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Abstract

Deduction chains represent a syntactic and in a certain sense constructive method
for proving completeness of a formal system. Given a formula φ, the deduction chains
of φ are built up by systematically decomposing φ into its subformulae. In the case
where φ is a valid formula, the decomposition yields a (usually cut-free) proof of φ.
If φ is not valid, the decomposition produces a countermodel for φ. In the current
paper, we extend this technique to a semiformal system for the Logic of Common
Knowledge. The presence of fixed point constructs in this logic leads to potentially
infinite-length deduction chains of a non-valid formula, in which case fairness of
decomposition requires special attention. An adequate order of decomposition also
plays an important role in the reconstruction of the proof of a valid formula from
the set of its deduction chains.

1 Introduction

Modal logic may be employed to reason about knowledge. A necessity for this
arises for example when modeling systems of distributed agents, say computers
connected over a network. In this setting, an agent knowing some proposition φ
in state s is usually understood as φ holding in all states reachable from s in one
step and thus each agent’s knowledge may be modeled using a respective box
operator. Furthermore, through arbitrary nesting of boxes epistemic situations
of considerable complexity become expressible. However, it is well known that
any formula of modal logic can only talk about a finite portion of a model and
that this is not sufficient to express certain epistemic situations of particular
interest. One such example often encountered in problems of coordination
and agreement is common knowledge of a proposition φ, which can roughly
be viewed as the infinitary conjunction “all agents know φ and all agents know
that all agents know φ and . . .”. In order to express common knowledge in
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the setting of modal logic, a fixed point extension is required, yielding the so
called Logic of Common Knowledge which was introduced in [5] and studied
extensively from a model-theoretic point of view in [3]. A more proof-theoretic
study of this logic is given in [1] and [2].

In the current study we aim to deepen the proof-theoretic understanding of
Logic of Common Knowledge by giving an alternative completeness proof for
an infinitary proof system for this logic using the method of deduction chains.
Deduction chains represent a syntactic and in a certain sense constructive
method for proving completeness of a formal system. Given a formula φ, the
deduction chains of φ are built up by systematically decomposing φ into its
subformulae. In the case where φ is a valid formula, the decomposition yields
a (usually cut-free) proof of φ. If φ is not valid, the decomposition produces
a countermodel for φ. The method of deduction chains was first introduced
by Schütte in [9,11] and has been used mainly in the proof-theory of systems
of first and second order arithmetic. See [6,8] for applications of the method
in this field. In [10] Schütte extends deduction chains to modal logic and
we extend this approach again to accommodate fixed-point constructs. The
main additional difficulty is that the presence of fixed-points requires a fully
deterministic procedure for the decomposition of a given formula in order to
guarantee fairness in the case of an infinite deduction chain.

We begin our account by giving an introduction to the syntax and seman-
tics of Logic of Common Knowledge. In particular we will state the infinitary
proof system Tω

KC
n
, the completeness of which will be the main goal. In Sec-

tion 3 we introduce the concept of deduction chains for formulae of Logic of
Common Knowledge and prove some crucial properties required for the subse-
quent argument, chiefly fairness and saturation. We then proceed to prove the
so called principal semantic lemma, which represents one half of the deduction
chain argument. The principal semantic lemma secures the construction of a
countermodel in case of an infinite deduction chain. Section 5 takes care of
the other half of the argument, the so called principal syntactic lemma which
yields the construction of a proof from the set of all deduction chains of a
formula, if all of these chains are finite. Completeness is then obtained as a
corollary to the two principal lemmata. In the concluding section we give a
short overview of the main completeness argument.

2 Syntax and semantics

The language LnC for Logic of Common Knowledge comprises a set of atomic
propositions p, q, . . ., the propositional connectives ∧ and ∨, the epistemic op-
erators K1,K2, . . . ,Kn and the common knowledge operator C. Additionally,
we assume there is an auxiliary symbol ∼ to form complements of atomic
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propositions and dual epistemic operators. The formulae α, β, γ, . . . (possibly
with subscripts) of LnC are defined inductively as follows.

(1) All atomic propositions p and their complements ∼p are LnC formulae.
(2) If α and β are LnC formulae, so are (α ∨ β) and (α ∧ β).
(3) If α is an LnC formula, so are Kiα and ∼Kiα.
(4) If α is an LnC formula, so are Cα and ∼Cα.

Often we omit parentheses if there is no possible confusion. We can define the
negation ¬α of general LnC formulae α by making use of de Morgan’s laws and
the law of double negation.

(1) If α is the atomic proposition p, then ¬α is ∼α; if α is the formula ∼p,
then ¬α is p.

(2) If α is the formula (β ∨ γ), then ¬α is (¬β ∧ ¬γ); if α is the formula
(β ∧ γ), then ¬α is (¬β ∨ ¬γ).

(3) If α is the formula Kiβ, then ¬α is ∼Ki(¬α); if α is the formula ∼Kiβ,
then ¬α is Ki(¬α);

(4) If α is the formula Cβ, then ¬α is ∼ C(¬α); if α is the formula ∼ Cβ,
then ¬α is C(¬α);

We set

Eα := K1α ∧ · · · ∧ Knα.

The formula Kiα can be interpreted as “agent i knows that α”. Thus Eα means
“everybody knows that α”. We will also need iterations Emα for all natural
numbers m, formally defined by

E0α := >, E1α := Eα and Em+1α := EEmα,

where > is taken to refer to some trivially valid formula as for example p∨ ∼p
where p is an atomic proposition.

The semantics for logics of common knowledge is given by Kripke structures

M = (S,K1, . . . ,Kn, π)

where S is a non-empty set of worlds, K1, . . . ,Kn are binary relations on S
and π is a valuation function assigning to each atomic proposition a subset of
S. We say w is a world of M = (S,K1, . . . ,Kn, π), expressed by w ∈ M, if w
is an element of S. The truth set ‖α‖M of an LnC formula α with respect to
the Kripke structure M = (S,K1, . . . ,Kn, π) is defined by induction on the
complexity of α:
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‖p‖M :=π(p)

‖ ∼p‖M :=S \ ‖p‖M,
‖α ∨ β‖M := ‖α‖M ∪ ‖β‖M,
‖α ∧ β‖M := ‖α‖M ∩ ‖β‖M,
‖Kiα‖M := {v ∈ S : w ∈ ‖α‖M for all w with (v, w) ∈ Ki},

‖ ∼Kiα‖M :=S \ ‖Ki¬α‖M,
‖Cα‖M :=

⋂
{‖Emα‖M : m ≥ 1},

‖ ∼Cα‖M :=S \ ‖C¬α‖M.

Using these truth sets, we can express that a formula α is valid in a world w
of a Kripke structure M. This is the case if w ∈ ‖α‖M. We will employ the
following notation:

M, w |= α :⇐⇒ w ∈ ‖α‖M.
Next, we are going to present the semiformal Tait-style calculus Tω

KC
n

for com-

mon knowledge. Tait-style calculi [12,14] are one-sided Gentzen calculi which
derive finite sets of formulae. This kind of calculi is particularly well-suited for
the study of cut-elimination and meta-mathematical investigations. Tω

KC
n

has

been introduced by Alberucci and Jäger [1,2]. It incorporates an analogue of
the ω rule which permits the derivation of the formula Cα from the infinitely
many premises

E1α,E2α, . . . ,Emα, . . .

for all natural numbers m ≥ 1. The system Tω
KC

n
is called semiformal since,

as opposed to formal systems, it has basic inferences with infinitely many
premises [11].

The system Tω
KC

n
derives finite sets of LnC formulae which are denoted by

Γ,∆,Σ,Π, . . . (possibly with subscripts). Usually we will write for example
α, β,∆,Γ for the union {α, β}∪∆∪Γ. Moreover, if Γ is the set {α1, . . . , αm},
then we use the following abbreviations:

∨
Γ :=α1 ∨ · · · ∨ αm,
¬Γ := {¬α1, . . . ,¬αm},

¬KiΓ := {¬Kiα1, . . . ,¬Kiαm},
¬CΓ := {¬Cα1, . . . ,¬Cαm}.

