The proof-theoretic analysis of transfinitely iterated quasi least fixed points

Dieter Probst *

Abstract

The starting point of this article is an old question asked by Feferman in his paper on Hancock's conjecture [6] about the strength of ID_1^* . This theory is obtained from the well-known theory ID_1 by restricting fixed point induction to formulas that contain fixed point constants only positively. The techniques used to perform the proof-theoretic analysis of ID_1^* also permit to analyze its transfinitely iterated variants ID_α^* . Thus, we eventually know that $|\widehat{\mathsf{ID}}_\alpha| = |\mathsf{ID}_\alpha^*|$.

Keywords: Fixed points; Iteration; Pseudo-hierarchies

The theories ID_{α} of iterated inductive definitions formalize hierarchies of least (definable) fixed points. In the past years, these theories have been exhaustively studied and their proof-theoretic analysis has been carried out a long time ago, (cf. Buchholz et al. [3]). Also their metapredicative relatives \widehat{ID}_{α} , that speak about hierarchies of (not necessary least) fixed points are well understood by now. The proof-theoretic ordinal of \widehat{ID}_1 is due to Aczel [1], who used a recursion theoretic argument, nowadays known as Aczel's trick, to embed \widehat{ID}_1 into Σ_1^1 -AC. The theories \widehat{ID}_n of *n*-times iterated inductive definitions have been analyzed by Feferman in connection with Handcock's conjecture in [6]. The proof-theoretic analysis of \widehat{ID}_{α} has been carried out in all details by Jäger, Kahle, Setzer and Strahm [9].

Some problems however, have remained unsolved: In the theories ID_{α} , induction on fixed points is dropped completely. It is natural to study theories, where fixed point induction is only restricted. Kreisel pointed out in [11], that "an inductive definition tells you what is *in* $P^{\mathcal{A}}$ not what is *not* in $P^{\mathcal{A}}$ ". As mentioned in Feferman [6], this motivated to consider restricted versions of ID_1 such as ID_1^* , a theory credited to H. Friedman where the scheme for proof by induction on fixed points is restricted to formulas that contain fixed point constants only positively. The question for a sharp

^{*}The author is supported by the Swiss National Science Foundation.

upper bound is raised loc. cit. No answer to this question has yet been published, although partial results have been attained: If the fixed point axioms of ID_1^* are restricted to so-called accessibility inductive definitions, then the resulting theory $\mathsf{ID}_1^*(\mathcal{ACC})$ can be embedded in Σ_1^1 -DC as sketched by Feferman in [6]. There, it is also stated that Friedman [8] introduced the theory ID_1^* and showed that its ordinal is bounded by α_1 , where $\alpha_0 := \varepsilon_0$ and $\alpha_{n+1} := \varphi \alpha_n 0$. Further, upper bounds for the theories ID_n^* are computed by Cantini [4]. Thereby the two common ordinal measures for a theory T of inductive definitions are considered: The proof-theoretic ordinal $|\mathsf{T}|$, i.e. the least ordinal α such that for no primitive recursive well-ordering \prec of ordertype α the well-orderedness of \prec is provable within T, and alternatively, the least stage $||\mathsf{T}||$ not provable in T . The ξ th stage $I_{\xi}^{\mathcal{C}}$ of an inductive definition \mathcal{C} is given by $\{x : \mathcal{C}(\bigcup_{\eta < \xi} I_{\eta}^{\mathcal{C}}, x)\}$, and a stage α is called provable if there is an inductive definition \mathcal{A} and an $m \in \mathbb{N}$ with $\mathsf{T} \vdash m \in \mathsf{P}^{\mathcal{A}}$, such that $\alpha \leq \min\{\beta : m \in I_{\beta}^{\mathcal{A}}\}$. In [4], Cantini proves that $|\mathsf{ID}_n^*| \leq \alpha_{2^n}$ and $||\mathsf{ID}_n^*|| \leq \alpha_{2^{n-1}}$ for n > 0 and conjectures, like Feferman in [6], $|\mathsf{ID}_n^*| = \alpha_n = ||\mathsf{ID}_n^*||$ to hold true. We point out that for impredicative theories these two ordinal assignments usually coincide, whereas in (meta-)predicative theories they usually differ: $|\mathsf{ID}_n| = ||\mathsf{ID}_n||$ is the case, however $\|\mathbf{ID}_n\| = \alpha_{n-1}$ only unfolds to $|\mathbf{ID}_n| = \alpha_n$. In respect thereof, the theories \mathbf{ID}_n^* take an exceptional position, as $|\mathsf{ID}_n^*| = ||\mathsf{ID}_n^*||$ follows from our wellordering proof.

This article provides the proof-theoretic ordinals of the theories ID_{α}^* and $\mathsf{ID}_{\alpha}^*|$, a variant where also induction on the natural numbers is restricted to formulas that contain fixed point constants only positively. In the first sections we treat the case ID_1^* . Thereto we present a new embedding of ID_1 into Σ_1^1 -AC that extends to an embedding of ID_1^* into Σ_1^1 -DC. This embedding relies on the following two observations: Already Σ_1^1 -AC proves that for an operator form $\mathcal{A}(\mathsf{P}^+,\mathsf{p})$, the standard Π_1^1 definition of the fixed point, namely the intersection of all sets X satisfying $\forall x[\mathcal{A}(X,x) \to x \in X]$, is a fixed point of the operator defined by \mathcal{A} . Moreover, Σ_1^1 -DC proves that this is indeed the least Π_1^1 -definable fixed point.

To demonstrate the power of restricted fixed point induction, we give well-ordering proofs for $|D_{\alpha}^*|$ and $|D_{\alpha}^*|$. The general idea is the same as in [9] or [7], but things are simpler and the proofs are carried out in $|D_{\alpha}^*|$ and $|D_{\alpha}^*|$ themselves. Section 6 is devoted to the upper bounds. In [15], Rüede has developed and analyzed semi-formal systems to treat theories M_{α} , formalizing transfinite hierarchies of models of Σ_1^1 -AC. To embed the theories $|D_{\alpha}^*|$ into such systems, we require uniform hierarchies of models of Σ_1^1 -DC. Towards this, we extend M_{α} to M_{α}^{\dagger} , by an axiom claiming that transfinite induction for $|M_{\alpha}|$, the proof-theoretic ordinal of M_{α} , fails. According to Jäger and Probst [10], this extension is conservative. In M_{α}^{\dagger} , the technique of pseudo-hierarchies can be applied to construct the required hierarchies. Rüede's results then yield sharp upper bounds.

1 The theories $|\mathsf{D}_1^*|$ and $|\widehat{\mathsf{D}}_1^*|$

Let L_1 be a standard language of first order arithmetic that includes number variables $a, b, c, d, e, u, v, w, x, y, z, \ldots$ and function and relation symbols for all primitive recursive functions and relations. In particular, we have a unary relation symbol N for the natural numbers. Moreover, we have unary relation symbols U and V that are required for technical reasons. Since we consider Tait-style calculi in the sequel, we use the symbol ~ for forming negative literals, and define the negation $\neg A$ of a formula A of L_1 or some language containing L_1 by making use of De Morgan's laws and the law of double negation. For U(t) and $\sim U(t)$ we write $t \in U$ and $t \notin U$.

Towards the formulation of ID_1^* , we extend L_1 by fresh unary relation symbols \vec{P}, \vec{Q} and a fresh number constant p, which serve as placeholders. Then, a P-positive formula of $L_1(P, \vec{Q}, p)$, the extension of L_1 by P, \vec{Q} and p, is called an inductive operator form, and we let \mathcal{A} range over such forms. For sets \vec{Y} and numbers \vec{y} , an operator form $\mathcal{A}(P, \vec{Q}, q, \vec{u})$ defines an operator on the powerset of the natural numbers, namely

$$F^{\mathcal{A}}_{\vec{Y},\vec{y}}(X) := \{ x : \mathcal{A}(X, \vec{Y}, x, \vec{y}) \}.$$

Next, we add to the first order language L_1 a fixed point constant P^A for each inductive operator form \mathcal{A} of $L_1(\mathsf{P}, \mathsf{p})$ without free variables, and denote this new language by L_{Fix} . Technically, we treat fixed point constants as unary relation symbols, but write $t \in \mathsf{P}^A$ instead of $\mathsf{P}^A(t)$. The formulas A, B, C, \ldots and the number terms r, s, t, \ldots of $\mathsf{L}_{\mathsf{Fix}}$ are defined in the expected way and the formulas of $\mathsf{L}^+_{\mathsf{Fix}}$ are the formulas of $\mathsf{L}_{\mathsf{Fix}}$ that contain fixed point constants only positively.

The axioms of ID_1^* consist of the axioms of PA without induction, complete induction along the natural numbers for all formulas of L_{Fix} as well as the following two fixed point axioms: For all inductive operator forms $\mathcal{A}(\mathsf{P},\mathsf{p})$ without free variables, we have

(FIX)
$$\forall x [\mathcal{A}(\mathsf{P}^{\mathcal{A}}, x) \leftrightarrow x \in \mathsf{P}^{\mathcal{A}}],$$

and for all inductive operator forms $\mathcal{A}(\mathsf{P},\mathsf{p})$, $\mathcal{A}_1(\mathsf{P},\mathsf{p}),\ldots,\mathcal{A}_n(\mathsf{P},\mathsf{p})$ without free variables, and each \vec{P} -positive formula $B(\vec{\mathsf{P}},\mathsf{p},\vec{u})$ of $\mathsf{L}_1(\vec{\mathsf{P}},\mathsf{p})$, we have

$$(\mathsf{IND}^+_{\mathsf{FIX}}) \quad \forall x [\mathcal{A}(\{z : B(\mathsf{P}^{\vec{\mathcal{A}}}, z, \vec{y})\}, x) \to B(\mathsf{P}^{\vec{\mathcal{A}}}, x, \vec{y})] \to \forall x [x \in \mathsf{P}^{\mathcal{A}} \to B(\mathsf{P}^{\vec{\mathcal{A}}}, x, \vec{y})].$$

Note that we wrote $\mathsf{P}^{\vec{\mathcal{A}}}$ for the string $\mathsf{P}^{\mathcal{A}_1}, \ldots, \mathsf{P}^{\mathcal{A}_n}$ and that \mathcal{A} may be syntactically identical to some \mathcal{A}_i . The axiom (FIX) asserts that $\mathsf{P}^{\mathcal{A}}$ is indeed a fixed point of the operator $F^{\mathcal{A}}$ and $(\mathsf{IND}^+_{\mathsf{FIX}})$ is the scheme for proof by induction on $\mathsf{P}^{\mathcal{A}}$ restricted to formulas of $\mathsf{L}^+_{\mathsf{Fix}}$. Finally, $\widehat{\mathsf{ID}}^*_1 \upharpoonright$ denotes the theory where also complete induction

along the natural numbers is restricted to formulas of L_{Fix}^+ , and \widehat{ID}_1 is ID_1^* without (IND_{FIX}^+) .

In this article, we make use of the term *proof-theoretic ordinal*. For theories T that are formulated in a language comprising L_1 , the proof-theoretic ordinal of T can be defined in the following way: We set

$$\begin{aligned} &\mathsf{Prog}_{\prec}(Z) &:= & \forall u (\forall v \prec u) (v \in Z \to u \in Z), \\ &\mathsf{TI}_{\prec}(Z,t) &:= & \mathsf{Prog}_{\prec}(Z) \to (\forall u \prec t) (u \in Z), \end{aligned}$$

and call an ordinal α provable in T, if there exists a primitive recursive well-ordering \prec such that $\mathsf{T} \vdash \mathsf{TI}_{\prec}(\mathsf{U}, \alpha)$. Any ordinal that is not provable in T is called *an upper bound of* T and the least ordinal that is not provable in T is then *the proof-theoretic ordinal of* T, denoted by $|\mathsf{T}|$.

2 A new embedding of \widehat{ID}_1 into Σ_1^1 -AC

The standard embedding of $\widehat{\mathsf{ID}}_1$ into Σ_1^1 -AC is due to Aczel [1]. He makes use of a universal Σ_1^1 formula and a standard diagonalization argument to find a Σ_1^1 definable solution for each fixed point constant $\mathsf{P}^{\mathcal{A}}$ respecting (FIX). Of course, there is no chance to prove that such a solution is minimal with respect to classes definable by $\mathsf{L}_{\mathsf{Fix}}^+$ formulas. Bearing such a minimality condition in mind, the most natural way to interpret a fixed point constant $\mathsf{P}^{\mathcal{A}}$ is to take its Π_1^1 definition, i.e. the intersection of all sets satisfying $F^{\mathcal{A}}(X) \subseteq X$. This is indeed in accord with axiom (FIX). Surprisingly enough, the compact proof of this fact has not yet been discovered. Prior to its presentation, we specify the language and axioms of the theories involved, and briefly recap Aczel's argument.

The theories Σ_1^1 -AC and Σ_1^1 -AC₀ are formulated in the language L₂ that canonically extends our language L₁ to a language of second order arithmetic by set variables U, V, W, X, Y, Z, \ldots , a symbol \in to denote elementhood and quantifiers for second order variables. Note, that we write $t \notin X$ for $\sim (t \in X)$. The number terms of L₂ are the number terms of L₁. Formulas of L₂ that do not contain bounded set variables are called arithmetical. L₂ formulas of the form $\exists XA(X)$, where A is arithmetical, are called Σ_1^1 formulas, and formulas of the form $\neg B$, where B is Σ_1^1 , are called Π_1^1 formulas. The class of Π formulas of L₂ is the smallest class containing the arithmetical formulas of L₂ that is closed under conjunction, disjunction, number quantification and universal set quantification. If A is a Π formula of L₂, then $\neg A$ is a Σ formula of L₂. Arithmetical formulas of L₂ where all number quantifiers appear in the context ($\forall x < t$) and ($\exists x < t$) are called Δ_0^0 . In the sequel, we make use of the usual coding machinery: $\langle \ldots \rangle$ is a standard primitive recursive function for forming *n*-tuples $\langle t_0, \ldots, t_{n-1} \rangle$, so-called sequence numbers; $(t)_i$ is the *i*th component of (the sequence coded by) *t*, if *i* is less than the length lh(t) of *t*; i.e. $(t)_i = t_i$ for all $0 \le i \le n-1$, provided that $t = \langle t_0, \ldots, t_{n-1} \rangle$. Further, we write $s \in (X)_t$ for $\langle s, t \rangle \in X$, and X = Y is to abbreviate the formula $\forall x [x \in X \leftrightarrow x \in Y]$.

Besides the usual axioms of classical logic with equality in the first sort and axioms for the primitive recursive functions and relations, the theory Σ_1^1 -AC comprises the schema of complete induction on the natural numbers for all formulas of L₂, arithmetical comprehension (ACA), and for all Σ_1^1 formulas A(U, u) an axiom

$$(\Sigma_1^1 \text{-} \mathsf{AC}) \qquad \forall x \exists X A(X, x) \to \exists Y \forall x A((Y)_x, x).$$

 Σ_1^1 -AC₀ is Σ_1^1 -AC with the schema of complete induction on the natural numbers restricted to sets.

Below we observe that in a theory comprising Σ_1^1 -AC₀, we do not have to distinguish between Π and Π_1^1 formulas of L₂. Of course, this applies also to the dual classes of Σ_1^1 and Σ formulas.

Lemma 1 For each Π formula C of L_2 there is a Π_1^1 formula C' of L_2 containing the same free variables as C, such that Σ_1^1 -AC proves: $C \leftrightarrow C'$.

