a, b) if O ` S(a, b) and S v T ∈ O

(R10) O ` S−(b, a) if O ` S(a, b)

(R11) O ` S(a, c) if O ` S(a, b) and O ` S(b, c) and S ∈ R+

We complete the knowledge base O by iterating through rules R1 to R11 and applying

each rule until no new consequences occur. Let’s have a look at the diffrent rules briefly:

• R1 and R2 treat the assertions which are already included in O.

• R3 adds a top concept assertion for all indviduals in O since they are all members of

the domain of interpretation.

• R4 and R6 compute the immediate consequences of concept assertions of the form

C uD(a) and ∀R.C(b).

• R5 deals with full existential quantification. The consequence of an assertion of the

form ∃R.C(a) is that there must exist at least one individual x in the concept C

such that a is related to x by the role R. R5 adds a new constant x as a witness.

We have to ensure that there is only one new constant added for each distinct full

existential quantification assertion. However, there is always a constant added even

if there already exists a witness in the knowledge base.

• R7 adds a special constant ∀R.a belonging to concept C for every assertion of the

form ∀R.C(a). The purpose of this constant will be explained in Section 2.3.4.

• R8 and R9 compute assertions following directly from concept and role hierarchy

axioms.

• R10 and R11 add new role assertions for role assertions which contain inverse or

transitive roles.

The next example will show how these completion rules are applied to our species knowledge

base.

20

2.3 Load and Query Process

Example

Assume that the acyclic knowledge base O is already normalised and given by:

TBox OT :

(T1) Carnivore := Animal u ∀eats.Animal

(T2) Omnivore := Animal u ∃eats.Animal u ∃eats.P lant

(T3) Animal v Creature

(T4) Plant v Creature

(T5) eats v hunts

Name symbols NT := {Carnivore,Omnivore}
Base symbols BT := {Creature, Animal, P lant}

ABox OA :

(A1) >(zebra)

(A2) eats(lion, zebra)

(A3) Animal u ∀eats.Animal(lion)

(A4) Animal u ∃eats.Animal u ∃eats.P lant(bear)

Note that (A3) is the normalised assertion Carnivore(lion) and (A4) is equal to the

concept assertion Omnivore(bear). Let us compute all consequences which can be found

by applying the completion rules to the knowledge base O. All new assertions are grouped

by the rule they are created from and marked on the right hand side with the assertion

numbers used to compute the consequence.

Rule 1:

(1) O ` >(zebra) (A1)

(2) O ` Animal u ∀eats.Animal(lion) (A3)

(3) O ` Animal u ∃eats.Animal u ∃eats.P lant(bear) (A4)

Rule 2:

(4) O ` eats(lion, zebra) (A2)

21

2 Theory

Rule 3:

(5) O ` >(lion)

(6) O ` >(bear)

Rule 4:

(7) O ` Animal(lion) (2)

(8) O ` ∀eats.Animal(lion) (2)

(9) O ` Animal(bear) (3)

(10) O ` ∃eats.Animal(bear) (3)

(11) O ` ∃eats.P lant(bear) (3)

Rule 5:

(12) O ` Animal(a) (10)

(13) O ` eats(bear, a) (10)

(14) O ` >(a) (10)

(15) O ` Plant(b) (11)

(16) O ` eats(bear, b) (11)

(17) O ` >(b) (11)

Rule 6:

(18) O ` Animal(zebra) (8 + 4)

Rule 7:

(19) O ` Animal(∀eats.lion) (8)

(20) O ` >(∀eats.lion) (8)

Rule 8:

(21) O ` Creature(lion) (7 + T3)

(22) O ` Creature(bear) (9 + T3)

(23) O ` Creature(a) (12 + T3)

22

2.3 Load and Query Process

(24) O ` Creature(b) (15 + T4)

Rule 9:

(25) O ` hunts(lion, zebra) (4 + T5)

(26) O ` hunts(bear, a) (13 + T5)

(27) O ` hunts(bear, b) (16 + T5)

This example shows already that even for a small knowledge base (4 assertions, 2 individ-

uals) we can compute quite a few consequences (27 assertions, 5 individuals).

2.3.4 DL to DB Conversion

Finally, the completed knowledge base O has to be converted into a database. Therefore,

we introduce a relational database instance Ô and define it by:

• A(a) is included in Ô if O ` A(a) for a base symbol A

• R(a, b) is included in Ô if O ` R(a, b)

Hence, the newly created database instance contains all atomic concept and role as-

sertions which are consequences of the knowledge base O. Note that complex concept

assertions like value restrictions are not included in Ô. However, we need a mechanism to

store complex assertions, specifically concept definitions, in the database as well.

Let us introduce a special consequence relation Ô �DB C(a) for the database instance Ô

and a concept descripton C, which means that “a belongs to C follows from the database

instance Ô”. Thus, we are now able to add complex concept definitions to our database.

A(a) of a concept definition A := C ∈ O is included in Ô if Ô �DB C(a), whereas

Ô �DB C(a) is inductively defined by:

1. Ô �DB A(a) if A(a) ∈ Ô

2. Ô �DB R(a, b) if R(a, b) ∈ Ô

3. Ô �DB C uD(a) if Ô �DB C(a) and Ô �DB D(a)

4. Ô �DB ∀R.C(a) if Ô �DB C(∀R.a)

5. Ô �DB ∃R.C(a) if ∃b ∈ Ô such that Ô �DB R(a, b) and Ô �DB C(b)

23

2 Theory

The previous definition gives us a translation of logic retrieval queries (complex definitions)

to relational database queries. With the help of the introduced special constant ∀R.a, we

can answer a complex query of the form ∀R.C(a) simply by checking if the individual ∀R.a

belongs to concept C (rule 4).

The next example will show, how the database instance is built.

Example

Let the knowledge base O be given by the TBox OT := {Carnivore := Animal u
∀eats.Animal} and the following consequences:

• O ` Animal(lion)

• O ` Animal(∀eats.lion)

• O ` eats(lion, zebra)

• O ` Animal u ∀eats.Animal(lion)

In a first conversion step, all atomic concept and role assertions are added to the database

instance Ô:

• Animal(lion)

• Animal(∀eats.lion)

• eats(lion, zebra)

Finally, the assertions for the defined concept Carnivore are added to the database instance

by applying the database consequence relation definition:

Carnivore(a) is added to Ô if Ô �DB Animal u ∀eats.Animal(a). Hence, Animal u
∀eats.Animal(a) follows only from Ô if Ô �DB Animal(a) and Ô �DB Animal(∀eats.a).

The last consequences only contain atomic concept assertions. Thus, Ô �DB Animal(a)

if Animal(a) ∈ Ô and Ô �DB Animal(∀eats.a) if Animal(∀eats.a) ∈ Ô. The individual

lion satisfies these conditions and a new concept assertion built out of the definition of

Carnivore is added:

• Carnivore(lion)

24

3 Implementation

After defining the theoretical basics of the knowledge base, we are now able to look at

the concrete implementation in detail. Section 3.1 describes briefly all packages of the

program and their dependencies. Additionally, a list of the used external libraries and

the database specification are presented. The most important algorithms, the completion

and the description logic to database conversion, are then explained in Section 3.2. The

program is called REAL and is written in Java1 (Version 1.4.2).

The attached CD contains all the source code of REAL as well as binaries of the used

libraries. The API is well documented and the documentation can be found in the doc

directory. Furthermore, there is an installation instruction file (INSTALL) which describes

all necessary steps to run REAL. See Appendix A.1 for a listing of the directory tree on

the CD.

3.1 Design

3.1.1 Packages

In this section, I will discuss each package of REAL briefly. Figure 3.1 shows all packages

and their most important classes along with their dependencies.

ch.unibe.til.real.db

The database package is responsible for database specific operations such as managing

connections to the database, initialising indexes or deleting table entries. This functionality

is abstracted in the class DBKnowledgeBase. Note that table creation is done using a SQL

script2, which needs to be executed once in advance. All database depending constants,

such as table names, are defined separately (in the interface DBConstants).

1http://java.sun.com
2The SQL table creation script can be found in the scripts directory.

25

http://java.sun.com

3 Implementation

ch.unibe.til.real.ubt

ch.unibe.til.real.owl

ch.unibe.til.real.db

ch.unibe.til.real.dl

DLKnowledgeBase

DBKnowledgeBase

DLCompleter

DLNormalizer

Repository

OWLParser

ch.unibe.til.real.kb

KnowledgeBase

DLToDefinitionVisitor

DLToDBVisitor
1

1

1

1

1

1 1

1
Interface

DLAssertion

Interface
DLTerminology *

*

Figure 3.1: UML class diagram with packages of the core classes.

ch.unibe.til.real.dl

The package dl contains all description logic related data and operations. The syntax and

semantics introduced in Section 2.2 are abstracted directly into objects. The UML class

diagram in Figure 3.2 shows the dependencies between those objects.

All description logic objects implement the interface DLObject and generalise the ab-

stract class DLAbstractObject. There are two other important interfaces, DLAssertion

and DLTerminology. The former is realised by DLConceptAssertion and DLRoleAsser-

tion, whereas the latter is the interface for DLRoleInclusion, DLInclusion (concept

inclusion) and DLDefinition. The class DLExtendedIndividual encapsulates the spe-

cial constant ∀R.a and extends the default individual class DLIndividual. Therefore, the

DLExtendedIndividual class contains the role R and the individual a of ∀R.a. Note that

the extended individual itself can contain an extended individual which then stands for

∀R.∀R.a
.

The class DLKnowledgeBase integrates the TBox and ABox, thus it contains all as-

26

3.1 Design

sertion and terminology objects (DLAssertion, DLTerminology). Furthermore, the class

implements the factory pattern [6] to ensure that only one instance of the same object is

created. Therefore, all other classes have to call DLKnowledgeBase for description logic

instance creation.

The normalisation (presented in Section 2.3.2) of a DLKnowledgeBase is achieved by the

DLNormalizeVisitor and, as the name states, the class uses the visitor pattern found in [6]

for normalisation. This means that only the visitor knows how to normalise a description

logic object.

Finally, the class DLCompleter belongs to the dl package. This class realises all com-

pletion rules defined in Section 2.3.3. Section 3.2.1 describes the implemented algorithm

in detail.

ch.unibe.til.real.kb

The knowledge base package is the core package. The class KnowledgeBase is respon-

sible for the whole load and query process described in Section 2.3 and acts as a con-

troller. This knowledge base object contains instances of OWLParser, DLKnowledgeBase

and DBKnowledgeBase. Furthermore, there are two visitor classes (DLtoDBVisitor and

DLDefinitionToDBVisitor), which carry out the database conversion of the description

logic knowledge base as defined in 2.3.4. The actual implementation of theses visitors is

described in Section 3.2.2.

ch.unibe.til.real.owl

The class OWLParser in the owl package is responsible for parsing the OWL files. The

actual parsing is done by the OWLParserHandler class, which is an implementation of the

SAX ContentHandler interface (see Section 3.1.2).

ch.unibe.til.real.ubt

The classes of the package ubt implement the interface of the UBT Benchmark (see Section

4.1.1). The class Repository controls the benchmark since it delegates knowledge base

load and query calls from UBT to the KnowledegeBase class. There exists no main method

in REAL and the Repository class is the only possibility to load data into the knowledge

base or to issue queries on the data.

