
On Feferman’s operational set theory OST

Gerhard Jäger

Abstract

We study OST and some of its most important extensions primar-
ily from a proof-theoretic perspective, determine their consistency
strengths by exhibiting equivalent systems in the realm of traditional
set theory and introduce a new and interesting extension of OST which
is conservative over ZFC.
Keywords: Operational set theory, explicit mathematics, proof the-
ory, classical and constructive set theories

1 Introduction

In the seventies Feferman introduced explicit mathematics as an appropri-
ate logical framework for formalizing Bishop-style constructive mathematics.
However, soon it turned out that it also played an important role in reduc-
tive proof theory and as an axiomatic approach to abstract computability.
The seminal paper Feferman [9] presents the general program of explicit
mathematic and the famous theory T0; Feferman [10] deals with and lays the
foundations for later work about the connections between explicit mathemat-
ics and generalized recursion theory. In Feferman and Jäger [13] and Jäger
and Strahm [19] the proof theory of the non-constructive µ-operator and the
Suslin operator in an explicit context are studied; Jäger and Strahm [18, 20]
deal with various forms of explicit reflections, in particular with Mahloness
and analogues of Π3 reflection.

It is evident from these publications that explicit mathematics has a strong
set-theoretic flavor. Nevertheless, as far as precise formal systems are con-
cerned, only a little has been done in this direction for quite some time.
Beeson [7] presents an interesting computation system based on set theory,
formulated as a theory of sets and rules. Feferman [11], the starting point
of the following considerations, introduces the system OST of operational
set theory, motivated by the aim to develop a common language for small
large cardinal notions as in classical set theory, admissible set and recursion

1

theory, constructive set theory, explicit mathematics, constructive type the-
ory and recursive ordinal notation systems. This is achieved by “expanding
the language of set theory to allow us to talk about general set-theoretical
operations and formulating the large cardinal notions in question in terms of
operational closure conditions; this is a partial adaptation of explicit math-
ematics notions to the set-theoretical framework” (quotation from [11]).

Cantini and Crosilla [8] is about a constructive set theory with operations
COST, which may be considered as a constructive version of OST, and may
be regarded as providing a bridge between Aczel’s constructive set theory
CZF, see, e.g., Aczel [1, 2, 3], and explicit mathematics. Finally, there is
Feferman [12] in which variants of the systems of Feferman [11] are described
closer in syntax to original explicit mathematics.

In the present article we study OST and some of its most important exten-
sions primarily from a proof-theoretic perspective, determine their consis-
tency strengths by exhibiting equivalent systems in the realm of traditional
set theory and introduce a new and interesting extension of OST which is
conservative over ZFC.

2 Feferman’s theory OST

The theory OST is formulated in the language L◦ which extends the usual
language L of set theory by the possibility to treat all objects as operations
and to apply them freely to each other. Actually, we will present a minor
syntactic variant of Feferman’s original formulation.

The language L is a typical language of admissible or classical set theory with
symbols for the element and identity relations as its only relation symbols.
In addition, we have set variables a, b, c, f, g, u, v, w, x, y, z, . . . (possibly with
subscripts) and the constant ω for the first infinite ordinal. The only terms
of L are the variables and the constant ω; the formulas of L are defined as
usual.

L◦, the language of OST, augments L by the unary relation symbol ↓ (de-
fined), the binary function symbol ◦ for partial term application and the
following constants: (i) the combinators k and s; (ii) >, ⊥, el, non, dis and
e for logical operations; (iii) S, R and C for set-theoretic operations. The
meaning of these constants follows from the axioms below.

The terms (r, s, t, r1, s1, t1, . . .) of L◦ are inductively generated as follows:

1. The variables and constants of L◦ are terms of L◦.

2

2. If s and t are terms of L◦, then so is ◦(s, t).

In the following we often abbreviate ◦(s, t) as (s ◦ t), as (st) or – if no
confusion arises – simply as st. We also adopt the convention of association
to the left so that s1s2 . . . sn stands for (. . . (s1s2) . . . sn). In addition, we
often write s(t1, . . . , tn) for st1 . . . tn if this seems more intuitive. Moreover,
we frequently make use of the vector notation ~s as shorthand for a finite
string s1, . . . , sn of L◦ terms whose length is either not important or evident
from the context.

As you can see, self-application is possible and meaningful, but it is not
necessarily total, and there may be terms which do not denote an object.
We make use of the definedness predicate ↓ to single out those which do, and
(t↓) is read “t is defined” or “t has a value”.

The formulas (A, B, C,D, A1, B1, C1, D1, . . .) of L◦ are generated as follows:

1. All expressions of the form (s ∈ t), (s = t) and (t↓) are formulas of L◦;
the so-called atomic formulas.

2. If A and B are formulas of L◦ , then so are ¬A, (A ∨B) and (A ∧B).

3. If A is a formula and t a term of L◦ which does not contain x, then
(∃x ∈ t)A, (∀x ∈ t)A, ∃xA and ∀xA are formulas of L◦.

Since we will be working within classical logic, the remaining logical connec-
tives can be defined as follows:

(A → B) := (¬A ∨B) and (A ↔ B) := ((A → B) ∧ (B → A)).

We will often omit parentheses and brackets whenever there is no danger of
confusion. The free variables of t and A are defined in the conventional way;
the closed L◦ terms and closed L◦ formulas, also called L◦ sentences, are
those which do not contain free variables.

Given an L◦ formula A and a variable u not occurring in A, we write Au for
the result of replacing each unbounded set quantifier ∃x(. . .) and ∀x(. . .) in
A by (∃x ∈ u)(. . .) and (∀x ∈ u)(. . .), respectively.

Suppose now that ~u = u1, . . . , un and ~s = s1, . . . , sn. Then A[~s/~u] is the
L◦ formula which is obtained from A by simultaneously replacing all free
occurrences of the variables ~u by the L◦ terms ~s; in order to avoid collision of
variables, a renaming of bound variables may be necessary. If the L◦ formula
A is written as B[~u], then we often simply write B[~s] instead of B[~s/~u].
Further variants of this notation will be obvious.

3

The logic of OST is the (classical) logic of partial terms due to Beeson [5, 6];
see also Troelstra and van Dalen [25], where E(t) is written instead of (t↓).
By the strictness axioms of this logic the formula (s = t) implies that both,
s and t, are defined. Partial equality of terms is introduced by

(s ' t) := (s↓ ∨ t↓ → s = t)

and says that if either s or t denotes anything, then they both denote the
same object.

The non-logical axioms of OST comprise axioms about the applicative struc-
ture of the universe, some basic set-theoretic properties, the representation
of elementary logical connectives as operations and operational set existence
axioms. They divide into four groups.

I. Applicative axioms.

(1) k 6= s,

(2) kxy = x,

(3) sxy↓ ∧ sxyz ' (xz)(yz).

Thus the universe is a partial combinatory algebra. We have λ-abstraction
and thus can introduce for each L◦ term t a term λx.t whose variables are
those of t other than x such that

λx.t↓ ∧ (λx.t)y ' t[y/x].

Furthermore, there exists a closed L◦ term fix, a so-called fixed point opera-
tor, with

fix(f)↓ ∧ (fix(f) = g → gx ' f(g, x)).

II. Basic set-theoretic axioms. They state that: (i) there is the empty set;
(ii) there are unordered pairs and unions; (iii) ω is the first infinite ordinal;
(iv) all objects are extensional,

a = b ↔ ∀x(x ∈ a ↔ x ∈ b),

and (iv) ∈-induction is available for arbitrary formulas A[x] of L◦,

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].(L◦-I∈)

To increase readability, we will freely use standard set-theoretic terminology
from now on; for example

a ⊂ b := (∀x ∈ a)(x ∈ b) and Tran(a) := (∀x ∈ a)(x ⊂ a).

4

If A[x] is an L◦ formula, then {x : A[x]} stands for the collection of all sets
satisfying A; an expression of the form {x ∈ s : A[x]} is used as shorthand
for {x : x ∈ s ∧ A[x]}. A collection {x : A[x]} may be (extensionally equal
to) a set, but this is not necessarily the case. Hence some care is required
when working with such expressions, and we define:

t ∈ {x : A[x]} := A(t),

t = {x : A[x]} := t↓ ∧ ∀x(x ∈ t ↔ A[x]).

In particular, we set

B := {x : x = > ∨ x = ⊥} and V := {x : x↓}

so that B stands for the unordered pair consisting of the truth values > and
⊥, which is a set by the previous axioms. V denotes the collection of all sets,
but is not a set itself. The shorthand notations, for n an arbitrary natural
number,

(f : a → b) := (∀x ∈ a)(fx ∈ b),

(f : an+1 → b) := (∀x1, . . . , xn+1 ∈ a)(f(x1, . . . , xn+1) ∈ b)

express that f , in the operational sense, is a unary and (n+1)-ary mapping
from a to b, respectively. They do not say, however, that f is a unary or
(n+1)-ary function in the set-theoretic sense (see below).

In the previous definition the set variables a and/or b may be replaced by
V and/or B. So, for example, (f : a → V) means that f is total on a, and
(f : V → b) means that f maps all sets into b. If we have (f : a → B), we
may regard f as a definite predicate on a. The n-ary Boolean operations are
those f for which (f : Bn → B).

III. Logical operations axioms.

(1) > 6= ⊥,

(2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = > ↔ x ∈ y),

(3) (non : B → B) ∧ (∀x ∈ B)(non(x) = > ↔ x = ⊥),

(4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = > ↔ (x = > ∨ y = >)),

(5) (f : a → B) → (e(f, a) ∈ B ∧ (e(f, a) = > ↔ (∃x ∈ a)(fx = >))).

