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Abstract

Starting off from the infinitary system for common knowledge over
multi-modal epistemic logic presented in Alberucci and Jäger [1], we
apply the finite model property to “finitize” this deductive system.
The result is a cut-free, sound and complete sequent calculus for com-
mon knowledge.

1 Introduction

Common knowledge and common belief are important and interesting topics
in areas such as computer science, logic, game theory, artificial intelligence,
psychology and many other fields for which coordination among “agents” is
of great importance. Formalizations of reasoning with and about common
knowledge have been widely discussed in the literature, for example in Bar-
wise [2, 3] and in the textbooks Fagin, Halpern, Moses and Vardi [4] as well
as Meyer and van der Hoek [6], to give only a few examples.

In connection with calculi for common knowledge the question often arises
whether there is a complete and cut-free system which has the subformula
property and other desired structural properties. In the following we will
show that such a cut-free sequent calculus for common knowledge indeed
exists. In order to design it, we start off from the infinitary system Kω

n(C) for
common knowledge over multi-modal epistemic logic presented in Alberucci
and Jäger [1]. Then we recall that the finite model property is available for
common knowledge and make use of this fact for restricting Kω

n(C) to a finite
system K<ω

n (C). All we have to do is to change the ω-rule (ωC) for common
knowledge (see below) in Kω

n(C) to the finite rule (<ωC) in which only a
finite number of the infinitely many premises of (ωC) is used.

Obviously, every formula provable in Kω
n(C) is also provable in K<ω

n (C).
Hence K<ω

n (C) is stronger than Kω
n(C), and thus the completeness of Kω

n(C)
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implies that of K<ω
n (C). On the other hand, the finite model property of com-

mon knowledge will guarantee the consistency of K<ω
n (C). However, K<ω

n (C)
is a fairly “untypical” system in the sense that the number of premises needed
in the rule (<ωC) depends on the complexity of the conclusion of (<ωC).

2 Basic semantic notions

Good expository introductions to and detailed motivations of an approach
to common knowledge in the context of multi-modal propositional logics are
presented, for example, in Fagin, Halpern, Moses and Vardi [4] and in Meyer
and van der Hoek [6]. In the following we take up the syntactic and semantic
notions of Alberucci and Jäger [1], which are based on these two textbooks,
and refer the reader to this article for further details.

Ln(C) is our standard language for multi-modal logic; it comprises a set
PROP of atomic propositions, typically indicated by P, Q, . . . (possibly with
subscripts), the propositional connectives ∨ and ∧, the epistemic operators
K1, K2, . . . , Kn and the common knowledge operator C; in addition we assume
that there is an auxiliary symbol ∼ for forming the complements of atomic
propositions and dual epistemic operators.

The formulas α, β, γ, . . . (possibly with subscripts) of Ln(C) and the length
`(α) of each Ln(C) formula α are inductively generated as follows:

1. All atomic propositions P and their complements P̃ are Ln(C) formulas;

`(P ) := `(P̃ ) := 1.

2. If α and β are Ln(C) formulas, so are (α ∨ β) and (α ∧ β);

`((α ∨ β)) := `((α ∧ β)) := `(α) + `(β).

3. If α is an Ln(C) formula, so are Ki(α) and K̃i(α);

`(Ki(α)) := `(K̃i(α)) := `(α) + 1.

4. If α is an Ln(C) formula, so are C(α) and C̃(α);

`(C(α)) := `(C̃(α)) := `(α) · n + n + 1.

As usual we omit parentheses if there is no danger of confusion and abbreviate
the remaining logical connectives as usual; in addition we set

E(α) := K1(α) ∧ . . . ∧ Kn(α) and Ẽ(α) := K̃1(α) ∨ . . . ∨ K̃n(α).
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The factor and summand n, i.e. the number of agents, in the definition of
`(C(α)) and `(C̃(α)) ensure that we always have

`(E(α)) = `(Ẽ(α)) < `(C(α)) = `(C̃(α)).

