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Abstract

There are several situations in which common knowledge
becomes important. Among them we have games, social
behaviour, and natural language. In this paper we present
a multi-agent framework in which the agent are able to
use not only their own private knowledge bases bu also the
common knowledge they share with other agents. This ap-
proach is based on Aumann structures and the language is
a simplified version of full common knowledge. The re-
stricted language retains enough expressive power as to be
able to deal with the classical “muddy children” example
while being relatively simple 1.

1 Introduction

When we say that a group of agents share common knowl-
edge [2, 5, 6], we mean a situation in which everyone in
the group knows something, everyone knows that every-
one knows, and so on. In multi-agent systems that occurs
in situations where epistemic knowledge (i.e., knowledge
about the knowledge of other agents) is relevant. Such sit-
uations include, for instance, natural language (there must
be a common understanding of the meaning of words and
expressions), some games like Bridge, or in simulations of
social behaviour, in which the opinions of others may influ-
ence our acts [4]. In the case of one single agent, we may
consider this as a instance of introspective knowledge (the
agent ist conscious of its own knowledge.)

Our goal is to explore how an agent could comple-
ment its own knowledge with such epistemic knowledge to
draw conclusions and take decisions. We will deal with
a restricted form of common knowledge. We will thus
have a relatively simple system with an acceptable expres-
sive power. The agents have some private knowledge of
the actual state of the world and they exchange commu-
nications with other agents, thus creating common knowl-
edge between them. Besides, public announcements cre-
ates common knowledge among all agents. We show how
the agents may draw conclusions not only from their own
knowledge base, but also from the information they get
about the knowledge other agents have. Public announce-
ments introduce a dynamical aspect in our language, simi-
lar to the analised for instance in [3, 7].

1This research is supported by the Hasler Stiftung.

Since we will be concerned with knowledge and not
with beliefs, the different representations must be consis-
tent with each other. Tipically, the common knowledge will
be a subset of the private knowledge.

The paper is organised as follows. In the section 2
we begin with a simple motivating example to provide a
flavour of what is going on. Most examples are taken
from [2], and are already classical in the literature on epis-
temic systems. In section 3 we give the syntax and the se-
mantics of the language we work with. Section 4 contains
some examples of the use of the system, and section 5 con-
tains the conclusions and some suggestions to extend this
approach.

2 A First Example

In this section we will consider the most simple case, in
which we have a set of agents with some epistemic knowl-
edge and there are public announcements, that are of the
form ! ϕ, where ϕ is some formula. An announcement
is public not only in the sense that everyone receives the
information, but also in the sense that everyone knows that
everyone receives the information, everyone knows that ev-
eryone knows that everyone receives the information, and
so on. It would be therefore tempting to consider that as a
result of the announcementϕ becomes common knowledge
for everyone. This is not necessarily the case, as the exam-
ple below shows. The example we introduce is the classical
“muddy children” puzzle, which is a classical example in
the literature about common knowledge [2, 5].

Example (Minimalist Muddy Children.) Assume
there are two agents (the children) 1 and 2 and that the pred-
icates d1 and d2 specify whether they are clean or dirty. As-
sume that they both can see whether the other one is dirty,
but no one can see herself, and both children are aware of
this.

Now assume that somebody tells them that at least
one of them is dirty. At first sight, this introduces no mod-
ification, since both children already knew that. But now
they know that the other one knows.

If they now exclaim at the same time that they do
not kow whether they are dirty or not, this couldbe consid-
ered a kind of public announcement. Nevertheless, this is
not common knowledge since now both children know that
they are dirty (otherwise the other one would know that she
is the one) and thus the public announcement has become
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false because of the very fact that it was made.
Notice that if the first announcement would not have

occurred, the second one would not be enough for the chil-
dren to know their state. The reason why the announcement
in the example has not become common knowledge is that
it consists of non-monotonic information (i.e., information
about ignorance), what introduces a kind of “instability.”
In the next sections we will try to formalise the syntax and
semantics of a language that will enable us to deal with
similar problems. announcements.