5

The ∆0 formulas of L◦ are those L◦ formulas which do not contain the func-
tion symbol ◦, the relation symbol ↓ or unbounded quantifiers. Hence they
are the usual ∆0 formulas of set theory, possibly containing additional con-
stants. The logical operations make it possible to represent all ∆0 formulas
by constant L◦ terms.

Lemma 1 Let ~u be the sequence of variables u1, . . . , un. For every ∆0 for-
mula A[~u] of L◦ with at most the variables ~u free, there exists a closed L◦

term tA such that the axioms introduced so far yield

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

This result is also mentioned in Feferman [11]; its proof is straightforward
and left to the reader. After having introduced the final group of axioms
of OST, we will also formulate a representation property concerning a wider
class of L◦ formulas; see Lemma 3 below.

IV. Operational set-theoretic axioms.

(1) Separation for definite operations:

(f : a → B) → (S(f, a)↓ ∧ ∀x(x ∈ S(f, a) ↔ (x ∈ a ∧ fx = >))).

(2) Replacement:

(f : a → V) → (R(f, a)↓ ∧ ∀x(x ∈ R(f, a) ↔ (∃y ∈ a)(x = fy))).

(3) Choice:
∃x(fx = >) → (Cf↓ ∧ f(Cf) = >).

This finishes the description of the non-logical axioms of OST. A significant
strengthening of OST is obtained by adding the operational form of the power
set axiom. To do so, we extend L◦ to the language L◦(P) by introducing the
fresh constant P and add the axiom

(P : V → V) ∧ ∀x∀y(x ∈ Py ↔ x ⊂ y).(P)

Accordingly, OST(P) is the operational set theory which comprises the ax-
ioms of OST plus operational power set (P), everything formulated for the
language L◦(P).

Definition 2 The eΣ formulas of L◦(P) are inductively defined as follows:

1. If s and t are L◦(P) terms, then (s ∈ t), (s = t) and (t↓) are eΣ
formulas of L◦(P).

6

2. If s and t are variables or constants, then (s /∈ t) and (s 6= t) are eΣ
formulas of L◦(P).

3. If A and B are eΣ formulas of L◦(P), then so are (A∨B) and (A∧B).

4. If A is an eΣ formula of L◦(P) and t a term of L◦(P) which does not
contain x, then (∃x ∈ t)A and ∃xA are eΣ formulas of L◦(P).

5. If A is an eΣ formula of L◦(P) and t a constant or a variable other
than x, then (∀x ∈ t)A is an eΣ formula of L◦(P).

The eΣ formulas of L◦ are exactly the eΣ formulas of L◦(P) in which the
constant P does not occur.

Hence the eΣ formulas, i.e. the extended Σ formulas, of L◦ and L◦(P) are as
the Σ formulas of set theory with positive occurrences of arbitrary L◦ terms
respectively L◦(P) terms permitted as well. They can be represented in OST
and OST(P), but only in a form weaker than the ∆0 formulas.

Lemma 3 Let ~u be the sequence of variables u1, . . . , un. For every eΣ for-
mula A[~u] of L◦ with at most the variables ~u free, there exists a closed L◦

term tA such that OST proves

tA↓ ∧ ∀~x(A[~x] ↔ tA(~x) = >).

Clearly, we also have the analogous result for the eΣ formulas of L◦(P) and
the theory OST(P).

The proof of this lemma can be easily reconstructed from Feferman [11].
Together with the set-theoretic axiom of OST it immediately implies the
following corollary, also taken from [11].

Corollary 4 There exist closed L◦ terms ∅ for the empty set, uopa for
forming unordered pairs, un for forming unions, p for forming ordered pairs
and prod for forming Cartesian products. In addition, there are closed L◦

terms pL and pR which act as projections with respect to p, i.e.

pL(p(a, b)) = a and pR(p(a, b)) = b.

To comply with the set-theoretic conventions, we generally write {a, b} in-
stead of uopa(a, b), ∪a instead of un(a), 〈a, b〉 instead of p(a, b) and a × b
instead of prod(a, b). Remember that ω is a constant for the first infinite
ordinal and belongs to the base language L.

We end this section with a few remarks concerning the relationship between
functions in the set-theoretic sense and operations in the sense of our form

7

of term application. Similar questions for similar operational set theories are
also discussed in Beeson [7] and in Cantini and Crosilla [8].

It is well-known (see, for example, Barwise [4]) that there are ∆0 formulas
Rel(a) and Fun(a) of our basic language L, stating that the set a is a binary
relation and function, respectively, in the typical set-theoretic sense. It can
also be expressed in ∆0 form that a is a relation with domain b, abbreviated as
Dom(a) = b, and that a is a relation with range b, abbreviated as Ran(a) = b.
If Fun(a) holds and u belongs to the domain of a we write a ′u for the unique
v such that 〈u, v〉 ∈ a.

Lemma 5 There exist closed L◦ terms dom, ran, op and fun so that OST
proves the following assertions:

1. dom(f)↓ ∧ ran(f)↓ ∧ op(f)↓.

2. Rel(a) → (Dom(a) = dom(a) ∧ Ran(a) = ran(a)).

3. (Fun(f) ∧ a ∈ dom(f)) → f ′a = op(f, a).

4. (f : a → V) → (Fun(fun(f, a)) ∧ dom(fun(f, a)) = a).

5. (f : a → V) → (∀x ∈ a)(fun(f, a) ′x = fx).

This lemma, whose proof can also be found in Feferman [11], implies that:
(i) each set-theoretic function can be translated into an operation acting on
the same domain and yielding the same values; (ii) to each operation total
on a set a corresponds a set-theoretic function with domain a so that the
values of this operation and of this function on a agree.

3 The consistency strength of OST

We plan to determine the consistency strengths of the operational set the-
ory OST by relating it to well-known systems of admissible set theory. We
start off from Kripke-Platek set theory plus infinity, hereinafter called KPω,
and then add the axiom of constructibility. For further reading about KPω,
its proof-theoretic analysis and some interesting subsystems and extensions
consult, for example, Jäger [15, 16] and Rathjen [22].

KPω is formulated in our basic language L, its underlying logic is classical
first order logic with equality, and its non-logical axioms are: extensionality,
pair, union, infinity (i.e. the assertion that ω is the least infinite ordinal),
∈-induction for arbitrary formulas A[x] of L,

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x],(L-I∈)

8

as well as ∆0 separation and ∆0 collection, i.e.

∃x(x = {y ∈ a : B[y]}),(∆0-Sep)

(∀x ∈ a)∃yC[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)C[x, y](∆0-Col)

for arbitrary ∆0 formulas B[u] and C[u, v] of L. The theory KPω + (AC) is
the extension of KPω obtained by adding, for each parameter a, the axiom
of choice

(∀x ∈ a)(x 6= ∅) → ∃f(Fun(f) ∧ Dom(f) = a ∧ (∀x ∈ a)(f ′x ∈ x)).(AC)

The language of KPω +(AC) is a sublanguage of the language of OST, and it
is easy to see that OST proves all axioms of KPω + (AC). Hence KPω + (AC)
is a subsystem of OST, as has already been remarked in Feferman [11].

Theorem 6 The theory KPω + (AC) is contained in OST.

Proof. Clearly, the axioms of KPω about extensionality, the existence of
pairs and unions, infinity and ∈-induction are provable in OST. Each in-
stance of ∆0 separation is a direct consequence of Lemma 1 and operational
separation.

To deal with ∆0 collection, let A[~u, v, w] be a ∆0 formula of L with at most
the variables ~u, v, w free and suppose that ~u is a sequence of length n. We
work informally in OST and assume that

(∀x ∈ a)∃yA[~u, x, y].(1)

In view of Lemma 1 we know that there is a closed L◦ term tA so that

tA↓ ∧ (tA : Vn+2 → B) ∧ ∀~u ∀v∀w(A[~u, v, w] ↔ tA(~u, v, w) = >).(2)

Thus from (1) and (2) we immediately obtain

(∀x ∈ a)∃y(tA(~u, x, y) = >),

therefore our operational set-theoretic axiom about choice implies

(∀x ∈ a)(C(λy.tA(~u, x, y))↓ ∧ tA(~u, x, C(λy.tA(~u, x, y))) = >).(3)

Assertions (2) and (3) thus yield

(∀x ∈ a)(C(λy.tA(~u, x, y))↓ ∧ A[~u, x, C(λy.tA(~u, x, y))])(4)

9

from which we also deduce that

(λx.C(λy.tA(~u, x, y)) : a → V).

Finally, we apply operational replacement and therefore know

R(λx.C(λy.tA(~u, x, y)), a) ↓,(5)

(∀x ∈ a)(C(λy.tA(~u, x, y)) ∈ R(λx.C(λy.tA(~u, x, y)), a).(6)

Choosing R(λx.C(λy.tA(~u, x, y)), a), which has a value according to (5), as a
witness for z, we have thus shown, in view of (4) and (6), that

∃z(∀x ∈ a)(∃y ∈ z)A[~u, x, y],

and ∆0 collection is validated. Now we consider (AC) and pick a set a whose
elements are non-empty,

(∀x ∈ a)(x 6= ∅).

Trivially, this line can be rewritten as

(∀x ∈ a)∃y((λz.el(z, x))y = >).

Hence operational choice yields

(∀x ∈ a)(C(λz.el(z, x))↓ ∧ (λz.el(z, x))(C(λz.el(z, x))) = >)

and thus, after some obvious modifications,

(∀x ∈ a)(C(λz.el(z, x))↓ ∧ C(λz.el(z, x)) ∈ x).