Accel's embedding of ID_1 into Σ_1^1 -AC relies on this observation and the fact, that there exists a universal Σ_1^1 formula E(u, v, w) of L_2 : For each Σ formula B(u, v) of L_2 , there exists an $e \in \mathbb{N}$ such that

$$\Sigma_1^1$$
-AC₀ $\vdash B(x, y) \leftrightarrow E(\overline{e}, x, y),$

where \overline{e} denotes the constant for the natural number e. This means in particular, that for a given operator form \mathcal{A} of $L_1(\mathsf{P}, \mathsf{p})$, there is an $e_{\mathcal{A}} \in \mathbb{N}$ such that

$$\Sigma_1^1$$
-AC₀ $\vdash \mathcal{A}(\{z : E(x, x, z)\}, y) \leftrightarrow E(\overline{e}_{\mathcal{A}}, x, y).$

Letting C(u) be the Σ_1^1 formula $E(\overline{e}_{\mathcal{A}}, \overline{e}_{\mathcal{A}}, u)$, then Σ_1^1 -AC₀ proves:

$$\mathcal{A}(\{z:C(z)\},x) \quad \leftrightarrow \quad \mathcal{A}(\{z:E(\overline{e}_{\mathcal{A}},\overline{e}_{\mathcal{A}},z)\},x) \\ \leftrightarrow \quad E(\overline{e}_{\mathcal{A}},\overline{e}_{\mathcal{A}},x) \\ \leftrightarrow \quad C(x).$$

If we translate an L_{Fix} formula B to an L_2 formula \tilde{B} by substituting each subformula of B of the form $t \in \mathsf{P}^{\mathcal{A}}$ by the Σ_1^1 formula $E(\bar{e}_{\mathcal{A}}, \bar{e}_{\mathcal{A}}, t)$, then we obtain the following theorem: **Theorem 2 (Aczel)** For every L_{Fix} formula B the following holds:

$$\widehat{\mathsf{ID}}_1 \vdash B \Longrightarrow \Sigma_1^1 \text{-}\mathsf{AC} \vdash \widetilde{B}.$$

The canonic candidate to interpret the fixed point constant $\mathsf{P}^{\mathcal{A}}$, however, is the intersection of all \mathcal{A} -closed sets, namely the Π^1_1 -definable class

$$\mathsf{Fix}^{\mathcal{A}} := \bigcap \{ X : F^{\mathcal{A}}(X) \subseteq X \}.$$

Of course, we cannot prove in Σ_1^1 -AC that $\operatorname{Fix}^{\mathcal{A}}$ is a set, yet $F^{\mathcal{A}}(\operatorname{Fix}^{\mathcal{A}}) \subseteq \operatorname{Fix}^{\mathcal{A}}$ is still immediate: For all \mathcal{A} -closed sets X, the positivity of the operator form \mathcal{A} yields $F^{\mathcal{A}}(\operatorname{Fix}^{\mathcal{A}}) \subseteq F^{\mathcal{A}}(X) \subseteq X$. For the other direction, though, we can no longer argue that $F^{\mathcal{A}}(\operatorname{Fix}^{\mathcal{A}})$ is \mathcal{A} -closed, and therefore a superset of $\operatorname{Fix}^{\mathcal{A}}$. To show that Σ_1^1 -AC₀ proves $\operatorname{Fix}^{\mathcal{A}} \subseteq F^{\mathcal{A}}(\operatorname{Fix}^{\mathcal{A}})$, a more refined argument is required.

We prove $F^{\mathcal{A}}(\mathsf{Fix}^{\mathcal{A}}) = \mathsf{Fix}^{\mathcal{A}}$ in a sightly more general context. For an operator form $\mathcal{A}(\mathsf{P}, \vec{\mathsf{Q}}, \mathsf{p}, \vec{u})$ of $\mathsf{L}_1(\mathsf{P}, \vec{\mathsf{Q}}, \mathsf{p})$ we set

$$\begin{aligned} \mathsf{Cl}^{\mathcal{A}}_{\vec{Y},\vec{y}}(X) &:= \forall x (\mathcal{A}(X,\vec{Y},x,\vec{y}) \to x \in X), \\ \mathsf{Fix}^{\mathcal{A}}_{\vec{Y},\vec{y}} &:= \{ x : \forall X [\mathsf{Cl}^{\mathcal{A}}_{\vec{Y},\vec{y}}(X) \to x \in X] \}. \end{aligned}$$

Often, we do not explicitly indicate the parameters in the operator form \mathcal{A} , and write $\mathsf{Cl}^{\mathcal{A}}(X)$, $\mathsf{Fix}^{\mathcal{A}}$ and $F^{\mathcal{A}}$ instead of $\mathsf{Cl}^{\mathcal{A}}_{\vec{Y},\vec{y}}(X)$, $\mathsf{Fix}^{\mathcal{A}}_{\vec{Y},\vec{y}}$ and $F^{\mathcal{A}}_{\vec{Y},\vec{y}}$. The context provides always enough information to identify the dropped parameters. Below, we prove within Σ^{1}_{1} - AC_{0} that $\mathsf{Fix}^{\mathcal{A}}_{\vec{Y},\vec{y}}$ is a fixed point of the operator $F^{\mathcal{A}}_{\vec{Y},\vec{y}}$. The direction from right to left is again immediate. For the other direction, the following lemma almost handles the job.

Lemma 3 (Separation Lemma) For all operator forms \mathcal{A} of $L_1(\mathsf{P}, \mathsf{Q}, \mathsf{p})$ and each arithmetical, U-positive formula B(U, u) of L_2 , Σ_1^1 - AC_0 proves:

$$\neg B(\mathsf{Fix}_{\vec{Y},\vec{y}}^{\mathcal{A}},x) \to \exists X[\mathsf{Cl}_{\vec{Y},\vec{y}}^{\mathcal{A}}(X) \land \neg B(X,x)].$$

Proof: We prove the lemma by induction on the build-up of the formula B(U, u). If U does not occur in B there is nothing to prove, and if B is the formula $t \in U$, then the claim follows from the definition of Fix^A. If B is a conjunction or a disjunction, a similar argument applies as in the cases treated below.

(i) B(U, u) is of the form $\exists y B_1(U, u, y)$. Assume $\forall y \neg B_1(\mathsf{Fix}^{\mathcal{A}}, x, y)$. The I.H. reads

$$\neg B_1(\mathsf{Fix}^{\mathcal{A}}, x, y) \to \exists X [\mathsf{Cl}^{\mathcal{A}}(X) \land \neg B_1(X, x, y)],$$

hence our assumption yields that

$$\forall y \exists X [\mathsf{Cl}^{\mathcal{A}}(X) \land \neg B_1(X, x, y)].$$

Applying $(\Sigma_1^1 - AC)$ gives us a set Y such that

$$\forall y [\mathsf{Cl}^{\mathcal{A}}((Y)_y) \land \neg B_1((Y)_y, x, y)].$$

Now we set

$$Z := \{ x : \forall y (x \in (Y)_y) \},\$$

and observe that $\mathsf{Cl}^{\mathcal{A}}(Z)$: From $\mathcal{A}(Z, x)$ we conclude that $\forall y \mathcal{A}((Y)_y, x)$, and so $\forall y \mathsf{Cl}^{\mathcal{A}}((Y)_y)$ yields $\forall y (x \in (Y)_y)$. Hence, by the positivity of B_1 , we have

$$\mathsf{Cl}^{\mathcal{A}}(Z) \land \forall y \neg B_1(Z, x, y).$$

(ii) B(U, u) is of the form $\forall y B_1(U, u, y)$. Assume $\exists y \neg B_1(\mathsf{Fix}^{\mathcal{A}}, x, y)$. Now the I.H. yields $\exists y \exists X [\mathsf{Cl}^{\mathcal{A}}(X) \land \neg B_1(X, x, y)]$, which implies $\exists X [\mathsf{Cl}^{\mathcal{A}}(X) \land \neg B(X, x)]$.

Our claim is now obtained effortlessly.

Lemma 4 For all operator forms \mathcal{A} of $L_1(\mathsf{P}, \vec{\mathsf{Q}}, \mathsf{p}), \Sigma_1^1$ - AC_0 proves:

$$\forall x [x \in \mathsf{Fix}_{\vec{Y}, \vec{y}}^{\mathcal{A}} \leftrightarrow \mathcal{A}(\mathsf{Fix}_{\vec{Y}, \vec{y}}^{\mathcal{A}}, \vec{Y}, x, \vec{y})].$$

Proof: It remains to show that $x \in \mathsf{Fix}^{\mathcal{A}}$ implies $\mathcal{A}(\mathsf{Fix}^{\mathcal{A}}, x)$. to show the contraposition, we assume that $x \notin F^{\mathcal{A}}(\mathsf{Fix}^{\mathcal{A}})$. By lemma 3 there is a \mathcal{A} -closed set Z with $x \notin F^{\mathcal{A}}(Z)$. Since also $F^{\mathcal{A}}(Z)$ is \mathcal{A} -closed, $x \notin \mathsf{Fix}^{\mathcal{A}}$ follows.

Summing up, we have established that for each operator form \mathcal{A} of $L_1(\mathsf{P}, \mathsf{p})$, the intersection of all \mathcal{A} -closed sets is a fixed point of the operator $F^{\mathcal{A}}$, provable in Σ_1^1 -AC₀. This gives rise to the following embedding:

Theorem 5 If we translate an L_{Fix} formula B to a L_2 formula B^* by substituting each fixed point constant $P^{\mathcal{A}}$ by the Π_1^1 -definable class $Fix^{\mathcal{A}}$, the following holds:

$$\widehat{\mathsf{ID}}_1 \vdash B \Longrightarrow \Sigma_1^1 \text{-}\mathsf{AC} \vdash B^*.$$

3 Embedding $\widehat{\mathsf{ID}}_1^* \upharpoonright$ into Σ_1^1 -DC₀

The theory $\Sigma_1^1 - AC_0$ proves that $\mathsf{Fix}^{\mathcal{A}}$ is a subclass of every \mathcal{A} -closed set. When we move to the sightly stronger theory $\Sigma_1^1 - \mathsf{DC}_0$ by strengthening the choice principle $(\Sigma_1^1 - \mathsf{AC})$, we even can prove that $\mathsf{Fix}^{\mathcal{A}}$ is contained in every \mathcal{A} -closed, Π_1^1 -definable class. As a consequence, we also obtain induction along the natural numbers for Π_1^1 formulas. Thus, the aforementioned embedding extends to an embedding of $|\widehat{\mathsf{D}}_1^*|$ into $\Sigma_1^1 - \mathsf{DC}_0$.

Formally, the theories Σ_1^1 -DC and Σ_1^1 -DC₀ are obtained from Σ_1^1 -AC and Σ_1^1 -AC₀ by replacing the axiom schema (Σ_1^1 -AC) by the schema (Σ_1^1 -DC): For each Σ_1^1 formula A(U, V) of L₂ we have

$$(\Sigma_1^1 \text{-}\mathsf{DC}) \qquad \forall X \exists Y A(X, Y) \to \forall Q \exists Z[(Z)_0 = Q \land \forall x A((Z)_x, (Z)_{x+1})].$$

Note, that the theory Σ_1^1 -DC₀ proves each instance of the axiom schema (Σ_1^1 -AC). Next, we proof within Σ_1^1 -DC₀ that Fix^A is the least Π_1^1 -definable fixed point of the operator F^A .

Theorem 6 For all operator forms \mathcal{A} of $\mathsf{L}_1(\mathsf{P}, \vec{\mathsf{Q}}, \mathsf{p})$ and each Π_1^1 formula C(u) of L_2 , the following is provable in Σ_1^1 -DC₀:

$$\mathsf{Cl}^{\mathcal{A}}_{\vec{Y},\vec{y}}(\{x:C(x)\})\to\mathsf{Fix}^{\mathcal{A}}_{\vec{Y},\vec{y}}\subseteq\{x:C(x)\}.$$

Before we give the proof, we consider a simpler case to illustrate the proof idea: Suppose that \mathcal{A} and \mathcal{B} are operator forms and that $\mathsf{Fix}^{\mathcal{B}}$ is \mathcal{A} -closed. We assume that there is an $x \in \mathsf{Fix}^{\mathcal{A}}$ with $x \notin \mathsf{Fix}^{\mathcal{B}}$, and argue for a contradiction. Thereto, we construct a sequence $V_0 \supseteq V_1 \supseteq \ldots$ of \mathcal{B} -closed set, such that for all $n \in \mathbb{N}$, we have $x \notin V_n$ and $V_n \supseteq F^{\mathcal{A}}(V_{n+1})$. Then $W := \bigcap_{n \in \mathbb{N}} V_n$ is \mathcal{A} -closed, but $x \notin W$.

To apply this argument in the general case, we require that every Π_1^1 -definable class $\{x : C(x)\}$ is primitive recursive in a fixed point.

Lemma 7 (Representation Lemma) For each Π_1^1 formula C(U, u) of L_2 there exists an operator form \mathcal{A} of $L_1(\mathsf{P}, \mathsf{Q}, \mathsf{p})$ and a U-positive Δ_0^0 formula D(U, u) of L_2 , such that Σ_1^1 - AC_0 proves: For all sets Y, there exists a set T, such that

$$\forall x [D(\mathsf{Fix}_T^{\mathcal{A}}, x) \leftrightarrow C(Y, x)].$$

Proof: As follows e.g. from results in Simpson [18], Σ_1^1 -AC₀ proves that there is a set T, depending on the number and set parameters occurring in C, such that for all n,

 $(T)_n$ is a tree, and $C(n) \leftrightarrow [(T)_n \text{ is well-founded}].$

As usual, a tree is a set of finite sequences that is closed under initial segments. Now we define an operator $F^{\mathcal{A}}$ that collects the leafs of the trees $(T)_n$. If the tree $(T)_n$ is well-founded, then the root $\langle \rangle$ of the tree $(T)_n$ is an element of $\mathsf{Fix}^{\mathcal{A}}$, otherwise the infinite branches and therefore the root do not enter the fixed point.

Thus, we set

$$\mathcal{A}(\mathsf{P},\mathsf{Q},\mathsf{p}) := \exists n [\mathsf{p} = \langle y, n \rangle \land y \in (\mathsf{Q})_n \land (\forall z \in (\mathsf{Q})_n) (z \supset y \to z \in (\mathsf{P})_n)],$$

where $z \supset y$ states that z is a proper extension of the sequence y. It is now easy to see that

$$\forall n[\langle \langle \rangle, n \rangle \in \mathsf{Fix}_T^{\mathcal{A}} \leftrightarrow C(n)].$$

Next we return to the proof of theorem 6.

Proof: Assume that \mathcal{A} is an operator form and C(u) a Π_1^1 formula of L_2 such that $\mathsf{Cl}^{\mathcal{A}}(\{x : C(x)\})$. We aim to prove that $x \in \mathsf{Fix}^{\mathcal{A}}$ implies C(x).

Lemma 7 provides a set T, an operator form \mathcal{B} of $L_1(\mathsf{P},\mathsf{Q},\mathsf{p})$ and a U-positive Δ_0^0 formula D(U, u) of L_2 such that

$$\forall x[D(\mathsf{Fix}_T^{\mathcal{B}}, x) \leftrightarrow C(x)].$$

Hence our assumption reads $\mathsf{Cl}^{\mathcal{A}}(\{x: D(\mathsf{Fix}_{T}^{\mathcal{B}}, x)\})$. We show that this implies

(1)
$$\forall X \exists Z [F^D(X) \neq \mathsf{N} \land \mathsf{Cl}^{\mathcal{B}}_T(X) \to \mathsf{Cl}^{\mathcal{B}}_T(Z) \land Z \subseteq X \land F^{\mathcal{A}} \circ F^D(Z) \subseteq F^D(X)].$$

Fix an arbitrary X, such that $\mathsf{Cl}_T^{\mathcal{B}}(X)$, and suppose that $F^D(X)$ does not contain all natural numbers. If $x \notin F^D(X)$, then $x \notin F^D(\mathsf{Fix}_T^{\mathcal{B}})$, so our assumption yields $x \notin F^{\mathcal{A}} \circ F^D(\mathsf{Fix}_T^{\mathcal{B}})$, and lemma 3 provides a set Y that is \mathcal{B} -closed with respect to T, such that $x \notin F^{\mathcal{A}} \circ F^D(Y)$. If $\mathsf{Cl}_T^{\mathcal{B}}(X)$ and $\mathsf{Cl}_T^{\mathcal{B}}(Y)$ then also $\mathsf{Cl}_T^{\mathcal{B}}(X \cap Y)$, thus we may assume that $Y \subseteq X$. Summarizing, we obtain

$$\forall x \exists Y [x \notin F^D(X) \to \mathsf{Cl}^{\mathcal{B}}_T(Y) \land Y \subseteq X \land x \notin F^{\mathcal{A}} \circ F^D(Y)].$$

Now $(\Sigma_1^1 - \mathsf{AC})$ gives us a set Y such that for all $x \notin F^D(X)$

$$\operatorname{Cl}_T^{\mathcal{B}}((Y)_x) \wedge (Y)_x \subseteq X \wedge x \notin F^{\mathcal{A}} \circ F^D((Y)_x).$$

Therefore, if we set

$$Z := \bigcap_{x \notin F^D(X)} (Y)_x$$

we have $\mathsf{Cl}^{\mathcal{B}}_T(Z)$ and $Z \subseteq X$ and

$$\forall x [x \notin F^D(X) \to x \notin F^{\mathcal{A}} \circ F^D(Z)].$$

which means $F^{\mathcal{A}} \circ F^{\mathcal{D}}(Z) \subseteq F^{\mathcal{D}}(X)$. Thus we have shown claim (1).

