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Abstract

We provide a purely syntactical treatment of simultaneous fixpoints in the
modal µ-calculus by proving directly in Kozen’s axiomatisation their properties
as greatest and least fixpoints, that is, the fixpoint axiom and the induction rule.
Further, we apply our result in order to get a completeness result for character-
istic formulae of finite pointed transition systems.
Keywords: Modal µ-calculus, proof theory, Kozen’s axiomatisation, simultane-
ous fixpoints

1 Introduction

Modal µ-calculus is an extension of modal logic with least and greatest fixpoint con-
structors and therefore allows us to study fixpoints, which play an important role as
extensions for many modal logics, on a sufficiently abstract level.

The expression ’µ-calculus’ combined with the idea to introduce fixpoint construc-
tors to monotonic functions on complete lattices was first introduced by Scott and De
Bakker in [7]. The book of Arnod and Niwinski [2] provides a good overview over this
general notion of µ-calculus. Modal µ-calculus can be seen as a special case where
we restrict ourselves to the complete lattice given by the powerset of states of a tran-
sition system. It was introduced by Kozen in his seminal work [6]. There, also the
axiomatisation KOZ is introduced which is basically the extension of minimal modal
logic K with the so-called Park fixpoint induction principles. Kozen himself could
prove completeness for the aconjunctive fragment but failed for the full language.
Full completeness was established by Walukiewicz in [11], the proof is very involved
and strongly relies on methods from automata theory and infinite games.

Induction principles in a modal context represent a big challenge for proof theo-
rists. Namely fixpoint extensions of modal logic are very difficult to handle in a pure
syntactical manner and, therefore, proof theoretical research on the modal µ-calculus
has concentrated on, mainly infinitary, systems different from KOZ (see e.g. Jäger,
Kretz and Studer in [5] and Dam and Sprenger [4]). One task of this paper is getting
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a better proof theoretical understandig of KOZ by working syntactically exclusively
in that deductive system.

Simultaneous fixpoints are introduced by vectors of formulae: On a transition
system with states S a modal µ-formula ϕ(x1, . . . , xn) defines a function from P(S)n

to P(S), therefore, n formulae ϕi(x1, . . . , xn), each of them monotone in all xj , define
a monotone function from P(S)n to P(S)n which by Tarski-Knaster [9] has a greatest
and least (simultaneous) fixpoint. The question arises whether modal µ-calculus,
which was introduced to deal with normal fixpoints, is strong enough to express
simultaneous fixpoints. In fact, by using a result of Bekić (see [3, 2]) from the theory of
complete lattices one gets that there exists a n-vector of modal µ-formulae expressing
the greatest (resp. least) simultaneous fixpoint. Obviously, simultaneous fixpoints
satisfy the fixpoint axiom and the induction rule.

In the main part of our work we show that Kozen’s axiomatisation proves the
fixpoint axiom and the induction rule for simultaneous fixpoints by working exclu-
sively syntactically in KOZ, that is, without taking a detour via semantics by using
completeness.

A straightforward application of our syntactical analysis is the completeness proof
for the fragment of characteristic formulae. Given a finite pointed transition system
(S, s0) there is a formula χ(S,s0) characterizing it, that is, we have for all ϕ that
ϕ is satisfied in (S, s0) if and only if the implication χ(S,s0) → ϕ is valid. With
characteristic formulae we can translate the model checking question to the question
of validity in all transition systems. Characteristic formulae are constructed by, first,
introducing simultaneous greatest fixpoints of Lµ-formulae which express bisimilarity
to the transition system (S, s0) and, second, by applying the aforementioned Bekić
result. We prove, obviously without using the full completeness of Walukiewicz,
completeness for any formula of the form χ(S,s0) → ϕ.

In the next section we introduce the basic notions and results and extend them
to a syntax allowing vectors of Lµ-formulae; a significant part is devoted to a exact
definition of substitution. In Section 3 we introduce simultaneous fixpoints semanti-
cally and syntactically and prove the basic fixpoint properties in KOZ. This result is
then applied in Section 4 in order to get the partial completeness for characteristic
formulae.

2 Preliminaries

2.1 Syntax

We define the set of formulae of the modal µ-calculus starting from a set of proposi-
tional variables P = {p, q, . . . x, y, z, . . .} and the symbols >,⊥,∧,∨,¬,�,♦, µ and ν.
The class of all Lµ-formulae, Lµ, is the smallest set with P ∪ {>,⊥} ⊂ Lµ and such
that if