This means that λx.C(λz.el(z, x)) is an operation total on a, mapping each
element x of a to an element of x. By Lemma 5 we therefore can be sure
that there exists a set-theoretic function f so that Dom(f) = a and f ′x ∈ x
for all elements x of a. This establishes (AC) and finishes the proof of our
theorem. 2

Now we turn to the upper bound of the proof-theoretic strength of OST.
The collections of Σ and Π formulas of L are defined canonically, and an
L formula A is ∆ over KPω provided that for some Σ formula B of L and
some Π formula C of L, both with exactly the same free variables as A, KPω
proves the equivalence of A, B and C.

We will embed OST into the theory KPω + (V =L), which is the extension
of KPω by the famous axiom of constructibility ; this axiom will allow us
to cope with operational choice. The crucial part of this embedding is the

10

interpretation of the application relation (ab ' c) by means of a suitable Σ
predicate which will be gained via definition by Σ recursion.

Feferman suggests in [11] to interpret the applicative structure of OST in the
codes for Σ1 definable functions, obtained by uniformizing the Σ1 predicates.
Here we choose a different route and provide a direct inductive definition of
the application operation. Apart from being more direct, this way of reducing
OST to KPω +(V =L) has the advantage that it can be directly adapted, see
Section 6.1, to dealing with a strong extension of OST.

Ordinals are defined in KPω by a ∆0 formula Ord(a) of L. We use lower
case Greek letters α, β, γ, δ . . . (possibly with subscripts) for ordinals and
write (α < β) for (α ∈ β). Furthermore, (a ∈ Lα) states that the set a is
an element of the αth level Lα of the constructible hierarchy, and (a <L b)
means that a is smaller than b according to the well-ordering <L on L. It is
well-known that the assertions (a ∈ Lα) and (a <L b) are ∆ over KPω; see,
e.g., Barwise [4] or Kunen [21].

The following approach is motivated by the one in Feferman and Jäger [13]
and Jäger and Strahm [18] and begins with some notational preparations.
For any natural number n greater than 0 we select (i) a ∆0 formula Tupn(a)
formalizing that a is an ordered n-tuple and (ii) a ∆0 formula (a)i = b
formalizing that b the projection of a on its ith component, i ≤ n, so that

Tupn(a) ∧ (a)1 = b1 ∧ . . . ∧ (a)n = bn → a = 〈b1, . . . , bn〉.

Then we fix pairwise different sets k̂, ŝ, >̂, ⊥̂, êl, n̂on, d̂is, ê, Ŝ, R̂, Ĉ and
for later use (see Section 4) a further set P̂ which all do not belong to the
collection of ordered pairs and triples; they will later act as the codes of the
corresponding constants of L◦ and L◦(P), respectively. We are going to code

the L◦ terms kx, sx, sxy, . . . by the ordered tuples 〈k̂, x〉, 〈̂s, x〉, 〈̂s, x, y〉, . . .
of the corresponding form. For example, to satisfy kxy = x we interpret kx
as 〈k̂, x〉, and “〈k̂, x〉 applied to y” is taken to be x.

Next let R be a fresh 4-place relation symbol and extend L to the language
L(R) with expressions R(α, a, b, c) as additional atomic formulas. We also
abbreviate

R<α(a, b, c) := (∃β < α)R(β, a, b, c).

For finding the required interpretation of the application operation of OST
within KPω + (V =L) we work with a specific L(R) formula, introduced in
the following definition. Afterwards, this formula together with Σ recursion
will help to provide what we need.

11

Definition 7 We choose A[R,α, a, b, c] to be the L(R) formula defined as

A[R,α, a, b, c] := c ∈ Lα ∧ B[R, α, a, b, c],

where B[R,α, a, b, c] is an auxiliary L(R) formula given as the disjunction
of the following clauses:

(1) a = k̂ ∧ c = 〈k̂, b〉,

(2) Tup2(a) ∧ (a)1 = k̂ ∧ (a)2 = c,

(3) a = ŝ ∧ c = 〈̂s, b〉,

(4) Tup2(a) ∧ (a)1 = ŝ ∧ c = 〈̂s, (a)2, b〉,

(5) Tup3(a) ∧ (a)1 = ŝ ∧

(∃x, y ∈ Lα)(R<α((a)2, b, x) ∧ R<α((a)3, b, y) ∧ R<α(x, y, c)),

(6) a = êl ∧ c = 〈êl, b〉,

(7) Tup2(a) ∧ (a)1 = êl ∧ (a)2 ∈ b ∧ c = >̂,

(8) Tup2(a) ∧ (a)1 = êl ∧ (a)2 /∈ b ∧ c = ⊥̂,

(9) a = n̂on ∧ b = >̂ ∧ c = ⊥̂,

(10) a = n̂on ∧ b = ⊥̂ ∧ c = >̂,

(11) a = d̂is ∧ c = 〈d̂is, b〉,

(12) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = >̂ ∧ c = >̂,

(13) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = >̂ ∧ c = >̂,

(14) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = ⊥̂ ∧ c = ⊥̂,

(15) a = ê ∧ c = 〈ê, b〉,

(16) Tup2(a) ∧ (a)1 = ê ∧ (∃x ∈ b)R<α((a)2, x, >̂) ∧ c = >̂,

(17) Tup2(a) ∧ (a)1 = ê ∧ (∀x ∈ b)R<α((a)2, x, ⊥̂) ∧ c = ⊥̂,

(18) a = Ŝ ∧ c = 〈Ŝ, b〉,

12

(19) Tup2(a) ∧ (a)1 = Ŝ ∧ (∀x ∈ b)(R<α((a)2, x, >̂) ∨ R<α((a)2, x, ⊥̂)) ∧

(∀x ∈ c)(x ∈ b ∧ R<α((a)2, x, >̂)) ∧

(∀x ∈ b)(R<α((a)2, x, >̂) → x ∈ c),

(20) a = R̂ ∧ c = 〈R̂, b〉,

(21) Tup2(a) ∧ (a)1 = R̂ ∧ (∀x ∈ b)(∃y ∈ c)R<α((a)2, x, y) ∧

(∀y ∈ c)(∃x ∈ b)R<α((a)2, x, y),

(22) a = Ĉ ∧ R<α(b, c, >̂) ∧ (∀x ∈ Lα)(x <L c → ¬R<α(b, x, >̂)) ∧

(∀β < α)(∀x ∈ Lβ)¬R<β(b, x, >̂).

We immediately see that A[R,α, a, b, c] is ∆ over KPω with respect to the
language L(R). It is also easy ro verify that A[R,α, a, b, c] is deterministic
in the following sense: from A[R,α, a, b, c] we can conclude that exactly one
of the clauses (1)–(22) of the previous definition is satisfied for these α, a, b
and c.

For any L formula B[α, a, b, c] with at most the indicated free variables we
write A[B, α, a, b, c] for the L formula resulting by replacing each occurrence
of an atomic formula of the form R(α, r, s, t) in A[R,α, a, b, c] by B[α, r, s, t].
The following theorem is a special case of “Definition by Σ Recursion” as
developed in Barwise [4].

Theorem 8 There exists a Σ formula B[α, a, b, c] of L with at most α, a,
b and c free so that KPω proves

B[α, a, b, c] ↔ A[B, α, a, b, c].(Σ-Rec/A)

Any such a formula B[α, a, b, c] may be used to describe the αth level of the
interpretation of the OST application (ab ' c). Accordingly, we proceed as
follows.

Definition 9 Let BA[α, a, b, c] be a Σ formula of L associated to the op-
erator form A[R, α, a, b, c] according to (Σ-Rec/A) of the previous theorem.
Then we define

B<α
A [a, b, c] := (∃β < α)BA[β, a, b, c],

ApA[a, b, c] := ∃αBA[α, a, b, c].

13

We continue with showing that ApA[a, b, c] is functional in its third argument.
The next lemma takes care of the only critical case in the proof of this
property and motivates the rather complicated clause (22) of Definition 7
above.

Lemma 10 We can prove in KPω that

BA[α, Ĉ, f, a] ∧ BA[β, Ĉ, f, b] → α = β ∧ a = b.

Proof. We work informally in KPω and assume, without loss of generality,
that α ≤ β. From the left hand side of the claimed assertion we obtain:

a ∈ Lα ∧ b ∈ Lβ,(1)

B<α
A [f, a, >̂] ∧ B<β

A [f, b, >̂],(2)

(∀x ∈ Lα)(x <L a → ¬B<α
A [f, x, >̂]),(3)

(∀x ∈ Lβ)(x <L b → ¬B<β
A [f, x, >̂]),(4)

(∀γ < α)(∀x ∈ Lγ)¬B<γ
A [f, x, >̂]),(5)

(∀γ < β)(∀x ∈ Lγ)¬B<γ
A [f, x, >̂]).(6)

From (1), (2), (5) and (6) we conclude α = β. But then (1) – (4) immediately
imply that the sets a and b have to be identical as well. 2

Lemma 11 We can prove in KPω:

1. B<α
A [a, b, u] ∧ B<α

A [a, b, v] → u = v.

2. ApA[a, b, u] ∧ ApA[a, b, v] → u = v.

Proof. Since the previous lemma is at our disposal, the first assertion is
easily proved by induction on α. The second assertion is a straightforward
consequence of the first. 2

The embedding of OST into KPω + (V =L) first requires to deal with the
terms of L◦. This is achieved by associating to each term t of L◦ a formula
JtKA(u) of L expressing that u is the value of t under the interpretation of
the OST-application via the Σ formula ApA.

Definition 12 For each L◦ term t we introduce an L formula JtKA(u), with
u not occurring in t, which is inductively defined as follows:

14

1. If t is a variable or the constant ω, then JtKA(u) is the formula (t = u).

2. If t is another constant, then JtKA(u) is the formula (t̂ = u).

3. If t is the term (rs), then we set

JtKA(u) := ∃x∃y(JrKA(x) ∧ JsKA(y) ∧ ApA[x, y, u]).

