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1 Introduction

In this master thesis we examine the theory V1, a two-sorted (first-order)
theory of bounded arithmetic which was introduced by Cook. Theories of
bounded arithmetic are weak subsystems of Peano Arithmetic, where the
induction axiom scheme is restricted to formulas with only bounded quan-
tifiers, i.e. quantifiers of the form ∃x ≤ t or ∀x ≤ t. “Two-sorted” means
that there are two sorts of individuals, namely “numbers” and “finite sets of
numbers”. This two-sorted approach is due to Zambella ([11]) and Cook ([6])
and turned out to be useful for studying especially weak complexity classes
such as AC0 (but also P).

The theory V1 characterises the polynomial time computable functions
FP in the sense that the functions definable in V1 (called the provably total
functions of V1), correspond precisely to the functions in FP. V1 is the
second element of a whole hierarchy V0 ⊂ V1 ⊆ V2 ⊆ . . . of theories,
where, for i ≥ 1, Vi characterises the (i − 1)-th level of the polynomial
hierarchy.

One leading motivation for relating bounded arithmetic and complexity
classes is to gain insight into the numerous open problems in theoretical
computer science, namely the question of whether the polynomial hierarchy
is proper and as a consequence whether the classes P and NP are distinct.
The PhD thesis of Buss ([2]) was a milestone in relating complexity classes
and bounded arithmetic. The theories V0 ⊂ V1 ⊆ V2 ⊆ . . . correspond to
Buss’ theories S1

2 ⊆ S2
2 ⊆ . . . .

The main references for this thesis are the lecture notes of Prof. Stephen
Cook and the yet unpublishedi book ([6]) ”Foundations of Proof Complexity:
Bounded Arithmetic and Propositional Translations” by Stephen Cook and
Phuong Nguyen. [11, 12, 3, 2] are good sources for advanced study of the
subject of bounded arithmetic and complexity classes.

This thesis is intended to be easily accessible to students and novice
readers of logic texts. Therefore it contains more “prose” than the advanced
logician is used to. Section 2 is rather elementary and contains an introduc-
tion into bounded arithmetic as well as a brief introduction into first-order
logic. Experienced readers might just want to skim through in order to look
at the notations. In section 3, two-sorted first-order logic, together with a
two-sorted version of the sequent calculus, is introduced. We also prove ba-
sic results such as soundness, completeness and “free-cut” elimination. In
section 4, the theory V1 is introduced and many of its properties are proved,
especially a two-sorted version of Parikh’s theorem ([8]). At the end, section

iin April 2008
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4 then contains a lower and an upper bound theorem for V1. These theorems
imply that V1 characterises FP.

All but very few of the theorems and lemmas are proved in detail. Fa-
miliarity with basic complexity theory and some experience with first-order
predicate logic are helpful. The reader should also know about elementary
set theoretic notions such as functions and relations.

List of Abbreviations

• ≡ stands for syntactical equivalence.

• P(X) stands for the powerset of X.

• Pf (X) stands for the finite power set of X, that is all finite subsets of X.

• ⇒ stands for implication in the meta-language.

• s.t.: such that

• w.r.t.: with respect to

• w.l.o.g.: without loss of generality

• RHS: right hand side

• LHS: left hand side
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2 Preliminaries

2.1 First-order Predicate Logic

This section provides a brief introduction into first-order logic together with
basic definitions that are used later. For simplicity, first-order predicate logic
will be called just first-order logic.

2.1.1 Syntax

First-order logic is an extension of first-order propositional logic and allows
predications over individuals (e.g. natural numbers) using functions and rela-
tions over those individuals. In the following, we define first-order languages,
terms and formulas. A first-order language L consists of:

1. a (possibly empty) set of n-ary function symbols, for each n ∈ N. A
0-ary function symbol is called a constant symbol,

2. a (possibly empty) set of n-ary predicate symbols, for each n ∈ N,

3. an infinite set of variables,

4. logical connectives ∨,∧,¬,

5. quantifiers ∀,∃,

6. parentheses (, ).

We use f, g, h, . . . as meta-symbols to denote function symbolsi, P,Q,R, . . .
for predicate symbols and x, y, z, . . . , a, b, c, . . . for variables. Further we re-
quire that each language contains at least one predicate symbol. Terms over
a language L are intended to range over a set of individuals, called the uni-
verse (cf. section 2.1.2). L-terms are inductively defined in the following
way:

1. Every variable of L is an L-term.

2. If f is an n-ary function symbol of L and t1, . . . , tn are L-terms, then
f(t1, . . . , tn) is an L-term.

Using terms, we can now build L-formulas inductively as follows:

1. If P is an n-ary predicate symbol in L and t1, . . . , tn are L-terms, then
P (t1, . . . , tn) is an (atomic) L-formula.

isometimes with sub- or superscripts
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2. If A and B are L-formulas, then (A∨B), (A∧B), (¬A) are L-formulas.

3. If A is an L-formula and x is a variable, then (∀x)A and (∃x)A are
L-formulas.

We use r, s, t, . . . as meta-symbols to denote terms, capital letters A,B,C, . . .
for formulas and capital Greek letters Γ,∆,Φ, . . . to denote sets of formulas.
In addition, we use the following abbreviations: A→ B stands for (¬A∨B)
and A ↔ B stands for (A → B ∧ B → A). We often omit parentheses
and follow the convention that precedence follows the order ¬,∧,∨,→. For
example, ¬A ∨ B → C stands for

(
(¬A) ∨ B

)
→ C. All languages in this

thesis are extensions of the first-order language of arithmetic (or a two-sorted
version thereof) which we will call LA.

Definition 2.1 (LA). LA = (0, 1,+,×,=,≤)

In the above definition 0, 1 are 0-ary function symbols (constants), +,×
are binary function symbols and =,≤ are binary predicate symbols. We will
use t 6= s as an abbreviation for ¬(t = s) and t < s for (t ≤ s ∧ t 6= s).

Definition 2.2 (Free/Bound Variables). For terms and formulas, the set of
free variables is inductively defined as follows

free(x) = {x}, free(f(t1, . . . , tn)) = free(t1) ∪ · · · ∪ free(tn),

free(P (t1, . . . , tn)) = free(t1) ∪ · · · ∪ free(tn),

free(A ∧B) = free(A ∨B) = free(A) ∪ free(B),

free(¬A) = free(A),

free(∀xA) = free(∃xA) = free(A) \ {x}
The set of bound variables is defined accordingly with bound(∀xA) = bound(∃xA) =
bound(A) ∪ {x}.

Obviously, a variable x can occur both free and bound in a formula A.
A formula without free occurrences of variables is called a closed formula or
a sentence. A term that does not contain variables is called a closed term.
We adopt common syntactic conventions and write A(t/x) for the formula
obtained by replacing all free occurrences of x in A by the term t. In general,
we demand that t is freely substitutable for x in A, which means that no (free)
variable of t becomes bound in A(t/x). This is to prevent unwanted semantic
side effectsi. Further we write A(x) and mean that the variable x might occur
free in A and then A(t) means A(t/x) in the same context. Note that A(x)
does not necessarily mean that x actually occurs in A. Out of context, A(t)
stands for A(t/x) for some x. This notation applies accordingly for terms
(e.g. t(x)).

iFor example, the variable x is not freely substitutable for y in ∃x(y < x).
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Notation We often write ~x instead of x1, . . . , xk, for some k ≥ 0. Let A(~x)
be a formula with all free variables indicated. Then ∀A(~x) stands for

∀x1 . . . ∀xkA(x1, . . . , xk)

and is called the universal closure of the formula A. If Φ is a set of formulas,
∀Φ denotes the set of universal closures of the formulas in Φ.

2.1.2 Semantics

In order to assign a meaning (i.e. a truth value) to first-order formulas, func-
tion and relation symbols must obtain interpretations in a set of individuals.
The concept of an L-structure defines such interpretations. An L-structure
consists of

1. a nonempty set M of individuals (the universe),

2. for each n-ary function symbol f of L an interpretation fM : Mn → M,

3. for each n-ary relation symbol P of L an interpretation PM ⊆ Mn. If L
contains the relation symbol =, then =M must be the equality relation
on M.

To obtain interpretations for terms with variables (i.e. non-closed or open
terms) we introduce variable assignments. A variable assignment (or just
assignment) σ for an L-structure M is a mapping from the set of variables
in L to M and gives meaning to the free variables of a formula A. Now the
interpretation tM[σ] of an L-term t in an L-structure M with respect to an
assignment σ can be defined inductively:

1. If t is a variable x, then tM[σ] is just σ(x).

2. If t is of the form f(t1, . . . , tn) then tM[σ] is fM(tM1 [σ], . . . , tMn [σ]).

If t is closed, then it is of course independent of σ and its interpretation
is simply denoted tM. In the following σ(m/x) denotes an assignment which
is identical to σ with the exception that it maps x to m ∈ M. We can now
define the truth value of a formula Ai with respect to a structure M and an
assignment σ. We write M[σ] |= A if A is true in M with respect to σ. We
define M[σ] |= A by structural induction on the built-up of A as follows:

1. If A is P (t1, . . . , tn), then M[σ] |= A iff (tM1 [σ], . . . , tMn [σ]) ∈ PM.

iWe will often not explicitly mention the underlying language L if it is clear from the
context or irrelevant.
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2. If A is ¬B, then M[σ] |= A iff M[σ] |= B does not hold (written
M[σ] 6|= A).

3. If A is B ∧ C, then M[σ] |= A iff M[σ] |= B and M[σ] |= C.

4. If A is B ∨ C, then M[σ] |= A iff M[σ] |= B or M[σ] |= C (or both).

5. If A is ∀xB, then M[σ] |= A iff M[σ(m/x)] |= B for all m ∈ M.

6. If A is ∃xB, then M[σ] |= A iff M[σ(m/x)] |= B for at least one
m ∈ M.

Definition 2.3 (Validity). We say that a formula A is valid in a structure
M, formally M |= A, iff M[σ] |= A for all assignments σ and we then call
M a model of A. We call a formula valid iff it is valid in all structures. A
set Γ of formulas is valid in M, formally M |= Γ, iff every formula in Γ is
valid in M (and we analogously call M a model of Γ).

Definition 2.4 (Satisfiability). We say that a formula A is satisfiable if there
exists a structure M and M |= A.

Definition 2.5 (Logical Consequence). We say Γ logically implies A (or A
is a logical consequence of Γ), formally Γ |= A, iff every model of Γ is also
a model of A. That is iff for all M, M |= Γ⇒M |= A.

As a convention, we write |= A instead of ∅ |= A and A |= B instead of
{A} |= B. In the case of |= A, we say that A is valid. Note that the relation
|= is transitive, i.e. A |= B and B |= C implies A |= C. If both A |= B and
B |= A we say that A and B are equivalent and we sometimes write A⇔ B.

Remark 2.6. We follow Buss ([3]) and others and define logical consequence
in such a way that free variables are implicitly universally quantified i. The
following lemma is an obvious consequence thereof.

Lemma 2.7 (Universal Closure Property). For every formula A

A(x)⇔ ∀xA(x).

Note that the statement “A ↔ B is valid” is stronger than A ⇔ B. We
will make implicit use of the following lemma later in the text.

Lemma 2.8 (Formula Replacement Lemma). Let A and A′ be formulas and
assume that A ↔ A′ is valid. Assume further that a formula B′ is obtained
from a formula B by substituting A′ for all occurrences of the subformula A
in B. Then B ↔ B′ is valid as well.

iThis is just a convention and makes some arguments simpler. Note that our definition
differs from the one in [6].
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Proof. Straightforward by structural induction on B. See for example theo-
rem 2.5.8 in [9].

Next we define the term of a theory. We often use bold capital letters
(T,S, . . . ) to denote theories.

Definition 2.9 (Theory). An L-theory is a set of L-formulas closed under
logical consequence. An axiomatisation of an L-theory T is a set Γ of L-
formulas, called axioms, such that T is exactly the set of L-formulas logically
implied by Γ.

We call the formulas of T theorems of T. It is obvious that A ∈ T and
T |= A are equivalent (we use the second notation). Note that by the above
definitions, theories are also closed under universal quantification. That is,
T |= A ⇔ T |= ∀xA for every formula A. Given a set Γ of axioms, the
corresponding theory is precisely the set {A | Γ |= A}.
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2.2 Bounded Arithmetic

This short section serves as a brief introduction into the topic of bounded
arithmetic. Some important notions and techniques are introduced by means
of the well-known one-sorted theory I∆0. It is shown what it means for
functions and predicates to be definable and provably total in a theory and
we will see how complexity classes can be characterised by theories. Many
of the definitions involved will reappear in chapter 3 in a two-sorted context.
The underlying language is always the language LA or an extension thereof
(written L ⊇ LA). We will use infix notation for the function and relation
symbols of LA and follow the standard precedence rules (× binds stronger
than +). For example, (x + 1) × x = x × x + x stands for ×(+(x, 1), x) =
+(×(x, x), x). Our theories are intended to prove facts about the natural
numbers N.

