
On the proof theory of type two functionals
based on primitive recursive operations

David Steiner∗† Thomas Strahm†

Version of October 2005

Abstract

This paper is a companion to work of Feferman, Jäger, Glaß, and
Strahm on the proof theory of the type two functionals µ and E1

in the context of Feferman-style applicative theories. In contrast to
the previous work, we analyze these two functionals in the context
of Schlüter’s weakened applicative basis PRON which allows for an
interpretation in the primitive recursive indices. The proof-theoretic
strength of PRON augmented by µ and E1 is measured in terms of
the two subsystems of second order arithmetic, Π1

0-CA and Π1
1-CA,

respectively.

1 Introduction

This paper is a contribution to the proof theory of type two functionals in the
framework of Feferman-style applicative theories; the latter form the oper-
ational core of Feferman’s explicit mathematics, which has been introduced
in [4, 6, 7]. Apart from providing a basis for constructivism, the explicit
framework has gained considerable importance in proof theory in connection
with the proof-theoretic analysis of subsystems of second order arithmetic
and set theory.

It has turned out that untyped first-order applicative theories provide a nat-
ural framework for a proof-theoretic approach to abstract computability.
The systems considered so far range in strength from rather strong sub-
systems of analysis (cf. the references below) to theories of feasible strength

∗Research partly supported by the Swiss National Science Foundation
†Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-

strasse 10, CH-3012 Bern, Switzerland. Email: {steiner,strahm}@iam.unibe.ch.
Homepage: www.iam.unibe.ch/til/staff

1

(cf. [3, 2, 17, 18]). An interesting focus in previous work has been on the study
of the proof theory of non-constructive type two functionals from generalized
recursion theory.

In this connection, the work of Feferman, Jäger, Glaß, and Strahm on the
proof-theoretic analysis of the non-constructive µ-operator ([9, 11, 12, 10]),
and Jäger and Strahm on the proof theory of the Suslin operator ([13]) is of
relevance. The upshot is that systems based on the µ-operator and Suslin
operator can be measured in proof-theoretic terms by subsystems of second
order arithmetic based on ∆1

1 and ∆1
2 comprehension, respectively. The stan-

dard applicative basis underlying these frameworks is the theory BON (cf. [9])
whose crucial axioms are those of an untyped partial combinatory algebra.

The aim of this article is to study the proof theory of the above-mentioned
type two functionals in the context of a weakened applicative basis, called
PRON, which allows for an interpretation in the primitive recursive functions.
The system PRON goes back to Schlüter [14], who - answering a question
by Feferman - introduced it as an alternative applicative core for explicit
mathematics. In PRON, the axioms of a partial combinatory algebra of BON
are replaced by those of a so-called partial enumerative algebra. The latter
untyped algebras allow for interpretations in classes (of indices) of functions,
whose enumerating function does not necessarily belong to the class itself. A
crucial restriction in PRON is that the s combinator is replaced by specific
weaker combinators i, a and b.

The weakening from BON to PRON results in a drastic decrease in proof-
theoretic strength of the non-constructive µ-operator and the Suslin operator
E1, respectively. More precisely, we will show in this paper that the two
considered functionals have the respective strength of arithmetical and Π1

1

comprehension. If (L-IN) denotes the schema of complete induction on the
natural numbers for all formulas in the underlying applicative language, we
have the following landscape of proof-theoretic equivalences:

BON(µ) + (L-IN) ≡ ∆1
1-CA BON(µ, E1) + (L-IN) ≡ ∆1

2-CA

PRON(µ) + (L-IN) ≡ Π1
0-CA PRON(µ, E1) + (L-IN) ≡ Π1

1-CA

The results on the first line in this table are from [9, 13] and the equivalences
on the second line will be established in this article.

The plan of this paper is as follows. In the next section we introduce the
applicative framework, namely Schlüter’s theory PRON and the two type two
functionals µ and E1, giving rise to two applicative systems KLEpr and SUSpr ,
which both contain the full schema of induction on the natural numbers.
Section 3 is devoted to lower proof-theoretic bounds, i.e., we show that Π1

0-CA

2

and Π1
1-CA are contained in KLEpr and SUSpr , respectively. In Section 4 we

provide recursion-theoretic models of KLEpr and SUSpr . These models will
be formalized in Π1

0-CA and Π1
1-CA in Section 5. In the case of SUSpr we will

need the so-called inside-outside property to show that our model satisfies the
axioms of E1. We conclude our paper with some scattered remarks on systems
with restricted forms of complete induction and additional combinators.

The results of this paper are based on Steiner’s Master’s thesis [16].

2 The applicative framework

It is the aim of this section to introduce Schlüter’s basic applicative theory
PRON of primitive recursive operations and numbers, cf. [14]. Moreover, we
will provide suitable axiomatizations of the non-constructive µ operator and
the Suslin operator E1.

The language of our applicative theories is a first order language L of partial
terms with individual variables a, b, c, f, g, h, u, v, w, x, y, z . . . (possibly with
subscripts). L includes individual constants i, k, a, b (combinators), p0, p1 (un-
pairing), 0 (zero), sN (numerical successor), pN (numerical predecessor), dN

(definition by numerical cases), r (primitive recursion), µ (non-constructive
µ operator), and E1 (Suslin operator). Further, L has two binary function
symbols · (partial term application) and <> (pairing), two unary relation
symbols ↓ (defined) and N (natural numbers), as well as a binary relation
symbol = (equality).

The individual terms (r, s, t, r1, s1, t1, . . .) of L are inductively generated as
follows:

1. The individual variables and individual constants are individual terms.

2. If s and t are individual terms, then so also are (s · t) and <s, t>.

In the following we often abbreviate (s·t) simply as (st) or st; the context will
always ensure that no confusion arises. We further adopt the convention of
association to the left so that s1s2 . . . sn stands for (. . . (s1s2) . . . sn). Further,
we put t′ := sNt and 1 := 0′. We define general tupling in the expected
manner:

<s> := s,

<s1, . . . , sn+1> := <<s1, . . . , sn>, sn+1>.

Finally, we also use quite frequently the vector notation ~Z for a finite string
of objects Z1, . . . ,Zn of the same sort. Whenever we write ~Z the length of
this string is either irrelevant or given by the context.

3

The formulas (A, B, C,A1, B1, C1, . . .) of L are inductively generated as fol-
lows:

1. Each atomic formula N(t), t↓, and (s = t) is a formula.

2. If A and B are formulas, then so also are ¬A, (A ∨ B), (A ∧ B), and
(A → B).

3. If A is a formula, then so also are (∃x)A and (∀x)A.

Our applicative theories are based on partial term application. Hence, it is
not guaranteed that terms have a value, and t↓ is read as “t is defined” or “t
has a value”. Accordingly, the partial equality relation ' is introduced by

s ' t := (s↓ ∨ t↓) → (s = t).