Observe that for every term t of L◦ its translation JtKA(u) is a Σ formula of
L. By this treatment of the terms of L◦, the translation of arbitrary formulas
of L◦ into formulas of L is predetermined.

Definition 13 The translation of an L◦ formula A into the L formula A∗

is inductively defined as follows:

1. For the atomic formulas of L◦ we stipulate

(t↓)∗ := ∃xJtKA(x),

(s ∈ t)∗ := ∃x∃y(JsKA(x) ∧ JtKA(y) ∧ x ∈ y),

(s = t)∗ := ∃x∃y(JsKA(x) ∧ JtKA(y) ∧ x = y).

2. If A is a formula ¬B, then A∗ is ¬B∗.

3. If A is a formula (B ♦ C) for ♦ being the binary junctor ∨ or ∧, then
A∗ is (B∗ ♦ C∗).

4. If A is a formula (∃x ∈ t)B[x], then

A∗ := ∃y(JtKA(y) ∧ (∃x ∈ y)B∗[x]).

5. If A is a formula (∀x ∈ t)B[x], then

A∗ := ∀y(JtKA(y) → (∀x ∈ y)B∗[x]).

6. If A is a formula QxB[x] for a quantifier Q, then A∗ is QxB∗[x].

It is an easy exercise to check that the translations of the axioms of the logic
of partial terms are provable in KPω + (V =L). The following lemma states
the same for all the mathematical axioms of OST.

Lemma 14 For every axiom A of OST we have

KPω + (V =L) ` A∗.

15

Proof. All basic set-theoretic axioms of OST are not affected by this trans-
lation and are available in KPω +(V =L) as well. Regarding all other axioms
of OST, the definition of A[R,α, a, b, c] has been tailored so that this lemma
goes through. This is more or less trivial for all applicative axioms and the
logical operations axioms (1) – (4). To handle the remaining axioms, i.e.
bounded existential quantification and all operational set-theoretic axioms,
we work informally in KPω + (V =L) and treat them separately.

1. Bounded existential quantification. Its premise (f : a → B), as a formu-
lation in OST, translates into

(∀x ∈ a)(ApA[f, x, >̂] ∨ ApA[f, x, ⊥̂]),(1)

and by Σ reflection there must be an ordinal α such that

(∀x ∈ a)(B<α
A [f, x, >̂] ∨ B<α

A [f, x, ⊥̂]).(2)

A first consequence of this assertion and Lemma 11 is that

(∀x ∈ a)(ApA[f, x, >̂] ↔ B<α
A [f, x, >̂]),(3)

and in view of Definition 7 – in fact its clauses (16) and (17) – assertion (2)
also implies

A[BA, α, 〈ê, f〉, a, >̂] ∨ A[BA, α, 〈ê, f〉, a, ⊥̂],(4)

A[BA, α, 〈ê, f〉, a, >̂] ↔ (∃x ∈ a)B<α
A [f, x, >̂].(5)

Together with Theorem 8 and Lemma 11 we now conclude from (3) – (5)
that

ApA[〈ê, f〉, a, >̂] ∨ ApA[〈ê, f〉, a, ⊥̂],(6)

ApA[〈ê, f〉, a, >̂] ↔ (∃x ∈ a)ApA[f, x, >̂].(7)

But now the previous lines (6) and (7) mean nothing other than

Je(f, a)KA(>̂) ∨ Je(f, a)KA(⊥̂),(8)

Je(f, a)KA(>̂) ↔ (∃x ∈ a)ApA[f, x, >̂].(9)

Hence we have shown in KPω + (V =L) that (1) implies (8) and (9). How-
ever, this implication is the translation of the OST axiom about bounded
existential quantification, which is thus proved in KPω + (V =L).

16

2. Operational separation for definite operations. As in the previous case we
deduce from the translation of the left hand side (f : a → B) of the respective
axiom of OST that

(∀x ∈ a)(ApA[f, x, >̂] ∨ ApA[f, x, ⊥̂]).(10)

By Σ reflection there exists a set b such that

(∀x ∈ a)(Apb
A[f, x, >̂] ∨ Apb

A[f, x, ⊥̂]),(11)

and, using ∆0 separation, we can introduce a set c satisfying

∀x(x ∈ c ↔ x ∈ a ∧ Apb
A[f, x, >̂]).(12)

In the next step we select an ordinal α which is so that a, b and c belong to
Lα. Having done that, it is easily checked that (11), (12), Σ persistence and
Lemma 11 yield

c = {x ∈ a : B<α
A [f, x, >̂]} = {x ∈ a : ApA[f, x, >̂]},(13)

(∀x ∈ a)(B<α
A [f, x, >̂] ∨B<α

A [f, x, ⊥̂]).(14)

Looking back at Definition 7 – clause (19) – we see that (13) and (14) imply

A[BA, α, 〈Ŝ, f〉, a, c].

Making use of Theorem 8 once more, it is immediately clear that the previous
assertion leads to

ApA[〈Ŝ, f〉, a, c].(15)

Now we recollect Lemma 11 and deduce from (13) and (15) that

∃yJS(f, a)KA(y),(16)

∀x(∃y(JS(f, a)KA(y) ∧ x ∈ y) ↔ x ∈ a ∧ ApA[f, x, >̂]).(17)

These two statements corresponds to (the translation of) the conclusion of
separation for definite operations. As we have just seen, (10) implies (16) and
(17), provably in KPω+(V =L). Hence also the OST axiom about operational
separation is established in KPω + (V =L).

3. Operational replacement. The premise of such an OST axiom is of the
form (f : a → V), and so its translation into L gives

(∀x ∈ a)∃yApA[f, x, y].(18)

17

Hence, because of Σ reflection, there is a set b satisfying

(∀x ∈ a)(∃y ∈ b)Apb
A[f, x, y].(19)

We apply ∆0 separation to find a set c such that

∀y(y ∈ c ↔ y ∈ b ∧ (∃x ∈ a)Apb
A[f, x, y])(20)

and afterwards select some ordinal α big enough for a, b and c being elements
of Lα. Because of Σ persistency and Lemma 11 we can deduce from (19) and
(20) that

c = {y ∈ b : (∃x ∈ a)B<α
A [f, x, y]} = {y : (∃x ∈ a)ApA[f, x, y]},(21)

(∀x ∈ a)(∃y ∈ c)B<α
A [f, x, y] ∧ (∀y ∈ c)(∃x ∈ a)B<α

A [f, x, y].(22)

By clause (20) of the form of the operator form A, which has been introduced
in Definition 7, we immediately obtain

A[BA, α, 〈R̂, f〉, a, c]

from (22). As above, by means of Theorem 8, the previous assertion yields

ApA[〈R̂, f〉, a, c].(23)

To finish this case, it only remains to verify that, in view of Lemma 11,
assertions (21) and (23) give us

∃zJR(f, a)KA(z),(24)

∀y(∃z(JR(f, a)KA(z) ∧ y ∈ z) ↔ (∃x ∈ a)ApA[f, x, y]).(25)

As in the previous two cases we have thus shown that KPω+(V =L) proves an
implication, namely the implication from (17) to (24) and (25). Since that is
the translation of the OST axiom about operational reflection, KPω+(V =L)
is able to deal with this principle as well.

4. Operational choice. To deal with that, we start off from the OST statement
∃x(fx = >), which translates into L as

∃xApA[f, x, >̂].(26)

Since ∈-induction is available in KPω + (V =L), statement (26) implies that
there is a least ordinal α such that

(∃x ∈ Lα)B<α
A [f, x, >̂].(27)

18

In a next step we exploit the fact that <L well-orders the universe so that
(27) allows us to pick the least set a with respect to <L satisfying

a ∈ Lα ∧ B<α
A [f, a, >̂].(28)

According to clause (22) of the definition of the operator form A, see Defini-
tion 7, we therefore have

A[BA, α, Ĉ, f, a]

from which a final application of Theorem 8 leads to

ApA[Ĉ, f, a].(29)

Trivially, (28) also implies

ApA[f, a, >̂](30)

for that a. Therefore (29) and (30) can be turned into

∃x(JCfKA(x) ∧ ApA[f, x, >̂]).(31)

To sum up, the implication from (26) to (31), i.e. the translation of opera-
tional choice into L, can be verified in KPω + (V =L). This completes the
proof of our lemma. 2

Theorem 15 The theory OST can be embedded into KPω + (V =L); i.e. for
all formulas A of L◦ we have

OST ` A =⇒ KPω + (V =L) ` A∗.

Proof. This theorem is a simple consequence of the previous lemma since
the theory KPω+(V =L) is clearly closed under all rules of inference available
in OST. 2

It is well-known that KPω + (V =L) is a conservative extension of KPω for
absolute formulas. If we combine this result with Theorem 6 and Theorem 15,
we obtain the following corollary, which settles the question of the consistency
strength of OST.

Corollary 16 The theory OST is conservative over KPω for absolute for-
mulas. In particular, OST and KPω are equiconsistent.

19

4 The consistency strength of OST(P)

As it will turn out, OST(P) is closely related to the theory KP(P) of so-
called power admissible sets. It is formulated in the language L(P) which is
obtained from L by adding the new binary relation symbol P . The formulas
of L(P) are defined as the formulas of L, but with expressions of the form
P(a, b) permitted as atomic formulas as well.

The ∆0(P) formulas are those formulas of L(P) which do not contain un-
bounded quantifiers, and also the notions of Σ(P), Π(P) and ∆(P) formulas
are the obvious generalizations of Σ, Π and ∆ formulas, respectively; in
particular, each P(a, b) is ∆0(P). It is then only a matter of routine, by
exploiting the constant P and axiom (P), to ascertain the following analogue
of Lemma 1 for the system OST(P).