Queries have to be formulated directly in SQL syntax and are passed to the method

27

3 Implementation

DLAtomic

DLTop

DLExistential
Quantification

DLValue
Restriction

DLConjunction

Abstract
DLAbstractObject

Interface
DLObject

Interface
DLConcept
Description

DLRole

DLIndividual DLExtended
Individual

Interface
DLAssertion

Interface
DLTerminology

DLRoleInclusion

DLInclusion

DLDefinition

DLRoleAssertion

DLConcept
Assertion

subrole
superrole

scope
domain
range

subconcept
superconcept

1

1
1

1 2

1

1

2

11

1

2

2..n

Figure 3.2: UML class diagram of the ch.unibe.til.real.dl description logic package.

28

3.1 Design

issueQuery in the class Repository. The method returns itself an object QueryResult

which contains a Java SQL query ResultSet object.

ch.unibe.til.real.*.test

The packages dl, kb and owl contain a package test with unit tests.

3.1.2 External Libraries

PostgreSQL JDBC Driver The PostgreSQL JDBC Driver3 (Version 8.0-312) allows REAL

to connect to a PostgreSQL server using Java’s database independent JDBC program-

ming interface4.

SAX XML Parser SAX5 denotes “Simple API for XML”and is a common interface imple-

mented for many different XML parsers. A SAX implementation is already included

in Java (Version 1.4.2). SAX allows to traverse through XML files sequentially. Thus,

the elements are read one by one, each access triggering an event. Therefore, SAX

is useful for processing very large XML documents because it does not model a tree

structure like DOM (Document Object Model), which uses a lot of runtime memory.

Since OWL files are based on XML syntax, we can use the SAX interface for parsing

ontology files efficiently.

Log4j Logging Service Log4j6 (Version 1.2.13) is a fully configurable log API. It supports

log level changes at runtime which proves very useful for debugging.

3.1.3 Database

The database management system (DBMS) is an important part of the implementation.

We need a DBMS with which we are able to change server parameters and to analyse query

execution plans in order to optimise query answering time. PostgreSQL7 (Version 8.1.3)

meets these criterias and is available under the BSD open source license8.

3http://jdbc.postgresql.org/
4http://java.sun.com/products/jdbc/
5http://www.saxproject.org/
6http://logging.apache.org/
7http://www.postgresql.org/
8http://www.postgresql.org/about/licence

29

http://jdbc.postgresql.org/
http://java.sun.com/products/jdbc/
http://www.saxproject.org/
http://logging.apache.org/
http://www.postgresql.org/
http://www.postgresql.org/about/licence

3 Implementation

Database Schema

The chosen design of the database (see Figure 3.3) derives directly from the description

logic model. Note that each table name has a unique prefix, which is also included in the

attribute names. The description logic to database conversion in Section 2.3.4 does only add

concept and role assertions to the database. Thus, there exist tables for concept assertions

(ca concept assertions) and role assertions (ra role assertions). Furthermore, all

individuals are stored in the table i individuals. Hence, each role assertion references to

two individuals (domain and role individual) whereas each concept assertion contains one

individual as a foreign key.

Additionally, an individual has a boolean attribute i constant which marks an individ-

ual as an added constant. For example the rules R5 and R7 of the completion algorithm in

Section 2.3.3 add new individuals. These added constants are only used by the description

logic to database conversion algorithm (Section 2.3.4). Therefore, the constant attribute

helps to exclude these individuals in a query result.

c_id (int) PK,I
c_uri (varchar) I

c_concepts

i_id (int) PK, I
i_uri (varchar) I
i_constant (bool) I
s_id (int) FK

i_individuals

ca_id (int) PK, I
c_id (int) FK, I
i_id (int) FK, I

ca_concept_assertions
ra_id (int) PK, I
r_id (int) FK, I
i_id_domain (int) FK, I
i_id_range (int) FK, I

ra_role_assertions

r_id (int) PK, I
r_uri (varchar) I

r_roles

l_id (int) PK, I
r_id (int) FK
l_level (int)

l_levels

s_id (int) FK, I
l_id (int) FK, I

sl_sequences_levels

s_id (int) PK, I
i_id (int) FK
s_depth (int)

s_sequences

Figure 3.3: Database UML diagram where PK denotes primary key, FK stands for foreign
key and I marks the existence of an index on the corresponding attribute.

30

3.2 Algorithms

The Individual ∀R.a

A problem appears in the context of the extended individuals. ∀R.a itself can contain a

finite chain of extended individuals (∀R....∀R.a
). The tables s sequences, l levels and

sl sequences levels are used to store such individuals.

If the foreign key s id in the table i individuals has a value other than NULL, the

individual is an extended individual with the sequence s id. A sequence denotes a whole

chain of ∀R.a. It has a depth (s depth) which marks the number of chained individuals.

For example ∀R.a has depth 1, ∀R.∀R.a
has depth 2, ∀R.∀R.∀R.a

has depth 3 and so on.

Each sequence has different levels with roles. For example the individual ∀R.∀S.a
of depth

2 contains at level 1 the role R and at level 2 the role S. These levels are modeled by the

table l level. Each level has a level number (l levels) and a foreign key r id which is

related to a role. The table sl sequences levels is introduced to solve the many-to-many

relation between sequences and levels.

A sequence has also a final individual (i id in table s sequences). This foreign key

references to the individual, which is the last non extended individual in the chain ∀R.a,

here for example a.

The detailed conversion of an extended individual into a database entry, as well as a

example, will be given in Section 3.2.2.

3.2 Algorithms

3.2.1 Completion

The completion rules defined in Section 2.3.3 are coded in the class DLCompleter contained

in the package dl. Each rule is implemented directly as a separate method. However, the

important part of the class is the call sequence of each method (listed in Algorithm 3.1)

to improve completion performance. Furthermore, there are three helper knowledge bases

(Ō, O′ and Õ) introduced to minimise the number of assertions in the input set of each

rule.

3.2.2 DL To Database Conversion

The description logic to database conversion introduced in Section 2.3.4 already defines all

necessary rules to store a description logic knowledge base into a database. The database

scheme (Figure 3.3) is also given in Section 3.1.3. Therefore, the only task remaining is

31

3 Implementation

Input: Knowledge Base O
Output: Completed Knowledge Base Ō

Ō = {}; O′ = {}; Õ = {} // Initialise helper knowledge bases
Ō ` C(a) if C(a) ∈ O // Rule 1
Ō ` R(a, b) if R(a, b) ∈ O // Rule 2
Ō ` >(a), for all a ∈ O // Rule 3
Õ = Ō
repeat // apply rules 4 to 11 on consequences computed by inclusion rules 8 and 9

O′ = Õ
repeat

assertionAdded = false

if (O′ ` C uD(a) or O′ ` D u C(a)) and O′ 0 C(a) then // Rule 4
O′ ` C(a)
assertionAdded = true

end if

if O′ ` ∃R.C(a) and (O′ 0 C(b) and O′ 0 R(a, b) and O′ 0 >(b)) then // Rule 5
O′ ` C(b) and O′ ` R(a, b) and O′ ` >(b) (b new constant)
assertionAdded = true

end if

if ∃b ∈ O such that O′ ` ∀R.C(b) and O′ ` R(b, a) and O′ 0 C(a) then // Rule 6
O′ ` C(a)
assertionAdded = true

end if

if O′ ` ∀R.C(a) and O′ 0 C(∀R.a) and O′ 0 >(∀R.a) then // Rule 7
O′ ` C(∀R.a) and O′ ` >(∀R.a)
assertionAdded = true

end if

if O′ ` S(a, b) and O′ 0 S−(b, a) then // Rule 10
O′ ` S−(b, a)
assertionAdded = true

end if

if O′ ` S(a, b) and Ō ` S(b, c) and S ∈ R+ and O′ 0 S(a, c) and Ō 0 S(a, c) then // Rule 11
O′ ` S(a, c)
assertionAdded = true

end if
until assertionAdded = false
Õ = {}
if O′ ` D(a) and D v C ∈ O and Õ 0 C(a) then // Rule 8

Õ ` C(a)
end if

if O′ ` S(a, b) and S v T ∈ O and Õ 0 T (a, b) then // Rule 9
Õ ` T (a, b)

end if
Ō = Ō ∪O′

until Õ = {}
return Ō

Algorithm 3.1: Completion Algorithm

32

3.2 Algorithms

to convert the rules to SQL statements which insert the data into the database. Like in

Section 2.3.4, the conversion is divided into two steps, an initial conversion and a definition

conversion.

Initial Conversion

The initial conversion is equivalent to the definition of the database instance Ô. Only

atomic concept assertions and role assertions have to be added to the database during this

step.

Assume the database instance Ô is already given and contains all atomic concept and role

assertions produced by the completion. The pseudocode of the conversion initialConvert

is shown in Algorithm 3.2.

The method nextval(tableprefix seq) used in all algorithms returns the next free sequence

number of the table with the given prefix. This sequence number is treated as a unique id,

which is the primary key of the table. Additionally, the execute(SQL Statement) method

will execute the parameter SQL statement.

Input: Database instance Ô

for all x ∈ Ô do
if x is an atomic concept assertion of the form A(a) then

// Call individual and atomic insert methods and insert concept assertion.
ca id = nextval(′ca seq′)
c id = insertAtomicConcept(A)
i id = insertIndividual(a)
execute(INSERT INTO ca concept assertions (ca id, c id, i id)

VALUES (ca id, c id, i id))
end if

if x is a role assertion of the form R(b, c) then
// Call role and both individual insert methods and insert role assertion.
ra id = nextval(′ra seq′)
r id = insertRole(R)
i id domain = insertIndividual(b)
i id range = insertIndividual(b)
execute(INSERT INTO ra role assertions (ra id, r id, i id domain, i id range)

VALUES (ra id, r id, i id domain, i id range))
end if

end for

Algorithm 3.2: initialConvert(Ô)

The methods insertAtomicConcept() (Algorithm 3.3), insertRole() (Algorithm 3.4) and

33

3 Implementation

insertIndividual() (Algorithm 3.5) are listed separately to increase readability. They are

called before a role or an atomic concept assertion is added to the database in order to get

the foreign keys.

Let us have a closer look at the Algorithm 3.5 insertIndividual(). It contains a case

distinction on the type of the individual. In case of an extended individual of the form

∀R.a, a loop writes all levels and the corresponding rules into the database until the whole

extended individual is unfolded. Moreover, the individual at the end of the chain, named

i2 id, is also included into the database. Finally, the sequence, its depth and the reference

to the last individual i2 id is written into the table s sequences.

Input: Atomic concept A
Output: Database id c id of the inserted concept

c id = nextval(′c seq′)
execute(INSERT INTO c concepts (c id, c uri)

VALUES (c id, ’A’))
return c id

Algorithm 3.3: insertAtomicConcept(A)

Input: Role R
Output: Database id r id of the inserted role

r id = nextval(′r seq′)
execute(INSERT INTO r roles (r id, r uri)

VALUES (r id, ’R’))
return r id

Algorithm 3.4: insertRole(R)

Definition Conversion

In a second step, all individuals belonging to a complex concept definition are added to

the database. Remember from Section 2.3.4 that A(a) of a concept definition A := C

is included in the database instance Ô if Ô �DB C(a). All we have to do is collecting

all individuals which are members of C and insert them into the database as concept

assertions with the atomic concept A. This can be done in one SQL statement because

SQL allows the combination of INSERT and SELECT commands. Algorithm 3.6 shows how

these statements are combined.

