Explicit Mathematics with
Positive Existential Comprehension
and Join

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von
Jurg Krahenbiihl
2006

Leiter der Arbeit:

PD Dr. Thomas Strahm
Institut fir Informatik und angewandte Mathematik

Contents

(1 _Introduction|

[2

Systems of Arithmetic|

2.1 Syntaxl
(2.2 Principles and Theories|.
[2.2.1 Induction Principlesf

Preliminary Steps in Arithmetic|

[3.1 Function Symbols|o

[3.1.2 Sequence Numbers|
[3.2 Structural Properties|
[3.2.1 Properties in General
[3.2.2 Properties tfor Theories

Systems of Explicit Mathematics|

..............................
(4.2 Principles and Theories|.

[4.2.1 Operations and Numbers|.
[4.2.2 Explicit Types
[4.2.3 Induction Principles|
[4.2.4 Ontological Principles|
4.3 Semanticsl

Some Aspects of Explicit Mathematics|

[>.1 Applicative Theoryl
(5.2 Explicit Type Theory|.
2.1 Inductionl Lo
[5.2.2 Comprehension
p.2.3 Power Types,

Proof-Theoretic Analysis|

(6.1 Embeddings|
[6.1.1 Embedding Arithmetic into Explicit Mathematics| . . .
[6.1.2 Computation Sequences|
6.1.3 Embedding Explicit Mathematics into Arithmetic| . . .

6.2 Provable Arithmetic Sentences/

[6.3 Provably Total Functions|.

13
13
13
15
16
16
17

19
19
22
22
23
24
25
26

29
29
30
31
31
34

i

A
p
pendix]|

1 Introduction

Explicit Mathematics was introduced by Feferman [3] as a logical framework
for formalising constructive mathematics. In this thesis we are following
Feferman and Jager [6], where explicit mathematics, namely elementary ex-
plicit type theory EET is presented in the logic of partial terms (due to
Beeson [I]) with a two sorted language of individuals and types. The in-
dividuals are forming a partial combinatory algebra extended with natural
numbers, and the types are intended to be extensional collections of individu-
als. Furthermore the two sorts are connected by a naming relation such that
individuals can (intensionally) represent types, i.e. individuals are names of
types. This crucial connection between individuals and types allows us to
operate on types via their names, and in this way the computational power
of the combinatory algebra is extended to both sorts. For example in EET
we have a particular individual that, when applied to a name is generating
a name of the complement of the original type.

It is this uniform creation of complements, or better to say the absence
of it, we are dealing with in this thesis. We want to investigate a weakened
version X'ET of EET without uniform generation of complements. In these
systems of explicit mathematics the existence of complement types is not
guaranteed: A similar situation occurs in ordinary recursion theory, there we
have recursively enumerable sets and their names are indices (programs) but
the complements don’t need to have names, i.e. aren’t recursively enumerable.

Explicit Mathematics without complementation has already been inves-
tigated by Minari [8] where term models are constructed for theories with
positive stratified comprehension, and by Cantini and Minari [2] where strong
power types are refuted for theories with weak uniform comprehension.

The contribution of this thesis is a proof-theoretic characterisation of
some particular systems, that is we are going to relate systems of Explicit
Mathematics to systems of first order arithmetic (and to sets of functions
f:N—=N). We will give the classification for YET with type induction (T-In)
and formula induction (Fly) enriched by the following ontological extensions:
disjoint union (J), everything is a number (VN), everything is a name (VR),
positive existential stratified comprehension (Z+S—C) and weak power types
(Pow). The main results can be stated as follows:

SET+(TIN) = PRA = SET+(TIy)*(J)+(YN)+(VR)+(X'S-C)+ (Pow)
SET+H(ElN) = PA = SET+H(EIN)+()+(YN)+(YR)+(X'S-C)+ (Pow)

In contrast to these results, we have the following classifications for EET

going back to [3], [4]:

EET+(T-Iy)
EET+(Ty)+(J)

PA EET+(FEIly)
PA EET+(FIn)+(J)

(I-CA)
(Hgo'CA) <&o

We can see that dropping complements is leading to a drastic reduction in
strength, even if we have a lot of ontological principles at hand.

With respect to power types our result is somehow optimal: That is to
say, we have uniform weak power types for ¥ ET+ (VR) and in our context we
can’t strengthen this principle any further because the theory Z+ET+(POW+)
with strong power types is inconsistent [2]. We also have that EET+(J)+(VR)
is inconsistent by [7], but in this case we still have positive comprehension
between XET+(J)+(VR) and EET+(J)+(VR). Minari [8] has actually con-
structed models of positive stratified comprehension being also models of
STET+(FIN)+(J)+(YR)+(Pow). This shows that there is no need to restrict
comprehension to existential formulas as we are doing it in this thesis, hence
an interesting problem would be to give a proof-theoretic classification of Ex-
plicit Mathematics with positive (stratified) comprehension in combination
with various ontological principles.

It is worth mentioning the approach we take to tackle the main problem in
this thesis, i.e. embedding Explicit Mathematics into arithmetic with induc-
tion restricted to purely existential formulas. We follow the construction of
generated models based on computation sequences, similar to the positive
operator form for applicative theories in [5]. Instead of giving an operator
form, we explicitly state the underlying primitive recursive predicate. In
addition to the application function we also have to deal with the element
relation. The finite axiomatisation of type generators for comprehension in
[6] allows us to directly integrate these generators into the computation se-
quences. In this way we get one kind of unified computation sequences for
the application function and the element relation.

The structure of this document is mainly built around the proof-theoretic
method of "embeddings”. Of course we first need to introduce the two sys-
tems we want to compare, this is first order arithmetic and Explicit Math-
ematics (section 2 and 4). Next we have to become acquainted with these
two systems, i.e. we need to know some properties and concepts used to con-
struct the embeddings (section 3 and 5). Finally we are ready to formulate
the embeddings and state the proof-theoretic equivalences (section 6).

Acknowledgment

[am deeply grateful to PD Dr. Thomas Strahm for his guidance in this thesis
and to Prof. Dr. Gerhard Jager for introducing me into the beautiful subject
of logic and computer science.

Bern, November 2006 Jiirg Krahenbiihl

2 Systems of Arithmetic

We give a thorough definition of Peano arithmetic PA, primitive recursive
arithmetic PRA and its extension with >;-induction PRA". As usual the
systems are formulated in classical first order predicate logic.

2.1 Syntax

First of all we need to define the language of arithmetic. It consists of
symbols, terms and formulas. Based on this language we are able to define the
logical axioms for equality, quantifiers and the propositional axioms. After
adding rules of inference for modus ponens and for introducing quantifiers,
we are ready to state the formal concept of proof (for proving arithmetic
statements).

Definition 2.1 (Function Symbols Prim,, Prim). Function symbols are
denoted by f, g, h (possibly with subscripts). Let p; be an enumeration of
all prime numbers in N such that ¢ < 7 = p; < p; and py = 2. We use the
following notation:

S = po
CSZ = p" - po?
PT; = p2” - p3”
Comp™(y1, .., yr) = p3" - p3a? - ... - p3ga®
Rec™(y,z) = ps* - ps’ - ps”

Prim,, C N is inductively defined by the following rules:

1) S € Primy

(

(2) {Cs} |ie N} C Prim,
(

(4

)
)
3) {Pr!|i<n} C Prim,
) f € Primp, ANgi,...,9m € Prim, = Comp"(f,q1,-..,9m) € Prim,
(5) f € Primu1 Ag € Prim,, s = Rec"(f,g) € Prim,»
The set of all function symbols is Prim :=J, ., Prim,.

Definition 2.2 (Basic Symbols S*). The basic symbols S* consist of the
following;:

(1) Countably many variables. The set of all variables is denoted by V4
and the variables are denoted by a, b, ¢, i, j, k, u, v, w, z, y, z (possibly
with subscripts).

Constant: 0

)
3) All function symbols in Prim.
) Relation Symbol: =

)

Logical Symbols: =, V, A, 4,V
6) Auxiliary Symbols:), (, ,

Definition 2.3 (Terms 74). Terms are denoted by r, s, ¢ (possibly with
subscripts).

(1) Vau{0} Cc 7~
(2) n>0A f € Prim, ANty,...,t, €TA = f(ty,...,t,) € TA

Definition 2.4 (Formulas F*). Formulas are denoted by ¢, ¢, £ (possibly
with subscripts).

(1) s,teT» = (s=t) € FA
(2) o, € Fr = =9, (9V V), (PAY) € FA
(3) p e Fr,x € Vi = (Fz)o, (Va)p € FA

Definition 2.5 (Abbreviations). We use the following shorthand notations:

s#t == (s=t)
o= = (29 V)
potp = (0= Y)A (Y —9)

Definition 2.6 (Free Variables and Substitution). The set of free variables
of a term t we denote by F'V4(t) (or F'Vy(¢) for a formula ¢), see ((7.2). The
simultaneous substitution of terms tq,...,%, for the variables xzg,...,x, in
a term s we denote by s[to/zo, ..., t,/%,] and s[t/Z] (or @[te/o, .. e/ T
and ¢[t/7] for a formula ¢), see . Further we denote by FTx(x,¢) the
set of terms ¢ such that no variable z in F'V4(t) is in the scope of a quantifier
(3z) or (Vz) in case z is replaced by ¢ in ¢, see (7.4).

Definition 2.7 (Closed Terms, Sentences). A term t € 74 is closed if
FV,(t) = {}, analogous a formula ¢ € F4 is closed if F'V4(¢) = {}. Closed

formulas are usually called sentences.

Definition 2.8 (Propositional Axioms A,). For all formulas ¢, ¢, £ € F*

the following formulas are in A, :
(1) (pAY) — o
(2) (pAY) =
3) & — (W — (pAY))
(4) ¢ — (6 V)
(5) ¥ — (V)
6) (0 =& — (V=8 —((pVe) —¢)
(7) ¢ — (v — 9)
®) (=)= (o= W—8)—(p—9)
9) (=) = (0=) = —¢)
(10) == — ¢
Definition 2.9 (Equality Axioms A},). For all variables z, ..., 2,
Yo:---Yn € Va and terms s, t € T* the following formulas are in A%, ,.:
(1) 2=z

(2) Zo=yo N ... Nxp=yps ANs=t — (s=1t)[y/7]
Definition 2.10 (Quantifier Axioms Ag),,,,;). For all formulas ¢ € F*, for
all variables = € V4 and terms t € FTy(xz,¢) the following formulas are in

guant:
(1) oft/z] — (Fr)¢
(2) (Vo)p — o[t/x]

Definition 2.11 (Rules of Inference R*). For all formulas ¢, ¢» € F2, for all
variables x, y € V4 such that y € FT(x,¢)\ FVa(¢) the following rules are
in RA:

(1) el =¥
(Bz)op — ¢

oly/]
(Va)o

Y

o o—
(3) ET—

Definition 2.12 (T-Proof and T+ ¢). For T' C F* and ¢y, . .., ¢, € F* the
sequence (o, ..., ¢,) is a T-Proof in case all ¢; satisfy one of the following
conditions:

(1) ¢ €T
(2) ¢; € A%

Prop

U A%

Equal U AQuant

(3) ¢; is the conclusion of a rule of inference in R* whose premises belong

to {qf)o, Ce 7¢i—1}‘

Let T C F» and ¢ € FA, if there are ¢y, ..., ¢ such that (¢g,...,¢x) is a
T-Proof with ¢, = ¢ then we denote this by T+H* ¢ or simply T+ ¢. Let
S C F~, if we have T'F ¢ for all ¢ € S then we denote this by T'F S. We use
the shorthand notations F*¢ and + ¢ and + S whenever T' = {}.

2.2 Principles and Theories

Based on the language of arithmetic we define the non-logical axioms of
arithmetic, these consist of the defining equations for all primitive recursive
functions and different induction principles.

2.2.1 Induction Principles

Definition 2.13 (Formulas QF, Xy, II,). If rule[2.4(3) (introducing symbols
3 and V) is not used for building the formula ¢ € F*, then we say ¢ is
quantifier free. We denote the set of all quantifier free formulas by QF, and

based on QF we further define ¥ := {(3x)¢ | ¢ € QF, x € Va} U QF and
H2 = {(Vx)¢ | ¢ S Zl, x € VA} U Zl'

Definition 2.14 (Induction Axioms QF-Ind, ¥;-Ind, F-Ind). Let X C FA.
For all ¢ € X and = € V, the following formula is in X-Ind:

¢[0/z] A (V) (¢ — ¢[S(x)/z]) — (Va)¢

QF-Ind, ¥1-Ind and FA-Ind (usually denoted by F-Ind) are the most promi-
nent induction axioms in the text below.

