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Abstract. Agents working in an environment with incomplete infor-
mation may need not only knowledge, but also beliefs to supplement
their information. Default Logics have been frequently used to represent
beliefs. Since inconsistent beliefs give rise to different extensions (scenar-
ios), priorities are introduced to establish a preference among scenarios.
We present a hybrid framework in which beliefs are represented by both
monotonic and non-monotonic sets of clauses, avoiding thus the need
for introducing priorities. Finally we give a glimpse of further work in
process and comment briefly on the possibility of updating the database
with new information.

1 Introduction

Agents working in an environment with incomplete information may need not
only knowledge, but also beliefs to supplement their information. In this paper
we present a representation of the knowledge and beliefs of one agent. Knowledge
is monotonically represented as a set of clauses (similar to Logic Programming
but without NAF and with classical negation) and beliefs as a combination of
stablish a preference among scenarios. We present a hybrid framework in which
beliefs are represented by both monotonic and non-monotonic sets of clauses,
avoiding thus the need for introducing priorities.

The paper is organised as follows. In sections 2 and 3 we define respectively
the syntax and semantics of sets of clauses, which represent the knowledge of
an agent, and of sets of defaults, which represent its beliefs. In both sections we
emphasize a constructive view of the semantics, providing ways to construct the
knowledge and belief sets. In section 4 we combine the monotonic approach (i.e.,
adding clauses to the doxastic part of the database) with the non-monotonic
approach. This way, the monotonic part provides a natural way of establish-
ing preferences between extensions without having to use priorities. Section 5
concludes with a comment on further developments in progress.

2 Syntax and Semantics of Sets of Clauses

We assume a set of propositional symbols Π . An atom will be either a proposi-
tional symbol of Π (a positive atom) or the negation of a propositional symbol



of Π (a negative atom.) A sequent will be a (possibly empty) sequence of atoms,
which will be denoted by Greek capital letters. Given a set S, the notation Γ ∈ S

will be a shorthand to denote that for all atoms p in the sequence Γ , p ∈ S. We
will use the notation p, p to refer to two complementary atoms when we do not
specify which one is positive and which one is negative. Otherwise, we will write
simply p, ¬p. The set of all atoms that can be formed with the propositional
symbols in Π will be denoted by AT(Π). Given a set of propositional symbols
Π , a normal clause (or a clause for short) on Π has the form Γ ⇒ p, where Γ

is a sequent and Γ, p ∈ AT(Π).
A clause with an empty sequent will be called a fact . We will omit the symbol

⇒ when dealing with facts whenever no ambiguity arises.
If ϕ is a set of clauses, we will denote by Πϕ the set of propositional symbols

occurring in ϕ. The Herbrand base of ϕ, denoted Hϕ, is AT(Πϕ).
The intended meaning of a clause p1, . . . , pn ⇒ q is that if the agent knows

p1 ∧ . . . ∧ pn, then the agent knows q. Facts are thus trivially true.

Definition 1. Let Π be a set of propositional symbols and let S ⊆ AT(Π).
We say that S is consistent iff it does not contain complementary atoms. It is
maximally consistent with respect to Π iff for each propositional symbol p ∈ Π,
either p ∈ S or ¬p ∈ S but not both.

It is easy to see that if S is a maximally consistent set with respect to Π ,
we cannot add an atom q ∈ AT(Π) without making it inconsistent, unless it is
already contained in it. Maximally consistent sets will also be called worlds .

Definition 2. Let ϕ be a set of clauses and let Πϕ be the set of propositional
symbols that occur in ϕ. A model of ϕ is a set M ⊂ AT (Πϕ) that is maximally
consistent with respect to Πϕ such that for any normal clause Γ ⇒ q ∈ ϕ, if
Γ ∈ M, then q ∈ M.

A set of clauses does not necessarily have a model. Take, for instance, the
set consisting of two complementary facts.

Definition 3. Let ϕ be a set of clauses. We say that ϕ is consistent iff it has a
model.

Now we turn to a more “operational” notion of semantics. The following
definition introduces the important concept of invariant of a set of clauses.

Definition 4. Let ϕ be a consistent set of clauses. The invariant of ϕ, denoted
J (ϕ), is the intersection of all its models.

The invariant has some important properties. Since it contains the atoms
that are true in all models, it may be used to represent the knowledge of an
agent. We are interested in finding a way to construct this set.

Definition 5. Let ϕ be a set of clauses. An answer set of ϕ is a set A ⊆ Hϕ

such that for any normal clause Γ ⇒ p ∈ ϕ, if Γ ∈ A, then p ∈ A. An answer
set is minimal if there is no answer set that is a proper subset of it.



Since sets of clauses may be considered as propositional logic programs with
classical negation, it is easy to see that the concept of minimal answer sets
corresponds to the minimal model in those programs. Hence, every set of clauses
has a minimal answer set (see for instance [5].) The difference is that minimal
answer sets may be inconsistent. We will denote the minimal answer set of a set
ϕ of clauses by Aϕ.

We will be interested only in consistent sets of clauses. We will now relate
the notions of answer sets, invariants, and models.

Definition 6. Let ϕ be a set of clauses. The operator Tϕ : 2Hϕ 7→ 2Hϕ is defined
as follows: q ∈ Tϕ(S) if there is a clause Γ ⇒ p ∈ ϕ and Γ ∈ S.