Formulas Ki(α) are typically interpreted – on the intuitive level – as agent
i knows (believes) that α so that E(α) means that everybody knows α. But
observe that this does not mean that α is common knowledge.

Common knowledge of α is much stronger: it implies (i) that everybody
knows α and, in addition, (ii) that everybody knows that everybody knows
α, (iii) that everybody knows that everybody knows that every knows α
plus (iv) all further iterations thereof. To make this precise, we inductively
introduce for all natural numbers m the iterations Em(α) as

E0(α) := α and Em+1(α) := E(Em(α))

and then represent common knowledge of α as the infinitary conjunction of
all Em(α) for m ≥ 1,

C(α) ≈
∧
i≥1

Em(α).

The Ln(C) formulas P̃ act as negations of the atomic proposition P and are

needed together with the duals K̃i and C̃ of the modal operators Ki and C,
respectively, in forming the negations ¬α of general Ln(C) formulas α (by
making use of de Morgan’s laws and the law of double negation):

1. If α is the atomic proposition P , then ¬α is P̃ ; if α is the formula P̃ ,
then ¬α is P .

2. If α is the formula (β ∨ γ), then ¬α is (¬β ∧ ¬γ); if α is the formula
(β ∧ γ), then ¬α is (¬β ∨ ¬γ).

3. If α is the formula Ki(β), then ¬α is K̃i(¬β); if α is the formula K̃i(β),
then ¬α is Ki(¬β).

4. If α is the formula C(β), then ¬α is C̃(¬β); if α is the formula C̃(β),
then ¬α is C(¬β).

We turn to the semantics of Ln(C). As always, a Kripke-frame for Ln(C) is
a (n+1)-tuple

M = (W, K1, . . . , Kn)

consisting of a non-empty set W of worlds and n binary accessibility relations
K1, . . . , Kn on W ; the set of worlds of a Kripke-frame M is often denoted by
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|M|. Besides that, a valuation in a Kripke-frame M is a function V from the
atomic propositions PROP to the power set Pow(|M|) of |M|,

V : PROP → Pow(|M|).

Finally, the truth-set ‖α‖M
V of an Ln(C) formula α with respect to a Kripke-

frame M = (W, K1, . . . , Kn) and a valuation V in M is defined, as usual in
multi-modal logics, by induction an the complexity of α with an additional
clause for treating the operator C:

‖P‖M
V := V(P ),

‖P̃‖M
V := W \ ‖P‖M

V ,

‖α ∨ β‖M
V := ‖α‖M

V ∪ ‖β‖M
V ,

‖α ∧ β‖M
V := ‖α‖M

V ∩ ‖β‖M
V ,

‖Ki(α)‖M
V := { v ∈ W : w ∈ ‖α‖M

V for all w so that (v, w) ∈ Ki },

‖K̃i(α)‖M
V := { v ∈ W : w ∈ ‖α‖M

V for some w so that (v, w) ∈ Ki },

‖C(α)‖M
V :=

⋂
{ ‖Em(α)‖M

V : m ≥ 1 },

‖C̃(α)‖M
V :=

⋃
{ ‖Ẽm(α)‖M

V : m ≥ 1 }.

Based on this notion, we say that an Ln(C) formula α is valid in the Kripke-
frame M, in symbols

M |= α,

provided that for all worlds w from |M| and all valuations V in M we have
w ∈ ‖α‖M

V .

For notational simplicity we confine ourselves to accessibility relations with-
out any specific properties (e.g. reflexivity, transitivity) with the consequence
that only the K-axioms are satisfied with respect to our modalities K1, . . . , Kn;
in particular, knowledge of a fact does not imply the truth of this fact. Ex-
tensions of the following approach to, for example, reflexive and transitive
relations on the semantic side and inclusion of the T-axioms and the S4-
axioms on the syntactic side would work without any problems.