Definition 2.10 (standard model N). The LA-structure N has universe N
and the function and relations symbols 0, 1,+,×,=,≤ get their standard in-
terpretations in the natural numbers. We call N the standard model (of the
natural numbers).

2.2.1 Setting up I∆0

We begin by defining a slightly modified version BA (for “Basic Arithmetic”)
of the theory Q, called Robinson’s Arithmetici. BA is has the following
axioms:

B1. x+ 1 6= 0

B2. x+ 1 = y + 1→ x = y

B3. x+ 0 = x

B4. x+ (y + 1) = (x+ y) + 1

B5. x× 0 = 0

B6. x× (y + 1) = (x× y) + x

B7. (x ≤ y ∧ y ≤ x)→ x = y

B8. x ≤ x+ y

C. 0 + 1 = 1

Note that by addition of 1s we can build terms that represent arbitrary
natural numbers, e.g. 1 + 1 + 1 + 1 for 4. This is cumbersome to write down.

iOur theory BA is slightly weaker than Robinson’s Q.
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Therefore, we define 0 ≡ 0, 1 ≡ 1 and n+ 1 ≡ (n + 1) for n ≥ 1 and we call
n a numeral. Lacking induction, the theory BA already contains all true
quantifier-free sentences over LA. In order to gain some “confidence” in the
axioms involved, we prove this theorem in full detail. In subsequent proofs,
we will leave out more details.

Theorem 2.11. Let A be a sentence over LA not containing any quantifiers.
Then

N |= A ⇔ BA |= A.

Proof. Axioms B1 to B8 and C are valid in N. Therefore N |= BA and
N |= A. For the direction ⇒ we need to establish step by step theorems of
BA.

Claim 1: For m,n ∈ N, if m < n, then BA |= m 6= n.
Proof: By induction on m. We first show the case m = 0. Since free variables
are implicitly universally quantified in the context of logical consequence (see
definition 2.5), we have B1 |= n− 1+1 6= 0 ≡ n 6= 0 and because = is always
interpreted as true equality, we have BA |= 0 6= n. However, the case where
n = 1 needs special attention because it does not follow from B1 alonei. But
C ensures that the terms 0 + 1 and 1 are mapped to the same individuals in
models of BA. Then it follows from B1 |= 0+1 6= 0 that BA |= 1 6= 0 ii. For
the case m > 0 note that B2 |= m− 1 6= n− 1 → m 6= n (contraposition).
By the induction hypothesis we have BA |= m− 1 6= n− 1. It follows that
BA |= m 6= n. iii

Claim 2: For all m,n ∈ N, BA |= m+ n = m+ n. iv

Proof: By induction on n. The case n = 0 follows immediately from B3. For
n > 0 we have

B4 |= m+ (n− 1 + 1)︸ ︷︷ ︸
≡n

= (m+ n− 1) + 1. (2.1)

By induction hypothesis we obtain BA |= m + n− 1 = m+ n− 1. Hence
we can make a substitution in (2.1) and obtain BA |= m+n = m+ n− 1 +
1 ≡ m + n = m+ n. But again, this only holds for n > 1. For the case
n = 1, what we claimed follows from axiom C ≡ 0 + 1 = 1 together with
B4 |= m+ (0 + 1) = (m+ 0) + 1 (again apply the induction hypothesis).

iBecause 0 + 1 6≡ 1
iiNote that terms that are interpreted the same way by models of BA are interchange-

able.
iiiIf the reader does not feel comfortable with this step, she is invited to check that from

M |= A and M |= A→ B ≡ ¬A ∨B it follows that M |= B.
ivNote that on the right hand side ’+’ denotes “real world” addition, whereas on the

left hand side it is the function symbol of our language LA.
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Claim 3: For all m,n ∈ N, BA |= m× n = m× n.
Proof: By induction on n. The case n = 0 follows immediately from B5. For
n > 0 we first threat the case where n = 1. We have B6 |= m × (0 + 1) =
(m × 0) + m. From C we conclude BA |= m × 1 = (m × 0) + m and with
B4 we obtain BA |= m× 1 = 0 +m. By claim 2 we have BA |= 0 +m = m
and thus BA |= m× 1 = m. If n > 1 we have

B6 |= m× (n− 1 + 1)︸ ︷︷ ︸
≡n

= (m× n− 1) +m. (2.2)

By the induction hypothesis we obtain BA |= m×n = m× n−m+m and by
claim 2 we can replace the right hand side and obtain BA |= m×n = m× n.

Claim 4: If a closed term t is interpreted as n in the standard model N,
then BA |= t = n.
Proof: By structural induction on closed terms t. If t is a 0-ary function
symbol, i.e. t ≡ 0 (t ≡ 1), then BA |= 0 = 0 (BA |= 1 = 1) because
= is always the true equality relation. Case t ≡ t1 + t2: Assume t1 (t2) is
interpreted as n1 (n2) in N. By the induction hypothesis we have BA |= t1 =
n1 and BA |= t2 = n2. By claim 2 we have BA |= n1 + n2 = n1 + n2 and
thus BA |= t1 + t2 = n1 + n2. Case t ≡ t1 × t2: Analogously using claim 3.

From claim 4 it follows that if t and s are closed terms, then N |= t = s
implies BA |= t = s. Given N |= t 6= s, assume N |= t = m and N |= s = n.
Then by claim 4 BA |= t = m and BA |= s = n. We assume m < n (without
loss of generality) and conclude from claim 1 that BA |= m 6= n and hence
BA |= t 6= s. Therefore N |= t 6= s implies BA |= t 6= s.

Next we show that for any m ≤ n, BA |= m ≤ n. By claim 2 we have
BA |= n = m+k for k = n−m. Then we can conclude from B8 |= m ≤ m+k
that BA |= m ≤ n. If not m ≤ n, then n < m and BA |= n 6= m by claim
1. By the above we obtain BA |= n ≤ m i The contraposition of B7 yields
BA |= m 6= n→ ¬(m ≤ n∧n ≤ m). Then it is obvious that BA |= ¬m ≤ n
holds.

Now we are ready to prove by structural induction on quantifier-free LA-
sentences A that N |= A ⇒ BA |= A and N |= ¬A ⇒ BA |= ¬A. If A
is atomic it has either the form t = s or t ≤ s. Both cases follow from the
above.

Case A ≡ A1 ∧ A2: We we have N |= A1 and N |= A2. By the induction
hypothesis we obtain BA |= A1 and BA |= A2 and hence BA |= A1 ∧ A2

(because every model of BA makes A1 and A2 true). If N |= ¬(A1 ∧ A2),
then N 6|= (A1 ∧ A2) (by definition). Assume (without loss of generality)

iSince n < m⇒ n ≤ m.
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N 6|= A1, then N |= ¬A1 and BA |= ¬A1 by induction hypothesis. Since
¬A1 |= ¬(A1 ∧ A2) we have BA |= ¬(A1 ∧ A2) i.

Case A ≡ A1∨A2: We have N |= A1 or N |= A2. Assume w.l.o.g. N |= A1.
By the induction hypothesis we get BA |= A1 and therefore BA |= A1 ∨A2.
If N |= ¬(A1 ∨A2), then N |= ¬A1 and N |= ¬A2

ii. By induction hypothesis
we obtain BA |= ¬A1 and BA |= ¬A2 and thus BA |= ¬A1 ∧ ¬A2 and
BA |= ¬(A1 ∨ A2).

The case A ≡ ¬A1 follows directly from the induction hypothesis. If
N |= ¬¬A1 then N |= A1 and BA |= A1 (induction hypothesis) and thus
BA |= ¬¬A1 (logical consequence).

Consider the theory {A ∈ LA | N |= A} of all true arithmetical formulas.
By Gödel’s Incompleteness Theorem, this theory has no recursive set of ax-
ioms (otherwise it were incomplete or inconsistent). Also note that it is not
even recursively enumerable.

BA is a very weak fragment of arithmetic (in the sense that it is only
a very small subset of the theory of all true formulas). In order to obtain
stronger theories we need the concept of induction, which we formulate in
terms of a set of axioms, called an axiom scheme.

Definition 2.12 (Induction axiom scheme). Let Φ be a set of formulas.
Φ-IND is the set of formulas of the form(

A(0) ∧ ∀x
(
A(x)→ A(x+ 1)

))
→ ∀xA(x)

where A ∈ Φ. Note that A(x) can have free variables other than x.

We extend BA by induction to obtain the famous theory of Peano Arith-
metic, denoted PA.

Definition 2.13 (PA). PA is the theory axiomatised by B1 to B8 and the
Φ-IND axioms, where Φ is the set of all LA-formulas.

Remark 2.14. Axiom C follows from the other axioms and induction.

Peano Arithmetic is a very strong theory. By restricting the induction
axiom scheme to so-called bounded formulas, we obtain theories of bounded
arithmetic which are subtheories of PA.

iRecall that theories are closed under logical consequence
iiBy using De Morgan’s laws. E.g. it is easy to check that M |= ¬(A ∨ B) ⇒ M |=

¬A ∧ ¬B.
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Definition 2.15 (Bounded Formula). Assume that the variable x does not
occur in the term t. Then ∃x ≤ tA is an abbreviation for ∃x(x ≤ t ∧
A), and ∀x ≤ t stands for ∀x(x ≤ t → A). Quantifiers of this form are
called bounded and a formula in which every quantifier is bounded is called a
bounded formula.

As a convention, we write ∃~x instead of ∃x1∃x2 . . . ∃xk and ∀~x instead of
∀x1∀x2 . . . ∀xk (for some k ≥ 0).

Definition 2.16 (∆0,Σ1). ∆0 is the set of all bounded formulas. Σ1 is the
set of formulas of the form ∃xA, where A ∈ ∆0.

Definition 2.17 (I∆0). I∆0 is the theory specified by the same axioms as
PA with the exception of Φ being the set ∆0 of bounded formulas.

I∆0 is much stronger than BA and contains already all true Σ1-sentences
over LA. The proof of the next theorem is very similar to the proof of theorem
2.11 and is omitted.

Theorem 2.18. Let A be a Σ1-sentence over LA. Then

N |= A ⇔ I∆0 |= A.

2.2.2 Introducing new Functions and Predicates

We are interested in what functions and predicates are definable in a given
theory. In particular, we try to find theories of which the definable functions
are precisely the functions of a specific complexity class, for example the
polynomial time computable functions. To this end we introduce the concept
of definability of functions and predicates. For convenience (and without
loss of generality) we talk only about functions and relations in the natural
numbers and we often use the same symbol for a function (relation) in the
real world and for the function (relation) in our language.

Definition 2.19 (Unique Existence ∃!). The notation ∃!xA(x) stands for
∃x
(
A(x) ∧ ∀y(A(y)→ x = y)

)
.

Definition 2.20 (Definable Predicates and Functions). Let L ⊇ LA be a
language and let Φ be a set of L-formulas.
(a) Let R(~x) ⊆ Nn be a (real world) n-ary relation and assume that the
symbol R is not in L. Further assume that N′ is an expansion of the standard
model N with RN′ = R and the extra symbols in L \ LA get their intended

12



interpretations. We call R Φ-definable if there is a formula A(~x) ∈ Φ such
that

N′ |= R(~x)↔ A(~x).

We then call R(~x)↔ A(~x) the defining axiom for R.

(b) Let T be a theory over L ⊇ LA. Let f(~x) : Nn → N be a (real world)
n-ary function and assume that the function symbol f is not in L. Further
assume that N′ is an expansion of N with fN′ = f ⊆ Nn × N and the extra
symbols in L \ LA get their intended interpretations. We call f Φ-definable
in T if its graph (relation) is Φ-definable and T |= ∀~x∃!yA(~x, y) (which we
call the totality condition). That is if there is a formula A(~x, y) ∈ Φ such
that

N′ |= y = f(~x)↔ A(~x, y).

We then call y = f(~x)↔ A(~x, y) the defining axiom for f .

Note that the definability of relations does not depend on a particular
theory but only on the underlying language and the standard model (or an
expansion thereof). Also note that when Φ is a set of LA-formulas, then a
k-ary relation over N is Φ-definable iff there is a formula A(x1, . . . , xk) ∈ Φ
s.t. for all (n1, . . . , nk) ∈ Nk:

(n1, . . . , nk) ∈ R iff N |= A(n1, . . . , nk).

As an example we will proof that:

Lemma 2.21. The relation pow2(x)⇔ “x is a power of 2” is ∆0-definable.

Proof. The defining axiomi of pow2(x) is

pow2(x) ↔ x 6= 0 ∧ ∀y ≤ x
(
(1 < y ∧ y|x)→ 2|y

)
(2.3)

where | is the divisibility relation (in infix notation) that has the ∆0-defining
axiom x|y ↔ ∃z ≤ y(x× z = y). Hence every subformula of the form t|s in
(2.3) can be replaced with ∃z ≤ s(t× z = s) in order to obtain a ∆0-defining
axiom of pow2.