A well-known result of logical program theory is that the Tϕ operator has a
minimal fixpoint and that this fixpoint is Aϕ. The proof will be omited. Besides,
if we define:

– T 0
ϕ = ∅

– T k+1
ϕ = Tϕ(T k

ϕ)

Then, Aϕ =
⋃

i T i
ϕ, and the fixpoint is reached after a finite number of

iterations. For a proof, see [5].
Summing up, every set of clauses has a minimal answer set and this set can

be computed within a finite number of steps. Of course, the existence of such
minimal answer set does not guarantee the existence of a model. We will establish
the relation between the minimal answer set, the invariant and the models.

Lemma 1. Let ϕ be a consistent set of clauses. Then for any model M of ϕ,
Aϕ ⊆ M.

Proof. Induction on the construction of Aϕ = lfp(Tϕ).

Corollary 1. Let ϕ be a consistent set of clauses. Then Aϕ ⊆ J (ϕ).

Proof. By definition 4, J (ϕ) is the intersection of all models M of ϕ. The result
follows from lemma 1.

The reason of the gap between the minimal answer set and the invariant is
that there may be atoms that belong to any model, not because they are the
consequent of a clause whose antecedent is true, but because this is the only
possibility to avoid inconsistency, as shown next.

Example 1. In the following cases, we have atoms that must be included in all
models of ϕ, although they may not be in lfp(Tϕ).

1. If p ⇒ p ∈ ϕ, then p ∈ J (ϕ).
2. If p ⇒ a ∈ ϕ and p ⇒ a ∈ ϕ, then p ∈ J (ϕ).
3. If q ⇒ p ∈ ϕ and q ⇒ p ∈ ϕ, then p ∈ J (ϕ).



These cases illustrate the three basic cases in which atoms in the invariant
may be not in lfp(Tϕ). Adding ad-hoc rules to Tϕ would be of no use, since these
cases may appear “hidden” (for instance, the clauses p ⇒ a and ¬a ⇒ p are an
instance of the first case.) In all three cases there occur complementary atoms.
We will show that if no complementary atoms occur in ϕ, then J (ϕ) = Aϕ.

Definition 7. Let ϕ be a consistent set of clauses. An atom p ∈ Hϕ is bound
in ϕ if ϕ ∪ {p} is consistent and ϕ ∪ {p} is inconsistent. A proposition p ∈ Πϕ

is free in ϕ if both ϕ ∪ {¬p} and ϕ ∪ {p} are consistent.

Lemma 2. Let ϕ be a consistent set of clauses, let M ⊆ Hϕ. Then M is a
model of ϕ iff for all p ∈ M, it is a model of ϕ ∪ {p}.

Proof. Omitted.

Lemma 3. Let ϕ be a consistent set of clauses. Then J (ϕ) contains exactly the
bound atoms of ϕ.

Proof. Let us assume that p is bound in ϕ. Thus ϕ ∪ {p} is inconsistent. Then,
by lemma 2 no model may include p. Thus, p ∈ Jϕ.

Assume now that p ∈ J (ϕ). Then, p belongs to all models of ϕ. Hence, ϕ∪{p}
is inconsistent, and thus p is bound in ϕ.

Lemma 4. Let ϕ be a set of clauses such that the set of consequents of ϕ con-
tains no complementary atoms. Then ϕ is consistent.

Proof. Let Πϕ the set of propositional symbols occurring in ϕ. By hypothesis, the
set of consequents of ϕ is consistent. Any extension of this set to a maximally
consistent set with respect to Πϕ is a model of ϕ.

Lemma 5. Let ϕ be a consistent set of clauses such that no complementary
atoms occur in ϕ. Then, any proposition p such that p,¬p 6∈ Aϕ is free in ϕ.

Proof. We must show that both ϕ ∪ {p} and ϕ ∪ {¬p} are consistent. Assume
ϕ ∪ {p} is inconsistent. Since by lemma 4 ϕ is consistent, and ¬p 6∈ Aϕ, there
hould be a clause whose consequent is ¬p and whose antecedent turns true by
the addition of the fact p. But since ϕ does not contain complementary atoms,
it cannot contain such a clause. The same reasoning applies to ϕ ∪ {¬p}.

Proposition 1. Let ϕ be a set of clauses with no occurrence of complementary
atoms. Then Aϕ = J (ϕ).

Proof. By lemma 5, if ϕ does not contain complementary atoms, all bound atoms
in ϕ are in Aϕ. The result follows from corollary 1.

The restriction of sets of clauses by not allowing complementary clauses is
too strong. We will show a constructive way to compute the invariant set of
clauses even when it contains complementary atoms. Some new definitions will
be needed first.



Definition 8. Let ϕ be a consistent set of clauses and let S ⊆ Hϕ. The reduc-
tion of ϕ with respect to S, denoted by RS(ϕ), is the set of clauses constructed
from ϕ as follows:

1. Eliminate all clauses whose consequents are in S.
2. Eliminate all clauses containing in their antecedents atoms whose comple-

ments are in S.
3. Eliminate all other occurrences of atoms in S.
4. Rewrite all clauses Γ, q ⇒ a where a ∈ Aϕ as Γ ⇒ q.

Intuitively, if S contains atoms which are taken to be true in a set of clauses,
the reduction is the set of the clauses whose consequents are still unsolved.

Lemma 6. Let ϕ be a consistent set of clauses and let M be a model of ϕ. Then
M is a model of RAϕ

(ϕ).

Proof. A clause of RAϕ
(ϕ) is either:

1. A clause Γ ⇒ p of ϕ. Then, if Γ ∈ M, then p ∈ M.
2. A clause Γ ′ ⇒ p which is obtained from a clause Γ ⇒ p of ϕ by eliminating

from Γ all atoms that belong to Aϕ. Then, since Aϕ ⊆ M, we have elimi-
nated atoms that are true in Γ . Thus, if M is a model of the original clause,
it is a model of the modified one.

