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Abstract

The starting point of this article is an old question asked by Feferman in his
paper on Hancock’s conjecture [6] about the strength of ID∗

1. This theory is
obtained from the well-known theory ID1 by restricting fixed point induction
to formulas that contain fixed point constants only positively. The techniques
used to perform the proof-theoretic analysis of ID∗

1 also permit to analyze its
transfinitely iterated variants ID∗

α. Thus, we eventually know that |ÎDα| =
|ID∗

α|.
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The theories IDα of iterated inductive definitions formalize hierarchies of least (defin-
able) fixed points. In the past years, these theories have been exhaustively studied
and their proof-theoretic analysis has been carried out a long time ago, (cf. Buchholz

et al. [3]). Also their metapredicative relatives ÎDα, that speak about hierarchies of
(not necessary least) fixed points are well understood by now. The proof-theoretic

ordinal of ÎD1 is due to Aczel [1], who used a recursion theoretic argument, nowa-

days known as Aczel’s trick, to embed ÎD1 into Σ1
1-AC. The theories ÎDn of n-times

iterated inductive definitions have been analyzed by Feferman in connection with
Handcock’s conjecture in [6]. The proof-theoretic analysis of ÎDα has been carried
out in all details by Jäger, Kahle, Setzer and Strahm [9].

Some problems however, have remained unsolved: In the theories ÎDα, induction on
fixed points is dropped completely. It is natural to study theories, where fixed point
induction is only restricted. Kreisel pointed out in [11], that “an inductive definition
tells you what is in PA not what is not in PA”. As mentioned in Feferman [6], this
motivated to consider restricted versions of ID1 such as ID∗

1, a theory credited to
H. Friedman where the scheme for proof by induction on fixed points is restricted to
formulas that contain fixed point constants only positively. The question for a sharp
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upper bound is raised loc. cit. No answer to this question has yet been published,
although partial results have been attained: If the fixed point axioms of ID∗

1 are
restricted to so-called accessibility inductive definitions, then the resulting theory
ID∗

1(ACC) can be embedded in Σ1
1-DC as sketched by Feferman in [6]. There, it is

also stated that Friedman [8] introduced the theory ID∗
1 and showed that its ordinal

is bounded by α1, where α0 := ε0 and αn+1 := ϕαn0. Further, upper bounds for
the theories ID∗

n are computed by Cantini [4]. Thereby the two common ordinal
measures for a theory T of inductive definitions are considered: The proof-theoretic
ordinal |T|, i.e. the least ordinal α such that for no primitive recursive well-ordering
≺ of ordertype α the well-orderedness of ≺ is provable within T, and alternatively,
the least stage ‖T‖ not provable in T. The ξth stage ICξ of an inductive definition C is
given by {x : C(

⋃
η<ξ ICη , x)}, and a stage α is called provable if there is an inductive

definition A and an m ∈ N with T ` m ∈ PA, such that α ≤ min{β : m ∈ IAβ }. In
[4], Cantini proves that |ID∗

n| ≤ α2n and ‖ID∗
n‖≤ α2n−1 for n > 0 and conjectures,

like Feferman in [6], |ID∗
n| = αn =‖ ID∗

n ‖ to hold true. We point out that for
impredicative theories these two ordinal assignments usually coincide, whereas in
(meta-)predicative theories they usually differ: |IDn| =‖IDn‖ is the case, however

‖ÎDn‖= αn−1 only unfolds to |ÎDn| = αn. In respect thereof, the theories ID∗
n take

an exceptional position, as |ID∗
n| =‖ID∗

n‖ follows from our wellordering proof.

This article provides the proof-theoretic ordinals of the theories ID∗
α and ID∗

α�, a
variant where also induction on the natural numbers is restricted to formulas that
contain fixed point constants only positively. In the first sections we treat the
case ID∗

1. Thereto we present a new embedding of ÎD1 into Σ1
1-AC that extends

to an embedding of ID∗
1 into Σ1

1-DC. This embedding relies on the following two
observations: Already Σ1

1-AC proves that for an operator formA(P+, p), the standard
Π1

1 definition of the fixed point, namely the intersection of all sets X satisfying
∀x[A(X, x) → x ∈ X], is a fixed point of the operator defined by A. Moreover,
Σ1

1-DC proves that this is indeed the least Π1
1-definable fixed point.

To demonstrate the power of restricted fixed point induction, we give well-ordering
proofs for ID∗

α and ID∗
α�. The general idea is the same as in [9] or [7], but things

are simpler and the proofs are carried out in ID∗
α and ID∗

α� themselves. Section 6
is devoted to the upper bounds. In [15], Rüede has developed and analyzed semi-
formal systems to treat theories Mα, formalizing transfinite hierarchies of models of
Σ1

1-AC. To embed the theories ID∗
α and ID∗

α� into such systems, we require uniform
hierarchies of models of Σ1

1-DC. Towards this, we extend Mα to M†
α, by an axiom

claiming that transfinite induction for |Mα|, the proof-theoretic ordinal of Mα, fails.
According to Jäger and Probst [10], this extension is conservative. In M†

α, the
technique of pseudo-hierarchies can be applied to construct the required hierarchies.
Rüede’s results then yield sharp upper bounds.
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1 The theories ID∗
1 and ÎD

∗
1�

Let L1 be a standard language of first order arithmetic that includes number vari-
ables a, b, c, d, e, u, v, w, x, y, z, . . . and function and relation symbols for all primitive
recursive functions and relations. In particular, we have a unary relation symbol N
for the natural numbers. Moreover, we have unary relation symbols U and V that
are required for technical reasons. Since we consider Tait-style calculi in the sequel,
we use the symbol ∼ for forming negative literals, and define the negation ¬A of a
formula A of L1 or some language containing L1 by making use of De Morgan’s laws
and the law of double negation. For U(t) and ∼U(t) we write t ∈ U and t /∈ U.

Towards the formulation of ID∗
1, we extend L1 by fresh unary relation symbols ~P, ~Q

and a fresh number constant p, which serve as placeholders. Then, a P-positive
formula of L1(P, ~Q, p), the extension of L1 by P,~Q and p, is called an inductive

operator form, and we let A range over such forms. For sets ~Y and numbers ~y,
an operator form A(P, ~Q, q, ~u) defines an operator on the powerset of the natural
numbers, namely

FA
~Y ,~y

(X) := {x : A(X, ~Y , x, ~y)}.

Next, we add to the first order language L1 a fixed point constant PA for each induc-
tive operator form A of L1(P, p) without free variables, and denote this new language
by LFix. Technically, we treat fixed point constants as unary relation symbols, but
write t ∈ PA instead of PA(t). The formulas A, B, C, . . . and the number terms
r, s, t, . . . of LFix are defined in the expected way and the formulas of L+

Fix are the
formulas of LFix that contain fixed point constants only positively.

The axioms of ID∗
1 consist of the axioms of PA without induction, complete induction

along the natural numbers for all formulas of LFix as well as the following two fixed
point axioms: For all inductive operator forms A(P, p) without free variables, we
have

(FIX) ∀x[A(PA, x) ↔ x ∈ PA],

and for all inductive operator forms A(P, p), A1(P, p), . . . ,An(P, p) without free

variables, and each ~P -positive formula B(~P, p, ~u) of L1(~P, p), we have

(IND+
FIX) ∀x[A({z : B(P

~A, z, ~y)}, x) → B(P
~A, x, ~y)] → ∀x[x ∈ PA → B(P

~A, x, ~y)].

Note that we wrote P
~A for the string PA1 , . . . , PAn and that A may be syntactically

identical to some Ai. The axiom (FIX) asserts that PA is indeed a fixed point of
the operator FA and (IND+

FIX) is the scheme for proof by induction on PA restricted

to formulas of L+
Fix. Finally, ÎD

∗
1� denotes the theory where also complete induction
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along the natural numbers is restricted to formulas of L+
Fix, and ÎD1 is ID∗

1 without
(IND+

FIX).

In this article, we make use of the term proof-theoretic ordinal. For theories T that
are formulated in a language comprising L1, the proof-theoretic ordinal of T can be
defined in the following way: We set

Prog≺(Z) := ∀u(∀v ≺ u)(v ∈ Z → u ∈ Z),

TI≺(Z, t) := Prog≺(Z) → (∀u ≺ t)(u ∈ Z),

and call an ordinal α provable in T, if there exists a primitive recursive well-ordering
≺ such that T ` TI≺(U, α). Any ordinal that is not provable in T is called an upper
bound of T and the least ordinal that is not provable in T is then the proof-theoretic
ordinal of T, denoted by |T|.

2 A new embedding of ÎD1 into Σ1
1-AC

The standard embedding of ÎD1 into Σ1
1-AC is due to Aczel [1]. He makes use

of a universal Σ1
1 formula and a standard diagonalization argument to find a Σ1

1

definable solution for each fixed point constant PA respecting (FIX). Of course,
there is no chance to prove that such a solution is minimal with respect to classes
definable by L+

Fix formulas. Bearing such a minimality condition in mind, the most
natural way to interpret a fixed point constant PA is to take its Π1

1 definition, i.e.
the intersection of all sets satisfying FA(X) ⊆ X. This is indeed in accord with
axiom (FIX). Surprisingly enough, the compact proof of this fact has not yet been
discovered. Prior to its presentation, we specify the language and axioms of the
theories involved, and briefly recap Aczel’s argument.

The theories Σ1
1-AC and Σ1

1-AC0 are formulated in the language L2 that canonically
extends our language L1 to a language of second order arithmetic by set variables
U, V,W, X, Y, Z, . . ., a symbol ∈ to denote elementhood and quantifiers for second
order variables. Note, that we write t /∈ X for ∼(t ∈ X). The number terms of
L2 are the number terms of L1. Formulas of L2 that do not contain bounded set
variables are called arithmetical. L2 formulas of the form ∃XA(X), where A is
arithmetical, are called Σ1

1 formulas, and formulas of the form ¬B, where B is Σ1
1,

are called Π1
1 formulas. The class of Π formulas of L2 is the smallest class containing

the arithmetical formulas of L2 that is closed under conjunction, disjunction, number
quantification and universal set quantification. If A is a Π formula of L2, then ¬A is
a Σ formula of L2. Arithmetical formulas of L2 where all number quantifiers appear
in the context (∀x < t) and (∃x < t) are called ∆0

0.
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In the sequel, we make use of the usual coding machinery: 〈. . .〉 is a standard
primitive recursive function for forming n-tuples 〈t0, . . . , tn−1〉, so-called sequence
numbers; (t)i is the ith component of (the sequence coded by) t, if i is less than the
length lh(t) of t; i.e. (t)i = ti for all 0 ≤ i ≤ n− 1, provided that t = 〈t0, . . . , tn−1〉.
Further, we write s ∈ (X)t for 〈s, t〉 ∈ X, and X = Y is to abbreviate the formula
∀x[x ∈ X ↔ x ∈ Y ].