Lemma 17 Let ~u be the sequence of variables u1, . . . , un. For every ∆0(P)
formula A[~u] of L◦(P) with at most the variables ~u free, there exists a closed
L◦(P) term tA such that OST(P) proves

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

The theory KP(P) is the following extension of KPω: (i) it encompasses the
axioms extensionality, pair, union and infinity; (ii) ∈-induction is formulated
for arbitrary L(P) formulas; (iii) we have ∆0(P) separation and ∆0(P) col-
lection; (iv) finally, the new axiom (P) provides the meaning of the relation
symbol P ,

∀x∃yP(x, y) ∧ ∀x∀y(P(x, y) ↔ ∀z(z ∈ y ↔ z ⊂ x)).(P)

It simply formalizes that P is the graph of the power set function, acting on
the whole universe of sets. This axiom (P) is reminiscent of the operational
power set axiom (P), and so the next embedding result should not come as
a surprise.

Theorem 18 Modulo translating the atomic formulas P(a, b) as (Pa = b),
the theory KP(P) + (AC) is contained in OST(P).

Proof. The KP(P) versions of all axioms of KP(P) + (AC) are proved in
OST(P) analogously to the proof of Theorem 6; the translation of (P) is a
trivial consequence of (P). 2

We establish an upper bound for OST(P) by an easy modification of the argu-
ment in the previous section. Again we include the axiom of constructibility
(V =L). Then we extend the disjunction in Definition 7 by a clause taking
care of the constant P.

20

Definition 19 We choose C[R,α, a, b, c] to be the ∆(P) formula of L(P , R)
defined as

C[R,α, a, b, c] := c ∈ Lα ∧ (B[R,α, a, b, c] ∨ (a = P̂ ∧ P(b, c))),

where B[R,α, a, b, c] is the formula introduced in Definition 7.

In KP(P) we have Σ(P) recursion. Completely in the line of the previous sec-
tion we apply it now, of course, to the operator form C[R,α, a, b, c], yielding
the following analogue of Theorem 8.

Theorem 20 There exists a Σ(P) formula B[α, a, b, c] of L(P , R) with at
most α, a, b and c free so that KP(P) proves

B[α, a, b, c] ↔ C[B, α, a, b, c].(Σ(P)-Rec/C)

Naturally, each Σ(P) formula B[α, a, b, c] fulfilling this recursion equation
(Σ(P)-Rec/C) is now a possible candidate for interpreting the OST(P) appli-
cation (ab ' c).

Definition 21 Let BC[α, a, b, c] be a Σ(P) formula of L(P) associated to
the operator form C[R,α, a, b, c] according to (Σ(P)-Rec/C) of the previous
theorem. Then we define

ApC[a, b, c] := ∃αBC[α, a, b, c].

It only remains to proceed as in the previous section, but with ApA[a, b, c] re-
placed by ApC[a, b, c]. The analogues of Lemma 10 and Lemma 11 are proved
as earlier, and then, for each L◦(P) term t, an L(P) formula JtKC(u) is intro-
duced, saying that u is the value of the term t under the interpretation of the
OST(P) application via ApC. Finally, following the pattern of Definition 13
and based on these JtKC(u), each L◦(P) formula A is canonically translated
into a formula A] of L(P).

Theorem 22 The theory OST(P) can be embedded into KP(P) + (V =L);
i.e. for all formulas A of L◦(P) we have

OST(P) ` A =⇒ KP(P) + (V =L) ` A].

Proof. Recalling Lemma 14, which trivially carries over from OST and
KPω + (V =L) to OST(P) and KP(P) + (V =L), only the axiom (P) about
operational power set has to be taken care of. So pick a set a. By the
axiom (P) of KP(P) we know that there exists a set b such that P(a, b) and
∀z(z ∈ b ↔ z ⊂ a). Aside from that, the axiom (V =L) provides for an

21

ordinal α for which b ∈ Lα. According to Definition 19, Theorem 20 and
Definition 21 we therefore have

BC[α, P̂, a, b] and ApC[P̂, a, b].

Therefore P̂ codes a total operation from the collection of all sets to sets
which maps a set to its power set, as desired. 2

Unfortunately, the combination of Theorem 18 and Theorem 22 does not
completely settle the question about the consistency strength of OST(P)
yet. So far we have an interesting lower and an interesting upper bound,
but it still has to be determined what the relationship between KP(P) and
KP(P) + (V =L) is.

5 A conservative extension of ZFC

The purpose of this section is to identity an OST-like operational set theory
which is a conservative extension of ZFC, thus answering a question raised in
Feferman [11] and the following discussion. To do so, we begin with extending
the language L◦(P) to the new language L◦(E, P) resulting from the addition
of the new constant E.

The role of E is to act as the unbounded analogue of the constant e, which
deals with bounded existential quantification. Therefore, the meaning of E
is given by the axiom

(f : V → B) → (E(f) ∈ B ∧ (E(f) = > ↔ ∃x(fx = >))).(E)

Then OST(E, P) is the theory which consists of all axioms of OST, now
formulated for all L◦(E, P) formulas, plus the power set axiom (P) and the
axiom (E) about unbounded existential quantification. However, OST(E, P)
is stronger than ZFC, and its proof-theoretic analysis will be carried out in a
forthcoming publication.

In this article we concentrate ourselves on the subsystem OSTr(E, P) of
OST(E, P) which is obtained from OST(E, P) by restricting the schema of
∈-induction for arbitrary formulas to ∈-induction for sets. As the follow-
ing lemma shows, ∈-induction is provable in OSTr(E, P) for total operations
from V to B.

Lemma 23 In OSTr(E, P) we can prove that

(f : V → B) ∧ ∀x((∀y ∈ x)(fy = >) → (fx = >)) → ∀x(fx = >).

22

Proof. We show the contraposition and assume that (f : V → B) and that
there exists a set a with the property (fa = ⊥). By separation for definite
operations we can introduce the set

b := {a} ∪ {x ∈ TC (a) : fx = ⊥},

where TC (a) is written for the transitive closure of a; the existence of tran-
sitive closures is evident in OSTr(E, P). Now apply ∈-induction to this non-
empty b. As a result, we are provided with an ∈-minimal element c of b,
i.e.

fc = ⊥ ∧ (∀y ∈ c)(fy = >).

The existence of such a set c is exactly what was needed for completing the
proof of this lemma. 2

As we will see in the following, OSTr(E, P) contains ZFC and can be reduced
to ZFL, i.e. to ZF + (V = L). Consequently, OSTr(E, P) is a conservative
extension of ZFC.

As the pure formulas of L◦(E, P) we denote those L◦(E, P) formulas which
do not contain the function symbol ◦ or the relation symbol ↓. That means
that the pure L◦(E, P) formulas are the usual set-theoretic formulas in which
the constants of L◦(E, P) may occur as additional parameters. Since in
OSTr(E, P) the constant E is available, Lemma 1 can be straightforwardly
extended to pure formulas.

Lemma 24 Let ~u be the sequence of variables u1, . . . , un. For every pure
formula A[~u] of L◦(E, P) with at most the variables ~u free, there exists a
closed L◦(E, P) term tA such that OSTr(E, P) yields

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

The embedding of ZFC into OSTr(E, P) is now a matter of routine: exten-
sionality, pair, union and infinity are obvious; separation, replacement and
∈-induction of ZF can be dealt with in OSTr(E, P), in view of Lemma 24, by
operational separation, operational replacement and Lemma 23, respectively.
Therefore we have the following theorem.

Theorem 25 The theory ZFC is contained in OSTr(E, P).

This establishes the lower proof-theoretic bound of OSTr(E, P). The reduc-
tion of OSTr(E, P) to ZFL is more complicated. We achieve this by (i) inter-
preting OSTr(E, P) into the auxiliary theory ZFLr

Ω and (ii) reducing ZFLr
Ω to

ZFL.

23

6 The auxiliary system ZFLr
Ω

Our next steps are similar to the approach taken in Jäger [17] and Feferman
and Jäger [13]. In these articles an extension PAr

Ω of Peano arithmetic PA
is introduced which is tailored for a sufficiently careful treatment of induc-
tive definitions over the natural numbers and strong enough to interpret the
non-constructive µ-operator of the basic theory BON(µ) of operations and
numbers. Now we replace the collection of the natural numbers by the uni-
verse of all sets and extend ZFL – instead of PA – to the system ZFLr

Ω for
dealing with inductive definitions over the sets.

As in Section 3 we pick an n-ary relation symbol R which does not belong
to the language L and write L(R) for the extension of L by R. An L(R)
formula which contains at most a1, . . . , an free is called an n-ary operator
form, and we let F[R, a1, . . . , an] range over such forms.

Based on a model M of ZFL with universe |M|, any n-ary operator form
F[R,~a] gives rise to subsets Iα

F of |M|n generated inductively for all ordinals
α (not only those belonging to |M|) by

I<α
F :=

⋃
β<α

Iβ
F and Iα

F := {〈~x〉 ∈ |M|n : M |= F[I<α
F , ~x]}.

These sets Iα
F are the stages of the inductive definition induced by F[R,~a],

relative to M; for many models M, operator forms F[R,~a] and ordinals α
the Iα

F are not elements of |M|. We now enrich ZFL so that we can speak
about such stages.

The theory ZFLr
Ω is formulated in the language LΩ which extends L by adding

a new sort of so called stage variables ρ, σ, τ, . . . (possibly with subscripts)
as well as new binary relation symbols ≺ and $ for the less and equality
relation for stage variables, respectively. Moreover, LΩ includes an (n + 1)-
ary relation symbol QF for each operator form F[R, a1, . . . , an]. The set terms
of LΩ are the set terms of L, and the stage terms of LΩ are the stage variables.
The atomic formulas of LΩ are the atomic formulas of L plus all expressions
(σ ≺ τ), (σ $ τ) and QF(σ,~s) for each n-ary operator form F[R,~a]. Usually
we write Qσ

F(~s) instead of QF(σ,~s).