Definition 2.22 (provably total function). A function that is Σ1-definable
in T is called provably total (or provably recursive) in T.

iThere might be more than one defining axiom, but we generally speak of the defining
axiom.
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It turns out ([10]) that the ∆0-definable relations coincide with the rela-
tions in the linear time hierarchy. Further, the provably total functions of
I∆0 are precisely the functions whose graph relation is in the linear time
hierarchy. Later, we will show that the theory V1 characterises the polyno-
mial time computable functions in the same way as I∆0 characterises the
functions in the linear time hierarchy.
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3 Two-sorted First-order Logic

In section 4 we will introduce the theory V1, a theory of so-called two-sorted
first-order logic, which is an extension of (ordinary) first-order logic that
contains two “sorts” of terms. In our case one sort is for numbers and the
other sort is for finite sets of numbers. In this section we define the syntax and
the semantics of this logic and present a two-sorted version LK2 of Gentzen’s
([7]) sequent calculus.

3.1 Syntax

Two-sorted first-order logic is an extension of (one-sorted) first-order logic.
The difference is that in the two-sorted context we have variables of two
sorts. The variables of the first sort are denoted by small letters (x, y, z, . . . )
and are called number variables. The variables of the second sort are denoted
by capital letters (X, Y, Z, . . . ) and are called set variables (sometimes string
variables). Number variables are intended to range over the natural numbers
and set variables over sets of natural numbers (which can be represented by
binary strings, as we will see later). Function and predicate symbols can also
take arguments of both sorts and there are two kinds of function symbols
(number and set function symbols).

Of course, in general, the domain of number and set variables can be any
set. But since our domains of interest are natural numbers and finite sets of
natural numbers we call them number and set variables, respectively.

Definition 3.1 (Two-sorted Language). For each n,m ∈ N, a two-sorted
(first-order) language is like a one-sorted language with the exception that
it contains in addition an infinite set of set variables, a set of (n,m)-ary
number function symbols, a set of (n,m)-ary set function symbols and a set
of (n,m)-ary predicate symbols.

The idea behind this is that functions and predicates take n arguments of
the first sort (numbers) and m arguments of the second sort (sets). Number
functions are into the natural numbers and set functions into finite sets of
natural numbers. We use f, g, h, . . . as meta-symbols for number function
symbols, F,G,H, . . . for set function symbols and P,Q,R, . . . for predicate
symbols. As in the one-sorted case, we define terms and formulas. Note that
from now on, we assume that our languages are two-sorted without explicitly
mentioning it. Also, we omit to mention the underlying language L if it is
clear from the context.

Although We use capital letters for formulas (A,B,C, . . . ), set variables
(X, Y, Z, . . . ), set terms (T, S, . . . ), relations (P,Q,R, . . . ) and set functions
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(F,G,H, . . . ), there should be no confusion. The meaning of the meta vari-
ables is always evident from the context.

Definition 3.2 (L-term). 1. Every number variable is a number term.

2. Every set variable is a set term.

3. If f is an (n,m)-ary number function symbol, t1, . . . , tn are n number
terms and T1, . . . , Tm are m set terms, then f(t1, . . . , tn, T1, . . . , Tm) is
a number term.

4. If F is an (n,m)-ary set function symbol, t1, . . . , tn and T1, . . . , Tm are
as above, then F (t1, . . . , tn, T1, . . . , Tm) is a set term.

Definition 3.3 (L-formula). 1. If P is an (n,m)-ary predicate symbol,
t1, . . . , tn are number terms and T1, . . . , Tm are set terms, then
P (t1, . . . , tn, T1, . . . , Tm) is an atomic formula.

2. If A,B are formulas, so are A ∨B,A ∧B,¬A.

3. If A is a formula, x is a number variable and X is a set variable, then
∀xA,∃xA, ∀XA,∃XA are formulas.

We extend our language of arithmetic LA to a two-sorted version L2
A.

Definition 3.4 (L2
A). L2

A = (0, 1,+,×, ||,=1,=2,≤,∈)

0, 1,+,× are the (number) function symbols from LA i, ≤ and =1 are
(2, 0)-ary predicate symbols (where =1 is the original =). || is an (0, 1)-ary
number function symbol and its interpretation will be the least upperbound
function of a set X (roughly speaking the length of the binary representation
of X). We will write |X| instead of ||(X). The (1, 1)-ary predicate symbol
∈ will be interpreted as set membership and we write x ∈ X instead of
∈ (x,X). Finally, the (0, 2)-ary predicate symbol =2 will be interpreted as
set equality. Whenever the meaning is clear from the context we will simply
write = instead of =1 or =2, respectively. Note that L2

A has no set terms
except set variables. In the following we will work exclusively with extensions
of L2

A. We now generalise the notion of universal closure of formulas and sets
of formulas.

Definition 3.5 (Universal Closure). Let A(~x, ~X) be a formula with all free

variables indicated. Then ∀A(~x, ~X) stands for
∀x1 . . . ∀xm∀X1 . . . XnA(x1, . . . , xm, X1, . . . , Xn) and is called universal clo-
sure of the formula A. If Φ is a set of formulas, ∀Φ denotes the set of
universal closures of the formulas in Φ.

i0 and 1 are (0, 0)-ary, + and × are (2, 0)-ary.
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3.2 Semantics

Semantics is a generalisation of the one-sorted case. The main difference is
that the universe of a structure consists of two sets instead of one.

Definition 3.6 (L-structure). An L-structure M consists of:

1. a pair of nonempty sets (M1,M2) (the universe),

2. for each (n,m)-ary number function symbol f an interpretation fM :
Mn

1 ×Mm
2 → M1,

3. for each (n,m)-ary set function symbol F an interpretation FM : Mn
1 ×

Mm
2 → M2,

4. for each (n,m)-ary predicate symbol P an interpretation PM ⊆ Mn
1 ×

Mm
2 . Further, =M1 and =M2 are the “true” equality relations on numbers

and sets, respectively.

To obtain interpretations for terms with free variables (possibly of both
sorts) we generalise the notion of a variable assignment. A variable assign-
ment σ is a mapping from the set of number variables to M1 and from the
set of set variables to M2. As in the one-sorted case, the assignment σ(m/x)
is the same as σ with the exception that it maps x to m ∈ M1. The same
applies for σ(M/X).

The interpretation tM[σ] of a term t (T ) in a two-sorted structure M
with respect to an assignment σ generalises as follows:

1. If t is a number variable x, then tM[σ] is σ(x).

2. If T is a set variable X, then TM[σ] is σ(X).

3. If t is of the form f(t1, . . . , tn, T1, . . . , Tm) then tM[σ] is
fM(tM1 [σ], . . . , tMn [σ], TM1 [σ], . . . , TMm [σ).

4. If T is of the form F (t1, . . . , tn, T1, . . . , Tm) then TM[σ] is
FM(tM1 [σ], . . . , tMn [σ], TM1 [σ], . . . , TMm [σ).

The truth value of a (two-sorted) L-formula A with respect to a structure
M and an assignment σ is defined accordingly on the built up of formulas:

1. M |= P (t1, . . . , tn, T1, . . . , Tm)[σ] iff
(tM1 [σ], . . . , tMn [σ], TM1 [σ], . . . , TMm [σ]) ∈ PM.

2. If L contains =1, then M |= (s =1 t)[σ] iff sM[σ] = tM[σ].
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3. If L contains =2, then M |= (S =2 T )[σ] iff SM[σ] = TM[σ].

4. M |= ¬A[σ] iff M |= A[σ] does not hold (written M 6|= A[σ]).

5. M |= (A ∧B)[σ] iff M |= A[σ] and M |= B[σ].

6. M |= (A ∨B)[σ] iff M |= A[σ] or M |= B[σ].

7. M |= ∀xA[σ] iff M |= A[σ(m/x)] for all m ∈ M1.

8. M |= ∀XA[σ] iff M |= A[σ(M/X)] for all M ∈ M2.

9. M |= ∃xA[σ] iff M |= B[σ(m/x)] for at least one m ∈ M1.

10. M |= ∃XA[σ] iff M |= B[σ(M/X)] for at least one M ∈ M2.

Definition 3.7 (Two-sorted Standard Model N2). The L2
A-structure N2 has

universe (N,Pf (N)). The symbols 0, 1,+,×,=,≤ have the same interpreta-
tion as in N. ∈ is interpreted as the set membership relation. || is interpreted
as the ”least upper bound” function on finite subsets of N i. We call N2 the
(two-sorted) standard model (of the natural numbers).

The notions of model, validity, satisfiability, logical consequence and the-
ory generalise in the obvious way to the two-sorted case. Also, all results
from section 2.1 continue to hold.

In two sorted first-order logic we have “second order” objects (sets of
natural numbers). Nevertheless, two-sorted first-order logic is equivalent to
one-sorted first-order logic because one can merge the two sorts by intro-
ducing additional unary predicate symbols FS and SS, together with some
appropriate axioms, to identify the two sorts. For details, see [6].

iThat is 1 plus the greatest element of a set S or 0 if S is empty.
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3.3 The Two-sorted Sequent Calculus LK2

3.3.1 Rules and proofs

The sequent calculus is a deduction formalism that does not derive formu-
las but so-called sequents. A sequent is an expression of the form Γ ` ∆,
where Γ and ∆ are finite (possibly empty) sequences of (two-sorted first-
order) formulas, called cedents. Γ is called the antecedent and ∆ is called the
succedent. Cedents need to be given a meaning. Informally, the conjunction
of the formulas in Γ implies the disjunction of the formulas in ∆. Formally,
for Γ = A1, . . . , Am and ∆ = B1, . . . , Bn (∅ denotes the empty sequence)

(Γ ` ∆)F ≡ (A1 ∧ · · · ∧ Am)→ (B1 ∨ · · · ∨Bn),

(Γ ` ∅)F ≡ (A1 ∧ · · · ∧ Am)→ ⊥,
(∅ ` ∆)F ≡ (B1 ∨ · · · ∨Bn),

(∅ ` ∅)F ≡ ⊥.

The symbol ⊥ (falsity) is not part of our languages. But since each language
contains at least one predicate symbol P , we can define ⊥ as an abbreviation
for ∀~x∀ ~X

(
P (~x, ~X)∧¬P (~x, ~X)

)
. It is obvious thatM[σ] 6|= ⊥ for every struc-

tureM and every assignment σ. The notions of validity, logical consequence
etc. generalise from formulas to sequents in the obvious way. If no confusion
arises, then we may write Γ ` ∆ instead of (Γ ` ∆)F. We now describe the
axioms and rules of the sequent calculus LK2. The only (logical) axiom of
LK2 is

A ` A

where A is any formula. In the following Γ,∆ (with superscripts) denote
cedents. LK2 consists of the following structural rules :

Γ′, A,B,Γ′′ ` ∆
(exchange-left)

Γ′, B,A,Γ′′ ` ∆

Γ ` ∆′, A,B,∆′′
(exchange-right)

Γ ` ∆′, B,A,∆′′

Γ ` ∆(weakening-left)
Γ, A ` ∆

Γ ` ∆(weakening-right)
Γ ` ∆, A

Γ, A,A ` ∆
(contraction-left)

Γ, A ` ∆

Γ ` ∆, A,A
(contraction-right)

Γ ` ∆, A

LK2 has the following propositional rules :

Γ ` ∆, A
(¬-left)

Γ,¬A ` ∆

Γ, A ` ∆
(¬-right)

Γ ` ∆,¬A
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Γ, A ` ∆ Γ, B ` ∆
(∨-left)

Γ, A ∨B ` ∆

Γ ` ∆, A,B
(∨-right)

Γ ` ∆, A ∨B

Γ, A,B ` ∆
(∧-left)

Γ, A ∧B ` ∆

Γ ` ∆, A Γ ` ∆, B
(∧-right)

Γ ` ∆, A ∧B

LK2 has the following quantifier rules :

Γ, A(b) ` ∆
(∃-left)

Γ,∃xA(x) ` ∆

Γ, ` ∆, A(t)
(∃-right)

Γ ` ∆,∃xA(x)

Γ, A(M) ` ∆
(set ∃-left)

Γ,∃XA(X) ` ∆

Γ, ` ∆, A(T )
(set ∃-right)

Γ ` ∆,∃XA(X)

Γ, A(t) ` ∆
(∀-left)

Γ,∀xA(x) ` ∆

Γ, ` ∆, A(b)
(∀-right)

Γ ` ∆,∀xA(x)

Γ, A(T ) ` ∆
(set ∀-left)

Γ,∀XA(X) ` ∆

Γ, ` ∆, A(M)
(set ∀-right)

Γ ` ∆,∀XA(X)

where t is any number term and T is any set term. The free variables b and
M are called eigenvariables and must not occur in Γ ∪ ∆. Otherwise the
calculus were not sound.i Finally, LK2 contains the cut rule:

Γ ` ∆, A Γ, A ` ∆
(cut)

Γ ` ∆

Definition 3.8 (LK2 proof). An LK2 proof of a sequent S is a finite tree
where the vertices are labelled with sequents, the root is labelled with S, the
leaves are labelled with (logical) axioms of LK2 and every edge of the tree
corresponds to a rule of LK2 in the obvious way. An LK2 proof of a formula
A is a proof of the sequent ` A.