In addition, we write (s 6= t) for (s↓ ∧ t↓ ∧ ¬(s = t)).

Finally, we use the following abbreviations concerning the predicate N (~t =
t1, . . . , tm, ~x = x1, . . . , xn):

~t ∈ N := N(t1) ∧ . . . ∧ N(tm),

(∃~x ∈ N)A := (∃~x)(~x ∈ N ∧ A),

(∀~x ∈ N)A := (∀~x)(~x ∈ N → A),

~t ∈ (Nn → N) := (∀~x ∈ N)(t1<~x> ∈ N ∧ . . . ∧ tm<~x> ∈ N).

Of course we will write ~t ∈ (N → N) instead of ~t ∈ (N1 → N). Let us also
recall the notion of a subset of N from [5, 9]. Sets of natural numbers are rep-
resented via their characteristic functions which are total on N. Accordingly,
we define

f ∈ P(N) := (∀x ∈ N)(fx = 0 ∨ fx = 1)

with the intention that a natural number x belongs to the set f ∈ P(N) if
and only if (fx = 0).

Now we are going to recall Schlüter’s basic applicative theory PEA+ + (r)
of [14]. Following Steiner [16], in this paper we will call this theory PRON.
It can be seen as the primitive recursive analogue of the theory BON in
Feferman and Jäger [9]. Its underlying logic is the classical logic of partial
terms due to Beeson [1]; it is also described in Feferman [8] and corresponds
to E+ logic with strictness and equality of Troelstra and Van Dalen [19]. The
non-logical axioms of PRON are divided into the following five groups.

4

I. Partial enumerative algebra.

(1) ix = x,

(2) kxy = x,

(3) a<x, y>↓ ∧ a<x, y>z ' <xz, yz>,

(4) b<x, y>↓ ∧ b<x, y>z ' x(yz).

II. Pairing and projection.

(5) p0<x, y> = x ∧ p1<x, y> = y.

III. Natural numbers.

(6) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(7) (∀x ∈ N)(x′ 6= 0 ∧ pNx′ = x),

(8) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x).

IV. Definition by numerical cases.

(9) u ∈ N ∧ v ∈ N ∧ u = v → dN<x, y, u, v> = x,

(10) u ∈ N ∧ v ∈ N ∧ u 6= v → dN<x, y, u, v> = y.

V. Primitive recursion.

(11) r<f, g>↓ ∧ r<f, g><x, 0> ' fx,

(12) r<f, g><x, y′> ' g<x, y, r<f, g><x, y>>.

Since PRON is formulated in the restricted partial enumerative algebra set-
ting, it is no longer possible to define abstraction terms (λx.t) for arbitrary
terms t. As is observed in Schlüter [14], in the presence of PRON we can
form (λx.t) only for those terms t where the variable x occurs in argument
position. The crucial requirement for a variable x to occur in argument posi-
tion in t is that x does not occur in r for arbitrary subterms (rs) of t. For a
precise definition of this notion and a proof of the following lemma, see [14].

Lemma 1 (Abstraction) For each L term t and all variables x so that
x appears in argument position in t there exists an L term (λx.t) whose
variables are those of t, excluding x, so that PRON proves

(λx.t)↓ ∧ (λx.t)x ' t.

5

For example, we cannot form the terms (λx.xx) or (λz.xz(yz)) with their
usual properties. On the other hand, the abstraction (λz.<xz, yz>) is legit-
imate.

Moreover, we have the following restricted form of the recursion or fixed
point theorem. Interpreted in the indices for primitive recursive functions,
it corresponds to the well-known primitive recursion theorem. Observe that
the fixed point may only occur in argument position.

Lemma 2 (Recursion) There exists an L term rec so that PRON proves

recf↓ ∧ recfx ' f<recf, x>.

We now turn to the type two functionals which are of interest in the sequel.
These are the non-constructive µ operator, which acts as a quantification
operator on the natural numbers (Kleene’s E0), and the Suslin operator E1

testing for the wellfoundedness of a given binary relation. Due to our re-
stricted applicative setting we axiomatize µ and E1 in a slightly different
manner than in [13].

The non-constructive µ operator

(µ.1) (∀x ∈ N)(f<u, x> ∈ N) ↔ µfu ∈ N,

(µ.2) (∀x ∈ N)(f<u, x> ∈ N) →
[(∃x ∈ N)(f<u, x> = 0) → f<u, µfu> = 0].

The Suslin operator E1

(E1.1) (∀x, y ∈ N)(f<u, x, y> ∈ N) ↔ E1fu ∈ N,

(E1.2) (∀x, y ∈ N)(f<u, x, y> ∈ N) →
[(∃g ∈ N → N)(∀x ∈ N)(f<u, gx′, gx> = 0) ↔ E1fu = 0].

In the following we write PRON(µ) for PRON augmented by the axioms
(µ.1), (µ.2) and PRON(µ, E1) for PRON(µ) with (E1.1), (E1.2).

With respect to induction on the natural numbers, in the sequel we are mainly
concerned with the full induction scheme given as usual; for restricted forms
of induction, see the conclusion of this paper.

Formula induction on N (L-IN). For all formulas A(x) of L:

A(0) ∧ (∀x ∈ N)(A(x) → A(x′)) → (∀x ∈ N)A(x).

6

In the rest of this paper we will be chiefly dealing with the two systems KLEpr

and SUSpr which are defined as follows.

KLEpr := PRON(µ) + (L-IN) SUSpr := PRON(µ, E1) + (L-IN).

In the next section we will establish lower proof-theoretic bounds by embed-
ding suitable subsystems of analysis into these applicative systems.

3 Lower bounds

In the following we establish proof-theoretic lower bounds for KLEpr and
SUSpr by embedding suitable subsystems of second order arithmetic. In the
first paragraph we introduce the language and axioms of second order arith-
metic and recapitulate the Π1

1 normal form theorem. The second paragraph
is devoted to the embeddings of Π1

0-CA and Π1
1-CA into KLEpr and SUSpr ,

respectively.

3.1 Subsystems of analysis

In the following we introduce the two subsystems of second order arithmetic
Π1

0-CA and Π1
1-CA. Later we will show that these systems are naturally

contained in KLEpr and SUSpr , respectively. It will be convenient in the
sequel to work with a form of second order arithmetic with set and function
variables.

Let L2 denote a language of second order arithmetic with number variables
a, b, c, f, g, h, u, v, w, x, y, z, . . ., set variables U, V,W, X, Y, Z, . . ., and func-
tion variables F, G, H, . . . (all possibly with subscripts). In addition, L2 in-
cludes a constant 0 as well as function and relation symbols for all primitive
recursive functions and relations. The number terms (r, s, t, r1, s1, t1, . . .) of
L2 and the formulas (A, B, C,A1, B1, C1, . . .) of L2 are defined as usual.