3 The Language

3.1 Syntax of the Language

Our language will describe the epistemic state of the
agents, i.e., we want to express what an agent knows and
what a group of agents has common knowledge about. We
will thus distinguish between objective formulæ (those not
involving common knowledge), epistemic formulæ (those
describing common knowledge), and communications (ei-
ther public announcements or private communications.)
We will assume the existence of a set of propositional sym-
bols Π, whose elements will be represented by p, q, . . ., and
a set of agents A whose elements will be represented by
i, j, . . .. The syntax of objective formulæ, which we will
denote by OBJ, is given by the following grammar:

OBJ ::= p | ¬p | OBJ ∧ OBJ | OBJ ∨ OBJ

The syntax of epistemic formulæ, which we will denote by
EPI, is given by the following grammar, where G ⊆ A is a
group of agents:

EPI ::= CGOBJ | KWGOBJ | NKWGOBJ |
EPI ∧ EPI | ¬EPI

Note that we do not have formulæ of the form CG1CG2ϕ.
This is because such formulæ could appear only as a result
of private communications. Due to the restriction we im-
pose on the communications, such formulæ cannot be con-
structed. We will point out in the last section how to treat
such cases. In the case of common knowledge among all
agents (G = A), we will omit the subindex (CAϕ will be
simply written as Cϕ.) Finally, we have communications,
which may be either public announcement or private com-
munications. A communication has the form !iGϕ, where
i ∈ A is the emitter of the language, G ⊆ A is the receiver,
and ϕ is a restricted epistemic formula. The meaning of
!iGϕ is that agent i communicates ϕ to all agents in group
G. We only allow formulæ occurring within communica-
tions to be of the following form:

COM ::= !iGOBJ | !iGKWG′OBJ | !iGNKWiOBJ |
! NKWiOBJ

Observe that the ignorance (NKW) of an agent i may only
be communicated by a public announcement or by the

agent; no agent is allowed to communicate the ignorance
of other agents. The reason for this is not that we want our
agents to behave politely to each other, but to avoid incon-
sistency. The reason will be clear later on. We will also see
that this restriction limits the complexity of the epistemic
formulæ that may occur. Public announcements have the
form ! ϕ because there is no emitter and the receiver is A,
the set of all agents.

The semantics of the language will be formalised in
the next section. Informally, a formula CGϕ means that
every agent in group G knows ϕ, and everyone knows that
everyone know ϕ and so on. The formula KWGϕ means
that every agent in group G knows whether ϕ holds or not.
Note that in this case, it is the same to write KWGϕ or
KWG¬ϕ. The formula NKWGϕ is simply the nefation of
the previous one: no agent in group G knows whether ϕ
holds or not. we do not have a special operator for the
knowledge of one single agent, since we have only com-
mon knowledge; individual common knowledge is simply
introspective knowledge.

3.2 Semantics of the Language

The semantics of the language will be given in terms of
epistemic structures, which are very similar to Aumann
structures [1].

As before, we assume the existence of a set A of
agents, a set Π of propositional symbols, and a set S of
states. We assume further that there is a mapping V : Π 7→
2S , called a valuation for Π, whose intuitive meaning is
that V (p) gives the set of states where p holds for each
proposition p ∈ Π.

Definition (Partitions, Finer Partitions, Coarser Parti-
tions.) Let S be a set. Then a partition of S is a set P(S) =
{P1, . . . ,Pm} of subsets of S such that

⋃m
i=1 Pi = S and

i 6= j implies that Pi ∩ Pj = ∅. Given an element s ∈ S,
we denote byP(s) the partitionPi such that s ∈ Pi. A par-
tition PA(S) is finer than a partition PB(S) (correspond-
inglyPB(S) is coarser thanPA(S)) if for all s ∈ S it is the
case that PA(s) ⊆ PB(s). Given two sets S and S′ ⊆, we
may also say that a partition PA(S′) is finer than a partition
PB(S) if for all s ∈ S′ it is the case that PA(s) ⊆ PB(s).

If S is a set of states, we will use partitions of S′ ⊆ S
to group the states that are indistinguishable for an agent.

Example. Assume that a state is fully described by
two propositions p and q. There are thus four possible
states, namely s0 = (¬p,¬q), s1 = (¬p, q), s2 = (p,¬q)
and s3 = (p, q). If an agent knows p and ¬q, its corre-
sponding partition is {{s3}}. If it knows nothing, its parti-
tion is {{s0, s1, s2, s3}}. If it just knows ¬q its partition is
{{s0, s2}}. Finally, if we know that the agent knows p or
knows ¬p, its partition is {{s0, s1}, {s2, s3}}.

If we see the example above, we can give the intuitive
interpretation that a finer partition has at least as much in-
formation as a coarser one: the more knowledge an agent
has, the less states it considers possible. When it has abso-
lute certainty, only one state (the “right” one) is taken into



account. When it has absolute ignorance, all states are con-
sidered equally possible. Observe also that, unlike Aumann
structures, our partitions range over sets that are not neces-
sarily the set of all states. This is because we eliminate
states that are no longer considered possible.