Now we suppose that there is an $x \in \mathsf{Fix}^{\mathcal{A}}$ that is not an element of $x \notin F^{D}(\mathsf{Fix}_{T}^{\mathcal{B}})$ and argue for a contradiction. Again, lemma 3 provides a set Q that is \mathcal{B} -closed with respect to T and $x \notin F^{D}(Q)$. Applying $(\Sigma_{1}^{1}-\mathsf{DC})$ to (1) gives us a set V such that $(V)_{0} = Q$ and

$$\forall n[\mathsf{Cl}_T^{\mathcal{B}}((V)_n) \to \mathsf{Cl}_T^{\mathcal{B}}((V)_{n+1}) \land (V)_{n+1} \subseteq (V)_n \land F^{\mathcal{A}} \circ F^D((V)_{n+1}) \subseteq F^D((V)_n)].$$

One easily proves by induction that

$$\forall n[\mathsf{Cl}_T^{\mathcal{B}}((V)_n) \land (V)_{n+1} \subseteq (V)_n \land F^{\mathcal{A}} \circ F^D((V)_{n+1}) \subseteq F^D((V)_n)].$$

Hence, for $W := \bigcap_{n \in \mathbb{N}} (V)_n$, we have that

$$F^{\mathcal{A}} \circ F^{D}(W) \subseteq \bigcap_{n \in \mathbb{N}} F^{D}((V)_{n}) = F^{D}(\bigcap_{n \in \mathbb{N}} (V)_{n}) = F^{D}(W).$$

The second but last equality follows from the fact that D is positive and Δ_0^0 , and that $(\forall n \in \mathbb{N})((V)_{n+1} \subseteq (V)_n)$. So $W \subseteq Q$ and $\mathsf{Cl}^{\mathcal{A}}(F^D(W))$, i.e. $\mathsf{Fix}^{\mathcal{A}} \subseteq F^D(W)$. Now $x \notin F^D(Q)$ yields $x \notin F^D(W)$, thus $x \notin \mathsf{Fix}^{\mathcal{A}}$. A contradiction!

The following corollary is an immediate consequence of theorem 6. To enhance readability, we let $\operatorname{Fix}_{\vec{v}}^{\vec{\mathcal{A}}}$ stand for $\operatorname{Fix}_{\vec{v}}^{\mathcal{A}_1}, \ldots, \operatorname{Fix}_{\vec{v}}^{\mathcal{A}_n}$.

Corollary 8 For all operator forms \mathcal{A} and $\vec{\mathcal{A}}$ of $L_1(\mathsf{P}, \vec{\mathsf{Q}}, \mathsf{p})$ and each \vec{U} -positive arithmetical formula $B(\vec{U}, \vec{u})$ of L_2 , Σ_1^1 -DC₀ proves:

$$\mathsf{Cl}^{\mathcal{A}}(\{x: B(\mathsf{Fix}_{\vec{Y}}^{\vec{\mathcal{A}}}, x, \vec{z})\}) \to \mathsf{Fix}_{\vec{Y}}^{\mathcal{A}} \subseteq \{x: B(\mathsf{Fix}_{\vec{Y}}^{\vec{\mathcal{A}}}, x, \vec{z})\}.$$

Proof: Note that $B(\operatorname{Fix}_{\vec{V}}^{\vec{\mathcal{A}}}, x, \vec{z})$ is equivalent to a Π_1^1 formula of L₂.

Remark 9 We think of U as coding an ordering, and set

$$\begin{array}{lll} \mathsf{Prog}(U,V) &:= & \forall x [\forall y (\langle y,x \rangle \in U \to y \in V) \to x \in V], \\ \mathsf{TI}(U,V) &:= & \mathsf{Prog}(U,V) \to \mathsf{Field}(U) \subseteq V, \\ \mathsf{Wo}(U) &:= & \forall Y \mathsf{TI}(U,Y). \end{array}$$

Further, we consider the operator form

$$\mathcal{ACC}(\mathsf{P},\mathsf{Q},\mathsf{p}) := \forall y [\langle y,\mathsf{p} \rangle \in \mathsf{Q} \to y \in \mathsf{P}].$$

Observe, that $\mathsf{Cl}_{U}^{\mathcal{ACC}}(V)$ is the formula $\mathsf{Prog}(U,V)$ and $\mathsf{Wo}(X)$ can be written as $\forall Y[\mathsf{Cl}_{X}^{\mathcal{ACC}}(Y) \to \mathsf{Field}(X) \subseteq Y]$. It is immediate, that $\mathsf{Wo}(X)$ is equivalent to $\mathsf{Fix}_{X}^{\mathcal{ACC}} = \mathsf{Field}(X)$. Due to theorem 6, Σ_{1}^{1} -DC₀ proves for each Π_{1}^{1} formula C(u) of L_{2} that

$$\mathsf{Wo}(X) \to [\mathsf{Cl}_X^{\mathcal{ACC}}(\{z : C(z)\}) \to \mathsf{Field}(X) \subseteq \{z : C(z)\}],$$

which is normally written as

$$(\Pi_1^1 \text{-}\mathsf{TI}) \qquad \qquad \mathsf{Wo}(X) \to \mathsf{TI}(X, \{z : C(z)\}).$$

It is shown, e.g. in [18], that $(\Pi_1^1-\mathsf{TI})$ is provable in $\Sigma_1^1-\mathsf{DC}_0$. In this sense, corollary 6 is a generalization of this result.

Since $(\Pi_1^1-\mathsf{TI})$ implies induction along the natural numbers for all Π_1^1 formulas of L_2 , the embedding given in the previous section extends to an embedding of $\widehat{\mathsf{ID}}_1^*\upharpoonright$ and ID_1^* into $\Sigma_1^1-\mathsf{DC}_0$ and $\Sigma_1^1-\mathsf{DC}$, respectively.

Theorem 10 If we translate an L_{Fix} formula B to a L_2 formula B^* by substituting each fixed point constant $P^{\mathcal{A}}$ by the Π_1^1 -definable class Fix^{\mathcal{A}}, then the following holds:

 $\widehat{\mathsf{ID}}_1^* \vdash B \Longrightarrow \Sigma_1^1 \text{-}\mathsf{DC}_0 \vdash B^* \qquad and \qquad \operatorname{ID}_1^* \vdash B \Longrightarrow \Sigma_1^1 \text{-}\mathsf{DC} \vdash B^*.$

Since $|\Sigma_1^1 - \mathsf{DC}_0| = \varphi \omega 0$ and $|\Sigma_1^1 - \mathsf{DC}| = \varphi \varepsilon_0 0$, this answers the question for a sharp upper bound of ID_1^* :

Corollary 11

 $|\mathsf{I}\widehat{\mathsf{D}}_1^*{\upharpoonright}| \leq \varphi \omega 0, \qquad and \qquad |\mathsf{I}\mathsf{D}_1^*| \leq \varphi \varepsilon_0 0.$

4 The theories $|\mathsf{D}^*_{\alpha}|$ and $|\mathsf{D}^*_{\alpha}|$

To formulate transfinite iterations of the theories ID_1^* and $\widehat{\mathsf{ID}}_1^*|_{\uparrow}$, we follow the lines chosen by Jäger, Kahle, Setzer and Strahm [9] and we presuppose the same ordinaltheoretic facts. Again, $(\mathsf{OT}, \triangleleft)$ is a standard notation system based on the ternary Veblen or φ -function. As usual, we write 0 for the least element of OT with respect to the primitive recursive ordering \triangleleft . Ordinals are often identified with their notations. If an ordinal α appears within a formal argument, the closed term representing its notation is meant instead. Also, we do not distinguish between operations on ordinals and the primitive recursive analogues on their codes. By Φ_0 we denote the least ordinal greater than 0 such that with $\alpha < \Phi_0$ also $\varphi 1 \alpha 0 < \Phi_0$. We restrict ourselves to ordinals below Φ_0 because we only bother to fix fundmental sequences for these ordinals in the subsequent well-ordering proof. However, it is straight foreward to extend the following to all ordinals below Φ_1 , the least ordinal greater than 0 which is closed under all *n*-ary φ -functions.

The language L_1 and operator forms \mathcal{A} are defined as in section 1, but this time, we extend the language L_1 by a unary relation symbol $\mathsf{P}^{\mathcal{A}}$ for each operator form $\mathcal{A}(\mathsf{P},\mathsf{Q},\mathsf{p},u)$ of $\mathsf{L}_1(\mathsf{P},\mathsf{Q},\mathsf{p})$ which contains at most the variable u free, and denote this new language again by $\mathsf{L}_{\mathsf{Fix}}$. To simplify the notation, $t \in \mathsf{P}^{\mathcal{A}}_s$ stands for $\mathsf{P}^{\mathcal{A}}(\langle t, s \rangle)$ and $t \in \mathsf{P}^{\mathcal{A}}_{\triangleleft s}$ is to abbreviate $t = \langle (t)_0, (t)_1 \rangle \land (t)_1 \triangleleft s \land t \in \mathsf{P}^{\mathcal{A}}$. For each ordinal α less than Φ_0 , the theory ID^*_α comprises the axioms of $\mathsf{P}\mathsf{A}$ without induction, the axioms $\mathsf{TI}_{\triangleleft}(A, \max\{\alpha, \omega\})$ for all $\mathsf{L}_{\mathsf{Fix}}$ formulas A and the following fixed point axioms:

$$(\mathsf{FIX}) \qquad (\forall a \lhd \alpha)(\forall x)[x \in \mathsf{P}^{\mathcal{A}}_a \leftrightarrow \mathcal{A}(\mathsf{P}^{\mathcal{A}}_a, \mathsf{P}^{\mathcal{A}}_{\lhd a}, x, a)],$$

and

$$(\mathsf{IND}^+_{\mathsf{FIX}}) \quad (\forall a \lhd \alpha) [\mathsf{Cl}^{\mathcal{A}}_{\mathsf{P}^{\mathcal{A}}_{\lhd a},a}(\{x : B(\mathsf{P}^{\vec{\mathcal{A}}}_{a},\mathsf{P}^{\vec{\mathcal{A}}}_{\lhd a},x,\vec{y})\}) \to \mathsf{P}^{\mathcal{A}}_{a} \subseteq \{x : B(\mathsf{P}^{\vec{\mathcal{A}}}_{a},\mathsf{P}^{\vec{\mathcal{A}}}_{\lhd a},x,\vec{y})\}],$$

for all operator forms $\vec{\mathcal{A}}(\mathsf{P},\mathsf{Q},\mathsf{p},u)$ containing at most the variable u free and each \vec{P} -positive formula $B(\vec{\mathsf{P}},\vec{\mathsf{Q}},\mathsf{p},\vec{u})$ of $\mathsf{L}_1(\vec{\mathsf{P}},\vec{\mathsf{Q}},\mathsf{p})$. In ID^*_{α} , only restricted (transfinite) induction is available, i.e. instead of $\mathsf{TI}_{\triangleleft}(A, \max\{\alpha, \omega\})$, we only have

$$(\forall a \lhd \alpha)[\mathsf{Prog}_{\lhd}(\lambda b.B(\mathsf{P}_{a}^{\vec{\mathcal{A}}},\mathsf{P}_{\lhd a}^{\vec{\mathcal{A}}},b,\vec{y})) \rightarrow (\forall c \lhd \max\{\alpha,\omega\})B(\mathsf{P}_{a}^{\vec{\mathcal{A}}},\mathsf{P}_{\lhd a}^{\vec{\mathcal{A}}},c,\vec{y})]$$

for each \vec{P} -positive formula $B(\vec{P}, \vec{Q}, p, \vec{u})$ of $\mathsf{L}_1(\vec{P}, \vec{Q}, p)$. As usual, for a formula A(u) of $\mathsf{L}_{\mathsf{Fix}}$, $\mathsf{Prog}_{\prec}(\lambda x.A(x))$ abbreviates $\forall u(\forall v \prec u)(A(v) \rightarrow A(u))$. Note that the axioms concerning transfinite induction imply also induction along the natural numbers for the corresponding class of formulas. Again, $\widehat{\mathsf{ID}}_{\alpha}$ is ID_{α}^* without $(\mathsf{IND}_{\mathsf{FIX}}^+)$.

5 Wellordering proofs for $|\mathsf{D}^*_{\alpha}|$ and $|\mathsf{D}^*_{\alpha}|$

To demonstrate the power of the axiom $(\mathsf{IND}^+_{\mathsf{FIX}})$, we give wellordering proofs for the theories ID^*_{α} and $\mathsf{ID}^*_{\alpha} \upharpoonright$. The proof idea is the same as in [9], where the wellordering proof of $\widehat{\mathsf{ID}}_{\alpha}$ is carried out in the transfinitely iterated theory of self-reflecting truth SRT_{α} . However, things are easier in the present context and the wellordering proof is performed in ID^*_{α} itself. As corollary 11 suggests, we obtain that also ID^*_{α} and $\widehat{\mathsf{ID}}_{\alpha}$ prove the same ordinals.

For the wellordering proof, we fix fundamental sequences for the ordinals below Φ_0 . A fundamental sequence for α is a primitive recursive, increasing sequence $\alpha[n]$ on the corresponding notations such that for each $\beta < \alpha < \Phi_0$ there is an n with $\beta \leq \alpha[n]$. We set $(\alpha+1)[n] := \alpha$ for all $n \in \mathbb{N}$, and if $\omega^{\alpha_k} + \ldots + \omega^{\alpha_1}$ is the Cantor normal form of λ and $\lambda < \omega^{\lambda}$, then $\lambda[n] := \omega^{\alpha_k} + \ldots + \omega^{\alpha_2} + \omega^{\alpha_1}[n]$. The remaining cases where $\lambda < \Phi_0$ is of the form $\varphi \alpha \beta \gamma$ for $\alpha \in \{0, 1\}$ and $\beta, \gamma < \lambda$ are given next: $\Gamma_0[0] := 0$ and $\Gamma_0[n+1] := \varphi(\Gamma_0[n])0, \ \varphi 00(\gamma+1)[n] = \omega^{\gamma+1}[n] := \omega^{\gamma} \cdot n$, and

(i)
$$\varphi \alpha(\beta+1)0[0] = 0$$
 and $\varphi \alpha(\beta+1)0[n+1] = \varphi \alpha \beta(\varphi \alpha(\beta+1)0[n]).$

(ii) For a limit λ : $\varphi \alpha \beta \lambda[n] = \varphi \alpha \beta(\lambda[n])$ and $\varphi \alpha \lambda 0[n] = \varphi \alpha(\lambda[n])0$.

(iii)
$$\varphi \alpha \beta (\gamma + 1)[0] = \varphi \alpha \beta \gamma + 1$$
, and

$$\begin{aligned} \varphi \alpha \beta (\gamma + 1)[n+1] &= \varphi \alpha (\beta [n])(\varphi \alpha \beta (\gamma + 1)[n]), \text{ if } \beta > 0, \\ &= \varphi 0(\varphi 10(\gamma + 1)[n])0, \text{ if } \beta = 0 \text{ and } \alpha = 1. \end{aligned}$$

In the course of the wellordering proof, we let a, b, c, d, e range over the elements of OT and use l to denote limit notations. We start with the cases ID_1^* and $\widehat{\mathsf{ID}}_1^*$.

Let $\mathcal{ACC} := (\forall z \triangleleft x)(z \in \mathsf{P})$ and denote the corresponding fixed point constant $\mathsf{P}^{\mathcal{A}}$ by ACC. By means of the axiom $(\mathsf{IND}^+_{\mathsf{FIX}})$ one immediately proves in $\widehat{\mathsf{ID}}^*_1$ that $a, b \in \mathsf{ACC}$ implies $\mathsf{ACC} \subseteq \{c : a + c \in \mathsf{ACC}\}$ and $\mathsf{ACC} \subseteq \{c : a \cdot c \in \mathsf{ACC}\}$, hence $a, b \in \mathsf{ACC}$ yields $a+b \in \mathsf{ACC}$ and $a \cdot b \in \mathsf{ACC}$.