2.2.2 Primitive Recursive Arithmetic

Definition 2.15 (Numerals 7 € 7*). We use the following notation:

n+1:= Sm [0:=0]

Definition 2.16 (Defining Equations A%,). For all n > 0 and function

Prim
symbols Cs?, Pr, Comp™(f,g1,...,9m), Rec"™(f,g) € Prim and for all
variables z1, ...z, € V4 the following formulas are in A%

1) Cst(zy,...,m,) =1
Pr

2 ;L(xl,‘..,l'n):$i+1

(1)
(2)
(3) Comp™(f, g1, gm) (@1 20) = flgr(@1, -) G, 2))
(4) Rec™™(f, g)(w1,...,20,0) = f(z1,...,7,)

(

5) Rec"™(f,g)(z1,... 20, S(x))=g(x1,..., 50,2z, Rec" ™ (f, 9)(21,. .., 70, 7))

Definition 2.17 (Primitive Recursive Arithmetic PRA).
PRA = {S(2)£0 |z € Wi} UAS,. U QF-Ind
Definition 2.18 (Extensions PRA" and PA).

PRA" = PRA U X;-Ind
PA = PRA U F-Ind

2.3 Semantics

The language of arithmetic defined above can be interpreted in many dif-
ferent ways. In the following we give a definition of what we mean by an
interpretation. Based on this definition we are able to further define what
it means for a statement in the language of arithmetic to be true (for all
interpretations) or to be a logical consequence of some theory.

Definition 2.19 (Structures of Arithmetic M*). A structure M € MA con-
sists of the following:

(1) A domain M of numbers.
(2) A constant 0 € M.

(3) For every function symbol f € Prim a function f*, such that
e M™ — M for f € Prim,.

10

We usually denote M by |M|.

Definition 2.20 (Valuations V™). A valuation v € V™ for a structure
M € M+ is a mapping v : V4 — |[M|. If v € VM then v[u:m]| € VM denotes
the following valuation (where m is in |M]):

m V=1Uu

viuml(v) := {

v(v) otherwise

Definition 2.21 (Interpretations I*). An interpretation M, € I* (for a
structure M € M* and a valuation v € V™) consists of the following:

(1) A mapping M, : T» — | M| such that:

o t=
M, (t) == L v(t) t€WVa
MMM (s0), .-, Mu(sn)) t= f(Sos---,5n)

(2) A mapping M,, : FA» — {t,f} such that:

M, (s=t)=1t = My(s) = M(t)

M, (=¢) =t = M,(o)=f

My(pVip) =t & My(p) =tV M, ()=
MydAp)=t & My(p) =t AM, ()=t
M,(Bx)p) =t = (Om e MMy (@) = t)
My ((Vz)p) =t & (Vm € M) (M) (¢) = t)

Definition 2.22. For M € MA, ¢ € F» and T,S C F* we define the
following relations:

Mo o (WeV(M,(0)=t)
MET & (Y6eT)M o)

TE® & (WMeMAYMET=ME¢)
TS & (VesSTkE9)

If M E ¢ holds then we say ¢ is valid in M, and if we have M = T then
we say M is a model of T'. Finally if we have T' |= ¢ (or T' |= S) then we say
¢ (or S) is a logical consequence of T'.

Theorem 2.23 (Adequacy). Let ¢ € FA then we have

Tk¢ <« Thro

11

Proof. By soundness and completeness for theories in classical predicate logic
(see any introductory book about classical logic). O

Example 2.24. Let M be the following structure:

(1) M| =N

(2) OM:=0

(3) fM:=[f] for f € Prim (see[7.]]for the definition of [f])
M is a model of PA| i.e. we can prove M = PA.

12

3 Preliminary Steps in Arithmetic

Having defined the language of arithmetic and the concept of a formal proof,
we now give some useful examples of provable statements. In this way we
are building a collection of frequently used tools.

3.1 Function Symbols

There are a lot of useful primitive recursive functions contained in the lan-
guage of arithmetic. We name some common functions and show that their
expected properties are provable in PRA.

3.1.1 Basic Functions

Definition 3.1 (Logical Connectives). Let And, Or € Prims be function
symbols such that PRA proves:

(1) And(0,y) =

(2) And(S(x),y) = S(x)
(3) Or(0,y)=0

(4) Or(S(z),y) =y

We usually write o A y for And(z,y) and x V y for Or(z,y), and we use
association to the left, hence zgAzy A...Ax, stands for (... (xgAxy)...Azy)
and 7oV x1 V ...V z, stands for (.. (:L‘O V). V).

Lemma 3.2.
(1) PRAF (z Ay)=0+< (z=0Ay=0)
(2) PRAl—(x\/y):0<—> (xr=0VvVy=0)

Definition 3.3 (Ordering). Let P € Prim; and Chs> € Primsy be function
symbols such that PRA proves:

(1) P(0)=
(2)

(3)
(4)

13

We usually write >y or y — z for the term Ch>(z,y) and we write z >y
and z <y for the formulas Ch>(z,y) =0 and Chx(x,y) # 0 respectively.

Lemma 3.4.
(1) PRAFz>x
(2) PRAFz>2Nz2>y — x>y
(3) PRAFz>yANy>z —z=y
(4) PRAFz>yVy>x
Proof. See the section about primitive recursive arithmetic in [10]. O

Definition 3.5 (Equality, Negation). Let Ch— € Prims and Neg € Prim,
be function symbols such that PRA proves:

(1) Cho(z,y)=(z=y) Ay = 2)
(2) Neg(ax)=5(0) -
We usually write x =y for Ch_(z,y) and —(z) for Neg(x).
Lemma 3.6.
(1) PRAF (z=y)=0<—z=y
(2) PRAF = (2)=0 < 2#0
Proof. See the section about primitive recursive arithmetic in [10]. O

Definition 3.7 (Bounded Quantifiers). Forn < klet EFY AL Primy, , —
Primy., be such that PRA proves:

(1) E*Y(f)(xo, ..., 2p-1,0,Zpy1,...,2x) =S(0)
(2) EFFY(F) (w0, .. s 201, S(T0), Tnyty - - 1) = BN () (o, . .., 20)V f (20, . . ., 1)
(3) AM(f) (o, Tp1,0,Tp11, ..., 2%) =0
(4) AT (o, Tpe1, S(T0), Trgts - - -) = AR () (w0, ..., 20)Af (20, . . ., 21)
We usually write 3,,f for E¥*1(f) and Vv, f for A*1(f).
Lemma 3.8.

(1) PRAFTo...3,f (2o, ..., 20, §) =0 <
(F20) ... (Fzn)[zo0 <o Ao Az <xu A f20,- -+, 20, 9) =0]

(2) PRAE Yo.. .V f (2o, .., @0,) =0 <
(VZ())(VZ”)[ZO<$0/\/\Zn<xn_>f<z077zn7g):0]

14

3.1.2 Sequence Numbers

Definition 3.9 (Pairing). Let m, m € Prim; and m € Primsy be function
symbols such that PRA proves:

(1) mo(m(z,y)) =
(2) m(n(z,y)) =y
We interchangeably write |z| for my(z).

Definition 3.10 (Sequence Numbers). Let Ins € Prims be a function sym-
bol such that PRA proves:

Ins(x,y) =m(S(|x]), 7(y, m(2)))
We write () for 7(0,0) and (zo, ..., z,) for Ins(...Ins({),xq) ..., x,).

Definition 3.11 (Projection). Let Iter™? : Primgy — Primg., and
Proj € Primgy such that PRA proves:

(1) Iterk+2(f)(0,x,g7):x
(2) Iter*2(f)(S(2),z,) = f(Iter"*?(f)(z, z,§),§)
(3) Proj(y,x) = mo(Iter®(m)(|z| - y,x))

We usually write (). 4, for Proj(yn, ... Proj(yo,z)...) and (), n, for
Proj(ng, ... Proj(ng,z) ...) and we also use a mix of this two notations.

Lemma 3.12.
(1) PRAE (2)i# (y)i — x#y
(2) PRAFi>|z| — (x); = ||
Lemma 3.13. For allt, n € N such that i < n we have
(1) PRAF ({(z1,...,2,))i=Ti11
(2) PRAF |(z1,...,2,)| =7

Definition 3.14 (Concatenation). Let Cath*? . Primygy1 — Primgys be
such that PRA proves:

(1) Cat™2(f)(0, 0, ..., x1) =24

(2) Cat*™2(£)(S(2), w0, ..., xx) =Ins(Cat™ 2 (f)(z, 20, ..., 21), (2,20, . . ., T_1))

15

We usually write zxy for Cat®(Proj)(|yl,y,) and f*(&) for Cat**2(£)(Z, ().
Lemma 3.15.

(1) PRAF |z (y)| = S(|=])

(2) PRAE |z syl = [z Az y| = [yl

(3) PRAF i <|z| — (3))(J <|z*y| A (x)i = (x xy);)

(4) PRAE i <|y| — (3))(J <|z xy[A (y)i = (z x y);)
Lemma 3.16.

(1) PRAE[f*(z,§)|==

(2) PRAF i<z — (f*(2,9))i=f(i,9)
Lemma 3.17.

PRAF |z| =71 — (z= () %2 < = {((2)o, .- ., (T)n_1))

This lemma shows that x = () xx is a predicate for the sequence numbers.

3.2 Structural Properties

We are also interested in structural properties of proofs, i.e. generic proofs,
rules for proofs or the existence of a whole class of proofs for a formula
depending on a term or a function symbol. First we state some general results
derivable by just using the logical axioms, then some statements about atomic
formulas containing function symbols and numerals are proved in PRA. The
section ends with the more intricate results of term extraction (3-inversion)
and Parsons’ Theorem, both stated without proof.

3.2.1 Properties in General

Lemma 3.18. Forallp € F» and xq,...,x, € V4 and sg, ..., Sp, to, ..., ty €
T~ such that s;, t; € FTy(x;, ¢), we have

Fso=toA... N sy =t, A P[5/Z] — P[t/7]
Proof. By induction on the complexity of ¢ € FA. O
Lemma 3.19. For allT C F» and ¢ € F» we have

TH¢ = TF(Vx)o

16

Proof. Let ¢ := (y=y) € Abpuar- We have (¢ — (v — ¢)) € Ap,,, and
TH ¢, hence THv — ¢. Applying [[z] we get T — (Vx)¢ and

¢ P — (Va)p
finally T'F (V)¢ by modus ponens. m

Lemma 3.20. For allt € T» and ¢ € F*» we have
(1) Ft=t
(2) Fo—¢

Proof. (1) We have x=x € A}, hence - (Vz)r=z by (3.19). Applying
modus ponens to ((Vr)r =z — t=t) € Af),,,, Yields Ft=t. (2) Let ¢ :=

(¢ V ¢) then ¢ — ¢ € A}, and ¢ — (Y — ¢) € Ap,,, and (¢ —) —
((— @) — (¢ — ¢)) € Ap,,,- Applying modus ponens twice yields

¢ = (
Fo— ¢.]
3.2.2 Properties for Theories

Lemma 3.21. Let f be a function symbol in Primy, , then we have

(Vni,...,np € N) PRAF f(m,...,7m) =[f](n,...,nk)
Proof. By induction on the function symbols f € Prim. O

Corollary 3.22. Lett € T* be a closed term, then there is a number n € N
such that

PRAFt=mn
Proof. By induction on the complexity of the closed term t € 7A. O]

Lemma 3.23. Let t € T» and {x1,...,x,} D FVa(t), then there is a func-
tion symbol f € Prim,, such that

PRAFt=f(x1,...,2,)
Proof. By induction on the complexity of the term t € 7TA. O
Lemma 3.24. For ¢ € F» and y € FT(x;, ¢) we have

PRAF (3zo) ... (3za)6 < (By)lW)o/T0, - (y)a/ 0]
Proof.

17

(1) Let ¢ := ¢[(y)o/Tos - - - (Y)n/zs) and t := (o, ..., x,). We have
PRAF 2o =)o A ... Ay =(t)n — (¢ — ®[t/y])

by (3.18). From PRAF z; = (t); we get PRAF ¢ — 9[t/y]. We have
(Wlt/y] — By)v) € A an hence we can deduce PRAF ¢ — (Jy)y.
Finally we introduce the quantifiers on the left side by the correspond-
ing rule in RA.

(2) The following formulas are in Ag,

uant*

Y — (Fn)0[(Y)o/xos - -y (Y)n—1/Tn-1]
(32,)0[(Y)o/0;s - - s (Yn-1/Tn-1] = (Frn1)(320)O[(Y)o/T0; - - -, (Y)n—2/Tn—2]

(Fz1) ... (Fz0)0[(v)o/x0] — (Fx0) ... (Bxy)d

hence we can deduce PRAF ¢ — (3xy) ... (Ix,)¢ and we finally intro-
duce the quantifier on the left side using the rule in RA.