Besides the usual axioms of classical logic with equality in the first sort and ax-
ioms for the primitive recursive functions and relations, the theory Σ1

1-AC comprises
the schema of complete induction on the natural numbers for all formulas of L2,
arithmetical comprehension (ACA), and for all Σ1

1 formulas A(U, u) an axiom

(Σ1
1-AC) ∀x∃XA(X, x) → ∃Y ∀xA((Y )x, x).

Σ1
1-AC0 is Σ1

1-AC with the schema of complete induction on the natural numbers
restricted to sets.

Below we observe that in a theory comprising Σ1
1-AC0, we do not have to distinguish

between Π and Π1
1 formulas of L2. Of course, this applies also to the dual classes of

Σ1
1 and Σ formulas.

Lemma 1 For each Π formula C of L2 there is a Π1
1 formula C ′ of L2 containing

the same free variables as C, such that Σ1
1-AC proves: C ↔ C ′.

Aczel’s embedding of ÎD1 into Σ1
1-AC relies on this observation and the fact, that

there exists a universal Σ1
1 formula E(u, v, w) of L2: For each Σ formula B(u, v) of

L2, there exists an e ∈ N such that

Σ1
1-AC0 ` B(x, y) ↔ E(e, x, y),

where e denotes the constant for the natural number e. This means in particular,
that for a given operator form A of L1(P, p), there is an eA ∈ N such that

Σ1
1-AC0 ` A({z : E(x, x, z)}, y) ↔ E(eA, x, y).

Letting C(u) be the Σ1
1 formula E(eA, eA, u), then Σ1

1-AC0 proves:

A({z : C(z)}, x) ↔ A({z : E(eA, eA, z)}, x)

↔ E(eA, eA, x)

↔ C(x).

If we translate an LFix formula B to an L2 formula B̃ by substituting each subformula
of B of the form t ∈ PA by the Σ1

1 formula E(eA, eA, t), then we obtain the following
theorem:
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Theorem 2 (Aczel) For every LFix formula B the following holds:

ÎD1 ` B =⇒ Σ1
1-AC ` B̃.

The canonic candidate to interpret the fixed point constant PA, however, is the
intersection of all A-closed sets, namely the Π1

1-definable class

FixA :=
⋂
{X : FA(X) ⊆ X}.

Of course, we cannot prove in Σ1
1-AC that FixA is a set, yet FA(FixA) ⊆ FixA is still

immediate: For all A-closed sets X, the positivity of the operator form A yields
FA(FixA) ⊆ FA(X) ⊆ X. For the other direction, though, we can no longer argue
that FA(FixA) is A-closed, and therefore a superset of FixA. To show that Σ1

1-AC0

proves FixA ⊆ FA(FixA), a more refined argument is required.

We prove FA(FixA) = FixA in a sightly more general context. For an operator form

A(P, ~Q, p, ~u) of L1(P, ~Q, p) we set

ClA~Y ,~y
(X) := ∀x(A(X, ~Y , x, ~y) → x ∈ X),

FixA~Y ,~y
:= {x : ∀X[ClA~Y ,~y

(X) → x ∈ X]}.

Often, we do not explicitly indicate the parameters in the operator formA, and write
ClA(X), FixA and FA instead of ClA~Y ,~y

(X), FixA~Y ,~y
and FA

~Y ,~y
. The context provides

always enough information to identify the dropped parameters. Below, we prove
within Σ1

1-AC0 that FixA~Y ,~y
is a fixed point of the operator FA

~Y ,~y
. The direction from

right to left is again immediate. For the other direction, the following lemma almost
handles the job.

Lemma 3 (Separation Lemma) For all operator forms A of L1(P, ~Q, p) and each
arithmetical, U-positive formula B(U, u) of L2, Σ1

1-AC0 proves:

¬B(FixA~Y ,~y
, x) → ∃X[ClA~Y ,~y

(X) ∧ ¬B(X, x)].

Proof: We prove the lemma by induction on the build-up of the formula B(U, u). If
U does not occur in B there is nothing to prove, and if B is the formula t ∈ U , then
the claim follows from the definition of FixA. If B is a conjunction or a disjunction,
a similar argument applies as in the cases treated below.

(i) B(U, u) is of the form ∃yB1(U, u, y). Assume ∀y¬B1(FixA, x, y). The I.H. reads

¬B1(FixA, x, y) → ∃X[ClA(X) ∧ ¬B1(X, x, y)],

hence our assumption yields that

∀y∃X[ClA(X) ∧ ¬B1(X, x, y)].
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Applying (Σ1
1-AC) gives us a set Y such that

∀y[ClA((Y )y) ∧ ¬B1((Y )y, x, y)].

Now we set
Z := {x : ∀y(x ∈ (Y )y)},

and observe that ClA(Z): From A(Z, x) we conclude that ∀yA((Y )y, x), and
so ∀yClA((Y )y) yields ∀y(x ∈ (Y )y). Hence, by the positivity of B1, we have

ClA(Z) ∧ ∀y¬B1(Z, x, y).

(ii) B(U, u) is of the form ∀yB1(U, u, y). Assume ∃y¬B1(FixA, x, y). Now the I.H.
yields ∃y∃X[ClA(X) ∧ ¬B1(X, x, y)], which implies ∃X[ClA(X) ∧ ¬B(X, x)].

2

Our claim is now obtained effortlessly.

Lemma 4 For all operator forms A of L1(P, ~Q, p), Σ1
1-AC0 proves:

∀x[x ∈ FixA~Y ,~y
↔ A(FixA~Y ,~y

, ~Y , x, ~y)].

Proof: It remains to show that x ∈ FixA implies A(FixA, x). to show the contrapo-
sition, we assume that x /∈ FA(FixA). By lemma 3 there is a A-closed set Z with
x /∈ FA(Z). Since also FA(Z) is A-closed, x /∈ FixA follows. 2

Summing up, we have established that for each operator form A of L1(P, p), the
intersection of all A-closed sets is a fixed point of the operator FA, provable in
Σ1

1-AC0. This gives rise to the following embedding:

Theorem 5 If we translate an LFix formula B to a L2 formula B∗ by substituting
each fixed point constant PA by the Π1

1-definable class FixA, the following holds:

ÎD1 ` B =⇒ Σ1
1-AC ` B∗.

3 Embedding ÎD
∗
1� into Σ1

1-DC0

The theory Σ1
1-AC0 proves that FixA is a subclass of every A-closed set. When we

move to the sightly stronger theory Σ1
1-DC0 by strengthening the choice principle

(Σ1
1-AC), we even can prove that FixA is contained in every A-closed, Π1

1-definable
class. As a consequence, we also obtain induction along the natural numbers for Π1

1

formulas. Thus, the aforementioned embedding extends to an embedding of ÎD
∗
1�

into Σ1
1-DC0.
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Formally, the theories Σ1
1-DC and Σ1

1-DC0 are obtained from Σ1
1-AC and Σ1

1-AC0 by
replacing the axiom schema (Σ1

1-AC) by the schema (Σ1
1-DC): For each Σ1

1 formula
A(U, V ) of L2 we have

(Σ1
1-DC) ∀X∃Y A(X, Y ) → ∀Q∃Z[(Z)0 = Q ∧ ∀xA((Z)x, (Z)x+1)].

Note, that the theory Σ1
1-DC0 proves each instance of the axiom schema (Σ1

1-AC).
Next, we proof within Σ1

1-DC0 that FixA is the least Π1
1-definable fixed point of the

operator FA.

Theorem 6 For all operator forms A of L1(P, ~Q, p) and each Π1
1 formula C(u) of

L2, the following is provable in Σ1
1-DC0:

ClA~Y ,~y
({x : C(x)}) → FixA~Y ,~y

⊆ {x : C(x)}.

Before we give the proof, we consider a simpler case to illustrate the proof idea:
Suppose that A and B are operator forms and that FixB is A-closed. We assume
that there is an x ∈ FixA with x /∈ FixB, and argue for a contradiction. Thereto, we
construct a sequence V0 ⊇ V1 ⊇ . . . of B-closed set, such that for all n ∈ N, we have
x /∈ Vn and Vn ⊇ FA(Vn+1). Then W :=

⋂
n∈N Vn is A-closed, but x /∈ W .

To apply this argument in the general case, we require that every Π1
1-definable class

{x : C(x)} is primitive recursive in a fixed point.

Lemma 7 (Representation Lemma) For each Π1
1 formula C(U, u) of L2 there

exists an operator form A of L1(P, Q, p) and a U-positive ∆0
0 formula D(U, u) of L2,

such that Σ1
1-AC0 proves: For all sets Y , there exists a set T , such that

∀x[D(FixAT , x) ↔ C(Y, x)].

Proof: As follows e.g. from results in Simpson [18], Σ1
1-AC0 proves that there is a

set T , depending on the number and set parameters occurring in C, such that for
all n,

(T )n is a tree, and C(n) ↔ [(T )n is well-founded].

As usual, a tree is a set of finite sequences that is closed under initial segments. Now
we define an operator FA that collects the leafs of the trees (T )n. If the tree (T )n is
well-founded, then the root 〈〉 of the tree (T )n is an element of FixA, otherwise the
infinite branches and therefore the root do not enter the fixed point.

Thus, we set

A(P, Q, p) := ∃n[p = 〈y, n〉 ∧ y ∈ (Q)n ∧ (∀z ∈ (Q)n)(z ⊃ y → z ∈ (P)n)],
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where z ⊃ y states that z is a proper extension of the sequence y. It is now easy to
see that

∀n[〈〈〉, n〉 ∈ FixAT ↔ C(n)].

2

Next we return to the proof of theorem 6.
Proof: Assume that A is an operator form and C(u) a Π1

1 formula of L2 such that
ClA({x : C(x)}). We aim to prove that x ∈ FixA implies C(x).

Lemma 7 provides a set T , an operator form B of L1(P, Q, p) and a U -positive ∆0
0

formula D(U, u) of L2 such that

∀x[D(FixBT , x) ↔ C(x)].