3. A clause Γ ⇒ p which corresponds to a clause Γ, p ⇒ a of ϕ. Since a ∈ Aϕ,
either Γ 6∈ M or p ∈ M. In both cases, M is a model of the modified normal
clause.

4. A normal clause Γ, Σ ⇒ p which corresponds to a clause Γ, p, Σ ⇒ p in ϕ.
It is immediate that if M is a model of the original normal clause, it is a
model of the modified one.

Lemma 7. Let ϕ be a consistent set of clauses. Then, any model of RAϕ
(ϕ)

which includes Aϕ is a model of ϕ.

Proof. Let M be a model of RAϕ
(ϕ) such that Aϕ ⊆ M. Let us consider the

following cases:

1. Let Γ ⇒ p be a clause of ϕ that was eliminated using rule 1. Then, since
p ∈ Aϕ, M is a model of the clause.

2. Let Γ ⇒ p be a clause of ϕ that was eliminated using rule 2. Then, since
there is at least some p in Γ such that p ∈ Aϕ, M is a model of the clause.

3. Let Γ ⇒ p be a clause of ϕ that was rewritten using rule 3. Then, since the
rewritten clause is stronger than the original one, if M is a model of the
former it is a model of the latter.

4. Let Γ, p ⇒ a be a clause of ϕ that was rewritten using rule 4 yielding Γ ⇒ p.
Then, if Γ ∈ M then p ∈ M. Since a ∈ Aϕ, it follows that M is a model of
the original clause.

Corollary 2. Let ϕ be a consistent set of clauses. If p is bound in ϕ, then either
p ∈ Aϕ or p is bound in RAϕ

(ϕ).



Proof. From lemmas 6 and 7, it is immediate that a set M is a model of ϕ iff
it is a model of RAϕ

(ϕ) that includes Aϕ. Thus, if p is bound in ϕ there are no
models of ϕ which include p. Thus there are no models of RAϕ

(ϕ) which include
p.

The preceding result is important because it allows the construction of the
invariant of a set of clauses.

Definition 9. Let ϕ be a set of clauses. We define the operator Tϕ =
⋃

k T
k

ϕ ,
where

T 0
ϕ = ∅ ϕ0 = ϕ

T k+1
ϕ = Aϕk

ϕk+1 = R
T

k+1
ϕ

(ϕk)

The operator Tϕ is the union of least fixpoints, since each term T k
ϕ is the least

fixpoint of Tϕk
. The following proposition shows that the union has only finitely

many elements.

Proposition 2. Let ϕ be a set of clauses. Then there is a finite natural number
m such that m > n implies T m+1

ϕ = T m
ϕ .

Proof. The proof (here omitted) is based on the fact that the reduction of a set of
clauses has either less normal clauses or less atoms than the original set. Since
we have always less atoms, the process cannot go on forever.

The problem is still what to do with the complementary atoms. It is possible
that the T operator does not find all bound atoms, as we saw in example 1. The
strategy will be based on successive “splittings” of the set of clauses. For each
pair of complementary atoms p, p appearing in a set of clauses ϕ, two separate
sets will be considered, ϕ∪ {⇒ p} and ϕ∪ {⇒ p}. Some previous results will be
needed. The following lemma is a straightforward extension of previous results.

Lemma 8. Let ϕ be a consistent set of clauses. Then:

1. If p is bound in ϕ, either p ∈ Tϕ or p is bound in RTϕ
.

2. Any model of RTϕ
that includes Tϕ is a model of ϕ.

Proof. (Part 1) Induction on the construction of Tϕ.
Base case: immediate, since T 0

ϕ = ∅ and ϕ0 = ϕ.

Induction step: T k+1
ϕ = Aϕk

, and ϕk+1 = RAϕk
. By corollary 2, we have that if

p is bound in ϕk, then either p ∈ T k+1
ϕ or p is bound in ϕk+1.

(Part 2). Induction on the construction of Tϕ.
Base case: immediate, since T 0

ϕ = ∅ and ϕ0 = ϕ.

Induction step: T k+1
ϕ = Aϕk

, and ϕk+1 = RAϕk
. By lemma 7, any model of

ϕk+1 that includes T k+1
ϕ is a model of ϕk.

Proposition 3. Let ϕ be a set of clauses. Then, if RTϕ
(ϕ) contains no comple-

mentary atoms, either J (ϕ) = Tϕ or Tϕ is inconsistent.



Proof. Assume first that ϕ is consistent. Observe that RTϕ
(ϕ) contains no facts,

because Tϕ has reached a fixpoint. If it does not contain complementary atoms, we
may construct two models of RTϕ

(ϕ), one setting all atoms to true and the other
one setting all atoms to false. Thus, for any propositional symbol p occurring in
RTϕ

(ϕ), both RTϕ
(ϕ)∪{p} and RTϕ

(ϕ)∪{¬p} are consistent. By lemma 8, any
atom that is bound in ϕ is either in Tϕ or is bound in RTϕ

(ϕ) If all atoms in
RTϕ

(ϕ) are free, then p ∈ Tϕ. Thus, J (ϕ) = Tϕ.
Assume now that ϕ is inconsistent. Since RAϕ

(ϕ) contains no complementary
atoms, it is consistent. By lemma 8, any model of RAϕ

(ϕ) that includes Tϕ is a
model of ϕ. Thus, Tϕ must be inconsistent.