An L2 formula is called arithmetic, if it does not contain bound set or function
variables; let Π1

0 denote the class of arithmetic L2 formulas. The Π1
1 [Σ1

1]
formulas of L2 are obtained from the arithmetic formulas by closing under
universal [existential] set and function quantification.

In the following we make use of the usual primitive recursive coding machin-
ery in L2: 〈. . .〉 is a standard primitive recursive function for forming n-tuples
〈t1, . . . , tn〉; Seq is the primitive recursive set of sequence numbers; lh(t) de-
notes the length of (the sequence number coded by) t; (t)i is the ith compo-
nent of (the sequence coded by) t if i < lh(t), i.e. t = 〈(t)0, . . . , (t)lh(t)

.−1〉 if t
is a sequence number; we will write, e.g., (s)i,j instead of ((s)i)j. Moreover, ∗

7

denotes the binary primitive recursive operation of sequence concatenation.
Finally, we write s ∈ (U)t for 〈s, t〉 ∈ U .

If F is a collection of L2 formulas, then F comprehension (F -CA) is the
schema

(∃X)(∀x)(x ∈ X ↔ A(x))

for all formulas A(u) in the collection F . The relationship between sets and
functions is given by the so-called graph principle (GP),

(∀X)[(∀x)(∃!y)〈x, y〉 ∈ X → (∃F)(∀x)〈x, F (x)〉 ∈ X].

Moreover, L2 induction on the natural numbers (L2-IN) comprises

A(0) ∧ (∀x)(A(x) → A(x′)) → (∀x)A(x)

for all formulas A(u) of L2.

Π1
0-CA is the L2 theory which contains the usual axioms of Peano arithmetic

PA, all instances of Π1
0 comprehension, the graph principle (GP) as well as

formula induction (L2-IN). Π1
1-CA is defined accordingly.

We conclude this subsection by stating a version of the normal form theorem
for Π1

1 formulas tailored for our later purposes. Its proof is more or less
folklore and can be found at many places (for example in Simpson [15]).

Theorem 3 (Π1
1 normal forms) For every Π1

1 formula A there exists an
arithmetic formula BA(u, v) which contains the free variables of A plus two
fresh variables u and v so that Π1

0-CA proves

A ↔ ¬(∃F)(∀x)BA(F (x′), F (x)).

Let us mention that in fact restricted induction is enough to establish the
normal form theorem in Π1

0-CA.

3.2 Embeddings

We work with the natural embedding of L2 into L so that (i) the number
variables of L2 are interpreted as ranging over N, (ii) the set variables of L2 as
ranging over P(N), and (iii) the function variables as ranging over (N → N).

In the following we assume that we have a translation of the number, set and
function variables of L2 into the variables of L so that no conflicts arise. For
convenience we often simply write, for example, a, x, f for the translations
of the number, set and function variable a, X, F , respectively. Furthermore,
we can use the recursion operator r to associate a suitable L term to each

8

symbol for a primitive recursive function on the natural numbers and prove
the corresponding recursion equations and totality properties in KLEpr . Thus,
every L2 term t has a canonical translation tN in L. Similarly, each symbol
for a primitive recursive relation on N can be represented by an L term which
represents its characteristic function in the sense above.

Now let R be a symbol for an n-ary primitive recursive relation and tR
the corresponding L term. If s, t1, . . . , tn are terms of L2, then the atomic
formulas of L2 are translated into L formulas as follows:

(s ∈ U)N := ((usN) = 0); (t1 = t2)
N := (tN1 = tN2);

R(t1, . . . , tn)N := (tR<tN1 , . . . , tNn> = 0).

We extend this translation in the usual way and associate to each L2 formula
A(~U, ~F ,~v) an L formula AN(~u, ~f,~v) such that

((∃X)A(X))N = (∃x ∈ P(N))AN(x),

((∃F)A(F))N = (∃f ∈ N → N)AN(f),

((∃y)A(y))N = (∃y ∈ N)AN(y),

and similarly for universal quantifiers. A further convention is that we often
identify L2 terms and arithmetic L2 formulas with their translation in L as
long as no conflict arises.

It is not surprising that the unbounded µ operator can be used in order to
eliminate arithmetical quantifiers and, hence, to represent each arithmetic
formula of L2 by means of a term in the applicative language L, cf. Feferman
and Jäger [9]. Moreover, the additional presence of the Suslin operator E1

enables us to find characteristic terms even for Π1
1 formulas, as is easily seen

by making use of the above-mentioned Π1
1 normal form theorem, cf. Jäger and

Strahm [13]. However, in the context of our restricted applicative framework,
some additional technicalities arise, for instance, the characteristic terms are
in general not closed and applied only to the number parameters of a given
formula. The details are not difficult and worked out at full length in Steiner
[16].

Lemma 4 For every arithmetic formula A(~U, ~F ,~v) of L2 with all its free

variables in ~U, ~F ,~v there exists an individual term tA of L with all its free
variables in ~u, ~f so that KLEpr proves

1. (∀~u ∈ P(N))(∀~f ∈ N → N)(∀~v ∈ N)(tA<~v> = 0 ∨ tA<~v> = 1),

2. (∀~u ∈ P(N))(∀~f ∈ N → N)(∀~v ∈ N)(AN(~u, ~f,~v) ↔ tA<~v> = 0).

9

Lemma 5 For every Π1
1 formula A(~U, ~F ,~v) of L2 with all its free variables

in ~U, ~F ,~v there exists an individual term tA of L with all its free variables in
~u, ~f so that SUSpr proves

1. (∀~u ∈ P(N))(∀~f ∈ N → N)(∀~v ∈ N)(tA<~v> = 0 ∨ tA<~v> = 1),

2. (∀~u ∈ P(N))(∀~f ∈ N → N)(∀~v ∈ N)(AN(~u, ~f,~v) ↔ tA<~v> = 0).

From these two lemmata it is immediate how to deal with (Π1
0-CA) in KLEpr

and with (Π1
1-CA) in SUSpr . In a nutshell, µ is employed to deal with arith-

metic comprehension and E1 is used to translate each instance of Π1
1 compre-

hension. Moreover, the translation of the graph principle can be seen to be
valid by means of µ. For details see Steiner [16] and Jäger and Strahm [13].

Theorem 6 Let A(~U, ~F ,~v) be an L2 formula with all its free variables in
~U, ~F ,~v and assume that Π1

0-CA proves A(~U, ~F ,~v). Then we have

KLEpr ~u ∈ P(N) ∧ ~f ∈ (N → N) ∧ ~v ∈ N → AN(~u, ~f,~v).