Our semantics of C reflects the so-called iterative interpretation of common
knowledge,

M |= C(α) ⇐⇒ M |=
∧
m≥1

Em(α),
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mentioned already above. Alternatively, we could also treat common knowl-
edge in the sense of the greatest fixed point interpretation since

(?) ‖C(α)‖M
V =

⋃
{X ⊂ |M| : X = ‖E(α) ∧ E(Q)‖M

V[Q:=X] }

where Q is chosen to be an atomic proposition which does not occur in α and
V [Q:=X] is the valuation which maps Q to X and otherwise agrees with V .
A proof of equation (?) can be found, for example, in Fagin, Halpern, Moses
and Vardi [4].

Hilbert-style axiomatizations for common knowledge which are sound and
complete with respect to this semantics are discussed in full detail in, for
example, Fagin, Halpern, Moses and Vardi [4] and Meyer and van der Hoek
[6]. However, this type of axiomatization is not needed for our following
considerations, and so we turn to an infinitary Tait-style system immediately.

3 An infinitary Tait-style system for common

knowledge

The iterative character of our approach to common knowledge lends itself
to a formulation within infinitary deductive systems in which C(α) can be
derived by a kind of ω-rule from the infinitely many premises

E1(α), E2(α), . . . , Em(α), . . .

for all natural numbers m ≥ 1, just as in the semantic interpretation of C(α),
introduced in the previous section. In the following we take up the approach
of Alberucci and Jäger [1] and reconsider the system Kω

n(C) introduced there.

Kω
n(C) is formulated as a Tait-style calculus which derives finite sets of Ln(C)

formulas rather than individual Ln(C) formulas. These finite sets of Ln(C)
formulas are denoted by the capital Greek letters Γ, ∆, Π, . . . (possibly with
subscripts) and have to be interpreted disjunctively. We often write (for
example) α, β, Γ, ∆ for the union {α, β}∪Γ∪∆. In addition, if Γ is the set
{α1, . . . , αm}, we often use the following convenient abbreviations:

Γ∨ := α1 ∨ . . . ∨ αm,

K̃i(Γ) := {K̃i(α1), . . . , K̃i(αm)},

C̃(Γ) := {C̃(α1), . . . , C̃(αm)}.

The axioms and rules of Kω
n(C) consist of the usual propositional axioms and

rules of Tait-calculi, of rules for the epistemic operators Ki with incorporated

5



formulas C̃(∆) plus rules for introducing C̃ and ω-like rules for C. More
precisely, Kω

n(C) contains the following collections of axioms and rules, with
P being any atomic proposition, α and β any Ln(C) formulas and Γ any
finite set of Ln(C) formulas.

I. Axioms of Kω
n(C)

P, P̃ , Γ(ID)

II. Propositional rules of Kω
n(C)

α, β, Γ

α ∨ β, Γ
(∨)

α, Γ β, Γ

α ∧ β, Γ
(∧)

III. Ki-rules of Kω
n(C)

α, Γ, C̃(∆)

Ki(α), K̃i(Γ), C̃(∆), Π
(Ki)

III. C̃-rules of Kω
n(C)

Ẽ(α), Γ

C̃(α), Γ
(C̃)

IV. ωC-rules of Kn(C)

. . . Em(α), Γ . . . (for all m ≥ 1)

C(α), Γ
(ωC)

Observe that these axioms and rules of our Tait-calculus Kω
n(C) do not in-

clude the usual cut rule, i.e. the rule

α, Γ ¬α, Γ

Γ
,(Cut)

which will be shown to be admissible later. In fact, all rules of Kω
n(C) sat-

isfy the so-called subformula property, provided that we regard all Em(α) as
subformulas of C(α).
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The subformula property of a rule (R) means that all formulas in the premises
of (R) are subformulas of the formulas in its conclusion. Clearly, the sub-
formula property is a useful feature in the context of proof search since it
restricts the search space for the reconstruction of proofs significantly.

Because of the rules (ωC), our system Kω
n(C) allows proof trees with infinitely

many nodes. Thus we require ordinals, which are denoted by the small Greek
letters σ, τ, η, ξ, . . . (possibly with subscripts), to measure the length of proofs.