Hence our assumption reads ClA({x : D(FixBT , x)}). We show that this implies

(1) ∀X∃Z[FD(X) 6= N ∧ ClBT (X) → ClBT (Z) ∧ Z ⊆ X ∧ FA ◦ FD(Z) ⊆ FD(X)].

Fix an arbitrary X, such that ClBT (X), and suppose that FD(X) does not contain
all natural numbers. If x /∈ FD(X), then x /∈ FD(FixBT ), so our assumption yields
x /∈ FA ◦ FD(FixBT ), and lemma 3 provides a set Y that is B-closed with respect to
T , such that x /∈ FA ◦FD(Y ). If ClBT (X) and ClBT (Y ) then also ClBT (X ∩ Y ), thus we
may assume that Y ⊆ X. Summarizing, we obtain

∀x∃Y [x /∈ FD(X) → ClBT (Y ) ∧ Y ⊆ X ∧ x /∈ FA ◦ FD(Y )].

Now (Σ1
1-AC) gives us a set Y such that for all x /∈ FD(X)

ClBT ((Y )x) ∧ (Y )x ⊆ X ∧ x /∈ FA ◦ FD((Y )x).

Therefore, if we set

Z :=
⋂

x/∈F D(X)

(Y )x,

we have ClBT (Z) and Z ⊆ X and

∀x[x /∈ FD(X) → x /∈ FA ◦ FD(Z)],

which means FA ◦ FD(Z) ⊆ FD(X). Thus we have shown claim (1).

Now we suppose that there is an x ∈ FixA that is not an element of x /∈ FD(FixBT )
and argue for a contradiction. Again, lemma 3 provides a set Q that is B-closed
with respect to T and x /∈ FD(Q). Applying (Σ1

1-DC) to (1) gives us a set V such
that (V )0 = Q and

∀n[ClBT ((V )n) → ClBT ((V )n+1) ∧ (V )n+1 ⊆ (V )n ∧ FA ◦ FD((V )n+1) ⊆ FD((V )n)].
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One easily proves by induction that

∀n[ClBT ((V )n) ∧ (V )n+1 ⊆ (V )n ∧ FA ◦ FD((V )n+1) ⊆ FD((V )n)].

Hence, for W :=
⋂

n∈N(V )n, we have that

FA ◦ FD(W ) ⊆
⋂
n∈N

FD((V )n) = FD(
⋂
n∈N

(V )n) = FD(W ).

The second but last equality follows from the fact that D is positive and ∆0
0, and

that (∀n ∈ N)((V )n+1 ⊆ (V )n). So W ⊆ Q and ClA(FD(W )), i.e. FixA ⊆ FD(W ).
Now x /∈ FD(Q) yields x /∈ FD(W ), thus x /∈ FixA. A contradiction! 2

The following corollary is an immediate consequence of theorem 6. To enhance

readability, we let Fix
~A
~Y

stand for FixA1

~Y
, . . . , FixAn

~Y
.

Corollary 8 For all operator forms A and ~A of L1(P, ~Q, p) and each ~U-positive

arithmetical formula B(~U, ~u) of L2, Σ1
1-DC0 proves:

ClA({x : B(Fix
~A
~Y
, x, ~z)}) → FixA~Y ⊆ {x : B(Fix

~A
~Y
, x, ~z)}.

Proof: Note that B(Fix
~A
~Y
, x, ~z) is equivalent to a Π1

1 formula of L2. 2

Remark 9 We think of U as coding an ordering, and set

Prog(U, V ) := ∀x[∀y(〈y, x〉 ∈ U → y ∈ V ) → x ∈ V ],

TI(U, V ) := Prog(U, V ) → Field(U) ⊆ V,

Wo(U) := ∀Y TI(U, Y ).

Further, we consider the operator form

ACC(P, Q, p) := ∀y[〈y, p〉 ∈ Q → y ∈ P].

Observe, that ClACC
U (V ) is the formula Prog(U, V ) and Wo(X) can be written as

∀Y [ClACC
X (Y ) → Field(X) ⊆ Y ]. It is immediate, that Wo(X) is equivalent to

FixACC
X = Field(X). Due to theorem 6, Σ1

1-DC0 proves for each Π1
1 formula C(u)

of L2 that

Wo(X) → [ClACC
X ({z : C(z)}) → Field(X) ⊆ {z : C(z)}],

which is normally written as

(Π1
1-TI) Wo(X) → TI(X, {z : C(z)}).

It is shown, e.g. in [18], that (Π1
1-TI) is provable in Σ1

1-DC0. In this sense, corollary
6 is a generalization of this result.
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Since (Π1
1-TI) implies induction along the natural numbers for all Π1

1 formulas of L2,

the embedding given in the previous section extends to an embedding of ÎD
∗
1� and

ID∗
1 into Σ1

1-DC0 and Σ1
1-DC, respectively.

Theorem 10 If we translate an LFix formula B to a L2 formula B∗ by substituting
each fixed point constant PA by the Π1

1-definable class FixA, then the following holds:

ÎD
∗
1� ` B =⇒ Σ1

1-DC0 ` B∗ and ID∗
1 ` B =⇒ Σ1

1-DC ` B∗.

Since |Σ1
1-DC0| = ϕω0 and |Σ1

1-DC| = ϕε00, this answers the question for a sharp
upper bound of ID∗

1:

Corollary 11

|ÎD
∗
1�| ≤ ϕω0, and |ID∗

1| ≤ ϕε00.

4 The theories ID∗
α and ID∗

α�

To formulate transfinite iterations of the theories ID∗
1 and ÎD

∗
1�, we follow the lines

chosen by Jäger, Kahle, Setzer and Strahm [9] and we presuppose the same ordinal-
theoretic facts. Again, (OT, �) is a standard notation system based on the ternary
Veblen or ϕ-function. As usual, we write 0 for the least element of OT with respect to
the primitive recursive ordering �. Ordinals are often identified with their notations.
If an ordinal α appears within a formal argument, the closed term representing
its notation is meant instead. Also, we do not distinguish between operations on
ordinals and the primitive recursive analogues on their codes. By Φ0 we denote the
least ordinal greater than 0 such that with α < Φ0 also ϕ1α0 < Φ0. We restrict
ourselves to ordinals below Φ0 because we only bother to fix fundmental sequences
for these ordinals in the subsequent well-ordering proof. However, it is straight
foreward to extend the following to all ordinals below Φ1, the least ordinal greater
than 0 which is closed under all n-ary ϕ-functions.

The language L1 and operator forms A are defined as in section 1, but this time,
we extend the language L1 by a unary relation symbol PA for each operator form
A(P, Q, p, u) of L1(P, Q, p) which contains at most the variable u free, and denote this
new language again by LFix. To simplify the notation, t ∈ PA

s stands for PA(〈t, s〉)
and t ∈ PA

�s is to abbreviate t = 〈(t)0, (t)1〉∧(t)1�s∧t ∈ PA. For each ordinal α less
than Φ0, the theory ID∗

α comprises the axioms of PA without induction, the axioms
TI�(A, max{α, ω}) for all LFix formulas A and the following fixed point axioms:

(FIX) (∀a � α)(∀x)[x ∈ PA
a ↔ A(PA

a , PA
�a, x, a)],
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and

(IND+
FIX) (∀a � α)[ClAPA�a,a({x : B(P

~A
a , P

~A
�a, x, ~y)}) → PA

a ⊆ {x : B(P
~A
a , P

~A
�a, x, ~y)}],

for all operator forms ~A(P, Q, p, u) containing at most the variable u free and each
~P -positive formula B(~P, ~Q, p, ~u) of L1(~P, ~Q, p). In ID∗

α�, only restricted (transfinite)
induction is available, i.e. instead of TI�(A, max{α, ω}), we only have

(∀a � α)[Prog�(λb.B(P
~A
a , P

~A
�a, b, ~y)) → (∀c � max{α, ω})B(P

~A
a , P

~A
�a, c, ~y)]

for each ~P -positive formula B(~P, ~Q, p, ~u) of L1(~P, ~Q, p). As usual, for a formula
A(u) of LFix, Prog≺(λx.A(x)) abbreviates ∀u(∀v ≺ u)(A(v) → A(u)). Note that
the axioms concerning transfinite induction imply also induction along the natural
numbers for the corresponding class of formulas. Again, ÎDα is ID∗

α without (IND+
FIX).

5 Wellordering proofs for ID∗
α and ID∗

α�

To demonstrate the power of the axiom (IND+
FIX), we give wellordering proofs for the

theories ID∗
α and ID∗

α�. The proof idea is the same as in [9], where the wellordering

proof of ÎDα is carried out in the transfinitely iterated theory of self-reflecting truth
SRTα. However, things are easier in the present context and the wellordering proof
is performed in ID∗

α itself. As corollary 11 suggests, we obtain that also ID∗
α and ÎDα

prove the same ordinals.

For the wellordering proof, we fix fundamental sequences for the ordinals below Φ0.
A fundamental sequence for α is a primitive recursive, increasing sequence α[n] on
the corresponding notations such that for each β < α < Φ0 there is an n with
β ≤ α[n]. We set (α+1)[n] := α for all n ∈ N, and if ωαk+ . . . +ωα1 is the Cantor
normal form of λ and λ < ωλ, then λ[n] := ωαk+ . . . +ωα2+ωα1 [n]. The remaining
cases where λ < Φ0 is of the form ϕαβγ for α ∈ {0, 1} and β, γ < λ are given next:
Γ0[0] := 0 and Γ0[n+1] := ϕ(Γ0[n])0, ϕ00(γ+1)[n] = ωγ+1[n] := ωγ · n, and

(i) ϕα(β+1)0[0] = 0 and ϕα(β+1)0[n+1] = ϕαβ(ϕα(β+1)0[n]).

(ii) For a limit λ: ϕαβλ[n] = ϕαβ(λ[n]) and ϕαλ0[n] = ϕα(λ[n])0.

(iii) ϕαβ(γ+1)[0] = ϕαβγ+1, and

ϕαβ(γ+1)[n+1] = ϕα(β[n])(ϕαβ(γ+1)[n]), if β > 0,

= ϕ0(ϕ10(γ+1)[n])0, if β = 0 and α = 1.

12



In the course of the wellordering proof, we let a, b, c, d, e range over the elements of

OT and use l to denote limit notations. We start with the cases ID∗
1 and ÎD

∗
1�.