Furthermore, the atomic concept A has to be included in the database as well. This is

done by calling the method insertAtomicConcept(A). The SELECT command construction,

34

3.2 Algorithms

Input: Individual x
Output: Database id i id of the inserted individual

i id = nextval(′i seq′)
if x is an extended individual of the form ∀R.a then

s id = nextval(′s seq′)
level = 1
repeat

// Insert levels and roles of the extended individual.
l id = nextval(′l seq′)
r id = insertRole(R)
execute(INSERT INTO l levels (l id, r id, l level)

VALUES (l id, r id, level)
execute(INSERT INTO sl sequences levels (s id, l id)

VALUES (s id, l id))
level = level + 1
x = a

until x is not an extended individual
// Insert sequence and last individual of sequence.
i2 id = insertIndividual(x)
execute(INSERT INTO s sequences (s id, i id, s depth)

VALUES (s id, i2 id, level))
// Insert extended individual as a constant with a sequence.
execute(INSERT INTO i individuals (i id, i uri, i constant, s id)

VALUES (i id, ’∀...R.x
’, true, s id))

else if x is an added constant then
// Insert individual as a constant with no sequence.
execute(INSERT INTO i individuals (i id, i uri, i constant, s id)

VALUES (i id, ’x’, true, NULL))

else
// Insert individual which is no constant and has no sequence.
execute(INSERT INTO i individuals (i id, i uri, i constant, s id)

VALUES (i id, ’x’, false, NULL))
end if
return i id

Algorithm 3.5: insertIndividual(x)

35

3 Implementation

which returns all members of the concept C, is listed separately in Algorithm 3.7. This

construction method may be called recursivly, for example in case of a conjunction.

On the other hand, if C is a value restriction ∀R.D, the SELECT statement is complex,

as we have to choose those individuals a where ∀R.a is a member of the concept D. There-

fore, the query includes the tables s sequences, sl sequences levels and l levels for

building the extended individual hierarchy. The statement gets even more complex if the

concept D is also a value restriction. Hence, the SELECT statement for value restrictions is

built using a loop over the depth of the extended individual.

Input: Knowledge Base O

for all concept definitions A := C ∈ O do
c id = insertAtomicConcept(A)
statement =
INSERT INTO ca_concept_assertions (ca_id, c_id, i_id)
SELECT DISTINCT nextval(’ca_seq’), c id, i_id
FROM i_individuals
WHERE i_id IN (createSelectStatement(C))

execute(statement)
end for

Algorithm 3.6: definitionConvert(O)

Example

Let the knowledge base O be given by the TBox OT := {Carnivore := Animal u
∀eats.Animal} and the database instance Ô := {Animal(lion), Animal(∀eats.lion)}.

First, we execute the initial conversion Algorithm 3.2 called initConvert(Ô) with input

Ô, which iterates over all members of Ô and results in the following SQL statements:

For Animal(lion):

INSERT INTO c_concepts (c_id, c_uri)

VALUES (1,’Animal’)

INSERT INTO i_individuals (i_id, i_uri, i_constant, s_id)

VALUES (1,’lion’, false, NULL)

INSERT INTO ca_concept_description (ca_id, c_id, i_id)

VALUES (1, 1, 1)

For Animal(∀eats.lion):

INSERT INTO r_roles (r_id, r_uri)

VALUES (1,’eats’)

36

3.2 Algorithms

Input: Concept description C
Output: SQL statement which selects all individuals belonging to concept C

if C is an atomic concept of the form A then
statement = SELECT DISTINCT i.i_id
FROM i_individuals AS i, c_concepts AS c, ca_concept_assertions AS ca
WHERE ca.i_id = i.i_id AND ca.c_id = c.c_id AND

c.c_uri = ’A’
end if

if C is a conjunction of the form D u E then
statement =(createSelectStatement(D)) INTERSECT (createSelectStatement(E))

end if

if C is a value restriction of the from ∀R.D then
depth = 0
statement =SELECT DISTINCT i1.i_id
fromStatement =FROM
whereStatement =WHERE

repeat
depth = depth + 1
fromStatement = fromStatement+ l_levels AS ldepth, r_roles AS rdepth,
whereStatement = whereStatement+

sl.l_id = ldepth.l_id AND
ldepth.r_id = rdepth.r_id AND
ldepth.l_level = depth AND
rdepth.r_uri = ’R’ AND

C = D
until C is not a value restriction of the form ∀R.D

fromStatement = fromStatement+
i_individuals AS i1, i_individuals AS i2,
s_sequences AS s, sl_sequences_levels AS sl

whereStatement = whereStatement+
i1.i_id = s.i_id AND s.s_id = sl.s_id AND
s.s_depth = depth AND
i2.s_id = s.s_id AND
i2.i_id IN (createSelectStatement(D))

statement = fromStatement + whereStatement
end if

if C is an existential quantification of the from ∃R.D then
statement = SELECT DISTINCT idomain.i_id
FROM i_individuals AS idomain, i_individuals AS irange,

r_roles AS r, ra_role_assertions AS ra
WHERE ra.i_id_domain = idomain.i_id AND

ra.i_id_range = irange.i_id AND
ra.r_id = r.r_id AND
r.r_uri = ’R’ AND
i2.i_id IN (createSelectStatement(D))

end if
return statement

Algorithm 3.7: createSelectStatement(C)

37

3 Implementation

INSERT INTO l_levels (l_id, r_id, l_level)

VALUES (1, 1, 1)

INSERT INTO sl_sequences_levels (s_id, l_id)

VALUES (1, 1)

INSERT INTO s_sequences (s_id, i_id, s_depth)

VALUES (1, 1, 1)

INSERT INTO i_individuals (i_id, i_uri, i_constant, s_id)

VALUES (2,’∀eats,lion’, true, 1)

INSERT INTO ca_concept_descriptions (ca_id, c_id, i_id)

VALUES (2, 1, 2)

Hence, the resulting tables of the database are:

ca concept assertions

ca id c id i id

1 1 1

2 1 2

c concepts

c id c uri

1 Animal

i individuals

i id i uri i constant s id

1 lion false NULL

2 ∀eats.lion true 1

s sequences

s id i id s depth

1 1 1

sl sequences levels

s id l id

1 1

r roles

r id r uri

1 eats

l levels

l id l level r id

1 1 1

The definition conversion of the knowledge base O and its definition Carnivore := Animalu
∀eats.Animal by the Algorithm 3.6 results in the following SQL call:

INSERT INTO ca_concept_assertions (ca_id, c_id, i_id)

SELECT DISTINCT nextval(’ca_seq’), 1, i_id

FROM i_individuals

WHERE i_id IN (

(SELECT DISTINCT i.i_id

FROM i_individuals AS i, c_concepts AS c, ca_concept_assertions AS ca

WHERE ca.i_id = i.i_id AND

ca.c_id = c.c_id AND

c.c_uri = ’Animal’)

INTERSECT

(SELECT DISTINCT i1.i_id

FROM l_levels AS l1, r_roles AS r1,

i_individuals AS i1, i_individuals AS i2,

s_sequences AS s, sl_sequences_levels AS sl

38

3.2 Algorithms

WHERE sl.l_id = l1.l_id AND

l1.r_id = r1.r_id AND

l1.l_level = 1 AND

r1.r_uri = ’eats’ AND

i1.i_id = s.i_id AND

s.s_id = sl.s_id AND

s.s_depth = 1 AND

i2.s_id = s.s_id AND

i2.i_id IN (

SELECT DISTINCT i.i_id

FROM i_individuals AS i, c_concepts AS c, ca_concept_assertions AS ca

WHERE ca.i_id = i.i_id AND

ca.c_id = c.c_id AND

c.c_uri = ’Animal’)

)

Altogether, a new concept Carnivore and concept assertion Carnivore(lion) are added to

the database (bold) and the tables now look as follows:

ca concept assertions

ca id c id i id

1 1 1

2 1 2

3 2 1

c concepts

c id c uri

1 Animal

2 Carnivore

i individuals

i id i uri i constant s id

1 lion false NULL

2 ∀eats.lion true 1

s sequences

s id i id s depth

1 1 1

sl sequences levels

s id l id

1 1

r roles

r id r uri

1 eats

l levels

l id l level r id

1 1 1

39

3 Implementation

40

4 Performance Evaluation

Finally, there remains to explore the performance of the implementation described in Chap-

ter 3 empirically. As mentioned in the introduction, a high load time is to be expected as

a result of the fact, that the completion algorithm computes all consequences during the

loading step. On the other hand, the query answering time should be low because we do

not have to use a reasoner for answering queries and the backend database is designed to

handle a huge amount of data and complex queries.

Section 4.1 will first introduce the benchmark setup and give a short description of

other software which is used for the performance test of REAL. Afterwards, the different

performance metrics are defined (Section 4.2) and the benchmark results are discussed

(Section 4.3).

4.1 Benchmark Setup

First of all, the benchmark setup is heavily based on the paper “LUBM: A Benchmark for

OWL Knowledge Base Systems”[7], which compares the load and query performance of

selected OWL knowledge base systems. LUBM denotes “Lehigh University Benchmark”.

It is a benchmark system which contains an ontology with a data generator (UBA), a

performance test application (UBT) and test queries. Furthermore, we use HAWK in

order to compare the completion based repository REAL with another OWL knowledge

base system. Altogether, the setup of the benchmark is illustrated in Figure 4.1. The next

section describes the mentioned components and software briefly.

4.1.1 Software

Ontology (Univ-Bench)

The ontology used for testing is called “Univ-Bench”and models the domain of universi-

ties. It contains 43 classes (Department, Student, Professor, Course etc.) and 42 properties

41

4 Performance Evaluation

Test Queries
@

@R

UBA

?
OWL Ontology

�
�	

UBT Performance Results-

�
�

�	�
�
��

REAL

BM Interface

Completion

@
@
@R@

@
@I

HAWK

BM Interface

Racer-�

PostgreSQL
?
6

PostgreSQL
?
6

Figure 4.1: Benchmark setup.

(memberOf, degreeFrom, takesCourse etc.) which describe miscellaneous facets of an uni-

versity. Moreover, there are different styles of defintions used. For example, the class

GraduateStudent is built upon a restriction, whereas the class UndergraduateStudent is

only defined as a subclass of the class Student.

The ontology is available as an OWL Lite ontology1 (Version 1.0) and the description

logic language defined in Section 2.2 is able to formalise it, although Univ-Bench misses a

owl:allValuesFrom restriction which would be translated to an axiom of the form ∀R.C.

Nevertheless, it is still possible to test the performance of REAL. See Appendix B.1 for

a full listing of the OWL file. Note that the ontology does not include individuals or

assertions about them and, speaking in terms of description logics, it represents only the

TBox.