Corollary 3. Let ϕ be a consistent set of clauses.

1. An atom p is bound in ϕ iff for any atom q that is free in ϕ, p is bound in
ϕ ∪ {q} and in ϕ ∪ {q}.

2. An atom p is bound in ϕ iff for any atom q that is bound in ϕ, then p is
bound in ϕ ∪ {q}.

Proof. (Part 1) Let p be bound in ϕ. Then all models M of ϕ include p. Since
q is free, there are models including q and models including q. By lemma 2, the
former are the models of ϕ∪ {q} and the latter are the models of ϕ∪ {q}. Since
all of them include p, it is bound in both sets of clauses. Now let p be bound in
ϕ ∪ {⇒ q} and in ϕ∪ {⇒ q}. Then all models of ϕ that include q include p and
all models of ϕ that include q include p. Thus, p is bound in ϕ.
(Part 2) Immediate from lemma 2.

Corollary 4. Let ϕ be an inconsistent set of clauses. Then either Aϕ contains
complementary atoms or RAϕ

(ϕ) is inconsistent.

Proof. First observe that the atoms in Aϕ do not occur in RAϕ
(ϕ). Thus, they

should be free therein. If ϕ is inconsistent, then there are no models of RAϕ
(ϕ)

containing Aϕ. Thus, all the complements of the atoms in Aϕ should be bound
in RAϕ

(ϕ), contradicting the fact that they are free.

Corollary 5. Let ϕ be an inconsistent set of clauses such that RAϕ
(ϕ) contains

no complementary atoms. Then Aϕ contains complementary atoms.

Proof. Immediate from corollary 4.

We are ready to provide a procedure for the construction of the invariant of a
set of clauses. In the next definitions we assume some ordering in the Herbrand
base of a set of clauses.

Definition 10. Let ϕ be a set of clauses. We put ϕ0 = ϕ and define:

– I(ϕ) = Tϕ if RTϕ
(ϕ) has no complementary atoms.

– I(ϕ) = Tϕ∪(I(ϕ1)∩I(ϕ2)), where ϕ1 = RTϕ
(ϕ)∪{p}, ϕ2 = RTϕ

(ϕ)∪{¬p}
and p,¬p is the first pair of complementary atoms appearing in RJϕ

(ϕ).



Note that the process is finite, since we eliminate one pair of complementary
atoms in each step.

Proposition 4. Let ϕ be a set of clauses. Then J (ϕ) = I(ϕ).

Proof. Induction on the structure of J (ϕ).
Base case: if RTϕ

(ϕ) has no complementary atoms, then by lemma 3 J (ϕ) =
I(ϕ).

Induction step: if RTϕ
(ϕ) has complementary atoms p, ¬p, then by lemma 8,

J (ϕ) = Tϕ∪J (RTϕ
(ϕ)). Let us suppose that p is bound in RTϕ

(ϕ), and let q, ¬q

be two complementary atoms occurring in RTϕ
(ϕ). Then, either one of them is

bound in RTϕ
(ϕ) or both are free. Suppose q is bound. Then by corollary 3, part 2,

we have that p ∈ J (RTϕ
(ϕ)∪{q}), and that RTϕ

(ϕ)∪{¬q} is inconsistent. Thus,
by induction hypothesis J (RTϕ

(ϕ)) = I(RTϕ
(ϕ)∪{q}) and J (RJϕ

(ϕ)∪{¬q}) =
Hϕ. Hence, J (RTϕ

(ϕ)) = I(RTϕ
(ϕ) ∪ {q}) ∩ I(RTϕ

(ϕ) ∪ {¬q}).
Assume now that both q and ¬q are free in RTϕ

(ϕ). By corollary 3, part one,
we have that p ∈ J (RTϕ

(ϕ)) implies p ∈ J (RTϕ
(ϕ)∪ {q}) and p ∈ J (RTϕ

(ϕ)∪
{¬q}). The result follows by induction hypothesis.

Example 2. Let ϕ be
q ⇒ p

q ⇒ ¬p

¬q, s, t ⇒ r

⇒ s

⇒ t

And assume an ordering {p,¬p, q,¬q, r,¬r, s,¬s, t,¬t} in the Herbrand base.
We have:

J (ϕ) = {s, t} ∪ ({p,¬q, r} ∩ {¬p,¬q, r}) = {¬q, r, s, t}

Finally we mention some properties of invariants that will be useful later.

Proposition 5. Let ϕ1 and ϕ2 be two consistent sets of clauses such that ϕ1 ⊆
ϕ2. Then J (ϕ1) ⊆ J (ϕ2).

Proof. Let M be a of ϕ2. Then M\Hϕ1
is a model of ϕ1. Thus for all p, p ∈ M

and p ∈ Hϕ1
implies p ∈ J (ϕ1). Thus, J (ϕ1) ⊆ J (ϕ1).

Proposition 6. Let ϕ be a set of clauses. Then J (ϕ) = Jϕ(E ∪ J (ϕ)).

Proof. Let M be a model of ϕ ∪ J (ϕ). Then, it is a model of ϕ. Thus, the
intersection of all models of ϕ ∪ J (ϕ)) is the intersection of all models of ϕ.

Corollary 6. Let ϕ1 and ϕ2 be two sets of clauses. Then J (ϕ1∪J (ϕ1∪ϕ2)) =
J (ϕ1 ∪ ϕ2).

Proof. Take ϕ = ϕ1 ∪ ϕ2. The result follows from lemmas 6 and 5.