Let ACC := (∀z � x)(z ∈ P) and denote the corresponding fixed point constant

PA by ACC. By means of the axiom (IND+
FIX) one immediately proves in ÎD

∗
1� that

a, b ∈ ACC implies ACC ⊆ {c : a+c ∈ ACC} and ACC ⊆ {c : a · c ∈ ACC}, hence
a, b ∈ ACC yields a+b ∈ ACC and a · b ∈ ACC.

Lemma 12 For each ordinal k < ω, and each ordinal κ < ε0, the following holds:

ÎD
∗
1� ` Prog�(λa.ϕka ∈ ACC) and ID∗

1 ` Prog�(λa.ϕκa ∈ ACC).

Proof: Note that Prog�(λx.A(x)) is another way of writing ClACC({x : A(x)}). We
prove the first claim by (meta-) induction on k. For k = 0, it is to show that if
ωb ∈ ACC holds for all b � a, then also ωa ∈ ACC. If a is a limit notation, this
follows from Prog�(λb.b ∈ ACC) and the continuity of the function λξ.ωξ. If a is of
the form b+1, then we use restricted induction to show that ∀n(ωβ ·n ∈ ACC), thus
Prog�(λb.b ∈ ACC) yields ωβ+1 ∈ ACC.
For the induction step, we assume that ϕ(k+1)b ∈ ACC for all b � a. Now the
I.H. allows to prove by restricted induction that ∀n(ϕ(k+1)a[n] ∈ ACC). Thus, also
ϕ(k+1)a ∈ ACC.
For the second claim, observe that in ID∗

1 transfinite induction along ordinals κ < ε0

is available for all formulas of LFix. Instead of meta-induction, transfinite induction
within ID∗

1 is used. If λ is a limit ordinal, the induction step is performed by showing
∀n(ϕλa[n] ∈ ACC). 2

The axiom (IND+
FIX) implies Prog�(U) → ACC ⊆ U. Since the previous lemma yields

ÎD
∗
1� ` ϕk0 ∈ ACC and ID∗

1 ` ϕκ0 ∈ ACC for k < ω and κ < ε0, theorem 11 gives
rise to the following corollary.

Corollary 13

|ÎD
∗
1�| = ϕω0, and |ID∗

1| = ϕε00.

Next we consider ID∗
α� and ID∗

α. By mentioning ID∗
α� or ID∗

α, we implicitly imply
α < Φ0. This time, let ACC := (∀z � p)(z ∈ Pa) and denote the corresponding
relation symbol PA by ACC. In the sequel, we write c ∈ ACCa for (∀b�a)(c ∈ ACCb).
Note that this reads (∀b � a)(〈c, b〉 ∈ ACC�a). Therefore ID∗

α� proves for each
formula B(P, p) of L1(P, p), that a � α and Prog�(λx.B(ACCa, x)) imply ACCa ⊆
{x : B(ACCa, x)}. Further, a � α implies the progressivity of ACCa and b � a � α
implies ACCa ⊆ ACCb. Since Prog�(U) implies ACC0 ⊆ U, proving an ordinal β in
ID∗

α� breaks down to show β ∈ ACC0.

Lemma 14 Let A(a, b) := ∀c(c ∈ ACCa → ϕbc ∈ ACCa). Then it is provable in
ID∗

α� that a � α → Prog�(λb.A(a, b)).

13



Proof: Let a � α. We assume (∀b′ � b)A(a, b′) and show A(a, b).
(IND+

FIX) tells us that A(a, b) follows from Prog�(λc.ϕbc ∈ ACCa), which in turn
follows from the assumption (∀b′ � b)A(a, b′): Given ϕbc′ ∈ ACCa for all c′ � c,
restricted induction yields that ∀n(ϕbc[n] ∈ ACCa), thus ϕbc ∈ ACCa. 2

Corollary 15 For all limit notations l � α, ID∗
α� proves:

d ∈ ACCl → ϕd0 ∈ ACCl.

Proof: Pick an arbitrary a � l. So d ∈ ACCl implies d ∈ ACCa+1. Now (IND+
FIX) and

Prog�(λb.∀c(c ∈ ACCa → ϕbc ∈ ACCa)) yield ϕd0 ∈ ACCa. 2

Corollary 16 For all limit notations l � α, ID∗
α� proves:

Prog�(λc.ϕ10c ∈ ACCl).

Proof: Assume that l � α and that ϕ10d ∈ ACCl for all d � c. Restricted induction
and the previous corollary imply that ∀n(ϕ10c[n] ∈ ACCl). Thus ϕ10c ∈ ACCl. 2

Corollary 17 For all limits l � α, ID∗
α proves:

Prog�(λc.ϕ10c ∈ ACCl).

Proof: In the case l = α, full induction is needed to show that ∀n(ϕ10c[n] ∈ ACCl).
2

The following lemma corresponds to the Main Lemma in [9]. Again, the proof is
simpler in the present context.

Lemma 18 Let

A(a, b) := ∀d, c(d+ω1+b � a ∧ c ∈ ACCd+ω1+b → ϕ1bc ∈ ACCd+ω1+b

).

Then it is provable in ID∗
α� that a � α → Prog�(λb.A(a, b)).

Proof: Assume a � α and that A(a, b′) holds for all b′ � b. We aim for A(a, b). So

suppose d+ω1+b � a. Now c ∈ ACCd+ω1+b → ϕ1bc ∈ ACCd+ω1+b

follows, if we can
establish

(1) Prog�(λc.ϕ1bc ∈ ACCd+ω1+b

).

Thereto we further suppose that ϕ1bc′ ∈ ACCd+ω1+b

for all c′ � c, and use restricted
induction to show ∀n(ϕ1bc[n] ∈ ACCd+ω1+b

). We only consider the case where b is
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not 0 and c a successor: ϕ1bc[0] ∈ ACCd+ω1+b

follows immediately from our further
supposition, and the induction step can be performed because we have for all m ∈ N,

(2) ∀e(e ∈ ACCd+ω1+b → ϕ1(b[m])e ∈ ACCd+ω1+b

).

To see that (2) holds, fix an m ∈ N and suppose that e ∈ ACCd+ω1+b

. We argue
that ϕ1(b[m])e ∈ ACCd+ω1+b[k] for all k ∈ N: So we fix an arbitrary k ∈ N, and
observe that e ∈ ACCd+ω1+b[k]+ω1+b[m] . Thus, the assumption (∀b′ � b)A(a, b′) forces
ϕ1(b[m])e ∈ ACCd+ω1+b[k].
The other cases are shown similarly or are easy. If b = 0, (1) becomes corollary 16.
2

From the above proof we immediately extract the following corollaries:

Corollary 19 For all notations b and all d with d+ω1+b � α, ID∗
α� proves:

Prog�(λc.ϕ1bc ∈ ACCd+ω1+b

).

Corollary 20 For all notations b and all d with d+ω1+b � α, ID∗
α proves:

Prog�(λc.ϕ1bc ∈ ACCd+ω1+b

).

Proof: Let A(a, b) be as defined in lemma 18. By transfinite induction we obtain
A(a, b) for all a � α and b � α. Using full induction, the claim is shown as in the
proof of lemma 18. 2

In order to speak about lower and upper bounds of ID∗
α and ID∗

α�, we define for all
α, β < Φ0 a function σ(α, β).

Definition 21 Let α = ω1+αn+ω1+αn−1+ · · ·+ω1+α1+m, where αn ≥ · · · ≥ α1 and
m < ω, be an ordinal below Φ0 in Cantor normal form. We set for all ordinals
β < Φ0:

σ(α, β) := ϕ1αn(ϕ1αn−1(. . . (ϕ1α1β) . . .), if α ≥ ω and σ(m,β) := β.

Moreover, (α|0) := ε(α), i.e. the least fixed point of the function λξ.ωξ bigger than
α, and (α|i+1) := ϕ(α|i)0.
(α�0) is the least limit ordinal λ > 0 such that ϕ1α1λ > α, and (α�1) is the least
upper bound of {ϕk(α+1) : k < ω}. Eventually, (α�i+2) := ϕ(α�i+1)0.

Towards further simplifications, we write in the sequel σ(α) for σ(α, (α|m)) and
σ�(α) for σ(α, (α�m)).

Note, that α�0 is of the form β+ω, where β is a limit or zero, and if β > 0, then
α ≥ ϕ1α1β: Let β0 := min{β : ϕ1α1β ≥ α}. Now if β0 is zero or a successor, the
claim is immediate, and if β0 is a limit, then the continuity of the function λξ.ϕ1α1ξ
yields ϕ1α1β0 = α, thus α�0 = β0+ω.
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Lemma 22 Let λ = ω1+αn+ω1+αn−1+ · · ·+ω1+α1 < Φ0, where αn ≥ · · · ≥ α1, and
assume that λ�0 = β+ω. Then, for each n ∈ N, ID∗

λ� proves the following:

ϕ1α1(β+n) ∈ ACCλ.

Proof: We choose δ such that λ = δ+ω1+α1 and prove the claim by metainduction
on n. We start with the case n = 0: If β > 0, then ϕ1α1β ≤ λ and the claim
trivially follows by restricted transfinite induction up to λ. If β = 0, then the
claim follows similar to the induction step, which we prove below. Thereby, we
distinguish whether α1 is zero, a successor or a limit. Exemplarily, we show the case
α1 = α′

1+1: To establish ϕ1α1(β+n+1) ∈ ACCδ+ω1+α1
, we show that for all k ∈ N,

ϕ1α1(β+n+1)[k] ∈ ACCδ+ω1+α′1 ·k by proving, using restricted induction on m, that
for each k ∈ N,

(∀m ≤ k)[ϕ1α1(β+n+1)[m] ∈ ACC
δ+ω1+α′1 ·(2k−m)

] :

If m < k, then the I.H. yields ϕ1α1(β+n+1)[m] ∈ ACC
δ+ω1+α′1 ·(2k−m)

and corollary

19 tells us
Prog�(λc.ϕ1α′

1c ∈ ACCδ+ω1+α′1 ·(2k−m)).

Thus, ϕ1α1(β+n+1)[m+1] ∈ ACCδ+ω1+α′1 ·(2k−(m+1)) ⊆ ACC
δ+ω1+α′1 ·(2k−(m+1))

. 2

We conclude this section by presenting the lower bounds:

Theorem 23 For all 0 < α < Φ0 we have:

|ID∗
α| ≥ σ(α) and |ID∗

α�| ≥ σ�(α).