Definition 3.9 (LK2-Φ proof). An LK2-Φ proof of a sequent S an LK2 proof
of S in which sequents at leaves are either (logical) axioms or (non-logical)
axioms of the form ` A where A ∈ Φ.

iTo see this, consider the (valid) axiom A(b) ` A(b). By the ∀-right rule we obtain the
sequent A(b) ` ∀xA(x), which is not valid. Accordingly, ∃xA(x) ` A(b) is not valid.
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3.3.2 Soundness and Completeness

Theorem 3.10 (Derivational Soundness of LK2 with Equality). Let L be a
two-sorted first-order language (it may contain =1 and =2) and let Φ be a
set of L-formulas. If a sequent Γ ` ∆ has an LK2-Φ proof, then (Γ ` ∆)F is
a logical consequence of Φ.

Proof. The theorem is proved by induction on the number of sequents in a
proof. Assuming that there is an LK2-Φ proof of a sequent S, we need to
show that Φ |= SF.
Base case: If S is a logical axiom, then SF is obviously valid. If S is a
nonlogical axiom of the form ` A, where A ∈ Φ, then (` A)F ≡ A is
obviously a logical consequence of Φ.
Induction step: It is easy to see that for every rule of LK2, the bottom
sequent is a logical consequence of the top sequent. Then the lemma follows
immediately from the transitivity of the logical consequence relation |=.

Variable convention In the context of LK2, it is convenient to distin-
guish between free and bound variables. We denote free number variables
by a, b, c, . . . , free set variables by M,N, . . . i, bound number variables by
x, y, z, . . . and bound set variables by X, Y, Z, . . . . In the following, sequents
satisfy the restriction that no free variables occur as bound variables and
vice versa. Note that with this restriction, any term t (T ) is always freely
substitutable for a (M) in A(a) (A(M)).

Notation A double line in a derivation tree means that there are implicit
applications of structural rules, as in the following example (three applica-
tions of the exchange-left rule):

A,B,C ` ∆

C,B,A ` ∆

We will use the following well-known special case of König’s Lemmaii in
subsequent completeness proofs.

Lemma 3.11 (König’s Lemma). Every tree that contains infinitely many
vertices, each having finite degree, has at least one infinite path.

In order to prove derivational completeness of LK2 we first establish the
following completeness lemma.

iSince A,B,C, . . . are already reserved as meta-variables for formulas.
iiThe World Wide Web is full of proofs thereof.
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Lemma 3.12 (Completeness Lemma). Let L be a countable two-sorted first-
order language not containing =1 and =2 and let Φ be a (possibly infinite) set
of L-sentences. If (Γ ` ∆)F is a logical consequence of Φ, then there exists
a finite subset {C1, . . . , Cn} ⊆ Φ such that the sequent

Γ, C1, . . . , Cn ` ∆

has a cut-free LK2 proof.

Proof. We adapt the proof in [3] to the two-sorted case and assume that Φ
is countable. Assume Φ |= (Γ ` ∆)F. We assign a (distinct) binary string to
each function symbol, predicate symbol, variable and to all logical connec-
tives, quantifiers and parentheses. Hence every L-formula and every L-term
can be assigned a unique binary string. This allows us to build lists of all for-
mulas and of all set and number terms (which, by our variable convention, do
not contain bound variables). We further build these lists in such a way that
each formula and each term occurs infinitely often in the list, e.g. by enu-
merating them in the order 1., 1., 2., 1., 2., 3., 1., 2., 3., 4., . . . . Let A1, A2, . . . ,
t1, t2, . . . and T1, T2, . . . denote these lists, respectively. We then enumer-
ate tuples (Ai, tj, Tk) in such a way that all combinations occur infinitely
often. We need this property later in the construction of the countermodel.
A possible enumeration is

(A1, t1, T1), (A2, t1, T1), (A2, t1, T2), (A2, t2, T1), (A2, t2, T2), (A1, t1, T2),

(A1, t2, T1), (A1, t2, T2), (A3, t1, T1), (A3, t1, T2), (A3, t1, T3), (A3, t2, T1),

(A3, t2, T2), (A3, t2, T3), (A3, t3, T1), (A3, t3, T2), (A3, t3, T3), (A2, t1, T3),

(A2, t2, T3), (A2, t3, T1), (A2, t3, T2), (A2, t3, T3), (A2, t1, T3), (A2, t2, T3),

(A2, t3, T1), (A2, t3, T2), (A2, t3, T3), . . .

We now define a procedure that delivers a cut-free proof Π of some sequent

Γ, C1, . . . , Cn ` ∆

with C1, . . . , Cn ∈ Φ for some n. We prove that the procedure always termi-
nates by showing that, if it doesn’t, then Φ 6|= (Γ ` ∆)F. In the following,
we call a sequent active if it is a leaf of the proof tree and is not directly
derivable from an axiom of LK2 using only weakening and exchange rules.
We begin with an end sequent Γ ` ∆ and work upwards by subsequently
modifying the proof Π. We use the same name Π for the initial proof and its
modifications.

Loop: Let (Ai, tj, Tk) be the next tuple in the enumeration.
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1. Step: If Ai ∈ Φ, then replace every sequent Π ` Ω in Π with the
sequent Π, Ai ` Ω (also the end sequent!). Continue with step 2.

2. Step: If Ai is atomic, do nothing and continue the loop.

3. Step: If Ai is not atomic, then do the following:

Case (3a): If Ai ≡ ¬B, then every active sequent in Π of the form
Π′,¬B,Π′′ ` Ω is replaced with the following derivation:

Π′,¬B,Π′′ ` Ω, B

Π′,¬B,Π′′ ` Ω

and every active sequent in Π of the form Π ` Ω′,¬B,Ω′′ is re-
placed by the derivation

Π, B ` Ω′,¬B,Ω′′

Π ` Ω′,¬B,Ω′′

Case (3b): If Ai ≡ B ∨ C, then every active sequent in Π of the
form Π′, B ∨ C,Π′′ ` Ω is replaced with the derivation

Π′, B ∨ C,Π′′, B ` Ω Π′, B ∨ C,Π′′, C ` Ω

Π′, B ∨ C,Π′′ ` Ω

and every active sequent in Π of the form Π ` Ω′, B ∨ C,Ω′′ is
replaced with the derivation

Π ` Ω′, B ∨ C,Ω′′, B, C
Π ` Ω′, B ∨ C,Ω′′

Case (3c): The case Ai ≡ B ∧ C is dual to the case Ai ≡ B ∨ C.

Case (3d): If Ai ≡ (∃x)B(x), then every active sequent in Π of
the form Π′, (∃x)B(x),Π′′ ` Ω is replaced with the derivation

B(c),Π′, (∃x)B(x),Π′′ ` Ω

Π′, (∃x)B(x),Π′′ ` Ω

where c is a “fresh” free number variable not yet used in Π i.
And every active sequent in Π of the form Π ` Ω′, (∃x)B(x),Ω′′ is
replaced with the derivation

Π ` Ω′, (∃x)B(x),Ω′′, B(tj)

Π ` Ω′, (∃x)B(x),Ω′′

iNote that since Φ contains no free variables, c does not occur in Φ.

23



Case (3e): If Ai ≡ (∃X)B(X), then every active sequent in Π of
the form Π′, (∃X)B(X),Π′′ ` Ω is replaced with the derivation

B(M),Π′, (∃X)B(X),Π′′ ` Ω

Π′, (∃X)B(X),Π′′ ` Ω

where M is a “fresh” free set variable not yet used in Π. And
every active sequent in Π of the form Π ` Ω′, (∃X)B(X),Ω′′ is
replaced with the derivation

Π ` Ω′, (∃X)B(X),Ω′′, B(Tk)

Π ` Ω′, (∃X)B(X),Ω′′

Cases (3f) and (3g): The casesAi ≡ (∀x)B(x) andAi ≡ (∀X)B(X)
are dual to the cases 3d and 3e, respectively.

4. Step: If there are no active sequents remaining in Π, then exit. Other-
wise, continue with the next iteration.

End of the loop.

If the above procedure terminates, then Π is a proof of Γ, C1, . . . , Cn ` ∆ for
some C1, . . . , Cn ∈ Φ (we have to use the contraction rule to eliminate double
occurrences of the Cis). To prove that it does terminate, we assume that it
does not terminate and then show that this contradicts our assumption that
Φ |= (Γ ` ∆)F.

So assume that the above procedure runs forever. Then, in general,
it builds an infinite tree. And this tree will give us a structure that dis-
proves Φ |= (Γ ` ∆)F. Let Π denote this tree. In general, Π is infinite.
If Φ is nonempty, each vertice in Π is a generalised sequent of the form
Π, A1, A2, · · · ` Ω having an infinite number of formulas in its antecedent
(eventually, all sequents of Π contain all formulas A1, A2, . . . of Φ since these
are ”thrown in” at step 1). Note, however, that at each step of the infi-
nite construction process, every sequent of Π is finite. In the special case
where Π is finite, Π has some active sequent containing only atomic formulas
(otherwise the procedure would terminate). In this case let π be the branch
going from the root of Π up to this active sequent. If Π is infinite, then it
has infinitely many vertices and each vertice has finite degree (at most 2).
Therefore Π contains an infinite path π (starting at the root) by König’s
lemma 3.11. Note that π defines a sequence of sequents.

We use π to construct a structure M and an assignment σ s.t. M[σ] 6|=
(Γ ` ∆)F and M |= Φ, i.e. Φ 6|= (Γ ` ∆)F. Let the universe of M be
(M1,M2) where M1 is the set of all L-number terms and M2 is the set of all
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L-set terms. σ just maps a variable a (or A) to itself. A number function

symbol f is interpreted s.t. fM(~t, ~T ) is the term f(~t, ~T ) (analogously for set
function symbols F ). So M and σ just map terms to themselvesi. For any

predicate symbol P , let (~t, ~T ) ∈ PM hold iff the formula P (~t, ~T ) occurs in
the antecedent of some sequent in π.

We claim that every formula A occurring in an antecedent along π is true
in M[σ] and that every formula A occurring in a succedent along π is false
in M[σ]. We show this by structural induction on A. If A is atomic, the
claim is true by the above definition ofM. Consider the case A ≡ (∃x)B(x).
If A appears in an antecedent of π, then, according to our procedure, also a
formula B(c) appears in some antecedent of π. By the induction hypothesis,
M[σ] |= B(c) and hence M[σ] |= (∃x)B(x). If A appears in a succedent
of π, then, for every number term t, B(t) eventually occurs in a succedent
(since in case (3d) we always keep a copy of (∃x)B(x) ii and since every
term ti appears infinitely often in our enumeration!). Therefore, for all t,
M[σ] 6|= B(t) by induction hypothesis. This implies that M[σ] 6|= A. The
cases A ≡ (∃X)B(X), A ≡ (∀x)B(x) and A ≡ (∀X)B(X) are dual and
the other cases are straight-forward. Note that A cannot occur in both an
antecedent and a succedent of π, since then these formulas would persist
upward in π s.t. some particular sequent S in π would have A occurring
both in its antecedent and in its succedent. But then S would not be active
and the branch π therefore not infinite.

Note that the end sequent of π is Γ, C1, C2, · · · ` ∆ where the infinite
sequence C1, C2, . . . contains all formulas of Φ (even infinitely often). From
the above claim we conclude thatM[σ] |= Γ,M[σ] 6|= ∆ and henceM[σ] 6|=
(Γ ` ∆)F. Since Φ contains no free variablesiii we also haveM |= Φ and are
done with the proof.

Using the completeness lemma it is easy to show that the following deriva-
tional completeness theorem holds.

Theorem 3.13 (Derivational Completeness of LK2 without Equality). Let
L be a two-sorted first-order language not containing =1 and =2 and let Φ be
a set of L-formulas. If (Γ ` ∆)F is a logical consequence of Φ, then Γ ` ∆
has an LK2-Φ proof.

Proof. Let Φ be a set of L-formulas such that (Γ ` ∆)F is a logical conse-
quence of Φ. Because Φ and ∀Φ are equivalent (i.e. have exactly the same

iA common technique; in German it is often called ”Terminterpretation”.
iiThe cases where the ∃-right and ∀-left rules are applied are the only ones where it is

really necessary to keep a copy of the “active” formula.
iiiNote that the proof does not work when Φ is a set of formulas instead of sentences.
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models), (Γ ` ∆)F is also a logical consequence of the set of sentences ∀Φ.
By the completeness lemma 3.12, there are sentences ∀C1, . . . ,∀Cn ∈ ∀Φ
such that

Γ,∀C1, . . . ,∀Cn ` ∆

has a cut-free LK2 proof. Since every ∀C1, . . . ,∀Cn has an LK2-Φ proof (using
the ∀-rules) we can use the cut rule n times (plus the weakening rules) to
obtain an LK2-Φ proof of Γ ` ∆.

It is evident that the above proofs can be easily generalised to the case
of n-sorted first-order logic (for n > 2). Note that if the underlying language
contains =, then the above completeness theorem does not hold because all
our structures interpret = as the true equality relation. For example, the
valid formula x = x does not have an LK2 proof. We will soon resolve this
grievance by adding special equality axioms to LK2.