Theorem 7 Let A(~U, ~F ,~v) be an L2 formula with all its free variables in
~U, ~F ,~v and assume that Π1

1-CA proves A(~U, ~F ,~v). Then we have

SUSpr ~u ∈ P(N) ∧ ~f ∈ (N → N) ∧ ~v ∈ N → AN(~u, ~f,~v).

We finish this section by mentioning that we cannot define the ω-jump and
the ω-hyperjump in KLEpr and SUSpr , respectively. This is due to our re-
stricted applicative setting and, in particular, the absence of the s combina-
tor. In contrast to our present framework, transfinite (hyper-)jump hierar-
chies are available in the corresponding applicative theories based on BON.
For further information about this phenomenon, cf. the discussion at the
beginning of Section 5.1.

4 Recursion-theoretic models

In this section we provide models for KLEpr and SUSpr . We proceed in two
steps and will first define indices and their evaluations. Secondly, we show
how to use the so-obtained evaluation functions in order to set up models
for KLEpr and SUSpr . In Section 5 we will formalize these models in order to
establish upper bounds for KLEpr and SUSpr .

10

4.1 Function classes and indices

In this section we are going to introduce the classes of number-theoretic
functions PRIM (µ) and PRIM (E1). Further, we will introduce a set of
indices for both classes and we are going to define the level of an index.
Finally, we define evaluation functions for the defined set of indices.

Definition 8 We define the following schemas and classes of functions:

1. Let n, m, k, ~x = x0, . . . , xn−1 be natural numbers. We define the
following basic functions:

(a) Successor. S (x0) := x0 + 1

(b) Constant functions. Csn
m(~x) := m

(c) Projections. If k < n then Prn
k(~x) := xk

2. Let n, m, ~x = x0, . . . , xn−1, y be natural numbers and K be a class of
number theoretic functions. We define the following closure conditions
on functions in K:

(a) Composition. If m > 0 and f is an m-ary function of K and
g0, . . . , gm−1 are n-ary functions of K, then the n-ary function

Compn(f, g0, . . . , gm−1)(~x) := f(g0(~x), . . . , gm−1(~x))

is an element of K.

(b) Primitive recursion. If f is an n-ary function of K and g is an
(n + 2)-ary function of K, then the (n + 1)-ary function

Recn+1(f, g)(~x, y) :=

{
f(~x) if y = 0
g(~x, y−1,Recn+1(f, g)(~x, y−1)) if y > 0

is an element of K.

(c) µ operator. If f is an (n + 1)-ary function of K, then the n-ary
function

Zeron(f)(~x) :=

min{y | f(~x, y) = 0} if there is a y so

that f(~x, y) = 0
0 otherwise

is an element of K.

11

(d) Suslin operator. If f is an (n + 2)-ary function of K, then the
n-ary function

Susn(f)(~x) :=

0 if there is a unary function g, so

that f(~x, g(z′), g(z)) = 0
for every natural number z

1 otherwise

is an element of K.

3. Now we can introduce the following classes of functions:

(a) The class PRIM (µ) consists of the basic functions and is closed
under composition, primitive recursion, and the µ operator.

(b) The class PRIM (E1) consists of the basic functions and is closed
under composition, primitive recursion, the µ operator, and the
Suslin operator.

In a next step we want to introduce indices for all the functions belonging
to the classes PRIM (µ) and PRIM (E1). Moreover, we will spell out a cor-
responding evaluation function for each set of indices. We start by defining
the indices for every function of PRIM (E1) and will later obtain the indices
in PRIM (µ) by a suitable restriction.

Definition 9 SusPrim is defined to be the set of indices for functions in
PRIM (E1).

s ∈ SusPrim ⇔
s ∈ Seq ∧ [s = 〈0, 1〉 ∨
[(s)0 = 1 ∧ lh(s) = 3] ∨ [(s)0 = 2 ∧ lh(s) = 3 ∧ (s)1 > (s)2] ∨
[(s)0 = 3 ∧ lh(s) = (s)2,1 + 3 ∧ (s)2 ∈ SusPrim ∧ (s)2,1 > 0 ∧

(∀k < (s)2,1)((s)k+3 ∈ SusPrim ∧ (s)k+3,1 = (s)1)] ∨
[(s)0 = 4 ∧ lh(s) = 4 ∧ (s)2 ∈ SusPrim ∧ (s)3 ∈ SusPrim ∧

(s)1 = (s)2,1 + 1 ∧ (s)3,1 = (s)1 + 1] ∨
[(s)0 = 5 ∧ lh(s) = 3 ∧ (s)2 ∈ SusPrim ∧ (s)2,1 = (s)1 + 1] ∨
[(s)0 = 6 ∧ lh(s) = 3 ∧ (s)2 ∈ SusPrim ∧ (s)2,1 = (s)1 + 2]]

Note that SusPrim is a primitive recursive set. We obtain the natural restric-
tion µPrim of SusPrim by dropping the last clause in the inductive definition
above. Clearly, µPrim is a primitive recursive set as well.

The next definition provides the expected evaluation function Ψ for indices
in SusPrim, using the class of functions in PRIM (E1).

12

Definition 10 Let s ∈ SusPrim be an index. The function Ψs is defined by
induction on the build-up of s as follows:

Ψ〈0,1〉 := S

Ψ〈1,n,m〉 := Csn
m

Ψ〈2,n,k〉 := Prn
k

Ψ〈3,n,f,g0,...,gm−1〉 := Compn(Ψf , Ψg0 , . . . , Ψgm−1)

Ψ〈4,n+1,f,g〉 := Recn+1(Ψf , Ψg)

Ψ〈5,n,f〉 := Zeron(Ψf)

Ψ〈6,n,f〉 := Susn(Ψf)

The obvious restriction of Ψ for s ∈ µPrim is denoted by Φ in the following.
Moreover, we will sometimes use the notation [s] for Ψs or Φs, depending on
s ∈ SusPrim or s ∈ µPrim, respectively.

The evaluation function SusPrimEv is calculating the function Ψs, if s is a
unary index of SusPrim.

Definition 11 SusPrimEv is the following function from N2 to N:

SusPrimEv(x, y) :=

{
Ψx(y) if x ∈ SusPrim ∧ (x)1 = 1
0 otherwise

The corresponding evaluation function defined in terms of Φ and µPrim will
be denoted by µPrimEv in the sequel.

For every index s of SusPrim we inductively define its level lev(s) as follows.

Definition 12 The primitive recursive function lev(s) is defined by course-
of-value recursion:

lev(s) :=

{
0 if (s)0 ≤ 2
max{lev((s)2), . . . , lev((s)lh(s)

.−1)}+ 1 if (s)0 ≥ 3

We will define models of KLEpr and SUSpr in terms of indices of unary func-
tions only. Therefore, we need to define some auxiliary functions which
change the arity of a given index in a suitable manner. The proof of the
following lemma is easy and therefore omitted.