Proof: Assume that α = ω1+αn + · · ·+ω1+α1 +m for ordinals αn ≥ · · · ≥ α1 and m <
ω, and set δk := ω1+αn + . . . ω1+αk for k ≤ n, and σk := ϕ1αk(. . . ϕ1α1(α�m)) . . .).
By meta-induction on k we now show that for all β < σk, the theory ID∗

α� proves
β ∈ ACCδk :

We first consider the case k = 1. If m = 0, then δ1 = α and σ1 = ϕ1α1(α�0).
Hence the claim follows by lemma 22. If m = m′+1, then there exists for each
β < σ1 = ϕ1α1(α�1) a k < ω and ordinals ξ1, . . . , ξm such that ξ1 = ϕk(α+1) and
ξi+i = ϕξi0 and β < ϕ1α1ξm. It follows from the proof of lemma 12 that ID∗

α� proves
the progressivity of λa.ϕka ∈ ACCδ1+m′

, thus ξ1 ∈ ACCδ1+m′ . Applying m′-times
lemma 14 and (IND+

FIX) yields ξm ∈ ACCδ1 . Now lemma 18 yields ϕ1α1ξm ∈ ACCδ1 .
The induction step from k to k+1 follows with corollary 19.

The case ID∗
α is treated similarly. If m = 0, we use that for all formulas A(u) of LFix,

ID∗
α proves Prog�(λa.A(a)) → A(β), for all β < ε(α). 2

That these bounds are sharp is established in the next section.
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6 Upper bounds for ID∗
α and ID∗

α�

The aim of this section is to determine the upper bounds of the ID∗-theories ID∗
α

and ID∗
α�. In a first step, we introduce for each ordinal α < Φ0 a theory Mα which

formalizes an α-hierarchy of models of Σ1
1-AC. Then upper bounds of the theories

(Mα + ACA)0, (Mα + Σ1
1-DC)0 and Mλ�, the so called M-theories, are identified by

reducing them to semi-formal systems E0
α, presented and analyzed by Rüede in [15].

Next we extend each M-theory to a corresponding M†-theory by adding the axiom
¬TI�(U, ξ), where ξ is the previously determined upper bound of the M-theory and
argue that ξ is still an upper bound of the corresponding M†-theory. Finally, we give
embeddings of the ID∗-theories into the M†-theories, namely ID∗

α into (Mα + ACA)†0,
ID∗

α+1� into (Mα + Σ1
1-DC)†0 and ID∗

λ� into (Mλ�)† if λ is a limit.

6.1 Upper bounds for (Mα + ACA)0, (Mα + Σ1
1-DC)0 and Mλ�

For each α < Φ0, the theory Mα is formulated in the language L2(D) which extends
L2 by the unary relation symbol D. Formulas of L2(D) that do not contain bound set
variables are called elementary. To simplify the notation, we write t ∈ D for D(t),
t ∈ Ds for 〈t, s〉 ∈ D and X ∈̇ Ds is to abbreviate the formula ∃x(X = (Ds)x), where
again, X = (Ds)t is short for ∀x(x ∈ X ↔ 〈x, t〉 ∈ Ds). The expression t ∈ X�a

stands for t = 〈(t)0, (t)1〉 ∧ (t)1 � a ∧ t ∈ X and t ∈ D�a is defined accordingly.
X ∈̇ D�a is read as (∃b � a)(X ∈̇ Db). The relativization ADa of an L2(D) formula
to Da is A for an elementary A, (∀XA(X))Da := ∀xADa((Da)x) and (∃XA(X))Da

is ∃xADa((Da)x). Relativizations to D�a are defined analogously. Observe that if
A is an L2(D) formula without free set variables, then ADa is a formula of L1(D).
Finally, AxΣ1

1-AC denotes the finite axiomatization of Σ1
1-AC given in [14], namely

the conjunction of the formulas listed below:

(i) ∀X, Y ∃Z(Z = X ⊕ Y ),

(ii) ∀e, z, Z∃Y ∀x[x ∈ Y ↔ π0
1(Z, e, x, z)],

(iii) ∀e, z, Z[∀x∃Xπ0
2(X, Z, e, x, z) → ∃Y ∀xπ0

2((Y )x, Z, e, x, z)],

where π0
k is a universal Π0

k formula of L2 of the appropriate ariety and X⊕Y denotes
the set {〈x, 0〉 : x ∈ X} ∪ {〈x, 1〉 : x ∈ Y }.
The idea is that D constitutes an α-hierarchy of models of Σ1

1-AC, i.e. for all ordinal
notations a � α, we have that Da is a model of Σ1

1-AC and that D�a ∈̇ Da. Note
however, that [∀x∃XA(X, x) → ∃Y ∀xA((Y )x, x)]Da holds only for Σ1

1 formulas of
L2, not for Σ1

1 formulas of L2(D).
In order to have partial cut elimination at hand, we formulate the M-theories in
a Tait-style calculus that extends the classical Tait-calculus (cf. [17]) by the non-
logical axioms and rules of the M-theories. We let Γ, ∆, . . . range over finite sets of
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L2(D) formulas and write Γ, A for the union of Γ and {A}. For each α < Φ0, the
theory Mα consist of the following axioms and rules:

Basic axioms. For all finite sets Γ of L2(D) formulas, all elementary formulas A
of L2(D) and all arithmetical formulas B of L2 which are axioms for the primitive
recursive functions and relations:

Γ, A,¬A and Γ, B.

Propositional and quantifier rules. These include the usual Tait-style inference rules
for the propositional connectives as well as number and set quantifiers.

D-axioms. For all finite sets Γ of L2(D) formulas:

Γ, a � α → ∃X[X = Da], Γ, a � α → (AxΣ1
1-AC)Da and Γ, a � α → D�a ∈̇ Da.

Transfinite induction. For all finite sets Γ of L2(D) formulas:

Γ, TI�(U, max{α, ω}).

Cut rules. For all finite sets Γ of L2(D) formulas and all L2(D) formulas A:

Γ, A Γ,¬A

Γ

The formulas A and ¬A are the cut formulas of this cut.

Note that the D-axioms imply that U, V ∈̇ D0. For limit ordinals λ < Φ0, the theory
Mλ� is obtained by replacing the axioms for transfinite induction by the following
restricted version:

Restricted transfinite induction. For all finite sets Γ of L2(D) formulas:

Γ, a � λ → (∀X ∈̇ Da)TI�(X, λ).

The theory (Mα +ACA)0 extends Mα by axioms for arithmetical comprehension and
(Mα + Σ1

1-DC)0 extends (Mα + ACA)0 by rules that imply all instances of dependent
choice for Σ1

1 formulas of L2:
Arithmetical comprehension. For all finite sets Γ of L2(D) formulas and all arithmetical
L2 formulas A:

Γ,∃X[∀x(x ∈ X ↔ A(x))].

Dependent choice. For all finite sets Γ of L2(D) formulas and all arithmetical L2

formulas A:
Γ,∀X∃Y A(X, Y )

Γ,∃Z[(Z)0 = W ∧ ∀xA((Z)x, (Z)x+1)
.

18



The formulas mentioned beside Γ in an axiom or the conclusion of a rule are called
main formulas. Note that due to the axiom about transfinite induction, induction
along the natural numbers for sets is available in (Mα + ACA)0 and (Mα + Σ1

1-DC)0.

To apply the machinery developed by Rüede in [15], we aim to embed our M-
theories into a semi-formal systems E0

α, that we introduce later. In a first step, we
eliminate the comprehension and dependent choice part of (Mα + Σ1

1-DC)0 and the
comprehension part of (Mα +ACA)0. For that purpose we introduce for each α < Φ0

a semi-formal system RAα, which is essentially an extension of RA∗ of Schütte [16]
by the D-axioms for Mα.
Also the system RAα is formulated in a Tait-style calculus. The language LRAα of
RAα is the language L2(D), where the set variables X, Y, Z, . . . are replaced by set
variables Xβ, Y β, Zβ, . . . for each ordinal β < α. In RAα we have set terms, which
we define inductively together with the formulas of LRAα :

(i) Each set variable Xβ is a set term.

(ii) If A(u) is a formula of LRAα , then {x : A(x)} is a set term.

(iii) [∼]D(t), [∼]U(t), [∼]V(t) and [∼]R(~t) are formulas of LRAα , where R is a prim-
itive recursive relation symbol.

(iv) If t is a number term and T a set term, then [∼](t ∈ T ) is formula of LRAα .

(v) The formulas of LRAα are closed under ∧,∨,∀x, ∃x, ∀Xβ,∃Xβ for β > 0.

The level of a set term T and the level of a formula A of LRAα is defined by

lev(T ) := max{0, β : Xβ occurs in T} and lev(A) := max{0, β : Xβ occurs in A}.

The rank rk(A) of a formula A of LRAα is inductively defined as follows: If A contains
no set terms, then rk(A) := 0. Otherwise:

(i) For each set variable Xβ, rk(t ∈ Xβ) := rk(t /∈ Xβ) := max{1, ω · β},

(ii) rk([∼](s ∈ {x : A(x)})) := rk(A(0)) + 1,

(iii) rk(A ∨B) = rk(A ∧B) := max{rk(A), rk(B)}+ 1,

(iv) rk(∀xA(x)) = rk(∃xA(x)) := rk(A(0)) + 1,

(v) rk(∀XβA(Xβ)) = rk(∃XβA(Xβ)) := max{ω · lev(∀XβA(Xβ)), rk(A(X0)) + 1}.

Notice that rk(A) = rk(¬(A)). Also, if lev(A) = γ and lev(T ) < γ, then we have
ω · γ ≤ rk(A) < ω(γ + 1) and rk(A(T )) < rk(∃XγA(Xγ)). This properties lead to
the partial cut elimination lemma 24.

19



The semi-formal system RAα is formulate in the language LRAα . The formulas of
RAα are the closed formulas of LRAα . Thereby we consider the variable x to occur
bound in the set term {x : A(x)} and the formula t ∈ {x : A(x)}. In order to state
the axioms and rules of RAα, we assign to each closed number term t of L1 its value
tN in the standard model. The true literals of L1 are the closed literals of L1 that
evaluate to true in the standard model. The axioms and rules of RAα are listed
below.

Logical axioms. For all finite sets Γ of RAα formulas, all set variables Xβ, all true
literals A of L1 and all closed number terms s, t with sN = tN:

Γ, A and Γ, t ∈ Xβ, s /∈ Xβ and Γ, t ∈ D, s /∈ D.