ϕ,ψ ∈ Lµ then (ϕ ∧ ψ), (ϕ ∨ ψ),¬ϕ,�ϕ,♦ϕ, µx.ϕ, νx.ϕ ∈ Lµ.
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As usual, for formulae of the form µx.ϕ, νx.ϕ we require that each occurrence of x
in ϕ is positive, that is, in the scope of an even number of negations. If we do not
require this syntactical restriction in the inductive definition above then we define the
class of all Lfree-formulae, Lfree. Both Lµ-formulae and Lfree-formulae will be denoted
by small Greek letters, α, β, ϕ, ψ.... We omit the parentheses if there is no danger of
confusion and we sometimes abbreviate ¬α∨β by α→ β. Given a Lµ-formula (resp.
Lfree-formula) of the form σx.ϕ, where σ ∈ {µ, ν}, we say that x is bound by σx.ϕ.
A variable x is bound in ϕ if there is a subformula binding x, otherwise it is a free
variable. Free(ϕ) denotes all free variables of ϕ and Bound(ϕ) all bound variables. We
write ϕ(x1, . . . , xn) if all occurrences of xi are free in ϕ and all xi are pairwise distinct.
For a syntactical treatment of simultaneous fixpoints we need to extend our notation
such that we permit also vectors of formulae: Let ϕ1, . . . , ϕn be Lµ-formulae (resp.
Lfree-formulae). A vector of formulae (ϕ1, . . . , ϕn) is denoted as ~ϕ. Let x1, . . . , xm be
propositional variables, we sometimes write (ϕ1, . . . , ϕn)(x1, . . . , xm) or ~ϕ(x1, . . . , xm)
or simply ~ϕ(~x) if all appearances of xi are pairwise distinct and free in all ϕj . For
any vector ~ϕ ≡ (ϕ1, . . . , ϕn) (of formulae for example) by ~ϕ−i we denote the vector
(ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn). Simultaneous substitution is defined for Lfree-formulae
as follows: Let ~x ≡ (x1, . . . , xn) and ~ψ ≡ (ψ1, . . . , ψn) be vectors of pairwise distinct
propositonal variables and Lfree-formulae and let ϕ be a Lfree-formula. The Lfree-
formula ϕ[~x/~ψ], the Lfree-formula ϕ where all free occurrences of xi are substituted
simultaneously by ψi, is defined recursively as follows:

• x[~x/~ψ] ≡

{
ψi if x ≡ xi
x else.

• For ? ∈ {∧,∨}: α ? β[~x/~ψ] ≡ α[~x/~ψ] ? β[~x/~ψ].

• For ? ∈ {�,♦,¬}: ?α[~x/~ψ] ≡ ?(α[~x/~ψ]).

• For σ ∈ {µ, ν}: σx.α[~x/~ψ] ≡

{
σx.(α[~x−i/~ψ−i]) if x ≡ xi
σx.(α[~x/~ψ]) else.

We sometimes write ϕ[x1/ψ1, . . . , xn/ψn] for ϕ[~x/~ψ] and we write ϕ[x′/ψ′, ~x/~ψ] for
ϕ[x′/ψ′, x1/ψ1, . . . , xn/ψn]. If ϕ(x1, . . . , xn) is a Lfree-formula then by ϕ(ψ1, . . . , ψn)
we mean ϕ[x1/ψ1, . . . , xn/ψn]. For a vector of fomulae ~ϕ ≡ (ϕ1, . . . , ϕn), a formula ψ
and a variable x we write ~ϕ[x/ψ] for (ϕ1[x/ψ], . . . , ϕn[x/ψ]), analogously for ~ϕ[~x/~ψ].
For Lµ-formulae ϕ,ψ1, . . . , ψn ∈ Lµ if ϕ[x1/ψ1, . . . , xn/ψn] is a Lµ-formula, too, then
we have an admissible substitution.

Remark 2.1. Note, that if ϕ,ψ ∈ Lµ then ϕ[x/ψ] need not be a Lµ-formula, for
example, if we set ϕ ≡ µy.x and ψ ≡ ¬y then we have ϕ[x/ψ] ≡ µy.¬y 6∈ Lµ.
Therefore, in order to formally define substitution we had to intoduce the class of Lfree-
formulae. In the sequel we will concentrate on Lµ-formulae mainly and, if nothing is
mentioned, by formulae we implicitly mean Lµ-formulae.
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For serial substitution we write ϕ[x1/ψ1][x2/ψ2] for (ϕ[x1/ψ1])[x2/ψ2]; similarly
for ϕ[x1/ψ1] . . . [xn/ψn]. The next lemma is proven by induction on ϕ.

Lemma 2.2. Let ϕ,ψ be Lfree-formulae, y, z variables, (α1, . . . , αn) a vector of Lfree-
formulae and (x1, . . . , xn) a vector of propositional variables such that x1, . . . , xn, y
are pairwise distinct. We have:

(1) If x1, . . . , xn 6∈ Free(ψ) then ϕ[y/ψ][~x/~α] ≡ ϕ[y/ψ, ~x/~α].

(2) If y 6∈ Free(αi) for all i then ϕ[~x/~α][y/ψ] ≡ ϕ[y/ψ, ~x/~α].

(3) If y 6∈ Free(ψ) then ϕ[y/ψ, ~x/~α][y/ψ] ≡ ϕ[~x/~α][y/ψ].

(4) If y 6∈ Bound(ϕ) then ϕ[y/ψ, ~x/(~α[y/ψ])] ≡ ϕ[~x/~α][y/ψ].

(5) Let ~y ≡ (y1, . . . , yn), ~z ≡ (z1, . . . , zn) be vectors of pairwise distinct variables
and ~ψ ≡ (ψ1, . . . , ψn) a vector of formulae. If zj 6∈ (Bound(ϕ) ∪ Free(ϕ)) and if
zj 6∈ Free(αi) for all i and j then ϕ[~x/~α, ~y/~z][~z/~ψ] ≡ ϕ[~x/~α, ~y/~ψ].

The class of formulae where all free variables are among a subset of propositional
variables L ⊆ P is denoted by Lµ(L), that is,

Lµ(L) = {ϕ ∈ Lµ | Free(ϕ) ⊆ L}.

Clearly, a formula containing no fixpoint operator is a modal formula. The set of
all modal formulae is denoted by Lmod. A formula ϕ can be transformed in negation
normal form, nnf(ϕ), by shifting all negations inside the formula by using the dualities
of the connectives defined. For any formulae α(x) and natural number n ∈ N we
define recursively αn(x), such that α1(x) ≡ α(x) and αn+1(x) ≡ α[x/αn(x)]. Kozen’s
Axiomatisation, KOZ, is a Hilbert-Style axiomatisation and consists of the following
axioms and rules.