Definition. Let A be a set of agents, G ⊆ A, S a set
of states, and let SI ⊆ SO ⊆ S2. An epistemic state for A,
G, and S is a pair EG = {EI , EO} such that

• EI is a set EI,j of partitions of SI such that for all
j ∈ G there is a partition EI,j ∈ EI .

• EO is a set EO,i of partitions of SO such that for all
i ∈ A\G there is a partition EO,i ∈ EO.

Given a partition EG we use the notation I(EG) for its cor-
responding set SI andO(EG) for its corresponding set SO.

An epistemic state EG will represent the common
knowledge a group G of agents (the “insiders”) shares
about the knowledge of all others. The agents of group
A\G, that have not access to EG, are the “outsiders.” In
the case of common knowledge among all agents in A, all
agents are insiders. All insiders having access to an epis-
temic state have of course access to all partitions, either of
other insiders or of outsiders.

Example. Let A = {1, 2, 3}, S = {s0, s1, s2, s3} and
let the states be defined by s0 = {¬p,¬q}, s1 = {¬p, q},
s2 = {p,¬q}, and s3 = {p, q}. Assume further that it is
common knowledge among all agents that KW1p, NKW1q,
KW2q, NKW2p, KW3q, and NKW3p. Thus we have that E
is the following epistemic state:

agent partition
1 {{s0, s1}, {s2, s3}}
2 {{s0, s2}, {s1, s3}}
3 {{s0, s2}, {s1, s3}}

What would happen if 1 and 2 exchange their private
knowledge? Then both would know that state s3 is the ac-
tual one, and for 3 nothing would have changed. Since
there was no public announcement, the common knowl-
edge of all agents remains unchanged. But there is a new
epistemic state E{1,2} which is the following one:

EI

{
EO

agent partition
1 {{s3}}
2 {{s3}}
3 {{s0, s2}, {s1, s3}}

Observe that agents 1 and 2 (the insiders) have a smaller
subset of states than agent 3 (the outsider), because they
are the only ones in E{1,2} that may take advantage of new
information.

Definition (Epistemic Structures.) Let us assume that
we have a set of agents A = {1, . . . , n}, a set of atomic
propositions Π, and a set of states S. An epistemic struc-
ture on A, S, and Π is a triple E = 〈K, E , V 〉 where
K = {K1, . . . ,Kn} is a set of subsets of S such that for

2SI stays for “insiders’ states” and SO for “outsiders’ states.”

each agent i there is a set Ki, E = {EG | G ∈ 2S} is a set
of epistemic states such that for each non-empty subset G
of A there is an epistemic state EG ∈ E , and V : Π 7→ 2S

is a valuation.
Epistemic structures will suffice to express the gen-

eral state of the system with the restrictions already stated.
The set K will contain the private knowledge of each agent,
expressed as a set of states which are undistinguishable for
it. Before establishing the semantics of our system we need
some further definitions.

Definition (Satisfiability Relation.) Let us assume that
we have a set of states S = {s1, . . . , sm}, a set of agents
A = {1, . . . , n}, and a set of atomic propositions Π. Let us
further assume we have a valuation V : Π 7→ 2S . Then we
define the satisfiability relation as follows:

• For a state si ∈ S and an objective formula ϕ the
satisfiability relation is defined inductively:

– If p ∈ Π, s |= p iff s ∈ V (p) and s |= ¬p iff
s 6∈ V (p).

– s |= ψ ∧ ζ iff s |= ψ and s |= ζ

– s |= ψ ∨ ζ iff s |= ψ or s |= ζ

• For a set of states E ⊆ S and an objective formula ϕ,
we have:

– If p ∈ Π, E |= p iff s ∈ V (p) for all s ∈ E and
E |= ¬p iff s 6∈ V (p) for all s ∈ E.

– E |= ψ ∧ ζ iff E |= ψ and E |= ζ

– E |= ψ ∨ ζ iff E |= ψ or E |= ζ

• For two sets of agents G and G′ such that G′ ⊆ G ⊆
A, an epistemic state EG = {E1, . . . , En} and an ob-
jective formula ϕ we have:

– EG |= CGϕ iff for all s ∈
⋃

EG it is the case
that s |= ϕ.

– EG |= KWG′ϕ iff for all Ei ∈ EG such that
i ∈ G′, we have that for all partitions Pj ∈ Ei

either Pj |= ϕ or Pj |= ¬ϕ.

– EG |= NKWG′ϕ iff for all Ei ∈ EG such that
i ∈ G′, we have that for all partitions Pj ∈ Ei

neither Pj |= ϕ nor Pj |= ¬ϕ.