Set term rules. For all finite sets Γ of RAα formulas, all formulas A of RAα and all
closed number terms t:

Γ, A(t)

Γ, t ∈ {x : A(x)}
,

Γ,¬A(t)

Γ, t /∈ {x : A(x)}
.

Quantifier rules. For all finite sets Γ of RAα formulas, all formulas A of RAα, all
closed number terms t and all set terms T :

Γ, A(t)

Γ,∃xA(x)
,

Γ, A(s) for all closed number terms s

Γ,∀xA(x)
.

Γ, A(T ) and lev(T ) < β

Γ,∃XβA(Xβ)
,

Γ, A(T ) for all set terms with lev(T ) < β

Γ,∀XβA(Xβ)
.

D-axioms. For all finite sets Γ of RAα formulas and all closed number terms t � α:

Γ, (AxΣ1
1-AC)Dt and Γ, D�t ∈̇ Dt.

Rules for ∧ and ∨ and cut rules. The usual Tait-style rules for ∧ and ∨ as well as
the cut rules.

Observe that the D-axioms imply the existence of closed number terms s and t, such
that U = (D0)t and V = (D0)s. Also partial cut elimination is available:

Lemma 24 We have for all finite sets Γ of RAα formulas and all ordinals ρ > 0:

(i) RAα
β

ρ+1
Γ =⇒ RAα

ωβ

ρ
Γ,

(ii) RAα
β

1+γ+ωρ Γ =⇒ RAα
ϕρβ

1+γ
Γ.
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If a finite set Γ of L2(D) formulas is provable in (Mα + ACA)0, then standard cut
elimination techniques yield that it is already provable in (Mα+ACA)0 where the cut
rule is restricted to cut formulas A that are either elementary or [¬]A is the main
formula of an axiom for arithmetical comprehension. Such restricted derivations are
denoted by (Mα + ACA)0 ∗ Γ.

Lemma 25 Let Γ( ~X, ~x) be a finite set of elementary formulas of L2(D) such that

(Mα + ACA)0 ∗ Γ( ~X, ~x). Then there exists for all set terms ~S of level 0 an ordinal
β < ω ·max{α, ω}+ ω such that for all closed number terms ~s,

RAα
β

<ω
Γ(~S,~s).

Proof: We proof the claim by induction on the length of the proof in (Mα + ACA)0.

For a set term S of level 0, RAα
<ω·max{α,ω}+ω

<ω
TI(S, max{α, ω}), and similarly for the

other elementary main formulas of an axiom of Mα. The only case that follows not
directly from the I.H. is if the last inference was a cut with a cut formula of the form
∃X∀x[x ∈ X ↔ A(~Y , x)] for some arithmetical formula A, or t � α → ∃X[X = Da].
We just consider the first case: ∀-inversion and the I.H. yield that for arbitrary set
terms ~S of level 0 and T := {x : A(~S, x)}, there is a β < ω · max{α, ω} + ω such
that for all closed number terms ~s,

RAα
β

<ω
Γ(~S,~s),¬∀x[x ∈ T ↔ A(~S, x)].

Because of RAα
<ω

<ω
∀x[x ∈ T ↔ A(~S, x)], a cut yields the claim. 2

Now we move to the theory (Mα +Σ1
1-DC)0. Cantini has shown in [5] that there is an

asymmetric interpretation of Σ1
1-DC0 into Π1

0-CA<ωω . The same proof allows to per-
form an asymmetric interpretation of the theory (Mα+Σ1

1-DC)0 into (Mα+HierJ<ωω)0,
which extends Mα by an axiom asserting the existence of the jump-hierarchy above
any set X along an initial segment of � of ordertype less then ωω:

(HierJ<ωω) Γ,∃FHierJ(F, X, β),

for each ordinal β < ωω and finite sets Γ of L2(D) formulas, where HierJ(F, X, a)
denotes the formula

(∀b � a)[(F )b = {〈x, 〈c, e〉〉 : π0
1(((F )�b)c, X, e, x)}],

expressing that F constitutes a jump-hierarchy above X along a ∈ Field(�). For
more details on this particular definition of the jump-hierarchy, we refer to [14].

Lemma 26 (Mα +Σ1
1-DC)0 and (Mα +HierJ<ωω)0 prove the same Π1

2 formulas of L2.
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Again, if (Mα+HierJ<ωω)0 ` Γ, then there is already a derivation (Mα+HierJ<ωω)0 ∗ Γ
which only uses the cut rule for elementary formulas and main formulas of instances
of arithmetical comprehension and (HierJ<ωω). For each β, γ < ωω and each set terms
S with level lev(S) = γ, there is a set term T of level < ωω such that

RAα
<ωω

<ωω HierJ(T, S, β).

Similar as before, we obtain the following lemma.

Lemma 27 Let Γ( ~X, ~x) be a finite set of elementary formulas of L2(D) such that

Mα + (HierJ<ωω) ∗ Γ( ~X, ~x). Then there exists for all set terms ~S of level less than
ωω an ordinal n < ω such that for all closed number terms ~s

RAα
<ω·α+ωn

<ωn ` Γ(~S,~s).

Collecting the previous results and applying partial cut elimination for RAα yields
the following:

Lemma 28 Suppose that A is a sentence of L1. Then we have:

(i) (Mα + ACA)0 ` A =⇒ RAα
<ε0(α)

1
A,

(ii) (Mα + Σ1
1-DC)0 ` A =⇒ RAα

<(α�1)

1
A.

Next, we want to reduce RAα to the semi-formal system E0
α. Basically, E0

α corre-
sponds to the first order part of RAα. Due to Rüede‘s results in [15], a prove of
an L1 formula A in E0

α yields a cut-free derivation of A in E0
α, which corresponds to

a derivation of A in PA∗, a Tait-style reformulation of Peano Arithmetic PA with
ω-rule.

For the reader’s convenience, we restate Rüede’s system E0
α. The language of E0

α is
the extension of L1 by unary relation symbols D0

β and D0
<γ for each β < α and γ ≤ α.

The formulas of E0
α are the formulas of the language of E0

α that do not contain free
number variables.

The ontological axioms and rules of E0
α state that for β < α, D0

β contains only pairs,
i.e. if the closed number term t is an element of D0

β, then its value is 〈m,n〉 for some
natural numbers m, n. This expresses that m is an element of the set with code n
in D0

β. The closure axioms and rules express that for all β < α, D0
β is a model of

Σ1
1-AC and that D0

<β ∈̇ D0
β.

Logical axioms of E0
α. For all finite sets Γ of E0

α formulas, all true literals A of L1 and
all closed number terms s, t with identical values and all ordinals β < α, γ ≤ α:

Γ, A and Γ, t ∈ D0
β, s /∈ D0

β and Γ, t ∈ D0
<γ, s /∈ D0

<γ.
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Ontological axioms and rules of E0
α. For all finite sets Γ of formulas of E0

α, all β ≤ α,
γ < β, all closed number terms r, s, t such that r is not a pair, s is a pair but (s)0

is not a pair and β � (s)1, and t is a pair and γ = (t)1,

Γ, r /∈ D0
<β, Γ, s /∈ D0

<β,
Γ, (t)0 ∈ D0

γ

Γ, t ∈ D0
<β

,
Γ, (t)0 /∈ D0

γ

Γ, t /∈ D0
<β

.

D-axioms of E0
α. For all finite sets Γ of E0

α formulas, all closed number terms e, r, s, t
and all ordinals β < α:

Γ,∃k[(D0
β)k = (D0

β)t ⊕ (D0
β)s],

Γ,∃k[∀x(x ∈ (D0
β)k ↔ π0

1((D
0
β)t, D

0
<β, e, x, r)].

D-rules of E0
α. For all finite sets Γ of E0

α formulas, all closed number terms e, r, s, t
and all ordinals β < α:

Γ,∀x∃kπ0
2((D

0
β)k, (D

0
β)t, D

0
<β, e, x, r)

Γ,∃k∀xπ0
2(((D

0
β)k)x, (D0

β)t, D0
<β, e, x, r)

.

Propositional rule, rules for the first order quantifiers and cut rules. These are the rules
for RAα adapted to the language of E0

α.

For a precise definition of the rank of formulas of E0
α we refer to definition 11 and the

subsequent paragraph in [15]. We just try to capture the general idea: For example,
if β < α and A(X) is a formula of L2 with exactly the displayed set variable free, then
(∀X ∈̇ D0

β)A(X), (∃X ∈̇ D0
<β)A(X), (∀X ∈̇ D0

β)A(X) and (∃X ∈̇ D0
<β)A(X) are

formulas of the language of E0
α of rank zero. Further, formulas of the language of E0

α

of rank zero are closed under number quantification and propositional connectives.
If β + 1 = α and t is a closed term that is not a pair, then t ∈ D0

β has rank 1. Also
t ∈ D0

<α has rank 1. Moreover, the rank of an E0
α formula is always finite and the

rank of all main formulas of axioms of E0
α is zero.

Lemma 29 For all natural numbers n > 0 we have:

E0
α

β

n+1
Γ =⇒ E0

α
2β

n
Γ.

A closed L1(D) formula A is translated to an formula AD0
<α of E0

α by simply replacing
D by D0

<α in A. Now the following lemma, which corresponds to c) of theorem 20
in [15], yields an embedding of RAα into E0

α.

Lemma 30 Let α < Φ0 and Γ a finite set of closed formulas of L1(D). Then we
have:

RAα
δ

1
Γ =⇒ E0

α
<ω·δ
<ω

ΓD0
<α .
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Proof: As in [15] this follows by an induction on δ. Since in our case, the D-axioms
and D-rules of E0

α are syntactically different from the D-axioms of RAα, we have
to use that for a closed number term t � α with t = β, E0

α
<ω

0
(D0

<α)t = D0
β and

E0
α

<ω

<ω
(AxΣ1

1-AC)(D0
<α)t . 2

For Mλ�, the detour over RAλ is not necessary. We first embed Mλ� into E+
λ , the

extension of E0
λ by axioms

Γ, (∀X ∈̇ Dβ)TI�(X, λ),

for each β < λ and all finite sets Γ of L1(D) formulas.

Lemma 31 Let λ < Φ0 and Γ(~u) a finite set of formulas of L1(D). Then there
exists for each n ∈ N an n′ ∈ N, such that we have for all closed number terms ~t,

Mλ�
n

1
Γ(~u) =⇒ E+

λ

n′

1
ΓD0

<λ(~t).