Lemma 13 There exist primitive recursive functions ·†, ·̃, and · so that we
have for all n > 1, all natural numbers x0, . . . , xn−1, all e ∈ SusPrim with
(e)1 = n and all f ∈ SusPrim with (f)1 = 1:

[e†](〈. . . 〈〈x0, x1〉, x2〉, . . . , xn−1〉) = [e](x0, . . . , xn−1)

[f̃](x0, x1) = [f](〈x0, x1〉)
[f](x0, x1, x2) = [f](〈〈x0, x1〉, x2〉)

13

4.2 Model constructions

In this subsection we will define the intended recursion-theoretic models Spr

of SUSpr and Kpr of KLEpr . The universe of these models is the set N of
natural numbers and the function symbol · is interpreted as the previously
defined evaluation functions SusPrimEv and µPrimEv , respectively.

Definition 14 The structure Spr = (N, N, SusPrimEv , . . .) is defined in the
following manner:

|Spr | := N
NSpr := N
·Spr := SusPrimEv

<>Spr := the primitive recursive function (x, y) 7→ 〈x, y〉
(0)Spr := 0

(sN)Spr := 〈0, 1〉
(i)Spr := 〈2, 1, 0〉
(k)Spr := index of the primitive recursive function x 7→ 〈1, 1, x〉

(pN)Spr := index of the primitive recursive function x 7→ x .− 1

(p0)
Spr := index of the primitive recursive function x 7→ (x)0

(p1)
Spr := index of the primitive recursive function x 7→ (x)1

(dN)Spr := index of the primitive recursive function

x 7→
{

(x)0,0,0 if (x)0,1 = (x)1

(x)0,0,1 otherwise

(a)Spr := 〈3, 1, s2, 〈1, 1, <>Spr 〉, (p0)
Spr , (p1)

Spr 〉 where s2 is the

index of the primitive recursive function (x, y, z) 7→

〈3, 1, x, y, z〉 if y ∈ SusPrim ∧ (y)1 = 1∧
z ∈ SusPrim ∧ (z)1 = 1

〈3, 1, x, y, 〈1, 1, 0〉〉 if y ∈ SusPrim ∧ (y)1 = 1∧
(z /∈ SusPrim ∨ (z)1 6= 1)

〈3, 1, x, 〈1, 1, 0〉, z〉 if (y /∈ SusPrim ∨ (y)1 6= 1)∧
z ∈ SusPrim ∧ (z)1 = 1

〈3, 1, x, 〈1, 1, 0〉, 〈1, 1, 0〉〉 otherwise

(b)Spr := 〈3, 1, s1, (p0)
Spr , (p1)

Spr 〉 where s1 is the

index of the primitive recursive function (x, y) 7→{
〈3, 1, x, y〉 if y ∈ SusPrim ∧ (y)1 = 1
〈3, 1, x, 〈1, 1, 0〉〉 otherwise

14

(r)Spr := index of the primitive recursive function x 7→

〈4, 2, (x)0, 〈1, 3, 0〉〉† if (x)0 ∈ SusPrim ∧ (x)0,1 = 1∧
((x)1 /∈ SusPrim ∨ (x)1,1 6= 1)

〈4, 2, 〈1, 1, 0〉, (x)1〉† if ((x)0 /∈ SusPrim ∨ (x)0,1 6= 1)∧
(x)1 ∈ SusPrim ∧ (x)1,1 = 1

〈4, 2, (x)0, (x)1〉† otherwise

(µ)Spr := index of the primitive recursive function x 7→ 〈5, 1, x̃〉
(E1)

Spr := index of the primitive recursive function x 7→ 〈6, 1, x〉

Note that in the definition of the constants a, b and r above, we have to make
case distinctions in order to deal with the fact that some of the arguments
may not be unary indices.

By dropping the interpretation of E1 and replacing SusPrimEv by µPrimEv
and SusPrim by µPrim, respectively, we obtain the structure

Kpr = (N, N, µPrimEv , . . .).

Indeed, it is not difficult to see that Kpr validates all the axioms of the theory
KLEpr . For a detailed proof, see Steiner [16] and Schlüter [14]. We summarize
these observations in the following theorem.

Theorem 15 Kpr |= KLEpr .

The question arises whether Spr |= SUSpr . In fact, this is the case, but we
will only prove this in detail in Section 5, where formalizations of Kpr and
Spr in appropriate subsystems of analysis are presented.

It is not immediate that Spr is a model of SUSpr , because we have quanti-
fiers ranging over arbitrary functions in the evaluation function SusPrimEv .
Suppose that f is a unary index of SusPrim. Then the following equation
holds:

(∗) (E1fx)Spr =

{
0 if (∃G)(∀z)([f](x, G(z′), G(z)) = 0)
1 otherwise

However, in order to validate the axioms of E1 as spelled out in Section 2,
we need the following equation to hold:

(∗∗) (E1fx)Spr =

{
0 if (∃g ∈ SusPrim)(∀z)([f](x, [g](z′), [g](z)) = 0)
1 otherwise

15

Observe that if we tried to define the extension of E1fx inductively in order
to satisfy (∗∗), a quantification over all extensions of indices g ∈ SusPrim
does not make sense, because some of these extensions might only be defined
at later stages of the inductive definition. Clearly, we are confronted with a
typical impredicative phenomenon.

After having formalized the application relation in Π1
1-CA, we will see that

both conditions (∗) and (∗∗) are equivalent (cf. Theorem 34, “inside-outside
property”) and, hence, it will follow that Spr validates the axioms of SUSpr .

Theorem 16 Spr |= SUSpr .

Observe that, indeed, the models provided in this section satisfy the two
axioms (i) (∀x)N(x) and (ii) (∀x, y)xy↓. This is radically different in the
context of a stronger applicative setting such as BON, which refutes (i) under
the additional assumption of totality of application, (ii).

This concludes our discussion on models of KLEpr and SUSpr . Some de-
tails of these model constructions will be needed in the exact upper bound
computations in the next section of this paper.

5 Upper bounds

In this section we provide upper bound computations for KLEpr and SUSpr . In
particular, we carry out formalized model constructions for KLEpr in Π1

0-CA
and SUSpr in Π1

1-CA.

5.1 Embedding KLEpr into Π1
0-CA

Our goal is to formalize the expression [e](~b) = c in Π1
0-CA for any n-ary

index e of µPrim. For this purpose, we will work with triples

s = 〈e, 〈b0, . . . , bn−1〉, c〉

and define for every natural number l a set X so that for all i ≤ l, (X)i

contains all triples with lev(e) ≤ i. Recall that the slices (X)i of X are
defined by s ∈ (X)i ↔ 〈s, i〉 ∈ X.