3.3.3 Eliminating Free Cuts

For the proof of the witnessing theorem of V1 (4.95) it is important that we
can restrict applications of the cut rule to formulas in Φ. However, in order
to do this, Φ needs to be closed under substitution of terms for free variables.

Definition 3.14. A set Φ of formulas is called closed under substitution of
terms for free variables if it satisfies the following condition: If A(b) ∈ Φ
(A(B) ∈ Φ), then also A(t) ∈ Φ (A(T ) ∈ Φ) where t (T ) is any number (set)
term.

Definition 3.15 (Anchored LK2-Φ Proof). An application of the cut rule in
an LK2-Φ proof Π is called anchored if its cut formula is in Φ. Π is called
anchored if it contains only anchored applications of the cut rule.

The term “anchored” is taken from [3] and [6]. Note that Buss’ definition
of anchored is slightly more complicated than the one of Cook we use here.

Theorem 3.16 (Anchored Completeness of LK2 without Equality). Let L
be a two-sorted first-order language not containing =1 and =2 and let Φ be
a set of L-formulas closed under substitution of terms for free variables. If
(Γ ` ∆)F is a logical consequence of Φ, then Γ ` ∆ has an anchored LK2-Φ
proof.

Proof. Note that if Φ are sentences, then the above follows from theorem
3.13 since then ∀Φ is the same as Φ. We slightly modify the proof of the
completeness lemma 3.12. Now we try to find a proof of the sequent Γ ` ∆
from the non-logical axioms Φ involving only cut formulas in Φ. We call a
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sequent active if it is a leaf of the proof tree and it is not directly derivable
from a logical axiom of LK2 or from a non-logical axiom of Φ using only
weakening and exchange rules. We begin with an end sequent Γ ` ∆ and
work upwards by subsequently modifying the proof Π.

Loop: Let (Ai, tj, Tk) be the next tuple in the enumeration.

1. Step: If Ai ∈ Φ, then every active sequent Π ` Ω is replaced with the
derivation

` Ai

Π ` Ω, Ai Π, Ai ` Ω

Π ` Ω

Then continue with step 2.

(For the other steps, proceed as in steps 2 to 4 of the completeness
lemma 3.12.)

End of the loop.

If the above procedure terminates, then Π is an anchored LK2-Φ proof of
Γ ` ∆. To prove that it does terminate, we assume that it does not termi-
nate and then show that this contradicts our assumption that Φ |= (Γ ` ∆)F.

So assume that the above procedure runs forever and let Π be the result
thereof. Then Π is an infinite tree. In general, we deal again with generalised
sequents containing infinitely many formulas. Again, Π contains an infinite
path π (starting at the root) by König’s Lemma (3.11) and we use π to
construct a structure M and an assignment σ in the same way as in the
proof of the completeness lemma.

We claim again that every formula A occurring in an antecedent along π
is true inM[σ] and that every formula A occurring in a succedent along π is
false inM[σ]. The argument is the same as in the proof of the completeness
lemma 3.12. ThereforeM[σ] 6|= (Γ ` ∆)F. Note that the Ais in the applica-
tion of the cut rule above do not occur in a succedent along the infinite path
π (otherwise it were not infinite).

It remains to show that M |= Φ. Since π is an infinite path and every
Ai ∈ Φ occurs infinitely often in the loop, the first step is applied infinitely
often. Thus every Ai(~a, ~M) ∈ Φ (with all free variables indicated) occurs

in some antecedent in π and hence M[σ] |= Ai(~a, ~M), by the above claim.
But since Φ is closed under substitution of terms for free variables, we also
have M[σ] |= Ai(~t, ~T ), for all terms ~t, ~T . Since the universes of M consist
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precisely of all terms and since σ maps terms to themselves, it follows that
M[σ] |= ∀~x∀~XAi(~x, ~X) and hence M[σ] |= ∀Φ and M |= Φ. Therefore we
have showed that Φ 6|= (Γ ` ∆)F.

3.3.4 The Special Treatment of the Equality Symbol(s)

If a language contains the equality symbols =1 and =2, it is natural to con-
sider only structures that interpret these symbols as equality (section 3.2).
Our definition of logical consequence is subject to this restriction. However,
up to now, the calculus LK2 is not. If we want to allow =1 and =2 in the
underlying language L, we need to formulate new axioms for LK2, so-called
equality axioms. For convenience we will often write = instead of =1 or =2.
It is always clear which symbol is meant. For the proof of lemma 3.21 below,
we need the common notions of equivalence relation and equivalence class.

Definition 3.17 (Equivalence Relation). A relation R ⊆ S× S over a set S
is called an equivalence relation if

(a) (x, x) ∈ R for all x ∈ S (reflexivity),

(b) (x, y) ∈ R⇒ (y, x) ∈ R for all x, y ∈ S (symmetry),

(c) (x, y) ∈ R and (y, z) ∈ R⇒ (x, z) ∈ R for all x, y, z ∈ S (transitivity).

Definition 3.18 (Equivalence Class). Let R be an equivalence relation on
some set S. Then

[a]R = {x ∈ S | (a, x) ∈ R} ⊆ S

is called the equivalence class of a under R.

Definition 3.19 (Equality Axioms εL). Let ~x = ~y stand for x1 = y1 ∧ · · · ∧
xn = yn (accordingly for ~X = ~Y ). The set εL of equality axioms of L contains
the axioms below and is closed under replacement of terms for free variables.

E1′. x = x

E1′′. X = X

E2′. x = y → y = x

E2′′. X = Y → Y = X

E3′. x = y ∧ y = z → x = z

E3′′. X = Y ∧ Y = Z → X = Z

E4′. ~x = ~y ∧ ~X = ~Y → f(~x, ~X) = f(~y, ~Y )

E4′′. ~x = ~y ∧ ~X = ~Y → F (~x, ~X) = F (~y, ~Y )

E5. ~x = ~y ∧ ~X = ~Y ∧ P (~x, ~X) → P (~y, ~Y )
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Definition 3.20 (Weak Structure). A weak L-structure is like a (proper)
L-structure with the exception that =1,=2 can be interpreted as any relation.

Note that every (proper) structure is a weak structure.

Lemma 3.21. For every weak model M of εL, there exists a proper L-
structure M′ s.t. M and M′ satisfy the same formulas.

Proof. LetM be a weak structure with universe (M1,M2) andM |= εL. We
have to construct a proper structureM′ withM′ |= A⇔M |= A, for every
L-formula A. Let x1, . . . , xn, y1, . . . , yn ∈ M1 and let Xm, . . . ,Xm,Y1, . . . ,Ym ∈
M2 (we will use abbreviations ~x, ~X etc.). Note that =M1 and =M2 are congru-
ence relations on M1 and M2, respectively. That is

(i) =M1 and =M2 are equivalence relations (axioms E1′ to E3′′).

(ii) For every n-ary number function symbol f of L:
(x1, y1) ∈=M, . . . , (xn, yn) ∈=M, (X1,Y1) ∈=M, . . . , (Xm,Ym) ∈=M

implies
(
fM(~x, ~X), fM(~y, ~Y)

)
∈=M (axiom E4′).

(iii) Analogously for set function symbols (axiom E4′′).

(iv) For every n-ary relation symbol R of L:
(x1, y1) ∈=M, . . . , (xn, yn) ∈=M, (X1,Y1) ∈=M, . . . , (Xm,Ym) ∈=M and

(~x, ~X) ∈ RM implies (~y, ~Y) ∈ RM (axiom E5).

For x ∈ M1 let [x] be the equivalence class of x w.r.t. =M. Accordingly,
let [X] be the equivalence class of X ∈ M2 w.r.t. =M. Let M′1 = {[x] | x ∈ M1}
and M′2 = {[X] | X ∈ M2}. LetM′ be a structure with universe (M′1,M

′
2) and

fM
′
( ~[x], ~[X]) = [fM(~x, ~X)] (3.1)

FM
′
( ~[x], ~[X]) = [FM(~x, ~X)] (3.2)

RM
′
=
{( ~[x], ~[X]

)
| (~x, ~X) ∈ RM

}
(3.3)

for all function and relation symbols f, F,R of L. Note that by the above
definition, =M

′
1 is the relation

{(
[x1], [y1]

)
| (x1, x2) ∈ =M1

}
(accordingly for

=2). Hence =M
′

1 (=M
′

2 ) is the equality relation over M′1 (M′2) and hence M′

is a proper structure. For each assignment σ for M let σ′ be an assignment
for M′ with

σ′(a) = [σ(a)] (3.4)

for some variable a. Next we show by structural induction on terms that for
any L-term t (T ) and for every assignment σ:

tM
′
[σ′] =

[
tM[σ]

]
(3.5)
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If t is a variable a, then by definition aM
′
[σ′] = σ′(a) = [σ(a)] =

[
tM[σ]

]
. If

t is of the form f(t1, . . . , tn, T1, . . . , Tm), then

tM
′
[σ′] = fM

′
(tM

′

1 [σ′], . . . , tM
′

n [σ′], TM
′

1 [σ′], . . . , TM
′

m [σ′])

Induction Hypothesis
=

fM
′([
tM1 [σ]

]
, . . . ,

[
tMn [σ]

]
,
[
TM1 [σ]

]
, . . . ,

[
TMm [σ]

])
By (3.1) this is equal to[

fM
(
tM1 [σ], . . . , tMn [σ], TM1 [σ], . . . , TMm [σ]

)]
=
[
tM[σ]

]
.

The same holds for set terms T . Now we are ready to show by structural
induction on formulas A that for all σ

M[σ] |= A ⇔ M′[σ′] |= A.

If A is of the form R(t1, . . . , tn, T1, . . . , Tm), then

M′[σ′] |= R(. . . )⇔
(
tM

′

1 [σ′], . . . , TM
′

m [σ′]
)
∈ RM′

by (3.5)⇔
([
tM1 [σ]

]
, . . . ,

[
TMm [σ]

])
∈ RM′

by (3.3)⇔
(
tM1 [σ], . . . , TMm [σ]

)
∈ RM ⇔M[σ] |= A.

If A is of the form B∧C, B∨C or ¬B, then we can just apply the induction
hypothesis and are done. If A is of the form ∀xB, then

M′[σ′] |= ∀xB ⇔M′[σ′([x]/x)] |= B for all [x] ∈ M′1

By applying the induction hypothesis and (3.4) we conclude that this is
equivalent to

M[σ(x/x)] |= B for all x ∈ M1 ⇔M[σ] |= ∀xB.

The cases ∀XB, ∃xB, ∃XB are similar.

Notation We write ΦεL as an abbreviation for Φ ∪ εL.

Lemma 3.22. Let Φ be a set of formulas and A be a formula. Then Φ |= A
iff A holds in all weak models of ΦεL

i.

iNote that this is a “weak” version of logical consequence.
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Proof. First, assume Φ |= A. Let M be a weak model of ΦεL . We have to
show that M |= A. By lemma 3.21 there is a proper structure M′ s.t. M′

satisfies the same formulas as M. Hence M′ |= Φ and M′ |= A (because
Φ |= A) and therefore also M |= A.

Now assume that A holds in all weak models of ΦεL . Let M be a model
of Φ (we have to show that M |= A). Since A holds in all weak models of
ΦεL and M is a (weak) model of ΦεL

i, we have M |= A.

We can now reformulate and prove derivational completeness and an-
chored completeness with equality.

Theorem 3.23 (Derivational Soundness and Completeness of LK2 with
Equality). Let Φ be a set of L-formulas. Φ |= (Γ ` ∆)F iff Γ ` ∆ has
an LK2-ΦεL proof.

Proof. The soundness direction is straightforward. Assume that Γ ` ∆ has
an LK2-ΦεL proof. By the soundness theorem 3.10 we have ΦεL |= (Γ ` ∆)F.
For every proper structure M we have M |= Φ ⇔ M |= ΦεL . Therefore
Φ |= (Γ ` ∆)F.

Now to completeness. By lemma 3.22 (Γ ` ∆)F holds in all weak models
of ΦεL . If we treat =1 and =2 as ordinary relation symbols (or replace them
with other symbols), we can use the previous completeness theorem 3.13 to
conclude that Γ ` ∆ has an LK2-ΦεL proof.

Theorem 3.24 (Anchored Completeness of LK2 with Equality). Let Φ be
a set of L-formulas closed under substitution of terms for free variables. If
Φ |= (Γ ` ∆)F, then Γ ` ∆ has an anchored LK2-ΦεL proof.

Proof. By lemma 3.22 (Γ ` ∆)F holds in all weak models of ΦεL . Since εL is
closed under substitution of terms for free variables, we can again treat =1

and =2 as ordinary relation symbols (or replace them with other symbols)
to apply the previous anchored completeness theorem 3.16. Therefore Γ ` ∆
has an anchored LK2-ΦεL proof.

Anchored proofs are interesting because they share the so-called subfor-
mula property.