Proof: By induction on the proof length one first shows that E+
λ

<ω

<ω
ΓD0

<λ(~t). Then
cut elimination in E+

λ yields the claim. 2

Theorem 26 in [15] tells us at what cost we can reduce E0
β+ω1+ρ to E0

β. Given this

result, the reduction of E+
β+ω1+ρ to E0

β does not cause additional difficulties.

Lemma 32 Assume that λ = β+ω1+ρ < Φ0, λ�0 = λ0 +ω and k is the least natural
number such that ϕ1ρ(λ0+k) > λ. Further, suppose that E+

λ

n

1
Γ for a finite set Γ

of formulas of E0
β+ω1+ρ of rank 0. Then the following holds: If each formula in Γ is

a formula of E0
β+ξ′

for some ξ′ < ξ < ω1+ρ, then

E0
β+ξ

ϕ1ρ(λ0+k+n)

1
Γ.

Proof: The lemma is proved as Theorem 26 in [15] by main induction on ρ and side
induction on n. For n = 0, observe thatγ < ξ < ω1+ρ yields

E0
β+ξ

<ϕ1ρ(λ0+k)

1
(∀X ∈̇ D0

γ)TI�(X, λ).

2

Now we conclude that the theories (Mα + ACA)0, (Mα + Σ1
1-DC)0 and Mλ� have the

desired upper bounds.

Theorem 33 (Upper Bounds) For α < Φ0 and limit ordinals λ < Φ0, we have:

|(Mα + ACA)0| ≤ σ(α), |(Mα + Σ1
1-DC)0| ≤ σ�(α+1) and |Mλ�| ≤ σ�(λ).
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Proof: Suppose that α = ω1+αn+ · · ·+ω1+α1+m, where αn ≥ · · · ≥ α1 and m < ω,
and let δ and λ such that α = λ+m and λ = δ+ω1+α1 . Further, assume that A
is a sentence of L1. If (Mα + ACA)0 ` A, then the lemmas 28, 29 and 30 yield

E0
α

<(α|0)

1
A, so that applying m-times Corollary 21 in [15] gives E0

λ
<(α|m)

1
A.

Now n-fold application of Theorem 26 in [15] confirms E0
0

<σ(α)

1
A. Similarly,

if (Mα + Σ1
1-DC)0 ` A, then E0

α
<(α�1)

1
A, thus we obtain E0

λ
<(α�m+1)

1
A and

E0
0

<σ�(α+1)

1
A. Finally, if Mλ� ` A, then E+

λ

<ω

1
A due to lemma 31, therefore

E0
δ

<ϕ1αn(λ�0)

1
A and E0

0
<σ�(λ)

1
A. Cut-elimination in PA∗ yields the claim. 2

6.2 Embedding the ID∗-theories into the M†-theories

Let M denote one of the M-theories and let ξ be the upper bound according to
theorem 33. Note that for β < ξ the ordinal ω · β is still less than ξ. By choice
of ξ, we have that TI�(V, ξ) is not provable in the theory M. Therefore, the theory
M†, the extension of M by the axiom ¬TI�(V, ξ), is consistent. Moreover, ξ is still
an upper bound of M†: Assume that M† proves TI≺(U, α) for a primitive recursive
well-ordering ≺. Thus M ` TI�(V, ξ) ∨ TI≺(U, α). The proof of Theorem 33 yields
that

PA∗ <ξ

0
¬Prog�(V), ξ ∈ V, TI≺(U, α).

With lemma 4 in Jäger and Probst [10] we conclude that also PA∗ <ξ

0
TI≺(U, α).

Hence, by Schütte’s boundedness theorem (cf. [16] or [12] ) we obtain α < ξ. Then
we embed the ID∗-theory with lower bound ξ into M†, which yields ξ ≤ |ID∗| ≤
|M| ≤ ξ.

To embed the ID∗-theories into the M†-theories, we show that these theories prove
the existence of α-hierarchies of models of Σ1

1-DC. Thereby, we make use of so-called
pseudo-hierarchy arguments. For second order arithmetic, this method is described
in Simpson [18] in extenso and a typical application is given in Avigad [2]. In
subsystems of second order arithmetic comprising (ACA), the existence of a pseudo-
hierarchy follows from the fact that being a well-ordering is not expressible by a Σ1

1

formula of L2. However, this method does not provide uniform pseudo-hierarchies.
We apply a more general method to obtain pseudo-hierarchies: Due to the axiom
¬TI�(V, |M|) of the theory M†

α one can prove that {a ∈ Field(�) : ∀ZTI�(Z, a)} is
not a set. The existence of [uniform] pseudo-hierarchies is then derived from this
observation. Using this method, the application of pseudo-hierarchy arguments is no
longer limited to second order analysis and can be applied in the context of explicit
mathematics and admissible set theory as well; cf. [13, 14]. In the sequel, Wo�(a)
is to abbreviate ∀ZTI�(Z, a) and HierJ(U, V, u) is the formula defined above lemma
26.
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Lemma 34 The following is provable in (Mα + ACA)†0:

(i) {a : Wo�(a)} is not a set.

(ii) If b � α, then {a : WoDb
� (a)} /̇∈ Db.

(iii) If b+1�α and X ∈̇ Db, then {a : Wo
Db+1
� (a)} ( {a : (∃F ∈̇ Db)HierJ(F, X, a)}.

Proof: Suppose for a moment that S := {a : Wo�(a)} is a set. Then the set
S0 := {a : (∀b ∈ S)(ϕ0ab ∈ S)} is easily shown to be progressive w.r.t. �, which in
turn yields the progressivity of the set S1 := {a : (∀b ∈ S)(ϕ1ab ∈ S)}: If a = 0,
this is due to the progressivity of S0, otherwise assume that (∀a′ � a)(a′ ∈ S1) and
show that Prog�({b ∈ S : ϕ1ab ∈ S}), which yields a ∈ S1. Hence a, b ∈ S implies
ϕ1ab ∈ S. In particular, α ∈ S yields σ(α) ∈ S. A contradiction!
If we relativize the above argument to Db, we obtain that σ(α) ∈ {a : WoDb

� (a)}.
Since V ∈̇ Db, this contradicts ¬TI�(V, σ(α)). Thus (ii) holds.

Because Db is a model of Σ1
1-AC, Wo

Db+1
� (a) implies the existence of an F ∈̇ Db such

that HierJ(F, X, a). Because {a : Wo
Db+1
� (a)} is not a set in Db+1, the inclusion is

proper. 2

Lemma 35 The following is provable in (Mα+1+ACA)†0: For each set X ∈̇ Dα there
exists a model M of Σ1

1-DC with X ∈̇ M .

Proof: Fix X ∈̇ Dα. Since Dα is a model of Σ1
1-AC, one easily proves that

∀a[Wo�(a) → (∃F ∈̇ Dα)HierJ(F, X, a) ∧WoDα
� (a)].

Because {a : Wo�(a)} is not a set, there exists a b ∈ Field(�) and an F ∈̇ Dα such
that

¬Wo�(b) ∧ HierJ(F, X, b) ∧WoDα
� (b),

Thus, there exists a non-empty, upward closed K ⊆ Field(�) without a �-least
element and with b ∈ K. Surely, Wo�(a) implies (∀x ∈ K)(a � x), subsequently
abbreviated by a � K. Next we consider the sets

M := MF
�K := {〈x, 〈c, e〉〉 : c � K ∧ 〈x, 〈c, e〉〉 ∈ (F )c+1},

MF
�d := {〈x, 〈c, e〉〉 : c � d ∧ 〈x, 〈c, e〉〉 ∈ (F )c+1}, for each d ∈ Field(�),

and prove that M is a model of Σ1
1-DC. We just show that M satisfies (Σ1

1-DC), that
M is a model of ACA follows from standard results concerning the jump-hierarchy.
So, let A(U, V ) be an arithmetical formula of L2 and assume that

(1) (∀X ∈̇ M)(∃Y ∈̇ M)A(X, Y ).
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If X ∈̇ M , then there exists an index a such that X = (M)a. The definition of M
implies that a is of the form 〈c, e〉, where e is a natural number and c an element of
the field of �. Now, we set

I := {〈c, e〉 : e ∈ N ∧ c ∈ Field(�)},

and order I by <I, letting 〈c, e〉 <I 〈d, e′〉 if c � d, or c = d and e <N e′. Note,
that 〈c, e〉 ∈ I and ¬(c � K) implies (M)〈c,e〉 = ∅. Therefore, (1) becomes equivalent
to the formula (∀y ∈ I)(∃z ∈ I)A((M)y, (M)z). Moreover, for each y ∈ I, the set
{z ∈ I : A((M)y, (M)z)} has a <I-least element. To see this, observe that

S1 := {z ∈ I : A((M)y, (M)z)} ⊆ {z ∈ I : A((MF
�b)y, (M

F
�b)z)} =: S2.

Since S2 ∈̇ Dα and WoDα
� (b), it has a �-least element. This is also the minimum of

the set S1, because z ∈ S1, y ∈ S2 and y <I z yields already y ∈ S1. Therefore,
we conclude that (∀y ∈ I)(∃!z ∈ I)A′(M, y, z), where A′ is an arithmetical formula
of L2 expressing that z is the least index w.r.t. our index ordering <I, such that
A((M)y, (M)z) holds.
Next, we fix an index w ∈ I with (w)0 � K and show that there exists a choice
sequence Z ∈̇ M , such that (Z)0 = (M)w and ∀nA((Z)n, (Z)n+1). First, we look
for initial segments of such a choice sequence. In the present setting, this is a finite
sequence s, (respectively a natural number of the form 〈x1, . . . , xn〉) of indices such
that

ChSeqA′(M, s, w, n) := lh(s) = n+1 ∧ (s)0 = w ∧ (∀m < n)A′(M, (s)m, (s)m+1).