Axioms:
KOZ contains all axioms of the classical propositional calculus, the distribution axiom

�(ϕ→ ψ)→ (�ϕ→ �ψ)

the fixpoint axiom
νx.ϕ↔ ϕ(νx.ϕ)

and the duality axioms

¬�¬ϕ↔ ♦ϕ and ¬νx.¬ϕ[x/¬x]↔ µx.ϕ

which are necessary since we did not introduce ♦ as ¬�¬ and µ and ν similarly.
Inference Rules:

In addition to the classical Modus Ponens [MP] we have the Necessitation Rule [Nec]
from Modal Logic.

[MP] :
ϕ ϕ→ ψ

ψ
[Nec] :

ϕ

�ϕ
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Further, for any formula ϕ(x) such that x appears only positively we have the Induc-
tion Rule [Ind] to handle fixpoints.

[Ind] :
ψ → ϕ(ψ)
ψ → νx.ϕ

.

If there is a proof for a formula ϕ we write ` ϕ. The proof of the next lemma is left
to the reader.

Lemma 2.3. Let ϕ,ψ be Lµ-formulae and let α(x) be a Lµ-formula with x appearing
only positively . The following holds:

(1) ` ϕ↔ nnf(ϕ).

(2) If ` ϕ→ ψ then ` α(ϕ)→ α(ψ)

(3) For all n ∈ N we have ` αn(x)[x/⊥]→ µx.α(x).

(4) If y 6∈ Free(ϕ) we have ` σx.ϕ↔ σy.(ϕ[x/y]) where σ ∈ {µ, ν}.

(5) If y 6∈ Free(ϕ) we have ` ψ(σx.ϕ)↔ ψ(σy.(ϕ[x/y])) where σ ∈ {µ, ν}.

Remark 2.4. Having in mind Lemma 2.3 (v), in the sequel we assume formulae
to be well-named, that is, bound and free variables are distinct and for two distinct
subformulae σx.α and σ′y.β we have x 6≡ y (where σ, σ′ ∈ {µ, ν}).

2.2 Semantics

The standard semantics for modal µ-calculus is given by transition systems. A tran-
sition system S is a triple (S,→S , λ) consisting of

• a set S of states,

• a binary relation →S⊆ S× S called transition relation,

• the valuation λ : P → P(S) assigning to each propositional variable p a subset
λ(p) of S.

We write s →S t for (s, t) ∈→S . Let λ be a valuation on P(S), p a propositional
variable and S′ an element of P(S); we set for all propositional variables p′

λ[p 7→ S′](p′) =

{
S′ if p′ = p,

λ(p′) otherwise.

Given a transition system S = (S,→S , λ), then S[p 7→ S′] denotes the transition
system (S,→S , λ[p 7→ S′]). For any transition system S and state s0 ∈ S we define
the pointed transition system as the tuple (S, s0). Let ϕ be a Lµ-formula and S a
transition system, the set of states where ϕ holds, denoted by ‖ϕ‖S , is called the
denotation of ϕ in S. The definition of ‖ϕ‖S is by induction on the complexity of ϕ.
Simultaneously for all transition systems S we set:
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• ‖p‖S = λ(p) for all p ∈ P

• ‖¬α‖S = S− ‖α‖S

• ‖α ∧ β‖S = ‖α‖S ∩ ‖β‖S

• ‖α ∨ β‖S = ‖α‖S ∪ ‖β‖S

• ‖�α‖S = {s ∈ S | ∀t((s→S t)⇒ t ∈ ‖α‖S)}

• ‖♦α‖S = {s ∈ S | ∃t((s→S t) ∧ t ∈ ‖α‖S)}

• ‖νx.α‖S =
⋃
{S′ ⊆ S | S′ ⊆ ‖α(x)‖S[x 7→S′]}

• ‖µx.α‖S =
⋂
{S′ ⊆ S | ‖α(x)‖S[x 7→S′] ⊆ S′}

Given a formula ϕ(x) and set of states S′ ⊆ S we sometimes write ‖ϕ(S′)‖S instead of
‖ϕ(x)‖S[x 7→S′], analogously, if S1, . . . ,Sn ⊆ S, for ‖ϕ(S1, . . . ,Sn)‖S . When clear from
the context we use ‖ϕ(x)‖S for the function

‖ϕ(x)‖S :

{
P(S)→ P(S)
S′ 7→ ‖ϕ(S′)‖S .

Analogously for ‖ϕ(x1, . . . , xn)‖S .
By Tarski-Knaster Theorem, c.f. [9], ‖νx.α(x)‖S is the greatest and ‖µx.α(x)‖S

the least fixpoint of the operator ‖α(x)‖S , we have

‖νx.α(x)‖S = GFP(‖α(x)‖S) and ‖µx.α(x)‖S = LFP(‖α(x)‖S)

and, moreover, for any finite transition system S of cardinality n we have

‖νx.α(x)‖S = ‖αn(>)‖S and ‖µx.α(x)‖S = ‖αn(⊥)‖S .

Tarski-Knaster Theorem does not restrict the second claim to finite domains. Since for
this work this already suffices and, therefore, transfinite iterations are not necessarily
needed we cite this less general variant.

If s ∈ ‖ϕ‖S we say that ϕ is valid in s. If ϕ is valid in all states s of S then ϕ is
said to be valid in S and we write S |= ϕ. For pointed transition systems we write
(S, s0) |= ϕ if s0 ∈ ‖ϕ‖S . ϕ is valid in all transition systems S then ϕ is valid and we
write |= ϕ, obviously this is exactly the case when it is valid in all pointed transition
systems. Correctness of KOZ is proven by a straightforward induction on the proof
length.