The axioms and rules of Tω
KC

n
consist of the usual propositional axioms and

rules of Tait calculi, rules for the epistemic operators Ki with additional side
formulae ¬C∆ plus rules dealing with common knowledge. Note that Tω

KC
n

includes neither an induction rule nor a cut rule.

Definition 2.1 The infinitary Tait-style calculus Tω
KC

n
over the language LnC

is defined by the following axioms and inference rules:
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Γ, p,¬p (ID)

Γ, α, β

Γ, α ∨ β
(∨)

Γ, α Γ, β

Γ, α ∧ β
(∧)

¬C∆,¬Γ, α

¬C∆,¬KiΓ,Kiα,Σ
(Ki)

Γ,¬Eα

Γ,¬Cα
(¬C)

Γ,Ekα for all k ∈ ω
Γ,Cα

(Cω)

The infinitary system Tω
KC

n
is formulated over the finitary language LnC and

derives finite sets of formulae. It is infinitary only because of the rule (Cω) for
introducing common knowledge. This rule has infinitely many premises and
thus may give rise to infinite proof trees. For arbitrary ordinals α and finite
sets Γ of LnC formulae we define the derivability relation Tω

KC
n α

Γ as usual by
induction on α.

(1) If Γ is an axiom of Tω
KC

n
, then we have Tω

KC
n α

Γ for all ordinals α.

(2) If Tω
KC

n α′
i

Γi and α′i < α for all premises of a rule of Tω
KC

n
, then we have

Tω
KC

n α
Γ for the conclusion Γ of this rule.

We will write Tω
KC

n
` Γ if Tω

KC
n α

Γ for some ordinal α.

Now we have to mention some structural properties of Tω
KC

n
which will be

important in the sequel. The first two, weakening and inversion, are easily
shown by induction on the length of the involved derivations.

Lemma 2.2 (Weakening) If Tω
KC

n α
Γ and Γ ⊂ Γ′, then also Tω

KC
n α

Γ′.

Lemma 2.3 (Inversion)

(1) If Tω
KC

n α
Γ, φ1 ∧ φ2, then Tω

KC
n α

Γ, φ1 and Tω
KC

n α
Γ, φ2.

(2) If Tω
KC

n α
Γ, φ1 ∨ φ2, then Tω

KC
n α

Γ, φ1, φ2.

(3) If Tω
KC

n α
Γ,Cφ, then Tω

KC
n α

Γ,Ekφ for every k ∈ ω.

Lemma 2.4 If Tω
KC

n α
Γ,¬Ekφ for some k ∈ ω, then Tω

KC
n α+1

Γ,¬Cφ.

PROOF. We proceed by induction on k. The base case of k = 1 holds directly
by the rule (¬C). We thus assume Tω

KC
n α

Γ,¬Ek+1φ, which by iteration of
Lemma 2.3 means

Tω
KC

n α
Γ,¬K1E

kφ, . . . ,¬KnE
kφ (1)
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and show Tω
KC

n α+1
Γ,¬Cφ by induction on length α of the proof. The case of

α = 0 is trivial, thus assume that the claim holds for all α′ < α. We make a
case distinction as to the last rule applied to derive (1).

Case 1) The last rule was (Ki) for some 1 ≤ i ≤ n: Then there exists a for-
mula Kiξ ∈ Γ such that Tω

KC
n α

¬C∆1,¬Ki∆2,Kiξ,Σ and ¬KjE
kφ ∈ Σ for

all j 6= i. If we also have ¬KiE
kφ ∈ Σ, then the claim is trivial. Otherwise

we must have ¬KiE
kφ ∈ ¬Ki∆2 and by the premise of (Ki)

Tω
KC

n α′ ¬C∆1,¬∆2, ξ,

where α′ < α and ¬Ekφ ∈ ¬∆2. By the hypothesis of the outer induc-
tion Tω

KC
n α

¬C∆1,¬Cφ,¬∆′
2, ξ, where ¬∆′

2 = ¬∆2 \ {¬Ekφ}. There-

fore, applying (Ki) yields Tω
KC

n α+1
¬C∆1,¬Cφ,¬Ki∆

′
2,Kiξ,Σ, meaning

Tω
KC

n α+1
Γ,¬Cφ.

Case 2) The last rule was not (Ki) for any 1 ≤ i ≤ n: In this case the claim
follows directly by applying the hypothesis of the inner induction to the
premise of the respective rule. 2

Transfinite induction on the length of derivations yields the correctness of Tω
KC

n

with respect to the semantics for logics of common knowledge. That is we have
the following theorem.

Theorem 2.5 For all finite sets Γ of LnC formulae, all Kripke structures M
and all worlds w ∈M we have that

Tω
KC

n
` Γ =⇒ M, w |=

∨
Γ.

3 Deduction chains

In this section we are going to define the notion of deduction chain in the
context of Tω

KC
n
. Schütte [9] originally introduced deduction chains for classical

logic. Later, he showed in [10] how to extend this technique to the case of
intuitionistic and modal logics. We adapt his method and apply it to show
completeness of our infinitary fixed point logic.

In the sequel we will make use of the following notation for projections. If a
is a tuple (x, y), then a1 := x and a2 := y.

We start by defining labeled index trees. Such trees will provide the frame on
which the countermodel of a non-valid formula ψ is based. The set of worlds
will consist of all nodes of the labeled index trees of a deduction chain for ψ.
The accessibility relation for agent i will be given the successor relation σi.
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Definition 3.1 A labeled index tree is a set I of pairs (k, α), where k is in
{0, . . . , n} and α is a sequence of natural numbers such that I has the following
properties

(1) (0, (0)) ∈ I
(2) For every m ∈ ω we have that

(k, (α,m+ 1)) ∈ I for some k ∈ {1, . . . , n}

implies
(l, (α,m)) ∈ I for some l ∈ {1, . . . , n}.

(3) If there exists a k ∈ {1, . . . , n} with (k, (α, 0)) ∈ I, then there exists an
l ∈ {1, . . . , n} such that (l, α) ∈ I

(4) If (k, α) ∈ I and (l, α) ∈ I, then k = l.

Definition 3.2 Let I be a labeled index tree and a, b ∈ I. We define the
following binary relations on I:

a = b :⇔ a2 = b2
aσib :⇔ a = (j, α) and b = (i, (α, l))

for some sequence α, j ∈ {1, . . . , n} and l ∈ ω
a ≺ b :⇔ a2 is a prefix of b2
a 4 b :⇔ a = b or a ≺ b

a @ b :⇔ (a ≺ b) or

(a2 = (α, l) and b2 = (α, k) and l < k)

Definition 3.3 A literal is a formula of the form p or ∼ p where p is an
atomic formula. A formula φ is reducible if it is not a literal.

A deduction chain for a formula φ is built by decomposing φ. It is crucial for
our argument that this decomposition satisfies certain fairness conditions. In
particular, formulae of the form ∼Cα need special care. When we treat such a
formula for the first time, we create a new formula ¬E1α. When we deal with
it for the second time, then we create ¬E2α and so on. Moreover, if there is
another formula ∼ Cβ, we have to pay attention that we consider ∼ Cα and
∼ Cβ in alternation. In order to guarantee this, we need some bookkeeping
which is achieved using so-called iteration histories.

Definition 3.4 Let LnC|¬C denote the set of all formulae of the language LnC
which have the form ∼ Cβ for some β ∈ LnC. An iteration history is a finite
set E ⊂ LnC|¬C × ω × ω such that for any e, f ∈ E, we have e = f if e1 = f1.