Assumption (1) allows us to prove by set induction that ∀n∃!sChSeqA′(M, s, w, n).
Further, c � K implies (M)〈c,e〉 = (MF

�a)〈c,e〉 for each a ∈ K, thus the set

{a � b : ∀n∃sChSeqA′(M
F
�a, s, w, n)}

is not empty. Moreover, it is in Dα, so it has a least element a0. Since a0 � K,

Z := {〈x, n〉 : ∃s[ChSeqA′(M
F
�a0

, s, w, n) ∧ x ∈ (MF
�a0

)(s)n ]}

is a set in M and serves as a witness for our sought for choice sequence. 2

The model constructed in the previous proof is not uniform in the sense that we
only know about the existence of a set K without a �-least element, but cannot
explicitly define it. However, if X ∈̇ Db and b+1 � α, then we can construct in
(Mα + ACA)†0 a uniform model M of Σ1

1-DC above X. More precisely: If X ∈̇ Db,
the we call the set

MΣ1
1-DC(X, b) := {x : Wo

Db+1
� (c) ∧ (∃F ∈̇ Db)[HierJ(F, X, c+1) ∧ x ∈ MF

�c]},

the uniform model of Σ1
1-DC above X ∈̇ Db. MF

�c is as defined in the above proof.

Because Wo
Db+1
� (c) and X ∈̇ Db imply that there is exactly one F ∈̇ Db satisfying

HierJ(F, X, c+1), the set MΣ1
1-DC(X, b) is clearly unique.
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Lemma 36 The following is provable in (Mα + ACA)†0: If b+1 � α and X ∈̇ Db,
then MΣ1

1-DC(X, b) is a model of Σ1
1-DC with X ∈̇ MΣ1

1-DC(X, b). If b+2 � α then
MΣ1

1-DC(X, b) ∈̇ Db+2.

Proof: Assume that X ∈̇ Db. Using (iii) of lemma 34, we can find an F ∈̇ Db and a

notation d ∈ Field(�) such that ¬Wo
Db+1
� (d) and HierJ(F, X, d). Further,

K := {a ∈ Field(�) : ¬Wo
Db+1
� (a)},

is a non-empty subset of Field(�) without a �-least element that contains d. Now
MΣ1

1-DC(X, b) becomes the set MF
�K according to the definition in the previous proof,

and we may continue as there. 2

Next we want to speak about [uniform] a-hierarchies of models of Σ1
1-DC. For this

purpose, we set:

Hier!Σ1
1-DC(F, a) :⇔ (∀b � a)[(F )b = MΣ1

1-DC((F )�b, 2b)],

HierΣ1
1-DC(F, a) :⇔ (∀b � a)[(F )�b ∈̇ (F )b ∧ (AxΣ1

1-DC)(F )b ].

Such hierarchies indeed exist and have the intended properties:

Lemma 37 The following is provable in (Mλ�)†: If a � λ < Φ0, then

(i) (∃F ∈̇ D2a)Hier!Σ1
1-DC(F, a),

(ii) ∀F, G[Hier!Σ1
1-DC(F, a) ∧ Hier!Σ1

1-DC(G, a) → (∀b � a)(F )b = (G)b].

Proof: For this proof, we denote claim (i) by C1(a) and claim (ii) by C2(a).
Assume that a � λ. Since {b � a+1 : (∃G ∈̇ D2b)Hier!Σ1

1-DC(G, b)} is a set in D2(a+1),
(i) and (ii) can be shown simultaneously by restricted transfinite induction.
So suppose c � b � a+1 and that C1(c) and C2(c) hold. If b is a successor, then the
induction step follows easily form the previous lemma. If b is a limit, then 2b = b
and the I.H. yields that

F := {〈x, d〉 : d � b ∧ (∃G ∈̇ (D�b)2(d+1))(Hier!Σ1
1-DC(G, d+1) ∧ x ∈ (G)d)}

is an element of Db satisfying Hier!Σ1
1-DC(F, b), thus C1(b). C2(b) follows from C1(b)

and the I.H. 2

Corollary 38 For α < Φ0, the following is provable in (Mα + ACA)†0:

∃FHierΣ1
1-DC(F, α).

28



Proof: α can be written in the form ω·β+n for some n < ω. The claim follows
now by (meta-) induction on n: If n = 0, the previous lemma and arithmetical
comprehension yield that

F := {〈x, a〉 : a � ω·β ∧ (∃G ∈̇ D2(a+1))(Hier!Σ1
1-DC(G, a+1) ∧ x ∈ (G)a)}

constitutes the sought for hierarchy. If (Mω·β+n + ACA)†0 proves the existence of

an hierarchy F such that HierΣ1
1-DC(F, ω·β+n), then (Mω·β+n+1 + ACA)†0 proves that

such a F exists already in Dω·β+n. Then also (F )�b ∈̇ Dω·β+n, and lemma 35 tells us
that there exists a model of Σ1

1-DC above (F )�b in ∈̇ Dω·β+n+1. The existence of a
hierarchy G satisfying HierΣ1

1-DC(G, ω·β+n+1) follows. 2

Next we introduce fixed point hierarchies. For each operator form A(P, Q, p, u) of
L1(P, Q) we say that H constitutes a fixed point hierarchy for A along a w.r.t. G, if

HierAFix(G, H, a) := HierΣ1
1-DC(G, a) ∧ (∀b � a)[(H)b = (FixA(H)�b,b

)(G)b ],

holds.

Lemma 39 For α < Φ0, (Mα + ACA)†0 proves:

(i) a � α ∧ HierΣ1
1-DC(G, α) → ∃!HHierAFix(G, H, a),

(ii) HierAFix(G, H, α) ∧ HierAFix(G, H ′, α) → (∀a � α)[(H)a = (H ′)a],

(iii) HierAFix(G, H, α) → (∀a � α)[(H)�a ∈̇ (G)a].

Proof: Transfinite induction and the definition of the fixed point hierarchy yields
immediately the uniqueness assertion (ii). For (i), we assume that G satisfies
HierAFix(G, α), and show by induction that for each a � α,

(∃!H ∈̇ (G)a)HierAFix((G)�a, H, a).

We just consider the successor case, the limit case is similar. So assume that there
exists a unique H ∈̇ (G)b such that HierAFix((G)�b, H, b). With H ∈̇ (G)b we have
also (H)�b ∈̇ (G)b, which implies that H ′ := (FixA(H)�b,b

)(G)b is an element of (G)b+1.
Now we obtain a fixed point hierarchy for A along b+1. Claim (iii) follows from (i)
and the definition of HierAFix(G, H, a). 2

Lemma 37 gives way to the following corollary.

Corollary 40 For a limit ordinal λ < Φ0, (Mλ�)† proves:

(∀a � λ)∃!G∃!H[Hier!Σ1
1-DC(G, a) ∧ HierAFix(G, H, a)].
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Finally, we see that a fixed point hierarchy H w.r.t. G is indeed suitable for an
interpretation of the relation symbols PA of ID∗

α and ID∗
α�:

Lemma 41 Given α < Φ0, then for each operator form A and each Π1
1 formula

D(U, u) of L2, the following is provable in (Mα + ACA)†0: If HierAFix(G, H, α) holds,
then also

(i) (∀a � α)∀x[x ∈ (H)a ↔ A((H)a, (H)�a, x, a)],

(ii) (∀a � α)[ClA({x : D((G)�a, x)}, a) → (H)a ⊆ {x : D((G)�a, x)}].
Proof: By lemma 4 we know that ACA proves

∀x[x ∈ FixAY,y ↔ A(FixAY,y, Y, x, y)].

For each a � α we have that (H)�a ∈̇ (G)a and (G)a is a model of Σ1
1-AC. Thus we

can relativize lemma 4 to (G)a and obtain

∀x[x ∈ (FixA(H)�a,a)
(G)a ↔ A((FixA(H)�a,a)

(G)a , (H)�a, x, a)].

By the definition of (H)a this is equivalent to (i). Claim (ii) is shown analogously
by relativizing theorem 6 to (G)a. 2

Now we are ready to present an embedding of the ID∗-theories into the M†-theories:

If we have a list A1, . . . ,An of operator forms, then we write Hier
~A
Fix( ~H,G, a) for

HierA1
Fix(H1, G, a) ∧ . . . ∧ HierAn

Fix (Hn, G, a).

An LFix formula A is translated to an L2(D) formula A∗, A? or A◦ by replacing
each subformula of the form t ∈ PA, by either the formula (t ∈ PA)∗, (t ∈ PA)?

or (t ∈ PA)◦, depending on whether we embed ID∗
α into (Mα + ACA)†0, ID∗

α+1� into

(Mα + Σ1
1-DC)†0 or ID∗

λ� into (Mλ�)†:

Theorem 42 Let A be an LFix formula that contains exactly the set constants P
~A.

Then the following holds for each α < Φ0 and each limit λ < Φ0:

ID∗
α ` A ⇒ (Mα + ACA)†0 ` Hier

~A
Fix(G, ~H, α) → A∗,

ID∗
α+1� ` A ⇒ (Mα + Σ1

1-DC)†0 ` Hier
~A
Fix(G, ~H, α) → A?,

ID∗
λ� ` A ⇒ (Mλ�)† ` A◦,

where for 1 ≤ i ≤ n,

(t ∈ PAi)∗ := t = 〈s, a〉 ∧ a � α ∧ t ∈ Hi,

(t ∈ PAi)? := [t = 〈s, a〉 ∧ a � α ∧ s ∈ (Hi)a] ∨ [t = 〈s, α〉 ∧ s ∈ FixAi((Hi)�α, α)],

(t ∈ PAi)◦ := t = 〈s, a〉 ∧ a � λ ∧ (∃G, H ∈̇ D2(a+2))

[Hier!Σ1
1-DC(G, a+1) ∧ (HierAi

Fix(G, H, a+1) ∧ s ∈ (Hi)a)].
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Since the existence of the fixed point hierarchies follows form corollary 38 lemma
39 and corollary 40, we also obtain that corresponding theories prove the same L1

formulas.

Corollary 43 For each α < Φ0, each limit λ < Φ0 and each L1 formula A, the
following holds:

ID∗
α ` A ⇒ (Mα + ACA)†0 ` A,

ID∗
α+1� ` A ⇒ (Mα + Σ1

1-DC)†0 ` A
ID∗

λ� ` A ⇒ (Mλ�)† ` A.

The circle closes: In section 5 we computed lower bounds for the ID∗-theories. In
section 6.1 we proved that these lower bounds are upper bounds for the M-theories
and thus also for the M†-theories. Eventually, we managed to embed the ID∗-theories
into the M†-theories. Summing up, we can state the following theorem:

Theorem 44 For each α < Φ0 we have:

|ID∗
α| = |ÎDα| = σ(α) and |ID∗

α�| = σ�(α).
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[10] Gerhard Jäger and Dieter Probst, Variation on a theme of Schütte, Mathemat-
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