Data Generator (UBA)

The ABox assertions are created by a data generation application named UBA2 (Version

1.7) which denotes “Univ-Bench Artificial data generator”.

UBA allows users to repeatably generate different amounts of data. The smallest possible

1http://www.lehigh.edu/∼zhp2/2004/0401/univ-bench.owl
2http://swat.cse.lehigh.edu/projects/lubm/

42

http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
http://swat.cse.lehigh.edu/projects/lubm/

4.1 Benchmark Setup

size is one university which contains a varying number of departments3, at least 15 and at

most 25. Furthermore, each department contains 7 to 10 full professors, each one being

the author of 15 to 20 publications and so on.4 UBA creates a separate OWL file for each

generated department. An abridgement of a data file is given in Appendix B.2.

Thus, to test REAL under different conditions, four datasets, called 01, 05, 10 and 20,

are generated by UBA containing 1, 5, 10 and 20 universities respectively. The smallest

dataset (01) contains about 100’000 triples5 which equals a file size of 8 MB whereas the

largest dataset (20) counts more than 2’700’000 triples with a total size of 234 MB. The

benchmark made in the mentioned paper [7] uses 50 universities as the largest dataset.

However, this huge amount of data (583 MB) can not be handled by REAL because the

completion only uses the random accessed memory (RAM) and would, on the employed

hardware, inevitably result in a memory overflow (see Section 4.1.2).

In order to run on UNIX based operating systems, the original UBA application, written

in Java, had to be slightly modified. The modified source code can be found on the attached

CD (see Appendix A.1).

Test Queries

LUBM defines 14 test queries in order to measure the performance of the knowledge

base systems. Appendix B.3.1 describes the queries and lists them in the query language

SPARQL, which is available as a working draft from W3C [11]. Furthermore, the tester

UBT requires a configuration file for each tested repository, containing the used queries in

a language the repository understands. In case of REAL the language is SQL and they

are listed in Appendix B.3.2.

The queries are all of different complexity, depending on the number of involved concepts

or role assertions, used class or role hierarchy and whether logical inference is required or

not. The reader is referred to the document found in the bibliography as [7], which classifies

and describes the 14 queries in detail.

3The number of departments is controlled by a seed value which is set to 0 (for at least 15 and at most
25 departments) for all datasets for the benchmark.

4A detailed description of the data profile can be found on the LUBM website http://swat.cse.lehigh.
edu/projects/lubm/profile.htm.

5A subject, an object and a predicate are counted as one triple.

43

4 Performance Evaluation

Tester (UBT)

The core of the LUBM package is the tester6 (UBT) (Version 1.1). This application

controls both data loading and query testing. The test schemes are fully customisable by

using configuration files (attached on CD). Hence, the tester measures the loading and the

query time together with the number of results and prints the data on screen. Nevertheless,

to simplify the analysis of these results, the Java source code is modified in such a way,

that UBT writes the results in a convenient format into files. The modified sources can be

found on the attached CD (see Appendix A.1).

In order to test a knowledge base system with UBT, several interfaces of the UBT

package have to be implemented in the repository. For REAL, this is done in the package

ubt described in Section 3.1.1.

OWL Repository and Toolkit (HAWK)

HAWK7 (Version 1.3 Beta) is a repository framework and toolkit that supports OWL. The

application was developed, like LUBM, at Lehigh University and is the successor project of

DLDB described in [10]. Moreover, HAWK supports memory and database based models

which are, together with PostgreSQL DBMS, used for our benchmark test. However, even

if we use the same DBMS as for REAL, the database scheme differs completely. HAWK

creates for each class and for each property a table, which contains all individuals belonging

to the class or all individuals that are related to the property respectively. Additionally,

database views are used to model class or property hierarchy. For more information about

the database design of Hawk, read the technical paper [10].

Unlike REAL, HAWK uses an external reasoner application called RacerPro8 (Version

1.9.0) which has to be installed separately. Like the completion approach of REAL, HAWK

uses the reasoner during the loading step and not during query execution. Altogether,

HAWK is used as a reference repository for REAL regarding the benchmark test.

Database (PostgreSQL)

As already described in the Section 3.1.3, we use PostgreSQL (Version 8.1.3) as DBMS.

We create a separate database for each dataset and repository. Additionally, the default

6http://swat.cse.lehigh.edu/projects/lubm/
7http://swat.cse.lehigh.edu/downloads/
8http://www.racer-systems.com/

44

http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/downloads/
http://www.racer-systems.com/

4.1 Benchmark Setup

configuration of PostgreSQL is modified to minimise query response time. The modified

parameters are:

geqo threshold = 100 (default 12) Use genetic query optimization to plan queries with

at least this many SQL FROM items involved.

effective cache size = 131072 (default 1000 disk pages) Effective size of the disk cache

available to a single index scan as an assumption for the query planner.

shared buffers = 16384 (default 1000) The number of shared memory buffers used by

the database server.

work mem = 65536 (default 1024 KB) The amount of memory to be used by internal sort

operations and hash tables.

Of course, these modifications depend strongly on the used hardware, especially the amount

of available memory and the disk type. Moreover, increasing the shared memory buffer

attribute of PostgreSQL requires also a higher limit of available shared memory of the

operating system. (see Section 4.1.2).

4.1.2 Hardware, Operating System and JVM

The environment used for the benchmark test is as follows:

Hardware: Desktop Computer, 3 GHz Pentium 4 CPU, 2 GB RAM, 200 GB EIDE disk

(7200 U/min)

Operating System: Debian9 Etch Testing Release, Linux Kernel Version 2.4.26, allowed

shared memory size increased10 to 132 MB

Java Virtual Machine: Java Runtime Environment, Standard Edition Version 1.4.2 05,

maximal heap size set to 1’800 MB

Note the increased heap size of the JVM. Otherwise, REAL fails to load the largest dataset

20.

9http://www.debian.org
10Execute echo "138461184" > /proc/sys/kernel/shmmax

45

http://www.debian.org

4 Performance Evaluation

4.2 Performance Metrics

4.2.1 Load Time

The load time is measured by UBT, which loads all generated OWL files of a dataset

incrementally. The measuring starts when the first data file is read and stops when all

data is stored in the database. Therefore, this metric includes the time for parsing the

OWL files, reasoning or completion and storing the information in the database.

4.2.2 Repository Size

The repository size stands for the physical disk usage of the database after loading the data

into the database. Therefore, this also includes all indexes or information about created

views. Hence, the size of the database depends strongly on the implementation of the

DBMS. However, both tested knowledge base systems are using PostgreSQL and therefore

can be compared.

PostgreSQL does not support direct access to the physical size of a database. Neverthe-

less, the used disk space can be calculated by executing a shell command11.

In addition, unused data (such as deleted database entries which are still stored in

PostgreSQL) is deleted by the command vacuumdb12 before and after each database load

procedure to obtain meaningful results.

4.2.3 Query Response Time

Query response time is measured by UBT as listed in Algorithm 4.1. Note that each query

is executed ten times to account for caching. Moreover, each query result is traversed

sequentially.

4.2.4 Query Completeness and Soundness

As described in the LUBM paper [7], the degree of completeness of a query answer is

measured by the percentage of the returned entailed answers compared to the total possible

11Change to the data directory of PostgreSQL (i.e. cd /var/lib/postgresql/8.1/main/base) and exe-
cute the OS disk usage program du -hs [0-9]* as a privileged user. The output shows the total disk
usage for each database OID (internal number scheme of PostgreSQL). To translate the OID into the
database name, execute the PostgreSQL helper application oid2name

12vacuumdb -azf

46

4.3 Results and Discussion

for all repositories r do
for all datasets d do

open repository r
for all queries q do

for i = 0 to 10 do
start timer t
execute query q
traverse trough query result sequentially
stop timer t

end for
compute average response time of t

end for
close repository r

end for
end for

Algorithm 4.1: Procedure of the query response time measurement.

answers. On the other hand, the degree of soundness is calculated as the percentage of the

answers of a query that are actually entailed.

In order to calculate the degree of soundness and completeness, we use a reference result

set for all queries and datasets. The LUBM website13 provides all answers for the queries

of the dataset 01. Concerning the datasets 05, 10 and 20, we obtain the number of total

answers from [7].

As mentioned in Section 2.3.1, REAL does not support annotations. Although there are

annotations used in the queries, we consider a result of REAL to be complete and sound,

if the correct individuals are returned even without their annotations.

4.3 Results and Discussion

4.3.1 Data Loading

Figure 4.2 shows how the load time and the database size increase in relation to the number

of triples stored in the database. The precise figures are listed in Table 4.1. The number

of table rows in the database of REAL are graphically plotted in Figure 4.3.

One remarkable issue is, that the load time of REAL increases exponentially while the

database size growth is linear. The exponential load time of REAL can be explained by

the completion algorithm in Section 3.2.1, where the search domain of a rule grows with

each new assertions added by other rules.

13http://swat.cse.lehigh.edu/projects/lubm/answers.htm

47

http://swat.cse.lehigh.edu/projects/lubm/answers.htm

4 Performance Evaluation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

210

Ti
m

e
[s

]

Triples [#] Millions

Load Time

real
hawk

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

210

Si
ze

 [M
B]

Triples [#] Millions

Database Size

real
hawk

Figure 4.2: Load time compared to repository size.

On the other hand, the linear space consumption of REAL is not as expected in [12],

which predicts exponential growth of the database instance. One possible reason for the

linearity could be that the data generator produces datasets, for which the completion al-

gorithm computes only a constant number of consequences for each new assertion included

in the given dataset. Of course, this needs further investigation with other ontologies.

The load time and storage complexity of HAWK is linear. Concerning the database size,

HAWK uses less storage than REAL. This had to be expected since HAWK does not add

individuals to the tables in the case of concept or role inclusions. The hierarchy is mapped

by database views which do not add additional data to the database.

Dataset Size [MB] Size [Triples]
Load Time
[hh:mm:ss]

Database
Size [MB]

REAL 01 8,6 103’397 00:00:55 35
HAWK 00:05:53 20
REAL 05 54,2 646’128 00:11:17 192
HAWK 00:35:50 93
REAL 10 110,6 1’316’993 00:46:19 387
HAWK 01:13:00 183
REAL 20 234,8 2’782’419 03:57:49 813
HAWK 02:34:28 381

Table 4.1: Load time and repository size of REAL and HAWK.

48

4.3 Results and Discussion

2000

1500

1000

500

0
210

Da
ta

ba
se

 R
ow

s
[#

] T
ho

us
an

ds

Dataset Triples [#] Millions

Number of Rows in Database Tables

i_individuals
ca_concept_assertions

ra_role_assertions
30

20

10

0
210

Da
ta

ba
se

 R
ow

s
[#

]

Dataset Triples [#] Millions

Number of Rows in Database Tables

c_concepts
r_roles

Figure 4.3: Number of rows in the relevant database tables of REAL compared to the
number of loaded triples. The tables s sequences, sl sequences levels and
l levels are not plotted because they do not contain any data.

4.3.2 Query Response Time

The query response time is given in three different forms. Figure 4.4 shows the comparison

of the response time of each query with respect to each dataset. Figures 4.5, 4.6 and 4.7

depict the repository performance as the dataset size increases, with respect to each query.

Finally, a complete list of the test results can be found in Appendix B.5.