]

Theorem 3.25 (Term Extraction). Let ¢ € QF and PRAF (3x)¢, then there
exists a term t € TA such that

(1) PRAF ¢[t/x]
(2) FVa(t) = FVa(¢)\{z}
Proof. See for example [9] for this intricate result. O

Corollary 3.26. Let ¢ € QF and PRAF (3zo) ... (Iz,)¢, then there exists
a termt € T» such that

(1) PRAE9[(t)o/x0, - - (t)n/ 2]
(2) FVa(t) = FVa(o)\{zo, ..., zn}

Proof. Using (3.24)). O
Theorem 3.27 (Parsons’ Theorem). Let ¢ € 3 then

PRA ¢ < PRAFG

Proof. See for example [0]. O

18

4 Systems of Explicit Mathematics

We give a thorough definition of the applicative theory of basic operations
and numbers BON and the explicit type theories SET and EET . We will
formulate these systems in the logic of partial terms (due to Beeson [I])
similar to [5], [6].

4.1 Syntax

First of all we need to define the language of Explicit Mathematics. It consists
of symbols, terms and formulas. Based on this language we are able to define
the logical axioms for definedness, equality, quantifiers and the propositional
axioms. After adding rules of inference for modus ponens and for introducing
quantifiers, we are ready to state the formal concept of proof (for proving
statements in Explicit Mathematics).

Definition 4.1 (Basic Symbols St). The basic symbols St consist of the
following;:

(1) Countably many individual variables. The set of all individual variables
is denoted by V; and the variables are denoted by a, b, ¢, f, g, h, u, v,
w, z, y, z (possibly with subscripts).

(2) Countably many type variables. The set of all type variables is denoted
by Vr and the variables are denoted by A, B, C, U, V, W, X, Y, Z
(possibly with subscripts).

(3) Constants k, s, p, po, 1, 0, Sy, P, dy, nat, id, neg, con, dis, dom, inv, j.
The set of all constants is denoted by CE.

4) Function Symbol: - (centered dot)

6

)
5) Relation Symbols: |, N, €, =, R
) Logical Symbols: —, V, A, 3, ¥

(
(
(
(7) Auxiliary Symbols:), (, ,

Definition 4.2 (Terms 7€). Terms are denoted by r, s, t (possibly with
subscripts).

(1) ViUCECTE

(2) s,t € TE = -(s,t) € T

19

For -(s,t) we write (s-t) or simply st and we use association to the left, that
is 8081 ...8, and sg-$1- ..., stand for (... (SgS1) ... Sp)-

Definition 4.3 (Atomic Formulas Ff).
s, t€eTe, X € Vr = =(s,1), (), N(t), €(t,X), R(t, X) € F§

For = (s,t), [(t), N(t), €(t, X) we usually write s=t, t], teN, t€X respec-
tively.

Definition 4.4 (Formulas F%). Formulas are denoted by ¢, ¥, £ (possibly
with subscripts).

(1) F§ C Fe
(2) 99 € FE = =0, (9VY), (9AY) € F*
(3) peFe,x eV, X eV = (Tx)o, (Va)o, (3X)d, (VX)p € FF

We use the shorthand notations ¢ — ¢ and ¢ < ¥ for formulas in F¢
analogous to definition (2.5). For (3zo)...(3x,)¢ and (IX)...(3X,)¢p we

also write (37)¢ and (3X)¢ respectively. The same notation we use for V.

Definition 4.5 (Free Variables and Substitution). The set of free individual
variables of a term t we denote by FVi(t) (or FVi(¢) for a formula ¢), see
(7.5). The set of free type variables of a formula ¢ we denote by FVr(¢),
see . The simultaneous substitution of terms tg,...,t, for individual
variables g, . . ., , in a term s we denote by s[to /o, . . ., tn/x,] and s[t/Z] (or
d[to/xo, - - ., tn/xn] and ¢[t/i] for a formula ¢), see . The simultaneous
substitution of type variables Yy, ...,Y, for type variables Xy,..., X, in a
formula ¢ we denote by ¢[Yy/Xo, ..., Yn/X,] and ¢[Y /X], see . Further
we denote by FT'(z,¢) the set of terms ¢ such that no variable z in F'V(t)
is in the scope of a quantifier (3z) or (Vz) in case x is replaced by t in ¢
(analogously with FT(X, ¢) for type variables), see (7.9)+(7.10).

Definition 4.6 (Closed Terms, Sentences). A term t € 7E is closed if
FVi(t) = {}, analogous a formula ¢ € FE is closed if F'V;(¢) = {}. Closed
formulas are usually called sentences.

Definition 4.7 (Propositional Axioms A% C FFE anal-

Prop) We define Aj
ogous to Abp,,, in (2.8).

Prop

Definition 4.8 (Equality Axioms A%, ;). For all atomic formulas ¢ € F§

and variables z, xg,...,%n, Yo,--.,Yn € Vi the following formulas are in

E .
Equal*

20

(1) z==
(2) .T():yo/\---/\xn:yn/\¢_>¢[g/f]

Definition 4.9 (Quantifier Axioms Ag,,,,,). For all formulas ¢ € F¢, for all
variables x € V; and terms t € FT(x,¢) and for all variables X € Vp and
Y € FT(X, ¢) the following formulas are in A,

(1) olt/z] At] — (Fz)o
(2) (Vz)p At] — o[t/x]
(3) o[Y/X] = (3X)o
(

uant*

4) (VX)¢ — o[Y/X]

Definition 4.10 (Definedness Axioms A%, ;). For all variables and constants
r € Vr UCE, for all atomic formulas ¢ € F§, for all variables zg,...,z, € V;
such that x; € FVi(¢) and for all terms s, ¢, to,...,t, € Tt the following
formulas are in Af,_;:

(1) rl
(2) (st)l — sl Atl
(3) Q[t/a] — tol Ao Ayl

Definition 4.11 (Rules of Inference RE). For all formulas ¢, ¢ € FE, for
all variables x, y € V; such that y € FT(x,$)\ F'V;(¢) and for all variables
X eVrand Y € FT(X, ¢)\ FVr(y) the following rules are in RE:

Ply/x] —
(Fz)p — 2
Y — Ply/]
Y — (Vx)o
oY/ X] — 9
(AX)p — ¢
Y — @Y/ X]
W = WX
¢ ¢—
(0

(1)

(2)

(3)

(5)

21

Definition 4.12 (T-Proof and T+ ¢). For T' C F® and ¢y, ..., ¢, € FE the

sequence (¢, ..., d,) is a T-Proof in case all ¢; satisfy one of the following
conditions:

(1) ¢ €T

(2) le € A%T’Op U AEEqual U Aauant U Ai)ef

(3) ¢; is the conclusion of a rule of inference in Rt whose premises belong

to {¢07 s 7¢i71}-

Let T C FE and ¢ € FE, if there are ¢y, ..., ¢ such that (¢g,..., o) is a
T-Proof with ¢, = ¢ then we denote this by T+H* ¢ or simply T+ ¢. Let
S C FE, if we have T'F ¢ for all ¢ € S then we denote this by T'F S. We use
the shorthand notations H* ¢ and + ¢ and + S whenever T = {}.

4.2 Principles and Theories

Based on the language of Explicit Mathematics we define the non-logical
axioms for theories, several induction principles and some ontological princi-
ples.

4.2.1 Operations and Numbers

The theory of basic operations and numbers BON consists of axioms for a
partial combinatory algebra, pairing and projection, natural numbers with
successor and predecessor, and definition by numerical cases.

Definition 4.13 (Abbreviations). We use the following shorthand notations:

s#t = ms=tANs|Nt]

s~t = (s]Vt])— s=t
(S0y--+ySn) = (P(S0s---s8n-1)Sn) [(S0) := So|
(3xeN)¢ = (Jz)(zeN A @)
(VzeN)p = (Vx)(zeN — ¢)
te(NFH1SN) = (VzoeN). .. (VzreN)tag . .. z,€N [i # j = x; #]

te(N—N) := te(N'—=N)
Remark: There is an ambiguity in the choice of xy, ...,z € V; in the formula
te(NF1-N).

Definition 4.14 (Basic Operations and Numbers BON). For all individual
variables u, v, x, y, z € V; the following formulas are in BON :

22

1) (kx)y==z

)
2) swyl A (sey)z ~(22)(y2)
3) polz,y) =z Api(z,y) =Yy
4) 0eN A sye(N—N)
5) (VzeN)(syz #0 A py(syz) =)
6) (VzeN)(zx#0 — pyreN A sy(pyz) =)
7) zeNAyeN ANz =y — (dyuwv)zy =u

)

(
(
(
(
(
(
(
(

8) zeNAyYyeEN ANz #y — (dyuv)ry =0

4.2.2 Explicit Types

The non-logical axioms for explicit type theories consist of axioms for the
naming relation and the axioms for type generators (name generators). The
first is stating that every type has a name and names behave well (no
homonyms), the latter guarantees the existence of particular types and the
uniform creation of their names.

Definition 4.15 (Abbreviations). We use the following shorthand notations:

XCY = (Vo)(zeX — z€Y)

X=Y = (Va)(zeX < z€Y)

R X) == R(to, Xo) A ... AR(tn, X,)
R(t) = AX)R(, X)

set == (IX)(R(t, X) A s€X)

Definition 4.16 (Representation Axioms Age,). For all individual variables
x € V; and for all type variables X, Y € Vr the following formulas are in
ARep:

(1) (Bz)R(z, X)
(2) R(z, X)) AR(z,Y) - X =Y
(3) X=Y AR(z,X) - R(z,Y)

23

Definition 4.17 (Generator Axioms Ag, Ag+g). For all individual variables
a, b, f, z,y € Vr the formulas (1) ... (7) are in Ag and the formulas (1) ... (6)
are in Agtg:

(1) R(nat) A (Vz)(z€nat < zEN)

(2) R(id) A (Vo) (z€id < (Fy)z=(y,y))

(3) R(a) A R(b) — R(con(a, b)) A (Vx)(zEcon(a,b) < x€a A TED)
(4) R(a) AR(b) — R(dis(a, b)) A (Vz)(z&dis(a, b) < x€a V xED)
(5) R(a) — R(dom(a)) A (V) (wEdom(a) < (3y)(x,y)Ea)

(6) R(a) — R(inv{a, f)) A (Vx)(z€inv(a, f) < frca)

(7) R(a) — R(neg(a) A (V) (r€negla) — w€a)

Definition 4.18 (Disjoint Union J (Join)). For all individual variables a, f,
x,y, z € Vy the following formula is in J:

R(a) A (Vr€a)R(fz) — R(i{a, f)) A . .
(Vo)[zej(a, f) < By)(B2)(w={y,2) ANyca A zefy)]

Definition 4.19 (Explicit Types X'ET and EET).
(1) S'ET = BON U Ape, UAgig (Positive Existential Explicit Types)

(2) EET =BON U Ag., U Ae (Elementary Explicit Types)

4.2.3 Induction Principles

In (5.8)) and ([5.10) we see that the following induction principles are ordered
by their strength, formula induction of course being the strongest form.

Definition 4.20 (Set Induction S-ly). For all individual variables z, f € V;
the following formula is in S-Iy:

feE(N—=N)A fO=0A (VzeN)(fx =0 — f(syz)=0) — (VxeN)(fx=0)

Definition 4.21 (Value Induction \-ly). For all individual variables z, f €
V; the following formula is in V-ly:

fOeEN A (VzeN)(fzeN — f(syx)eN) — fe(N—N)

Definition 4.22 (Type Induction T-ly). For all individual variables = € V;
and type variables X € Vr the following formula is in T-ly:

24

0eX A (VzeN)(zeX — syzeX) — (VeeN)zeX

Definition 4.23 (Formula Induction Fly). For all individual variables = €
Vr and formulas ¢ € FE the following formula is in Fly:

¢[0/x] A (VzeN)(¢ — ¢syr/z]) — (VzeN)o

4.2.4 Ontological Principles

Definition 4.24 (All Individuals are Names of Types V). For all individual
variables z € V; the formula (Vz)R(z) is in VR.

Definition 4.25 (All Individuals are Numbers ¥N). For all individual vari-
ables x € V; the formula (Vx)N(z) is in ¥N.

Definition 4.26 (Uniform Comprehension). Let X’ be a subset of FE then
for all formulas ¢ € X the following formula with {Xo,..., X} := FVr(¢)

and {yo, ..., Ym} = FVi(¢)\{z} is in X-C:
(3HVE) (V) (VX[R(Z, X) —
R(fro- - Yo Ym) A V2)(2EfT0 .. T0uYo - - - Ym < O) |

Similar to the generator axioms this formula is also stating the existence of
a generator, but now for arbitrary ¢ € X.