Starting from its axioms and rules of inference, derivability in Kω
n(C) is intro-

duced as usual. For arbitrary ordinals σ and finite sets Γ of Ln(C) formulas
the notion Kω

n(C) `σ Γ is defined by induction on σ as follows:

1. If Γ is an axiom of Kω
n(C), then we have Kω

n(C) `σ Γ for all σ.

2. If Kω
n(C) `σi Γi and σi < σ for all premises Γi of a rule of Kω

n(C),
then we have Kω

n(C) `σ Γ for the conclusion Γ of this rule.

Kω
n(C) `<σ Γ means Kω

n(C) `τ Γ for some ordinal τ < σ, and Kω
n(C) ` Γ

means Kω
n(C) `τ Γ for some ordinal τ . Furthermore, Kω

n(C) + (Cut) `σ α
is defined analogously to Kω

n(C) `σ α with the rules (Cut) being admitted
as additional rules of inference.

The system Kω
n(C) has a minor drawback: Suppose that α is provable in

Kω
n(C), say

Kω
n(C) `σ α

for some ordinal σ. Then we need something like σ + m · n steps to derive
Em(α) from α, and afterwards (ωC) yields

Kω
n(C) `σ+ω C(α).

By adding the auxiliary rules of the form (for all natural numbers m ≥ 1)

(Em)
α

Em(α), Π
or (0C)

α

C(α), Π

we could do much better and obtain C(α) from α in only two or one additional
step. Actually the formulation of Kω

n(C) in Alberucci and Jäger [1] includes
the rules (Em), but this difference is not important for the following.

Let us also mention some natural extensions of Kω
n(C): The system Tω

n(C) is
obtained from Kω

n(C) by adding the rules

α, Γ

K̃i(α), Γ
(K̃i)
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which take care, in Tait-style systems, of the usual axiom (T ), stating that
Ki(α) implies α. S4ω

n(C) stands for the infinitary Tait-style system of the
multi-modal version of S4 with common knowledge and extends Tω

n(C) by
all rules

α, K̃i(Γ), C̃(∆)

Ki(α), K̃i(Γ), C̃(∆), Π
(4i)

which then allow us to prove positive introspection, namely that Ki(α) implies
Ki(Ki(α)).

The auxiliary set of formulas Π in the conclusions of the rules (Ki), (Em),
(0C) and (4i) are added just in order to guarantee the weakening property
of our calculi; that is, if Γ is provable and if Γ is a subset of ∆, then ∆ is
provable (with the same length) as well. Trivially, these auxiliary sets could
be dropped in these rules and a general weakening rule added.

A Kripke-frame M is a model of Kω
n(C) if all axioms of Kω

n(C) are valid in
M and if M is closed under the rules of inference of Kω

n(C) with respect to
validity. We call a formula α a semantic consequence of Kω

n(C), in symbols

Kω
n(C) |= α,

if α is valid in all models of Kω
n(C). The following theorem states sound-

ness and completeness of syntactic derivability in Kω
n(C) with respect to this

notion of semantic consequence.

Theorem 1 (Soundness and completeness of Kω
n(C))

The two systems Kω
n(C) and Kω

n(C) + (Cut) are sound and complete with
respect to our semantics; i.e. for all finite sets Γ of Ln(C) formulas we have

Kω
n(C) ` Γ ⇐⇒ Kn(C) |= Γ∨ ⇐⇒ Kω

n(C) + (Cut) ` Γ.

This theorem is proved in Alberucci and Jäger [1]. It is clear that only (i)
the soundness of Kω

n(C) + (Cut) and (ii) the completeness of Kω
n(C) have to

be established. Assertion (i) is more or less obvious; assertion (ii) is obtained
by a canonical model construction utilizing Kω

n(C) saturated sets of Ln(C)
formulas.