Proposition 2.5 (Correctness). For all Lµ-formulae ϕ we have

` ϕ ⇒ |= ϕ.
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We extend the notion of denotation to vectors of formulae (ϕ1, . . . , ϕn) ≡ ~ϕ
whereby for all transition systems S ‖~ϕ‖S denotes the vector (‖ϕ1‖S , . . . , ‖ϕn‖S) ⊆
P(S)n. For any vector of sets of states ~S′ = (S′1, . . . ,S

′
n) and any vector of propo-

sitional variables ~x = (x1, . . . , xn) by S[~x 7→ ~S′] we denote the transition system
S[x1 7→ S′1] . . . [xn 7→ S′n] (note that, the order does not matter here). The next
lemma is proven by induction on ϕ.

Lemma 2.6. For all µ formulae ϕ,ψ and vector of formulae ~ψ and transition systems
S we have

(1) ‖ϕ[x/ψ]‖S = ‖ϕ‖S[x 7→‖ψ‖S ] and

(2) ‖ϕ[~x/~ψ]‖S = ‖ϕ‖S[~x 7→‖~ψ‖S ]
.

Let αi(x1, . . . , xn) be formulae for all i ∈ {1, . . . , n} with xi appearing only posi-
tively. We can define a new functional ‖(α1, . . . , αn)(x1, . . . , xn)‖S as follows (‖~α(~x)‖S
abbreviates ‖(α1, . . . , αn)(x1, . . . , xn)‖S).

‖~α(~x)‖S : P(S)n → P(S)n

(S1, . . . ,Sn) 7→ (‖α1(S1, . . . ,Sn)‖S , . . . , ‖αn(S1, . . . ,Sn)‖S)

By Tarski-Knaster ‖~α(~x)‖S has a greatest fixpoint GFP(~α) and a least fixpoint LFP(~α)
on P(S)n, where the order relation ⊆n is defined such that (S1, . . . ,Sn) ⊆n (S′1, . . . ,S

′
n)

if and only if Si ⊆ S′i for all i ∈ {1, . . . , n}. In the following if there is no danger of
confusion we write ⊆ instead of ⊆n.

2.3 Bisimulation

Bisimulation is used to formalize the notion of observational equivalence and defines
and a central concept in operational semantics. Let S = (S,→S , λS) and S ′ = (S,→S′

, λS′) be two transition systems and let L ⊆ P be a subset of propositional variables.
A relation R ⊆ S× S′ is a L-bisimulation if the following hold:

(1) if (s, s′) ∈ R and s→S t then there is a t′ ∈ S′ such that s′ →S′ t
′ and (t, t′) ∈ R,

(2) if (s, s′) ∈ R and s′ →S′ t
′ then there is a t ∈ S such that s→S t and (t, t′) ∈ R,

and

(3) if (s, s′) ∈ R then for all propositional variables p ∈ L we have s ∈ λS(p) if and
only if s′ ∈ λS′(p).

Two pointed transition systems (S, s) and (S ′, s′) are L-bisimilar if there is a L-
bisimulation relation R ⊆ S × S′ such that (s, s′) ∈ R; we write (S, s) ∼L (S ′, s′).
‖(S, s)‖∼L

denotes the (proper) class of all pointed transition systems which are L-
bisimilar to (S, s). The next folklore lemma states that two bisimilar states fulfill
exactly the same formulae with free variables in L. The proof is by unwinding the
definitions of bisimilarity and denotation.
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Lemma 2.7. Let S = (S,→S , λS) and S ′ = (S′,→S′ , λS′) be two transition systems
and let s ∈ S and s′ ∈ S′. We have

(S, s) ∼L (S ′, s′) ⇒ (all ϕ ∈ Lµ(L) s ∈ ‖ϕ‖S if and only if s′ ∈ ‖ϕ‖S′).

3 Simultaneous Fixpoints

In the first subsection we motivate simultaneous fixpoints by showing that they can
be used to characterize bisimlarity. In the second section we show that in modal
µ-calculus simultaneous fixpoints can be seen as tuples of Lµ-formulae and in the last
subsection we prove that the basic properties are derivable in KOZ.

3.1 Bisimulation Classes of finite transition systems

Let L be a finite subset of propositional variables and let S be the finite transition
system of the form ({s1, . . . , sn},→, λ). For any state si we define a modal formula
φL
si
∈ Lmod(L ∪ {s1 . . . , sn}) characterizing it locally modulo L-bisimulation, the local

characteristic L-formula, as

φL
si

(s1, . . . , sn) ≡ �(
∨

{sj |si→sj}

sj) ∧
∧

{sj |si→sj}

♦sj ∧
∧

si∈‖p‖S
p∈L

p ∧
∧

si∈‖¬p‖S
p∈L

¬p.

(Note, that
∨
∅ ≡ ⊥ and

∧
∅ ≡ >.) For any transition system S ′ with states S′ start-

ing for the (finitely many) local characteristic L-formulae we can define the following
function:

‖~φ(~x)‖S′ : P(S′)n → P(S′)n

(S′1, . . . ,S
′
n) 7→ (‖φL

s1(S
′
1, . . . ,S

′
n)‖S′ , . . . , ‖φL

sn
(S′1, . . . ,S

′
n)‖S′)

‖~φ‖S′ is a monotone operator on P(S′)n ordered by ⊆n and therefore, by Tarski-
Knaster [9], it follows that GFP(‖~φ‖S′) exists. The following theorem shows that
bisimulation equivalence classes of finite transition systems can be seen as simultane-
ous greatest fixpoints. It has first been established in the context of Hennessy-Milner
logic (see Aceto and Ingolfsdottir [1]).