Definition 4.27 (Abbreviations).

Bat(X) :=(Ya)(Vb)[(32)(R(a, Z) AR(b, Z)) — (a€X — beX))
Pow (X,Y) :=(VZ)(ZCY — (Fa)(aeX A R(a, Z))) A

(Va)(aeX — (AZ)(ZCY AR(a, Z)))
Pow (X,Y) :=Pow (X,Y) A Ext(X)

If Fxt(X) holds then we have for every type Z, that X either contains all
names of Z or none of them. If Pow (X,Y) holds then for every subtype Z
of Y there is at least one name of Z contained in X, further we have that X
contains nothing else but names of subtypes of Y. Hence Pow (X,Y) holds
if X contains all names of all subtypes of Y, and X contains nothing else.

Definition 4.28 (Weak Power Types Pow). For all type variables X,Y € Vr
the formulas of the form (VY')(3X)Pow (X,Y’) are in Pow .

Definition 4.29 (Strong Power Types POW+). For all type variables X,Y €
Vr the formulas of the form (VY)(3X)Pow (X,Y) are in Pow .

25

4.3 Semantics

The language of Explicit Mathematics defined above can be interpreted in
many different ways. In the following we give a definition of what we mean
by an interpretation. Based on this definition we are able to further define
what it means for a statement in the language of Explicit Mathematics to be
true (for all interpretations) or to be a logical consequence of some theory.

Definition 4.30 (Structures of Explicit Mathematics MEF). A structure M €
ME consists of the following:

(1) A domain of individuals M and an extra individual co ¢ M.
(2) A domain of types T' C P(M).

(3) For every constant ¢ € CE a constant ¢* € M.

(4)

4) A (restricted) binary operation -* on M> := M U {oo}, that is
M M® x M*® — M such that (Vo € M*)(co-Mx =x-™o0 = 00).

(5) A unary relation N C M and a binary relation " C M x T.
We usually denote M, T, and M by |[M|!, IM|T and |M|> respectively.

Definition 4.31 (Valuations V™). A valuation v € VM for a structure M €
ME is a mapping v : V;UVy — |[M|'U|M|T such that x € V; = v(x) € IM|!
and X € Vr = v(X) € IM|T. If v € VM then v[u:m] € VM denotes the
following valuation (where m is in M|’ or in M| according to u):

viuml(v) := {m v=

v(v) otherwise

Definition 4.32 (Interpretations If). An interpretation M, € It (for a
structure M € ME and a valuation v € VM) consists of the following:

(1) A mapping M,, : T¢ — |M|*> such that:

26

(2) A mapping M, : F& — {t,f} such that:

M, (s=t) =t = My(s) =M, (t) # o

M,(t]) =t = ML) # oo

M, (teN) = t o NMML()

M, (teX) =t = My(t) e v(X)

M,(REX) =t = RMM, (), (X))

M, (=) — ¢ o M(¢) =t

M, (pV) =t e M (¢) =tV M, () =t
My(pNY) =t = M) =t AM,(¢Y) =t

M, ((3r)p) =t e (Fm e (M) (My () = t)
M, ((Vz)¢) =t e (Ym € (M| (My () = t)
M((3FX)p) =t = (3F € M) (Myxs)(0) = t)
M((VX)) =t =& (VS € IMT)(Myxs(0) = t)

Definition 4.33. For M € ME, ¢ € FE and 7,5 C FE we define the
following relations:

ME¢ & (WweVM)(M,(¢9) =t)

MET o (VpeT)ME9)

TE¢ = (WMeME(MET=ME9)
TES & (VeS)TEg)

If M |= ¢ holds then we say ¢ is valid in M, and if we have M |= T then
we say M is a model of T'. Finally if we have T' = ¢ (or T |= S) then we say
¢ (or S) is a logical consequence of T.

Theorem 4.34 (Adequacy). Let ¢ € FE then we have
TE¢ < Tko¢
Example 4.35. We use the following functions defined in ([7.1)):

[Ins] : N? - N (3.10))
[7] : N> = N (3.9)
[Com] : N* — N (6.13)

And for zg,...,x, € N we use analogous to the shorthand notation:

(o, ... xn) = [Ins](...[Ins]([](0,0),z0) ..., x,)

Now we are ready to define M &€ ME to be the structure consisting of:

27

(1) IM|! :==Nand oo € N (e.g. co =N).

(2) For n € N we define T, := {x | (Im)([Com]({(n,z),m) = 0)} and let
IM|T :={T, | n € N}.

(3) 0™ :=0 and ™ := [n](n.,0) for ¢ € CE\{0} (where n, is the number
assigned to ¢ in[6.10). ¢™ needs to have this clumsy definition because
the definition of C'om refers to (6.10)).

(4)

ey o 1 @] (o, m)m) = 0)
' oo otherwise
The function -™ is well-defined by (/6.18)), (2.23) and example ([2.24)).
(5) N* =N
RM={(m,T,) | T, =T}

For the structure M we have by the embedding theorem ((6.28]) (i.e. by the
particular embedding we used for proving it) that: (see|5.11]| for Z+S)

M = SETH(U)+(VR)+(YN)+(E'S-C)+ (Pow)+ ()

The structure M can be seen as an extension of the structure in the example
2.24] The construction of M is generic, i.e. any structure N' € M* such that
N |= PA can be extended similar to the way we described above.

28

5 Some Aspects of Explicit Mathematics

Having defined the language of Explicit Mathematics and the concept of a
formal proof, we now give some useful examples of provable statements. In
this way we are building a collection of tools we use in the sequel.

5.1 Applicative Theory

We define A-abstraction on terms and show that it has the desired properties.
We then use A-abstraction to prove the existence of a fixed point operator in
the combinatory algebra. Further we use this fixed point operator to prove
some basic facts, e.g. primitive recursion in the theory BON +(\ly).

Definition 5.1 (A : V; x T8 — TF),

skk t==x
/\(l’,t) = S)\(I,tl)/\(l’,tg) t= tltg
kt otherwise

We usually write Az.t for A(z,t) and Axg . . . x,.t or AZ.t for Azg. (... Ax,.(¢) .. .).
Lemma 5.2.
FVi(Ax.t) = FVi(t)\{z}

Theorem 5.3 (A-Abstraction).

(1) BON F Az.t]

(2) BON Fs| — (Az.t)s~t[s/z]
Proof.

(1) By induction on the term ¢t € TE.

(2) We first prove the statement for s = = by induction on the term ¢, then
for arbitrary s we use an instance of \Ag),, .-

[
Lemma 5.4 (Substitution).
r#y = BON F (\z.t)[s/y|lz~t[s/y]
Proof. By induction on t. O

29

Theorem 5.5 (Fixed Point). There ezists a closed term fix € T€ such that
BON Ffixf| A f(fixf)z ~ (fixf)x
Proof. Let t := (Ayz.f(yy)z) and fix := (\f.tt). O

Lemma 5.6 (Primitive Recursion). There exists a closed term rec € TE such
that

(1) BON F fe(N?*—N) A aeN A beN —
(recfa)0=a A (recfa)(syb) = fb((recfa)b)

(2) BON +(V-y) = fe(N?*—N) A aeN — (recfa)e(N—N)
Proof.
(1) Let t := Aha.(dy(Az.a)(Az. f(pyz) (h(py2)))x0)0 and rec := (A fa.fixt).

(2) By (1) and using value induction (V-ly).

O
Lemma 5.7. There exists a closed term noty € TE such that
BON —(notyeN)
Proof. Let t := (Azy.dy(sy0)0(xy)0) and noty := fixt0 O

Lemma 5.8.
BON +(Voly) - S-y
Proof. Let s := (Ay.dy(A2.0)(Az.noty)y0) and ¢ := Afz.s(fz) then we have

BON Fy=0 < yeN A syeN
BON ™ (VaeN)(fz =0 < (¢f)zeN)

hence we are able to reduce (S-ly) to (Mly). O

5.2 Explicit Type Theory

First we show how to reduce value induction (\V-ly) to type induction (T-ly).
Next we use the generator axioms to get type comprehension for a whole
class of formulas. Using disjoint union (J) under certain conditions we even
get comprehension for formulas containing type quantifiers. This section
also contains two inconsistency results about ontological principles. Finally
we state the refutation of strong power types by Cantini and Minari [2] in
the context of our positive result about weak power types in the theory

STET+(VR).

30

5.2.1 Induction
Lemma 5.9.
SETFR(a, X) — (z€X < xéa)

Proof. We have (R(a, X) A z€X — z€a) € Af,,,,,- For the other direction
we have (R(a, X) AR(a,Y) — X =Y) € Age, hence we are able to deduce
SETFR(a, X) A (R(a,Y) Az€Y) — z€X. By an inference rule in RE we
finally get Y'ET - R(a, X) A x€a — z€X. O

Lemma 5.10.
STET+(T-Iy) F Vly

Proof. Let t := inv(nat, f), then from Ay we get SETH foeN « fzénat
and X'ET F R(t) A frénat — x€t hence we deduce SETH fzeN « zét. Let

¢o := fOEN A (VzeN)(fzxeN — f(syz)eN) — fe(N—N)
¢y = 0€t A (VzeN)(z€t — syz€t) — (VreN)zet
¢9 == 0€X A (VzeN)(zeX — syreX) — (VeeN)zeX

Now we have SETF ¢1 < ¢ and we get SETFR(t, X) — (¢o < ¢1) by
‘) but ¢5 € T-ly hence Z+ET+(T—IN) FR(t, X) — ¢o and by an inference
rule X' ET+(TIy) F R(t) — ¢, hence SET+(TIy) F ¢o. O

5.2.2 Comprehension
Definition 5.11 (Formulas E, ©'E, S, E+S).

(1) For all s,t € T¢, X € Vr the formulas s=t, t|, teN, teX are in X'E,
>'S, E, S (but R(t, X) is not).

(2) E (Elementary Formulas)
.Y EE,x €Vr = =0, (9V), (9AY), ()9, (Va)¢ €E
(3) ©'E (Positive Existential Elementary Formulas)
QY eXE xeV = (pV), (pAW), Br)pe XE

(4) S (Stratified Formulas)

o, eSS, x eV, XeVr =
=9, (6 V), (9 AY), (3z)9, (Vz)9, (3X)9, (VX)p €S

31

(5) ©'S (Positive Existential Stratified Formulas)

pYENS, zeV, X EVr = (6V), (9AY), Br)p, 3X)p € X'S

Remark 5.12. We have Y ECEand S EC XS C S.

Definition 5.13 (Comprehension Variables). For every formula ¢ € FE we
define a mapping 714 : Vr — V; such that for all X, Y € Vr we have

(1) 1,(X) doesn’t occur in ¢ (neither free nor bound).
(2) no(X) =mp(Y) = X =Y

Definition 5.14 (Comprehension Terms). For every formula ¢ € E we define
a mapping 7, : E x V; — TF such that

To(s=t,x) = inv(id, Az.(s,t))
To(t], z) :==inv(id, Az.(t, t))
To(tEN, x) := inv(nat, Az.t)
To(teX, x) == inv(nys(X), A\x.t)
To(—¥,) = neg(7y(¢), x))
To(1h V & @) i=dis(ry (¢,), (8, 7))
)

= con(Ty (¢, x), T4(€, x))

To((F2), z) = dom(7y(¢[p1z/2], 7)) ==
5((32)Y,) - {dom<7‘¢(2/)[pox/x,plx/z]7$)> x4z

76((V2)1,) = 75(=(32) (=),)
We usually write 7,4, for 7,(¢, z).

Lemma 5.15. Let ¢ € F& such that FVr(¢) = {Xo, ..., X,} then for z; ==
ne(Xi) we have

(1) FVi(rp2) = {20, -, 2} U (FVi(d)\{2})
(2) e X'E = YETFRE X) - R(1p0) A (V) (2ET40 < @)
(3) ¢€E = EET FR(Z X) — R(rp.) A (V&) (2€T4 0 —)
Proof. By induction on ¢. 0

Theorem 5.16 (Elementary Comprehension).