Definition 3.5 Given an iteration history E, we define

domE := {α ∈ LnC|¬C;∃e ∈ E such that e1 = α}

7



Furthermore, for all α ∈ domE and k ∈ ω we define the following functions:

addE(∼Cβ, k) =

E ∪ {(∼Cβ, k, 0)} if ∼Cβ /∈ domE

E otherwise

lookupE(α) = (k, l) where (α, k, l) ∈ E
ordE(α) = (lookupE(α))1

degE(α) = (lookupE(α))2

maxE =

max{ordE(β); β ∈ domE} if domE 6= ∅
0 otherwise

minE =

min{ordE(β); β ∈ domE} if domE 6= ∅
0 otherwise

Definition 3.6 A formula sequence S is an n + 2-tuple (Γ,∆1, . . . ,∆n, E),
where Γ is a finite sequence of formulae of LnC, ∆i are finite sequences of
formulae of the form ¬α, where α ∈ LnC and E is an iteration history. We
will use ε to denote the empty sequence. The distinguished formula of S is
the rightmost reducible formula appearing in Γ, if such a formula exists. For
any finite sequence of formulae Λ, we denote by set(Λ) the set of all formulae
appearing in Λ. We define set(S) := set(Γ) ∪ domE,

set+(S) := set(S) ∪ {∼Kiβ;¬β ∈ set(∆1)} ∪ . . . ∪ {∼Knβ;¬β ∈ set(∆n)},

maxS := maxE, minS := minE and domS := domE. Further, for all formu-
lae β ∈ domS we set ordS(β) := ordE(β). Let FS be the set of all formula
sequences.

A sequence tree is a labeled index tree of formula sequences. That is we anno-
tate each node of the index tree with a formula sequence. In the construction
of a countermodel for a non-valid formula, the sequence at a node will be the
basis for defining the valuation function π at that node. In particular, π will
be defined such that if a formula ψ belongs to the annotation of a node, then
ψ will not hold at that node.

Definition 3.7 Let I be a labeled index tree. A sequence tree over I is a
function

R : I −→ FS

We adopt the notation Ra for R(a), where a ∈ I and define max(R) as
max{maxRa ; a ∈ I}. Furthermore, given a formula α and an iteration history
E we define the operation

it(R, α, E) =

(E \ {(α, k, l)}) ∪ {(α,max(R) + 1, l + 1)} if α ∈ domE

E otherwise
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(Γ,∆1, . . . ,∆n, E)
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1, . . . ,∆

′′
n, E

′′)

1 3

Fig. 1. A sequence tree

Definition 3.8 Let R be a sequence tree over I. Further, let J be the set
{a ∈ I; domRa 6= ∅}. We define the relation @∗ for all a, b ∈ J as follows:

a @∗ b :⇔ minRa < minRb
or [minRa = minRb

and a @ b]

The redex of a sequence tree is the formula that will be decomposed next.
It is basically found as follows. The rightmost reducible formula of the main
sequence of a node a of R is called distinguished formula of R at a (see
Definition 3.6). The redex of R is defined as the topmost distinguished formula
if such a formula exists; otherwise as the formula of the form ∼Cα (if such a
formula exists) which has to be treated next according to information given
by the iteration histories. If neither of these two conditions apply, then R has
no redex.

Definition 3.9 Let R be a sequence tree over I and a ∈ I. A formula φ is
called redex of R at a if one of the following two conditions holds:

(1) φ is the distinguished formula of Ra and a is @-minimal among all b ∈ I.
(2) there are no distinguished formulae in R, φ ∈ domRa, ordRa(φ) = minRa

and a is @∗-minimal in R.

Note that for a sequence tree R over I there is at most one a ∈ I and one
formula φ such that φ is the redex of R at a.

Definition 3.10 Let α be a formula, S = (Γ,∆1, . . . ,∆n, E) a formula se-
quence in a sequence tree R and Γ′ the sequence α,Γ. Define the operation

α ◦ S =


S if α is already in Γ,

(Γ′,∆1, . . . ,∆n, E) if α not in Γ and not of the form ∼Cβ,

(Γ,∆1, . . . ,∆n, addE(α,max(R) + 1)) if α not in Γ and

of the form ∼Cβ

Given a finite sequence Λ = (α1, α2, . . . , αn) of formulae and a formula se-
quence S, we write Λ ◦ S for α1 ◦ (α2 ◦ (. . . ◦ (αn ◦ S)))

Definition 3.11 A sequence tree R over I is called reducible, if R has a re-
dex. R is called axiomatic if there exists an a ∈ I and an atomic proposition p,
such that Ra = (Γ,∆1, . . . ,∆n, E) and both p and ∼p appear in Γ. Generally,
we say that a formula α appears in R at some a ∈ I if α ∈ set(Ra).
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A deduction chain is a sequence Θ0,Θ1,Θ2, . . . of sequence trees. If Θi is
axiomatic, then Θi is the last element of the deduction chain. Θi is also the
last element of the deduction chain if it does not contain a redex. If Θi is
not axiomatic and has a redex ψ at a, then ψ will be decomposed and a new
sequence tree Θi+1 is added to the deduction chain. Θi+1 is obtained from Θi

by removing ψ and adding

(1) ψ1, ψ2 at a if ψ = ψ1 ∨ ψ2,

((Γ, ψ1 ∨ ψ2,Σ),∆1, . . . ,∆n, E)

. . .

HHH
HHj





�

���
���

?

��SS

(ψ1, ψ1) ◦ ((Γ,Σ),∆1, . . . ,∆n, E)

. . .

HHH
HHj





�

���
���

?

Fig. 2. Type 1 reduction

(2) ψ1 or ψ2 at a if ψ = ψ1 ∧ ψ2,

��SS��SS

ψ1 ◦ ((Γ,Σ),∆1, . . . ,∆n, E)

. . .

HH
HHHj





�

��
����

?

ψ2 ◦ ((Γ,Σ),∆1, . . . ,∆n, E)

. . .

HH
HHHj





�

��
����

?

((Γ, ψ1 ∧ ψ2,Σ),∆1, . . . ,∆n, E)

. . .

HHH
HHj





�

���
���

?

Fig. 3. Type 2 reduction
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(3) ¬ψ1 at every successor of a (and remembering ¬ψ1 at a) if ψ =∼Kiψ1,

(Γ′,∆′
1, . . . ,∆

′
n, E

′)

��SS

¬ψ1 ◦ (Γ′,∆′
1, . . . ,∆

′
n, E

′)

((Γ,Σ),∆1, . . . , (¬ψ1,∆i), . . . ,∆n, E)
i

. . .

H
HHHHj





�

�
�����

?

((Γ,∼Kiψ1,Σ),∆1, . . . ,∆n, E)

. . .
iH

HHHHj





�

�
�����

?

Fig. 4. Type 3 reduction

(4) a new successor of a initialized with ψ1 (plus anything remembered at a)
if ψ = Kiψ1,

��SS

(ψ1,∆i) ◦ (ε, ε, . . . , ε, ∅)

((Γ,Σ),∆1, . . . ,∆n, E)
i

. . .

XXXXXXXXz
@

@@R





�

�
�����

?

((Γ,Kiψ1,Σ),∆1, . . . ,∆n, E)

. . .
@

@@R





�

���
���

?

Fig. 5. Type 4 reduction
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(5) Ekψ1 at a for some k if ψ = Cψ1,

. . .

��SS��SS

Ekψ1 ◦ ((Γ,Σ),∆1, . . . ,∆n, E)

. . .

H
HHHHj





�

�
�����

?

��
����





�

HH
HHHj. . .

((Γ,Cψ1,Σ),∆1, . . . ,∆n, E)

?

�
�����





�

H
HHHHj. . .. . .

E1ψ1 ◦ ((Γ,Σ),∆1, . . . ,∆n, E)
?

Fig. 6. Type 5 reduction

(6) ¬Ek+1ψ1 at a where k is the maximum number of iterations tried at a if
ψ =∼Cψ1.

��SS

?

¬Ek+1ψ1 ◦ (Γ,∆1, . . . ,∆n, {. . . , (∼Cψ1, p, k + 1), . . .})

. . .

HH
HHHj





�

��
����

(Γ,∆1, . . . ,∆n, {. . . , (∼Cψ1, l, k), . . .})

. . .

HH
HHHj





�

��
����

?

where p is maximal for the whole sequence tree.

Fig. 7. Type 6 reduction

These six cases will be made precise in the next definition.