Theorem 3.1. Let L be a finite set of propositional variables and let S be a finite tran-
sition system states with {s1, . . . , sn} and with corresponding local characteristic L-
formulae φs1 , . . . , φsn. For all transition systems S ′ and n-tuples of states (s′1, . . . , s

′
n)

we have

(s′1, . . . , s
′
n) ∈ GFP(‖~φ‖S′) if and only if (S ′, s′i) ∼L (S, si) all i.
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3.2 Simultaneous Fixpoints as Lµ-formulae

Definition 3.2 (Syntactical Simultaneous Fixpoints). Let n be a natural num-
ber and let ~x ≡ (x1, . . . , xn) be a vector of variables. For any vector of formulae
(α1(~x), . . . , αn(~x)) where each xj appears only positively in each αi we define re-
cursively the greatest simultaneous fixpoint and the projections. The greatest simul-
taneous fixpoint is an n-tuple of Lµ-formulae and is denoted by ν(x1, . . . , xn).~α or
shorter ν~x.~α. For all j ≤ n the j-th projection of ν~x.~α is the Lµ-formula denoted by
πnj (ν~x.~α). The defining recursion is the following:

n = 1 : π1
1(ν~x.~α) ≡ νx1.α1(x1)
ν~x.~α ≡ π1

1(ν~x.~α)
n > 1 : πni (ν~x.~α) ≡ νxi.αi(~x)[~x−i/ν~x−i.~α−i]

ν~x.~α ≡ (πn1 (ν~x.~α), . . . , πnn(ν~x.~α))

The simultaneous least fixpoint µ~x.~α is defined analogously.

Remark 3.3. The restriction to variables xi which appear only positively guarantees
that the substitutions applied in the definition above are admissible and, therefore,
that simultaneous fixpoints of Lµ-formulae are Lµ-formulae, too.

Example 3.4. Let α(x, y), β(x, y) ∈ Lµ such that x, y appear only positively. Then
ν(x, y).(α(x, y), β(x, y)) ≡ (νx.α(x, νy.β(x, y)), νy.β(νx.α(x, y), y)).

The next theorem shows that syntactical simultaneous fixpoints correspond to
the semantical ones. It is an adaptation of the fixpoint result of Bekić [3] to our
framework. A similar proof can also be found in Arnold and Niwinski [2].

Theorem 3.5. Let αi(x1, . . . , xn) be formulae for all i ∈ {1, . . . , n} with all xj ap-
pearing only positively. For all transition systems S we have

GFP(‖~α(~x)‖S) = ‖ν~x.~α‖S and LFP(‖~α(~x)‖S) = ‖µ~x.~α‖S .

Proof. By induction on n, simultaneously for all formulae αi and transition systems
S. We show the arguments for the greatest fixpoints, the least fixpoints are left to the
reader. The case where n = 1 is trivial. For n > 1 let us fix an arbitrary transition
system S with states S and define ~A, ~B ∈ P(S)n whereby

~A = (A1, . . . , An) = GFP(‖~α(~x)‖S) and ~B = (B1, . . . , Bn) = ‖ν~x.~α‖S .

We have to show ~A = ~B. Let us fist show ~A ⊆ ~B. Since (A1, . . . , An) is a fixpoint
of ‖~α(~x)‖S for all i we have Ai = ‖αi(A1, . . . , An)‖S . Thus, for all i and all j 6= i we
have

Aj = ‖αj(A1, . . . , Ai−1, xi, Ai+1, . . . , An)‖S[xi 7→Ai].

It is clear from definition of ~A that the greatest fixpoint of the (n− 1)-ary functional
‖~α−i(~x−i)‖S[xi 7→Ai] must be ~A−i and by applying the induction hypothesis on the
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transition system S[xi 7→ Ai] to ~α−i we get ~A−i ⊆ ‖ν~x−i.~α−i(xi)‖S[xi 7→Ai] and by
monotonicity of αi in all components we can infer

‖αi(A1, . . . , An)‖S[xi 7→Ai] ⊆ ‖αi(~x)‖S[xi 7→Ai][~x−i 7→‖ν~x−i.~α−i(xi)‖S[xi 7→Ai]
]

and since Ai = ‖αi(A1, . . . , An)‖S[xi 7→Ai]

Ai ⊆ ‖αi(~x)‖S[xi 7→Ai][~x−i 7→‖ν~x−i.~α−i(xi)‖S[xi 7→Ai]
].

Therefore, Ai is a pre-fixpoint and we can infer

Ai ⊆ ‖νxi.αi(~x)‖S[xi 7→Ai][~x−i 7→‖ν~x−i.~α−i(xi)‖S[xi 7→Ai]
]

and by Lemma 2.6 we get

Ai ⊆ ‖νxi.αi(~x)[~x−i/ν~x−i.~α−i(xi)]‖S[xi 7→Ai].

It follows from the fact that xi does not appear free in the inequality above that

Ai ⊆ ‖νxi.αi(~x)[~x−i/ν~x−i.~α−i(xi)]‖S

and, therefore, Ai ⊆ ‖πni (~x)‖S . Since i was chosen arbitrarily we have shown ~A ⊆ ~B.
For the other inclusion, first observe that for all Bi since they are defined equal to
‖πni (ν~x.~α)‖S = ‖νxi.αi(~x)[~x−i/ν~x−i.~α−i]‖S we have

Bi = ‖αi(~x)[~x−i/ν~x−i.~α−i]‖S[xi 7→Bi].