Communications will introduce a dynamical element,
since the epistemic structures will change whenever an an-
nouncement is done. We assume that communications are
admissible, in the sense that any agent can only communi-
cate information that it knows (in other words, agents have
no immagination; they cannot “invent” anything.) Def-
inition (Transformation Function.) Let A, S, and Π as
above. The operator τ transforms an epistemic structure
E = 〈K, E , V 〉 on A and S into another one when a com-
munication occurs. Assuming a an epistemic state EG ∈ E
and a communication !iGϕ for some i ∈ G, we have:



1. If ϕ = p, then all states s ∈ I(EG) such that s 6∈ V (p)
are eliminated from from I(EG). If ϕ = ¬p, then all
states s ∈ I(EG) such that s ∈ V (p) are eliminated
from I(EG).

2. If ϕ = ψ ∧ ζ, all states s ∈ I(EG) such that either
s |= ¬ψ or s |= ¬ζ are eliminated from I(EG).

3. If ϕ = ψ ∨ ζ, all states s ∈ I(EG) such that either
s |= ¬ψ and s |= ¬ζ are eliminated from I(EG).

4. If ϕ = KWG′ψ, with G′ ⊆ G, then for all i ∈ G′

we refine the partition Ei ∈ EG by replacing each
Pj ∈ Ei by Pj,1 and Pj,2, two sets of states satisfying
the following conditions:

• Pj,1 ∪ Pj,2 = Pj .

• Pj,1 ∩ Pj,2 = ∅

• Pj,1 |= ψ.

• Pj,2 |= ¬ψ.

5. If ϕ = NKWiψ, then all states belonging to partitions
Pj ∈ Ei such that either Pj |= ψ or Pj |= ¬ψ are
eliminated from EG.

6. (Inheritance Condition): the states that have been
eliminated from an epistemic state EG must also be
eliminated from all epistemic states EG′ with G′ ⊂ G
and from all sets Ki ∈ K with i ∈ G.

In the simplified case in which only public announcements
are allowed, we have that rule 4 may be replaced by the
following: If ϕ = KWiψ, then all states belonging to parti-
tions Pj ∈ Ei such that neither Pj |= ψ nor Pj |= ¬ψ are
eliminated from EG.

Now we are ready to define the semantics of our lan-
guage.

Definition. (Semantics of the Language.) Let A =
{1, . . . , n} be a set of agents, S, a set of states, Π a set of
atomic propositions. Assume that each agent i owns some
formulæ that restrict the set of states it considers possible
to Si ⊆ S. Then a model for this system is an infinite tree
of epistemic structures Ej on A, S, and Π such that:

• The root of the tree is the epistemic structure E0 =
〈K0, E0, V 〉 such that for all Ki ∈ K0 we have that
Ki = Si and all the epistemic structures in E0 repre-
sent absolute ignorance (i.e., their partitions are sin-
gletons with all the states.)

• For all epistemic structures E and all admissible com-
munications c =!iGϕ (or c =! ϕ) in E there is a suc-
cessor node E′ with E′ = τ(E, c).

We will see in the next section that all this is simpler
than it looks.

4 Examples

Example (Muddy Children Revisited.) Let us assume now
the existence of three agents (the children), A = {1, 2, 3}
and three atomic propositions Π = {d1, d2, d3} respec-
tively stating that “child i is dirty” for each child. Assume
further that each child can see whether the others are dirty
or not, but does not know her own situation. We have the
following state table, where the actual state is denoted with
a bullet:

st d1 d2 d3
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

• 6 1 1 0
7 1 1 1

The situation at the beginning is that everyone sees whether
the others are dirty or not, but no one is aware of her own
situation. We have thus

K1 = {3, 6},K2 = {4, 6},K3 = {6, 7}

Since, for instance, 1 cannot distinguish between states 3
and 6. So far we have no common knowledge, since no
public announcements have been made. Assume now that
the following public announcement is broadcast:

! KW1d2∧KW1d3∧KW2d1∧KW2d3∧KW3d1∧KW3d2

Now we do have common knowledge, which is represented
by the following epistemic structure E:

agent partition
1 {{0, 4}, {1, 5}, {2, 6}, {3, 7}}
2 {{0, 2}, {1, 3}, {4, 6}, {5, 7}}
3 {{0, 1}, {2, 3}, {4, 5}, {6, 7}}

The private knowledge of the agents does not change, since
E neither eliminates states nor refines on individual infor-
mation. Now we get the new public announcement

! d1 ∨ d2 ∨ d3

(“At least one of you is dirty!”) This amounts to eliminating
state 0. We get thus the following transformed epistemic
state:

agent partition
1 {{4}, {1, 5}, {2, 6}, {3, 7}}
2 {{2}, {1, 3}, {4, 6}, {5, 7}}
3 {{1}, {2, 3}, {4, 5}, {6, 7}}