3 A Non-Monotonic Representation of Belief

We will use clauses to represent knowledge. The invariant will represent the
knowledge of an agent, in the sense that it consists of the atoms which are true
in all possible worlds. We will distinguish knowledge from belief in the sense
that knowledge is true, whereas belief may be false. This assumption, although
usual, is rather strong: we have problems when several agents are concerned,
since private communication might lead to inconsistency.

We will represent beliefs by defaults , which we define next.

Definition 11. Given a set of propositional symbols Π, a normal default (or
a default for short) on Π has the form Γ : p ⇒ p where Γ is a sequent and
Γ, p ∈ AT(Π). The sequent Γ is the prerequisite of the default and p is the
justification of the default (left side) and the consequent of the default (right
side.)

If D is a set of defaults, then we will denote by CONS(D) the set of conse-
quents of D.

Strictly speaking, we will use a subset of defaults, namely the so-called normal
defaults [6], [3]. In normal defaults, the consequent is the justification; general
defaults allow arbitrary sequents as justifications. Since we will use only normal
defaults, we call them simply “defaults.”

The intended meaning of a default Γ : p ⇒ p is that if Γ is true and p is
not inconsistent with the knowledge the agent has, then it will be taken to be
true. Of course, it will not be in the same level as the atoms of the invariant; the
latter will be known; the former will just be believed . The use of defaults implies
that the representation is no longer monotonic.

Definition 12. Let Π be a set of propositions. A knowledge and belief database
(KB-database for short) is a pair ζ = (E, D) where E is a set of clauses and
D is a set of defaults on Π. The set of clauses E is the epistemic part of the
database and the set D is the doxastic part of the database. A KB-database where
E is consistent will be said to be epistemically consistent.

As before, given a KB-database ζ, we will denote by Πζ the set of propo-
sitional symbols occurring in the epistemic and the doxastic parts of ζ. The
Herbrand base will be defined in the same way as for sets of clauses: the Her-
brand base of ζ, denoted by Hζ , is AT(Πζ).

As usual, semantics of sets of defaults will be based on the concept of ex-
tensions . Informally speaking, an extension is the set of beliefs we may form
starting from a KB-Database. We point out that when we apply defaults, we
assume some external circumstances, expressed as a set of atoms. This will be
called a context . Now we define the belief sets we may form in the presence of a
context. This will lead to the formal definition of extensions.

Definition 13. Let ζ = (E, D) be a KB-database and let S ⊆ Hζ . Then Λζ(S)
is defined as the smallest set such that the following properties are fulfilled:



1. J (E) ⊆ Λζ(S)

2. If p ∈ J (E ∪ Λζ(S)) then p ∈ Λζ(S)

3. If Γ : p ⇒ p ∈ D and Γ ∈ Λζ(S) and p 6∈ S, then p ∈ Λζ(S)

Informally, Λζ(S) is the minimal set of beliefs that an agent whose KB-
database is ζ may have in view of the context S. The set Λζ(S) may be incon-
sistent, as the following example shows.

Example 3. Let ζ = (∅, {: p ⇒ p, : ¬p ⇒ ¬p}). Then, p,¬p ∈ Λζ(∅).

A natural way to avoid this problem is to take the fixpoint.

Definition 14. Let ζ = (E, D) be a KB-Database. A set S ⊆ Hζ is an extension
for ζ iff S is a fixpoint of Λζ , i.e., S = Λζ(S).

The concept of extensions may seem elusive. We will give several characteri-
sations of it.

Proposition 7. Let ζ = (E, D) be a KB-database and let S be an extension for
ζ. Then S is inconsistent iff E is inconsistent.

Proof. It is trivial that if E is inconsistent, then S is inconsistent for the first
condition of the definition of Λζ(S). First we show that if S is inconsistent, then
S ⊆ J (E). It is clear that the first and the second conditions ot the definition
of Λζ(S) are fulfilled by J (E), since J (E) = J (E ∪ J (E)). Besides, the third
condition is also fulfilled, since all justifications of defaults belong to S. Thus,
Λζ(S) ⊆ J (E) by the minimality of Λζ(S). Since S is inconsistent, so must be
J (E).

Corollary 7. Let ζ be a KB-database. If S has an inconsistent extension, then
it has no other extension.

Proof. Since all extensions for ζ include J and this invariant is inconsistent by
proposition 7, then all extensions must also be inconsistent.

Proposition 7 states that the addition of defaults may not turn a KB-database
inconsistent, unless it is epistemically inconsistent.

Now we relate the notion of extensions to that of invariants. We need some
more notation first.

Definition 15. Let ζ = (E, D) be a KB-database and let S be an extension for
ζ. Then the set of generating defaults for S in ζ, denoted by GDζ(S), is the set
GDζ(S) = {Γ : p ⇒ p ∈ D | Γ ∈ S and p 6∈ S}

Lemma 9. Let ζ = (E, D) be a KB-database and let S be an extension for ζ.
Then S = J (E ∪ CONS(GDζ(S))).



Proof. Let p ∈ CONS(GDζ(S)). Then, there is a default Γ : p ⇒ p ∈ D such that
Γ ∈ S and p 6∈ S. Thus, p ∈ S. Therefore, CONS(GDζ(S)) ⊆ S = Λζ(S) and
thus J (E ∪ CONS(GDζ(S))) ⊆ S.

Now let Φ be an abbreviation for CONS(GDζ(S)). We will show that J (E∪Φ)
includes Λζ(S).