Define ~C−i as ‖ν~x−i.~α−i(~x)‖S[xi 7→Bi], with the equation above and Lemma 2.6 we
infer

Bi = ‖αi(~x)‖S[~x−i 7→ ~C−i][xi 7→Bi]
. (1)

Further, by induction hypothesis ~C−i is a fixpoint of ‖~α−i(~x−i)‖S[xi 7→Bi] (in fact, the
greatest fixpoint) and, thus, we also have

~C−i = ‖~α−i(~x)‖S[~x−i 7→ ~C−i][xi 7→Bi]
. (2)

Combining equation 1 and 2 we have that the vector of subsets of states

(C1, . . . , Ci−1, Bi, Ci+1, . . . , Cn)

is a fixpoint of ~α(~x). And therefore we have for all i

(C1, . . . , Ci−1, Bi, Ci+1, . . . , Cn) ⊆ ~A

and, since i was chosen arbitrary, ~B ⊆ ~A.
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3.3 Provability of the fixpoint properties in KOZ

Before we show that KOZ proves the induction rule and the fixpoint axiom for simul-
taneous fixpoints we prove two technical lemmas dealing with substitution.

Lemma 3.6. Let α1(x1, . . . , xn, y), . . . , αn(x1, . . . , xn, y) be Lµ-formulae such that
all xi appear only positively and let ψ be a formula such that x1, . . . , xn, y 6∈ Free(ψ).
If we define α̂i ≡ αi[y/ψ] then we have

πni (ν~x.~̂α) ≡ πni (ν~x.~α)[y/ψ] and ν~x.~̂α ≡ ν~x.~α[y/ψ].

Proof. By induction on n we simultaneously prove both equivalences. The case
where n = 1 is clear. If n > 1 then we can establish the following equivalences

πni (ν~x.~̂α) ≡ νxi.α̂i(x)[~x−i/ν~x−i.~̂α−i]
≡ νxi.α̂i(x)[~x−i/ν~x−i.~α−i[y/ψ]] Ind. hyp.
≡ νxi.αi(x)[y/ψ][~x−i/ν~x−i.~α−i[y/ψ]] Definiton of α̂i
≡ νxi.αi(x)[~x−i/ν~x−i.~α−i][y/ψ] Lemma 2.2 (iv)
≡ πni (ν~x.~α)[y/ψ].

The induction step which shows ν~x.~̂α ≡ ν~x.~α[y/ψ] follows from the previous one
straightforwardly.

Lemma 3.7. Let ~α ≡ (α1, . . . , αn) be a vector of formulae and ~x ≡ (x1, . . . , xn), ~y ≡
(y1, . . . , yn) pairwise distinct vectors of variables such that all xi appear only free and
positively in all αj and such that y1, . . . , yn 6∈ (Free(αj) ∪ Bound(αj)). We have

` πni (ν~x.~α)↔ πni (ν~y.(~α[~x/~y])).

Proof. By induction on n. If n = 1 the claim follows from Lemma 2.3 (iv). If n > 1
then by definition we have

πni (ν~x.~α) ≡ νxi.αi[x1/π
n−1
1 , xi−1/π

n−1
i−1 , xi+1/π

n−1
i , . . . , xn/π

n−1
n−1] (3)

where πn−1
j ≡ πn−1

j (ν~x−i.~α−i). By induction hypothesis for all j 6= i we have

` πn−1
j (ν~x−i.~α−i)→ πn−1

j (ν~y−i.(~α−i[~x−i/~y−i])). (4)

Applying Lemma 2.3 (ii) to equations 3 and 4 we get

` πni (ν~x.~α)→ νxi.αi[~x−i/ν~y−i.(~α−i[~x−i/~y−i])]

and with Lemma 2.3 (iv) we get

` πni (ν~x.~α)→ νyi.αi[~x−i/ν~y−i.(~α−i[~x−i/~y−i])][xi/yi].
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The following equivalences complete the proof of ` πni (ν~x.~α)→ πni (ν~y.(~α[~x/~y])).

πni (ν~y.(~α[~x/~y])) ≡ νyi.(αi[~x/~y])[~y−i/ν~y−i.(~α−i[~x/~y])]
≡ νyi.(αi[~x/~y][~y−i/ν~y−i.(~α−i[~x/~y])]) Def. Subst.
≡ νyi.(αi[xi/yi, ~x−i/ν~y−i.(~α−i[~x/~y])]) Lemma 2.2 (v)
≡ νyi.(αi[xi/yi, ~x−i/ν~y−i.~α−i[~x/~y]]) Def. Subst.
≡ νyi.(αi[xi/yi, ~x−i/ν~y−i.~α−i[~x−i/~y−i][xi/yi]]) Lemma 2.2 (ii)
≡ νyi.αi[~x−i/ν~y−i.~α−i[~x−i/~y−i]][xi/yi] Lemma 2.2 (iv)
≡ νyi.αi[~x−i/ν~y−i.(~α−i[~x−i/~y−i])][xi/yi] Def. Subst.

The implication ` πni (ν~x.~α) ← πni (ν~y.(~α[~x/~y])) follows from the other implication
and from the fact that ν~x.((~α[~x/~y])[~y/~x]) ≡ ν~x.~α.

Proposition 3.8 (Simultaneous Induction Rule). Let αi(x1, . . . , xn) be formulae
for all i ∈ {1, . . . , n} with all xj appearing only positively and let ψ1, . . . , ψn be Lµ-
formulae. If we have

` ψi → αi(ψ1, . . . , ψn) for all i ∈ {1, . . . , n}

then we also have
` ψi → πni (ν~x.~α) for all i ∈ {1, . . . , n}.