(1) SETFXE-C

32

(2) EET FE-C
Proof. Using A-abstraction ([5.3) on the term 7, , in lemma ([5.15). m

Definition 5.17 (Abbreviations).

v = inv(id, \z.{x, z))
e :=j(v, \z.x)

Lemma 5.18.
(1) SETER(v) A (V) (zév)
(2) YET+ ()+(VR)F R(e) A (Vo) (z€y < (y,z)Ee)

Definition 5.19 (Elimination of Type Variables). For every formula ¢ € S
we define a mapping €, : S x Vp — E such that

es(s=1t,X) =s=t
es(t], X) =1t|
es(teN, X) :=teN
es(t€Z, X) = (nys(2), t)yeX
(7, X) i= —ey (¥, X)
(¥ V& X) = e4(1, X) Vey(§, X)
(VW NEX) =¥, X) Neg(€, X)
es((Fr), X) := (Fr)ey (¢, X)
es((Va)h, X) =
es((32)0, X) =
es((V2), X) =

(Vz)es (1, X)
(Fn6(Z))ee (v, X)
(V16 (Z))eo (1, X)

We usually write €(¢, X) for €,(¢, X).

Lemma 5.20. Let ¢ € ©'S such that FVp(¢) = {Xo,...,X,} then for
2i = Np(X;) and Y :=€(¢,Y) and t = 1y .[e/ny(Y)] we have

(1) v e XE
(2) SET+()+(VR) F R(2, X) AR(e,Y) — (¥ < @)
(3) SET+(j)+(VR) FR(Z, X) — R(t) A (Vo) (zEL < o)

Proof.

33

(1) Immediate, by definition.
(2) By induction on ¢ using that ((z;,)€Y < z€X;) by (5.18]) and (5.9).
(3) A direct consequence of (5.15) and (1),(2).

O
Theorem 5.21 (Positive Existential Stratified Comprehension).
SET+(j)+(VR) - X'S-C
Proof. Using A-abstraction on the term t in lemma ([5.20)). O

Theorem 5.22. EET+(j)+(VR) is inconsistent, i.e. there is a formula ¢ €
FE such that
EET+(j)+(YR) ¢ < —¢

Proof. Let ¢ := (=(xz,z) € X) and r = 7y ,[e/ny(X)] then the formula
¢ := r&r does the job. We have

EET FR(e, X) — (Vz)(z€r <) by
SETHR(e, X) — (1 —(x,2)€e) by
SET+(j)+(VR) F ~z€x — —(z, z)Ee by

hence we deduce EET+(j)+(VR)F R(e, X) — (Vz)(x€r < —zexr). But we
also have X'ET+(j)+(VR) - R(e) and finally get EET+(j)+(YR) F ¢ < —¢ by
rules of inference and an instance of Ag,,,.;- O

5.2.3 Power Types
Theorem 5.23.
(1) SET+(VR)F Pow
(2) SETH-(VY)3X)Pow (X,Y) (i.e. S'ET+Pow is inconsistent.)
Proof.
(1) Let ¢ := ((3z)x =con(y, z)) then we prove:
SETHVYR)FR(y, Y) A R(7p0, X) — Pow (X,Y)

Let ¢ := con(y, z) then we have

34

SETHFR(y,Y) AR(z, Z) AR(h0, X) — t€X
SETHFR(y,Y) AR, Z)ANZCY — R(t,2)

hence we deduce that Z'ET proves
Ry, Y) ARz, Z) ANR(742,X) = (ZCY — (teX AR(L, Z)))
and YET+(VR) proves
Ry, Y) ANR(1p2, X) = VZ)(Z CY — (Fa)(aeX A R(a, Z)))
For the second part of Pow (X,Y") we have that X'ET proves
Ry, Y)ANR(Tp0, X) AR(a, Z) NaeX — ZCY
hence we get that X' ET+(VR) proves

Ry, Y) AR(1p0, X) — (Va)(aeX — (3Z2)(ZCY AR(a, Z)))

(2) This is a consequence of SETH Pow (X,Y) — R(v,Y). See [2] for a
proof.

]

35

6 Proof-Theoretic Analysis

In this last section we are going to relate systems of first order arithmetic
to systems of Explicit Mathematics. The relation we exhibit is based on the
formal concept of proofs, that is we compare the proofs of the two systems.
We take the following two standard approaches:

(1) Arithmetic statements (formulas) are translated into the systems of

Explicit Mathematics.

The translation is such that the statements

still have the same arithmetic meaning but now in the language of
Explicit Mathematics. We are then able to compare the two systems
by comparing the sets of provable arithmetic statements.

(2) We first define what it means for a function f : N — N to be definable in
the two systems. Now we can ask if a definable function is recognized
as being total within the system, i.e. if the system is able to prove
totality of the function. The two systems are then compared by their
sets of provably total functions.

6.1 Embeddings

A common way to find the provable arithmetic statements of a system, is by
embedding it into an appropriate system of arithmetic and vice versa.

6.1.1 Embedding Arithmetic into Explicit Mathematics

We follow the construction (5.1) in [5].

Definition 6.1 (Numerals m € 7€). We use the following notation:

n+1:= (sy'7) [0:=0]

Definition 6.2 (.V : Prim — TF).

r
Sn

I

\

ALy ..
ATy ..
AL ..
AT ..

f==S
T [=0Cs!
Ty f=Pr}
BN (N o) (g Ny) f = Comp™(hy g,
cxprec(gNzy . xy)(BNxy L xy,) f = Rec""'(h, g)

Definition 6.3 (N : 74 — TF).

(1) 0¥ :=0

36

;gm)

(2) ¥ € Vr such that 2V =y~ =z =y

(3) flto,. - tn)" i= NtV .. 1N
Definition 6.4 (.°: F» — Fe).

(1) (s=1)":= (" =1t")

(2) (=9)" :=—(¢")

(3) (¢V)" =" Ve

(4) (@A) =" Np*

(5) ((3z)¢)" := (Jz"eN)¢°

(6) ((Vz)9)" := (Vz"eN)¢®

Lemma 6.5. Let ¢ € F» and x € V4 then
x € FVy(¢) & 2" € FVi(¢°)
Definition 6.6 (. : FA — FF).
o {¢° FVi(9) = {}
zoVENA ... ANz,VEN — ¢ FVi(p) = {zo,..., 0}

Remark: There is an ambiguity in the ordering of g, ..., z, in the formula
PN
Lemma 6.7. Let ¢ € A%

Prim
ng, ...,k € N then we have

(1) BON F ¢"

(2) BON F f¥7. .. 755 = [f](no, - - - - g

(3) BON +(V-ly) b f¥e(NF1oN)
Proof.

be a defining equation, f € Primg.; and

(1) By the definition of f".

(2) We prove

f € Primyy = (Yno,...,n.)(BON F f"ng...m, = [f](no, ..., nx))

by induction on the function symbols f € Prim.

37

(3) We prove f € Primy,, = BON +(Mly)F f¥e(N¥1—N) by induction
on the function symbols f € Prim. We need value induction (V-ly) in
case [= Rec"'(g, h).

]

Lemma 6.8. For every quantifier free formula ¢ € QF and {z,...,xx} D
FVi(¢°) there is a closed term t € T€ such that

(1) BON +(V-Iy) = (Vz1€N) . .. (VzxeN)(¢° < txy ... 2, =0)
(2) BON +(V-Iy) - t€(NF—N)

Proof. We can inductively define terms ¢ := ¢, (on the complexity of ¢) such
that (1) is fulfilled, and we especially choose t, such that (2) holds. The
construction of ¢4 is similar to the usual construction of the function symbol

fs such that PRAF ¢ « fu(z1,...,24)=0. O]
Theorem 6.9 (Embedding Theorem I). For all ¢ € F* we have:

(1) PRAF¢ = BON +(V-ly) F ¢~

(2) PAF¢ = BON +(F-y)F oV

Proof. By induction on the length k of the proof TH* ¢. In case ¢ € QF-Ind
we use and an instance of Vly to prove BON +(\ly) = ¢~. O

6.1.2 Computation Sequences

For the embedding of Explicit Mathematics into arithmetic we need to trans-
late the application operation (z-y=z) and the element relation (z€Y’). In-
spired by the operator form in [5] we will find a primitive recursive function
leading to a suitable notion of computation sequence.

Definition 6.10 (* : CE UV, U Vr — T4). For every r € CE\{0} we fix a
number n, > 4 and we define 7 := 7 (72,,0) and 0:=0. For every r € ViU Vyp
we fix a variable z, € V4 and we define 7 := x,. The choice of numbers and
variables is such that 7 = § = r = s holds and for Vy := {# | r € V; U Vr}
we want that VA\VA contains countably many variables.

Definition 6.11 (Computation Sequence I). Let Fy,..., Fy € Prim; be
function symbols such that PRA proves:

(1) Fi(x) == (k, (@)1, (k, (@)1))

38

—~ ~— o~~~ s~

—

—~

— —~

— —

S —

S—

~ &

— SN—

S =

~—~ 07 —~ —
- 5 £ 23
3 = e
= -~ o~ ~ ~ -~
— > - —~ - o~ o~ —~
- \U — — — — o~ —
— —_ — o) -~ A~ ~
8 = = T T B ==
(ﬂ 5 _Z Q. —~ S n
—~ ~ — ~ — Q — -
o =) -~ =) —~ ~—~ —
8 — 1) [N & NN <
~) = = ~ Nyt g N
- S~— -~ -~ - -
= < -~ Q.
[7, /Cu\ X ~ < <F

T
=1 = ,
T
T
I =
€T
€T
T

~~ N I~ N N N

~— ~— ~— ~— ~— ~— ~— ~—

~~ Y~ I~ N I~ N~

~— ~— ~— ~— ~— ~— ~— ~—

—~
—~ \M
—
O
Al
Al =
O
—~ =)
— N~—
x N~—
S = T
— N—
ﬁ-/l~7 .A ‘A —
[« —~ —~
= — N i —~ i
== —~ I =
== o 8 8 SIS = =
—~ -~ ~ N — —
- i -~ iy i
(Tw\ (x\ \Ww/ \W/ — =) w» \MM/
S ‘o ~ - ~— S) ~
P ~ —~ —~ -~ ~ ~— (=3
) - e} e} c -~ —
= — S =) <O v o= (Z 0/
~ — —~ — () |m — c <
oz S & & -~ < \W/ < ~
—~ T — — — _Z - ~ =5
~ = - 5 & 4 = = 5 = 3
N —~ — L o o o — - —_ o~
\lm&/ = — [=) — — —_ \%/ gy Am —_ —
~ S N & & —~ =) o 8 —
~ - = S ~ ~ = — o ~ _—
PR - ~— ~ -~ ~—~ S - ~ ~ =
S o] \U - — — . 0. s - =} N
o = + 1 S s o~ S — -~ — = ~
-~ o o ~ — — —_ N by -~ —~ o
8 - = =) = — S & I
= ~ ~ - W~ ~ = - Ny
n — - - = z ~ - e ~ (x\
- -z oz D - - - < v < > ~
g 5 T T = = 2 2 8 v 8 E o
~ < Ny Ny = = .
& &
S~— N~—

=

x
=z
=z
=
=z
=z
=z
=
=z
=z

o T T T T e T s s T T e e

~— N~ N~ ~— N~ Y~ Y~ ~— ~ ~ @ ~ ~

e T s s s e e e s e e e s

~— N~ N~ ~— N~ Y~ Y~ ~ ~— ~ @ ~ ~ ~

39

Definition 6.12 (Computation Sequence II).

The interpretation of the functions G, (z,y, z) defined below is the following:
x is the element we want to compute, z is a computation sequence and y
is a witnessing sequence, i.e. (y); =0 is a witness that (z); is computable.
The computation sequence z can also contain elements (z); not computable
or not yet computed, indicated by the fact that (y); #0. The meaning of
Gn(z,y,z) =0 then is, that based on the intermediate computations (z);
(such that (y); =0) we can compute z in only one step.