From Theorem 1 we also deduce that the two informal systems Kω
n(C) and

Kω
n(C)+(Cut) prove the same Ln(C) formulas. As a further consequence this

theorem also states admissibility of cuts in Kω
n(C). However, this is a form

of semantic cut elimination which does not provide a method of how proofs
in Kω

n(C) + (Cut) can be transformed into proofs in Kω
n(C).
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4 Finitizing Kω
n(C)

Given a Kripke-frame M, we define card(M) to be the cardinality of its
universe |M|; accordingly, M is called finite if card(M) < ω. As mentioned
above, C(α) is generally treated as the infinite conjunction of the Em+1(α)
for all natural numbers m. But if we work over a finite Kripke-frame M,
then C(α) is reached after finitely many iteration steps.

Lemma 2 Suppose that α is an Ln(C) formula, M a model of Kn(C), V a
valuation in M and m a natural number. Then we have:

1. ‖
m∧

i=1

Ei(α)‖M
V = ‖

m+1∧
i=1

Ei(α)‖M
V =⇒ ‖C(α)‖M

V = ‖
m∧

i=1

Ei(α)‖M
V .

2. card(M) ≤ m =⇒ ‖C(α)‖M
V = ‖

m∧
i=1

Ei(α)‖M
V .

Proof For the first assertion, simply show by induction on the natural
number k that our assumption implies ‖

∧m
i=1 Ei(α)‖M

V = ‖
∧m+k

i=1 Ei(α)‖M
V .

To establish the second part, consider the decreasing sequence

‖
0∧

i=1

Ei(α)‖M
V ⊃ ‖

1∧
i=1

Ei(α)‖M
V ⊃ . . . ⊃ ‖

m∧
i=1

Ei(α)‖M
V ⊃ ‖

m+1∧
i=1

Ei(α)‖M
V

of subsets of |M|. From card(M) ≤ m we conclude that not all of these m+2
sets can be different so that our assertion follows from the first part of this
lemma. 2

In a next step the finite model property of Kn(C) comes into play. It states
that each satisfiable formula α is satisfied in a finite frame with at most
2`(α) worlds and will allow us to collapse the infinite derivations in Kω

n(C) to
finite derivations. This is possible since only finitely many premises for an
application of the infinitary rule (ωC) are really important.

Theorem 3 (Finite model property)

If the Ln(C) formula α is satisfiable with respect to Kn(C), then there exist
a model M of Kn(C), a valuation V in M and an element w of |M| so that

card(M) ≤ 2`(α) and (M,V , w) |= α.

The proof of this theorem follows immediately from the proof of the com-
pleteness of Kn(C). All details can be found again in Fagin, Halpern, Moses
and Vardi [4] or, for example, in Halpern and Moses [5] and Meyer and van
der Hoek [6].
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The finite model property of Kn(C) is instrumental in designing a finitized
version (<ωC) of the infinitary rule (ωC). For any Ln(C) formula α and
any finite set Γ = {β1, . . . , βm} of Ln(C) formulas we first define a bounding
function bd(α, Γ) by

bd(α, Γ) := 2`(C(α))+`(β1)+...+`(βm)

which plays a crucial rôle in restricting (ωC) to a new finite subrule with only
finitely many premises.

Lemma 4 Let α be an Ln(C) formula and Γ a finite set of Ln(C) formulas.
Suppose, in addition, that

Kn(C) |= Em(α) ∨ Γ∨

for all 1 ≤ m ≤ bd(α, Γ). Then we also have

Kn(C) |= C(α) ∨ Γ∨.

Proof We proceed indirectly and assume that the formula C(α)∨Γ∨ is not
valid with respect to Kn(C). Hence ¬(C(α) ∨ Γ∨) is satisfiable with respect
to Kn(C), and according to the previous theorem there exists a model M

of Kn(C) so that card(M) ≤ bd(α, Γ) and (M,V , w) 6|= C(α) ∨ Γ∨ for some
valuation V in M and some element w of M. This implies that Em(α) ∨ Γ∨

is not valid with respect to Kn(C) for some m with 1 ≤ m ≤ bd(α, Γ). By
contraposition of this argument we have the assertion of our lemma. 2

The following finite ω-rule for C is a restriction of the rule (ωC) to finitely
many premises, the number of which depends on the length of the conclusion.