At first glance, the absolute response time of the 14 queries in Figure 4.4 varies highly

in all datasets. This is an indication that all the chosen queries differ in complexity and

means that the database can not handle different queries equally. Obviously, the variation

can not be explained by the fact that REAL uses another database design than HAWK

since both repositories are affected.

If we look at each query’s response time and its behaviour, we will notice that, for both

repositories, the growth of the answering time needed for some queries can be classified

as constant, linear or exponential. In the majority of cases (except queries 6 and 14), the

type of growth differs between REAL and HAWK.

The answering time needed by the completion based repository can remains constant

for queries 1, 3 to 5, 7, 10, 11 and 13. A common feature of these queries is that they all

produce a constant number of results for each dataset. Nevertheless, if we look at queries

8 and 12, we cannot conclude that each query, which has a constant number of results for

the datasets, can be answered in constant time. Therefore, there must be a difference in

the type of those queries. All the former queries have in common that they contain one

49

4 Performance Evaluation

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 01

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 05

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 10

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
sc

al
e)

Query [#]

Query Answering of Dataset 20

real
hawk

Figure 4.4: All datasets with the response time of each query. Note the logarithmic scale
on the time axis.

or two concept assertions and one role assertion, where the role assertion always has a

specific URI in the statement. Whereas queries 8 and 12, which are not always answered

in the same time, contain two concept and two role assertions. Here, the role assertions

are nested, because both share a variable and only one assertion uses a specific URI in the

statement. The reason for this behaviour could be the additional join between the two role

assertion tables. Of course, how these joins are finally executed is decided by the database

query analyser.

Remarkable are also queries 2 and 9. Compared to the other queries, REAL needs a good

amount of time even for the smallest test database. Both queries do not specify an URI

but use a triangular pattern for role assertions involved. Obviously, our database design

does not avail this sort of queries because HAWK can answer these queries faster and in

an amount of time of linear growth (at least query 2 which returns a complete result).

50

4.3 Results and Discussion

Concerning the other queries, HAWK performs totally different. The only queries which

are answered in the same period of time are 11 and 12, but their result is far away from

being complete and thus not meaningful. The incompleteness of HAWK makes a reliable

analysis difficult and will therefore be omitted.

Database Parameters

As mentioned in Section 4.1.1, the database configuration has been slightly modified for the

test to increase performance. These modifications were made by trial and error. After each

parameter change, a full benchmark was run until an “optimal”query answering time was

found. The result of these optimisations are shown in Figure 4.8, where the performance of

the modified configuration of PostgreSQL is compared to the default configuration. Note

that, as an exception, the parameter geqo threshold of the default configuration was

modified. In order to get reliable results, it had to be set to 100 instead of the default value

12. Otherwise, the query optimiser would be unable to produce deterministic execution

plans within the 10 runs of each query.

Nevertheless, the configuration optimisations do not have a great impact. They can even

lead to a worse performance (for example query 9 with dataset 10). Of course, if other

hardware is used (i.e. SCSI drives, more memory) configuration changes are required in

order to use the full potential of PostgreSQL.

4.3.3 Query Completeness and Soundness

The completeness of the query answers from all datasets is shown in Figure 4.9 and in

Appendix B.5. As you may notice, results for the dataset 05, 10 and 20 and for queries 11

through 13 are missing. The reason for this absence is the lack of completeness results in

reference papers or on the LUBM website. Nevertheless, we can see that in all other cases,

REAL is able to give complete answers.

As for HAWK, which uses RacerPro as reasoner, it is in most of the cases incomplete.

Dataset 01 returns the best result where only the answers of queries 11 and 12 were

incomplete. These queries assume transitive role inference. The exact reason for this

behaviour and why the other datasets produce more incomplete answers can not be given

because this would require profound knowledge of Racer and HAWK.

There is no plot for the soundness but as far as dataset 01 is concerned, both repositories

are sound. The other datasets were not tested because no reference answers exist.

51

4 Performance Evaluation

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 1

real
hawk

 0

 5000

 10000

 15000

 20000

 25000

210
Ti

m
e

[m
s]

Triples [#] Millions

Query 2

real
hawk

 0

 50

 100

 150

 200

 250

 300

 350

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 3

real
hawk

 0

 10

 20

 30

 40

 50

 60

 70

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 4

real
hawk

 0

 5000

 10000

 15000

 20000

 25000

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 5

real
hawk

 0

 500

 1000

 1500

 2000

 2500

 3000

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 6

real
hawk

Figure 4.5: Response time of queries 1 to 6 in relation to the number of triples in the
database.

52

4.3 Results and Discussion

 0

 100

 200

 300

 400

 500

 600

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 7

real
hawk

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

210
Ti

m
e

[m
s]

Triples [#] Millions

Query 8

real
hawk

 0

 5000

 10000

 15000

 20000

 25000

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 9

real
hawk

 0

 50

 100

 150

 200

 250

 300

 350

 400

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 10

real
hawk

 0

 5

 10

 15

 20

 25

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 11

real
hawk

 0

 200

 400

 600

 800

 1000

 1200

 1400

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 12

real
hawk

Figure 4.6: Response time of queries 7 to 12 in relation to the number of triples in the
database.

53

4 Performance Evaluation

 0

 100

 200

 300

 400

 500

 600

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 13

real
hawk

 0

 500

 1000

 1500

 2000

 2500

210

Ti
m

e
[m

s]

Triples [#] Millions

Query 14

real
hawk

Figure 4.7: Response time of queries 13 and 14 in relation to the number of triples in the
database.

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 01

custom configuration
default configuration

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 05

custom configuration
default configuration

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 10

custom configuration
default configuration

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 20

custom configuration
default configuration

Figure 4.8: Comparison of query answering time between PostgreSQL default and opti-
mised configuration as proposed in Section 4.1.1.

54

4.3 Results and Discussion

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Co
m

pl
et

en
es

s
[%

]

Query [#]

Answer Completeness of Dataset 01

real
hawk

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Co
m

pl
et

en
es

s
[%

]

Query [#]

Answer Completeness of Dataset 05

real
hawk

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Co
m

pl
et

en
es

s
[%

]

Query [#]

Answer Completeness of Dataset 10

real
hawk

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Co
m

pl
et

en
es

s
[%

]

Query [#]

Answer Completeness of Dataset 20

real
hawk

Figure 4.9: Query completeness.

55

4 Performance Evaluation

56

5 Conclusion and Further Work

5.1 Conclusion

Supporting the claim made in the introduction, we showed that our knowledge base system,

using a relational database, is able to provide sound and complete answers in reasonable

time. Most of the queries are even answered in a constant amount of time depending on the

repository size. This is remarkable as this behaviour is not obvious because the completion

algorithm adds a lot of new individuals and assertions to the database. Of course, we have

seen that the performance of the knowledge base system also depends on the database

design used as well as on the complexity of the query and the number of returned results.

Furthermore, we have also realised that database configuration optimisation can improve

performance, but their effect is minimal. Although the query planner of the database

influences the performance the most. Nevertheless, a relational database system is a good

choice for storing a knowledge base because it can handle huge amount of data in reasonable

time.

Another result of the practical experiment is that the load time increases exponentially

with respect to the size of the input. This behaviour is as expected whereas the linear

growth of the database is not. This has to be further analysed with other test ontologies.

5.2 Further Work

The presented implementation of the knowledge base as well as the benchmark results lead

to questions and proposals for further work:

• The linear storage complexity of the database is not as expected. This can be further

analysed and verified with other test ontologies.

• The Univ-Bench test ontology, the data generator and the test queries could be

modified to support value restrictions in order to test the performance when the

57

5 Conclusion and Further Work

introduced special individual ∀R.a and the corresponding database tables come into

play.

• REAL supports only memory based completion which limits the processing of very

large datasets. The completion algorithm could be rewritten to use the database as

temporal storage.

• Additionally, REAL could be enlarged to a stand-alone knowledge base application.

Therefore, a query interface could be added which supports for example the language

SPARQL.

• Finally, the implementation could be modified to support RDBMS other than Post-

greSQL. A performance comparison would show if the benchmark results depend on

the database management system.

58

A Implementation

A.1 Directory Tree

real/ REAL REPOSITORY

INSTALL installation instructions

real.jar binary jar file

doc/ documentation

javadoc/ API

thesis/ this thesis

etc/ log configuration file

lib/ external libraries

log/ debug logs

ontologies/ ontologies for unit tests

scripts/ database initialisation script

src/ project source files

REALBench/ BENCHMARK SUITE

INSTALL installation and benchmark instructions

data/ test datasets created by UBA

etc/ config files for repositories

gnuplot/ gnuplot scripts and data

custom/ custom draw scripts

data/ temporal tables for gnuplot

plots/ gnuplot command files

postscripts/ final graphs as ps files

scripts/ gnuplot draw scripts

styles/ style files for graphs

tmp/

59

A Implementation

lib/ UBA, UBT, real and hawk libraries

log/ log files

query/ test queries for repositories

scripts/ database size calculation scripts

tests/ benchmark results

UBT/ TESTING APPLICATION

readme.txt

ubt.jar binary jar file

src/ project source files

UBA/ DATA GENERATOR

readme.txt

uba.jar binary jar file

src/ project source files

hawk/ HAWK REPOSITORY

readme.txt

hawk.jar binary jar file

lib/ external libraries

src/ project source files

60

B Benchmark

B.1 Univ-Bench Ontology

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>

<rdf:RDF

xmlns = ” ht tp : //www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#”

xml:base = ” ht tp : //www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl”

xmlns:rdf = ” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns:rdfs=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

>

<owl:Ontology rdf:about=””>

<rdfs:comment>An un i v e r s i t y onto logy f o r benchmark t e s t s</rdfs:comment>

<rdfs : label>Univ−bench Ontology</ rdfs : label>

<owl:versionInfo>univ−bench−ontology−owl , ver Apr i l 1 , 2004</owl:versionInfo>

</owl:Ontology>

<owl:Class rdf:ID=” Admin i s t r a t i v eS ta f f ”>

<rdfs : label>admin i s t r a t i v e s t a f f worker</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Employee” />

</owl:Class>

<owl:Class rdf:ID=” Ar t i c l e ”>

<rdfs : label>a r t i c l e</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pub l i ca t i on ” />

</owl:Class>

<owl:Class rdf:ID=” As s i s t an tP ro f e s s o r ”>

<rdfs : label>a s s i s t a n t p r o f e s s o r</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pro f e s s o r ” />

</owl:Class>

<owl:Class rdf:ID=” As so c i a t eP ro f e s s o r ”>

<rdfs : label>a s s o c i a t e p r o f e s s o r</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pro f e s s o r ” />

</owl:Class>

<owl:Class rdf:ID=”Book”>

<rdfs : label>book</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pub l i ca t i on ” />

61

B Benchmark

</owl:Class>

<owl:Class rdf:ID=”Chair ”>

<rdfs : label>cha i r</ rdfs : label>

<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

<owl:Class rdf:about=”#Person” />

<owl:Restriction>

<owl:onProperty rdf:resource=”#headOf” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#Department” />

</owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

<rdfs:subClassOf rdf:resource=”#Pro f e s s o r ” />

</owl:Class>

<owl:Class rdf:ID=” C l e r i c a l S t a f f ”>

<rdfs : label> c l e r i c a l s t a f f worker</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Admin i s t r a t i v eS ta f f ” />

</owl:Class>

<owl:Class rdf:ID=” Col l ege ”>

<rdfs : label>s choo l</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Organizat ion ” />

</owl:Class>

<owl:Class rdf:ID=”ConferencePaper ”>

<rdfs : label>con f e r ence paper</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Ar t i c l e ” />

</owl:Class>

<owl:Class rdf:ID=”Course”>

<rdfs : label>t each ing course</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Work” />

</owl:Class>

<owl:Class rdf:ID=”Dean”>

<rdfs : label>dean</ rdfs : label>

<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

<owl:Restriction>

<owl:onProperty rdf:resource=”#headOf” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#Col l ege ” />

</owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

<rdfs:subClassOf rdf:resource=”#Pro f e s s o r ” />

</owl:Class>

<owl:Class rdf:ID=”Department”>

<rdfs : label>un i v e r s i t y department</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Organizat ion ” />

62

B.1 Univ-Bench Ontology

</owl:Class>

<owl:Class rdf:ID=” Di r e c to r ”>

<rdfs : label>d i r e c t o r</ rdfs : label>

<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

<owl:Class rdf:about=”#Person” />

<owl:Restriction>

<owl:onProperty rdf:resource=”#headOf” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#Program” />

</owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID=”Employee”>

<rdfs : label>Employee</ rdfs : label>

<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

<owl:Class rdf:about=”#Person” />

<owl:Restriction>

<owl:onProperty rdf:resource=”#worksFor” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#Organizat ion ” />

</owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID=”Faculty ”>

<rdfs : label>f a c u l t y member</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Employee” />

</owl:Class>

<owl:Class rdf:ID=” Fu l lP r o f e s s o r ”>

<rdfs : label> f u l l p r o f e s s o r</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pro f e s s o r ” />

</owl:Class>

<owl:Class rdf:ID=”GraduateCourse”>

<rdfs : label>Graduate Leve l Courses</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Course” />

</owl:Class>

<owl:Class rdf:ID=”GraduateStudent”>

<rdfs : label>graduate student</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Person” />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=”#takesCourse ” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#GraduateCourse” />

</owl:someValuesFrom>

63

B Benchmark

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID=” I n s t i t u t e ”>

<rdfs : label> i n s t i t u t e</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Organizat ion ” />

</owl:Class>

<owl:Class rdf:ID=” Jou rna lAr t i c l e ”>

<rdfs : label>j ou rna l a r t i c l e</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Ar t i c l e ” />

</owl:Class>

<owl:Class rdf:ID=” Lecture r ”>

<rdfs : label> l e c t u r e r</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Faculty ” />

</owl:Class>

<owl:Class rdf:ID=”Manual”>

<rdfs : label>manual</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pub l i ca t i on ” />

</owl:Class>

<owl:Class rdf:ID=” Organizat ion ”>

<rdfs : label>o rgan i z a t i on</ rdfs : label>

</owl:Class>

<owl:Class rdf:ID=”Person”>

<rdfs : label>person</ rdfs : label>

</owl:Class>

<owl:Class rdf:ID=”PostDoc”>

<rdfs : label>post doc to ra te</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Faculty ” />

</owl:Class>

<owl:Class rdf:ID=” Pro f e s s o r ”>

<rdfs : label>p r o f e s s o r</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Faculty ” />

</owl:Class>

<owl:Class rdf:ID=”Program”>

<rdfs : label>program</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Organizat ion ” />

</owl:Class>

<owl:Class rdf:ID=” Pub l i ca t i on ”>

<rdfs : label>pub l i c a t i on</ rdfs : label>

</owl:Class>

<owl:Class rdf:ID=”Research ”>

64

B.1 Univ-Bench Ontology

<rdfs : label>r e s ea r ch work</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Work” />

</owl:Class>

<owl:Class rdf:ID=” ResearchAss i s tant ”>

<rdfs : label>un i v e r s i t y r e s ea r ch a s s i s t a n t</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Person” />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=”#worksFor” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#ResearchGroup” />

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID=”ResearchGroup”>

<rdfs : label>r e s ea r ch group</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Organizat ion ” />

</owl:Class>

<owl:Class rdf:ID=”Schedule ”>

<rdfs : label>schedu le</ rdfs : label>

</owl:Class>

<owl:Class rdf:ID=”Software ”>

<rdfs : label>so f tware program</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pub l i ca t i on ” />

</owl:Class>

<owl:Class rdf:ID=” Sp e c i f i c a t i o n ”>

<rdfs : label>publ i shed s p e c i f i c a t i o n</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pub l i ca t i on ” />

</owl:Class>

<owl:Class rdf:ID=”Student ”>

<rdfs : label>student</ rdfs : label>

<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

<owl:Class rdf:about=”#Person” />

<owl:Restriction>

<owl:onProperty rdf:resource=”#takesCourse ” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#Course” />

</owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID=” SystemsSta f f ”>

<rdfs : label>systems s t a f f worker</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Admin i s t r a t i v eS ta f f ” />

65

B Benchmark

</owl:Class>

<owl:Class rdf:ID=” Teach ingAss i s tant ”>

<rdfs : label>un i v e r s i t y teach ing a s s i s t a n t</ rdfs : label>

<owl:intersectionOf rdf:parseType=” Co l l e c t i o n ”>

<owl:Class rdf:about=”#Person” />

<owl:Restriction>

<owl:onProperty rdf:resource=”#teach ingAss i s tantOf ” />

<owl:someValuesFrom>

<owl:Class rdf:about=”#Course” />

</owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID=”TechnicalReport ”>

<rdfs : label>t e c hn i c a l r epo r t</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Ar t i c l e ” />

</owl:Class>

<owl:Class rdf:ID=”UndergraduateStudent ”>

<rdfs : label>undergraduate student</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Student ” />

</owl:Class>

<owl:Class rdf:ID=” Unive r s i ty ”>

<rdfs : label>un i v e r s i t y</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Organizat ion ” />

</owl:Class>

<owl:Class rdf:ID=” Uno f f i c i a l Pub l i c a t i o n ”>

<rdfs : label>unn o f i c i a l pub l i c a t i on</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pub l i ca t i on ” />

</owl:Class>

<owl:Class rdf:ID=” V i s i t i n gP r o f e s s o r ”>

<rdfs : label>v i s i t i n g p r o f e s s o r</ rdfs : label>

<rdfs:subClassOf rdf:resource=”#Pro f e s s o r ” />

</owl:Class>

<owl:Class rdf:ID=”Work”>

<rdfs : label>Work</ rdfs : label>

</owl:Class>

<owl:ObjectProperty rdf:ID=” adv i so r ”>

<rdfs : label> i s be ing advised by</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

<rdfs:range rdf:resource=”#Pro f e s s o r ” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” a f f i l i a t e dO r g an i z a t i o nO f ”>

<rdfs : label> i s a f f i l i a t e d with</ rdfs : label>

66

B.1 Univ-Bench Ontology

<rdfs:domain rdf:resource=”#Organizat ion ” />

<rdfs:range rdf:resource=”#Organizat ion ” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” a f f i l i a t e O f ”>

<rdfs : label> i s a f f i l i a t e d with</ rdfs : label>

<rdfs:domain rdf:resource=”#Organizat ion ” />

<rdfs:range rdf:resource=”#Person” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=”age”>

<rdfs : label> i s age</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID=”degreeFrom”>

<rdfs : label>has a degree from</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

<rdfs:range rdf:resource=”#Unive r s i ty ” />

<owl:inverseOf rdf:resource=”#hasAlumnus”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”doctoralDegreeFrom”>

<rdfs : label>has a doc to ra l degree from</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

<rdfs:range rdf:resource=”#Unive r s i ty ” />

<rdfs:subPropertyOf rdf:resource=”#degreeFrom” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=”emailAddress ”>

<rdfs : label>can be reached at</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID=”hasAlumnus”>

<rdfs : label>has as an alumnus</ rdfs : label>

<rdfs:domain rdf:resource=”#Unive r s i ty ” />

<rdfs:range rdf:resource=”#Person” />

<owl:inverseOf rdf:resource=”#degreeFrom”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”headOf”>

<rdfs : label> i s the head o f</ rdfs : label>

<rdfs:subPropertyOf rdf:resource=”#worksFor”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” l i s t edCou r s e ”>

<rdfs : label> l i s t s as a course</ rdfs : label>

<rdfs:domain rdf:resource=”#Schedule ” />

<rdfs:range rdf:resource=”#Course” />

</owl:ObjectProperty>

67

B Benchmark

<owl:ObjectProperty rdf:ID=”mastersDegreeFrom”>

<rdfs : label>has a masters degree from</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

<rdfs:range rdf:resource=”#Unive r s i ty ” />

<rdfs:subPropertyOf rdf:resource=”#degreeFrom”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”member”>

<rdfs : label>has as a member</ rdfs : label>

<rdfs:domain rdf:resource=”#Organizat ion ” />

<rdfs:range rdf:resource=”#Person” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”memberOf”>

<rdfs : label>member o f</ rdfs : label>

<owl:inverseOf rdf:resource=”#member” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=”name”>

<rdfs : label>name</ rdfs : label>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID=”off iceNumber ”>

<rdfs : label>o f f i c e room No .</ rdfs : label>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID=” orgPub l i ca t i on ”>

<rdfs : label>pub l i s h e s</ rdfs : label>

<rdfs:domain rdf:resource=”#Organizat ion ” />

<rdfs:range rdf:resource=”#Pub l i ca t i on ” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” publ i cat ionAuthor ”>

<rdfs : label>was wr i t t en by</ rdfs : label>

<rdfs:domain rdf:resource=”#Pub l i ca t i on ” />

<rdfs:range rdf:resource=”#Person” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” publ i ca t ionDate ”>

<rdfs : label>was wr i t t en on</ rdfs : label>

<rdfs:domain rdf:resource=”#Pub l i ca t i on ” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” pub l i ca t i onResea rch ”>

<rdfs : label> i s about</ rdfs : label>

<rdfs:domain rdf:resource=”#Pub l i ca t i on ” />

<rdfs:range rdf:resource=”#Research” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=” r e s e a r c h I n t e r e s t ”>

<rdfs : label> i s r e s e a r ch i ng</ rdfs : label>

</owl:DatatypeProperty>

68

B.1 Univ-Bench Ontology

<owl:ObjectProperty rdf:ID=” re s e a r chPro j e c t ”>

<rdfs : label>has as a r e s ea r ch p r o j e c t</ rdfs : label>

<rdfs:domain rdf:resource=”#ResearchGroup” />

<rdfs:range rdf:resource=”#Research” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”softwareDocumentation ”>

<rdfs : label> i s documented in</ rdfs : label>

<rdfs:domain rdf:resource=”#Software ” />

<rdfs:range rdf:resource=”#Pub l i ca t i on ” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” so f twareVer s i on ”>