In the case of BON(µ) a hierarchy with finite levels is not sufficient. This is
witnessed by the fact that the ω-jump (and much more) is definable in models
of BON(µ). This latter fact is due to the presence of the s combinator, which
allows for diagonalisation at limit ordinals; this diagonalisation, however,
cannot be obtained by primitive recursive means. For the model construction
in the case of BON(µ), cf. Feferman and Jäger [9].

16

The following formulas A and B will prepare the construction of the intended
hierarchy.

Definition 17 For describing the triples s with indices of level 0 we define
the Π0

0 formula A(s) as follows:

A := A0 ∧ (s)0 ∈ µPrim ∧ A1

A0 := s ∈ Seq ∧ lh(s) = 3 ∧ (s)1 ∈ Seq ∧ lh((s)1) = (s)0,1

A1 := [(s)0,0 = 0 ∧ (s)2 = (s)1,0 + 1] ∨
[(s)0,0 = 1 ∧ (s)2 = (s)0,2] ∨
[(s)0,0 = 2 ∧ (s)2 = (s)1,(s)0,2]

Definition 18 For describing the triples s with indices of level less than or
equal to l+1 we define the arithmetic L2 formula B(U, s, l) as follows:

B := s ∈ U ∨ [B0 ∧ (s)0 ∈ µPrim ∧ (B1 ∨ B2 ∨ B3)]

B0 := A0 ∧ lev((s)0) = l+1

B1 := (s)0,0 = 3 ∧ (∃a)[〈(s)0,2, a, (s)2〉 ∈ U ∧
(∀b < lh((s)0) .− 3)(〈(s)0,b+3, (s)1, (a)b〉 ∈ U)]

B2 := (s)0,0 = 4 ∧ (∃a)(∃b ≤ s)[a ∈ Seq ∧
lh(a) = (s)1,lh((s)1)

.−1 + 1 ∧ (s)2 = (a)lh(a)
.−1 ∧

(s)1 = b ∗ 〈(s)1,lh((s)1)
.−1〉 ∧ 〈(s)0,2, b, (a)0〉 ∈ U ∧

(∀c < lh(a) .− 1)(〈(s)0,3, b ∗ 〈c, (a)c〉, (a)c+1〉 ∈ U)]

B3 := (s)0,0 = 5 ∧ [[(∀a)(〈(s)0,2, (s)1 ∗ 〈a〉, 0〉 /∈ U) ∧ (s)2 = 0] ∨
[〈(s)0,2, (s)1 ∗ 〈(s)2〉, 0〉 ∈ U ∧
(∀a)(〈(s)0,2, (s)1 ∗ 〈a〉, 0〉 ∈ U → a ≥ (s)2)]]

Now we are able to define the hierarchy formula H0 which describes sets of
triples 〈e, 〈~b〉, c〉 satisfying [e](~b) = c below a certain level u.

Definition 19 H0(W, u) is the formula specifying that the slices (W)l con-
tain the triples with indices of level l for all l ≤ u:

H0 := (∀x)[(x ∈ (W)0 ↔ A(x)) ∧
(∀l < u)(x ∈ (W)l+1 ↔ B((W)l, x, l))]

Indeed, by exploiting Σ1
1 complete induction on the natural numbers, one

derives the existence of arbitrary finite segments of the hierarchy w.r.t. H0.

17

Lemma 20 Π1
0-CA proves (∀z)(∃X)H0(X, z).

Proof We establish this claim by Σ1
1 induction on z. In the base case

z = 0 we take X to be the set {(x, 0) : A(x)}, which exists by arithmetic
comprehension since A is Π0

0.

For the induction step, assume that we are given a set Y so that H0(Y, z).
By arithmetic comprehension, we are allowed to form the set X,

X := Y ∪ {(x, z + 1) : B((Y)z, x, z)}

and, moreover, one easily verifies that H0(X, z + 1) holds. The induction
step and the proof of this lemma are now complete. 2

By construction, our hierarchy with respect to H0 is unique as is stated
without proof in the following lemma. Of course, H0 hierarchies are also
increasing.

Lemma 21 Π1
0-CA proves

H0(W0, u0) ∧H0(W1, u1) ∧ u0 ≤ u1 → (∀l ≤ u0)((W0)l = (W1)l)

The stage is now set in order to define the interpretation of the application
operation · of L for the embedding of KLEpr into Π1

0-CA. We will use an L2

formula µApp which is our formalization of µPrimEv in Π1
0-CA.

Definition 22 We define µApp(u, v, w) to be the following formula:

µApp := [u ∈ µPrim ∧ (u)1 = 1 ∧
(∃X)(H0(X, lev(u)) ∧ 〈u, 〈v〉, w〉 ∈ (X)lev(u))] ∨

[(u /∈ µPrim ∨ (u)1 6= 1) ∧ w = 0]

It is crucial that the so-obtained application relation is functional in its third
argument, a fact that can be formally verified in Π1

0-CA.

Lemma 23 Π1
0-CA proves

µApp(u, v, w0) ∧ µApp(u, v, w1) → w0 = w1

Proof If u /∈ µPrim or (u)1 6= 1 then µApp(u, v, w) yields w = 0 and we
are done. If u is a unary index of µPrim, we prove the claim by induction
on the level l := lev(u) of u:

In the case l = 0 we have to deal with the three cases (u)0 = 0 (successor),
(u)0 = 1 (constant function), and (u)0 = 2 (projection), which are readily

18

handled. In the induction step from l to l + 1 we need to take into account
the cases (u)0 = 3 (composition) and (u)0 = 5 (non-constructive µ operator)
and can easily obtain the desired result by induction hypothesis. In the case
(u)0 = 4 (primitive recursion) we again apply the induction hypothesis, but,
in addition, we need to do a subsidiary induction on the recursion argument
of the given primitive recursion. 2

We are now going to define a translation ? of formulas from L to L2. In a
first step, we will assign to each L term t an L2 formula Vt(u) which expresses
that t has the value u with respect to the application relation µApp. The
definition of Vt(u) is by induction on the build-up of t. For the translation
of the constants c of L we make use of the numeral corresponding to the
interpretation of c in the model Kpr . As usual, we let n denote the numeral
associated to the natural number n.

Definition 24 For every L term t we define the L2 formula Vt(u), so that
the variable u does not occur in t, by induction on the build-up of t as follows:

1. If t is a variable of L then Vt(u) := (u = t).

2. If t is a constant of L then Vt(u) := (u = tKpr).

3. If t is the L term <r, s> then

Vt(u) := (∃x, y)[Vr(x) ∧ Vs(y) ∧ u = 〈x, y〉].

4. If t is the L term (rs) then

Vt(u) := (∃x, y)[Vr(x) ∧ Vs(y) ∧ µApp(x, y, u)].