Finite ωC-rules For all Ln(C) formulas α and all finite sets Γ, Π of Ln(C)
formulas:

(<ωC)
. . . Em(α), Γ . . . (for all 1 ≤ m ≤ bd(α, Γ))

C(α), Γ, Π

The addition of (possibly empty) sets Π of side formulas in the conclusions
of these rules is necessary for making them stable under weakening.

The system K<ω
n (C) is Kω

n(C) with the ωC-rules (ωC) replaced by the finite
ωC-rules (<ωC). Naturally, K<ω

n (C) is a finite system and all rules of K<ω
n (C)

have the subformula property, again with the proviso that the Em(α) are re-
garded as subformulas of C(α).

The notion K<ω
n (C) `k Γ is introduced as Kω

n(C) `σ Γ, but with any (ωC)
replaced by (<ωC). Since all rules have finitely many premises only, natural
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numbers k are sufficient to bound the depth of proof trees. As a consequence,
we write K<ω

n (C) ` Γ if K<ω
n (C) `k Γ for some natural number k.

Whenever (ωC) is applicable, the rule (<ωC) can be applied as well since
only a finite number of the infinitely many premises are required. Therefore
the following Lemma 5 is obvious. More problematic is the correctness of
(<ωC); it is shown in Lemma 6 and follows from the finite model property
of Kn(C) in disguise of Lemma 4 above.

Lemma 5 For all finite sets Γ of Ln(C) formulas and all ordinals σ, we
have that

Kω
n(C) `σ Γ =⇒ K<ω

n (C) ` Γ.

Proof This assertion is proved by induction on σ. If Γ is an axiom of Kω
n(C),

then it is also an axiom of K<ω
n (C). If Γ is the conclusion of a basic rule of

Kω
n(C) or a C̃-rule of Kω

n(C), then K<ω
n (C) ` Γ follows from the induction

hypothesis.

It remains to consider the case that Γ is the conclusion of a rule (ωC). Then
we have a set ∆, a formula α and ordinals σ1, σ2, . . . with the properties

Kω
n(C) `σm Em(α), ∆ and σm < σ

for all natural numbers m greater than 0. Now we restrict our attention to
the m between 1 and bd(α, ∆), apply the induction hypothesis and obtain

K<ω
n (C) ` Em(α), ∆

for all m so that 1 ≤ m ≤ bd(α, ∆). Hence (<ωC) implies K<ω
n (C) ` Γ, and

our lemma is proved. 2

Lemma 6 For all finite sets Γ of Ln(C) formulas and all natural numbers
k, we have that

K<ω
n (C) `k Γ =⇒ Kn(C) |= Γ∨.

Proof We proceed by induction on k. If Γ is an axiom of K<ω
n (C), then

the assertion is obvious. If Γ is the conclusion of a basic rule of K<ω
n (C) or

a C̃-rule of K<ω
n (C), we apply the induction hypothesis to the premise(s) of

this rule and obtain Kn(C) |= Γ immediately.

Finally, if Γ is the conclusion of a rule (<ωC), then there exist a set ∆, a
formula α and natural numbers k1, k2, . . . so that Γ is of the form C(α), ∆
and we have

K<ω
n (C) `km Em(α), ∆ and km < k
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for all natural numbers m, 1 ≤ m ≤ bd(α, ∆). By induction hypothesis we
conclude

Kn(C) |= Em(α) ∨∆∨

for all 1 ≤ m ≤ bd(α, ∆). It simply remains to utilize Lemma 4 which yields
Kn(C) |= C(α) ∨∆∨ and completes the proof of our lemma. 2

Theorem 1 and Lemma 5 establish the completeness of our system K<ω
n (C);

Lemma 6 states its soundness. All together, we obtain our main result about
K<ω

n (C).

Theorem 7 (Soundness and completeness of K<ω
n (C))

The system K<ω
n (C) is sound and complete with respect to our semantics; i.e.

for all finite sets Γ of Ln(C) formulas, we have

K<ω
n (C) ` Γ ⇐⇒ Kn(C) |= Γ∨.