Definition 3.12 Let R be a sequence tree. A deduction chain of R is a finite
or infinite sequence

Θ0,Θ1,Θ2, . . .

of sequence trees with the following properties:

(1) Θ0 = R
(2) If Θm is axiomatic or not reducible, then Θm is the last element of the

sequence.
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(3) If Θm is not axiomatic and reducible, then Θm+1 is derived from Θm in
the following manner:
Let Θm be the sequence tree S over index tree I and let φ be the redex of
S at a ∈ I. If φ /∈ LnC|¬C, then Sa = (Γ,∆1, . . . ,∆n, E) and Γ = Ω, φ,Ω′,
where Ω′ is a sequence of non-reducible formulae.
Case 1: φ = ψ1 ∨ ψ2

Then Θm+1 is the sequence tree T over I, where

Γ′ = Ω,Ω′

Ta = (ψ1, ψ2) ◦ (Γ′,∆1, . . . ,∆n, E)

Tb =Sb for all other b ∈ I

In this case we say that Θm has type 1 successor Θm+1.
Case 2: φ = ψ1 ∧ ψ2

Then Θm+1 is the sequence tree T over I, where

Γ′ = Ω,Ω′

Ta =ψ1 ◦ (Γ′,∆1, . . . ,∆n, E) or

Ta =ψ2 ◦ (Γ′,∆1, . . . ,∆n, E)

Tb =Sb for all other b ∈ I

In this case we say that Θm has type 2 successor Θm+1.
Case 3: φ =∼Kiψ

Then Θm+1 is the sequence tree T over I, where

Γ′ = Ω,Ω′

∆′
i =¬ψ,∆i

Ta = (Γ′,∆1, . . . ,∆
′
i, . . . ,∆n, E)

and for all b ∈ I such that aσib

Tb =¬ψ ◦ Sb

and Tc := Sc for all other c ∈ I.
In this case we say that Θm has type 3 successor Θm+1.

Case 4: φ = Kiψ
Let a = (l, α) and k be the smallest number such that (j, (α, k)) /∈ I for
any number j. Then Θm+1 is the sequence tree T over I ∪ {b}, where
b = (i, (α, k)) and

Γ′ = Ω,Ω′

Ta = (Γ′,∆1, . . . ,∆n, E)

Tb = (ψ,∆i) ◦ (ε, ε, . . . , ε, ∅)
Tc =Sc for all other c ∈ I

In this case we say that Θm has type 4 successor Θm+1.
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Case 5: φ = Cψ
Then Θm+1 is the sequence tree T over I, where

Γ′ = Ω,Ω′

Ta = Eiψ ◦ (Γ′,∆1, . . . ,∆n, E) for some i ∈ ω
Tb =Sb for all other b ∈ I

In this case we say that Θm has type 5 successor Θm+1.
If φ ∈ LnC|¬C, then we proceed as follows:
Case 6: φ =∼Cψ Then Θm+1 is the sequence tree T over I, where

Ta =¬Ekψ ◦ (Γ,∆1, . . . ,∆n, it(Θm,∼Cψ,E))

where k = degE(∼Cψ) + 1

Tb =Sb for all other b ∈ I

In this case we say that Θm has type 6 successor Θm+1.

Definition 3.13 Let φ be an LnC formula. A deduction chain of φ is a deduc-
tion chain of the sequence tree R which is given by the function mapping the
index tree {(0, (0)} to the formula sequence φ ◦ (ε, ε, . . . , ε, ∅).

4 Principal semantic lemma

The principal semantic lemma states that if there exists a deduction chain of
a formula ψ which is infinite or ends in a non-axiomatic sequence tree, then
there exists a countermodel for ψ. For this section we assume Θ0,Θ1,Θ2, . . . is
such a deduction chain and we let I0, I1, I2, . . . be the respective labeled index
trees.

The Kripke structure KΘ that will serve as countermodel is (roughly) con-
structed as Θ0 ∪ Θ1 ∪ Θ2 ∪ . . . where π(p) = {a;¬p appers at node a}. Fair-
ness in the construction of the deduction chain ensures that if φ ∈ a, then
KΘ, a 6|= φ. Finally we observe that ψ is an element of the root of KΘ.

The following three lemmata follow directly from the definition of deduction
chain.

Lemma 4.1 If a literal α appears in Θi at a ∈ Ii, then α also appears in
every Θj at a ∈ Ij for j ≥ i.

Lemma 4.2 For every Θi we have: There does not exist an a ∈ Ii such that
for some atomic formula p both p and ∼p appear in Θi at a.
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Lemma 4.3 For each Θk there exists an l ≥ k, such that Θl has no distin-
guished formulae.

Lemma 4.4 If R = Θk, ∼Cβ appears in R at a and ordRa(∼Cβ) is minimal
in R, then there exists an l ≥ k, such that ∼Cβ is the redex of Θl at a.

PROOF. By definition of deduction chains and the operations it and ◦ there
can only be one formula and one a ∈ Ik, such that ordRa(∼Cβ) is minimal in
Θk. By Lemma 4.3 there exists an l ≥ k, such that Θl has no distinguished
formulae. Then a is @∗-minimal in Θl and so ∼Cβ is the redex of Θl at a. 2

Lemma 4.5 For every Θk and m ≥ 0 there exists an l ≥ k, such that the
(finite) set

dΘl
(m) := {(∼Cβ, a);∼Cβ appears in Θl at a and ord(Θl)a(∼Cβ) ≤ m}

is empty.

PROOF. The claim is trivial if Θk does not contain any formulae of the form
∼Cα. We thus assume otherwise and prove the claim by induction on m.

m = 0: The set dΘk
(0) can only contain a pair (∼ Cβ, a), where we have

ord(Θk)a(∼ Cβ) = 0. Since ord(Θk)a(∼ Cβ) must be minimal in Θk by
Lemma 4.4 there exists an l ≥ k, such that ∼ Cβ at a is redex of Θl.
Then by the definition of deduction chains dΘl+

(0) = ∅.
m→ m+ 1: By the induction hypothesis there exists an l′ ≥ k, such that the

set

dΘl′
(m) := {(∼Cβ, a); Θl′ contains ∼Cβ at a and ord(Θl′ )a(∼Cβ) ≤ m}

is empty. Thus the set dΘl′
(m + 1) contains only the pair (∼Cγ, a) such

that ord(Θl′ )a(∼Cγ) = m + 1. Since ord(Θl′ )a(∼Cγ) is minimal in Θl′ by
Lemma 4.4 there exists an l′′ ≥ l′ such that ∼ Cγ at a is the redex of
Θl′′ . Therefore, again by the definition of deduction chains dΘl′′+

(m+ 1)
must be empty.

Thus we have shown the claim for all m ≥ 0. 2

Lemma 4.6 (Fairness) If a reducible formula φ appears in Θk at b ∈ Ik,
then there exists an l ≥ k, such that φ is the redex of Θl at b ∈ Il.

PROOF. Due to the definition of redex, we must distinguish the following
two cases:
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Case 1) φ is not of the form ∼Cψ: Then the claim follows by Lemma 4.3.
Case 2) φ is of the form ∼Cψ: Then the claim follows by Lemma 4.5. 2

Definition 4.7 Define the Kripke structure KΘ = (SΘ,K1, . . . ,Kn, π) as fol-
lows:

(i) SΘ :=
⋃
Ii

(ii) for each a ∈ SΘ define Ba :=
⋃

set(Ri
a), where Ri := Θi

(iii) π(p) := {a ∈ SΘ;¬p ∈ Ba}, for each atomic formula p
(iv) Ki := σi, for each i ∈ {1, . . . , n}

We write a ∈ KΘ for a ∈ SΘ.

Lemma 4.8 (Saturation) Let a ∈ KΘ.

(1) If φ ∨ ψ ∈ Ba, then φ ∈ Ba and ψ ∈ Ba

(2) If φ ∧ ψ ∈ Ba, then φ ∈ Ba or ψ ∈ Ba

(3) If Kiφ ∈ Ba, then there exists a node c ∈ KΘ, such that aKic and φ ∈ Bc

(4) If ∼Kiφ ∈ Ba, then ¬φ ∈ Bc for all c ∈ SΘ such that aKic.
(5) If Ekφ ∈ Ba for some k ∈ ω, then there exists a c ∈ SΘ, reachable in k

steps from a such that φ ∈ Bc

(6) If ¬Ekφ ∈ Ba for some k ∈ ω, then ¬φ ∈ Bc for all c ∈ SΘ reachable in
k steps from a.