Let G1,...,G7 € Primg and Hyq,..., H; € Prim be function symbols such
that PRA proves:

(1)

Gl(x7y7 Z) :30H1<|Z|7$>y72)
Hl(iv z,Y, Z) = (y)l /\ ((Z)Z = .CC)

Ga(w,y,2) = (x = ((5, (2)o,1, (2)o.2), ()1, (2)2)) A
JoT T2 Ha(|2], |2], |2], 2,9, 2)
Hy(i, g, ky e, y, 2) = Hi (4, ()0, (2)1, (2)i2), 4, 2) A
(5, {(2)o2, (2)1,(2)52), 9, 2) A
Hi(k, {(2)i2, (2)2, (2)2), ¥, 2)

Gs(z,y,2) = (x = ({con, (2)o1, (¥)o2), (2)1)) A
JoT Hs(|2], |2], 2,9, 2)
Hs(i, §,2,y,2) = Hi (i, ((x)o1, (2)1),y, 2) A
Hi(j, ((z)oz2, (¥)1), ¥, 2)

Ga(z,y,2) = (x = ((dis, (2)oa, (€)oz), (2)1)) A

E‘|0I—I4(|’Z’7 LY, Z)
H4(i7 z,y, Z) = Hl(iv <(SL’)0’1, (‘r)1>7 Y Z) Vv
Hl(i7 <(£L‘)072, ([L’)1>, Y, Z)

40

Gs(x,y,2) = (v = ((dom, ()01, (2)1)) A
E'IOI—I5<|Z|7 z,Y, Z)
Hs(i,w,y, z) = Hi (i, {(z)o1, {((z)1, (2)i1,1)), Y 2)

Ge(z,y,2) = (z = <<iﬁVa ()o,15 (2)o,2), (¥)1)) A
Fo31Hs(|2], |21, 2,9, 2)
He(i, §,2,y, 2) = Hi (i, ((2)o2, (2)1, (2)i2), Y5 2) A
Hi(j, (2o, (2)i2), Y, 2)

Gr(z,y,2)=(z = <G, (@)o0,15 (£)o2), ()10, (2)1,1))) A
J0F3eHq (|21, |21, 2], 2, v, 2)
Hy(i, j, k@, y, 2) = Hi(i, {(z)o,1, ()10), Y, 2) A
Hi(j,((z)o,2, (£)10, (2)j2), 4, 2) A
Hi(k, ((2)j2, (®)11), ¥, 2)

Definition 6.13 (Computation Sequence III).

The main part of this definition is the function H(n, z). This function assigns
to every computation sequence z its witnessing sequence H(n, z), i.e. we have
(H(n,z)); =0 only if (2); is computable from z in n steps (iterations).

Let Com, F', H € Prims and G € Prims be function symbols such that
PRA proves:

(1) F(i,2)=Fi((2)i) V...V Fn((2):)

(2) G(i,y,2)=F(i,2) V Go((2)iy,2) V ... V G2((2)i,9, 2)
(3) H(0,2)=F"(|z], 2)

(4) H(S(u),2)=G"(|z], H(u, 2), 2)

(5) Com(z, 2)=Gi(z, H(|2], 2),2)

41

Lemma 6.14.
(1) PRAF Hy(i,2, H(u,2),2) =0 < [(H(u,2));=0A (2); =z
(2) PRAF[(H(u, 2))i = 0N (H(u,2)); =O0A(2)i0 = (2)j0 A (2)i1 = (2)5u] —

Proof.
(1) By definition of Hj.

(2) (sketchy, informal) Let f, g € Prim be function symbols such that
PRA proves:

9(i,7,2) = = [(2)i0 = (2)0) A ((2)i1 = (2);0)] V ((2)i2 = (2);.2)
f(ihj? u, Z) = [(H<u7 Z))l /\ (H(uv Z))J] \/ g(i7j7 Z)

We can prove PRAF V1 f(|2], |2], %,) =0 by induction on u (and by
long and tedious argumentation about F' and G). Just mentioning two
peculiar cases (same informal reasoning also holds for j instead of 7):
In case |(2);| =2 and (2)i0 = (2),0 we get |(2);] = |(2);] by definition
of F and G, hence (2);2 = (2);2 = 2 by . In case i >|z| and
(H(u,2)); = 0 we have |z| = |H(u,2)| = (H(u,2)); = 0 by (3.16)),
hence j > |z| and (2); = |z| = (z); by (3.12).

]
Lemma 6.15.
PRAF Com({u,z,y),w)=0A Com({u,x,z),w) =0 - y==z

Proof. Because of (3.8) we have

PRAF Com({u,z,v),w)=0 <
(Fk)(k < |w| AN Hy(k, (u, z,v), H(Jw|,w),w) =0)

From (|6.14)) we get

PRAI_Hl(Za (u,x,y),H(|w|,w),w) :O A
Hl(j7 <U,LL’, Z>,H(|UJ|,U)>,U)> =0— Yy==

Extending the left side of this implication with (i < |w|Aj < |w|) and applying
twice the 3-rule of inference (in R*) we get the desired proof. O]

42

Lemma 6.16.
PRAF Com(z,2)=0— Com(z,y*2)=0A Com(z,z*y)=0
Proof. (sketchy) First we prove
PRAFu>vAGy(x,H(v,2),2)=0 — Gy(z, H(u, z),2) =0
Next we show by induction on u using that
PRAF G, (2, H(u,2),2)=0 — Gi(x, H(u,y x 2),y x 2) =0
Putting the pieces together knowing by that |y x z| > |z] we get
PRAF Com(x,z)=0 — Com(x,y * z)=0
Analogous for z * y instead of y * z.
6.1.3 Embedding Explicit Mathematics into Arithmetic
Definition 6.17 (o : Vy® — FA, 3: V)% — Fr).
(1) o(u,z,y) := (Iz)Com({u,x,y),z) =0
(2) B(x,y) := (3z)Com({y,x),z) =0
Where the variable z € VA\VA is different from z, y, u € V4.
Lemma 6.18.
PRAF o(u,z,y) ANa(u,x,z) »y==z

Proof. From (6.16]) we get

PRAF Com({u,z,y),v)=0A Com({u,z,z),w)=0—
Com({u, z,y),v*w)=0A Com({u,z,z),v*w)=0

Using this in conjunction with we get

PRAF Com({u,z,y),v)=0A Com({u,z,z),w)=0 - y==z
Applying twice the F-rule of inference (in R*) we get the desired proof.
Definition 6.19 (v : 7t x Vy — F*).

(1) teCEUV, = y(t,x) i =t=x

43

(2) Y(tr-te, x) == (F21)(F22) [V (t1, 21) AY(E2; 22) A @21, 22,)]
Where zq, 25 € VA\]A)A are different variables and z;, z, are different from .
Lemma 6.20.

(1) PRAEA(t,x) Ay(ty) =z =y

(2) PRAF~y(m,2) > =7
Proof. (1) By induction on ¢ and (2) by induction on n. O
Definition 6.21 (.* : F§ — F»).

(1) (s=1)":= (3z)(v(s,) Ay,)

(2) ¢l = () (¢,)

(3) teX* := (3z)(y(t,z) A B(x, X))

(4) R(t, X)" == F2)[v(t,2) A (V) (Bly,) < By, X))]

Where z, y € VA\VA are different variables.

Definition 6.22 (.* : FE — FA).

(1) For ¢ € F§ see .
(2) (=¢)" = ~(¢")
(3) (¢V) :=¢ Ve
(4) (¢AP) =¢" At
(5) ((Bx)¢)" == (3d)¢
(6) ((V2)g)" = (V&)¢
(7) (3X)g)" := (3X)¢"
(8) (VX)) == (VX)g¢*
Lemma 6.23. For all variables u, v, xo,...,Tn, Yo,---,Yn € Vi and all

formulas ¢ € FE such that y; € FT(x;,¢) we have
(1) u € FVi(¢) & i € FVa(¢")
(2) u e FTy(v,¢) & @ € FTy(0,¢")

44

(3) F o/ < ¢[y/7] ([§/] stands for [fo/%o, ... yu/%0])
Proof. By induction on ¢. Il

Lemma 6.24. For all variables U, V, Xo,..., X, Yo,...,Y, € Vr and
all formulas ¢ € FE such that Y; € FT(X;, ¢) we have that all statements

analogous to hold.
Lemma 6.25. For all terms s, t € T€ such thaty € FTx(Z,v(s, z)) we have
2 & = PRARA(LY) — ((slt/z],2) < (s, 2)ly/2])
Proof. By induction on s. O
Lemma 6.26. For all formulas ¢ € FE such that y € FTx(Z,¢*) we have
PRAE(t,y) — (9[t/x]" < ¢*[y/2])
Proof. By induction on ¢. O
Lemma 6.27.
(1) PRAF (zeN)*
(2) PRAF ((VzeN))) > (Vi)o*
(3) PRAF R(z)*
(4) PRAF (z€y)” < B(2,7)
(5) PRAF (zry=2)" < a(,7, 2)
Proof.
(1) (zeN)" = (Fy)hv(z,y) = Fy)z=vy.
(2) ((VzeN)¢)” = (Vi)((zeN)” — ¢*) and (1).

(3) R(@)" = (BX)R(z, X)) = (3X)B2) (@ =2 A (W)(B(y, 2) = Bly, X))
but we surely have that PRAFz =2 A (Vy)(6(y, 2) < 6y, 2)).

(4) (v€y) = .
(3X)[Cu)(=u A (Yw)(B(w, u) — Bw, X)) A Bv)(@=v A S, X))]
hence (z€y)" « (EIX)[(Vw)(ﬁ(w §) < B(w, X)) A B(z, X)] is provable
in PRA and finally PRAF (z€y)" < B(%,7).

(5) (zry=2)" = (Fu)[(Fv1)(Fva) (T =v1 AY=1v2 A (v1,09,u)) A\ Z=1)]

45

Theorem 6.28 (Embedding Theorem II).

For all ¢ € F& and for T = SET+(J)+(VR)+(VN)+(2'S-C)+(Pow) we have:
(1) T+H(FINF¢ = PAF¢
(2) T+(TI\)F¢ = PRA ¢

Proof. We have TF¢ = SET+(J)+(VR)+(YN)F ¢ by (5.21) and (5.23),
hence it is enough to prove the statement for T = S'ET+(J)+(VR)+(VN).
The proof is by induction on the length k of the proof 7" +* ¢.

(1) ¢ € ZET

(a) ¢ € Ap,,,
(b) ¢ S AEEqual
e o= (rx=ux).
¢* = (Jy)(z=y A T=y) hence I ¢*.
i (b: (x():y()/\---/\'rn:yn/\w —”?[37/5]) Wlthd} E‘,’t(l]E
Let £ = (xo=yo A ... N2, =1y,) then
F& — (Zo=9o N ... \NZTp=1,). We have
Fdo=1j0 A ... A gy =1 A" — ¢*[i/2] by (3.18), hence
FZo=vyo A ... \NTp=1n AN* — ®[y/Z]" by (6.23)). Finally we
get F& — (¢* — ¢[y/Z]") and hence F ¢*.
(C> (b € Azgucmt
o ¢ = (Yt/z] Ntl — (3z)v).
Let y € V4 be such that y & FVi((¢[t/x] — (3z)y)") and
y € FTx(Z,1*) then by we have
PRAE(t,y) — (V[t/x]" — ¢*[y/2]).
But (1" [y/] — (3)0") € Al gy hence
PRAF ~y(t,y) — (¥[t/xz]" — (3)¥*). Now we can apply the
F-rule in RA to get PRAFt]* — (¢Y[t/z]" — (Iz)yp*) and
finally PRAF ¢*.
o ¢ = ((Vx)p Nt] — 9[t/x]), similar to the previous case.
o (¢[Y/X] - (HX)¢)* € AAQuant
i ((VX)w - w[Y/X])* S AAQucmt
(d) (b S A%ef
e ¢ =r| with r € V; UCE, then ¢* = ((3x)7 =x) hence + ¢*

= ¢ e A

A
Prop

46

e o = ((st)l — s| At]) Suppose that z, y, z are differ-
ent variables in V4\V4. We have that ~(s,z) — (3z)y(s, z)
and v(t,y) — (Jy)v(t,y) are in AP, hence we can prove
Fy(s, 2)Ay(t, y)Aa(x,y, z) — s|*Atl*. Threefold application
of the 3-rule in R yields F ¢*.

o ¢ = (Y[t/T] — tol A ... At,]) with ¢ € FE, similar to the
previous case.

(e) ¢ € BON

o ¢ = ((ka)y=x). For t = (k, z, (k,2)) and ¢t = ((k, 2), 9,) we
have PRA Com(t, (t)), hence we can prove)

PRAF (y(k, 21) A y(, 22) A a(z1, 29, 23)) [k/ 21, B/ 22, (k, 2) / 23],
using Ap),..: we get PRAF y(kz, z3)[(k, Z) /23], then

PRAE (y(kz, z3) Ay(y, z4) Aoz, 24, 25)) (K, &)/ 23,9/ 24, T/ 25)
and PRAF v((kz)y, z3)[% /23] and finally

PRAE (v((kz)y, z3) A ~y(x, 23))[2/ 23] hence PRAF ¢*.

o ¢ = (szyl A (szy)z~(zz)(yz)). We can prove PRAF (szyl)”
similar to the previous case. We are going to show that
PRAE v((szy)z,v3) < v((x2)(yz),vs) holds, and by this we
get PRAF ((szy)z] V (22)(yz)| — (szy)z=(z2)(yz))", hence

PRAF ¢
1. PRAEy((szy)z, 1((22)(y2), vs).
Let t := ((5,Z,9), 2,v3) then we have

)7 02)
z,9), 2,
PRAF((szy)z, v3) — (Bw)Gi(t, H (jw], w), w),
PRAF G (t, H(,w),w) — Gao(t, H(u,w),w) and
PRAE Ga(t, wo, wy) — (Fv1)(Fv2)[G1 ({2, 2, v1), wo, wy) A
G1({(g, 2, v2), wo, w1) A
G1({v1, v2, v3), wo, w1)].
We have that PRAF G1((z, 2, v1), wo, w1) — y(x2z,v1) and
PRAF G1((g, 2, v2), wo, wy) — v(yz, va), hence we get
PRAF Gg(t, Wo, wl) —

(Fv1)(Fve)y(xz, v1) AY(yz, v2) Aa(vy, V2, v3), that
is PRAF Gy(t, wo, w1) — v((x2)(yz),v3). Putting all to-
gether yields PRAF v((szy)z,v3) — v((z2)(yz), v3).