Lemma 12 For each ordinal $k < \omega$, and each ordinal $\kappa < \varepsilon_0$, the following holds:

 $\mathsf{I}\widehat{\mathsf{D}}_1^* \models \mathsf{Prog}_{\lhd}(\lambda a.\varphi ka \in \mathsf{ACC}) \quad and \quad \mathsf{ID}_1^* \vdash \mathsf{Prog}_{\lhd}(\lambda a.\varphi \kappa a \in \mathsf{ACC}).$

Proof: Note that $\operatorname{Prog}_{\triangleleft}(\lambda x.A(x))$ is another way of writing $\operatorname{Cl}^{\mathcal{ACC}}(\{x : A(x)\})$. We prove the first claim by (meta-) induction on k. For k = 0, it is to show that if $\omega^b \in \operatorname{ACC}$ holds for all $b \triangleleft a$, then also $\omega^a \in \operatorname{ACC}$. If a is a limit notation, this follows from $\operatorname{Prog}_{\triangleleft}(\lambda b.b \in \operatorname{ACC})$ and the continuity of the function $\lambda \xi.\omega^{\xi}$. If a is of the form b+1, then we use restricted induction to show that $\forall n(\omega^{\beta} \cdot n \in \operatorname{ACC})$, thus $\operatorname{Prog}_{\triangleleft}(\lambda b.b \in \operatorname{ACC})$ yields $\omega^{\beta+1} \in \operatorname{ACC}$.

For the induction step, we assume that $\varphi(k+1)b \in \mathsf{ACC}$ for all $b \triangleleft a$. Now the I.H. allows to prove by restricted induction that $\forall n(\varphi(k+1)a[n] \in \mathsf{ACC})$. Thus, also $\varphi(k+1)a \in \mathsf{ACC}$.

For the second claim, observe that in ID_1^* transfinite induction along ordinals $\kappa < \varepsilon_0$ is available for all formulas of $\mathsf{L}_{\mathsf{Fix}}$. Instead of meta-induction, transfinite induction within ID_1^* is used. If λ is a limit ordinal, the induction step is performed by showing $\forall n(\varphi \lambda a[n] \in \mathsf{ACC})$.

The axiom $(\mathsf{IND}^+_{\mathsf{FIX}})$ implies $\mathsf{Prog}_{\triangleleft}(\mathsf{U}) \to \mathsf{ACC} \subseteq \mathsf{U}$. Since the previous lemma yields $|\widehat{\mathsf{D}}_1^*| \vdash \varphi k 0 \in \mathsf{ACC}$ and $\mathsf{ID}_1^* \vdash \varphi \kappa 0 \in \mathsf{ACC}$ for $k < \omega$ and $\kappa < \varepsilon_0$, theorem 11 gives rise to the following corollary.

Corollary 13

$$|\widehat{\mathsf{ID}}_1^*| = \varphi \omega 0, \quad and \quad |\mathsf{ID}_1^*| = \varphi \varepsilon_0 0.$$

Next we consider $|\mathsf{D}_{\alpha}^{*}|$ and $|\mathsf{D}_{\alpha}^{*}|$. By mentioning $|\mathsf{D}_{\alpha}^{*}|$ or $|\mathsf{D}_{\alpha}^{*}|$, we implicitly imply $\alpha < \Phi_{0}$. This time, let $\mathcal{ACC} := (\forall z \triangleleft \mathsf{p})(z \in \mathsf{P}_{a})$ and denote the corresponding relation symbol $\mathsf{P}^{\mathcal{A}}$ by ACC. In the sequel, we write $c \in \mathsf{ACC}^{a}$ for $(\forall b \triangleleft a)(c \in \mathsf{ACC}_{b})$. Note that this reads $(\forall b \triangleleft a)(\langle c, b \rangle \in \mathsf{ACC}_{\triangleleft a})$. Therefore $|\mathsf{D}_{\alpha}^{*}|$ proves for each formula $B(\mathsf{P},\mathsf{p})$ of $\mathsf{L}_{1}(\mathsf{P},\mathsf{p})$, that $a \triangleleft \alpha$ and $\mathsf{Prog}_{\triangleleft}(\lambda x.B(\mathsf{ACC}^{a}, x))$ imply $\mathsf{ACC}_{a} \subseteq \{x : B(\mathsf{ACC}^{a}, x)\}$. Further, $a \triangleleft \alpha$ implies the progressivity of ACC^{a} and $b \triangleleft a \triangleleft \alpha$ implies $\mathsf{ACC}_{a} \subseteq \mathsf{ACC}_{b}$. Since $\mathsf{Prog}_{\triangleleft}(\mathsf{U})$ implies $\mathsf{ACC}_{0} \subseteq \mathsf{U}$, proving an ordinal β in $|\mathsf{D}_{\alpha}^{*}|$ breaks down to show $\beta \in \mathsf{ACC}_{0}$.

Lemma 14 Let $A(a,b) := \forall c(c \in \mathsf{ACC}_a \to \varphi bc \in \mathsf{ACC}_a)$. Then it is provable in $\mathsf{ID}^*_{\alpha} \upharpoonright that a \lhd \alpha \to \mathsf{Prog}_{\lhd}(\lambda b.A(a,b))$.

Proof: Let $a \triangleleft \alpha$. We assume $(\forall b' \triangleleft b)A(a, b')$ and show A(a, b).

 $(\mathsf{IND}^+_{\mathsf{FIX}})$ tells us that A(a, b) follows from $\mathsf{Prog}_{\triangleleft}(\lambda c.\varphi bc \in \mathsf{ACC}_a)$, which in turn follows from the assumption $(\forall b' \triangleleft b)A(a, b')$: Given $\varphi bc' \in \mathsf{ACC}_a$ for all $c' \triangleleft c$, restricted induction yields that $\forall n(\varphi bc[n] \in \mathsf{ACC}_a)$, thus $\varphi bc \in \mathsf{ACC}_a$. \Box

Corollary 15 For all limit notations $l \leq \alpha$, ID^*_{α} proves:

 $d \in \mathsf{ACC}^l \to \varphi d0 \in \mathsf{ACC}^l.$

Proof: Pick an arbitrary $a \triangleleft l$. So $d \in \mathsf{ACC}^l$ implies $d \in \mathsf{ACC}_{a+1}$. Now $(\mathsf{IND}^+_{\mathsf{FIX}})$ and $\mathsf{Prog}_{\triangleleft}(\lambda b. \forall c (c \in \mathsf{ACC}_a \to \varphi bc \in \mathsf{ACC}_a))$ yield $\varphi d0 \in \mathsf{ACC}_a$. \Box

Corollary 16 For all limit notations $l \triangleleft \alpha$, ID^*_{α} proves:

 $\operatorname{Prog}_{\triangleleft}(\lambda c.\varphi 10c \in \operatorname{ACC}^{l}).$

Proof: Assume that $l \triangleleft \alpha$ and that $\varphi 10d \in \mathsf{ACC}^l$ for all $d \triangleleft c$. Restricted induction and the previous corollary imply that $\forall n(\varphi 10c[n] \in \mathsf{ACC}^l)$. Thus $\varphi 10c \in \mathsf{ACC}^l$. \Box

Corollary 17 For all limits $l \leq \alpha$, ID^*_{α} proves:

$$\operatorname{Prog}_{\triangleleft}(\lambda c.\varphi 10c \in \operatorname{ACC}^{l}).$$

Proof: In the case $l = \alpha$, full induction is needed to show that $\forall n(\varphi 10c[n] \in \mathsf{ACC}^l)$.

The following lemma corresponds to the Main Lemma in [9]. Again, the proof is simpler in the present context.

Lemma 18 Let

$$A(a,b) := \forall d, c(d + \omega^{1+b} \leq a \land c \in \mathsf{ACC}_{d+\omega^{1+b}} \to \varphi 1bc \in \mathsf{ACC}^{d+\omega^{1+b}}).$$

Then it is provable in $\mathsf{ID}_{\alpha}^* \upharpoonright$ that $a \triangleleft \alpha \to \mathsf{Prog}_{\triangleleft}(\lambda b.A(a, b)).$

Proof: Assume $a \triangleleft \alpha$ and that A(a, b') holds for all $b' \triangleleft b$. We aim for A(a, b). So suppose $d+\omega^{1+b} \trianglelefteq a$. Now $c \in \mathsf{ACC}_{d+\omega^{1+b}} \to \varphi 1bc \in \mathsf{ACC}^{d+\omega^{1+b}}$ follows, if we can establish

(1)
$$\operatorname{Prog}_{\triangleleft}(\lambda c.\varphi 1bc \in \operatorname{ACC}^{d+\omega^{1+b}}).$$

Thereto we further suppose that $\varphi 1bc' \in \mathsf{ACC}^{d+\omega^{1+b}}$ for all $c' \triangleleft c$, and use restricted induction to show $\forall n(\varphi 1bc[n] \in \mathsf{ACC}^{d+\omega^{1+b}})$. We only consider the case where b is

not 0 and c a successor: $\varphi 1bc[0] \in \mathsf{ACC}^{d+\omega^{1+b}}$ follows immediately from our further supposition, and the induction step can be performed because we have for all $m \in \mathsf{N}$,

(2)
$$\forall e(e \in \mathsf{ACC}^{d+\omega^{1+b}} \to \varphi 1(b[m])e \in \mathsf{ACC}^{d+\omega^{1+b}}).$$

To see that (2) holds, fix an $m \in \mathbb{N}$ and suppose that $e \in \mathsf{ACC}^{d+\omega^{1+b}}$. We argue that $\varphi_1(b[m])e \in \mathsf{ACC}_{d+\omega^{1+b}[k]}$ for all $k \in \mathbb{N}$: So we fix an arbitrary $k \in \mathbb{N}$, and observe that $e \in \mathsf{ACC}_{d+\omega^{1+b}[k]+\omega^{1+b}[m]}$. Thus, the assumption $(\forall b' \triangleleft b)A(a, b')$ forces $\varphi_1(b[m])e \in \mathsf{ACC}_{d+\omega^{1+b}[k]}$.

The other cases are shown similarly or are easy. If b = 0, (1) becomes corollary 16.

From the above proof we immediately extract the following corollaries:

Corollary 19 For all notations b and all d with $d+\omega^{1+b} \triangleleft \alpha$, $\mathsf{ID}^*_{\alpha} \upharpoonright proves$:

$$\operatorname{Prog}_{\leq 1}(\lambda c.\varphi 1bc \in \operatorname{ACC}^{d+\omega^{1+b}})$$

Corollary 20 For all notations b and all d with $d+\omega^{1+b} \leq \alpha$, ID^*_{α} proves:

$$\mathsf{Prog}_{\triangleleft}(\lambda c.\varphi 1bc \in \mathsf{ACC}^{d+\omega^{1+b}}).$$

Proof: Let A(a, b) be as defined in lemma 18. By transfinite induction we obtain A(a, b) for all $a \triangleleft \alpha$ and $b \trianglelefteq \alpha$. Using full induction, the claim is shown as in the proof of lemma 18.

In order to speak about lower and upper bounds of ID^*_{α} and ID^*_{α} , we define for all $\alpha, \beta < \Phi_0$ a function $\sigma(\alpha, \beta)$.

Definition 21 Let $\alpha = \omega^{1+\alpha_n} + \omega^{1+\alpha_{n-1}} + \cdots + \omega^{1+\alpha_1} + m$, where $\alpha_n \geq \cdots \geq \alpha_1$ and $m < \omega$, be an ordinal below Φ_0 in Cantor normal form. We set for all ordinals $\beta < \Phi_0$:

$$\sigma(\alpha,\beta) := \varphi 1 \alpha_n(\varphi 1 \alpha_{n-1}(\dots(\varphi 1 \alpha_1 \beta) \dots), \text{ if } \alpha \ge \omega \quad and \quad \sigma(m,\beta) := \beta.$$

Moreover, $(\alpha|0) := \varepsilon(\alpha)$, i.e. the least fixed point of the function $\lambda \xi . \omega^{\xi}$ bigger than α , and $(\alpha|i+1) := \varphi(\alpha|i)0$.

 $(\alpha \restriction 0)$ is the least limit ordinal $\lambda > 0$ such that $\varphi 1 \alpha_1 \lambda > \alpha$, and $(\alpha \restriction 1)$ is the least upper bound of $\{\varphi k(\alpha+1) : k < \omega\}$. Eventually, $(\alpha \restriction i+2) := \varphi(\alpha \restriction i+1)0$.

Towards further simplifications, we write in the sequel $\sigma(\alpha)$ for $\sigma(\alpha, (\alpha|m))$ and $\sigma \upharpoonright (\alpha)$ for $\sigma(\alpha, (\alpha \upharpoonright m))$.

Note, that $\alpha \upharpoonright 0$ is of the form $\beta + \omega$, where β is a limit or zero, and if $\beta > 0$, then $\alpha \ge \varphi 1\alpha_1\beta$: Let $\beta_0 := \min\{\beta : \varphi 1\alpha_1\beta \ge \alpha\}$. Now if β_0 is zero or a successor, the claim is immediate, and if β_0 is a limit, then the continuity of the function $\lambda \xi \cdot \varphi 1\alpha_1 \xi$ yields $\varphi 1\alpha_1\beta_0 = \alpha$, thus $\alpha \upharpoonright 0 = \beta_0 + \omega$.

Lemma 22 Let $\lambda = \omega^{1+\alpha_n} + \omega^{1+\alpha_{n-1}} + \cdots + \omega^{1+\alpha_1} < \Phi_0$, where $\alpha_n \ge \cdots \ge \alpha_1$, and assume that $\lambda \upharpoonright 0 = \beta + \omega$. Then, for each $n \in \mathbb{N}$, $\mathsf{ID}^*_{\lambda} \upharpoonright$ proves the following:

$$\varphi 1 \alpha_1(\beta + n) \in \mathsf{ACC}^{\lambda}.$$

Proof: We choose δ such that $\lambda = \delta + \omega^{1+\alpha_1}$ and prove the claim by metainduction on n. We start with the case n = 0: If $\beta > 0$, then $\varphi 1\alpha_1\beta \leq \lambda$ and the claim trivially follows by restricted transfinite induction up to λ . If $\beta = 0$, then the claim follows similar to the induction step, which we prove below. Thereby, we distinguish whether α_1 is zero, a successor or a limit. Exemplarily, we show the case $\alpha_1 = \alpha'_1 + 1$: To establish $\varphi 1\alpha_1(\beta + n + 1) \in \mathsf{ACC}^{\delta + \omega^{1+\alpha_1}}$, we show that for all $k \in \mathsf{N}$, $\varphi 1\alpha_1(\beta + n + 1)[k] \in \mathsf{ACC}^{\delta + \omega^{1+\alpha'_1 \cdot k}}$ by proving, using restricted induction on m, that for each $k \in \mathsf{N}$,

$$(\forall m \le k)[\varphi 1\alpha_1(\beta + n + 1)[m] \in \mathsf{ACC}_{\delta + \omega^{1 + \alpha'_1} \cdot (2k - m)}] :$$

If m < k, then the I.H. yields $\varphi 1 \alpha_1 (\beta + n + 1)[m] \in \mathsf{ACC}_{\delta + \omega^{1 + \alpha'_1} \cdot (2k - m)}$ and corollary 19 tells us

$$\mathsf{Prog}_{\triangleleft}(\lambda c.\varphi 1\alpha_1' c \in \mathsf{ACC}^{\delta + \omega^{1 + \alpha_1'} \cdot (2k - m)})$$

Thus, $\varphi 1 \alpha_1 (\beta + n + 1)[m+1] \in \mathsf{ACC}^{\delta + \omega^{1 + \alpha'_1} \cdot (2k - (m+1))} \subseteq \mathsf{ACC}_{\delta + \omega^{1 + \alpha'_1} \cdot (2k - (m+1))}$.