(7) If Cφ ∈ Ba, then Ekφ ∈ Ba for some k ∈ ω
(8) If ∼Cφ ∈ Ba, then ¬Ekφ ∈ Ba for all k ∈ ω

PROOF. All claims are consequences of Definition 3.12, Definition 4.7 and
Lemma 4.6. 2

Lemma 4.9 For every formula φ ∈ LnC and every a ∈ SΘ

(1) If φ ∈ Ba, then KΘ, a 2 φ
(2) If ¬φ ∈ Ba, then KΘ, a � φ

PROOF. We prove the claims by induction on the structure of φ.

φ = p:

(1): p ∈ Ba
Lemma 4.2

=⇒ ∼p /∈ Ba =⇒ a /∈ π(p) =⇒ KΘ, a 2 p
(2): ¬p ∈ Ba =⇒ a ∈ π(p) =⇒ KΘ, a � p

φ = ∼p: Dually to the previous case.
φ = ψ1 ∧ ψ2:

(1): ψ1 ∧ ψ2 ∈ Ba
Lemma 4.8

=⇒ ψ1 ∈ Ba or ψ2 ∈ Ba
ind. hyp.
=⇒ KΘ, a 2 ψ1 or KΘ, a 2 ψ2 =⇒ KΘ, a 2 ψ1 ∧ ψ2
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(2): ¬(ψ1 ∧ ψ2) ∈ Ba
Lemma 4.8

=⇒ ¬ψ1 ∈ Ba and ¬ψ2 ∈ Ba
ind. hyp.
=⇒ KΘ, a � ψ1 and KΘ, a � ψ2 =⇒ KΘ, a � ψ1 ∧ ψ2

φ = ψ1 ∨ ψ2: Dually to the previous case.
φ = Kiψ:

(1): If Kiψ ∈ Ba, then by Lemma 4.8 there exists a c ∈ SΘ such that aKic
and ψ ∈ Bc. Thus by induction hypothesis there exists a c ∈ SΘ such
that aKic and KΘ, c 2 ψ. Therefore KΘ, a 2 Kiψ

(2): If ¬Kiψ ∈ Ba, then by Lemma 4.8 ∼ψ ∈ Bc for all c ∈ SΘ such that
aKic. Thus by induction hypothesis KΘ, c � ψ for all c ∈ SΘ such
that aKic and therefore KΘ, a � Kiψ.

φ =∼Kiψ:
(1): If ∼ Kiψ ∈ Ba, then by the previous case KΘ, a � Kiψ. Thus also

KΘ, a 2 ¬Kiψ.
(2): ¬ ∼ Kiψ is the formula Kiψ. Thus if ¬ ∼ Kiψ ∈ Ba, then by the

previous case KΘ, a 2 ψ. Therefore KΘ, a �∼Kiψ.
φ = Cψ:

(1): If Cψ ∈ Ba, then by Lemma 4.8 Ekψ ∈ Ba for some k ∈ ω. Then,
again by Lemma 4.8 there exists a c ∈ SΘ which is reachable from a
in k steps and ψ ∈ Ba. Thus by induction hypothesis there exists a
c ∈ SΘ which is reachable from a in k steps and KΘ, c 2 ψ. Therefore
KΘ, a 2 Ekψ and thus also KΘ, a 2 Cψ.

(2): If ∼ Cψ ∈ Ba, then by Lemma 4.8 ¬Ekψ ∈ Ba for all k ∈ ω. Thus
by induction hypothesis KΘ, a � Ekψ for all k ∈ ω and therefore
KΘ, a � Cψ.

φ =∼Cψ:
(1): If ∼Cψ ∈ Ba, then by the previous case KΘ, a � Cψ, thus trivially

KΘ, a 2 ¬Cψ.
(2): ¬ ∼Cψ is the formula Cψ. Thus by the previous case, if ¬ ∼Cψ ∈ Ba,

then KΘ, a 2 Cψ. Therefore, trivially KΘ, a �∼Cψ

This concludes the proof of (1) and (2) for all cases and thus the claim is
shown. 2

An immediate consequence of the previous lemma is the principle semantic
lemma stated as follows.

Lemma 4.10 (Principle semantic lemma) Let φ be a formula of LnC. If
there exists a deduction chain of φ which does not end with an axiomatic
sequence, then we can find a Kripke structure M and a world w such that
M, w 6|= φ.
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5 Principal syntactic lemma

The principle syntactic lemma says that if all deduction chains for a formula
ψ end in axiomatic sequence trees, then there exists a proof of ψ in Tω

KC
n
.

Hence, together with the principal semantic lemma we obtain either a proof
or a countermodel for each formula ψ of LnC. This amounts to a (constructive)
completeness result for Tω

KC
n
.

The principle syntactic lemma is proven along the following lines.

(1) Code each sequence tree R in the deduction tree (consisting of all deduc-
tion chains) of ψ as a set of formulae CR.

(2) Show that Tω
KC

n
` CL for each leaf L of the deduction tree.

(3) Show by induction along the Kleene-Brouwer ordering of the deduction
tree that Tω

KC
n
` CR if Tω

KC
n
` CSi for all successors Si of R.

(4) Finally, observe CR = ψ for the root R of the deduction tree.

However, in order to prove step (3) of the above procedure, we need a series
of lemmata. They state that (in certain cases) the rules of Tω

KC
n

may also be
applied deep inside LnC formulae. These lemmata are shown first.

Definition 5.1 We extend the alphabet of the language LnC by a propositional
variable x. Let LnC,x be the set of all formulae over this new alphabet. Let φ
and ψ be formulae in LnC,x. φ[ψ] shall denote the formula which results from

substituting all occurrences of x in φ with ψ. Furthermore, we define L̂nC to be
the set of all formulae of LnC which are of the form p, ∼p, Kiβ, ∼Kiβ or ∼Cβ
for some β in LnC. Let disL̂nC denote the set of disjunctions over elements of
L̂nC.

Definition 5.2 Let # denote the natural sum operation on ordinals. For all
formulae α ∈ LnC, we inductively define a complexity measure comp(α) as
follows:

1. comp(α) = 1 for all α ∈ L̂nC
2. comp(α ∧ β) = 1 # comp(α) # comp(β)
3. comp(α ∨ β) = 1 # comp(α) # comp(β)
4. comp(Cα) = ωcomp(α)

Furthermore, given a finite set Γ = {γ1, . . . , γl} ⊂ LnC, we define

comp(Γ) = comp(γ1) # . . . # comp(γl).

Remark 5.3 By Definition 5.2 we have comp(Ekξ) < comp(Cξ) for any for-
mula ξ of LnC and any k ∈ ω. Furthermore, for any finite Γ ⊂ LnC we have
comp(Γ) ≥ |Γ|. In particular, we have comp(Γ) = |Γ| if Γ ⊂ L̂nC.

18



Definition 5.4 We inductively define the subsets Ak
x of LnC,x as follows:

A0
x := {φ ∈ LnC,x;φ = ψ ∨ x and ψ ∈ LnC}

Ak+1
x := {φ ∈ LnC,x;φ = ψ ∨ Kiδ[x] where ψ ∈ disL̂nC and δ[x] is in Ak

x}

Furthermore we define Ax as
⋃Ak

x and for φ ∈ Ax depth(φ) as the least k,
such that φ ∈ Ak

x .