<rdfs : label> i s v e r s i on</ rdfs : label>

<rdfs:domain rdf:resource=”#Software ” />

</owl:ObjectProperty>

<owl:TransitiveProperty rdf:ID=” subOrganizat ionOf ”>

<rdfs : label> i s part o f</ rdfs : label>

<rdfs:domain rdf:resource=”#Organizat ion ” />

<rdfs:range rdf:resource=”#Organizat ion ” />

</owl:TransitiveProperty>

<owl:ObjectProperty rdf:ID=” takesCourse ”>

<rdfs : label> i s tak ing</ rdfs : label>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” teacherOf ”>

<rdfs : label>t eaches</ rdfs : label>

<rdfs:domain rdf:resource=”#Faculty ” />

<rdfs:range rdf:resource=”#Course” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=” teach ingAss i s tantOf ”>

<rdfs : label> i s a teach ing a s s i s t a n t f o r</ rdfs : label>

<rdfs:domain rdf:resource=”#TeachingAss i s tant ” />

<rdfs:range rdf:resource=”#Course” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=” te lephone ”>

<rdfs : label>te l ephone number</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID=” tenured ”>

<rdfs : label> i s t enured :</ rdfs : label>

<rdfs:domain rdf:resource=”#Pro f e s s o r ” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=” t i t l e ”>

<rdfs : label> t i t l e</ rdfs : label>

69

B Benchmark

<rdfs:domain rdf:resource=”#Person” />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID=”undergraduateDegreeFrom”>

<rdfs : label>has an undergraduate degree from</ rdfs : label>

<rdfs:domain rdf:resource=”#Person” />

<rdfs:range rdf:resource=”#Unive r s i ty ” />

<rdfs:subPropertyOf rdf:resource=”#degreeFrom”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”worksFor”>

<rdfs : label>Works For</ rdfs : label>

<rdfs:subPropertyOf rdf:resource=”#memberOf” />

</owl:ObjectProperty>

</rdf:RDF>

B.2 Example Dataset of UBA

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>

<rdf:RDF

xmlns:rdf=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns:rdfs=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

xml:base=” ht tp : //www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl”

xmlns:ub=” ht tp : //www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#”>

<owl:Ontology rdf:about=” ht tp : //www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl”>

<owl:imports rdf:resource=” ht tp : //www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl” />

</owl:Ontology>

<ub :Un ive r s i t y rdf:about=” ht tp : //www. Un ive r s i ty0 . edu”>

<ub:name>Unive r s i ty0</ub:name>

</ ub :Un ive r s i t y>

<ub:Department rdf:about=” ht tp : //www. Department0 . Un ive r s i ty0 . edu”>

<ub:name>Department0</ub:name>

<ub:subOrganizat ionOf>

<ub :Un ive r s i t y rdf:about=” ht tp : //www. Un ive r s i ty0 . edu” />

</ ub:subOrganizat ionOf>

</ub:Department>

<ub:UndergraduateStudent rdf:about=” ht tp : //www. Department0 . Un ive r s i ty0 . edu/

UndergraduateStudent0 ”>

<ub:name>UndergraduateStudent0</ub:name>

<ub:memberOf rdf:resource=” ht tp : //www. Department0 . Un ive r s i ty0 . edu” />

<ub:emai lAddress>UndergraduateStudent0@Department0 . Un ive r s i ty0 . edu</ ub:emai lAddress>

<ub : t e l ephone>xxx−xxx−xxxx</ ub : te l ephone>

<ub:takesCourse rdf:resource=” ht tp : //www. Department0 . Un ive r s i ty0 . edu/Course49” />

<ub:takesCourse rdf:resource=” ht tp : //www. Department0 . Un ive r s i ty0 . edu/Course3” />

<ub:takesCourse rdf:resource=” ht tp : //www. Department0 . Un ive r s i ty0 . edu/Course42” />

70

B.3 Test Queries of UBT

<ub:takesCourse rdf:resource=” ht tp : //www. Department0 . Un ive r s i ty0 . edu/Course4” />

</ub:UndergraduateStudent>

</rdf:RDF>

B.3 Test Queries of UBT

B.3.1 SPARQL Format

Query 1

Al l the graduate s tudents who take course

http ://www. Department0 . Un ive r s i ty0 . edu/GraduateCourse0

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X

WHERE {?X rd f : type ub : GraduateStudent .

?X ub : takesCourse http ://www. Department0 . Un ive r s i ty0 . edu/GraduateCourse0}

Query 2

Al l the graduate s tudents who are now studying at the un i v e r s i t y from

which they obta ined t h e i r bache lo r degree s

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X, ?Y, ?Z

WHERE {?X rd f : type ub : GraduateStudent .

?Y rd f : type ub : Un ive r s i ty .

?Z rd f : type ub : Department .

?X ub : memberOf ?Z .

?Z ub : subOrganizat ionOf ?Y .

?X ub : undergraduateDegreeFrom ?Y}

Query 3

Al l the pub l i c a t i o n s o f p r o f e s s o r

http ://www. Department0 . Un ive r s i ty0 . edu/ As s i s t an tP ro f e s s o r 0

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X

WHERE {?X rd f : type ub : Pub l i ca t i on .

?X ub : publ i cat ionAuthor http ://www. Department0 . Un ive r s i ty0 . edu/ As s i s t an tPro f e s s o r 0 }

Query 4

Al l the p r o f e s s o r s at Department0 o f Un ive r s i ty0 and t h e i r emai l addre s s e s

and te l ephone numbers

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X, ?Y1 , ?Y2 , ?Y3

WHERE {?X rd f : type ub : Pro f e s s o r .

?X ub : worksFor <http ://www. Department0 . Un ive r s i ty0 . edu> .

?X ub : name ?Y1 .

?X ub : emai lAddress ?Y2 .

?X ub : te l ephone ?Y3}

71

B Benchmark

Query 5

Al l the members o f department http ://www. Department0 . Un ive r s i ty0 . edu

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X

WHERE {?X rd f : type ub : Person .

?X ub : memberOf <http ://www. Department0 . Un ive r s i ty0 . edu>}

Query 6

Al l the s tudents

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X

WHERE {?X rd f : type ub : Student}

Query 7

Al l the s tudents who take cour s e s o f p r o f e s s o r

http ://www. Department0 . Un ive r s i ty0 . edu/ As so c i a t ePro f e s s o r 0

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X, ?Y

WHERE {?X rd f : type ub : Student .

?Y rd f : type ub : Course .

?X ub : takesCourse ?Y .

<http ://www. Department0 . Un ive r s i ty0 . edu/ Assoc i a t ePro f e s so r0 >, ub : teacherOf , ?Y}

Query 8

Al l the s tudents o f un i v e r s i t y

http ://www. Un ive r s i ty0 . edu and t h e i r emai l addre s s e s

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X, ?Y, ?Z

WHERE {?X rd f : type ub : Student .

?Y rd f : type ub : Department .

?X ub : memberOf ?Y .

?Y ub : subOrganizat ionOf <http ://www. Un ive r s i ty0 . edu> .

?X ub : emai lAddress ?Z}

Query 9

Al l the s tudents who take the cour s e s o f t h e i r adv i s o r s .

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X, ?Y, ?Z

WHERE {?X rd f : type ub : Student .

?Y rd f : type ub : Faculty .

?Z rd f : type ub : Course .

?X ub : adv i so r ?Y .

?Y ub : teacherOf ?Z .

?X ub : takesCourse ?Z}

Query 10

72

B.3 Test Queries of UBT

Al l the s tudents who take course

http ://www. Department0 . Un ive r s i ty0 . edu/GraduateCourse0

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X

WHERE {?X rd f : type ub : Student .

?X ub : takesCourse <http ://www. Department0 . Un ive r s i ty0 . edu/GraduateCourse0>}

Query 11

Al l the r e s ea r ch groups at un i v e r s i t y http ://www. Un ive r s i ty0 . edu

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X

WHERE {?X rd f : type ub : ResearchGroup .

?X ub : subOrganizat ionOf <http ://www. Un ive r s i ty0 . edu>}

Query 12

Al l the department cha i r s o f un i v e r s i t y http ://www. Un ive r s i ty0 . edu

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X, ?Y

WHERE {?X rd f : type ub : Chair .

?Y rd f : type ub : Department .

?X ub : worksFor ?Y .

?Y ub : subOrganizat ionOf <http ://www. Un ive r s i ty0 . edu>}

Query 13

Al l the alumni o f un i v e r s i t y http ://www. Un ive r s i ty0 . edu

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−
SELECT ?X

WHERE {?X rd f : type ub : Person .

<http ://www. Un ive r s i ty0 . edu> ub : hasAlumnus ?X}

Query 14

Al l the undergraduate s tudents

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX ub : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>

SELECT ?X

WHERE {?X rd f : type ub : UndergraduateStudent}

B.3.2 SQL Format for REAL

Quer ies o f UBT benchmark t e s t f o r r e p o s i t o r y REAL

[0 1]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 , i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#GraduateStudent ’

73

B Benchmark

AND ca1 . i i d = x . i i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#takesCourse ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Department0 . Un ive r s i ty0 . edu/GraduateCourse0 ’

[0 2]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

c a c on c ep t a s s e r t i o n s AS ca2 , c concept s AS c2 ,

c a c on c ep t a s s e r t i o n s AS ca3 , c concept s AS c3 ,

r a r o l e a s s e r t i o n s AS ra1 , r r o l e s AS r1 ,

r a r o l e a s s e r t i o n s AS ra2 , r r o l e s AS r2 ,

r a r o l e a s s e r t i o n s AS ra3 , r r o l e s AS r3

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#GraduateStudent ’

AND ca1 . i i d = x . i i d

AND c2 . c i d = ca2 . c i d

AND c2 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Unive r s i ty ’

AND c3 . c i d = ca3 . c i d

AND c3 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Department ’

AND ra1 . r i d = r1 . r i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#memberOf ’

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = ca3 . i i d

AND ra2 . r i d = r2 . r i d

AND r2 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#

subOrganizat ionOf ’

AND ra2 . i i d domain = ca3 . i i d

AND ra2 . i i d r a n g e = ca2 . i i d

AND ra3 . r i d = r3 . r i d

AND r3 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#

undergraduateDegreeFrom ’

AND ra3 . i i d domain = x . i i d

AND ra3 . i i d r a n g e = ca2 . i i d

[0 3]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 , i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Pub l i ca t i on ’

AND ca1 . i i d = x . i i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#

publ i cat ionAuthor ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Department0 . Un ive r s i ty0 . edu/ As s i s t an tPro f e s s o r 0 ’

[0 4]

74

B.3 Test Queries of UBT

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 , i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Pro f e s s o r ’

AND ca1 . i i d = x . i i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#worksFor ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Department0 . Un ive r s i ty0 . edu ’

[0 5]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 , i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Person ’

AND ca1 . i i d = x . i i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#memberOf ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Department0 . Un ive r s i ty0 . edu ’

[0 6]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Student ’

AND ca1 . i i d = x . i i d

[0 7]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

c a c on c ep t a s s e r t i o n s AS ca2 , c concept s AS c2 ,

r a r o l e a s s e r t i o n s AS ra1 , r r o l e s AS r1 ,

r a r o l e a s s e r t i o n s AS ra2 , r r o l e s AS r2 ,

i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Student ’

