
MERGING RULE-BASED BELIEF DATABASES
Ricardo Wehbe

Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland. E-mail: wehbe@iam.unibe.ch

ABSTRACT
The problem of revising a belief database is treated in many
classical works. We will consider here the problem of
merging two belief databases (BDBs for short) Ψ1 and Ψ2,
operation that will be denoted by Ψ1�Ψ2, and whose result
will be a new BDB. Since belief not necessarily reflects the
actual state of the world (as opposed to knowledge), both
BDBs could be incompatible. The goal is to construct a
new BDB trying to retain as much as possible of the origi-
nal beliefs of Ψ1 and Ψ2.

KEY WORDS
Logic, Knowledge Representation, Belief Revision.

1 Introduction

The problem of revising a belief database is treated in [1]
and many other works. We will consider here the problem
of merging two belief databases (BDBs for short) Ψ1 and
Ψ2, operation that will be denoted by Ψ1 �Ψ2, and whose
result will be a new BDB. Since belief not necessarily re-
flects the actual state of the world (as opposed to knowl-
edge), both BDBs could be incompatible. The goal is to
construct a new BDB trying to retain as much as possible
of the original beliefs of Ψ1 and Ψ2.

The paper is organised as follows. In section 2 we
will consider the problem in an abstract way, without con-
sidering the actual implementation of the BDBs and we will
establish some postulates that such an operation should ver-
ify, in the spirit of the AGM or the KM postulates [1, 2]. In
section 3 we propose a simple language for representing
beliefs, similar to Prolog [3] but allowing classical nega-
tion and restricted to propositional clauses. Then we will
consider the operation of merging two rule-based BDBs.
In section 4 we propose a sequent system to obtain the in-
variant of such a set of clauses and in section 5 we provide
a way to merge such systems of clauses. In section 6 we
consider the behaviour of such a process with respect to
the postulates and section 7 contains the conclusions and
some lines of future research.

2 Postulates for Merging Belief Databases

We will assume the existence of some BDBs, which will
be collection of formulæ. We assume further that there is
a set of propositions Π, whose elements will be denoted
by p or q. An atom will be either an element of Π or its

negation. The set of all atoms that can be formed with the
propositions of Π is denoted by AT(Π). The set Π will
induce a universe UΠ, which is a set of possible worlds, i.e.
maximal consistent subsets of AT(Π) with respect to Π.
The syntax of the formulæ will be given by the following
grammar:

ϕ ::= p | p | ϕ ∧ ϕ | ϕ ∨ ϕ

The semantics of formulæ is defined inductively: a
world W ∈ UΠ is a model of p iff p ∈ W , it is a model of
p iff p 6∈ W , and as usual for more complex formulæ. In
the same way, a world W ∈ UΠ is a model of a BDB Ψ iff
it is a model of all its formulæ. Given a BDB Ψ, we will
also use Ψ |= ϕ with the usual meaning. The set of logical
consequences of a BDB Ψ is the set C(Ψ) = {ϕ | Ψ |= ϕ}.

There are some conceptual differences between be-
lief merging and belief revision, since when we merge two
BDBs Ψ1 and Ψ2, we are dealing with two entities of the
same status: if there is a conflict, there is no reason why we
should prefer the beliefs of Ψ1 to those of Ψ2 or vive-versa.

To manage belief-merging we introduce the idea of
conflict sets. Given two BDBs Ψ1 and Ψ2 we define their
conflict set as the set Ψ1 ↓ Ψ2 = {p, p | {p, p} ⊆ C(Ψ1)∪
C(Ψ2)}. The set Ψ1 ↓ Ψ2 contains the complementary
atoms of the union of the logical consequences of Ψ1 and
Ψ2.

We will further define the generating set of a given
subset of logical consequences. If A ⊆ C(Ψ), then the gen-
erating set of A in Ψ, denoted by GDΨ(A), is the minimal
subset of formulæ of Ψ such that GDΨ(A) |= A.

After these prolegomena, we may define the postu-
lates. We assume two BDBs Ψ1 and Ψ2.

(M1) If Ψ1 |= ϕ, and (1) ϕ 6∈ GDΨ2(C(Ψ2) ∩ Ψ1 ↓ Ψ2),
and (2) GDΨ1(C1∩Ψ1 ↓ Ψ2) 6|= ϕ, then Ψ1�Ψ2 |= ϕ.