Lemma 5.5 Let A be a formula in Ax and Γ be a finite subset of L̂nC. The
following implications hold:

1. If Tω
KC

n
Γ, A[Ekφ] for every k ∈ ω, then Tω

KC
n

Γ, A[Cφ]

2. If Tω
KC

n
Γ, A[φ] and Tω

KC
n

Γ, A[ψ], then Tω
KC

n
Γ, A[φ ∧ ψ]

3. If Tω
KC

n
Γ, A[∼Cφ ∨ ¬Ekφ] for some k ∈ ω, then Tω

KC
n

Γ, A[∼Cφ]

PROOF. All three clauses are shown by induction on d := depth(A).
Clause 1: The base case of d = 0 follows directly by Lemma 2.3 and the rule
(Cω). We thus consider the induction step and assume that

Tω
KC

n αk
Γ, ψ ∨ Kiδ[E

kφ]

for all k ∈ ω where depth(δ) = d. Therefore, by iterated applications of Lemma
2.3 and the fact that ψ ∈ disL̂nC we have

Tω
KC

n αk
Γ, ψ1, . . . , ψl,Kiδ[E

kφ] (2)

for all k ∈ ω and suitable ψ1, . . . , ψl. We claim that

Tω
KC

n
Γ, ψ1, . . . , ψl,Kiδ[Cφ] (3)

and distinguish two cases:

(i) For some m ∈ ω Kiδ[E
mφ] was obtained by weakening in the derivation

of (2), say after some βm ≤ αm.
(ii) For all k ∈ ω Kiδ[E

kφ] was obtained by an application of the rule (Ki) in
the derivation of (2), each one say after βk ≤ αk respectively.

In case (i) we may instead conclude Kiδ[Cφ] after βm and due to the fact that
Γ, ψ1, . . . , ψl ⊂ L̂nC we may use the same inferences henceforth to conclude
Tω

KC
n

Γ, ψ1, . . . , ψl,Kiδ[Cφ].

In case (ii) by the premise of the rule (Ki) we have for each k ∈ ω

Tω
KC

n
¬C∆k

1,¬∆k
2, δ[E

kφ] (4)
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where ¬C∆k
1 ⊂ L̂nC and ¬∆k

2 ⊂ LnC are suitable finite sets of formulae. Now
define Γ′ := Γ, ψ1, . . . , ψl, Γ′|¬C := {∼Cξ ∈ Γ′} and Γ′|¬Ki

:= {ξ;∼Kiξ ∈ Γ′}.
By the fact that Γ′ ⊂ L̂nC the following two statements hold for every k ∈ ω:

¬C∆k
1 ⊂ Γ′|¬C (5)

¬∆k
2 ⊂ ¬Γ′|¬Ki

(6)

Clearly, we also have

Γ′|¬C ⊂ Γ′ (7)

¬KiΓ
′|¬Ki

⊂ Γ′ (8)

By Lemma 2.2, (4), (5) and (6) we get

Tω
KC

n
Γ′|¬C,¬Γ′|¬Ki

, δ[Ekφ] (9)

for every k ∈ ω. We show that

Tω
KC

n
Γ′|¬C,¬Γ′|¬Ki

, δ[Cφ] (10)

by induction on γ := comp(¬Γ′|¬Ki
). As the base case we have γ = |¬Γ′|¬Ki

|
by Remark 5.3. But in this case ¬Γ′|¬Ki

is either empty or a subset of L̂nC.
Therefore, the claim follows by induction hypothesis of the outer induction.
Now assume that the claim holds for all γ′ < γ. Then there exists a set Σ ⊂ LnC
and formulae ξ1, ξ2, ξ such that one of the following three cases holds

(a) Σ, ξ1 ∧ ξ2 = ¬Γ′|¬Ki
and comp(ξ1), comp(ξ2) < comp(ξ1 ∧ ξ2)

(b) Σ, ξ1 ∨ ξ2 = ¬Γ′|¬Ki
and comp(ξ1), comp(ξ2) < comp(ξ1 ∨ ξ2)

(c) Σ,Cξ = ¬Γ′|¬Ki
and by Remark 5.3 comp(Ekξ) < comp(Cξ) for all k ∈ ω.

Case (a): By (9) and Lemma 2.3 we have

Tω
KC

n
Γ′|¬C,Σ, ξ1, δ[E

kφ] and

Tω
KC

n
Γ′|¬C,Σ, ξ2, δ[E

kφ]

for all k ∈ ω. Thus by the induction hypothesis of the inner induction

Tω
KC

n
Γ′|¬C,Σ, ξ1, δ[Cφ] and

Tω
KC

n
Γ′|¬C,Σ, ξ2, δ[Cφ]

and again by the rule (∧) we obtain the claim.
Case (b) and case (c) are treated in analogous ways, using Lemma 2.3. From
(10) using (Ki), we obtain Tω

KC
n

Γ′|¬C,¬KiΓ
′|¬Ki

,Kiδ[Cφ]. With (7), (8) and

Lemma 2.2 we conclude Tω
KC

n
Γ′,Kiδ[Cφ]. Thus (3) holds in both cases (i)

and (ii). Then, by an iterated application of (∨) Tω
KC

n
Γ, A[Cφ] follows and

this clause is shown.
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Clause 2: The base case of d = 0 follows by Lemma 2.3, the rule (∧) and finally
an application of the rule (∨). The induction step is analogous to clause 1 only
that in this case we are dealing with just two premises instead of infinitely
many.

Clause 3: The base case of d = 0 follows by Lemmata 2.3 and 2.4. We therefore
consider the induction step and assume that Tω

KC
n α

Γ, ψ ∨ Kiδ[∼Cφ ∨ ¬Ekφ],

where depth(δ) = d. Therefore, by iterated applications of Lemma 2.3 and the
fact that ψ ∈ disL̂nC we have

Tω
KC

n α
Γ, ψ1, . . . , ψl,Kiδ[∼Cφ ∨ ¬Ekφ] (11)

For suitable ψ1, . . . , ψl. We claim that

Tω
KC

n
Γ, ψ1, . . . , ψl,Kiδ[∼Cφ] (12)

and distinguish two cases:

(i) Kiδ[∼Cφ∨¬Ekφ] was introduced by weakening in the derivation of (11),
say after some β < α.

(ii) Kiδ[∼Cφ∨¬Ekφ] was obtained by the rule (Ki) in the derivation of (11).

In case (i) we may instead introduce Kiδ[∼Cφ] with weakening after β and due
to the fact that Γ, ψ1, . . . , ψl ⊂ L̂nC we may use the same inferences henceforth
to conclude the claim. In case (ii) we have Tω

KC
n

¬C∆1,¬∆2, δ[∼Cφ ∨ ¬Ekφ]
for suitable sets ∆1 and ∆2. Then by induction hypothesis and an identical
argument to the corresponding case in clause 1 we obtain

Tω
KC

n
¬C∆1,¬∆2, δ[∼Cφ].

The rule (Ki) yields Tω
KC

n
¬C∆1,¬Ki∆2,Kiδ[∼ Cφ] Then by the fact that

Γ, ψ1, . . . , ψl ⊂ L̂nC, we may use the same inferences again to arrive at the
claim. Thus (12) holds in both cases (i) and (ii). Therefore, by an iteration of
the rule (∨) we arrive at Tω

KC
n

Γ, A[∼Cφ] and the clause is shown. 2

Definition 5.6 Let ψ1, . . . , ψl be formulae of LnC. We inductively define the
subsets Bkx,ψ1,...,ψl

of LnC,x as follows:

B1
x,ψ1,...,ψl

:= {φ ∈ LnC,x;φ = ψ ∨ ¬Kiψ1 ∨ . . . ∨ ¬Kiψl ∨ Kix and ψ ∈ LnC}
Bk+1

x,ψ1,...,ψl
:= {φ ∈ LnC,x;φ = ψ ∨ Kiδ[x] where ψ ∈ disL̂nC and

δ[x] is in Bkx,ψ1,...,ψl
}

Furthermore we define Bx,ψ1,...,ψl
as

⋃Bkx,ψ1,...,ψl
and for φ ∈ Bx,ψ1,...,ψl

depth(φ)
as the least k, such that φ ∈ Bkx,ψ1,...,ψl

.
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Lemma 5.7 Let B be a formula in Bx,ψ1,...,ψl
and Γ be a finite subset of L̂nC.

If Tω
KC

n
Γ, B[φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl], then Tω

KC
n

Γ, B[φ].