Again, the private knowledge remains unaltered, since state
0 was not considered for any individual agent. Then, what
has changed? Let us consider the private knowledge of 2:
there are two states, 4 and 6 which are equally possible and



undistinguishable. But if state 4 were the right one, child 2
knows that child 1 would have certainty. Now we get the
following public annoucement:

!NKW1d1 ∧ NKW2d2 ∧ NKW3d3

Now all “certainty” states 1, 2, and 4 are eliminated from
E, yielding:

agent partition
1 {{5}, {6}, {3, 7}}
2 {{3}, {6}, {5, 7}}
3 {{3}, {5}, {6, 7}}

Now the private knowledge of the children is changed ac-
cording to the inheritance rule:

K1 = {6},K2 = {6},K3 = {6, 7}

This is not surprising, because of what we argued before.
Assume now that 1 and 2 issue the communications

!1{1,2,3}KW1d1

!2{1,2,3}KW2d2

Here we have two possibilities. Assume that no private
communications are allowed. Then we have to eliminate
states belonging to subsets Pj ∈ E1 such that neither
Pj |= d1 nor Pj |= ¬d1 and all states belonging to sub-
sets Pk ∈ E2 such that neither Pk |= d2 nor Pk |= ¬d2.
The only subsets in this situation are {3, 7} ∈ E1 and
{5, 7} ∈ E2, and after elimination of states 3, 5, and 7
all agents converge to the actual state 6. If we are in the
more general setting in which we allow private communi-
cations, we have to partition all subsets Pj of E1 and E2

are two subsets according to the rules we saw before. This
operation yields:

agent partition
1 {{3}, {5}, {6}, {7}}
2 {{3}, {5}, {6}, {7}}
3 {{3}, {5}, {6, 7}}

This is the finest epistemic state we may have without 3
being aware of the real state. Note that, in contrast to
the classical setting of muddy children, where only public
announcements are allowed, here 3 cannot infer her state.
This is because the knowledge of 1 and 2 could have been
the result of private communications of which 3 is unaware.

We have seen in the last example how public an-
nouncement works. Now we will consider the case in
which private communications occur.

Example (Cheating Muddy Children.) Assume the
same scenario as in the last example until just after the com-
munication that at least one of them is dirty. Recall we have
the following common knowledge epistemic state:

agent partition
1 {{4}, {1, 5}, {2, 6}, {3, 7}}
2 {{2}, {1, 3}, {4, 6}, {5, 7}}
3 {{1}, {2, 3}, {4, 5}, {6, 7}}

Assume further that 1 whispers to 2 “You are the dirty!”
We would have:

!12d2

Thus, a new epistemic state E{1,2} where 1 and 2 are the
insiders is generated, namely:

agent partition
1 {{2, 6}, {3, 7}}
2 {{2}, {3}, {6}, {7}}
3 {{1}, {2, 3}, {4, 5}, {6, 7}}

Observe that here 2 has already because of the inheritance
condition enough elements to know that the right state is
6. For 3 nothing has changed, since she did not overhear
the communication, and for 1 nothing has changed either,
except that she knows that 2 knows, since all subsets in the
partition of 2 in E{1,2} are singletons.

5 Conclusions and Future Work

We have presented a multi-agent system in which the
agents may extract conclusions based not only in their own
databases but also in epistemic knowledge. The framework
is loosely based on Aumann structures [1] and some earlier
work by Baltag et alii [2, 3]. Some restrictions have been
made to keep the problem manageable and the semantics
relatively simple.

In order to accept arbitrary formulæ in communica-
tions, the semantics must be more complex. In a way,
we cannot avoid using the traditional Kripke structures as
in [5] or something that is equivalent. This is so because a
communication like !iG1CG2ϕ could be interpreted as giv-
ing the group G1 access to a copy of EG2; we could not
give access to EG2 because the message was sent at a given
moment in time; G2 should not know whether modifica-
tions to EG2 occur after the message.

The complexity of the system thus presented may be
in the worst case exponential. The worst case occurs when
many private communications with different emitters and
receivers occur. For each communication !iGϕ a new epis-
temic state EG∪{i} is generated (if the epistemic state ex-
ists already, it is just refined.) Thus, the generalisation
to communications with arbitrary formu;æ might render
the problem unmanageable. On the other hand, restriction
of communications to public announcements considerably
simplify the problem, since only one epistemic state repre-
senting the common knowledge of all agents is needed.
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