(M2) If for all C(Ψ2) ⊆ C(Ψ1), then Ψ1 �Ψ2 ≡ Ψ1.

(M3) If both Ψ1 and Ψ2 are consistent, then Ψ1 � Ψ2 is
consistent.

(M4) If Ψ1 |= ϕ ∧ µ and Ψ2 |= µ and (1) ϕ 6∈
GDΨ2(C(Ψ2) ∩ Ψ1 ↓ Ψ2), and (2) GDΨ1(C1 ∩ Ψ1 ↓
Ψ2) 6|= ϕ, then Ψ1 �Ψ2 |= ϕ.

(M5) If Ψ1 |= ϕ ∨ µ and Ψ2 |= µ and (1) ϕ 6∈
GDΨ2(C(Ψ2) ∩ Ψ1 ↓ Ψ2), and (2) GDΨ1(C1 ∩ Ψ1 ↓
Ψ2) 6|= ϕ, then Ψ1 �Ψ2 |= ϕ.

(M6) If Ψ1 |= ϕ and Ψ2 |= ϕ then either Ψ1�Ψ2 |= ϕ or
Ψ1 �Ψ2 |= ϕ.

Postulate M1 states that no belief is lost unless it is
inconsistent with other beliefs being merged or it is a logi-
cal consequence of conflicting beliefs. M2 says that if Ψ2

is already contained in Ψ1, then the merging should have
no effect. Postulate M3 says that we cannot produce an
inconsistent database by merging two consistent ones; any
suitable merging procedure should detect and eliminate in-
consistencies. M4 states that if Ψ1 believes ϕ ∧ µ and Ψ2

believes µ, there is no reason to cease believing ϕ unless it
is in the intersection of C(Ψ1) and Ψ1 ↓ Ψ2. Postulate M5
is quite straightforward: if Ψ1 believes ϕ ∨ µ and µ does
not hold, then Ψ1 believes ϕ. M6 implies the condition
that if there are conflicting formulæ, at one of them will be
retained.

Postulates M1, M4, M5, and M6 aim at characterising
necessary conditions for minimal change. The conditions
are not sufficient, since not all formulæ in the generating
sets of the conflict set must be eliminated. Next we will
analyse the behaviour of a representation of belief [4] in
view of these postulates.

3 Syntax and Semantics

We will also start with a set of propositional symbols Π.
The syntax of the language is given by the following gram-
mar:

clause ::= ε | atom[, atom] → atom

A belief database (BDB) is a set of clauses K. As usual,
the intended meaning of a clause is that if the antecedent
is true, so is the consequent. If Π contains all the proposi-
tional symbols occurring in K we will say that K is based
on Π.

If K is a set of clauses based on Π, a model of K is
a world W ∈ UΠ such that for all clauses Γ → p ∈ K, if
Γ ⊆ W then p ∈ W . A set of clauses is consistent iff it has
a model. The invariant of the set of clauses K, denoted by
J (K), is the set of atoms that belong to all models of it.

We will proposed in the next section a sequent system
that may be used to construct the invariants and the exten-
sions of a BDB.

4 A Sequent System for Rule-Based Belief
Databases

The system B0 proves properties of tuples 〈K, S〉, where
K is a set of clauses and S is a set of atoms. A tuple is
consistent iff there is some model W of K such that S ⊆
W .

id
〈K, ∅〉

inf
〈K ∪ {→ p}, S〉
〈K, S ∪ {p}〉

te1
〈K ∪ {Γ, p → q}, S〉 p ∈ S

〈K ∪ {Γ → q}, S〉

te2
〈K ∪ {Γ → p}, S〉 p ∈ S

〈K, S〉

ce1
〈K ∪ {Γ, q → p}, S〉 p ∈ S

〈K ∪ {Γ → q}, S〉

ce2
〈K ∪ {Γ, p → q}, S〉 p ∈ S

〈K, S〉

⊥ 〈K ∪ {→ p}, S〉 p ∈ S

〈∅, AT(Π)〉

rec

〈K, S ∪ {p}〉 〈K, S ∪ {p}〉
...

...
〈K, S〉 〈K1, S1〉 〈K2, S2〉

〈K, S1 ∩ S2〉

Figure 1: The system B0.

Rule rec may be applied only once for each pair of
complementary atoms. This is to avoid infinite sequences,
as the following example shows.