2. PRAF~((szy)z,v3) < v((x2)(yz),v3). We have
PRAF Com(uy,w;) A Com(ug,ws) A Com(us, ws) —
Com(uy, (wy * we) * w3) A
Com(ug, (wy * we) * w3) A
Com(ug, (wy * we) * w3)
and for ¢ := ((5,Z,9), 2, v3) we have

47

PRAF Com((z, 2,v1),w) A Com((y, Z,ve),w) A
Com({vy,vq,v3),w) — Oom(t w * (t)) hence
PRAF Com((z, z,v1),w1) A Com((y, Z, 1)2> wy) A
Com({vy, v, v3), w3) — a((5,Z,7), 2,vs3). We have
PRAF y((22)(y2), vs) —
(Fv1)(Fvg) [(Fwy)Com({(z, 2, v1), wy1) A
(Fwq)Com((y, 2, ve), wa) A
(ng)C'om(@l,vg,vg) 3)] hence
PRAF ~v((z2)(yz),vs) — a((8,Z,9), Z,v3). Now because
PRAF (y(szy,vi) Av(z,092))[(S, &, §) /v1, Z/v2] We get
PRAF~((22)(y2), v3) — v((szy)2, v3).
e The next few cases are omitted, but can be proved similar to
the previous ones:

¢ = (po(x,y) =2 Ap(2,9) =)
0N A sye(N—N))

¢=(
6 = (Y2EN) (502 £0 A pu(s) = 7))

¢ = ((VxeN)(z #0 — pyxeN A sy(pyz) = 1))
¢ =

¢ (

reNAyeNNz =y — (dyuv)ry =u)
reNAYyeEN Az #y — (dyuv)zy =0)

Let w = ’ygl‘,Z) A (YY) (B(y, z) < By, X)) then
($[X/2])[X /2] = (32)([X /i]) and
((HAZ) X /2] — (32)(32)¢ are in A, hence from
=X =X A (W)(Bly, X) < Bly, X)) we get o

e 0= Rz, X)ANR(z,Y) - X=Y). R
We have R(z,U)" < (Vy)(8(y, %) < B(y,U)) and
F(X=Y)" < (Vy)(B(y, X) < B(y,Y)), hence from
= () (B(y, @) < Bly. X)) A (Fy)(B(y, 7) < Bly.Y)) —

(V) (By. X) < B(y,Y))

o~~~

we get F ¢*.
o X=Y AR(t,X)— R(t,Y), similar to the previous case.
(8) ¢ € Asre

An exemplary proof similar to the proofs of the following cases
isin (2) (¢ € J).

e ¢ = (R(nat) A (Vz)(zEnat < zeN))

o ¢ = (R(id) A (Vz)(z€id = (By)z = (y.9)))

48

¢ = (R(a) AR(b) — . | |
R(con(a, b)) A (Vz)(x€con(a,b) <> x€a A x€D))
¢ = (R(a) AR(b) — . . .
R(dis(a, b)) A (Vz)(xedis(a, b) « x€a V x€D))
¢ = (R(a) — R(dom(a)) A (Vz)(zedom(a) < (Fy)(,y)<a))
¢ = (R(a) — R(inv(a, f)) A (Vz)(xz€inv{a, f) « freca))

(2) o€

. 0= (Ra) A (VeCa)R(f2) = NGl YA
(Va)[z€ila, f) = (By)(32)(x = {y, 2) A yéa A 2 fy)

Fort := j(a, f) we have PRAF ~(t,y)[(, G, f)/y] hence PRAF (¢])".
We also have PRAF ((Vz)R(z))" by (6.27), hence because of (1)(c)
we get PRAFR(j(a, f))". Now let
V= ax€j(a, f) — (y)(F2)(x=(y,2) Nyca A z€fy) and
€ = B(#,v3) > (& = (v, 01) AB(u0, @) A (32) ({10, 2) A Bon, 2))
then we have that PRAF £[(Z)o/vo, (Z)1/v1, (, @, f)/va] < Y.
Similar to the second case in (1)(e), arguing about computation
sequences we can prove PRAF £[(2)/vo, (2)1/v1, (, @, f) /vs] hence
we get PRAF ¢*.

(3) ¢ € VR = PRAF ¢* by (6.27).

(4) ¢ € YN = PRAF ¢* by (6.27).
(5) ¢ € Fly

o ¢ = (Y[0/z] A (VzeN) (¢ — Ylsyz/z]) — (YzEN)Y).
Suppose y € Vy is such that y & (Y[syx/x])" and y € FTy(z,)
then by we have
PRAF (1(su,) — (blsur/a]" < ¢ [y/3])[S(@)/y]
and because of PRAF v (syx, y)[S(2)/y] we get
PRAF ¢[syx/x]" < *[S(Z)/z]. Similar reasoning leads to
PRAF9[0/x]" < ¢*[0/Z]. Using this and yields for
€ = 0 [0/2] A (V) (0" — ¥ [S(2)/4]) — (V)0
that we have PRAF £ < ¢*. But £ € F-Ind hence PA}- ¢*.

(6) gb < T—|N

o ¢ = (0eX A (VzeN)(zeX — syzeX) — (VzeN)zeX).
Analogous to the previous case with 1 := (x€X). Knowing that
PRAF 9" < B(i, X) we get PRAF & < ¢* for A
§ = P&, X)[0/2]A(V2)(B(2, X) — B(&, X)[S(2)/2]) — (Vi) B(, X).
But ¢ € X;-Ind hence PRA™ + ¢

49

(7) RE, Translation of the rules of inference:

. M follows trivially from (¢ —)" = ¢* — ¢* and the

corresponding rule (modus ponens) in RA.
. (Oly/] - vy
((Fz)d — o)’
We have (¢ly/z] — ¢)" = ¢ly/a]" — ¢
and Foly/x]" « ¢*[y/z].

Hence from T'=(dly/x] —)
and F(g[y/2]" — ¥7) — (#'[9/2] —)

we get T ¢ y/z] — Y.

is achieved in the following way:

Applying the corresponding rule in R* we get 7"+ (3z)¢p* — ¢*
hence 7"+ ((Fz)¢p — ¥)".

e The other rules of inference in RE are translated analogous to the
previous case.

]

6.2 Provable Arithmetic Sentences

Arithmetic statements are translated into systems of Explicit Mathematics
by the mapping (.)" from . The translation is such that the statements
still have the same arithmetic meaning but now expressed in the language
of Explicit Mathematics. We use this translation to compare systems of
Explicit Mathematics with systems of arithmetic by comparing their sets of
provable arithmetic statements.

Lemma 6.29. For terms t € T» with FVy(t) = {zo,...,x,} we have
PRAF (tY,y) < t[zo™ /a0, ..., 20N [20] =y

Proof. First we prove PRAF Y(f(2o,...,2m)",y) < f(zo™,...,2,") =y by
induction on the function symbols f. Next we prove the statement for general
terms by induction on t. Il

Lemma 6.30. For formulas ¢ € F* with FVy(¢) = {xo,...,x,} we have
PRAE (¢™)" < (¢lzo™ /@0, - .., 2" /7))

30

Proof. By induction on the formula ¢. O

Theorem 6.31 (Proof-Theoretic Equivalence).

Let T C Fe such that YET € T C SET+(J)+(VR)+(VN)+(Z'S-C)+(Pow)
then the following holds:

(1) The provable arithmetic sentences of T+(F-ly) and PA are exactly the
same, that is for closed ¢ € F* we have

PAFG & T+(Fly)k o

(2) The provable arithmetic lly-sentences of T+ (T-In) and PRA are exactly
the same, that is for closed ¢ € Iy we have

PRAFG & TH(Ty) o

Proof.

(1) We have = by and ((5.10)), and we get the other direction by (/6.28))
and (6.30).

(2) Similar to (1), but we additionally use that PRA ¢ = PRAF ¢ by
B.27).

O

6.3 Provably Total Functions

First we define what it means for a function f : N — N to be provably total
in systems of arithmetic and in systems of Explicit Mathematics, after this
we determine the class of provably total functions of some specific systems.

Definition 6.32 (Provably total functions of T' C F*). A function F' : N — N
is provably total in 7" C F* if there exists a formula ¢ € ¥; such that
{z,y} = FV4(¢) (z,y different variables) and the following holds:

(1) T+ (vz)(3y)¢
(2) TEFONAQz]y my==2 (z different from z,y)

3) (vneN) Tk on/z, F(n)/y]

Theorem 6.33. The provably total functions of PRA are exactly the func-
tions in PRIM,.

o1

Proof. First we show that all F' € PRIM; are provably total in PRA. If
F € PRIM, then there is an f € Prim; such that F' = [f]. We define
¢ = (f(z) = y) and show for this ¢ € 3 the properties in (6.32)):

(1) We have - ¢[f(x)/y] by (3.20). From (¢[f(z)/y] = (Fy)¢) € Abuan
we get - (Jy)o andywe };iarrlve at F (Vx)(él/y)¢ by (3.19) . ¢
)

(2) We can derive F (f(z)=y A f(z)=2 A f(x

bquary Dence from = f(z)=f(x) — (f(x)
and F f(z)= f(z) we deduce ¢ A ¢lz/y] —

() — y=2z) from
fla)=2z — y=2)

.N

(3) For arbitrary n € N we have PRAF f(7 by‘ and be-
cause [f](n) = F(n) this is the same as PRAI— gb[n/x F(n)/y].

Suppose we have F': N — N and ¢ = (32)¢ € ¥ satisfying (6.32). Now
we need to show F' € PRIM,. Because of PRAF (Vx)(3y)(3z)y we also
have that PRAF (Jy)(32)v, hence by there is a term ¢ € 7 such
that PRAF¢[(t)o/y, (t)1/2]. By there is a function symbol f € Prim;
such that PRAF (t)g = f(z), hence PRAF ¢[f(z)/y] by (3-18). For arbitrary
n € N we have PRAF ¢[f(x)/y][n/x], hence PRAF ¢[n/x, f(7)/y]. By
and (3.18) we get PRAF ¢[a/z, [f](n)/y], and using (3)+(2) yields
PRAFE [f](n) = F(n), hence (Vn € N) [f](n) = F(n) and finally F = [f] €
PRIM,;. O]

Definition 6.34 (Provably total functions of 7' C F¢). A function F': N — N
is provably total in T" C FF¥ if there exists a closed term ¢ € 7€ such that the
following holds:

(1) TFte(N—N)
(2) (VneN) Trta=F(n)

Theorem 6.35.
Let T C Ft such that SET € T C SET+(J)+(VR)+(YN)+(X'S-C)+(Pow)
then the provably total functions of T+(T-ly) and PRA are ezactly the same.

Proof. Because of we have that all functions in PRIM, are provably
total in BON +(Vly), hence provably total in T+ (T-ly) by (5.10). Next we
want to show that every provably total function in T+ (T-ly) is also provably
total in PRA. Suppose we have F': N — N and ¢t € 7t satisfying .
We need to show that there is a formula ¢ € ¥; such that ¢ and F' satisfy

definition (6.32)). For ¢ := (32)(y(t,2) A a(z, z,y)) we have

52

(1)

PRA "+ (Vz)(3y)1.

Because of 1} we have PRA - (te(N—N))" and by *-translation we
get PRA F (3y)y(z,y) — (By)y(t-z,y). We have PRA F (3y)y(z,y)
and hence get PRA™ (Jy)vy(t-z,y) by modus ponens. Now using that
PRA b ~(t-z,y) < 1 yields PRA F (Jy)¢ and finally PRA" F (Va) (3y)1b.

PRA o) A [z/y] — y=2.
Because of (6.18) and (/6.20)).

PRA +4[n/z, F(n)/y). L

Because of we have PRA" F (tn=F(n))" and by *-translation we
get PRA" F (3y)[(32) (3) (v(t, 2) Ay (M,) Aa(z, . y)) Ay (F (), y)] hence
PRA + (3z)(3y)[z=ni Ay = F(n) A (32)(7(t, 2) Aa(z, z,y))] because of
and finally PRA - [fi/z, F(n)/y].