Definition 3.25 (Subformula). The set sub(A) of subformulas of a formula

iNote that all proper structures are models of εL.
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A is defined inductively by

sub(A) = {A} for atomic A

sub(A1 ∨ A2) = sub(A1) ∪ sub(A2) ∪ {A1 ∨ A2} (analogously for ∧)

sub(¬A) = sub(A) ∪ {¬A}

sub(QxA(x)) =
⋃
{sub(A(t)) | t a term} ∪ {QxA} for all quantifiers Q

we call B a subformula of A if B ∈ sub(A).

Note that formulas of the form ∀xA(x) or ∃xA(x) have infinitely many
subformulas.

Lemma 3.26 (Subformula Property of LK2-Φ). Let Φ be a set of formulas,
closed under substitution of terms for free variables, and let Π be an anchored
LK2-Φ proof of a sequent Γ ` ∆. Then every formula in every sequent of Π
is a subformula of a formula in Γ ` ∆ or of a formula in Φ.

Proof. The proof is by induction on the number of sequents in Π. The base
case where Π consists of just a nonlogical axiom is obvious. Then we need
to examine all rules of LK2 and check that every formula in the top sequent
is a subformula of a formula in the end sequent or of a formula in Φ. This is
straight-forward for the structural, propositional and quantifier rules i. For
the cut rule, we use the fact that every cut formula is in Φ.

3.3.5 The Compactness Theorem

The well-known compactness theorem is an immediate consequence of the
completeness theorem 3.24. Note that there are several forms of the com-
pactness theorem (cf. [9], for example). Here, we only use one form that is
useful in section 4.6.3.

Theorem 3.27 (Compactness). If a formula A is a logical consequence of a
set Φ, then A is a logical consequence of some finite subset of Φ.

Proof. Immediately from the completeness theorem 3.24 and the fact that
LK2 proofs are finite objects.

iFor the quantifier rules, note that the formulas A(b) and A(t) are subformulas of
∀xA(x) and ∃xA(x) (accordingly for the “set rules”).
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4 The Theory V1

In this section we present the two-sorted theory V1 which is part of the
hierarchy V0 ⊂ V1 ⊆ V2 ⊆ . . . , where for i ≥ 1, Vi characterises the
(i− 1)-th level of the polynomial hierarchy. Thus V1 characterises P in the
sense that the provably total functions of V1 are exactly the polynomial time
computable functions. Before we give the definition of V1, we introduce the
notion of a bounded formula and a useful syntactical hierarchy of formulas.

Definition 4.1 (Bounded Formula). Given a number variable x and a set
variable X, let t be a number term not involving x and X. Then ∃x ≤ tA
stands for ∃x(x ≤ t ∧ A), ∀x ≤ tA stands for ∀x(x ≤ t → A), ∃X ≤ tA
stands for ∃X(|X| ≤ t ∧ A) and ∀X ≤ tA stands for ∀X(|X| ≤ t → A).
Quantifiers in this form are called bounded and a formula is called bounded
if all its quantifiers are bounded.

Notation ∃~x ≤ ~tA stands for ∃x1 ≤ t1 . . . ∃xn ≤ tnA for some n ≥ 0,
where no xi occurs in any tj. Accordingly for ∀~x ≤ ~t, ∃ ~X ≤ ~t, ∀ ~X ≤ ~t.

Definition 4.2 (ΣB
i -, ΠB

i - and Σ1
1-formulas). ΣB

0 = ΠB
0 is the set of L2

A-
formulas where all quantifiers are bounded number quantifiers (with possibly
free set variables) i. ΣB

i+1 (resp. ΠB
i+1) is the set of all L2

A-formulas of the

form ∃ ~X ≤ ~tA( ~X) (resp. ∀ ~X ≤ ~tA( ~X)), where A( ~X) is a ΣB
i -formula (resp.

a ΠB
i -formula) and the number terms in ~t are over L2

A and do not involve any

variable in ~X. Σ1
1 is the set of L2

A-formulas of the form ∃ ~XA( ~X), where A
is a ΣB

0 -formula. For a language L ⊇ L2
A the classes ΣB

i (L) and ΠB
i (L) are

defined as above with the exception that the underlying language is L instead
of L2

A, provided that the terms in ~t are still over L2
A.

Note that for ΣB
i and ΠB

i , no number quantifiers are in front of set quan-
tifiers. For example, the formula ∀x ≤ t1∃X ≤ t2A is not in ΣB

1 .
When it is clear from the context (or unimportant), we do not mention

the underlying language L explicitly. Note that ΣB
0 ⊆ ΣB

1 ⊆ ΣB
2 ⊆ . . . and

ΠB
0 ⊆ ΠB

1 ⊆ ΠB
2 ⊆ . . . and for i ≥ 0 we have ΣB

i ⊆ ΠB
i+1 and ΠB

i ⊆ ΣB
i+1.

4.1 Definition of V1

Notation We write X(s) instead of s ∈ X.

iΣB
0 roughly corresponds to one-sorted ∆0.
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The theory V1 is axiomatised by the following axioms and a comprehen-
sion axiom scheme (defined later).

B1. x+ 1 6= 0

B2. x+ 1 = y + 1→ x = y

B3. x+ 0 = x

B4. x+ (y + 1) = (x+ y) + 1

B5. x× 0 = 0

B6. x× (y + 1) = (x× y) + x

B7. (x ≤ y ∧ y ≤ x)→ x = y

B8. x ≤ x+ y

B9. 0 ≤ x

B10. x ≤ y ∨ y ≤ x

B11. x ≤ y ↔ x < y + 1

B12. x 6= 0→ ∃y ≤ x(y + 1 = x)

L1. X(y)→ y < |X|
L2. y + 1 = |X| → X(y)

SE.
(
|X| = |Y | ∧ ∀i < |X|

(
X(i)↔ Y (i)

))
→ X = Y

B1 to B8 are the same as in I∆0 and B9-B12 are theorems of I∆0. L1
and L2 define the relation || as the least upper bound relation and SE (set
equality) states that if two sets have the same elements, then they are equal.
It is worth noting that the other direction of the axiom SE is valid. That is

M |= X = Y →
(
|X| = |Y | ∧ ∀i < |X|

(
X(i)↔ Y (i)

))
for every L-structure M with L ⊇ L2

A. The reason is that = (actually =2)
is always interpreted as the true equality relation.

Definition 4.3 (Φ-COMP). Let Φ be a set of formulas. Then Φ-COMP
is the set of all formulas of the form

∃X ≤ y∀z < y
(
X(z)↔ A(z)

)
,

where A(z) ∈ Φ and X does not occur free in A(z).

Note that A above may have free number and set variables other than
z. The reason why X must not occur free in A(z) is that otherwise the
(unsatisfiable) axiom

∃X ≤ y∀z < y
(
X(z)↔ ¬X(z)

)
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would make our theory inconsistent. Intuitively, the comprehension axiom
states that for each (1, 0)-ary, Φ-definable relation R, defined by A, there
exists a set S = {x | R(x)}.

Definition 4.4 (V1). V1 is the theory axiomatised by the axioms B1-B12,
L1,L2,SE and ΣB

1 -COMP.

Definition 4.5 (Unique Existence ∃!). The notation ∃!XA(X) stands for
∃X(A(X) ∧ ∀Y (A(Y )→ X = Y )) (similarly for number variables).

It is worth noting that in every theory T containing V1, it follows from
the extensionality axiom SE that comprehension is unique (in the sense of
definition 4.5). That is, if T proves a formula ∃X ≤ y∀z < y

(
X(z)↔ A(z)

)
,

then T also proves the formula ∃!X ≤ y∀z < y
(
X(z)↔ A(z)

)
.

The theory V0 has the same axioms as V1 with the exception that the
comprehension axiom is restricted to ΣB

0 -formulas.

Definition 4.6 (V0). V0 is the theory axiomatised by the axioms B1-B12,
L1,L2,SE and ΣB

0 -COMP.

Of course V0 ⊆ V1 i. In section 4.8 we will define a theory Ṽ1 as an
extension of V0 and it is therefore useful to strengthen a few results and
prove them for V0 instead of V1. To begin with, we state a few theorems
of V0 (and V1, of course) that we use in later proofs. They are actually
theorems of I∆0.

Lemma 4.7 (Theorems of V0).

(1) V0 |= x ≤ 0→ x = 0

(2) V0 |= ¬x < 0

(3) V0 |= x < x+ 1

(4) V0 |= 0 < x+ 1

(5) V0 |= x ≤ x

Proof. (1) Follows from B7 and B9.
(2) LetM[σ] |= V0 and assume to the contrary thatM[σ] |= x ≤ 0∧ x 6= 0.
Then it follows from (1) thatM[σ] |= x = 0, a contradiction. HenceM[σ] |=
¬x < 0.
(3) By B11 we have M[σ] |= x ≤ x → x < x + 1. Then it follows from B8
and B3 that M[σ] |= x < x+ 1.
(4) We have to show M[σ] |= 0 ≤ x + 1 ∧ 0 6= x + 1. The RHS of the

iActually, V0 ( V1.

35



conjunction is B1i and the LHS follows from B9.
(5) cf. (3)

4.2 Induction in V1

V1 does not contain (explicitly) the induction axiom scheme. But its axioms
provide enough strength to prove the induction axioms. In the following we
will show that V0 |= ΣB

0 -IND and V1 |= ΣB
1 -IND. We restate the definition

of number induction (cf. definition 2.12).

Definition 4.8 (Number Induction Axiom Scheme). Let Φ be a set of two-
sorted formulas. Then Φ-IND is the set of formulas of the form(

A(0) ∧ ∀x
(
A(x)→ A(x+ 1)

))
→ ∀xA(x)

where A ∈ Φ.

We first show that V0 proves the following formula.

Definition 4.9 (X-MIN).

X-MIN ≡ 0 < |X| → ∃x < |X|
(
X(x) ∧ ∀y < x¬X(y)

)
(4.1)

Intuitively, X-MIN states that every nonempty set X has a smallest
element x.

Lemma 4.10. V0 |= X-MIN.

Proof. We prove this lemma with semantical arguments. Let M be any
model of V0, (M1,M2) its universe and σ an arbitrary (but fixed) assignment.
Let A(z) be the ΣB

0 -formula ∀y ≤ z¬X(y). Then the following formula is a
logical consequence of ΣB

0 -COMP

M[σ] |= ∃Y ≤ |X|∀z < |X|
(
Y (z)↔ ∀y ≤ z¬X(y)

)
. (4.2)

Intuitively, (4.2) states that for every set X there exists a set Y that consists
of the numbers smaller than every element of X. For an arbitrary set X ∈ M2,
let Y ∈ M2 be the set that satisfies the existential quantifier in (4.2). We will
show that |Y | (respectively |Y |M[σ(Y/Y )]) is just the witness for (4.1), i.e.
the smallest element of X, assuming 0 < |X|. Formally, we need to show:
(i) M[σ(X/X)(Y/Y )] |= X(|Y |),

iNote that we can assume the symmetry of = because of the requirement that =M is
always the true equality relation.
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(ii) M[σ(X/X)(Y/Y )] |= ∀y < |Y |¬X(y)
while assuming

M[σ(X/X)] |= 0 < |X|. (4.3)

We do a case analysis on Y. First, suppose that Y is empty, i.e.

M[σ(X/X)(Y/Y )] |= ∀y¬Y (y). (4.4)

By the contraposition of L2 we have

M[σ(X/X)(Y/Y )] |= ∀y
(
¬Y (y)→ y + 1 6= |Y |

)
(4.5)

From (4.4) and (4.5) we conclude that

M[σ(X/X)(Y/Y )] |= ∀y
(
y + 1 6= |Y |

)
. (4.6)

From the contraposition of B12 it follows that

M[σ(X/X)(Y/Y )] |=
(
¬∃y ≤ |Y |(y + 1 = |Y |)

)
→ |Y | = 0 (4.7)

and as a logical consequence thereof

M[σ(X/X)(Y/Y )] |=
(
¬∃y(y + 1 = |Y |)

)
→ |Y | = 0. (4.8)

and
M[σ(X/X)(Y/Y )] |=

(
∀y(y + 1 6= |Y |)

)
→ |Y | = 0 (4.9)

From (4.6) and (4.9) we conclude that

M[σ(X/X)(Y/Y )] |= |Y | = 0. (4.10)

By lemma 4.7 (¬x < 0) and (4.10) the condition (ii) trivially holdsi. By (4.3)
and (4.2) we obtain

M[σ(X/X)(Y/Y )] |= Y (0)↔ ∀y ≤ 0¬X(y) (4.11)

and with lemma 4.7 (1)

M[σ(X/X)(Y/Y )] |= Y (0)↔ ¬X(0) (4.12)

Since Y is empty by (4.4) we have

M[σ(X/X)(Y/Y )] |= X(0) (4.13)

iRecall that =M is always the true equality relation.
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which proves (i). Now suppose that Y is not empty, i.e.