We conclude this section by presenting the lower bounds:

Theorem 23 For all $0 < \alpha < \Phi_0$ we have:

$$|\mathsf{ID}_{\alpha}^*| \ge \sigma(\alpha) \quad and \quad |\mathsf{ID}_{\alpha}^*| \ge \sigma(\alpha).$$

Proof: Assume that $\alpha = \omega^{1+\alpha_n} + \cdots + \omega^{1+\alpha_1} + m$ for ordinals $\alpha_n \ge \cdots \ge \alpha_1$ and $m < \omega$, and set $\delta_k := \omega^{1+\alpha_n} + \cdots + \omega^{1+\alpha_k}$ for $k \le n$, and $\sigma_k := \varphi 1 \alpha_k (\cdots \varphi 1 \alpha_1 (\alpha \restriction m)) \cdots$). By meta-induction on k we now show that for all $\beta < \sigma_k$, the theory $\mathsf{ID}^*_{\alpha} \upharpoonright$ proves $\beta \in \mathsf{ACC}^{\delta_k}$:

We first consider the case k = 1. If m = 0, then $\delta_1 = \alpha$ and $\sigma_1 = \varphi 1\alpha_1(\alpha | 0)$. Hence the claim follows by lemma 22. If m = m'+1, then there exists for each $\beta < \sigma_1 = \varphi 1\alpha_1(\alpha | 1)$ a $k < \omega$ and ordinals ξ_1, \ldots, ξ_m such that $\xi_1 = \varphi k(\alpha+1)$ and $\xi_{i+i} = \varphi \xi_i 0$ and $\beta < \varphi 1\alpha_1 \xi_m$. It follows from the proof of lemma 12 that $|\mathsf{D}_{\alpha}^*|$ proves the progressivity of $\lambda a.\varphi ka \in \mathsf{ACC}^{\delta_1+m'}$, thus $\xi_1 \in \mathsf{ACC}_{\delta_1+m'}$. Applying m'-times lemma 14 and $(\mathsf{IND}_{\mathsf{FIX}}^+)$ yields $\xi_m \in \mathsf{ACC}_{\delta_1}$. Now lemma 18 yields $\varphi 1\alpha_1 \xi_m \in \mathsf{ACC}^{\delta_1}$. The induction step from k to k+1 follows with corollary 19.

The case ID^*_{α} is treated similarly. If m = 0, we use that for all formulas A(u) of $\mathsf{L}_{\mathsf{Fix}}$, ID^*_{α} proves $\mathsf{Prog}_{\triangleleft}(\lambda a. A(a)) \to A(\beta)$, for all $\beta < \varepsilon(\alpha)$. \Box

That these bounds are sharp is established in the next section.

6 Upper bounds for ID^*_{α} and ID^*_{α}

The aim of this section is to determine the upper bounds of the ID^* -theories ID^*_{α} and $\mathsf{ID}^*_{\alpha} \upharpoonright$. In a first step, we introduce for each ordinal $\alpha < \Phi_0$ a theory M_{α} which formalizes an α -hierarchy of models of Σ^1_1 -AC. Then upper bounds of the theories $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0$, $(\mathsf{M}_{\alpha} + \Sigma^1_1 - \mathsf{DC})_0$ and $\mathsf{M}_{\lambda} \upharpoonright$, the so called M-theories, are identified by reducing them to semi-formal systems E^0_{α} , presented and analyzed by Rüede in [15]. Next we extend each M-theory to a corresponding M^\dagger -theory by adding the axiom $\neg \mathsf{TI}_{\triangleleft}(\mathsf{U},\xi)$, where ξ is the previously determined upper bound of the M-theory and argue that ξ is still an upper bound of the corresponding M^\dagger -theory. Finally, we give embeddings of the ID^* -theories into the M^\dagger -theories, namely ID^*_{α} into $(\mathsf{M}_{\alpha} + \mathsf{ACA})^\dagger_0$, $\mathsf{ID}^*_{\alpha+1} \upharpoonright$ into $(\mathsf{M}_{\alpha} + \Sigma^1_1 - \mathsf{DC})^\dagger_0$ and $\mathsf{ID}^*_{\lambda} \upharpoonright$ into $(\mathsf{M}_{\lambda} \upharpoonright)^\dagger$ if λ is a limit.

6.1 Upper bounds for $(M_{\alpha} + ACA)_0$, $(M_{\alpha} + \Sigma_1^1 - DC)_0$ and M_{λ}

For each $\alpha < \Phi_0$, the theory M_{α} is formulated in the language $L_2(D)$ which extends L_2 by the unary relation symbol D. Formulas of $L_2(D)$ that do not contain bound set variables are called elementary. To simplify the notation, we write $t \in D$ for D(t), $t \in D_s$ for $\langle t, s \rangle \in D$ and $X \in D_s$ is to abbreviate the formula $\exists x(X = (D_s)_x)$, where again, $X = (D_s)_t$ is short for $\forall x(x \in X \leftrightarrow \langle x, t \rangle \in D_s)$. The expression $t \in X_{\triangleleft a}$ stands for $t = \langle (t)_0, (t)_1 \rangle \land (t)_1 \triangleleft a \land t \in X$ and $t \in D_{\triangleleft a}$ is defined accordingly. $X \in D_{\triangleleft a}$ is read as $(\exists b \triangleleft a)(X \in D_b)$. The relativization A^{D_a} of an $L_2(D)$ formula to D_a is A for an elementary A, $(\forall XA(X))^{D_a} := \forall xA^{D_a}((D_a)_x)$ and $(\exists XA(X))^{D_a}$ is $\exists xA^{D_a}((D_a)_x)$. Relativizations to $D_{\triangleleft a}$ are defined analogously. Observe that if A is an $L_2(D)$ formula without free set variables, then A^{D_a} is a formula of $L_1(D)$. Finally, $A_{\Sigma_1^1-AC}$ denotes the finite axiomatization of Σ_1^1 -AC given in [14], namely the conjunction of the formulas listed below:

- (i) $\forall X, Y \exists Z (Z = X \oplus Y),$
- (ii) $\forall e, z, Z \exists Y \forall x [x \in Y \leftrightarrow \pi_1^0(Z, e, x, z)],$

(iii)
$$\forall e, z, Z[\forall x \exists X \pi_2^0(X, Z, e, x, z) \rightarrow \exists Y \forall x \pi_2^0((Y)_x, Z, e, x, z)],$$

where π_k^0 is a universal Π_k^0 formula of L_2 of the appropriate arisety and $X \oplus Y$ denotes the set $\{\langle x, 0 \rangle : x \in X\} \cup \{\langle x, 1 \rangle : x \in Y\}.$

The idea is that D constitutes an α -hierarchy of models of Σ_1^1 -AC, i.e. for all ordinal notations $a \triangleleft \alpha$, we have that D_a is a model of Σ_1^1 -AC and that $D_{\triangleleft a} \in D_a$. Note however, that $[\forall x \exists X A(X, x) \rightarrow \exists Y \forall x A((Y)_x, x)]^{D_a}$ holds only for Σ_1^1 formulas of L_2 , not for Σ_1^1 formulas of $L_2(D)$.

In order to have partial cut elimination at hand, we formulate the M-theories in a Tait-style calculus that extends the classical Tait-calculus (cf. [17]) by the nonlogical axioms and rules of the M-theories. We let Γ, Δ, \ldots range over finite sets of $L_2(D)$ formulas and write Γ, A for the union of Γ and $\{A\}$. For each $\alpha < \Phi_0$, the theory M_{α} consist of the following axioms and rules:

Basic axioms. For all finite sets Γ of $L_2(D)$ formulas, all elementary formulas A of $L_2(D)$ and all arithmetical formulas B of L_2 which are axioms for the primitive recursive functions and relations:

$$\Gamma, A, \neg A$$
 and Γ, B .

Propositional and quantifier rules. These include the usual Tait-style inference rules for the propositional connectives as well as number and set quantifiers.

D-axioms. For all finite sets Γ of $L_2(D)$ formulas:

$$\Gamma, a \lhd \alpha \to \exists X[X = \mathsf{D}_a], \quad \Gamma, a \lhd \alpha \to (\operatorname{Ax}_{\Sigma_1^1 - \mathsf{AC}})^{\mathsf{D}_a} \quad \text{and} \quad \Gamma, a \lhd \alpha \to \mathsf{D}_{\lhd a} \doteq \mathsf{D}_a.$$

Transfinite induction. For all finite sets Γ of $L_2(D)$ formulas:

$$\Gamma, \mathsf{TI}_{\triangleleft}(U, \mathsf{max}\{\alpha, \omega\}).$$

Cut rules. For all finite sets Γ of $L_2(D)$ formulas and all $L_2(D)$ formulas A:

$$\frac{\Gamma, A \qquad \Gamma, \neg A}{\Gamma}$$

The formulas A and $\neg A$ are the cut formulas of this cut.

Note that the D-axioms imply that $U, V \in D_0$. For limit ordinals $\lambda < \Phi_0$, the theory M_{λ} is obtained by replacing the axioms for transfinite induction by the following restricted version:

Restricted transfinite induction. For all finite sets Γ of $L_2(D)$ formulas:

$$\Gamma, a \triangleleft \lambda \rightarrow (\forall X \in \mathsf{D}_a)\mathsf{TI}_{\triangleleft}(X, \lambda).$$

The theory $(M_{\alpha} + ACA)_0$ extends M_{α} by axioms for arithmetical comprehension and $(M_{\alpha} + \Sigma_1^1 - DC)_0$ extends $(M_{\alpha} + ACA)_0$ by rules that imply all instances of dependent choice for Σ_1^1 formulas of L_2 :

Arithmetical comprehension. For all finite sets Γ of $L_2(D)$ formulas and all arithmetical L_2 formulas A:

$$\Gamma, \exists X [\forall x (x \in X \leftrightarrow A(x))].$$

Dependent choice. For all finite sets Γ of $L_2(D)$ formulas and all arithmetical L_2 formulas A:

$$\frac{\Gamma, \forall X \exists Y A(X, Y)}{\Gamma, \exists Z[(Z)_0 = W \land \forall x A((Z)_x, (Z)_{x+1})]}.$$

The formulas mentioned beside Γ in an axiom or the conclusion of a rule are called main formulas. Note that due to the axiom about transfinite induction, induction along the natural numbers for sets is available in $(M_{\alpha} + ACA)_0$ and $(M_{\alpha} + \Sigma_1^1 - DC)_0$.

To apply the machinery developed by Rüede in [15], we aim to embed our Mtheories into a semi-formal systems E^0_{α} , that we introduce later. In a first step, we eliminate the comprehension and dependent choice part of $(\mathsf{M}_{\alpha} + \Sigma^1_1 - \mathsf{DC})_0$ and the comprehension part of $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0$. For that purpose we introduce for each $\alpha < \Phi_0$ a semi-formal system RA_{α} , which is essentially an extension of RA^* of Schütte [16] by the D-axioms for M_{α} .

Also the system RA_{α} is formulated in a Tait-style calculus. The language $\mathsf{L}_{\mathsf{RA}_{\alpha}}$ of RA_{α} is the language $\mathsf{L}_2(\mathsf{D})$, where the set variables X, Y, Z, \ldots are replaced by set variables $X^{\beta}, Y^{\beta}, Z^{\beta}, \ldots$ for each ordinal $\beta < \alpha$. In RA_{α} we have set terms, which we define inductively together with the formulas of $\mathsf{L}_{\mathsf{RA}_{\alpha}}$:

- (i) Each set variable X^{β} is a set term.
- (ii) If A(u) is a formula of $L_{\mathsf{RA}_{\alpha}}$, then $\{x : A(x)\}$ is a set term.
- (iii) $[\sim] \mathsf{D}(t), [\sim] \mathsf{U}(t), [\sim] \mathsf{V}(t)$ and $[\sim] R(t)$ are formulas of $\mathsf{L}_{\mathsf{RA}_{\alpha}}$, where R is a primitive recursive relation symbol.
- (iv) If t is a number term and T a set term, then $[\sim](t \in T)$ is formula of $L_{\mathsf{RA}_{\alpha}}$.
- (v) The formulas of $\mathsf{L}_{\mathsf{RA}_{\alpha}}$ are closed under $\land,\lor,\forall x,\exists x,\forall X^{\beta},\exists X^{\beta}$ for $\beta>0$.

The level of a set term T and the level of a formula A of $L_{RA_{\alpha}}$ is defined by

$$\operatorname{\mathsf{lev}}(T) := \max\{0, \beta : X^{\beta} \text{ occurs in } T\}$$
 and $\operatorname{\mathsf{lev}}(A) := \max\{0, \beta : X^{\beta} \text{ occurs in } A\}.$

The rank $\mathsf{rk}(A)$ of a formula A of $\mathsf{L}_{\mathsf{RA}_{\alpha}}$ is inductively defined as follows: If A contains no set terms, then $\mathsf{rk}(A) := 0$. Otherwise:

(i) For each set variable X^{β} , $\mathsf{rk}(t \in X^{\beta}) := \mathsf{rk}(t \notin X^{\beta}) := \mathsf{max}\{1, \omega \cdot \beta\}$,

(ii)
$$\mathsf{rk}([\sim](s \in \{x : A(x)\})) := \mathsf{rk}(A(0)) + 1,$$

- (iii) $\mathsf{rk}(A \lor B) = \mathsf{rk}(A \land B) := \max\{\mathsf{rk}(A), \mathsf{rk}(B)\} + 1,$
- (iv) $\mathsf{rk}(\forall x A(x)) = \mathsf{rk}(\exists x A(x)) := \mathsf{rk}(A(0)) + 1$,

$$(\mathbf{v}) \ \mathsf{rk}(\forall X^{\beta}A(X^{\beta})) = \mathsf{rk}(\exists X^{\beta}A(X^{\beta})) := \max\{\omega \cdot \mathsf{lev}(\forall X^{\beta}A(X^{\beta})), \mathsf{rk}(A(X^{0})) + 1\}.$$

Notice that $\mathsf{rk}(A) = \mathsf{rk}(\neg(A))$. Also, if $\mathsf{lev}(A) = \gamma$ and $\mathsf{lev}(T) < \gamma$, then we have $\omega \cdot \gamma \leq \mathsf{rk}(A) < \omega(\gamma + 1)$ and $\mathsf{rk}(A(T)) < \mathsf{rk}(\exists X^{\gamma}A(X^{\gamma}))$. This properties lead to the partial cut elimination lemma 24.

The semi-formal system RA_{α} is formulate in the language $\mathsf{L}_{\mathsf{RA}_{\alpha}}$. The formulas of RA_{α} are the closed formulas of $\mathsf{L}_{\mathsf{RA}_{\alpha}}$. Thereby we consider the variable x to occur bound in the set term $\{x : A(x)\}$ and the formula $t \in \{x : A(x)\}$. In order to state the axioms and rules of RA_{α} , we assign to each closed number term t of L_1 its value $t^{\mathbb{N}}$ in the standard model. The *true literals of* L_1 are the closed literals of L_1 that evaluate to true in the standard model. The axioms and rules of RA_{α} are listed below.

Logical axioms. For all finite sets Γ of RA_{α} formulas, all set variables X^{β} , all true literals A of L_1 and all closed number terms s, t with $s^{\mathbb{N}} = t^{\mathbb{N}}$:

$$\Gamma, A$$
 and $\Gamma, t \in X^{\beta}, s \notin X^{\beta}$ and $\Gamma, t \in \mathsf{D}, s \notin \mathsf{D}.$

Set term rules. For all finite sets Γ of RA_{α} formulas, all formulas A of RA_{α} and all closed number terms t:

$$\frac{\Gamma, A(t)}{\Gamma, t \in \{x : A(x)\}}, \qquad \frac{\Gamma, \neg A(t)}{\Gamma, t \notin \{x : A(x)\}}$$

Quantifier rules. For all finite sets Γ of RA_{α} formulas, all formulas A of RA_{α} , all closed number terms t and all set terms T:

$$\frac{\Gamma, A(t)}{\Gamma, \exists x A(x)}, \qquad \frac{\Gamma, A(s) \text{ for all closed number terms } s}{\Gamma, \forall x A(x)}.$$

$$\frac{\Gamma, A(T) \text{ and } \mathsf{lev}(T) < \beta}{\Gamma, \exists X^{\beta} A(X^{\beta})}, \qquad \frac{\Gamma, A(T) \text{ for all set terms with } \mathsf{lev}(T) < \beta}{\Gamma, \forall X^{\beta} A(X^{\beta})}.$$

D-axioms. For all finite sets Γ of RA_{α} formulas and all closed number terms $t \triangleleft \alpha$:

$$\Gamma, (\operatorname{Ax}_{\Sigma_1^1-\mathsf{AC}})^{\mathsf{D}_t} \quad \text{and} \quad \Gamma, \mathsf{D}_{\lhd t} \in \mathsf{D}_t.$$

Rules for \wedge and \vee and cut rules. The usual Tait-style rules for \wedge and \vee as well as the cut rules.

Observe that the D-axioms imply the existence of closed number terms s and t, such that $U = (D_0)_t$ and $V = (D_0)_s$. Also partial cut elimination is available:

Lemma 24 We have for all finite sets Γ of RA_{α} formulas and all ordinals $\rho > 0$:

- (i) $\mathsf{RA}_{\alpha} \mid_{\rho+1}^{\beta} \Gamma \Longrightarrow \mathsf{RA}_{\alpha} \mid_{\rho}^{\omega^{\beta}} \Gamma$,
- (*ii*) $\mathsf{RA}_{\alpha} \stackrel{\beta}{\mid_{1+\gamma+\omega^{\rho}}} \Gamma \Longrightarrow \mathsf{RA}_{\alpha} \stackrel{\varphi\rho\beta}{\mid_{1+\gamma}} \Gamma.$

If a finite set Γ of $L_2(D)$ formulas is provable in $(M_{\alpha} + ACA)_0$, then standard cut elimination techniques yield that it is already provable in $(M_{\alpha} + ACA)_0$ where the cut rule is restricted to cut formulas A that are either elementary or $[\neg]A$ is the main formula of an axiom for arithmetical comprehension. Such restricted derivations are denoted by $(M_{\alpha} + ACA)_0 \vdash_* \Gamma$.