PROOF. We prove this claim by induction on d := depth(B).

d = 1: We thus have Tω
KC

n α
Γ, ψ∨¬Kiψ1∨ . . .∨¬Kiψl∨Ki(φ∨¬ψ1∨ . . .∨¬ψl)

and with iterated applications of Lemma 2.3

Tω
KC

n α
Γ, ψ,¬Kiψ1, . . . ,¬Kiψl,Ki(φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl). (13)

We show that Tω
KC

n
Γ, ψ,¬Kiψ1, . . . ,¬Kiψl,Kiφ by induction on α. The

base case of α = 0 is trivial. Therefore, we assume that the claim holds for
all α′ < α and distinguish cases, as to whether or not Ki(φ∨¬ψ1∨. . .∨¬ψl)
was the distinguished formula of the last inference used to derive (13). If
it was the distinguished formula, then we have

Tω
KC

n
∆,¬ψ1, . . . ,¬ψl, φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl

for some suitable set ∆. Hence, with an iteration of Lemma 2.3 we obtain
Tω

KC
n

∆,¬ψ1, . . . ,¬ψl, φ and thus applying (Ki) we arrive at the claim.

If Ki(φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl) was not the distinguished formula, then we
distinguish further cases for the last rule applied to obtain (13). In the
cases of the rules (∧), (∨), (Cω) and (¬C) we simply use the induction
hypothesis of the inner induction on the premise and apply the same
rule again. In the case of rule (Kj) (for any 1 ≤ j ≤ n) we see that
Ki(φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl) can only have been obtained with weakening.
Thus we may obtain Kiφ instead in the same manner.

d→ d+ 1: Thus Tω
KC

n α
Γ, ψ ∨ Kiδ[φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl] and by iteration of

Lemma 2.3

Tω
KC

n α
Γ, ψ1, . . . , ψl,Kiδ[φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl] (14)

for suitable ψ1, . . . , ψl. We claim that Tω
KC

n
Γ, ψ1, . . . , ψl,Kiδ[φ] and again

distinguish two cases:
(i) Kiδ[φ∨¬ψ1 ∨ . . .∨¬ψl] was obtained by weakening in the derivation

of (14)
(ii) Kiδ[φ∨¬ψ1∨. . .∨¬ψl] was obtained by the rule (Ki) in the derivation

of (14).
In both cases we may show the claim as before using the fact that
Γ, ψ1, . . . , ψl ⊂ L̂nC. Then by an iteration of the rule (∨), we arrive at
Tω

KC
n

Γ, A[φ] and the Lemma is shown.

2

Definition 5.8 Let ψ1 be a formula of LnC. We inductively define the subsets
Ckx,ψ1

of LnC,x as follows:
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C1
x,ψ1

:= {φ ∈ LnC,x;φ = ψ ∨ ¬Kiψ1 ∨ Ki(x ∨ α1) ∨ . . . ∨ Ki(x ∨ αp)
and ψ, α1, . . . , αp ∈ LnC}

Ck+1
x,ψ1

:= {φ ∈ LnC,x;φ = ψ ∨ Kiδ[x] where ψ ∈ disL̂nC and δ[x] is in Ckx,ψ1
}

Furthermore we define Cx,ψ1
as

⋃ Ckx,ψ1
and for φ ∈ Cx,ψ1

depth(φ) as the least
k, such that φ ∈ Ckx,ψ1

.

Lemma 5.9 Let C be a formula in Cx,φ and Γ be a finite subset of L̂nC. C
denotes the formula of LnC which results from erasing every disjunct of the
form x in C. If Tω

KC
n

Γ, C[¬φ], then Tω
KC

n
Γ, C

PROOF. We prove this claim by induction on d := depth(C).

d = 1: Thus Tω
KC

n α
Γ, ψ ∨ ¬Kiφ ∨ Ki(¬φ ∨ α1) ∨ . . . ∨ Ki(¬φ ∨ αp) and by

repeated applications of Lemma 2.3

Tω
KC

n α
Γ, ψ,¬Kiφ,Ki(¬φ ∨ α1), . . . ,Ki(¬φ ∨ αp) (15)

We claim that Tω
KC

n
Γ, ψ,¬Kiφ,Kiα1, . . . ,Kiαp by induction on α. The

base case of α = 0 is trivial. Thus we assume that the claim holds for
all α′ < α and make a case distinction as to whether or not Ki(¬φ ∨ αj)
was the distinguished formula of the last inference used to derive (15)
for any 1 ≤ j ≤ l. In the first case we then have Tω

KC
n

∆,¬φ,¬φ ∨ αj
and thus with Lemma 2.3 Tω

KC
n

∆,¬φ, αj. Therefore, using (Ki) we

obtain the claim. If Ki(¬φ ∨ αj) was not the distinguished formula for
any 1 ≤ j ≤ l, then we distinguish further cases for the last rule applied
to obtain (15). In the cases of the rules (∧), (∨), (Cω) and (¬C) we simply
use the induction hypothesis of the inner induction on the premise and
apply the same rule again. In the case of rule (Kh) (for any 1 ≤ h ≤ n)
we see that for every 1 ≤ j ≤ l Ki(¬φ ∨ αj) can only have been obtained
with weakening. Thus we may obtain Kiαj for every 1 ≤ j ≤ l in the
same manner.

d→ d+ 1: This part of the induction is analogous to the corresponding part
in the proof of Lemma 5.7.

2

Definition 5.10 Let R be a sequence tree over I and a = (l, α) ∈ I. We
define the characteristic set CR

a of R at a inductively as follows:

(1) If a is a leaf of I, then CR
a := set+(Ra)

(2) If a has successors b1, . . . , bm ∈ I and
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b1 = (p1, (α, q1))
...

...

bm = (pm, (α, qm)),

then CR
a := set+(Ra) ∪ {Kp1

∨
CR
b1
} ∪ . . . ∪ {Kpm

∨
CR
bm}.

Lemma 5.11 If R is an axiomatic sequence tree over I, then Tω
KC

n
CR

(0,(0)).

PROOF. Since R is axiomatic, there exists a c ∈ I and some atomic formula
p, such that p and ∼p are both in CR

c . Thus using (ID) we obtain Tω
KC

n
CR
c .

We show that Tω
KC

n
CR
b for all b 4 c by induction inverse to the length of c.

b = c: This case is already shown above.
b ≺ c: Let b = (k, β). Then there exists a d 4 c such that d = (i, (β, l)) for

some natural numbers i and l. By induction hypothesis Tω
KC

n
CR
d , thus

an iteration of applications of (∨) yields Tω
KC

n

∨
CR
d . Then, applying

(Ki), we obtain Tω
KC

n
CR
b .

Thus the claim holds and since (0, (0)) 4 c the Lemma is shown. 2

Lemma 5.12 Let R be a sequence tree with redex φ ∨ ψ and S be the type 1
successor of R. If Tω

KC
n

CS
(0,(0)), then Tω

KC
n

CR
(0,(0)).

PROOF. This claim trivially holds since Tω
KC

n
CS

(0,(0)) and Tω
KC

n
CR

(0,(0)) are
the same set of formulae. 2

Lemma 5.13 Let R be a sequence tree with redex φ∧ψ and S,T be the type
2 successors of R. If Tω

KC
n

CS
(0,(0)) and Tω

KC
n

CT
(0,(0)), then Tω

KC
n

CR
(0,(0)).

PROOF. There exists a formula A ∈ Ax, such that A[φ] =
∨
CS

(0,(0)) and

A[ψ] =
∨
CT

(0,(0)) as well as A[φ∧ψ] =
∨
CR

(0,(0)). Therefore, the claim holds by
clause 2 of Lemma 5.5 and iterations of Lemma 2.3. 2

Lemma 5.14 Let R be a sequence tree with redex ∼Kiφ and S be the type 3
successor of R. If Tω

KC
n

CS
(0,(0)), then Tω

KC
n

CR
(0,(0)).

PROOF. Since S is the type 3 successor of a sequence tree with redex ∼Kiφ,
there exists a formula C ∈ Cx,φ such that C[¬φ] =

∨
CS

(0,(0)) and C =
∨
CR

(0,(0)).
Therefore, the claim holds by Lemma 5.9 and iterations of Lemma 2.3. 2
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Lemma 5.15 Let R be a sequence tree with redex Kiφ and S be the type 4
successor of R. If Tω

KC
n

CS
(0,(0)), then Tω

KC
n

CR
(0,(0)).