Example. Let C = {p → q, p → r}. Then rule rec
could be indefinitely applied with no changes if we would
not have the above proviso.

We will also assume that in rule rec no rules are appli-
cable in the tuples resulting from the subproofs (〈K1, S1〉
and 〈K2, S2〉.) If rule ⊥ is applicable, no other rule may
be applied; otherwise, if rule inf is applicable, no other rule
may be applied.

If K is a set of clauses, then we define a proof in
system B0 starting from K as a finite sequence of tuples
〈K0, S0〉, . . . , 〈Kn, Sn〉 such that: (1) K0 = K, (2) S0 =
∅, and (3) for all 0 ≤ j < n, tuple j + 1 is obtained by
application of some allowed rule of B0 on tuple j.

Informally, we begin with a tuple 〈C,S〉 where S =
∅ and “collect” all atoms that are bound in S. Once we
have collected them, we may eliminate redundancies and
contradictions. Rule inf states that if we have the fact → p,
then all models must include p, and thus p is bound. So,
it is added to set S and eliminated from the set of clauses.
Rule te1 (te stays for “tautology elimination”) state that
we may eliminate every occurrence of a bound atom from
the consequent of an clause, and te2 says that we need no
longer a clause whose consequent is already known to be
bound. Rule ce1 (ce stays for “contradiction elimination”)
says that if we have a clause whose consequent appears
negatively in S, then we must rewrite this clause by taking
an atom of the antecedent and putting its complement in the
consequent. If there are no atoms in the consequent, then
rule ⊥ is applied. Rule ce2 states that we may eliminate

any clause whose antecedent contains the complement of
an atom known to be bound, this clause is false and we do
not need it anymore. Rule ⊥ says that if we have an atom
p which must appear in all models and a fact → p, which
may only be satisfied with p, then the whole set of clauses
is unsatisfiable (inconsistent.) Rule rec (the name is for
“recursion”) is rather more complex. It means that when we
have two complementary atoms p and p in a tuple 〈C,S〉,
we may start two subproofs, one beginning with 〈C ∪ {→
p}, S〉 and the other one beginning with 〈C ∪ {→ p}, S〉.
If these subproofs yield 〈C1, S1〉 and 〈C2, S2〉 respectively,
then we may go on with 〈C,S1 ∩ S2〉. The proof of the
correctness of this rule, which is not evident, is in [4].

It also is proved in [4] that this system is sound (if
K is a consistent set of clauses, then in any tuple 〈Ki, Si〉
belonging to a proof starting with 〈∆, ∅〉 all atoms in Si are
bound in K) and complete (if 〈Kn, Sn〉 is the final tuple of
a proof starting from 〈K, ∅〉, then all atoms that are bound
in K are in Sn.

A proof is linear except in the case of the rule rec,
the only case where the proof branches out into two sub-
proofs. In both cases, all rules must be applied until no one
is allowed. Thus, any other occurrence of rule rec must oc-
cur within the sub-proof of another application of the same
rule. This is shown in the figure next.

r

r r r

r r

r

pppppppppppppppppppp
pppppppppppppppppppp

r r r

r r pppppppppppppppppppp
pppppppppppppppppppp

rr r

r r

Figure 2: The general structure of a proof.

We will establish some ordering among the atoms of
an invariant, which will be used to merge sets of clauses. To
do this, we will add the proviso that rule ⊥ has the highest
precedence and rule inf has the second highest precedence
over all other rules (if ⊥ is applicable, no other rule may
be applied; if ⊥ is not applicable and inf is applicable, then
no other rule may be applied.) Hence we may inductively
assign a pair (x, y) to each step in the proof:

1. The value of (x, y) is (0, 0) at the beginning.

2. Applications of rules inf, ce2, and te2 have no effect
on (x, y).

3. If either rule te1 or ce1 are applied, (x, y) is modified
to (x, y + 1).

4. If rule rec is applied, (x, y) is modified to (x + 1, y).

The weight of an atom in the invariant is the value of
the pair (x, y) corresponding to the rule in which it was

incorporated to the invariant. Given two atoms p and q,
with weights (x1, y1) and (x2, y2) respectively, we say that
p is lighter than q, denoted by p < q, iff (1) x1 < x2, or
(2) x1 = x2 and y1 < y2.