The formulas (A, B, C,A1, B1, C1, . . .) of LΩ are generated from these atoms
by closure under negation, conjunction and disjunction, bounded and un-
bounded quantification over sets, bounded stage quantification (∃σ ≺ τ)
and (∀σ ≺ τ) as well as unbounded stage quantification ∃σ and ∀σ. The
∆Ω

0 formulas are those LΩ formulas that do not contain unbounded stage
quantifiers. An LΩ formula A is is called ΣΩ if all positive occurrences of un-
bounded stage quantifiers in A are existential and all negative occurrences of

24

unbounded stage quantifiers in A are universal; it is called ΠΩ if all positive
occurrences of unbounded stage quantifiers in A are universal and all negative
occurrences of unbounded stage quantifiers in A are existential. Further, we
write Aσ to denote the LΩ formula which is obtained from A by replacing all
unbounded stage quantifiers Qτ in A by bounded stage quantifiers (Qτ ≺ σ).
Additional abbreviations are

Q≺σ
F (~s) := (∃τ ≺ σ)Qτ

F(~s) and QF(~s) := ∃σQσ
F(~s).

Clearly, any formula of L is a (trivial) ∆Ω
0 formula, and Aσ is ∆Ω

0 for any LΩ

formula A.

The theory ZFLr
Ω is formulated in classical two sorted predicate logic with

equality in both sorts; in addition it contains as non-logical axioms all ZFL-
axioms of the language L, axioms about stage variables and operator forms,
ΣΩ reflection plus separation, replacement and ≺-induction for ∆Ω

0 formulas.

I. ZFL-axioms. All axioms of the theory ZFL formulated in the language L;
they do not refer to stage variables or relation symbols associated to operator
forms.

II. Linearity axioms. For all stage variables ρ, σ and τ :

σ ⊀ σ ∧ (ρ ≺ σ ∧ σ ≺ τ → ρ ≺ τ) ∧ (σ ≺ τ ∨ σ $ τ ∨ τ ≺ σ).

III. Operator axioms. For all operator forms F[R, ~u] and all set terms ~s:

Qσ
F(~s) ↔ F[Q≺σ

F , ~s].

IV. ΣΩ reflection. For all ΣΩ formulas A:

A → ∃σAσ.(ΣΩ-Ref)

V. ∆Ω
0 Separation. For all ∆Ω

0 formulas A[u] and all set terms s:

∃x(x = {y ∈ s : A[y]}).(∆Ω
0 -Sep)

VI. ∆Ω
0 Replacement. For all ∆Ω

0 formulas A[u, v] and all set terms s:

(∀x ∈ s)∃!yA[x, y] → ∃z∀y(y ∈ z ↔ (∃x ∈ s)A[x, y]).(∆Ω
0 -Rep)

25

VII. ∆Ω
0 induction along ≺. For all ∆Ω

0 formulas A[u]:

∀σ((∀τ ≺ σ)A[τ] → A[σ]) → ∀σA[σ].(∆Ω
0 -I≺)

It is important to observe that the stage variables do not belong to the collec-
tion of sets; they constitute a different entity which is used to “enumerate”
the stages of the inductive definition associated to each operator form. How-
ever, in the form of ∆Ω

0 separation and ∆Ω
0 replacement they can nevertheless

help to constitute new sets in a carefully restricted way. The theory ZFLr
Ω is

restricted in the sense that the axioms in groups V, VI and VII are restricted
to ∆Ω

0 formulas.

6.1 Interpreting OSTr(E, P) into ZFLr
Ω

Before introducing a specific ternary operator form, which will be the crucial
step in modelling OSTr(E, P) within ZFLr

Ω, we fix a further set Ê as code for
the constant E, making sure that no conflicts arise in connection with the
coding machinery introduced in Section 3.

Definition 26 The operator form F[R, a, b, c] is defined to be the disjunction
of the following clauses:

(1) a = k̂ ∧ c = 〈k̂, b〉,

(2) Tup2(a) ∧ (a)1 = k̂ ∧ (a)2 = c,

(3) a = ŝ ∧ c = 〈̂s, b〉,

(4) Tup2(a) ∧ (a)1 = ŝ ∧ c = 〈̂s, (a)2, b〉,

(5) Tup3(a) ∧ (a)1 = ŝ ∧ ∃x∃y(R((a)2, b, x) ∧ R((a)3, b, y) ∧ R(x, y, c)),

(6) a = êl ∧ c = 〈êl, b〉,

(7) Tup2(a) ∧ (a)1 = êl ∧ (a)2 ∈ b ∧ c = >̂,

(8) Tup2(a) ∧ (a)1 = êl ∧ (a)2 /∈ b ∧ c = ⊥̂,

(9) a = n̂on ∧ b = >̂ ∧ c = ⊥̂,

(10) a = n̂on ∧ b = ⊥̂ ∧ c = >̂,

(11) a = d̂is ∧ c = 〈d̂is, b〉,

(12) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = >̂ ∧ c = >̂,

26

(13) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = >̂ ∧ c = >̂,

(14) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = ⊥̂ ∧ c = ⊥̂,

(15) a = ê ∧ c = 〈ê, b〉,

(16) Tup2(a) ∧ (a)1 = ê ∧ (∃x ∈ b)R((a)2, x, >̂) ∧ c = >̂,

(17) Tup2(a) ∧ (a)1 = ê ∧ (∀x ∈ b)R((a)2, x, ⊥̂) ∧ c = ⊥̂,

(18) a = Ŝ ∧ c = 〈Ŝ, b〉,

(19) Tup2(a) ∧ (a)1 = Ŝ ∧ (∀x ∈ b)(R((a)2, x, >̂) ∨ R((a)2, x, ⊥̂)) ∧

∀x(x ∈ c ↔ x ∈ b ∧R((a)2, x, >̂)),

(20) a = R̂ ∧ c = 〈R̂, b〉,

(21) Tup2(a) ∧ (a)1 = R̂ ∧ (∀x ∈ b)(∃y ∈ c)R((a)2, x, y) ∧

(∀y ∈ c)(∃x ∈ b)R((a)2, x, y),

(22) a = Ĉ ∧ R(b, c, >̂) ∧ ∀x(x <L c → ¬R(b, x, >̂)) ∧ ∀x¬R(Ĉ, b, x),

(23) a = P̂ ∧ ∀x(x ∈ c ↔ x ⊂ b),

(24) a = Ê ∧ ∃xR(b, x, >̂) ∧ c = >̂,

(25) a = Ê ∧ ∀xR(b, x, ⊥̂) ∧ c = ⊥̂.

A first observation is concerned with properties of the formulas Qσ
F(a, b, c) and

QF(a, b, c), which are induced by the operator form F[R, a, b, c], and states
their functionality.

Lemma 27 We can prove in ZFLr
Ω:

1. Q≺σ
F (f, a, u) ∧ Q≺σ

F (f, a, v) → u = v.

2. QF(f, a, u) ∧ QF(f, a, v) → u = v.

Proof. The first assertion is proved by ∆Ω
0 induction on σ. All details are

similar to (even simpler than) those of the proofs of Lemma 10 and Lemma 11
and are left to the reader. The second assertion is an immediate consequence
of the first. 2

The desired interpretation is obtained by following Section 3 again, this time
with ApA[a, b, c] replaced by QF(a, b, c). In parallel to Definition 12 an LΩ

27

formula JtKF(u) is assigned to any L◦(E, P) term t, saying that u is the value
of the term t under the interpretation of the OSTr(E, P) application via
QF. And in parallel to Definition 13, employing these JtKF(u), each L◦(E, P)
formula A is translated into a formula A♦ of LΩ in the obvious way. Please
keep in mind that A and A♦ are identical in the case that A is an L formula.

Theorem 28 The theory OSTr(E, P) can be embedded into ZFLr
Ω; i.e. for

all formulas A of L◦(E, P) we have

OSTr(E, P) ` A =⇒ ZFLr
Ω ` A♦.

Proof. The theory ZFLr
Ω clearly validates all logical axioms of OSTr(E, P)

and is closed under all rules of inference of OSTr(E, P). Hence we can concen-
trate ourselves on the interpretation of the non-logical axioms of OSTr(E, P).
The treatment of the applicative axioms and the basic set-theoretic axioms
with ∈-induction restricted to sets is unproblematic. The logical opera-
tions axioms can be treated (with minor modifications) as in the proof of
Lemma 14, and we turn to the remaining axioms and work informally in
ZFLr

Ω.

1. Operational separation for definite operations. From the left hand side
(f : a → B) of such an axiom we obtain that

(∀x ∈ a)(QF(f, x, >̂) ∨QF(f, x, ⊥̂)),

and by ΣΩ reflection there exists a σ such that

(∀x ∈ a)(Q≺σ
F (f, x, >̂) ∨Q≺σ

F (f, x, ⊥̂)).(1)

In view of ∆Ω
0 separation we therefore have a set b satisfying

∀x(x ∈ b ↔ x ∈ a ∧Q≺σ
F (f, x, >̂)).(2)

Because of Lemma 27 and (1) for this b we also have

∀x(x ∈ b ↔ x ∈ a ∧QF(f, x, >̂)).(3)

Clause (19) of Definition 26, together with (1) and (2), yields Qσ
F(〈Ŝ, f〉, a, b),

leading directly to

QF(〈Ŝ, f〉, a, b).(4)

But then lines (3) and (4) ensure that

∃yJS(f, a)KF(y) ∧ ∀x(∃y(JS(f, a)KF(y) ∧ x ∈ y) ↔ x ∈ a ∧QF(f, x, >̂)).

28

This is the translation of the right hand side of our axiom about operational
separation for definite operations, which is herewith established in ZFLr

Ω.