M[σ(X/X)(Y/Y )] |= Y (y) (4.14)

Then by L1
M[σ(X/X)(Y/Y )] |= y < |Y | (4.15)

and by lemma 4.7 (2)

M[σ(X/X)(Y/Y )] |= |Y | 6= 0 (4.16)

since otherwise we had M[. . . ] |= y < 0. By B12 and the above we obtain

M[σ(X/X)(Y/Y )(z/z)] |= z + 1 = |Y | (4.17)

for some z ∈ M1 and by L2

M[σ(X/X)(Y/Y )(z/z)] |= Y (z) (4.18)

By the contraposition of L1 we obtain (recall that < is an abbreviation)

M[σ(X/X)(Y/Y )(z/z)] |= ¬(z+1 ≤ |Y |∧z+1 6= |Y |)→ ¬Y (z+1) (4.19)

and it follows from (4.17) that

M[σ(X/X)(Y/Y )(z/z)] |= ¬Y (z + 1) (4.20)

By (4.2) and (4.18) we obtain

M[σ(X/X)(Y/Y )(z/z)] |= ∀y ≤ z¬X(y) (4.21)

and with B11 and (4.17)

M[σ(X/X)(Y/Y )] |= ∀y < |Y |¬X(y) (4.22)

which proves (ii). From (4.20) and the contraposition of (4.2) we concludei

M[σ(X/X)(z/z)] |= ∃y ≤ z + 1 X(y) (4.23)

and hence

M[σ(X/X)(z/z)(y/y)] |= y ≤ z + 1 ∧X(y) for some y ∈ M1 (4.24)

It turns out that M[σ(z/z)(y/y)] |= y = z + 1 because otherwise

M[σ(z/z)(y/y)] |= y < z + 1 and M[σ(z/z)(y/y)] |= y ≤ z

by B11, which contradicts (4.21). Therefore we have proved (i):

M[σ(X/X)(Y/Y )] |= X(|Y |) (4.25)

iNote that we make use of lemma 2.8.
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Convention From now on, we will not always explicitly mention the uni-
verse (M1,M2) of a model M. When we write x (or another letter in the
same font), we mean an element of M1 and when we write X we mean an
element of M2.

Now consider the following weak form of induction.

Definition 4.11. X-IND ≡
(
X(0) ∧ ∀y < z

(
X(y)→ X(y + 1)

))
→ X(z)

Lemma 4.12. V0 |= X-IND.

Proof. We give a proof by contradiction. Assume V0 6|= X-IND. Then
V0 6|= ∀zX-IND (otherwise V0 |= X-IND) and there exists a model M of
V0 with M 6|= ∀zX-IND. Therefore

M[σ] |= ¬∀zX-IND for some assignment σ, (4.26)

and hence
M[σ] |= ∃z¬X-IND (4.27)

Thus we obtain (using De Morgan’s Laws) for some z

M[σ(z/z)] |= X(0) ∧ ¬X(z) ∧ ∀y < z
(
X(y)→ X(y + 1)

)
. (4.28)

By ΣB
0 -COMP we have for some Y

M[σ(z/z)(Y/Y )] |= |Y | ≤ z + 1 ∧
(
∀y < z + 1

(
Y (y)↔ ¬X(y)

))
(4.29)

By Lemma 4.7 (4) (x < x + 1) and the fact that M[σ(z/z) |= ¬X(z) (by
(4.28)) we obtain

M[σ(z/z)(Y/Y )] |= Y (z) (4.30)

Now we need to establish 0 < |Y | in order to apply Y -MIN. By L1 we
obtain

M[σ(z/z)(Y/Y )] |= z < |Y | (4.31)

and by lemma 4.7 (2) (since otherwise “z < 0”)

M[σ(z/z)(Y/Y )] |= 0 6= |Y | (4.32)

From B9 and the above we obtain

M[σ(Y/Y )] |= 0 < |Y | (4.33)

By Y -MIN and the above we have for some y0 ∈ M1 (the least element of
Y)

M[σ(y0/y0)(Y/Y )] |= y0 < |Y | ∧ Y (y0) ∧
(
∀x < y0¬Y (x)

)
(4.34)
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Then M[σ(y0/y0)] |= y0 6= 0 since otherwise M[σ] |= ¬X(0) by (4.29) and
lemma 4.7 (4) (0 < x+ 1) which contradicts (4.28). Then by B12

M[σ(y0/y0)(x0/x0)] |= x0 ≤ y0 ∧ x0 + 1 = y0 for some x0 ∈ M1 (4.35)

Then from the above, lemma 4.7 (3) (x < x+ 1) and (4.34) we obtain

M[σ(Y/Y )(x0/x0)] |= ¬Y (x0) (4.36)

By (4.29) we obtainM[σ(x0/x0)] |= X(x0). But sinceM[σ(Y/Y )(x0/x0)] |=
Y (x0 + 1) (recall x0 + 1 = y0) we obtain again by (4.29) M[σ(x0/x0)] |=
¬X(x0 + 1) which contradicts our assumption (4.28). Therefore we have
proved V0 |= X-IND.

Now it is easy, using the previous lemma, to show that V0 |= ΣB
0 -IND

and V1 |= ΣB
1 -IND.

Theorem 4.13. Let T ⊇ V0 and assume that T |= Φ-COMP, for some
set of formulas Φ. Then T |= Φ-IND.

Proof. Let A(x) ∈ Φ. We need to show that

T |=
(
A(0) ∧ ∀y

(
A(y)→ A(y + 1)

))
→ A(x) (4.37)

Let M be a model of T and let σ be an arbitrary assignment. Assume

M[σ] |= A(0) ∧ ∀y
(
A(y)→ A(y + 1)

)
(4.38)

By Φ-COMP we have for some X

M[σ(X/X)] |= |X| ≤ z + 1 ∧ ∀y < z + 1
(
X(y)↔ A(y)

)
(4.39)

We conclude from (4.39), (4.38) and lemma 4.7 (4) (0 < x+ 1) that

M[σ(X/X)] |= X(0) (4.40)

By the right conjunct of (4.39), the right conjunct of (4.38) and lemma 4.7
(3) (x < x+ 1) we obtain

M[σ(X/X)] |= ∀y < z
(
X(y)→ X(y + 1)

)
(4.41)

Taken together we obtain

M[σ(X/X)] |= X(0) ∧ ∀y < z
(
X(y)→ X(y + 1)

)
(4.42)
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Since M[σ(X/X)] |= X-IND (lemma 4.12) we get

M[σ(X/X)] |= X(z) (4.43)

and with lemma 4.7 (3) (x < x+ 1) and (4.39) we finally obtain

M[σ] |= A(z) (4.44)

which completes our proof.

Corollary 4.14. V0 |= ΣB
0 -IND and V1 |= ΣB

1 -IND.

We now list a few theorems of V0 i that we will use later. We prove only
some of them. Proof sketches for the others can be found in [6].

Lemma 4.15 (More Theorems of V0).

(1) V0 |= (x+ y) + z = x+ (y + z) (Associativity of +)

(2) V0 |= (x× y)× z = x× (y × z) (Associativity of ×)

(3) V0 |= x+ y = y + x (Commutativity of +)

(4) V0 |= x× y = y × x (Commutativity of ×)

(5) V0 |= x ≤ 0→ x = 0

(6) V0 |= x ≤ y → ∃z(x+ z = y)

(7) V0 |= x ≤ y ↔ x+ z ≤ y + z

(8) V0 |= x ≤ y → x× z ≤ y × z
(9) V0 |= x < y ↔ x+ 1 ≤ y

(10) V0 |= x ≤ y ∧ y ≤ z → x ≤ z (Transitivity of ≤)

(11) V0 |= x ≤ y + 1↔ (x ≤ y ∨ x = y + 1)

(14) V0 |= 0 ≤ x

(12) V0 |= x ≤ y ∧ z ≤ v → x+ z ≤ y + v

(13) V0 |= x ≤ y ∧ z ≤ v → x× z ≤ y × v
(15) V0 |= x < y → x < y + z

(16) V0 |= x+ 1 ≤ y → x < y

(17) V0 |= x < y ∧ y < z → x < z (Transitivity of <)

Proof. (13): By theorem 4.13 we can use the ΣB
0 -IND axiom scheme on the

variable y. Let M be a model of V0 and σ an arbitrary assignment. We
first need to show that M[σ] |= x ≤ 0 ∧ z ≤ v → x + z ≤ 0 + v. Assume

iThey are also theorems of I∆0.
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M[σ] |= x ≤ 0 ∧ z ≤ v. By sublemma (5) we have M[σ] |= x = 0. Hence it
suffices to show that M[σ] |= 0 + z ≤ 0 + v, which follows from the axiom
B3, sublemma (3) and the fact that M[σ] |= z ≤ v. For the induction step
we assume that

M[σ] |= x ≤ y ∧ z ≤ v → x+ z ≤ y + v (4.45)

We need to establishM[σ] |= x ≤ y+1∧z ≤ v → x+z ≤ (y+1)+v. Assume
thatM[σ] satisfies the premise of this implication. Then, by sublemma (11),
either M[σ] |= x ≤ y or M[σ] |= x = y + 1. In the former case we have
M[σ] |= x + z ≤ y + v by (4.45). Since M[σ] |= y + v ≤ (y + 1) + v (by
sublemmas (3), (1) and axiom B8) we can apply sublemma (10) to obtain
M[σ] |= x + z ≤ (y + 1) + v. In the case of M[σ] |= x = y + 1, we need to
show M[σ] |= (y + 1) + z ≤ (y + 1) + v. This follows from sublemmas (7)
and (3).

(14): The proof of (14) is also by induction on y and is very similar to
the proof of (13). For the base case we need sublemma (4) instead of (3) and
axiom B5 instead of B3. For the induction step we assume that

M[σ] |= x ≤ y ∧ z ≤ v → x× z ≤ y × v (4.46)

We need to establishM[σ] |= x ≤ y+1∧z ≤ v → x×z ≤ (y+1)×v. Assume
that M[σ] satisfies the premise of this implication. Then, by sublemma
(11), either M[σ] |= x ≤ y or M[σ] |= x = y + 1. In the former case we
have M[σ] |= x × z ≤ y × v by (4.46). By sublemma (4) and B6 we have
M[σ] |= (y+1)×v = (y×v)+y and henceM[σ] |= y×v ≤ (y+1)×v by B8.
Then we can apply sublemma (10) to obtainM[σ] |= x× z ≤ (y+ 1)× v. In
the case ofM[σ] |= x = y+1, we need to showM[σ] |= (y+1)×z ≤ (y+1)×v.
This follows from sublemmas (8) and (4).

(15): Let M |= V0 and σ arbitrary. Assume M[σ] |= x < y. We have
M[σ] |= x ≤ y+ z by (13) and (12). I.e we have to showM[σ] |= x 6= y+ z.
Assume to the contrary that M[σ] |= x = y + z. By (9), M[σ] |= x+ 1 ≤ y
and by (6) and (3) M[σ] |= ∃w(x + 1 + w = y). Let w be such a w. Then
M[σ(w/w)] |= x = x+ 1 + w + z, which contradicts our assumption.

(16): LetM |= V0 and σ arbitrary. AssumeM[σ] |= x+1 ≤ y. Then, by
B11,M[σ] |= x+1 ≤ y+1∧x+1 6= y+1. By (7),M[σ] |= x ≤ y∧x+1 6= y+1
and by B2, M[σ] |= x ≤ y ∧ x 6= y.

(17): Follows from (10).

Using the above results, we can show that V0 and V1 prove so-called
number minimisation schemes.
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Definition 4.16 (Φ-MIN). For a set Φ of formulas, the set Φ-MIN consists
of all the formulas of the form

A(y)→ ∃x ≤ y
(
A(x) ∧ ¬∃z < xA(z)

)
for A(x) ∈ Φ.

Lemma 4.17. Let T ⊇ V0 and assume that T |= Φ-COMP, for some set
of formulas Φ. Then T |= Φ-MIN.

Proof. Let A(x) ∈ Φ. We have to show that

T |= A(y)→ ∃x ≤ y
(
A(x) ∧ ¬∃z < xA(z)

)
(4.47)

Let M be a model of T and let σ be an arbitrary assignment. Assume

M[σ] |= A(y) (4.48)

We have to show that the RHS of (4.47) holds inM[σ]. By T |= Φ-COMP,
we have for some X

M[σ(X/X)] |= |X| ≤ y + 1 ∧ ∀x < y + 1
(
X(x)↔ A(x)

)
(4.49)

By T |= X-MIN, we have

M[σ(X/X)] |= 0 < |X| → ∃x < |X|
(
X(x) ∧ ∀y < x¬X(y)

)
(4.50)

It follows from (4.48), (4.49), lemma 4.7 (3)i and the axioms of V1 that
M[σ(X/X)] |= 0 < |X|. Hence the RHS of (4.50) holds in M[σ(X/X)]. Let
x be this “smallest” element that satisfies the quantifier ∃x < |X| in the RHS
of (4.50). Then we have

M[σ(X/X)(x/x)] |= x < |X| ∧X(x) ∧ ∀y < x¬X(y) (4.51)

We now show that x satisfies the existential quantifier in (4.47). For sim-
plicity, we argue “in” M[σ(X/X)(x/x)]. Since x < |X| and |X| ≤ y + 1, it
follows from lemma 4.15 (10),(17) that x < y+1 and from (9),(7) that x ≤ y.
Hence, by (4.51) we have X(x) and by (4.49) A(x). And again from (4.51)
and (4.49) it follows that ¬∃z < xA(z) holds in (4.47).

ix < x+ 1
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4.3 Extensions of Theories

In this section we define what it means for a function or a predicate to be
definable in a theory. Note that we only talk about functions and relations in
the natural numbers and in finite sets of natural numbers. For convenience,
we use the same symbol for a relation (function) in the real world and as a
relation (function) symbol of our logical language.