5 Merging Sets of Clauses

Now we will consider the merging of two BDBs K1 and
K2. The interesting case is K1 ↓ K2 6= ∅, since otherwise
we may just append the clauses modulo some elimination
of redundancies. We will assume that a weight w(p) is
assigned to each atom p belonging to J (K1) and J (K2).
Notice that the invariant of a set of clauses K should not be
confused with its set of logical consequences. In general,
J (K) ⊆ C(K).

The procedure we propose to merge two sets of
clauses does not directly use the conflict sets. Instead, we
give preference to lighter atoms. Given two sets of clauses
K1 and K2, we take the union of them and then we apply
the B1 system on it. This is almost the same as the B0 sys-
tem, with two differences: first, the rule ⊥ is replaced with
the following rule:

ce3
〈K ∪ {→ p}, S〉 p ∈ S

〈K, S〉
This rule eliminates any clause that causes an inconsis-
tency.

We have to specify what to do when this rule occurs
in a subproof within an application of the rec rule. There
are two possibilities: either the clause is eliminated in both
subproofs and then it must be eliminated from the set of
clauses, or it is eliminated in one of the subproofs only and
then we discard the subproof. Since rules change as the
proofs advances, we assign each rule a unique identifier to
keep track of eliminated rules. The notation k : Γ → p
indicates that the clause has identifier k. The second dif-
ference between the B1 system and the B0 system is that
rule rec rules is replaced by rules rec1, rec2a, and rec2b.
In the following rules K ∪ {k} will be an abbreviation for
K ∪ {k : Γ → q}, and S1 = S ∪ {p}, S2 = S ∪ {p}.

rec1

〈K ∪ {k}, S1〉 〈K ∪ {k}, S2〉
...

...
〈K ∪ {k}, S〉 〈K1, S

′
1〉 〈K2, S

′
2〉

〈K, S′
1 ∩ S′

2〉
Rule rec1 assumes that rule ce3 was applied on

clause k in both subproofs.

rec2a

〈K ∪ {k}, S1〉 〈K ∪ {k}, S2〉
...

...
〈K ∪ {k}, S〉 〈K1, S

′
1〉 〈K2, S

′
2〉

〈K ∪ {k}, S′
2〉

Rule rec2a assumes that rule ce3 was applied on clause k
only in the left-side subproof; thus we discard the subproof
and use only the right-side one.

Rule rec2b is symmetric to rule rec2a. The idea un-
derlying this system is that when we decide to eliminate
one atom of a set of clauses to preserve consistency, it is
better to differ the elimination as long as possible, so as to
preserve lighter atoms. The following example shows why
we give preference to lighter clauses.

Example. Let K = {1 :→ p, 2 : p → q, 3 : q →
r, 4 : r → p}. We can eliminate any clause to avoid in-
consisteny. We have: J (K\{1}) = ∅; J (K\{2}) = {p},
J (K\{3}) = {p, q}, and J (K\{4}) = {p, q, r}. Mini-
mal change is accomplished in the latter (weightiest) case,
since otherwise we eliminate either q or r.

6 Sets of Clauses and the Postulates for Be-
lief Merging

In this section we examine how the system shown previ-
ously behaves with respect to the postulates of section 2.
We will write k instead of k : Γ → p. This will allow us
to keep track of a clause through its “metamorphoses.” We
assume now that we have two sets of clauses, K1 and K2.

The first postulate says that if K1 |= ϕ, and (1)
ϕ 6∈ GDK2(C(K2) ∩ K1 ↓ K2), and (2) ϕ is not a
logical consequence of GDK1(C(K1) ∩ K1 ↓ K2), then
K1�K2 |= ϕ. Suppose that we have a proof on system B1

beginning with K1∪K2. Since k 6∈ (C(K1)∩K1 ↓ K2 and
k 6∈ (C(K2) ∩K1 ↓ K2, then rule ce3 will not be applied
on k. If either rule ce2 or te2 is applied on k, then the
original clause is still a logical consequence of K1 ∪ K2,
since in the former case the antecedent is false and in the
latter case the consequent is true. If rule te1 is applied,
then the original clause is also a logical of K1 ∪K2, since
we have retracted from the antecedent an atom which is
bound in the set of clauses. Finally, if we apply rule ce1,
we have a clause Γ, q → p and the consequent is false.
So, for this clause is a logical consequence of K1 ∪K2, iff
K1 ∪K2 |= Γ or K1 ∪K2 |= q iff K1 ∪K2 |= Γ → q.