On the one hand, we have by proposition 5 that J (E) ⊆ J (E ∪ Φ). On the
other hand, by proposition 6, J (E ∪ J (E ∪ Φ)) = J (E ∪ Φ).

Assume now that there is a default Γ : p ⇒ p ∈ D such that Γ ∈ J (E ∪ Φ)
and p 6∈ S. Since J (E ∪ Φ) ⊆ S, then Γ ∈ S. Thus, Γ : p ⇒ p ∈ GDζ(S).
Therefore, p ∈ J (E∪Φ). Thus all three conditions of the definition of Λζ(S) are
fulfilled and Λζ(S) ⊆ J (E ∪ Φ). The result follows immediately.

The following lemma states an important property of defaults.

Lemma 10. Let ζ1 = (E, D1) and ζ2 = (E, D2) be two KB-databases such that
D1 ⊆ D2 and let S1 be an extension for ζ1. Then there is an extension S2 for ζ2

such that S1 ⊆ S2.

Proof. We construct first the sequence of sets of defaults ∆0, . . . , ∆m such that:

• ∆0 = GDζ1
(S1)

• ∆k+1 = {Γ : p ⇒ p ∈ D2 | Γ ∈
⋃k

i=0
(CONS(∆i)) and

p 6∈
⋃k+1

i=0
(CONS(∆i))}

The sequence is finite, since the set of defaults is finite. Now let us define the
abbreviation Σ = J (E ∪ (

⋃

i CONS(∆i))). We show first that Λζ2
(Σ) ⊆ Σ.

It is clear that J (E) ⊆ Σ. Besides, by proposition 6, J (E ∪ Σ) = J (Σ).
Consider now a default Γ : p ⇒ p ∈ D2, with Γ ∈ Σ and p 6∈ Σ. Then

there is some k such that Γ ∈ J (E ∪ (
⋃k

i=0
CONS(∆i))), and p 6∈ J (E ∪

(
⋃k+1

i=0
CONS(∆i))). Hence, Γ : p ⇒ p ∈ ∆k+1 and p ∈ Σ. Thus, by the mini-

mality of Λζ2
(Σ) we get Λζ2

(Σ) ⊆ Σ.
Now assume that Λζ2

(Σ) 6= Σ. Then there is some k such that J (E ∪

(
⋃k

i=0
CONS(∆i))) ⊆ Λζ2

(Σ), even though J (E ∪ (
⋃k+1

i=0
CONS(∆i))) 6⊆ Λζ2

(Σ).
Thus there is a default Γ : p ⇒ p ∈ D2 such that p ∈ Σ and p 6∈ Λζ2

(Σ). Hence

Γ ∈ J (E ∪ (
⋃k

i=0
CONS(∆i))) and p 6∈ J (E ∪ (

⋃k+1

i=0
CONS(∆i))). But then,

Γ ∈ Λζ2
(Σ). Besides, p 6∈ Σ and thus p must be in Λζ2

(Σ), which contradicts
the hypothesis.

Finally, we have that by construction J (E ∪ CONS(GDζ1
(S1)) ⊆ Σ and by

lemma 9 we get the result.

The last lemma shows a property that is sometimes called “semimonotonic-
ity” [3]. It is also important because it leads to the following result.

Corollary 8. Let ζ = (E, D) be a KB-database and let E be a consistent set of
clauses. Then ζ has an extension.

Proof. Since E is consistent, then clearly the KB-Database (E, ∅) has an exten-
sion, namely J . Then by lemma 10, it follows that ζ has an extension.



We have seen that a KB-database that is epistemically consistent has at least
one extension and in general a family of extensions. Now we will characterise
the families of extensions that a KB-database may have.

Lemma 11. Let ζ = (E, D) be a KB-database and let us define:

– S0 = J (E)
– Sk+1 = J (E ∪ {CONS(Γ : p ⇒ p ∈ D) | Γ ∈ Sk and p 6∈ S}

Then S is an extension for ζ iff S =
⋃

i(S
i).

Proof. First we show that Λζ(S) ⊆
⋃

i(S
i). We have that J (E) ⊆

⋃

i(S
i) and

by proposition 6 we have that J (E ∪
⋃

i(S
i)) = J (

⋃

i(S
i)). Now let us consider

a default Γ : p ⇒ p ∈ D such that Γ ∈
⋃

i(S
i) and p 6∈

⋃

i(S
i). Then p ∈

⋃

i(S
i).

Now we show that
⋃

i(S
i) ⊆ Λζ(S). Assume there is some p ∈

⋃

i(S
i) such

that p 6∈ Λζ(S). Then there is some k such that Sk ⊆ Λζ(S) although Sk+1 6⊆
Λζ(S). Thus, there must be a default Γ : p ⇒ p ∈ D such that Γ ∈ Sk, p 6∈ S

and p 6∈ Λζ(S). Since Sk ⊆ Λζ(S), then p must be in Λζ(S) contradicting thus
the hypothesis.

Lemma 12. Let ζ = (E, D) be a KB-database and let S1 and S2 be two exten-
sions for ζ such that S1 ⊆ S2. Then S1 = S2.

Proof. By lemma 11 we have: S1 =
⋃

i(S
i
1) and S2 =

⋃

i(S
i
2). The lemma is

proved by induction on k.
Base case: S0

1 = S0
2 = J (E)

Induction step: Sk+1

2 = J (E ∪ {CONS(Γ : p ⇒ p ∈ D) | Γ ∈ Sk
1 and p 6∈ S2}).