Lemma 25 Let $\Gamma(\vec{X}, \vec{x})$ be a finite set of elementary formulas of $L_2(D)$ such that $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0 \models_* \Gamma(\vec{X}, \vec{x})$. Then there exists for all set terms \vec{S} of level 0 an ordinal $\beta < \omega \cdot \max\{\alpha, \omega\} + \omega$ such that for all closed number terms \vec{s} ,

$$\mathsf{RA}_{\alpha} \models_{<\omega}^{\beta} \Gamma(\vec{S}, \vec{s}).$$

Proof: We proof the claim by induction on the length of the proof in $(M_{\alpha} + ACA)_0$. For a set term S of level 0, $\mathsf{RA}_{\alpha} \models \frac{\langle \omega \cdot \max\{\alpha, \omega\} + \omega}{\langle \omega \rangle} \mathsf{TI}(S, \max\{\alpha, \omega\})$, and similarly for the other elementary main formulas of an axiom of M_{α} . The only case that follows not directly from the I.H. is if the last inference was a cut with a cut formula of the form $\exists X \forall x [x \in X \leftrightarrow A(\vec{Y}, x)]$ for some arithmetical formula A, or $t \triangleleft \alpha \rightarrow \exists X [X = \mathsf{D}_a]$. We just consider the first case: \forall -inversion and the I.H. yield that for arbitrary set terms \vec{S} of level 0 and $T := \{x : A(\vec{S}, x)\}$, there is a $\beta < \omega \cdot \max\{\alpha, \omega\} + \omega$ such that for all closed number terms \vec{s} ,

$$\mathsf{RA}_{\alpha} \vdash_{<\omega}^{\beta} \Gamma(\vec{S}, \vec{s}), \neg \forall x [x \in T \leftrightarrow A(\vec{S}, x)].$$

Because of $\mathsf{RA}_{\alpha} \stackrel{<\omega}{\underset{<\omega}{}} \forall x [x \in T \leftrightarrow A(\vec{S}, x)]$, a cut yields the claim.

Now we move to the theory $(\mathsf{M}_{\alpha} + \Sigma_1^1 - \mathsf{DC})_0$. Cantini has shown in [5] that there is an asymmetric interpretation of $\Sigma_1^1 - \mathsf{DC}_0$ into $\Pi_0^1 - \mathsf{CA}_{<\omega^{\omega}}$. The same proof allows to perform an asymmetric interpretation of the theory $(\mathsf{M}_{\alpha} + \Sigma_1^1 - \mathsf{DC})_0$ into $(\mathsf{M}_{\alpha} + \mathsf{Hier}_{<\omega^{\omega}})_0$, which extends M_{α} by an axiom asserting the existence of the jump-hierarchy above any set X along an initial segment of \lhd of ordertype less then ω^{ω} :

$$(\mathsf{Hier}^{\mathsf{J}}_{<\omega^{\omega}}) \qquad \qquad \Gamma, \exists F \mathsf{Hier}^{\mathsf{J}}(F, X, \beta),$$

for each ordinal $\beta < \omega^{\omega}$ and finite sets Γ of $L_2(D)$ formulas, where $\text{Hier}^{\mathsf{J}}(F, X, a)$ denotes the formula

$$(\forall b \triangleleft a)[(F)_b = \{\langle x, \langle c, e \rangle \rangle : \pi_1^0(((F)_{\triangleleft b})_c, X, e, x)\}],$$

expressing that F constitutes a jump-hierarchy above X along $a \in \mathsf{Field}(\triangleleft)$. For more details on this particular definition of the jump-hierarchy, we refer to [14].

Lemma 26 $(\mathsf{M}_{\alpha} + \Sigma_1^1 - \mathsf{DC})_0$ and $(\mathsf{M}_{\alpha} + \mathsf{Hier}_{<\omega}^{\mathsf{J}})_0$ prove the same Π_2^1 formulas of L_2 .

Again, if $(\mathsf{M}_{\alpha} + \mathsf{Hier}_{<\omega^{\omega}}^{\mathsf{J}})_0 \vdash \Gamma$, then there is already a derivation $(\mathsf{M}_{\alpha} + \mathsf{Hier}_{<\omega^{\omega}}^{\mathsf{J}})_0 \models_* \Gamma$ which only uses the cut rule for elementary formulas and main formulas of instances of arithmetical comprehension and $(\mathsf{Hier}_{<\omega^{\omega}}^{\mathsf{J}})$. For each $\beta, \gamma < \omega^{\omega}$ and each set terms S with level $\mathsf{lev}(S) = \gamma$, there is a set term T of level $< \omega^{\omega}$ such that

$$\mathsf{RA}_{\alpha} \stackrel{< \omega^{\omega}}{\underset{< \omega^{\omega}}{\longrightarrow}} \mathsf{Hier}^{\mathsf{J}}(T, S, \beta).$$

Similar as before, we obtain the following lemma.

Lemma 27 Let $\Gamma(\vec{X}, \vec{x})$ be a finite set of elementary formulas of $L_2(D)$ such that $\mathsf{M}_{\alpha} + (\mathsf{Hier}_{<\omega}^{\mathsf{J}}) \models_{\ast} \Gamma(\vec{X}, \vec{x})$. Then there exists for all set terms \vec{S} of level less than ω^{ω} an ordinal $n < \omega$ such that for all closed number terms \vec{s}

$$\mathsf{RA}_{\alpha} \models^{<\omega \cdot \alpha + \omega^n}_{<\omega^n} \vdash \Gamma(\vec{S}, \vec{s}).$$

Collecting the previous results and applying partial cut elimination for RA_{α} yields the following:

Lemma 28 Suppose that A is a sentence of L_1 . Then we have:

(*i*)
$$(\mathsf{M}_{\alpha} + \mathsf{ACA})_0 \vdash A \Longrightarrow \mathsf{RA}_{\alpha} \models \frac{\langle \varepsilon_0(\alpha) \rangle}{1} A,$$

(*ii*) $(\mathsf{M}_{\alpha} + \Sigma_1^1 \text{-}\mathsf{DC})_0 \vdash A \Longrightarrow \mathsf{RA}_{\alpha} \models \frac{\langle (\alpha \upharpoonright 1) \rangle}{1} A.$

Next, we want to reduce RA_{α} to the semi-formal system E_{α}^{0} . Basically, E_{α}^{0} corresponds to the first order part of RA_{α} . Due to Rüede's results in [15], a prove of an L_{1} formula A in E_{α}^{0} yields a cut-free derivation of A in E_{α}^{0} , which corresponds to a derivation of A in PA^{*} , a Tait-style reformulation of Peano Arithmetic PA with ω -rule.

For the reader's convenience, we restate Rüede's system E^0_{α} . The language of E^0_{α} is the extension of L_1 by unary relation symbols D^0_{β} and $\mathsf{D}^0_{<\gamma}$ for each $\beta < \alpha$ and $\gamma \leq \alpha$. The formulas of E^0_{α} are the formulas of the language of E^0_{α} that do not contain free number variables.

The ontological axioms and rules of E^0_{α} state that for $\beta < \alpha$, D^0_{β} contains only pairs, i.e. if the closed number term t is an element of D^0_{β} , then its value is $\langle m, n \rangle$ for some natural numbers m, n. This expresses that m is an element of the set with code n in D^0_{β} . The closure axioms and rules express that for all $\beta < \alpha$, D^0_{β} is a model of Σ^1_1 -AC and that $\mathsf{D}^0_{<\beta} \in \mathsf{D}^0_{\beta}$.

Logical axioms of E^0_{α} . For all finite sets Γ of E^0_{α} formulas, all true literals A of L_1 and all closed number terms s, t with identical values and all ordinals $\beta < \alpha, \gamma \leq \alpha$:

$$\Gamma, A$$
 and $\Gamma, t \in \mathsf{D}^0_\beta, s \notin \mathsf{D}^0_\beta$ and $\Gamma, t \in \mathsf{D}^0_{<\gamma}, s \notin \mathsf{D}^0_{<\gamma}$

Ontological axioms and rules of E^0_{α} . For all finite sets Γ of formulas of E^0_{α} , all $\beta \leq \alpha$, $\gamma < \beta$, all closed number terms r, s, t such that r is not a pair, s is a pair but $(s)_0$ is not a pair and $\beta \leq (s)_1$, and t is a pair and $\gamma = (t)_1$,

$$\Gamma, r \notin \mathsf{D}^{0}_{<\beta}, \quad \Gamma, s \notin \mathsf{D}^{0}_{<\beta}, \quad \frac{\Gamma, (t)_{0} \in \mathsf{D}^{0}_{\gamma}}{\Gamma, t \in \mathsf{D}^{0}_{<\beta}}, \quad \frac{\Gamma, (t)_{0} \notin \mathsf{D}^{0}_{\gamma}}{\Gamma, t \notin \mathsf{D}^{0}_{<\beta}}.$$

D-axioms of E^0_{α} . For all finite sets Γ of E^0_{α} formulas, all closed number terms e, r, s, t and all ordinals $\beta < \alpha$:

$$\Gamma, \exists k[(\mathsf{D}^0_\beta)_k = (\mathsf{D}^0_\beta)_t \oplus (\mathsf{D}^0_\beta)_s], \Gamma, \exists k[\forall x(x \in (\mathsf{D}^0_\beta)_k \leftrightarrow \pi^0_1((\mathsf{D}^0_\beta)_t, \mathsf{D}^0_{<\beta}, e, x, r)].$$

D-rules of E^0_{α} . For all finite sets Γ of E^0_{α} formulas, all closed number terms e, r, s, t and all ordinals $\beta < \alpha$:

$$\frac{\Gamma, \forall x \exists k \pi_2^0((\mathsf{D}^0_\beta)_k, (\mathsf{D}^0_\beta)_t, \mathsf{D}^0_{<\beta}, e, x, r)}{\Gamma, \exists k \forall x \pi_2^0(((\mathsf{D}^0_\beta)_k)_x, (\mathsf{D}^0_\beta)_t, \mathsf{D}^0_{<\beta}, e, x, r)}$$

Propositional rule, rules for the first order quantifiers and cut rules. These are the rules for RA_{α} adapted to the language of E_{α}^{0} .

For a precise definition of the rank of formulas of E^0_{α} we refer to definition 11 and the subsequent paragraph in [15]. We just try to capture the general idea: For example, if $\beta < \alpha$ and A(X) is a formula of L_2 with exactly the displayed set variable free, then $(\forall X \in \mathsf{D}^0_{\beta})A(X), (\exists X \in \mathsf{D}^0_{<\beta})A(X), (\forall X \in \mathsf{D}^0_{\beta})A(X)$ and $(\exists X \in \mathsf{D}^0_{<\beta})A(X)$ are formulas of the language of E^0_{α} of rank zero. Further, formulas of the language of E^0_{α} of rank zero are closed under number quantification and propositional connectives. If $\beta + 1 = \alpha$ and t is a closed term that is not a pair, then $t \in \mathsf{D}^0_{\beta}$ has rank 1. Also $t \in \mathsf{D}^0_{<\alpha}$ has rank 1. Moreover, the rank of an E^0_{α} formula is always finite and the rank of all main formulas of axioms of E^0_{α} is zero.

Lemma 29 For all natural numbers n > 0 we have:

$$\mathsf{E}^{0}_{\alpha} \stackrel{\beta}{\models_{n+1}} \Gamma \Longrightarrow \mathsf{E}^{0}_{\alpha} \stackrel{2^{\beta}}{\models_{n}} \Gamma.$$

A closed $L_1(D)$ formula A is translated to an formula $A^{D^0_{\leq \alpha}}$ of E^0_{α} by simply replacing D by $D^0_{\leq \alpha}$ in A. Now the following lemma, which corresponds to c) of theorem 20 in [15], yields an embedding of RA_{α} into E^0_{α} .

Lemma 30 Let $\alpha < \Phi_0$ and Γ a finite set of closed formulas of $L_1(D)$. Then we have:

Proof: As in [15] this follows by an induction on δ . Since in our case, the D-axioms and D-rules of E^0_{α} are syntactically different from the D-axioms of RA_{α} , we have to use that for a closed number term $t \triangleleft \alpha$ with $t = \beta$, $\mathsf{E}^0_{\alpha} \mid_{0}^{\leq \omega} (\mathsf{D}^0_{<\alpha})_t = \mathsf{D}^0_{\beta}$ and $\mathsf{E}^0_{\alpha} \mid_{\leq \omega}^{\leq \omega} (\mathsf{Ax}_{\Sigma^1_1 - \mathsf{AC}})^{(\mathsf{D}^0_{<\alpha})_t}$.

For M_{λ} , the detour over RA_{λ} is not necessary. We first embed M_{λ} into E_{λ}^{+} , the extension of E_{λ}^{0} by axioms

$$\Gamma, (\forall X \in \mathsf{D}_{\beta})\mathsf{TI}_{\triangleleft}(X, \lambda),$$

for each $\beta < \lambda$ and all finite sets Γ of $L_1(D)$ formulas.

Lemma 31 Let $\lambda < \Phi_0$ and $\Gamma(\vec{u})$ a finite set of formulas of $L_1(D)$. Then there exists for each $n \in \mathbb{N}$ an $n' \in \mathbb{N}$, such that we have for all closed number terms \vec{t} ,

$$\mathsf{M}_{\lambda} \upharpoonright \vdash_{1}^{n} \Gamma(\vec{u}) \Longrightarrow \mathsf{E}_{\lambda}^{+} \vdash_{1}^{n'} \Gamma^{\mathsf{D}_{<\lambda}^{0}}(\vec{t}).$$

Proof: By induction on the proof length one first shows that $\mathsf{E}_{\lambda}^+ \stackrel{<\omega}{\mid <\omega} \Gamma^{\mathsf{D}_{<\lambda}^0}(\vec{t})$. Then cut elimination in E_{λ}^+ yields the claim.

Theorem 26 in [15] tells us at what cost we can reduce $\mathsf{E}^0_{\beta+\omega^{1+\rho}}$ to E^0_{β} . Given this result, the reduction of $\mathsf{E}^+_{\beta+\omega^{1+\rho}}$ to E^0_{β} does not cause additional difficulties.

Lemma 32 Assume that $\lambda = \beta + \omega^{1+\rho} < \Phi_0$, $\lambda \upharpoonright 0 = \lambda_0 + \omega$ and k is the least natural number such that $\varphi 1\rho(\lambda_0+k) > \lambda$. Further, suppose that $\mathsf{E}^+_{\lambda} \upharpoonright_1^n \Gamma$ for a finite set Γ of formulas of $\mathsf{E}^0_{\beta+\omega^{1+\rho}}$ of rank 0. Then the following holds: If each formula in Γ is a formula of $\mathsf{E}^0_{\beta+\varepsilon'}$ for some $\xi' < \xi < \omega^{1+\rho}$, then

$$\mathsf{E}^{0}_{\beta+\xi} \mid \frac{\varphi_{1\rho(\lambda_{0}+k+n)}}{1} \Gamma.$$

Proof: The lemma is proved as Theorem 26 in [15] by main induction on ρ and side induction on n. For n = 0, observe that $\gamma < \xi < \omega^{1+\rho}$ yields

$$\mathsf{E}^{0}_{\beta+\xi} \stackrel{|\leq \varphi 1\rho(\lambda_{0}+k)}{1} (\forall X \in \mathsf{D}^{0}_{\gamma})\mathsf{TI}_{\triangleleft}(X,\lambda).$$

Now we conclude that the theories $(M_{\alpha} + ACA)_0$, $(M_{\alpha} + \Sigma_1^1 - DC)_0$ and M_{λ} have the desired upper bounds.