Postulate M2 says that if for all ϕ such that K2 |= ϕ
it is the case that K1 |= ϕ, then K1 � K2 ≡ K1. This
postulate is fulfilled, since the set of clauses will have some
redundancies but no new logical consequences.

Postulate M3 says that if both K1 and K2 are consis-
tent, then K1 � K2 is consistent. By the properties of the
system, if K1 � K2 is inconsistent, rule ce3 will be ap-
plied on the “offending” clause k. The same reasoning can
be iterated with K1 �K2\{k}.

The fourth postulate says that if K1 |= ϕ ∧ µ and
K2 |= µ and (1) ϕ 6∈ GDK2(C2 ∩ K1 ↓ K2), and (2)
ϕ is not a logical consequence of GDK1(C1 ∩ K1 ↓ K2),
then K1 � K2 |= ϕ. In the case of sets of clauses this is
a consequence of the first postulate, since the conjunction
of ϕ and µ is originated in the union of the sets of clauses
that entail ϕ and the set of clauses that entail µ. Thus we
can separate both sets, and then apply the first postulate to
clause ϕ.

We let M5 aside, since our sets of clauses do not

model disjunctions.
Postulate M6 is also fulfilled, since to eliminate one

conflicting atom its complement must be already in the in-
variant (rule ce3.)

7 Conclusions and Future Work

We have proposed some postulates that may provide a good
basis for the behaviour of a system in which belief merging
is performed. Besides, we have proposed a belief represen-
tation based on rules, similar to the ones presented in [5, 6].
This has the advantage of being simple enough to throw
some light on the problem. Belief merging is similar to be-
lief revision [1, 7, 2]. The aim is quite the same: to avoid
inconsistencies while trying to retain as much as possible
of older beliefs.

We are working on extended this approach to non-
monotonic logic, especially default logic [8, 9]. This im-
plies several interesting problems, as a definition of several
degrees of belief (depending a formula is in the invariant,
in all extensions, or in some extensions) and it seems to
be a promising approach to work with compromise belief
revision [10]. We are also investigating the possibility of
expressing introspection [11] within this framework.

Besides, the postulates may be refined, since they
could be too strong in its current state.

References

[1] Alchourrón, C.; Gärdenfors, P.; Makinson, D., On
the Logic of Theory Change: Partial Meet Contrac-
tion and Revision Functions, The Journal of Symbolic
Logic 50 (2), 1985, pp. 510–530.

[2] Katsuno, H.; Mendelzon, A., On the Difference Be-
tween Updating a Knowledge Base and Revising it,
Proc. of KR-1991, Morgan-Kaufmann, pp. 387–394.

[3] Lloyd, J.W.: Foundations of Logic Programming,
Springer Verlag, 1987.

[4] Wehbe, R., A Sequent System for Sets of Clauses,
Tech. Report IAM-06-007, Institut für Informatik
und angewandte Mathematik, University of Bern,
www.iam.unibe.ch/publikationen/tech-reports/2006/

[5] Alechina, N.; Jago, M.; Logan, B., Modal Logics for
Communicating Rule-Based Agents, Proc. of the 17th
European Conf. on Artificial Intelligence (ECAI’06),
IOS Press, 2006, pp. 322–326.

[6] Sadri, F.; Toni, F., Interleaving Belief Updating and
Reasoning in Abductive Logic Programming, Proc.
of ECAI’06, IOS Press, pp. 442–446.

[7] Herzig, A.; Rifi, O., Propositional Belief Base Update
and Minimal Change, Artificial Intelligence 115 (1),
1999, pp. 107–138.

[8] Besnard, Ph.: An Introduction to Default Logic,
Springer Verlag, 1989.

[9] Marek, W.; Truszczyński, M.: Nonmonotonic Logic,
Springer-Verlag, 1993.

[10] Gabbay, D.M., Compromise Update and Revision:
A Position Paper, in R. Pareschi and B. Frönhofer
(eds.), Dynamic Worlds, Kluwer Academic Publish-
ers, 1999, pp. 111–148.

[11] Fagin, Ronald; Halpern, Joseph; Moses, Yoram;
Vardi, Moshe: Reasoning About Knowledge, The
MIT Press, Cambridge, MA, 1996.