By 1) we get the same for PRA instead of PRA+, that is

(1)
(2)
(3)

PRAF (Vz)(3y)y
PRAFY AYlz/y] = y==2

PRAF ¢[n/x, F(n)/y]

Finally there is a formula ¢ € 31 such that PRAF ¢ < 1, hence F is provably
total in PRA. O

33

7 Appendix

7.1 Primitive Recursive Functions

Definition 7.1 (Primitive Recursive Functions PRIM). For every function
symbol f € Prim,, we define the primitive recursive function [f] : N — N:

(1) [S](z) =z+1
(2) [Csi](@,...,mn) =1
(3) ﬂpr?ﬂ(xla 7'7771) = Tit1
(4) [Comp™(f, gl,...,gm)]](ml,...,mn) =
[[]] [[91]](531,) .-.,[[gmﬂ(xl,...,:xn))
() [[Recn+1()ﬂ(ml’ . 71:7170) _Hf]](xh 71:71)
(6) [Rec™ ™ (f, 9)(x1,..., 20,0+ 1) :=
[9l(zy, ..., 20, 2, [Rec™ T (f, 9) (21, . . ., 20, 7))

The set of all primitive recursive functions is PRIM = {[f] | f € Prim}.
We write PRI M, for the set of primitive recursive functions of arity n, that
is PRIM, = {[f] | f € Prim,}.

7.2 Free Variables and Substitution
7.2.1 Arithmetic
Definition 7.2 (Free Variables F'Vy : TA U FA — P(Vy)).
0 t=0
(1) FVa(t) := < {t} te Vs
Uicn FVa(si) t= f(s0,--,5n)

(2) FVa(s=t) := FVa(s) U FVa(t)

(3) FVa(=¢) := FVa(¢)

(4) FVa(o V) := FVa(d A) := FVa(¢) U FVa(1)
(5) FVa((3z)9) := FVa((Vr)o) := FVa(o)\{x}

o4

Definition 7.3 (Term Substitution 64).

05 - (TA U Fr) x (TA)" x Wt — (72 U Fr)
where V" = { (0, . . ., x,) € VA" (Vi < j)zi # 24}

For 0A(s, to, ..., tn, Xo, ..., T,) We write s[to/To, . .., tn/x,] or s[t/].

(2) f(sos---, sn)[t/Z] == f(solt/Z],. .., St/ 7))

(3) (r=s)[t/a] = (r[t/a] = s[t/])

(4) (=9)[t/7] == ~(g[t/])

(5) (¢ V)] == (¢[t/7] v ¥[t/])

(6) (¢ A)[E/T] = ([E/7] A [t/2])
P (Fy)(@lto/zo, - xifTiy .. tn/Sn]) Y=z
o L @lto/o, - wifaistafsal) y =

Definition 7.4 (Substitutable Terms FT, : V4 x Fr — P(T4)).
(1) FTy(z,s=t):=TA
(2) FTu(z,=¢) = FTy(x,9)
(3) FLa(z, ¢ Vo) = Fli(z, ¢ NY) = FTa(z, ¢) N FLa(z,)

TA y=2x
{teTr|yg FVA()} N FTu(z,¢) y#x

(5) FTA<$7 (Vy>¢> = FTA(I7 (Hy)¢)

(4) FTa(z, (3y)¢) = {

95

7.2.2 Explicit Mathematics
Definition 7.5 (Free Individual Variables FV; : 7€ U Fe — P(V))).
(1) rece = FVi(r):={}
(2) z €V = FVi(x):= {z}
3) Se{ LN, =} = FVi(S(to, ..., ta)) == U<, FVi(t:)
(4) Sef{e R}, = FVi(S(t, X)) == FVi(t)
(5) FVi(=¢) = FVi(¢)
(6) FVi(¢ V1) = FVi(¢ Ap) == FVi(¢) U FVi(y)
(7) FVi((32)¢) = FVi((Va)¢) := FVi($)\{z}
(8) FVi((3X)9) := FV((VX)¢) := FVi(¢)
Definition 7.6 (Free Type Variables FVy : F£ — P(Vr)).

(1) Se{l,N, =} = FVp(S(to,..., tn)) = {}

(2) Se{e, R}, = FVp(S(t,X)) :={X}

(3) FVr(=¢) := FVr(¢)

(4) FVr(oV) = FVr(g A) = FVr(¢) U FVr(¢)
(5) FVr((3x)9) := FVr((Vr)d) := FVr(¢)

(6) FVr((3X)9) := FVr((VX)9) := FVr(o)\{X}

Definition 7.7 (Term Substitution 6E).

0% (T€ U FE) x (Te)" x VIt — (T2 U Fe)
where V"= {(zq, ... 2,) € V" | (Vi < j)ay # ;)

For 6E(s, to, ..., tn, X0, ..., 2,) We write s[to/xo, ..., tn/xs] OF s[f/f]

- ti r=ua;
(1)1”€VIUCE=>T[tf]::{ =

56

(5) (¢ V)[t/T] == (o[t/Z] v Y[t/ 1))
(6) (¢ A)[E/E] := (o[t/Z] A [t/T])
P (Fy)(@lto/zo, - xifziy .. tn/Sn]) Yy =24
1) (Guieilere] {(aww[f/fn (Vi)y # o
P (Vy)(@lto/zo, - xifTiy .. tn/Sn]) Yy =24
) (el {<vy><¢[€/f1> iy # 1
(9) (BX))[t/7] == (3X)(g[t/1])
(10) ((YX)¢)[t/] := (VX)(¢[t/])

Definition 7.8 (Type Variable Substitution ©,,).
O, : FE x Vp" T x Yyt e
where Vr" = {(X,, ..., X,,) € Vo™ | (Vi < §)X; # X}
For O, (¢, Yy, ..., Yn, Xo, ..., X,) we write ¢[Yy/Xo, ..., Yn/X,] or ¢[Y /X].
(1) Se{l,N, =} = S(to,....tx)[Y/X] :=S(to, ..., 1)

(2) Se{g, R} = S(t,Z)D_}/X)] = {S(t Z) (Vi)Z # X,

) OIF /K] = ~(olP/X)
() 6V VI /X) = 6IF /K] A vlF/X)
) (6 A VI /X) = (6IF /K] v 017 /X))
(6) (@))7/X] = (E)(6IF/X)
(1) (40)6)7/X] = () (017 /X))
.: (32)(o[Yo/Xo, - - -, Xi/ X, o0, Y,/ X.]) Z=X;
) (EAR {(32)(«5[?/)?]) ()2 # X,
(VZ)(p[Yo/ X0, - - -, Xi/ Xy ooy Y,/ X.]) Z=X
O (A {<VZ><¢[Y/X']> ()2 £ X

Definition 7.9 (Substitutable Terms FTj : V; x Fe — P(T¢e)).
(1) ¢ € FE = FTy(x,¢) :=T¢
(2) FTi(z,~¢) == FTi(z,9)
(3) FTi(x,¢ V) = FTy(x,¢ Ap) := FTi(x,¢) N FTy(x,9)

TE y=uc
{teTe|yg FVi)}NnFTi(z,¢) y#x

(5) FT](Q?, (vy)¢) = FTI('T7 <ay)¢)

(4) FTi(z,(3y)¢) = {

We usually write FT(z, ¢) for FTi(z, ¢).

Definition 7.10 (Substitutable Type Variables FTy : Vr x € — P(Vy)).
(1) ¢ € FE = FTr(X,) :=Vr

(2) FTr(X,=¢) :== FTr(X, ¢)

(3) FTr(X, ¢V ¢) := FTr(X, ¢ A¢) = FTr(X, ¢) N FTr(X,)
(4) FTr(X, (32)9) = FTr(X, (V2)p) i= FTr(X, 0)

Vr Y=X

(5) FTr(X,(3Y)g) = FTr(X, (YY)g) := {FTT(X MY} Y #X

We usually write FT(X, ¢) for FTr(X, ¢).

28

References

1]

2]

[9]

[10]

Michael Beeson. Foundations of Constructive Mathematics. Springer,
1985.

Andrea Cantini and Pierluigi Minari. Uniform inseparability in explicit
mathematics. Journal of Symbolic Logic, 64(1):313-326, 1999.

Solomon Feferman. A language and axioms for explicit mathematics.
Lecture Notes in Mathematics, 450:87-139, 1975.

Solomon Feferman. Constructive theories of functions and classes. In
D. van Dalen M. Boffa and K. McAloon, editors, Logic Colloguium 78,
pages 159-224. North-Holland Publishing Company, 1979.

Solomon Feferman and Gerhard Jager. Systems of explicit mathematics

with non-constructive u-operator, Part 1. Annals of Pure and Applied
Logic, 65:243-263, 1993.

Solomon Feferman and Gerhard Jager. Systems of explicit mathematics
with non-constructive p-operator, Part II. Annals of Pure and Applied
Logic, 79:37-52, 1996.

David Jansen. Zu den Potenztypen in Expliziter Mathematik. Master’s
thesis, Universitat Bern, 1997.

Pierluigi Minari. Theories of types and names with positive stratified
comprehension. Studia Logica, 62:215-242, 1999.

Wilfried Sieg. Herbrand analyses. Archive for Mathematical Logic,
30:409-441, 1991.

A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: An
Introduction, volume 121 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1988.

39

Index

Vo, 14

3, 14 (3.7

<l’0, s 7$n>, 15
*, 15

J*5 15 (3.14)

€, 23

Tozs 32

Tg, 32

Mo, 32

€ps 39

e(¢,X), 33
Azx.t, 29

VN, 25

ViR, 25
3'S, 31
>'E, 31 .
TH ¢, 22
v[u:m)|, 26
eM, 26
c™, 26

M 26 (4.30)
YET,
, 38 (6.10)
Z+E—C,?5
2], 15
(x>yo,... . 15
(3.1
s

/\7 13 3.1})
v? 13 {

21, 9 (2.13)
>1-Ind, 9

T+, 9
v[u:m], 11
oM, 10
™, 10
[f], 54

7, 15

70, 15

1, 15

o[t/7], 56
oY /X], 57 (.9

Ag, 24
Agee, 24

A
AEqual’ 8 ')
?Jrimv 10 li

BON, 22

ce, 19
Ch_, 14
Chs, 13

ch, 22

e, 33 {3
E, 31 1)

E-C, 25 1)
EET , 24 (1.19)
Ext, 25

ﬂlN, 25
Fe, 20

60

Fe, 20
FA 7
F-Ind, 9
fix, 30
FTy, 58
FTy, 58
FT, 58
FTy, 55
FVy, 56
FVy, 56
FV,, 54

I, 26
Ie, 11
Ins, 15
Iter, 15

J, 24 9
k, 22 (1)

M, 26
M, 10
MA, 10
ME, 26
M,, 11
M,, 26

N, 22

N, 26
Neg, 14
noty, 30

Or, 13

Po, 22
P, 22
p, 22
P, 13
PA, 10

Py, 22 (1.14)
Pow, 25 (a.27)
Pow, 25 (1.27)

PRA, 10
PRIM, 54
Prim, 6
Proj, 15

QF, 9
QF-Ind, 9

R(E, X), 23

RE, 21
RM, 26
RA, 8 (2.11)
rec, 30
S-ly, 24
s, 22
S, 31
SE. 19
SA, 6
S, 22
Ty, 24
Toxs 32
T¢, 32
TE, 19
TA, 7
Vo, 24
v, 33
Vi, 19
Vr, 19 (4.1)
Wy, 38
Vy, 6
VM, 26
VM1

61

	Introduction
	Systems of Arithmetic
	Syntax
	Principles and Theories
	Induction Principles
	Primitive Recursive Arithmetic

	Semantics

	Preliminary Steps in Arithmetic
	Function Symbols
	Basic Functions
	Sequence Numbers

	Structural Properties
	Properties in General
	Properties for Theories

	Systems of Explicit Mathematics
	Syntax
	Principles and Theories
	Operations and Numbers
	Explicit Types
	Induction Principles
	Ontological Principles

	Semantics

	Some Aspects of Explicit Mathematics
	Applicative Theory
	Explicit Type Theory
	Induction
	Comprehension
	Power Types

	Proof-Theoretic Analysis
	Embeddings
	Embedding Arithmetic into Explicit Mathematics
	Computation Sequences
	Embedding Explicit Mathematics into Arithmetic

	Provable Arithmetic Sentences
	Provably Total Functions

	Appendix
	Primitive Recursive Functions
	Free Variables and Substitution
	Arithmetic
	Explicit Mathematics