Notice that this theorem also implies the admissibility of cuts: adding cuts
to K<ω

n (C) does not increase its proof-theoretic power.

5 Conclusion

The main achievement of this note is a positive answer to the old ques-
tion whether a cut-free, sound and complete finite formalization of common
knowledge does exist: K<ω

n (C) is a deductive system which satisfies all the re-
quired properties. What is conceptually interesting (and new) is the fact that
a model-theoretic property, the finite model property, is directly integrated
into a deductive system.

However, we also agree that this should not be the end of the story. As
already mentioned, the inference rule (<ωC) of K<ω

n (C) – i.e. the finitary
version of the very natural (infinitary) rule (ωC) of Kn(C) for introducing
common knowledge – is somewhat “unusual” in the sense that the number
of its premises depends on the complexity of its conclusion. This has some
consequences with respect to the structural properties of K<ω

n (C).

Inversion with respect to propositional conjunction and disjunction is a sim-
ple matter; more interesting is inversion with respect to the modal operator
C. In the infinitary calculus Kω

n(C) it is evident that

Kω
n(C) `σ C(α), Γ =⇒ Kω

n(C) `σ Em(α), Γ

for all natural numbers m ≥ 1, all ordinals σ, all Ln(C) formulas α and
all finite sets Γ of Ln(C) formulas. Turning to the finite system K<ω

n (C),
definitely a weak form of C-inversion is available.
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Weak C-inversion. For any Ln(C) formula α, any finite set Γ of Ln(C)
formulas and any natural numbers k and m with m ≥ 1 we have that

K<ω
n (C) `k C(α), Γ =⇒ K<ω

n (C) ` Em(α), Γ.

However, so far we have no information about the complexities of the deriva-
tions of Em(α), Γ in relationship to k, and we do not even know whether a
natural relationship of this sort exists at all. This gives rise to the following
question:

Question. Assume the left hand side of the previous implication. Is it then
the case that K<ω

n (C) `k Em(α), Γ for all m where 1 ≤ m ≤ bd(α, Γ)?

To see why this is rather intricate, assume that the answer to this question
is “yes” and try to prove it by induction on k. If C(α), Γ has been inferred
in in the last step by an application of (<ωC) with main formula C(α), then
we have no problems. The critical case is a last step of the form

. . . Ei(β), C(α), ∆ . . . (for all 1 ≤ i ≤ bd(β, {C(α)} ∪∆))

C(β), C(α), ∆, Π

with a different main formula C(β). Then for any natural number i so that
1 ≤ i ≤ bd(β, {C(α)} ∪∆) there exists a ki < k for which

K<ω
n (C) `ki Ei(β), C(α), ∆.

Hence, by induction hypothesis, it is also the case that

K<ω
n (C) `ki Ei(β), Em(α), ∆,

and now the complications begin. Since, in general, bd(β, {C(α)} ∪ ∆) is
smaller than bd(β, {Em(α)} ∪∆) we do not have enough premises to derive
the desired C(β), Em(α), ∆, Π by an application of (<ωC).

Another open problem in connection with K<ω
n (C) is syntactic cut elimina-

tion. Let K<ω
n (C) + (Cut) denote the extension of K<ω

n (C) which permits
cuts as further rules of inference. In the face of Theorem 1 and Theorem 7
we know that semantic cut elimination is available. However, the proof of
this result does not give any information about the relationship between the
K<ω

n (C)-proofs with and without cuts.

Question. Is there a syntactic procedure for transforming proofs in the
system K<ω

n (C)+(Cut) into proofs in K<ω
n (C)? If so, what are the complexity

bounds?

We do not expect an easy answer to this question. As a preparatory step it
might be reasonable to study the related question first for infinitary Kω

n(C)+
(Cut) and Kω

n(C). But even for this presumably much simpler system only
semantic cut elimination is at our disposal as yet.
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