Proof. We first show the lemma assuming that x1, . . . , xn 6∈ Free(ψi) for all i. The
proof goes by induction on n simultaneously for all formulae. The case where n = 1
is easily verified by applying the induction rule [Ind]. If n > 1 for any i ∈ {1, . . . , n}
we have

` ψi → αi(ψ1, . . . , ψn). (5)

We fix an arbitrary i and for all j 6= i we define α̂j ≡ αj [xi/ψi]. By applying
the induction hypothesis to the vector of formulae (α̂1, . . . , α̂i−1, α̂i+1, . . . , α̂n) for all
j 6= i we get ` ψj → πnj (ν~x−i.~̂α−i) and with Lemma 3.6, since we assumed that
x1, . . . , xn 6∈ Free(ψi) for all i, we get

` ψj → πnj (ν~x−i.~α−i)[xi/ψi] i 6= j. (6)

Since ` ψi → αi(ψ1, . . . , ψn), by equation 6 and by Lemma 2.3 (ii) we can deduce

` ψi → αi(~x) [x1/π
n
1 (ν~x−i.~α−i)[xi/ψi]

, . . . , xi/ψi, . . . ,
xn/π

n
n(ν~x−i.~α−i)[xi/ψi]]

and by applying Lemma 2.2 (iv) we get ` ψi → αi(~x)[~x−i/ν~x−i.~α−i][xi/ψi]. An
application of the induction rule [Ind] leads to ` ψi → νxi.αi(~x)[~x−i/ν~x−i.~α−i]. By
definition we have πni (ν~x.~α) ≡ νxi.αi(~x)[~x−i/ν~x−i.~α−i]. Since i was chosen arbitrarily
we have completed the induction step.
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In order to complete the proof we have to show that we can drop the assumption
that x1, . . . , xn 6∈ Free(ψi) for all i. First, define for all i the formula α̂i(y1, . . . , yn) ≡
αi(x1, . . . , xn)[x1/y1, . . . , xn/yn], such that all yj are new variables. Trivially, if

` ψi → αi(ψ1, . . . , ψn) for all i ∈ {1, . . . , n}

then, since α̂i(ψ1, . . . , ψn) ≡ αi(ψ1, . . . , ψn), we have

` ψi → α̂i(ψ1, . . . , ψn) for all i ∈ {1, . . . , n}.

Since y1, . . . , yn 6∈ Free(ψi) for all i we can apply the claim of this lemma and get

` ψi → πni (ν~y.~̂α) for all i ∈ {1, . . . , n}.

By Lemma 3.7 we have ` πni (ν~y.~̂α)→ πni (ν~x.~α) and, therefore,

` ψi → πni (ν~x.~α) for all i ∈ {1, . . . , n}.

Proposition 3.9 (Simultaneous Fixpoint Axiom 1). Let αi(x1, . . . , xn) be for-
mulae for all i ∈ {1, . . . , n} with all xj appearing only positively. For all i we have

` πni (ν~x.~α)→ αi(πn1 (ν~x.~α), . . . , πnn(ν~x.~α)).

Proof. By induction on n. The case where n = 1 follows from definition of π1
1(ν~x.~α)

and fixpoint axiom. For the case where n > 1 for all i we abbreviate πni (ν~x.~α) ≡
νxi.αi(~x)[~x−i/ν~x−i.~α−i] by πni . For a given and arbitrary i we define a vector of for-
mulae ~ψ−i to be ν~x−i.~α−i[xi/πni ]. Note, that for all ψi ∈ ~ψ−i we have ~x 6∈ Free(ψi).
Since ~x 6∈ Free(πni ) by Lemma 3.6 we have for all j 6= i that ν~x−i.~α−i[xi/πni ] ≡
ν~x−i.~̂α−i where α̂j ≡ αj [xi/πni ]. By induction hypothesis for ν~x−i.~̂α−i for all ψj ∈
~ψ−i we get ` ψj → α̂j [~x−i/~ψ−i] and unwinding the definition of α̂j we get `
ψj → αj [xi/πni ][~x−i/~ψ−i]. Since ~x 6∈ Free(πni ) we can apply Lemma 2.2 (i) and get
αj [xi/πni ][~x−i/~ψ−i] ≡ αj [xi/πni , ~x

−i/~ψ−i]. Therefore, the implication above can be
reformulated as

` ψj → αj [xi/πni , ~x
−i/~ψ−i]. (7)

Further, by applying the fixpoint axiom to πni we have

` πni → αi[xi/πni , ~x
−i/~ψ−i]. (8)

Equations 7 and 8 fulfill the requirements of Proposition 3.8 and therefore we can
apply it and get ` ψj → πnj for all j 6= i. By monotonicity of all αj with Lemma 2.3
(ii) we can infer from equation 8 the following implication

` πni → αi(πn1 , . . . , π
n
n).

Since i was chosen arbitrary we have completed the induction step and the proof.
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Proposition 3.10 (Simultaneous Fixpoint Axiom 2). Let αi(x1, . . . , xn) be
formulae for all i ∈ {1, . . . , n} with all xj appearing only positively. For all i we have

` αi(πn1 (ν~x.~α), . . . , πnn(ν~x.~α))→ πni (ν~x.~α)

Proof. We abbreviate πni (ν~x.~α) by πn1 . By Proposition 3.9 for all i we have ` πni →
αi(πn1 , . . . , π

n
n). Applying Lemma 2.3 (ii) for all i we can infer

` αi(πn1 , . . . , πnn)→ αi(α1(πn1 , . . . , π
n
n), . . . , αn(πn1 , . . . , π

n
n)).

Applying Proposition 3.8 gives us the desired result.