By induction hypothesis, Sk
1 = Sk

2 and, since S1 ⊆ S2, then p 6∈ S2 implies
p 6∈ S1. Hence Sk+1

1 = Sk+1

2 .

Lemma 13. Let ζ = (E, D) be a KB-database and let S1, S2 be two distinct
extensions for ζ. Then S1 ∪ S2 is inconsistent.

Proof. If S1 and S2 are extensions, we have by lemma 10 that S1 =
⋃

i Si
1

and S2 =
⋃

i Si
2. We have also by lemma 9 that S1 = J (E ∪ CONS(GDζ(S1)))

and S2 = J (E ∪ CONS(GDζ(S2))). f we take ∆ = GDζ(S1) ∩ GDζ(S2), then
we have that GDζ(S1)\∆ 6= ∅ and GDζ(S2)\∆ 6= ∅, since otherwise we would
be in the case of lemma 12. Let us suppose that there is an ordering of the
defaults of D and that the first k defaults are those in ∆. Let thus δk+1 be the
first default such that δk+1 ∈ GDζ(S1)\∆. Then we have that Sk

1 = Sk
2 and

Sk+1

1 = J (E ∪ {CONS(Γ : p ⇒ p ∈ D) | Γ ∈ Sk
1 and p 6∈ S1}).

Since Γ ∈ Sk
1 , Γ ∈ Sk

2 by the construction of the sequence. Hence, if p 6∈ S2,
the only possibility is that p ∈ S2. Thus S1 ∪ S2 contains complementary atoms.

The process to construct the extensions of a KB-database ζ = (E, D) will be a
“näıve” one, similar to one the proposed in [6]. Starting from the invariant J (E),
we apply one default each time until no further defaults are applicable. This
process terminates, since the set of defaults is finite. The question is, whether
this process is sound (i.e., if it yields an extension) and whether it is complete
(i.e., if all extensions can be obtained this way.)



Definition 16. Let ζ = (E, D) be a KB-database. Then we define the operator
χ(ζ) =

⋃

i χi(ζ) as follows:

– χ0(ζ) = J (E)

– χk+1(ζ) =























J (E ∪ χk(ζ) ∪ {p}) if there is a default Γ : p ⇒ p ∈ D

such that Γ ∈ J χk(ζ)
and p is free in E ∪ χk(ζ)

χk(ζ) otherwise

Note that this definition describes a family of sets rather than one.

Lemma 14. Let ζ = (E, D) be a KB-Database. Then if E is consistent, so is
χ(ζ).

Proof. Induction on the structure of χ(ζ).
Base case: immediate, since χ0(ζ) = J (E) and E is consistent by hypothesis.
Induction step: χk+1(ζ) = J (E ∪ χk(ζ) ∪ {p}) where there is a default Γ : p ⇒
p ∈ D such that Γ ∈ χk(ζ) and p is free in E ∪ χk(ζ). By induction hypothesis,
χk(ζ) is consistent and by proposition 6, so is E ∪ χ(ζ). Thus, since p is free in
E ∪ χk(ζ), then E ∪ χk(ζ) ∪ {p} is consistent.

Proposition 8. Let ζ = (E, D) be a KB-Database and let E be consistent. Then
χ(ζ) is an extension for ζ.

Proof. We prove first that Λζ(χ(ζ)) ⊆ χ(ζ). We have that J (E) ⊆ χ(ζ). Besides,
by proposition 6 we have that J (E ∪ χ(ζ)) = χ(ζ). Now consider a default
Γ : p ⇒ p ∈ D such that Γ ∈ χ(ζ) and p 6∈ χ(ζ). Then there is some k

such that Γ ⊆ χk(ζ) and also p 6∈ χk(ζ). Thus, p ∈ χk+1(ζ) ⊆ χ(ζ). Hence,
Λζ(χ(ζ)) ⊆ χ(ζ).

Assume now that χ(ζ) 6⊆ Λζ(χ(ζ)). Since χ0(ζ) ⊆ Λζ(χ(ζ)) and for all j ≤ 0
χj(ζ) ⊆ χj+1(ζ), we have that there must be some k such that χk(ζ) ⊆ Λζ(χ(ζ))
even though χk+1(ζ) 6⊆ Λζ(χ(ζ)). Then there is some default Γ : p ⇒ p ∈ D

such that Γ ∈ χk(ζ) and p is free in χk(ζ). But then, since p 6∈ Λζ(χ(ζ)), then
p ∈ Λζ(χ(ζ)) and since Λζ(χ(ζ)) ⊆ χ(ζ)), then p ∈ χ(ζ). Hence, χ(ζ) would be
inconsistent, contradicting thus lemma 14.

We have thus that the application of the operator χ(ζ) indeed yields an
extension for ζ. The question is now whether all extensions may be found with
some application of this operator.

Proposition 9. Let ζ = (E, D) be a KB-Database. Then for any extension S

for ζ, there is a set χ(ζ) such that χ(ζ) = S.

Proof. Let S be an extension for ζ. We define χ(ζ) such that the choice of
the defaults is restricted to defaults whose consequents are in S. We show that
χ(ζ) ⊆ S by induction on the construction of χ(ζ).
Base case: χ0(ζ) = J (E) ⊆ S.



Induction step: let q ∈ χk+1(ζ). Then q ∈ J (E ∪ χk(ζ) ∪ {⇒ q}), where Γ :
q ⇒ q ∈ D and Γ ∈ Sk and q is free in E ∪ χ(ζ). Besides, we have imposed the
condition q ∈ S. Thus, using the induction hypothesis, we get that χk+1(ζ) ⊆ S.