PROOF. Since S is the type 4 successor of a sequence tree with redex Kiφ,
there exist formulae ψ1, . . . , ψl and a formula B ∈ Bx,ψ1,...,ψl

such that

B[φ ∨ ¬ψ1 ∨ . . . ∨ ¬ψl] =
∨
CS

(0,(0))

and B[φ] =
∨
CR

(0,(0)). Therefore, the claim holds by Lemma 5.7 and iterations
of Lemma 2.3. 2

Lemma 5.16 Let R be a sequence tree with redex Cφ and Si where i ∈ ω be
the type 5 successors of R. If Tω

KC
n

CSi

(0,(0)) for all i ∈ ω, then Tω
KC

n
CR

(0,(0)).

PROOF. There exists a formula A ∈ Ax, such that A[Ekφ] =
∨
CSk

(0,(0)) and

A[Cφ] =
∨
CR

(0,(0)). Therefore, the claim holds by clause 1 of Lemma 5.5 and
iterations of Lemma 2.3. 2

Lemma 5.17 Let R be a sequence tree with redex ∼Cφ and S be the type 6
successor of R. If Tω

KC
n

CS
(0,(0)), then Tω

KC
n

CR
(0,(0)).

PROOF. There exists a formula A ∈ Ax, such that

A[∼Cφ ∨ ¬Ekφ] =
∨
CS

(0,(0))

for some k ∈ ω and A[∼Cφ] =
∨
CR

(0,(0)). Therefore, the claim holds by clause
3 of Lemma 5.5 and iterations of Lemma 2.3. 2

Definition 5.18 Let R be a sequence tree. The deduction tree of R denoted
by DT(R) is the set of all deduction chains of R, closed under initial segments.
For Θ,Θ′ ∈ DT(R) we say Θ C Θ′ if and only if Θ is a proper initial segment
of Θ′. For all finite Θ ∈ DT(R) we define last(Θ) to be the last sequence tree
in Θ.

In order to establish the principal syntactic lemma we require the following
consequence of a standard result about the Kleene-Brouwer ordering on a
wellfounded tree. Proofs of this result may be found in [4] (Corollary 5.4.18)
and [13] (Lemma V.1.3).

Lemma 5.19 Let R be a sequence tree. If the deduction tree DT(R) contains
only finite deduction chains, then there exists an ordinal α and a bijective
function f : α+ 1 → DT(R), such that for all ordinals β, γ ≤ α

f(β) C f(γ) =⇒ γ < β.
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q,C(p ∨ ¬p)

q ∨ C(p ∨ ¬p)

Type 5 reduction

Type 1 reduction

? ?

? ?

Type 4 reduction

. . .

1 2

p,¬pp,¬p

qq

p ∨ ¬p

1

p ∨ ¬p

2

qq

Type 2 reduction

K2(p ∨ ¬p), qK1(p ∨ ¬p), q

Type 1 reduction

@@�� @@��

E1(p ∨ ¬p), q

@@��

@@��

@@��

Ek(p ∨ ¬p), q

@@��

@@��@@��

@@��

Fig. 8. Example deduction tree

Lemma 5.20 (Principle syntactic lemma) If every deduction chain of R
ends with an axiomatic sequence tree, then Tω

KC
n

CR
(0,(0)).

PROOF. By assumption the deduction tree DT(R) contains only finite de-
duction chains. Thus we may apply Lemma 5.19 to obtain a function f and
an ordinal α with the described properties. It suffices to show

Tω
KC

n
C

last(f(β))
(0,(0)) (16)

for all β ≤ α, since last(f(α)) = R. We prove (16) by transfinite induction on
β.

β = 0: By Lemma 5.19 we find that f(β) must be @-maximal. Thus by as-
sumption last(f(β)) is axiomatic and the claim follows by Lemma 5.11.

(16) holds for all β̂ < β: If last(f(β)) is axiomatic, then the claim holds again
by Lemma 5.11. Otherwise last(f(β)) has a redex φ. We distinguish be-
tween the different possibilities for φ and use Lemmata 5.12 – 5.17. The
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case of φ = ψ1 ∨ ψ2 is given as an example. In this case there exists
an f(γ), such that last(f(γ)) is the type 1 successor of last(f(β)), thus
f(β) C f(γ). By Lemma 5.19 we have γ < β and by induction hypothesis

Tω
KC

n
C

last(f(γ))
(0,(0)) . Therefore applying Lemma 5.12 yields Tω

KC
n

C
last(f(β))
(0,(0)) .

The other cases are treated analogously using the induction hypothesis
and applications of Lemmata 5.13 – 5.17.

Thus (16) holds for all β ≤ α and the claim is shown. 2

Combining the principle semantic lemma and the principle syntactic lemma
yields completeness for Tω

KC
n
.

Corollary 5.21 (Completeness) Let φ be a formula of LnC. If for all Kripke
structures M and all worlds w ∈M we have that M, w |= φ, then Tω

KC
n
` φ.

PROOF. Assume we had M, w |= φ for all Kripke structures M and all
worlds w ∈ M and φ were not provable in Tω

KC
n
. By contraposition of the

principal syntactic lemma there would need to exist a deduction chain of
φ which is infinite or ends non-axiomatically. But in this case the principal
semantic lemma would supply us with a countermodel for φ, contradicting
our assumption. Thus φ must be provable in Tω

KC
n

and indeed the principal
syntactic lemma constructs such a proof. 2

6 Conclusion

In the current study we have given a syntactic method for proving complete-
ness of the infinitary system Tω

KC
n

as is stated more precisely in Corollary 5.21.
In the case of a valid formula φ, a proof of φ in Tω

KC
n

may be reconstructed
from the principal syntactic lemma along with Lemmata 5.11 to 5.17 and thus,
in this sense, our method is constructive. However, our analysis does not yet
provide us with any statements about the length of canonical proofs for valid
formulae let alone about whether such proofs are optimal in length. On the
semantic side our method also behaves constructively to the extent of provid-
ing canonical countermodels for non-valid formulae. This is guaranteed by the
principal semantic lemma. It is known from [3] that Logic of Common Knowl-
edge possesses a strong form of the finite model property where the size of a
countermodel for a non-valid formula φ may be bounded exponentially in the
length of φ. Currently this result is not reflected in the canonical countermod-
els constructed by our method, but further refinements should ultimatively
lead to the construction of size-optimal countermodels. As mentioned before,
the main contribution of this study is the extension of the deduction chain
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method to Logic of Common Knowledge. In a next step the method could be
adapted to other more expressive modal logics with fixed points as well as the
modal µ-calculus in its general form [7] and thus contribute to a better proof-
theoretical understanding of the area in particular with respect to systematic
proof-search and syntactic decision procedures.

An approach similar to the one presented here has recently been undertaken
by Tanaka [15] in the framework of predicate common knowledge logic. Let us
briefly compare the two studies. Tanaka investigates proof systems for CKL, the
predicate common knowledge logic for Kripke frames with constant domain.
He introduces an infinitary cut-free deductive system for CKL and proves a
completeness theorem about it. Like in our system Tω

KC
n
, Tanaka’s rule for

introducing the common knowledge operator has infinitely many premises. His
deductive system is a kind of tree sequent calculus. That means his system
does not derive (sets of) formulae but so-called tree sequents which are finite
trees where each node is a sequent and the edges are labeled by symbols for
the agents. A formula φ is called derivable if the tree sequent which consists
only of the root node ` φ is derivable.

There is a relation between Tanaka’s approach and the method of deduction
chains: the rules of his calculus correspond to the conditions we impose on
deduction chains. Hence, a branch of a derivation in Tanaka’s system corre-
sponds to a deduction chain in our approach. In order to prove completeness,
he only needs to show the analogue of our principal semantic lemma: given a
non-derivable tree sequent, it is possible to construct a countermodel. Since
we work in the Tait-style system Tω

KC
n

which derives sets of formulae and not
tree sequents, we also need the principal syntactic lemma. This lemma states
that if every deduction chain of a formula φ ends axiomatically, then it is
provable in Tω

KC
n
. That could be translated into something like if φ is derivable

in Tanaka’s system, then it is provable in Tω
KC

n
.
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