2. Operational replacement. Any such axiom has a premise of the form
(f : a → V) which translates into

(∀x ∈ a)∃yQF(f, x, y),

and therefore ΣΩ reflection provides a σ such that

(∀x ∈ a)∃yQ≺σ
F (f, x, y).(5)

Because of Lemma 27 we thus even have

(∀x ∈ a)∃!yQ≺σ
F (f, x, y).

Hence, by ∆Ω
0 replacement there exists a set b for which

∀y(y ∈ b ↔ (∃x ∈ a)Q≺σ
F (f, x, y)),(6)

and, as in the previous case, Lemma 27 and (5) imply

∀y(y ∈ b ↔ (∃x ∈ a)QF(f, x, y)).(7)

Note that by clause (21) of Definition 26, (5) and (6) it follows

QF(〈R̂, f〉, a, b).(8)

Finally, lines (7) and (8) immediately lead to

∃zJR(f, a)KF(z) ∧ ∀y(∃z(JR(f, a)KF(z) ∧ y ∈ z) ↔ (∃x ∈ a)QF(f, x, y)).

This shows that operational replacement holds in ZFLr
Ω because the previous

line is the translation of the conclusion of the respective axiom.

3. Operational choice. In this case we have a premise ∃x(fx = >) which

translates into ∃xQF(f, x, >̂), i.e. into

∃σ∃xQσ
F(f, x, >̂).

By ∆Ω
0 induction along ≺ there exists a ≺-minimal τ such that

∃xQ≺τ
F (f, x, >̂),

and, by (V = L), there exists an ordinal α such that

(∃x ∈ Lα)Q≺τ
F (f, x, >̂).

29

Now we use ∆Ω
0 separation to introduce the set {x ∈ Lα : Q≺τ

F (f, x, >̂)} and
select that element a of this set which is least with respect to the well-ordering
<L of the universe. From this choice of a we see that

Qσ
F(Ĉ, f, a).

and it is easily checked, as before, that a is the appropriate value of Cf .
Therefore, the translation of operational choice is also provable in ZFLr

Ω.

4. Operational power set. The interpretation of this is straightforward and
can be omitted.

5. Unbounded existential quantification. The premise (f : V → B) of such
an axiom translates into

∀x(QF(f, x, >̂) ∨QF(f, x, ⊥̂)),

and ΣΩ reflection provides a σ such that

∀x(Q≺σ
F (f, x, >̂) ∨Q≺σ

F (f, x, ⊥̂)).(9)

By Lemma 27 this assertion implies

∀x(QF(f, x, >̂) ↔ Q≺σ
F (f, x, >̂)).(10)

Furthermore, it is easily seen that clauses (24) and (25) of Definition 26 and
assertion (9) yield

Qσ
F(Ê, f, >̂) ∨ Qσ

F(Ê, f, ⊥̂) and Qσ
F(Ê, f, >̂) ↔ ∃xQ≺σ

F (f, x, >̂).

By the definition of QF, line (10) and Lemma 27 we conclude

QF(Ê, f, >̂) ∨ QF(Ê, f, ⊥̂) and QF(Ê, f, >̂) ↔ ∃xQF(f, x, >̂).

This allows us to deduce

JE(f)KF(>̂) ∨ JE(f)KF(⊥̂) and JE(f)KF(>̂) ↔ ∃xQF(f, x, >̂)

and verifies (the translation of) the conclusion of our axiom about unbounded
existential quantification, finishing the proof of our theorem. 2

30

6.2 Reducing ZFLr
Ω to ZFL

It remains to reduce our auxiliary theory ZFLr
Ω to ZFL. To this end we

introduce an auxiliary system SΩ which is a Gentzen style reformulation of
ZFLr

Ω. The capital Greek letters Θ, Φ, Ψ, . . . (possibly with subscripts) denote
finite sequences of LΩ formulas, and sequents are formal expressions of the
form Φ ⊃ Ψ. We write Φ[~σ] ⊃ Ψ[~σ] to express that all formulas in Φ and
Ψ are of the form A[~σ]. The collection of all ΣΩ and ΠΩ formulas is denoted
by ∇Ω.

SΩ is an extension of the classical Gentzen sequent calculus LK (cf., e.g.,
Girard [14] or Takeuti [24]) by additional axioms and rules of inference which
take care of the non-logical axioms of ZFLr

Ω. The axioms and rules of SΩ can
be grouped as follows.

I. Axioms. For all ∆Ω
0 formulas A and all axioms B of ZFLr

Ω which belong
to ∇Ω:

A ⊃ A and ⊃ B.

II. Structural rules. The structural rules of SΩ consist of the usual weak-
ening, exchange and contraction rules.

III. Propositional rules. The propositional rules of SΩ consist of the usual
rules for introducing the propositional connectives on the left and right hand
sides of sequents.

IV. Quantifier rules. Formulated for existential quantifiers; the corre-
sponding rules for universal quantifiers must also be included. By (?) we
mark those rules where the designated free variables are not to occur in the
conclusion:

Φ ⊃ Ψ, A[s]

Φ ⊃ Ψ, ∃xA[x]
,

Φ, A[u] ⊃ Ψ

Φ, ∃xA[x] ⊃ Ψ
(?),

Φ ⊃ Ψ, A[σ]

Φ ⊃ Ψ, ∃τA[τ]
,

Φ, A[σ] ⊃ Ψ

Φ, ∃τA[τ] ⊃ Ψ
(?),

Φ ⊃ Ψ, ρ ≺ σ ∧ A[ρ]

Φ ⊃ Ψ, (∃τ ≺ σ)A[τ]
,

Φ, ρ ≺ σ ∧ A[ρ] ⊃ Ψ

Φ, (∃τ ≺ σ)A[τ] ⊃ Ψ
(?).

V. ΣΩ reflection rules. For all ΣΩ formulas A and all stage variables σ
which are not free in A:

Φ ⊃ Ψ, A

Φ ⊃ Ψ,∃σAσ
.

31

VI. ∆Ω
0 induction rules along ≺. For all ∆Ω

0 formulas A[σ]:

Φ ⊃ Ψ, ∀σ((∀τ ≺ σ)A[τ] → A[σ])

Φ ⊃ Ψ, ∀σA[σ]
.

VII. Cuts. For all LΩ formulas A:

Φ ⊃ Ψ, A Φ, A ⊃ Ψ

Φ ⊃ Ψ
.

For any natural number n the notion SΩ `n Φ ⊃ Ψ is used to express that
the sequent Φ ⊃ Ψ is provable in SΩ by a proof of depth less than or equal
to n; we write SΩ `n

∗ Φ ⊃ Ψ if Φ ⊃ Ψ is provable in SΩ by a proof of depth
less than or equal to n so that all its cut formulas belong to ∇Ω. In addition,
SΩ ` Φ ⊃ Ψ and SΩ ∗̀ Φ ⊃ Ψ mean that there exists a natural number n so
that SΩ `n Φ ⊃ Ψ and SΩ `n

∗ Φ ⊃ Ψ, respectively.

One readily notes that the main formulas of all axioms and rules of the sys-
tem SΩ belong to ∇Ω. Therefore, following the lines of Jäger [17], where a
conceptually related system GΩ is considered, and applying standard tech-
niques of proof theory as presented, for example, in Girard [14], Schütte [23]
or Takeuti [24], we obtain the following weak cut elimination theorem for SΩ.

Theorem 29 (Weak cut elimination for SΩ) For all sequents Φ ⊃ Ψ we
have that

SΩ ` Φ ⊃ Ψ =⇒ SΩ ∗̀ Φ ⊃ Ψ.

Of course, the axioms and rules of SΩ are tailored so that the ZFLr
Ω can

be embedded into SΩ in a straightforward manner: the ZFL-axioms, the
linearity axioms, the operator axioms, the axioms about ∆Ω

0 separation and
∆Ω

0 replacement are axioms of SΩ; the ΣΩ reflection axioms of ZFLr
Ω are

proved in SΩ by means of the rules for ΣΩ reflection, and the instances of ∆Ω
0

induction along ≺ can be derived in SΩ by making use of the corresponding
rules. Hence we have the following theorem.

Theorem 30 If the LΩ formula A is provable in ZFLr
Ω, then there exists a

natural number n such that
SΩ `n ⊃ A.

Combining Theorem 29 and Theorem 30 we obtain the following corollary.
It implies, in particular, that every formula A from ∇Ω provable in ZFLr

Ω has
a proof tree in SΩ which consists of formulas from ∇Ω only.

32

Corollary 31 If the LΩ formula A is provable in ZFLr
Ω, then there exists a

natural number n such that
SΩ `n

∗ ⊃ A.

Our next aim is to reduce the ∇Ω fragment of SΩ to ZFL. For this purpose
we first introduce for all operator forms F[R,~a] of L(R) and all natural num-
bers n the LΩ formulas J<n

F (~a) and Jn
F (~a); they are defined by simultaneous

induction on n as follows:

J<n
F (~a) :=

∨
m<n

Jm
F (~a) and Jn

F (~a) := F[J<n
F ,~a].

Also, given a natural number n, we write n̄ for the finite von Neuman ordinal
corresponding to n. For a formula A from ∇Ω we use the notation A〈~σ〉 to
express that all its free stage variables belong to the list ~σ; the analogous
convention is employed for ∇Ω sequents.

Definition 32 Let ~σ be a finite string of stage variables, ~p a finite string of
natural numbers of the same length and n a natural number. For any formula
A〈~σ〉 from ∇Ω the L formula A(n)〈~p〉 is inductively defined as follows:

1. If A〈~σ〉 is an atomic L formula, then A(n)〈~p〉 := A[~σ].

2. If A〈~σ〉 is a formula (σi ≺ σj), then A(n)〈~p〉 := (p̄i < p̄j).

3. If A〈~σ〉 is a formula (σi $ σj), then A(n)〈~p〉 := (p̄i = p̄j).

4. If A〈~σ〉 is a formula Qσi
F (~s), then A(n)〈~p〉 := Jpi

F (~s).