Now we show that S ⊆ χ(ζ). Since S is an extension, S =
⋃

i Si. We prove
the inclusion by induction on i.

Base case: S0 = J (E) ⊆ χ(ζ).

Induction step: Sk+1 = J (E ∪ {CONS(Γ : p ⇒ p ∈ D) | Γ ∈ Sk and p 6∈ S})
Since χ(ζ) ⊆ S, p 6∈ S implies p 6∈ χ(ζ). Besides, by induction hypothesis we

have that Sk ⊆ χ(ζ); hence, Γ ∈ χ(ζ) and thus CONS(Γ : p ⇒ p) ⊆ χ(ζ).

Therefore, χ(ζ) = S.

Summing up: we have the representation of the knowledge and beliefs of an
agent by a KB-database ζ = (E, D), where E is a (monotonic) set of clauses
that represents knowledge and D is a set of defaults that represents the beliefs
of the agent. We have a constructive way to obtain the invariant J (E) and the
extensions of D by means of the χ(ζ) operator. The following example shows
that this representation may not correspond to the intuition of what a belief is.

Example 4. Let ζ be
⇒ p

q ⇒ r

p : q ⇒ q

: ¬q ⇒ ¬q

r : s ⇒ s

We have here two extensions: Ext1 = {p, q, r, s} and Ext2 = {p,¬q}.

In the example we cannot say that the agent “believes” either q or ¬q; it
rather takes these possible scenarios under consideration. If the agent believes
q, then some kind of priority must be given to extension E1. One possibility is
to add some extra-logical features, such as priorities [6]. In the next section we
will combine the monotonic and the non-monotonic approaches.

4 A Hybrid Representation of Belief

The representation of belief through defaults does not correspond exactly to the
usual notion of beliefs. For instance, lemma 13 allows different and incompatible
sets of beliefs (as a matter of fact, if two belief sets are different, they must
be incompatible.) This approach corresponds to the consideration of possible
scenarios rather than a set of possible states that is considered more plausible
than other.

A possible approach to establish some hierarchy between possible worlds is
to give priorities to the defaults. Another one, which is the one we propose here,
is to combine the monotonic and the non-monotonic approach. In this case, we
re-define a KB-Database as follows:



Definition 17. Let Π be a set of propositions. A hybrid knowledge and belief
database (HKB-database for short) is a triple ζ = (E, Dcl, Ddef) where E and
Dcl are sets of clauses and Ddef is a set of defaults on Π. The set of clauses
E is the epistemic part of the database and the sets Dcl and Ddef constitute
the doxastic part of the database. An HKB-database where E is consistent is
epistemically consistent. An HKB-database where both E and Dcl are consistent
is doxastically consistent.

Note that doxastic consistency implies the consistency of both E and Dcl

and not only the consistency of Dcl. This is because everything that is known
is also believed. The knowledge of an agent is defined as J (E) (as before) and
the belief of an agent are defined as the extensions constructed starting from
χ0

ζ = J (E ∪ Dcl). In this way, only the extensions of ζ that are consistent with
J (E ∪ Dcl) are taken into account.

Example 5. Let ζ = (E, Dcl, Ddef ) be

E

{

⇒ p

q ⇒ r

Dcl

{

⇒ q

Ddef







p : q ⇒ q

: ¬q ⇒ ¬q

r : s ⇒ s

We have here that J (E) = {p}, J (E ∪ Dcl) = {p, q, r}. The only extension
is Ext = {p, q, r, s}.

What is the rôle of the default : ¬q ⇒ ¬q? It seems that the clause in Dcl has
made it redundant and that it could be eliminate. This would be true in a static
environment, in which the knowledge and beliefs of the agent are permanent.
But in a dynamic environment, where new information may become available
and the beliefs must be eventually revised, this default may become relevant if
new information gives preference to ¬q over q. Recall that belief, in contrast to
knowledge, is not necessarily true.

5 Discussion and Future Work

We have presented a representation of the knowledge and beliefs of an agent
by a hybrid representation that includes a monotonic part (a set of clauses)
and a non-monotonic part (a set of defaults.) The corresponding knowledge-
and belief-sets may be iteratively computed. If we represent beliefs purely by
defaults, we have no way of selecting among the different extensions, unless we
include explicit priorities. The division of the doxastic part into a monotonic and
a non-monotonic one provides a natural way to introduce preferences among the
different extensions.

We are currently working on several directions. A natural extension of this
representation in the case of multiple agents is the introduction of introspection,



that is, agents have knowledge about other agents’ knowledge. This poses sev-
eral interesting problems, such as common knowledge [4], [2]. Besides, private
communication may entail inconsistency, since knowledge of an agent a about
the knowledge of agent b may turn false as a result of a private communication
from a third party. Thus, the axiom that knowledge is always true should be
adapted.

Besides, we are interested in the effect of updating the databases. Since beliefs
may be wrong, it may be necessary to change the doxastic part. In the case of
a pure non-monotonic representation, this poses no problems, since this update
amounts to the creation of a new extension, which is incompatible with the other
existing ones. In the case of a hybrid representation, it may be possible that some
older beliefs must be given up to preserve consistency. The idea is then to decide
whether to accept the new belief and incorporate it with minimal changes to the
belief database [1] or to reject it.

Finally, we want to explore the situation in which the state of the world
changes. Then, unless agents are instantly informed of any change (not always a
realistic assumption), their knowledge database may become inconsistent. Once
more, the axiom that knowledge is always true may be too strong for practical
purposes.
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