Let us mention that for any L term t we have that Π1
0-CA proves (∃!x)Vt(x).

This can be accomplished by an easy (meta-)induction on the build-up of t.

Definition 25 For every L formula A we define the L2 formula A? by in-
duction on the build-up of A as follows:

1. If A is the formula N(t) or t↓ then A? is (∃x)Vt(x).

2. If A is the formula (s = t) then A? is (∃x)(Vs(x) ∧ Vt(x)).

3. If A is the formula ¬B then A? is ¬B?.

4. If A is the formula B j C then A? is (B? j C?) for j ∈ {∨,∧,→}.

5. If A is the formula (Qx)B then A? is (Qx)B? for Q ∈ {∃,∀}.

19

The following lemma shows that our translation has natural properties.

Lemma 26 We have for all L1 sentences A:

Π1
0-CA A ↔ (AN)?.

Proof This claim is verified by induction on the build-up of A. 2

We are now ready to state the embedding of KLEpr into Π1
0-CA, which will

yield that KLEpr and Π1
0-CA prove the same L1 sentences.

Theorem 27 We have for all L formulas A:

KLEpr A =⇒ Π1
0-CA A?.

Proof This claim is proved by induction on the length of a derivation of A
in KLEpr . If A is a non-logical axiom of KLEpr different from induction, one
proceeds by directly working with the formalized model construction of Kpr

in Π1
0-CA to show that A? holds. If A is an instance of (L-IN), then A? is

(equivalent to) an instance of (L2-IN) and, hence, is derivable in Π1
0-CA. 2

Together with Theorem 6 and Lemma 26 we immediately obtain the following
corollary.

Corollary 28 We have that KLEpr and Π1
0-CA prove the same L1 sentences.

5.2 Embedding SUSpr into Π1
1-CA

For our embedding of SUSpr in Π1
1-CA we will follow the same pattern as

in the previous paragraph; accordingly, we will now formalize the expression
[e](~b) = c in Π1

1-CA for any n-ary index e of SusPrim. The construction,
however, will be more involved due to the presence of E1. Nevertheless, we
can define a hierarchy of finite levels in Π1

1-CA which is sufficient for modelling
SUSpr . Hence, the situation heavily differs from the corresponding treatment
of E1 on the basis of BON, cf. Jäger and Strahm [13].

In the following we prepare the construction of our new hierarchy. For this
purpose, we can reuse the formula A from the last paragraph in order to deal
with triples with indices of level 0. For the other triples, we introduce a new
formula C which extends the formula B from above.

Definition 29 For describing the triples s with indices of level less than or

20

equal to l+1 we define the formula C(U, s, l) as follows:

C := s ∈ U ∨ [B0 ∧ (s)0 ∈ SusPrim ∧ (B1 ∨ B2 ∨ B3 ∨ C0 ∨ C1)]

C0 := (s)0,0 = 6 ∧ (s)2 = 0 ∧
(∃G)(∀a)(〈(s)0,2, (s)1 ∗ 〈G(a′), G(a)〉, 0〉 ∈ U)

C1 := (s)0,0 = 6 ∧ (s)2 = 1 ∧
(∀G)(∃a)(〈(s)0,2, (s)1 ∗ 〈G(a′), G(a)〉, 0〉 /∈ U)

The formulas B0, B1, B2, and B3 are the same as in Definition 18.

The hierarchy formula H1 is now defined in an analogous manner to H0, with
B replaced by C.

Definition 30 H1(W, u) is the formula specifying that the slices (W)l con-
tain the triples with indices of level l for all l ≤ u:

H1 := (∀x)[(x ∈ (W)0 ↔ A(x)) ∧
(∀l < u)(x ∈ (W)l+1 ↔ C((W)l, x, l))]

The next lemma is the analogue of Lemma 20 in the context of SUSpr and
Π1

1-CA. Thereby, the stronger form of comprehension makes it possible to
deal with the formula C.

Lemma 31 Π1
1-CA proves (∀z)(∃X)H1(X, z).

Proof We reason informally in Π1
1-CA and prove the claim by induction

on z. The case z = 0 is immediate by arithmetic comprehension using the
formulaA. For the induction step, assume that we are given a set Y satisfying
H1(Y, z). Now observe that the formula C is a boolean combination of Σ1

1 and
Π1

1 formulas and, hence, comprehension is available in Π1
1-CA with respect to

C. Consequently, the required set X satisfying H1(X, z+1) exists in Π1
1-CA,

and, hence, we are done. 2

As before, our hierarchy with respect to H1 is unique and increasing.

We are now ready to define the interpretation of the application operation
for the embedding of SUSpr into Π1

1-CA. The following definition is the pre-
cise formalization of SusPrimEv in Π1

1-CA, making use of the new hierarchy
formula H1.

Definition 32 We define SusApp(u, v, w) to be the following formula:

SusApp := [u ∈ SusPrim ∧ (u)1 = 1 ∧
(∃X)(H1(X, lev(u)) ∧ 〈u, 〈v〉, w〉 ∈ (X)lev(u))] ∨

[(u /∈ SusPrim ∨ (u)1 6= 1) ∧ w = 0]

21

As expected, by construction, SusApp is functional in its third argument.

Lemma 33 Π1
1-CA proves

SusApp(u, v, w0) ∧ SusApp(u, v, w1) → w0 = w1

In a next step we have to verify that the so-defined application relation
indeed satisfies the axioms about E1. In particular, we have to deal with the
impredicative phenomenon which we have already discussed at the end of
Section 4. We will need a so-called inside-outside property which is analogous
to the treatment of E1 in [13] (Theorem 16). We start with some preparatory
definitions:

[e](b) = c := SusApp(e, b, c)

CDC(c, e, a) := (∀x)([e](〈〈a, [c](x′)〉, [c](x)〉) = 0)

FDC(F, e, a) := (∀x)([e](〈〈a, F (x′)〉, F (x)〉) = 0)

CDC(c, e, a) signifies that c codes an infinite descending sequence in the sense
of SusApp with respect to the relation given by e and parameter a. The
meaning of FDC(F, e, a) is analogous but now the infinite descending chain
is an arbitrary function F .

We are now ready to state the crucial property which is needed to verify that
Spr is a model of SUSpr . In the following equivalence, the direction from left
to right is immediate by Lemma 31 and Lemma 33. In order to establish
the direction from right to left one can essentially follow the argument in [13]
and make use of a standard leftmost branch construction to define an infinite
branch by primitive recursion (in E1). The details in the given setting are
presented in [16].

Theorem 34 (Inside-outside property) Π1
1-CA proves

(∃c)CDC(c, e, a) ↔ (∃F)FDC(F, e, a)

In order to embed SUSpr into Π1
1-CA we can employ the same translation ? as

before, but of course using SusApp instead of µApp. For reasons of notational
simplicity, we name the translation ? as before.