Theorem 33 (Upper Bounds) For $\alpha < \Phi_0$ and limit ordinals $\lambda < \Phi_0$, we have:

$$|(\mathsf{M}_{\alpha} + \mathsf{ACA})_0| \le \sigma(\alpha), \quad |(\mathsf{M}_{\alpha} + \Sigma_1^1 - \mathsf{DC})_0| \le \sigma \restriction (\alpha + 1) \quad and \quad |\mathsf{M}_{\lambda} \restriction| \le \sigma \restriction (\lambda).$$

Proof: Suppose that $\alpha = \omega^{1+\alpha_n} + \cdots + \omega^{1+\alpha_1} + m$, where $\alpha_n \geq \cdots \geq \alpha_1$ and $m < \omega$, and let δ and λ such that $\alpha = \lambda + m$ and $\lambda = \delta + \omega^{1+\alpha_1}$. Further, assume that Ais a sentence of L₁. If $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0 \vdash A$, then the lemmas 28, 29 and 30 yield $\mathsf{E}^0_{\alpha} \models \frac{<(\alpha|0)}{1} A$, so that applying m-times Corollary 21 in [15] gives $\mathsf{E}^0_{\lambda} \models \frac{<(\alpha|m)}{1} A$. Now n-fold application of Theorem 26 in [15] confirms $\mathsf{E}^0_0 \models \frac{<\sigma(\alpha)}{1} A$. Similarly, if $(\mathsf{M}_{\alpha} + \Sigma^1_1 - \mathsf{DC})_0 \vdash A$, then $\mathsf{E}^0_{\alpha} \models \frac{<(\alpha|1)}{1} A$, thus we obtain $\mathsf{E}^0_{\lambda} \models \frac{<\alpha|m+1)}{1} A$ and $\mathsf{E}^0_0 \models \frac{<\sigma|\alpha|}{1} A$. Finally, if $\mathsf{M}_{\lambda} \models A$, then $\mathsf{E}^+_{\lambda} \models \frac{<\omega}{1} A$ due to lemma 31, therefore $\mathsf{E}^0_{\delta} \models \frac{<\varphi^1\alpha_n(\lambda|0)}{1} A$ and $\mathsf{E}^0_0 \models \frac{<\sigma|(\lambda)}{1} A$. Cut-elimination in PA^* yields the claim. \Box

6.2 Embedding the ID^* -theories into the M^{\dagger} -theories

Let M denote one of the M-theories and let ξ be the upper bound according to theorem 33. Note that for $\beta < \xi$ the ordinal $\omega \cdot \beta$ is still less than ξ . By choice of ξ , we have that $\mathsf{TI}_{\triangleleft}(\mathsf{V},\xi)$ is not provable in the theory M. Therefore, the theory M^{\dagger} , the extension of M by the axiom $\neg \mathsf{TI}_{\triangleleft}(\mathsf{V},\xi)$, is consistent. Moreover, ξ is still an upper bound of M^{\dagger} : Assume that M^{\dagger} proves $\mathsf{TI}_{\prec}(\mathsf{U},\alpha)$ for a primitive recursive well-ordering \prec . Thus $\mathsf{M} \vdash \mathsf{TI}_{\triangleleft}(\mathsf{V},\xi) \lor \mathsf{TI}_{\prec}(\mathsf{U},\alpha)$. The proof of Theorem 33 yields that

$$\mathsf{PA}^* \models_0^{<\xi} \neg \mathsf{Prog}_{\lhd}(\mathsf{V}), \xi \in \mathsf{V}, \mathsf{TI}_{\prec}(\mathsf{U}, \alpha).$$

With lemma 4 in Jäger and Probst [10] we conclude that also $\mathsf{PA}^* \models \frac{\langle \xi \rangle}{0} \mathsf{TI}_{\prec}(\mathsf{U}, \alpha)$. Hence, by Schütte's boundedness theorem (cf. [16] or [12]) we obtain $\alpha < \xi$. Then we embed the ID^* -theory with lower bound ξ into M^{\dagger} , which yields $\xi \leq |\mathsf{ID}^*| \leq |\mathsf{M}| \leq \xi$.

To embed the ID^* -theories into the M^\dagger -theories, we show that these theories prove the existence of α -hierarchies of models of Σ_1^1 -DC. Thereby, we make use of so-called *pseudo-hierarchy arguments*. For second order arithmetic, this method is described in Simpson [18] in extenso and a typical application is given in Avigad [2]. In subsystems of second order arithmetic comprising (ACA), the existence of a pseudohierarchy follows from the fact that being a well-ordering is not expressible by a Σ_1^1 formula of L_2 . However, this method does not provide uniform pseudo-hierarchies. We apply a more general method to obtain pseudo-hierarchies: Due to the axiom $\neg \mathsf{TI}_{\triangleleft}(\mathsf{V}, |\mathsf{M}|)$ of the theory $\mathsf{M}^{\dagger}_{\alpha}$ one can prove that $\{a \in \mathsf{Field}(\triangleleft) : \forall Z\mathsf{TI}_{\triangleleft}(Z, a)\}$ is not a set. The existence of [uniform] pseudo-hierarchies is then derived from this observation. Using this method, the application of pseudo-hierarchy arguments is no longer limited to second order analysis and can be applied in the context of explicit mathematics and admissible set theory as well; cf. [13, 14]. In the sequel, $\mathsf{Wo}_{\triangleleft}(a)$ is to abbreviate $\forall Z\mathsf{TI}_{\triangleleft}(Z, a)$ and $\mathsf{Hier}^{\mathsf{J}}(U, V, u)$ is the formula defined above lemma 26. **Lemma 34** The following is provable in $(M_{\alpha} + ACA)_{0}^{\dagger}$:

- (i) $\{a : Wo_{\triangleleft}(a)\}$ is not a set.
- (ii) If $b \triangleleft \alpha$, then $\{a : \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{b}}(a)\} \notin \mathsf{D}_{b}$.

(*iii*) If $b+1 \lhd \alpha$ and $X \in \mathsf{D}_b$, then $\{a : \mathsf{Wo}_{\lhd}^{\mathsf{D}_{b+1}}(a)\} \subsetneq \{a : (\exists F \in \mathsf{D}_b)\mathsf{Hier}^{\mathsf{J}}(F, X, a)\}.$

Proof: Suppose for a moment that $S := \{a : \mathsf{Wo}_{\triangleleft}(a)\}$ is a set. Then the set $S_0 := \{a : (\forall b \in S)(\varphi 0ab \in S)\}$ is easily shown to be progressive w.r.t. \triangleleft , which in turn yields the progressivity of the set $S_1 := \{a : (\forall b \in S)(\varphi 1ab \in S)\}$: If a = 0, this is due to the progressivity of S_0 , otherwise assume that $(\forall a' \triangleleft a)(a' \in S_1)$ and show that $\mathsf{Prog}_{\triangleleft}(\{b \in S : \varphi 1ab \in S\})$, which yields $a \in S_1$. Hence $a, b \in S$ implies $\varphi 1ab \in S$. In particular, $\alpha \in S$ yields $\sigma(\alpha) \in S$. A contradiction!

If we relativize the above argument to D_b , we obtain that $\sigma(\alpha) \in \{a : \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_b}(a)\}$. Since $\mathsf{V} \in \mathsf{D}_b$, this contradicts $\neg \mathsf{TI}_{\triangleleft}(\mathsf{V}, \sigma(\alpha))$. Thus (ii) holds.

Because D_b is a model of Σ_1^1 -AC, $\mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{b+1}}(a)$ implies the existence of an $F \in \mathsf{D}_b$ such that $\mathsf{Hier}^{\mathsf{J}}(F, X, a)$. Because $\{a : \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{b+1}}(a)\}$ is not a set in D_{b+1} , the inclusion is proper. \Box

Lemma 35 The following is provable in $(\mathsf{M}_{\alpha+1} + \mathsf{ACA})_0^{\dagger}$: For each set $X \in \mathsf{D}_{\alpha}$ there exists a model M of Σ_1^1 -DC with $X \in M$.

Proof: Fix $X \in \mathsf{D}_{\alpha}$. Since D_{α} is a model of Σ_1^1 -AC, one easily proves that

$$\forall a[\mathsf{Wo}_{\triangleleft}(a) \to (\exists F \in \mathsf{D}_{\alpha})\mathsf{Hier}^{\mathsf{J}}(F, X, a) \land \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{\alpha}}(a)].$$

Because $\{a : Wo_{\triangleleft}(a)\}$ is not a set, there exists a $b \in Field(\triangleleft)$ and an $F \in D_{\alpha}$ such that

$$\neg \mathsf{Wo}_{\triangleleft}(b) \land \mathsf{Hier}^{\mathsf{J}}(F, X, b) \land \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{\alpha}}(b),$$

Thus, there exists a non-empty, upward closed $K \subseteq \mathsf{Field}(\triangleleft)$ without a \triangleleft -least element and with $b \in K$. Surely, $\mathsf{Wo}_{\triangleleft}(a)$ implies $(\forall x \in K)(a \triangleleft x)$, subsequently abbreviated by $a \triangleleft K$. Next we consider the sets

$$\begin{split} M &:= M_{\lhd K}^F \quad := \quad \{ \langle x, \langle c, e \rangle \rangle : c \lhd K \land \langle x, \langle c, e \rangle \rangle \in (F)_{c+1} \}, \\ M_{\lhd d}^F \quad := \quad \{ \langle x, \langle c, e \rangle \rangle : c \lhd d \land \langle x, \langle c, e \rangle \rangle \in (F)_{c+1} \}, \text{ for each } d \in \mathsf{Field}(\lhd), \end{split}$$

and prove that M is a model of Σ_1^1 -DC. We just show that M satisfies (Σ_1^1 -DC), that M is a model of ACA follows from standard results concerning the jump-hierarchy. So, let A(U, V) be an arithmetical formula of L_2 and assume that

(1)
$$(\forall X \in M)(\exists Y \in M)A(X,Y).$$

If $X \in M$, then there exists an index *a* such that $X = (M)_a$. The definition of *M* implies that *a* is of the form $\langle c, e \rangle$, where *e* is a natural number and *c* an element of the field of \triangleleft . Now, we set

$$\mathsf{I} := \{ \langle c, e \rangle : e \in \mathsf{N} \land c \in \mathsf{Field}(\triangleleft) \},\$$

and order I by $<_{\mathsf{I}}$, letting $\langle c, e \rangle <_{\mathsf{I}} \langle d, e' \rangle$ if $c \triangleleft d$, or c = d and $e <_{\mathsf{N}} e'$. Note, that $\langle c, e \rangle \in \mathsf{I}$ and $\neg (c \triangleleft K)$ implies $(M)_{\langle c, e \rangle} = \emptyset$. Therefore, (1) becomes equivalent to the formula $(\forall y \in \mathsf{I})(\exists z \in \mathsf{I})A((M)_y, (M)_z)$. Moreover, for each $y \in \mathsf{I}$, the set $\{z \in \mathsf{I} : A((M)_y, (M)_z)\}$ has a $<_{\mathsf{I}}$ -least element. To see this, observe that

$$S_1 := \{ z \in \mathsf{I} : A((M)_y, (M)_z) \} \subseteq \{ z \in \mathsf{I} : A((M^F_{\triangleleft b})_y, (M^F_{\triangleleft b})_z) \} =: S_2.$$

Since $S_2 \in \mathsf{D}_{\alpha}$ and $\mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{\alpha}}(b)$, it has a \triangleleft -least element. This is also the minimum of the set S_1 , because $z \in S_1$, $y \in S_2$ and $y <_{\mathsf{I}} z$ yields already $y \in S_1$. Therefore, we conclude that $(\forall y \in \mathsf{I})(\exists ! z \in \mathsf{I})A'(M, y, z)$, where A' is an arithmetical formula of L_2 expressing that z is the least index w.r.t. our index ordering $<_{\mathsf{I}}$, such that $A((M)_y, (M)_z)$ holds.

Next, we fix an index $w \in I$ with $(w)_0 \triangleleft K$ and show that there exists a choice sequence $Z \in M$, such that $(Z)_0 = (M)_w$ and $\forall nA((Z)_n, (Z)_{n+1})$. First, we look for initial segments of such a choice sequence. In the present setting, this is a finite sequence s, (respectively a natural number of the form $\langle x_1, \ldots, x_n \rangle$) of indices such that

$$\mathsf{ChSeq}_{A'}(M, s, w, n) := \mathsf{lh}(s) = n + 1 \land (s)_0 = w \land (\forall m < n) A'(M, (s)_m, (s)_{m+1}).$$

Assumption (1) allows us to prove by set induction that $\forall n \exists !s \mathsf{ChSeq}_{A'}(M, s, w, n)$. Further, $c \triangleleft K$ implies $(M)_{\langle c, e \rangle} = (M_{\triangleleft a}^F)_{\langle c, e \rangle}$ for each $a \in K$, thus the set

$$\{a \lhd b : \forall n \exists s \mathsf{ChSeq}_{A'}(M^F_{\lhd a}, s, w, n)\}$$

is not empty. Moreover, it is in D_{α} , so it has a least element a_0 . Since $a_0 \triangleleft K$,

$$Z:=\{\langle x,n\rangle:\exists s[\mathsf{ChSeq}_{A'}(M^F_{\triangleleft a_0},s,w,n)\wedge x\in (M^F_{\triangleleft a_0})_{(s)_n}]\}$$

is a set in M and serves as a witness for our sought for choice sequence.

The model constructed in the previous proof is not uniform in the sense that we only know about the existence of a set K without a \triangleleft -least element, but cannot explicitly define it. However, if $X \in \mathsf{D}_b$ and $b+1 \triangleleft \alpha$, then we can construct in $(\mathsf{M}_{\alpha} + \mathsf{ACA})^{\dagger}_0$ a uniform model M of Σ^1_1 -DC above X. More precisely: If $X \in \mathsf{D}_b$, the we call the set

$$M_{\Sigma_1^1-\mathsf{DC}}(X,b) := \{ x : \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{b+1}}(c) \land (\exists F \in \mathsf{D}_b) [\mathsf{Hier}^{\mathsf{J}}(F, X, c+1) \land x \in M_{\triangleleft c}^F] \},\$$

the uniform model of Σ_1^1 -DC above $X \in \mathsf{D}_b$. $M_{\triangleleft c}^F$ is as defined in the above proof. Because $\mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{b+1}}(c)$ and $X \in \mathsf{D}_b$ imply that there is exactly one $F \in \mathsf{D}_b$ satisfying $\mathsf{Hier}^{\mathsf{J}}(F, X, c+1)$, the set $M_{\Sigma_1^1-\mathsf{DC}}(X, b)$ is clearly unique. **Lemma 36** The following is provable in $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0^{\dagger}$: If $b+1 \triangleleft \alpha$ and $X \in \mathsf{D}_b$, then $M_{\Sigma_1^1-\mathsf{DC}}(X,b)$ is a model of $\Sigma_1^1-\mathsf{DC}$ with $X \in M_{\Sigma_1^1-\mathsf{DC}}(X,b)$. If $b+2 \triangleleft \alpha$ then $M_{\Sigma_1^1-\mathsf{DC}}(X,b) \in \mathsf{D}_{b+2}$.