5. If A〈~σ〉 is a formula ¬B〈~σ〉, then A(n)〈~p〉 := ¬B(n)〈~p〉.

6. If A〈~σ〉 is a formula (B〈~σ〉 ♦ C〈~σ〉) for ♦ being the binary junctor ∨
or ∧, then

A(n)〈~p〉 := (B(n)〈~p〉 ♦ C(n)〈~p〉).

7. If A〈~σ〉 is a formula (Qx ∈ s)B〈~σ〉 or QxB〈~σ〉 for a quantifier Q,
then

A(n)〈~p〉 := (Qx ∈ s)B(n)〈~p〉 or A(n)〈~p〉 := QxB(n)〈~p〉.

8. If A〈~σ〉 is a formula (∃τ ≺ σi)B〈τ, ~σ〉, then

A(n)〈~p〉 :=
∨

k<pi

B(n)〈k, ~p〉.

33

9. If A〈~σ〉 is a formula (∀τ ≺ σi)B〈τ, ~σ〉, then

A(n)〈~p〉 :=
∧

k<pi

B(n)〈k, ~p〉.

10. If A〈~σ〉 is a formula ∃τB〈τ, ~σ〉, then A(n)〈~p〉 :=
∨

k<n

B(n)〈k, ~p〉.

11. If A〈~σ〉 is a formula ∀τB〈τ, ~σ〉, then A(n)〈~p〉 :=
∧

k<n

B(n)〈k, ~p〉.

We easily convince ourselves that the translation A(n)〈~m〉 of an L formula
A〈~σ〉 is identical to A〈~σ〉. In order to extend the previous translation to
sequents of formulas from ∇Ω we need some further notation. If Φ is a finite
sequence of formulas from ∇Ω, we write Φ+ for the set of all ΣΩ formulas
which occur in Φ and Φ− for the set of all formulas from Φ which do not
belong to Φ+. Hence all elements of Φ− are ΠΩ formulas, and each element
of Φ either belongs to Φ+ or to Φ−.

Definition 33 Let ~σ be a finite string of stage variables, ~p a finite string of
natural numbers of the same length and m, n any natural numbers. For any
sequent (Φ ⊃ Ψ)〈~σ〉 of formulas from ∇Ω we define (Φ ⊃ Ψ)(m,n)〈~p〉 to be
the L formula∨
A〈~σ〉∈Φ+

(¬A)(m)〈~p〉 ∨
∨

A〈~σ〉∈Φ−

(¬A)(n)〈~p〉 ∨
∨

A〈~σ〉∈Ψ+

A(n)〈~p〉 ∨
∨

A〈~σ〉∈Ψ−

A(m)〈~p〉 .

The following theorem provides the desired reduction of the ∇Ω fragment of
SΩ to ZFL. It is based on an asymmetric treatment of the existential and
universal stage quantifiers in the ∇Ω sequents.

Theorem 34 (Reduction theorem) Let ~σ be a finite string of stage vari-
ables. Then for all sequents (Φ ⊃ Ψ)〈~σ〉 of formulas from ∇Ω, all natural
numbers m, n and all finite strings ~p of natural numbers of the same lengths
as ~σ such that ~p < m we have

SΩ `n
∗ (Φ ⊃ Ψ)〈~σ〉 =⇒ ZFL ` (Φ ⊃ Ψ)(m,m+2n)〈~p〉.

Proof. If the sequent (Φ ⊃ Ψ)〈~σ〉 is of the form B where B is an instance
of ∆Ω

0 separation or ∆Ω
0 replacement, then it translates into an instance of

separation or replacement for L formulas and is therefore provable in ZFL.
In all other essential aspects the proof of this theorem is a simple adaptation
of the proof of the corresponding theorem in Jäger [17], and there is no point
in outlining all details here. 2

34

Corollary 35 If A is an L formula provable in OSTr(E, P), then A is al-
ready provable in ZFL.

Proof. If A is provable in OSTr(E, P), then Theorem 28 implies the prov-
ability of A in ZFLr

Ω. Hence, according to Corollary 31, there exists a natural
number n for which SΩ `n

∗ ⊃ A. It only remains to apply the previous
reduction theorem to deduce our assertion. 2

Let us summarize what we have obtained: according to Theorem 25 the the-
ory ZFC is contained in OSTr(E, P), and, conversely, by the corollary above,
OSTr(E, P) is reducible to ZFL with respect to all L formulas. Furthermore,
a standard result in set theory states the conservativity of ZFL over ZFC for
absolute formulas, thus implying the equiconsistency of OSTr(E, P) and ZFC.

Corollary 36 The theory OSTr(E, P) is conservative over ZFC for absolute
formulas. In particular, OSTr(E, P) and ZFC are equiconsistent.

This finishes this article. In subsequent publications we will deal with the
non-restricted version OST(E, P) of OSTr(E, P) and various extensions of
operational set theory by reflection principles.

References

[1] P. Aczel, The type theoretic interpretation of constructive set theory,
Logic Colloquium ’77 (A. MacIntyre, L. Pacholski, and J. Paris, eds.),
Studies in Logic and the Foundations of Mathematics, North-Holland,
1978, pp. 55–66.

[2] , The type theoretic interpretation of constructive set theory:
choice principles, The L.E.J. Brouwer Centenary Symposium (A. S.
Troelstra and D. van Dalen, eds.), Studies in Logic and the Founda-
tions of Mathematics, North-Holland, 1982, pp. 1–40.

[3] , The type theoretic interpretation of constructive set theory: in-
ductive definitions, Logic, Methodology, and Philosophy of Science VII
(R. Barcan Marcus, G. J. W. Dorn, and P. Weingartner, eds.), Stud-
ies in Logic and the Foundations of Mathematics, North-Holland, 1986,
pp. 17–49.

[4] K. J. Barwise, Admissible Sets and Structures, Perspectives in Mathe-
matical Logic, Springer, 1975.

35

[5] M. J. Beeson, Foundations of Constructive Mathematics: Metamath-
ematical Studies, Ergebnisse der Mathematik und ihrer Grenzgebiete,
Springer, 1985.

[6] , Proving programs and programming proofs, Logic, Methodology,
and Philosophy of Science VII (R. Barcan Marcus, G. J. W. Dorn, and
P. Weingartner, eds.), Studies in Logic and the Foundations of Mathe-
matics, North-Holland, 1986, pp. 51–82.

[7] , Towards a computation system based on set theory, Theoretical
Computer Science 60 (1988), 297–340.

[8] A. Cantini and L. Crosilla, Constructive set theory with operations, draft,
2005.

[9] S. Feferman, A language and axioms for explicit mathematics, Algebra
and Logic (J. N. Crossley, ed.), Lecture Notes in Mathematics, vol. 450,
Springer, 1975, pp. 87–139.

[10] , Recursion theory and set theory: a marriage of convenience,
Generalized Recursion Theory II, Oslo 1977 (J. E. Fenstad, R. O. Gandy,
and G. E. Sacks, eds.), Studies in Logic and the Foundations of Mathe-
matics, North-Holland, 1978, pp. 55–98.

[11] , Notes on operational set theory, I. Generalization of “small”
large cardinals in classical and admissible set theory, http://math.

stanford.edu/~feferman/papers/OperationalST-I.pdf, 2001.

[12] , Operational theories of sets and classes, 2005, draft.

[13] S. Feferman and G. Jäger, Systems of explicit mathematics with non-
constructive µ-operator. Part I, Annals of Pure and Applied Logic 65
(1993), 243–263.

[14] J.-Y. Girard, Proof Theory and Logical Complexitiy, Studies in Proof
Theory, Bibliopolis, 1987.

[15] G. Jäger, Zur Beweistheorie der Kripke-Platek-Mengenlehre über den
natürlichen Zahlen, Archiv für Mathematische Logik und Grundlagen-
forschung 22 (1982), 121–139.

[16] , Theories for Admissibles Sets: a Unifying Approach to Proof
Theory, Studies in Proof Theory, Bibliopolis, 1986.

36

[17] , Fixed points in Peano arithmetic with ordinals, Annals of Pure
and Applied Logic 60 (1993), 119–132.

[18] G. Jäger and T. Strahm, Upper bounds for metapredicative Mahlo in ex-
plicit mathematics and admissible set theory, Journal of Symbolic Logic
66 (2001), 935–958.

[19] , The proof-theoretic strength of the Suslin operator in applica-
tive theories, Reflections on the Foundations of Mathematics: Essays in
Honor of Solomon Feferman (W. Sieg, R. Sommer, and C. Talcott, eds.),
Lecture Notes in Logic, vol. 15, Association for Symbolic Logic, 2002,
pp. 270–292.

[20] , Reflections on reflections in explicit mathematics, Annals of
Pure and Applied Logic 136 (2005), 116–133.

[21] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies
in Logic and the Foundations of Mathematics, North-Holland, 1980.

[22] M. Rathjen, Fragments of Kripke-Platek set theory, Proof Theory
(P. Aczel, H. Simmons, and S. Wainer, eds.), Cambridge University
Press, 1992, pp. 251–273.

[23] K. Schütte, Proof Theory, Grundlehren der mathematischen Wissen-
schaften, Springer, 1977.

[24] G. Takeuti, Proof Theory, Studies in Logic and the Foundations of Math-
ematics, North-Holland, 1987.

[25] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics. An
Introduction. Volume I, Studies in Logic and the Foundations of Math-
ematics, North-Holland, 1988.

Address
Gerhard Jäger
Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
jaeger@iam.unibe.ch

37