We obtain the following property of translations in analogy to Lemma 26.

Lemma 35 We have for all L1 sentences A:

Π1
1-CA A ↔ (AN)?.

Our embedding is now complete.

22

Theorem 36 We have for all L formulas A:

SUSpr A =⇒ Π1
1-CA A?.

Proof The embedding of SUSpr into Π1
1-CA is analogous to the one of KLEpr

into Π1
0-CA except for the additional treatment of E1. The fact that the ?

translations of the E1 axioms is derivable in Π1
1-CA is due to the inside-outside

property (Theorem 34). 2

Together with Theorem 7 and Lemma 35 we obtain the following corollary.

Corollary 37 We have that SUSpr and Π1
1-CA prove the same L1 sentences.

6 Concluding remarks

In previous research on higher type functionals in applicative theories, the
so-called principle of set induction has played a prominent role, cf. [9, 11, 12].
By set induction (S-IN) on the natural numbers N we mean the principle

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0) → (∀x ∈ N)(fx = 0),

i.e., complete induction is available for (total characteristic functions of) sets
of natural numbers. What is the proof-theoretic strength of KLEpr and SUSpr

with induction on the natural numbers restricted to sets? In order to make
this a sensible question, we have to assume that the recursion operator r of
PRON transforms total operations on N into total operations on N, a property
which we can show with (L-IN), but not by means of (S-IN).

Indeed, observe that this totality assertion of r is built into the definition of
BON, and in the sequel we let PRONt denote PRON augmented by this total-
ity property of r (cf. [16] for details). Indeed, the applicative systems based
on PRONt plus set induction are directly contained in the corresponding the-
ories axiomatized by means of BON, cf. [16]. Hence, we get the following
proof-theoretic equivalences by making use of the previously known upper
bound results for BON(µ) and BON(µ, E1) with set induction, cf. [9, 13]:

BON(µ) + (S-IN) ≡ Π1
0-CA0 ≡ PRONt(µ) + (S-IN)

BON(µ, E1) + (S-IN) ≡ Π1
1-CA0 ≡ PRONt(µ, E1) + (S-IN)

Summing up, the decrease of proof-theoretic strength of µ or E1 on the basis
of PRON instead of BON is a phenomenon which only occurs in the presence
of induction principles stronger than (S-IN), such as full formula induction
(L-IN).

23

In fact, the increase of proof-theoretic strength in the presence of (L-IN) (and
our type two functionals) in going from PRON to BON is solely due to the
combinator s, which is the crucial difference between PRON and BON:

(S) sxy↓ ∧ sxyz ' xz(yz).

A combinator which also embodies the full strength of s is the universal
application combinator u, given by its defining equation

(Univ) u<x, y> ' xy.

Hence, adding (Univ) to PRON(µ) and PRON(µ, E1) causes a jump in proof-
strength from Π1

0-CA to ∆1
1-CA and Π1

1-CA to ∆1
2-CA, respectively:

PRON(µ) + (Univ) + (L-IN) ≡ ∆1
1-CA

PRON(µ, E1) + (Univ) + (L-IN) ≡ ∆1
2-CA

Finally, let us mention that without any type two functionals, BON and PRON
have the same proof-theoretic strength, no matter which form of complete
induction on the natural numbers is assumed. Namely, we get systems of
strength PRA and PA in the presence of (S-IN) and (L-IN), respectively.

References

[1] Beeson, M. J. Foundations of Constructive Mathematics: Metamath-
ematical Studies. Springer, Berlin, 1985.

[2] Cantini, A. Polytime, combinatory logic and positive safe induction.
Archive for Mathematical Logic 41, 2 (2002), 169–189.

[3] Cantini, A. Choice and uniformity in weak applicative theories. In
Logic Colloquium ’01, M. Baaz, S. Friedman, and J. Kraj́ıček, Eds.,
vol. 20 of Lecture Notes in Logic. Association for Symbolic Logic, 2005.

[4] Feferman, S. A language and axioms for explicit mathematics. In
Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathe-
matics. Springer, Berlin, 1975, pp. 87–139.

[5] Feferman, S. A theory of variable types. Revista Colombiana de
Matemáticas 19 (1975), 95–105.

[6] Feferman, S. Recursion theory and set theory: a marriage of con-
venience. In Generalized recursion theory II, Oslo 1977, J. E. Fenstad,
R. O. Gandy, and G. E. Sacks, Eds., vol. 94 of Stud. Logic Found. Math.
North Holland, Amsterdam, 1978, pp. 55–98.

24

[7] Feferman, S. Constructive theories of functions and classes. In Logic
Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North
Holland, Amsterdam, 1979, pp. 159–224.

[8] Feferman, S. Definedness. Erkenntnis 43 (1995), 295–320.

[9] Feferman, S., and Jäger, G. Systems of explicit mathematics with
non-constructive µ-operator. Part I. Annals of Pure and Applied Logic
65, 3 (1993), 243–263.

[10] Glass, T., and Strahm, T. Systems of explicit mathematics with
non-constructive µ-operator and join. Annals of Pure and Applied Logic
82 (1996), 193–219.

[11] Jäger, G., and Strahm, T. Totality in applicative theories. Annals
of Pure and Applied Logic 74, 2 (1995), 105–120.

[12] Jäger, G., and Strahm, T. Some theories with positive induction of
ordinal strength ϕω0. Journal of Symbolic Logic 61, 3 (1996), 818–842.

[13] Jäger, G., and Strahm, T. The proof-theoretic strength of the
Suslin operator in applicative theories. In Reflections on the Founda-
tions of Mathematics: Essays in Honor of Solomon Feferman, W. Sieg,
R. Sommer, and C. Talcott, Eds., vol. 15 of Lecture Notes in Logic.
Association for Symbolic Logic, 2002, pp. 270–292.

[14] Schlüter, A. A theory of rules for enumerated classes of functions.
Archive for Mathematical Logic 34 (1995), 47–63.

[15] Simpson, S. G. Subsystems of Second Order Arithmetic. Perspectives
in Mathematical Logic. Springer-Verlag, 1998.

[16] Steiner, D. Proof-theoretic strength of PRON with various extensions.
Master’s thesis, Institut für Informatik und angewandte Mathematik,
Universität Bern, 2001. Available at http://www.iam.unibe.ch/til/

publications.

[17] Strahm, T. Theories with self-application and computational com-
plexity. Information and Computation 185 (2003), 263–297.

[18] Strahm, T. A proof-theoretic characterization of the basic feasible
functionals. Theoretical Computer Science 329 (2004), 159–176.

[19] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,
vol. I. North-Holland, Amsterdam, 1988.

25