Proof: Assume that $X \in \mathsf{D}_b$. Using (iii) of lemma 34, we can find an $F \in \mathsf{D}_b$ and a notation $d \in \mathsf{Field}(\triangleleft)$ such that $\neg \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{b+1}}(d)$ and $\mathsf{Hier}^{\mathsf{J}}(F, X, d)$. Further,

$$K := \{ a \in \mathsf{Field}(\triangleleft) : \neg \mathsf{Wo}_{\triangleleft}^{\mathsf{D}_{b+1}}(a) \},\$$

is a non-empty subset of $\mathsf{Field}(\triangleleft)$ without a \triangleleft -least element that contains d. Now $M_{\Sigma_1^1-\mathsf{DC}}(X,b)$ becomes the set $M_{\triangleleft K}^F$ according to the definition in the previous proof, and we may continue as there. \Box

Next we want to speak about [uniform] *a*-hierarchies of models of Σ_1^1 -DC. For this purpose, we set:

$$\begin{aligned} \mathsf{Hier!}_{\Sigma_1^1 - \mathsf{DC}}(F, a) &:\Leftrightarrow \quad (\forall b \lhd a)[(F)_b = M_{\Sigma_1^1 - \mathsf{DC}}((F)_{\lhd b}, 2b)], \\ \mathsf{Hier}_{\Sigma_1^1 - \mathsf{DC}}(F, a) &:\Leftrightarrow \quad (\forall b \lhd a)[(F)_{\lhd b} \in (F)_b \land (\mathrm{Ax}_{\Sigma_1^1 - \mathsf{DC}})^{(F)_b}]. \end{aligned}$$

Such hierarchies indeed exist and have the intended properties:

Lemma 37 The following is provable in $(\mathsf{M}_{\lambda})^{\dagger}$: If $a \triangleleft \lambda < \Phi_0$, then

(i) $(\exists F \in \mathsf{D}_{2a})\mathsf{Hier}!_{\Sigma_1^1}\mathsf{-}\mathsf{DC}(F, a),$

(*ii*)
$$\forall F, G[\mathsf{Hier}!_{\Sigma_1^1}\mathsf{-DC}(F, a) \land \mathsf{Hier}!_{\Sigma_1^1}\mathsf{-DC}(G, a) \to (\forall b \lhd a)(F)_b = (G)_b].$$

Proof: For this proof, we denote claim (i) by $C_1(a)$ and claim (ii) by $C_2(a)$. Assume that $a \triangleleft \lambda$. Since $\{b \triangleleft a+1 : (\exists G \in \mathsf{D}_{2b})\mathsf{Hier}!_{\Sigma_1^1-\mathsf{DC}}(G,b)\}$ is a set in $\mathsf{D}_{2(a+1)}$, (i) and (ii) can be shown simultaneously by restricted transfinite induction. So suppose $c \triangleleft b \triangleleft a+1$ and that $C_1(c)$ and $C_2(c)$ hold. If b is a successor, then the induction step follows easily form the previous lemma. If b is a limit, then 2b = b and the I.H. yields that

$$F := \{ \langle x, d \rangle : d \lhd b \land (\exists G \in (\mathsf{D}_{\lhd b})_{2(d+1)}) (\mathsf{Hier!}_{\Sigma_1^1 - \mathsf{DC}}(G, d+1) \land x \in (G)_d) \}$$

is an element of D_b satisfying $\mathsf{Hier}!_{\Sigma_1^1-\mathsf{DC}}(F,b)$, thus $C_1(b)$. $C_2(b)$ follows from $C_1(b)$ and the I.H.

Corollary 38 For $\alpha < \Phi_0$, the following is provable in $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0^{\dagger}$:

$$\exists F \mathsf{Hier}_{\Sigma_1^1} \operatorname{-DC}(F, \alpha).$$

Proof: α can be written in the form $\omega \cdot \beta + n$ for some $n < \omega$. The claim follows now by (meta-) induction on n: If n = 0, the previous lemma and arithmetical comprehension yield that

$$F := \{ \langle x, a \rangle : a \lhd \omega \cdot \beta \land (\exists G \in \mathsf{D}_{2(a+1)}) (\mathsf{Hier!}_{\Sigma_1^1 - \mathsf{DC}}(G, a+1) \land x \in (G)_a) \}$$

constitutes the sought for hierarchy. If $(\mathsf{M}_{\omega\cdot\beta+n} + \mathsf{ACA})_0^{\dagger}$ proves the existence of an hierarchy F such that $\mathsf{Hier}_{\Sigma_1^1-\mathsf{DC}}(F,\omega\cdot\beta+n)$, then $(\mathsf{M}_{\omega\cdot\beta+n+1} + \mathsf{ACA})_0^{\dagger}$ proves that such a F exists already in $\mathsf{D}_{\omega\cdot\beta+n}$. Then also $(F)_{\triangleleft b} \in \mathsf{D}_{\omega\cdot\beta+n}$, and lemma 35 tells us that there exists a model of $\Sigma_1^1-\mathsf{DC}$ above $(F)_{\triangleleft b}$ in $\in \mathsf{D}_{\omega\cdot\beta+n+1}$. The existence of a hierarchy G satisfying $\mathsf{Hier}_{\Sigma_1^1-\mathsf{DC}}(G,\omega\cdot\beta+n+1)$ follows. \Box

Next we introduce fixed point hierarchies. For each operator form $\mathcal{A}(\mathsf{P},\mathsf{Q},\mathsf{p},u)$ of $\mathsf{L}_1(\mathsf{P},\mathsf{Q})$ we say that H constitutes a fixed point hierarchy for \mathcal{A} along a w.r.t. G, if

$$\operatorname{Hier}_{\operatorname{Fix}}^{\mathcal{A}}(G,H,a) := \operatorname{Hier}_{\Sigma_{1}^{1}-\operatorname{DC}}(G,a) \wedge (\forall b \triangleleft a)[(H)_{b} = (\operatorname{Fix}_{(H)_{\triangleleft b},b}^{\mathcal{A}})^{(G)_{b}}],$$

holds.

Lemma 39 For $\alpha < \Phi_0$, $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0^{\dagger}$ proves:

(i)
$$a \leq \alpha \wedge \operatorname{Hier}_{\Sigma^1_{\tau} \operatorname{-DC}}(G, \alpha) \to \exists ! H \operatorname{Hier}^{\mathcal{A}}_{\operatorname{Fix}}(G, H, a),$$

(*ii*) $\operatorname{Hier}_{\mathsf{Fix}}^{\mathcal{A}}(G, H, \alpha) \wedge \operatorname{Hier}_{\mathsf{Fix}}^{\mathcal{A}}(G, H', \alpha) \to (\forall a \lhd \alpha)[(H)_a = (H')_a],$

(*iii*)
$$\operatorname{Hier}^{\mathcal{A}}_{\operatorname{Fix}}(G, H, \alpha) \to (\forall a \lhd \alpha)[(H)_{\lhd a} \in (G)_a].$$

Proof: Transfinite induction and the definition of the fixed point hierarchy yields immediately the uniqueness assertion (ii). For (i), we assume that G satisfies $\operatorname{Hier}_{\mathsf{Fix}}^{\mathcal{A}}(G, \alpha)$, and show by induction that for each $a \triangleleft \alpha$,

$$(\exists ! H \in (G)_a) \mathsf{Hier}^{\mathcal{A}}_{\mathsf{Fix}}((G)_{\lhd a}, H, a).$$

We just consider the successor case, the limit case is similar. So assume that there exists a unique $H \in (G)_b$ such that $\operatorname{Hier}_{\operatorname{Fix}}^{\mathcal{A}}((G)_{\lhd b}, H, b)$. With $H \in (G)_b$ we have also $(H)_{\lhd b} \in (G)_b$, which implies that $H' := (\operatorname{Fix}_{(H)_{\lhd b}, b}^{\mathcal{A}})^{(G)_b}$ is an element of $(G)_{b+1}$. Now we obtain a fixed point hierarchy for \mathcal{A} along b+1. Claim (iii) follows from (i) and the definition of $\operatorname{Hier}_{\operatorname{Fix}}^{\mathcal{A}}(G, H, a)$.

Lemma 37 gives way to the following corollary.

Corollary 40 For a limit ordinal $\lambda < \Phi_0$, $(\mathsf{M}_{\lambda}^{\dagger})^{\dagger}$ proves:

$$(\forall a \lhd \lambda) \exists ! G \exists ! H[\mathsf{Hier}!_{\Sigma_1^1} \operatorname{-DC}(G, a) \land \mathsf{Hier}^{\mathcal{A}}_{\mathsf{Fix}}(G, H, a)].$$

Finally, we see that a fixed point hierarchy H w.r.t. G is indeed suitable for an interpretation of the relation symbols $\mathsf{P}^{\mathcal{A}}$ of ID^*_{α} and ID^*_{α} :

Lemma 41 Given $\alpha < \Phi_0$, then for each operator form \mathcal{A} and each Π_1^1 formula D(U, u) of L_2 , the following is provable in $(\mathsf{M}_{\alpha} + \mathsf{ACA})_0^{\dagger}$: If $\mathsf{Hier}_{\mathsf{Fix}}^{\mathcal{A}}(G, H, \alpha)$ holds, then also

- (i) $(\forall a \lhd \alpha) \forall x [x \in (H)_a \leftrightarrow \mathcal{A}((H)_a, (H)_{\lhd a}, x, a)],$
- $(ii) \ (\forall a \lhd \alpha)[\mathsf{Cl}^{\mathcal{A}}(\{x : D((G)_{\lhd a}, x)\}, a) \to (H)_a \subseteq \{x : D((G)_{\lhd a}, x)\}].$

Proof: By lemma 4 we know that ACA proves

$$\forall x[x \in \mathsf{Fix}_{Y,y}^{\mathcal{A}} \leftrightarrow \mathcal{A}(\mathsf{Fix}_{Y,y}^{\mathcal{A}},Y,x,y)].$$

For each $a \triangleleft \alpha$ we have that $(H)_{\triangleleft a} \in (G)_a$ and $(G)_a$ is a model of Σ_1^1 -AC. Thus we can relativize lemma 4 to $(G)_a$ and obtain

$$\forall x [x \in (\mathsf{Fix}^{\mathcal{A}}_{(H) \lhd a, a})^{(G)_a} \leftrightarrow \mathcal{A}((\mathsf{Fix}^{\mathcal{A}}_{(H) \lhd a, a})^{(G)_a}, (H)_{\lhd a}, x, a)]$$

By the definition of $(H)_a$ this is equivalent to (i). Claim (ii) is shown analogously by relativizing theorem 6 to $(G)_a$.

Now we are ready to present an embedding of the ID^{*}-theories into the M[†]-theories: If we have a list $\mathcal{A}_1, \ldots, \mathcal{A}_n$ of operator forms, then we write $\operatorname{Hier}_{\operatorname{Fix}}^{\vec{\mathcal{A}}}(\vec{H}, G, a)$ for

$$\operatorname{Hier}_{\operatorname{Fix}}^{\mathcal{A}_1}(H_1, G, a) \wedge \ldots \wedge \operatorname{Hier}_{\operatorname{Fix}}^{\mathcal{A}_n}(H_n, G, a).$$

An L_{Fix} formula A is translated to an L₂(D) formula A^* , A^* or A° by replacing each subformula of the form $t \in \mathsf{P}^{\mathcal{A}}$, by either the formula $(t \in \mathsf{P}^{\mathcal{A}})^*$, $(t \in \mathsf{P}^{\mathcal{A}})^*$ or $(t \in \mathsf{P}^{\mathcal{A}})^\circ$, depending on whether we embed ID^*_{α} into $(\mathsf{M}_{\alpha} + \mathsf{ACA})^{\dagger}_0$, $\mathsf{ID}^*_{\alpha+1}$ into $(\mathsf{M}_{\alpha} + \Sigma^1_1 - \mathsf{DC})^{\dagger}_0$ or ID^*_{λ} into $(\mathsf{M}_{\lambda}^{\dagger})^{\dagger}$:

Theorem 42 Let A be an L_{Fix} formula that contains exactly the set constants $P^{\mathcal{A}}$. Then the following holds for each $\alpha < \Phi_0$ and each limit $\lambda < \Phi_0$:

$$\begin{array}{rcccc} \mathsf{ID}_{\alpha}^{*} & \vdash A \; \Rightarrow \; (\mathsf{M}_{\alpha} + \mathsf{ACA})_{0}^{\dagger} & \vdash \; \mathsf{Hier}_{\mathsf{Fix}}^{\mathcal{A}}(G, \vec{H}, \alpha) \to A^{*}, \\ \mathsf{ID}_{\alpha+1}^{*} \upharpoonright & \vdash A \; \Rightarrow \; (\mathsf{M}_{\alpha} + \Sigma_{1}^{1} \text{-} \mathsf{DC})_{0}^{\dagger} \; \vdash \; \mathsf{Hier}_{\mathsf{Fix}}^{\vec{\mathcal{A}}}(G, \vec{H}, \alpha) \to A^{*}, \\ \mathsf{ID}_{\lambda}^{*} \upharpoonright & \vdash A \; \Rightarrow \; (\mathsf{M}_{\lambda} \upharpoonright)^{\dagger} & \vdash \; A^{\circ}, \end{array}$$

where for $1 \leq i \leq n$,

$$\begin{split} (t \in \mathsf{P}^{\mathcal{A}_i})^* &:= t = \langle s, a \rangle \wedge a \lhd \alpha \wedge t \in H_i, \\ (t \in \mathsf{P}^{\mathcal{A}_i})^* &:= [t = \langle s, a \rangle \wedge a \lhd \alpha \wedge s \in (H_i)_a] \lor [t = \langle s, \alpha \rangle \wedge s \in \mathsf{Fix}^{\mathcal{A}_i}((H_i)_{\lhd \alpha}, \alpha)], \\ (t \in \mathsf{P}^{\mathcal{A}_i})^\circ &:= t = \langle s, a \rangle \wedge a \lhd \lambda \wedge (\exists G, H \doteq \mathsf{D}_{2(a+2)}) \\ & [\mathsf{Hier!}_{\Sigma_1^1 - \mathsf{DC}}(G, a+1) \wedge (\mathsf{Hier}_{\mathsf{Fix}}^{\mathcal{A}_i}(G, H, a+1) \wedge s \in (H_i)_a)]. \end{split}$$

Since the existence of the fixed point hierarchies follows form corollary 38 lemma 39 and corollary 40, we also obtain that corresponding theories prove the same L_1 formulas.

Corollary 43 For each $\alpha < \Phi_0$, each limit $\lambda < \Phi_0$ and each L_1 formula A, the following holds:

The circle closes: In section 5 we computed lower bounds for the ID^* -theories. In section 6.1 we proved that these lower bounds are upper bounds for the M-theories and thus also for the M^{\dagger} -theories. Eventually, we managed to embed the ID^* -theories into the M^{\dagger} -theories. Summing up, we can state the following theorem:

Theorem 44 For each $\alpha < \Phi_0$ we have:

$$|\mathsf{ID}_{\alpha}^*| = |\mathsf{ID}_{\alpha}| = \sigma(\alpha) \quad and \quad |\mathsf{ID}_{\alpha}^*| = \sigma(\alpha).$$

References

- [1] Peter Aczel, *The strength of Martin-Löf's type theory with one universe*, Tech. report, Dept. of Philosophy, University of Helsinki, 1977.
- [2] Jeremy Avigad, On the relationship between ATR_0 and $ID_{<\omega}$, The Journal of Symbolic Logic **61** (1996), no. 3, 768–779.
- [3] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg, *Iterated inductive definitions and subsystems of analysis: Recent proof-theoretical studies*, Lecture Notes in Mathematics, vol. 897, Springer, Berlin, 1981.
- [4] Andrea Cantini, A note on a predicatively reducible theory of iterated elementary induction, Bollettino Unione Mathematica Italiana **4-B** (1985), no. 6, 413–430.
- [5] _____, On the relationship between choice and comprehension principles in second order arithmetic, Journal of Symbolic Logic **51** (1986), 360–373.
- [6] Solomon Feferman, Iterated inductive fixed-point theories: application to Hancock's conjecture, The Patras Symposion (G. Metakides, ed.), North Holland, Amsterdam, 1982, pp. 171–196.
- [7] _____, *Reflecting on incompleteness*, Journal of Symbolic Logic **56** (1991), no. 1, 1–49.

- [8] Harvey Friedman, Theories of inductive definition, Unpublished notes, 1969.
- [9] Gerhard Jäger, Reinhard Kahle, Anton Setzer, and Thomas Strahm, The prooftheoretic analysis of transfinitely iterated fixed point theories, Journal of Symbolic Logic 64 (1999), no. 1, 53–67.
- [10] Gerhard Jäger and Dieter Probst, Variation on a theme of Schütte, Mathematical Logic Quarterly 50 (2004), no. 3, 258–264.
- G. Kreisel, *Mathematical logic*, Lectures on modern mathematics (Wiley, ed.), vol. III, 1965, pp. 95–195.
- [12] Wolfram Pohlers, Proof theory: An introduction, Lecture Notes in Mathematics, vol. 1407, Springer, Berlin, 1989.
- [13] Dieter Probst, On the relationship between fixed points and iteration in admissible set theory without foundation, Archive for Mathematical Logic (2005), no. 44, 561–580.
- [14] _____, Pseudo-hierarchies in Admissible Set Theories without Foundation and Explicit Mathematics, Ph.D. thesis, Universität Bern, 2005.
- [15] Christian Rüede, The proof-theoretic analysis of Σ_1^1 transfinite dependent choice, Annals of Pure and Applied Logic **121** (2003), no. 1, 195–234.
- [16] Kurt Schütte, *Proof theory*, Springer, Berlin, 1977.
- [17] Helmut Schwichtenberg, Proof theory: Some applications of cut-elimination, Handbook of Mathematical Logic (J. Barwise, ed.), North Holland, Amsterdam, 1977, pp. 867–895.
- [18] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, 1998.

Address

Dieter Probst Institut für Informatik und angewandte Mathematik, Universität Bern Neubrückstrasse 10, CH-3012 Bern, Switzerland probst@iam.unibe.ch