4 Completeness for characteristic formulae

The next theorem says that a finite transition system can be characterized modulo
bisimulation by his characteristic formula. It is a consequence of the Theorems 3.1
and 3.5 and has first been proven by Steffen in [8].

Theorem 4.1 (Characteristic Formula). For any finite transition system S, finite
set of propositional variables L and any state s there exists a formula χL

(S,s) such that
for all transition systems S ′ and all states s′ we have

s′ ∈ ‖χL
(S,s)‖S′ if and only if (S, s) ∼L (S ′, s′).

Remember that χ(S,s) is the greatest simultaneous fixpoint ν~x.~φL of all local char-
acteristic L-formulae defined for every state si in S as

φL
si

(s1, . . . , sn) ≡ �(
∨

{sj |si→sj}

sj) ∧
∧

{sj |si→sj}

♦sj ∧
∧

si∈‖p‖S
p∈L

p ∧
∧

si∈‖¬p‖S
p∈L

¬p.

By remembering the definitions of ν~x.~α and πni (ν~x.~α) we can remark the following.

Remark 4.2. Any characteristic formula χ(S,s0) only contains greatest fixpoints; that
is, it belongs to the first level of the fixpoint hierarchy where only greatest fixpoint
constructors are allowed (when formulae are assumed to be in negation normal form).

Further, Lemma 3.9 can be reformulated as follows:

Lemma 4.3. Let S be a finite transition system with states {s1, . . . , sn} and let L
be a finite set of propositional variables. For all i we have

` χL
(S,si)

→ φL
si

(χL
(S,s1), . . . , χ

L
(S,sn)).

Let S′ ⊆ S be an arbitrary subset of the states of a finite transition system. We
define

χL
(S,S′) ≡

∨
s′∈S′

χL
(S,s′)

and state the following Lemma.
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Lemma 4.4. Let s ∈ S be an arbitrary state of a finite transition system S and let
R(s) = {s′ ∈ S | s→S s

′}. We have

(1) ` χL
(S,s) → �(χL

(S,R(s))), and

(2) ` χL
(S,s) → ♦χL

(S,s′) for any s′ ∈ R(s).

Proof. By Lemma 4.3 we have ` χL
(S,s) → φL

s(χ
L
(S,s1), . . . , χ

L
(S,sn)). By remembering

the definition of φL
s with classical propositional reasoning we can infer both parts of

the lemma.

Theorem 4.5 (Model Checking with KOZ). Let S = (S,→S , λ) be a finite transi-
tion system and L a finite set of propositional variables. For all states s ∈ S, formulae
ϕ(x1, . . . , xn) ∈ Lµ(L) and set of states S1, . . . ,Sn we have

s ∈ ‖ϕ(S1, . . . ,Sn)‖S ⇔ ` χL
(S,s) → ϕ(χL

(S,S1), . . . , χ
L
(S,Sn))

Proof. The direction from right to left follows from Theorem 4.1 and the correctness
of Kozen’s Axiomatisation 2.5. The other direction is proved by induction on the
complexity of ϕ. Since we have ` ϕ ↔ nnf(ϕ) we assume that all formulae are in
negation normal form. The cases where ϕ is of the form p,¬p, α∧ β, α∨ β are left to
the reader. The cases where ϕ is of the form �α,♦α use Lemma 4.4 and are left to
the reader, too.

ϕ ≡ µx.α(x, x1, . . . , xn): If s ∈ ‖µx.α(x, S1, . . . ,Sn)‖S then, since S is a finite
transition system, there is a n such that

s ∈ ‖αn(⊥,S1, . . . ,Sn)‖S

By induction hypothesis we have

` χL
(S,s) → αn(⊥, χL

(S,S1), . . . , χ
L
(S,Sn))

and with Lemma 2.3.3 can derive

` χL
(S,s) → µx.α(x, χL

(S,S1), . . . , χ
L
(S,Sn)).

ϕ ≡ νx.α(x, x1, . . . , xn): If s ∈ ‖νx.α(x,S1, . . . ,Sn)‖S then, by the fixpoint prop-
erties we have

s ∈ ‖α(‖νx.α(x,S1, . . . ,Sn)‖S ,S1, . . . ,Sn)‖S .
By induction hypothesis we have

` χ(S,s) → α(χL
(S,‖νx.α(x,S1,...,Sn)‖S), χ

L
(S,S1), . . . , χ

L
(S,Sn)).

Since this is valid for all s ∈ ‖νx.α(x, S1, . . . ,Sn)‖S we get

` χL
(S,‖νx.α(x,S1,...,Sn)‖S) → α(χL

(S,‖νx.α(x,S1,...,Sn)‖S), χ
L
(S,S1), . . . , χ

L
(S,Sn)).

With the induction rule [Ind] we get

` χ(S,‖νx.α(x,S1,...,Sn)‖S) → νx.α(x, χL
(S,S1), . . . , χ

L
(S,Sn)).

and since ` χL
(S,s) → χL

‖νx.α(x,S1,...,Sn)‖S we get the induction step.
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Our partial completeness result follows from Theorems 4.5 and 4.1

Corollary 4.6 (Completeness for Characteristic formulae). Let χL
(S,s) be the

characteristic formula for an arbitrary state s in a finite transition system S and let
ϕ ∈ Lµ(L). We have

|= χL
(S,s) → ϕ if and only if ` χL

(S,s) → ϕ.

Proof. The ”if” direction follows form correctness 2.5. For the ”only if” observe that
from |= χL

(S,s) → ϕ we have that s ∈ ‖ϕ‖S . By applying Theorem 4.5 we get the
desired result.
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