AND ca1 . i i d = x . i i d

AND ca2 . c i d = c2 . c i d

AND c2 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Course ’

AND ra1 . r i d = r1 . r i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#takesCourse ’

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = ca2 . i i d

AND ra2 . r i d = r2 . r i d

AND r2 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#teacherOf ’

AND ra2 . i i d domain = i1 . i i d

AND ra2 . i i d r a n g e = ca2 . i i d

75

B Benchmark

AND i 1 . i u r i = ’ http ://www. Department0 . Un ive r s i ty0 . edu/ As so c i a t ePro f e s s o r 0 ’

[0 8]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

c a c on c ep t a s s e r t i o n s AS ca2 , c concept s AS c2 ,

r a r o l e a s s e r t i o n s AS ra1 , r r o l e s AS r1 ,

r a r o l e a s s e r t i o n s AS ra2 , r r o l e s AS r2 ,

i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Student ’

AND ca1 . i i d = x . i i d AND

AND c2 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Department ’

AND c2 . c i d = ca2 . c i d

AND ra1 . r i d = r1 . r i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#memberOf ’

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = ca2 . i i d

AND ra2 . r i d = r2 . r i d

AND r2 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#

subOrganizat ionOf ’

AND ra2 . i i d domain = ca2 . i i d

AND ra2 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Un ive r s i ty0 . edu ’

[0 9]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

c a c on c ep t a s s e r t i o n s AS ca2 , c concept s AS c2 ,

c a c on c ep t a s s e r t i o n s AS ca3 , c concept s AS c3 ,

r a r o l e a s s e r t i o n s AS ra1 , r r o l e s AS r1 ,

r a r o l e a s s e r t i o n s AS ra2 , r r o l e s AS r2 ,

r a r o l e a s s e r t i o n s AS ra3 , r r o l e s AS r3

WHERE c1 . c i d = ca1 . c i d AND

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Student ’

AND ca1 . i i d = x . i i d

AND c2 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Faculty ’

AND c2 . c i d = ca2 . c i d

AND c3 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Course ’

AND c3 . c i d = ca3 . c i d

AND ra1 . r i d = r1 . r i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#adv i so r ’

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = ca2 . i i d

AND ra2 . r i d = r2 . r i d

AND r2 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#teacherOf ’

AND ra2 . i i d domain = ca2 . i i d

AND ra2 . i i d r a n g e = ca3 . i i d

AND ra3 . r i d = r3 . r i d

AND r3 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#takesCourse ’

AND ra3 . i i d domain = x . i i d

AND ra3 . i i d r a n g e = ca3 . i i d

76

B.3 Test Queries of UBT

[1 0]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 , i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Student ’

AND ca1 . i i d = x . i i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#takesCourse ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Department0 . Un ive r s i ty0 . edu/GraduateCourse0 ’

[1 1]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 , i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#ResearchGroup ’

AND ca1 . i i d = x . i i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#

subOrganizat ionOf ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Un ive r s i ty0 . edu ’

[1 2]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

c concept s AS c2 , c a c on c ep t a s s e r t i o n s AS ca2 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 ,

r r o l e s AS r2 , r a r o l e a s s e r t i o n s AS ra2 ,

i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Chair ’

AND ca1 . i i d = x . i i d

AND c2 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Department ’

AND ca2 . c i d = c2 . c i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#worksFor ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = x . i i d

AND ra1 . i i d r a n g e = ca2 . i i d

AND r2 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#

subOrganizat ionOf ’

AND ra2 . r i d = r2 . r i d

AND ra2 . i i d domain = ca2 . i i d

AND ra2 . i i d r a n g e = i1 . i i d

AND i 1 . i u r i = ’ http ://www. Un ive r s i ty0 . edu ’

77

B Benchmark

[1 3]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1 ,

r r o l e s AS r1 , r a r o l e a s s e r t i o n s AS ra1 , i i n d i v i d u a l s AS i 1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#Person ’

AND ca1 . i i d = x . i i d

AND r1 . r u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#hasAlumnus ’

AND ra1 . r i d = r1 . r i d

AND ra1 . i i d domain = i1 . i i d

AND ra1 . i i d r a n g e = x . i i d

AND i 1 . i u r i = ’ http ://www. Un ive r s i ty0 . edu ’

[1 4]

SELECT x . i u r i

FROM i i n d i v i d u a l s AS x , c concept s AS c1 , c a c on c ep t a s s e r t i o n s AS ca1

WHERE c1 . c i d = ca1 . c i d

AND c1 . c u r i = ’ http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#

UndergraduateStudent ’

AND ca1 . i i d = x . i i d

B.4 UBT Configuration Files

B.5 Test Results

78

B.5 Test Results

Dataset 01 05 10 20

Q
ue

ry

Metric R
E

A
L

H
A
W

K

R
E

A
L

H
A
W

K

R
E

A
L

H
A
W

K

R
E

A
L

H
A
W

K

1
Time [ms] 9 6 9 13 9 23 9 44
Answers [#] 4 4 4 4 4 4 4 4
Completeness [%] 100 100 100 100 100 100 100 100

2
Time [ms] 1700 169 1613 345 2025 587 23814 1188
Answers [#] 0 0 9 9 28 28 59 59
Completeness [%] 100 100 100 100 100 100 100 100

3
Time [ms] 3 13 3 66 4 131 4 342
Answers [#] 6 6 6 6 6 6 6 6
Completeness [%] 100 100 100 100 100 100 100 100

4
Time [ms] 9 22 10 31 10 43 10 70
Answers [#] 34 34 34 34 34 34 34 34
Completeness [%] 100 100 100 100 100 100 100 100

5
Time [ms] 64 99 71 238 72 447 75 24652
Answers [#] 719 719 719 146 719 146 719 146
Completeness [%] 100 100 100 20 100 20 100 20

6
Time [ms] 78 132 444 595 899 1234 1921 2553
Answers [#] 7790 7790 48582 36682 99566 75547 210603 160120
Completeness [%] 100 100 100 75 100 75 100 76

7
Time [ms] 65 29 59 115 58 218 59 544
Answers [#] 67 67 67 59 67 59 67 59
Completeness [%] 100 100 100 88 100 88 100 88

8
Time [ms] 835 412 889 884 1003 847 1722 1448
Answers [#] 7790 7790 7790 5916 7790 5916 7790 5916
Completeness [%] 100 100 100 75 100 75 100 75

9
Time [ms] 1844 232 3053 1458 7547 4651 22968 1636
Answers [#] 208 208 1245 600 2540 1233 5479 2637
Completeness [%] 100 100 100 48 100 48 100 48

10
Time [ms] 3 14 3 68 4 134 4 359
Answers [#] 4 4 4 0 4 0 4 0
Completeness [%] 100 100 100 0 100 0 100 0

11
Time [ms] 18 2 19 2 20 2 22 2
Answers [#] 224 0 224 0 224 0 224 0
Completeness [%] 100 0

12
Time [ms] 136 9 138 8 141 8 1384 8
Answers [#] 15 0 15 0 15 0 15 0
Completeness [%] 100 0

13
Time [ms] 3 69 6 128 7 271 13 592
Answers [#] 1 1 21 14 33 18 86 50
Completeness [%] 100 100

14
Time [ms] 66 85 385 541 820 1123 1936 2379
Answers [#] 5916 5916 36682 36682 75547 75547 160120 160120
Completeness [%] 100 100 100 100 100 100 100 100

79

B Benchmark

80

Bibliography

[1] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT

Press, 2004. ISBN 0-262-01210-3.

[2] Franz Baader, Diego Calavanese, Deborah McGuinness, Daniele Nardi, and Peter

Patel-Schneider. The Description Logic Handbook. Cambridge University Press, 2003.

ISBN 0-521-78176-0.

[3] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, L. McGuin-

ness, Deborah, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web On-

tology Language Reference, February 2004. URL http://www.w3.org/TR/2004/

REC-owl-ref-20040210/.

[4] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Names-

paces in XML 1.1, November 2003. URL http://www.w3.org/TR/2003/

PR-xml-names11-20031105/.

[5] Wikipedia The Free Encyclopedia. Knowledge Base, June 2005. URL http://en.

wikipedia.org/wiki/Knowledge base.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison Wesley, Reading,

Massachusetts, 1994. ISBN 0-201-63361-2.

[7] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A Benchmark for OWL

Knowledge Base Systems. J. Web Sem., 3(2-3):158–182, 2005. URL http://www.

websemanticsjournal.org/ps/pub/2005-16.

[8] Jeff Heflin. OWL Web Ontology Language Use Cases and Requirements, February

2004. URL http://www.w3.org/TR/2004/REC-webont-req-20040210/.

81

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2003/PR-xml-names11-20031105/
http://www.w3.org/TR/2003/PR-xml-names11-20031105/
http://en.wikipedia.org/wiki/Knowledge_base
http://en.wikipedia.org/wiki/Knowledge_base
http://www.websemanticsjournal.org/ps/pub/2005-16
http://www.websemanticsjournal.org/ps/pub/2005-16
http://www.w3.org/TR/2004/REC-webont-req-20040210/

Bibliography

[9] L. McGuinness, Deborah and Frank van Harmelen. OWL Web Ontol-

ogy Language Overview, February 2004. URL http://www.w3.org/TR/2004/

REC-owl-features-20040210/.

[10] Zhengxiang Pan and Jeff Heflin. DLDB: Extending Relational Databases to Sup-

port Semantic Web Queries. Technical Report LU-CSE-04-006, Dept. of Computer

Science and Engineering, Lehigh University, 2004. URL http://swat.cse.lehigh.

edu/pubs/pan04a.pdf.

[11] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF, Oc-

tober 2004. URL http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/.

[12] Thomas Studer. Relational Representation of ALN Knowledge Bases. In P. Isaias,

M. Nunes, and A. Palma dos Reis, editors, Proceedings of Multi, pages 271–278. IADIS,

2005. URL http://www.iam.unibe.ch/∼tstuder/papers/mccsis.pdf.

82

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://swat.cse.lehigh.edu/pubs/pan04a.pdf
http://swat.cse.lehigh.edu/pubs/pan04a.pdf
http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/
http://www.iam.unibe.ch/~tstuder/papers/mccsis.pdf

	Introduction
	Structure of the Document

	Theory
	Web Ontology Language (OWL)
	Example

	Description Logic Language (DL)
	Syntax
	Semantics
	Knowledge Base O

	Load and Query Process
	OWL to DL Conversion
	DL Normalisation
	DL Completion
	DL to DB Conversion

	Implementation
	Design
	Packages
	External Libraries
	Database

	Algorithms
	Completion
	DL To Database Conversion

	Performance Evaluation
	Benchmark Setup
	Software
	Hardware, Operating System and JVM

	Performance Metrics
	Load Time
	Repository Size
	Query Response Time
	Query Completeness and Soundness

	Results and Discussion
	Data Loading
	Query Response Time
	Query Completeness and Soundness

	Conclusion and Further Work
	Conclusion
	Further Work

	Appendices
	Implementation
	Directory Tree

	Benchmark
	Univ-Bench Ontology
	Example Dataset of UBA
	Test Queries of UBT
	SPARQL Format
	SQL Format for REAL

	UBT Configuration Files
	Test Results

	Bibliography