In the following definitions, we assume that N2
′ is an expansion of the

standard model N2 where the respective relation and function symbols R, f, F

get their intended interpretations, i.e. RN2
′
= R, fN2

′
= f, FN2

′
= F , and the

extra symbols of L \ L2
A get their intended interpretations. For the notation

∃! see definition 4.5.

Definition 4.18 (Definable Relation). Let L ⊇ L2
A be a language and let

Φ be a set of L-formulas. Let R(~x, ~X) ⊆ Nm × Pf (N)n be a (real world)
(m,n)-ary two-sorted relation and assume that the symbol R is not in L. We

call R Φ-definable if there is a formula A(~x, ~X) ∈ Φi such that

N2
′ |= R(~x, ~X)↔ A(~x, ~X).

We then call R(~x, ~X)↔ A(~x, ~X) theii defining axiom for R.

Definition 4.19 (Definable Function). Let T be a theory over some language

L ⊇ L2
A and Φ as above. Let f(~x, ~X) : Nm × Pf (N)n → N be a (real world)

(m,n)-ary number function and let F (~x, ~X) : Nm × Pf (N)n → Pf (N) be a
set function, respectively. Assume that the symbols f and F are not in L.
We call f Φ-definable in T if its graph (relation) is Φ-definable in T and

T |= ∀~x∀ ~X∃!yA(~x, y, ~X). That is if there is a formula A(~x, y, ~X) ∈ Φ s.t.

N2
′ |= y = f(~x, ~X)↔ A(~x, y, ~X).

We then call y = f(~x, ~X)↔ A(~x, y, ~X) the defining axiom for f .
We call F Φ-definable in T if its graph (relation) is Φ-definable in T and

T |= ∀~x∀ ~X∃!Y A(~x, ~X, Y ). That is if there is a formula A(~x, ~X, Y ) ∈ Φ s.t.

N2
′ |= Y = F (~x, ~X)↔ A(~x, ~X, Y ).

We then call Y = F (~x, ~X)↔ A(~x, ~X, Y ) the defining axiom for F .

iwith all free variables indicated
iiEven if there is more than one, we will assume that one specific defining axiom has

been chosen and speak of the defining axiom.
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Note that for relations, the notion of definability is independent of a
theory and depends only on the standard model (or an expansion thereof)
and the underlying language. For set functions we introduce another notion
of definability called bit-definability. A set function is called Φ-bit-definable
if (roughly) its bit graph relationi is Φ-definable.

Definition 4.20 (Bit-definable Function). Let Φ be a set of L ⊇ L2
A-formulas.

A set function F (~x, ~X) (where F is not in L) is called Φ-bit-definable if there

is a formula A(i, ~x, ~X) ∈ Φ and an L2
A-term t(~x, ~X) s.t.

N2
′ |= F (~x, ~X)(i)↔ i < t(~x, ~X) ∧ A(i, ~x, ~X).

We then call F (~x, ~X)(i)↔ i < t(~x, ~X)∧A(i, ~x, ~X) the bit-defining axiom for
F .

The bit-defining axiom of a (total) set function F can easily be obtained

from its defining axiom Y = F (~x, ~X)↔ AF (~x, ~X, Y ) like this:

F (~x, ~X)(i)↔ i < |Y | ∧ Y (i) ∧ AF (~x, ~X, Y )

Definition 4.21 (Conservative Extension). Let T1,T2 be two theories over
the languages L1 and L2, respectively, and T2 ⊇ T1. We call T2 a conser-
vative extension of T1 if every L1-formula in T2 is also in T1.

Bit-definability of set functions is a weaker concept than definability in
a theory. Not all set functions that are Φ-bit-definable, for some Φ, are
Φ-definable in e.g. V1. However, in sections 4.4 and 4.6.3 we show that
bit-definability is useful. Also in section 4.6.3 we will show that adding de-
finable predicates and functions to an existing theory results in a conservative
extension of that theory.

We want to fix a set Φ so that the class of definable functions only depends
on the proving power of the underlying theory. For this purpose we define
here what we mean by a provably total function.

Definition 4.22 (Provably Total Function). A (number or set) function is
called provably total in a theory T iff it is Σ1

1-definable in T.

We now show that in extensions of V0, the provably total functions are
closed under composition. In order to do this, we need the two auxiliary
lemmas 4.23 and 4.24.

Lemma 4.23. V0 |= ∀x∃X x = |X|.
iDefinition 4.34
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Proof. Let M be a model of V0 and let σ be an arbitrary assignment. By
ΣB

0 -COMP we have M[σ] |= ∃X ≤ x∀y < x
(
X(y)↔ 0 = 0

)
and hence

M[σ(X/X)] |= |X| ≤ x ∧ ∀y < x X(y), for some X. (4.52)

We have to show that M[σ(X/X)] |= x = |X|. Assume to the contrary that

M[σ(X/X)] |= x 6= |X|. (4.53)

Then, by (4.52), we have M[σ(X/X)] |= |X| < x ∧ ∀y < x X(y) and
as a consequence M[σ(X/X)] |= X(|X|). It follows from axiom L1 that
M[σ(X/X)] |= |X| < |X|, which is impossible because =M is the true equal-
ity relation. Therefore we have obtained a contradiction and it follows that
our assumption (4.53) was wrong. HenceM[σ(X/X)] |= x = |X| and we are
done.

The following lemma is useful with regard to the formula replacement
lemma 2.8.

Lemma 4.24 (Existential Quantifier Lemma). The formula

∃~x∃ ~XA(~x, ~X)⊗ ∃~y∃~Y B(~y, ~Y )↔ ∃~x∃~y∃ ~X∃~Y
(
A(~x, ~X)⊗B(~y, ~Y )

)
where ⊗ is either ∧ or ∨, is valid, provided that the formulas on the RHS
and the LHS have the same free variables.

Proof. We proceed by induction on the number n of existential quantifiers in
∃~x∃ ~X and ∃~y∃~Y . The base case n = 0 holds trivially. For the induction step
we only show one case. The other cases are proved analogously. Consider
a formula ∃xC(x) ⊗ D. It is easy to verify that this formula is provably
equivalent to ∃x

(
C(x) ⊗ D

)
. Then we apply the induction hypothesis to

C(x)⊗D and are done. Note that we can always rename bound variables in
order to avoid name clashes.

In the proof of the lower bound of V1 (theorem 4.79), we will use the fact
that the provably total functions of V1 are closed under function composition.

Lemma 4.25. Let T ⊇ V0 be a theory over a language L ⊇ L2
A. Then the

provably total functions of T are closed under function composition.

Proof. Let ~x, ~X stand for x1, . . . , xk, X1, . . . , Xl. Suppose that the functions
h(x1, . . . , xn, X1, . . . , Xm), H(x1, . . . , xn, X1, . . . , Xm), gi(~x, ~X), for 1 ≤ i ≤
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n, Gj(~x, ~X), for 1 ≤ j ≤ m, are Σ1
1-definable in T. . We have to show that

the functions

f(~x, ~X) = h
(
g1(~x, ~X), . . . , gn(~x, ~X), G1(~x, ~X), . . . , Gm(~x, ~X)

)
, (4.54)

F (~x, ~X) = H
(
g1(~x, ~X), . . . , gn(~x, ~X), G1(~x, ~X), . . . , Gm(~x, ~X)

)
(4.55)

are also Σ1
1-definable in T. Let

Agi
(~x, y, ~X), AGj

(~x, ~X, Y ), Ah(~z, y, ~Z), AH(~z, ~Z, Y ) (4.56)

be the RHS of the Σ1
1-defining axioms for the above functions (cf. definition

4.19). Then f has the following defining axiom

y = f(~x, ~X)↔ ∃z1 . . . ∃zn∃Z1 . . . ∃Zm(
Ag1(~x, z1, ~X) ∧ . . . Agn(~x, zn, ~X) ∧
AG1(~x, ~X,Z1) ∧ · · · ∧ AGm(~x, ~X,Zm) ∧
Ah(~z, y, ~Z)

) (4.57)

where ~z = z1, . . . , zn and ~Z = Z1, . . . , Zm. Note that (4.57) is not a Σ1
1-

formula. However, according to lemma 4.24, it is equivalent to a Σ1
1-formula

because the existential quantifiers of the formulas (4.56) can be put in front,
and, by lemma 4.23, the n existential number quantifiers can be replaced by
existential set quantifiers. Let A(~x, y, ~X) be the RHS of the axiom (4.57).

We have to show that T |= ∀~x∀X∃!yA(~x, y, ~X). By assumption, we have

T |= ∀~x∀ ~X∃!yAgi
(~x, y, ~X),

T |= ∀~x∀ ~X∃!Y AGj
(~x, ~X, Y ),

T |= ∀~x∀ ~X∃!yAh(~x, y, ~X),

for all gi, Gj. As a consequence, the quantifiers ∃zi,∃Zj in (4.57) are uniquely

satisfied. Since the y in Ah(~z, y, ~Z) is also unique, it follows that T |=
∀~x∀X∃!yA(~x, y, ~X). The proof for F is analogous.

.
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4.4 Complexity Theory

In the one-sorted context of bounded arithmetic, elements of complexity
classes are considered subsets (i.e. relations) of N. For example, P is the
set of all relations R(x1, . . . , xn), n ≥ 1, over N such that some polytime
Turing machine, given input x1, . . . , xn (in binary notation, separated by
blanks), decides whether R(x1, . . . , xn) holds. Contrary to the one-sorted
context, in the two-sorted context the relations R(x1, . . . , xn, X1, . . . , Xm)
have arguments of both sorts. Now, numbers are presented in unary notation
and sets in binary notation using the following encoding. Let S ⊆ N. If we
write S(i) for i ∈ S and 1 if S(i) holds (0 otherwise), then we can define an
encoding w(S) as follows:

w(S) = S(n)S(n− 1) . . . S(1)S(0),

where n is the largest number in the set S. We further let w(∅) be the empty
string. For example w

(
{2, 3, 6, 7}

)
= 11001100. Note that the mapping w is

injective but not surjective (since all encodings w(S) begin with 1). Therefore
we just drop the first 1 and (re-)define w(S) = S(n− 1) . . . S(0) to obtain a
bijection.

For example, two-sorted P (polynomial time) is the set of all relations

R(~x, ~X) where some Turing machine, given input x1, . . . , xm in unary nota-
tion (separated by blanks) and input w(X1) . . . w(Xn) (separated by blanks),

decides whether R(~x, ~X) holds or not. The two-sorted polynomial hierarchy
PH is defined accordingly. Note that a numerical relation is in two-sorted P
iff it is computed in time 2O(n) on some deterministic Turing machine (be-
cause we need 2n steps to read the input). Note that this encoding of sets
naturally leads to the term of “bit-definability” since A(i) implies that the
i-th bit of the string representation of A holds. We now introduce the (small)
complexity class AC0 (see also [1]).

Definition 4.26 (AC0). A relation R(~x, ~X) is in AC0 iff some alternating
Turing machine accepts R in time O(log n) with a constant number of alter-
nations.

One way of relating logic to complexity classes are so-called representation
theorems. We show that a relation is in a complexity class iff it is definable
by a certain type of formula. The following theorem (see [6] for details)
connects AC0 and the language L2

A.

Theorem 4.27 (ΣB
0 Representation Theorem). A relation R(~x, ~X) is in AC0

iff it is ΣB
0 -definable.
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For the sake of completeness, we state representation theorems for the
class P and the polynomial hierarchy PH (although we will not make use of
these theorems). Details are in [6].

Theorem 4.28 (ΣB
i Representation Theorem). For i ≥ 1, a relation R(~x, ~X)

is in the i-th level ΣP
i of PH iff it is ΣB

i -definable, e.g. R is in NP iff it is
ΣB

1 -definable.

Theorem 4.29 (Σ1
1 Representation Theorem). A relation R(~x, ~X) is recur-

sively enumerable iff it is Σ1
1-definable.

Grädel (cf. for example [5]) proved a representation theorem for the class
P.

Definition 4.30 (ΣB
1 -HORN-formula). A ΣB

1 -HORN-formula is an L2
A-formula

of the form
∃Y1 . . . ∃Yn∀y1 ≤ t1 . . . ∀ym ≤ tmB (4.58)

where n,m ≥ 0 and B is a quantifier-free formula in conjunctive normal
form and each clause contains at most one positive occurrence of a literal
of the form Zi(t). Additionally, no terms of the form |Zi| occur in (4.58).
(4.58) may contain free number and set variables (even in the form |X|) and
clauses of B may contain any number of positive or negative literals of the
form X(t).

Theorem 4.31 (ΣB
1 -HORN Representation Theorem). A relation R(~x, ~X)

is in P iff it is ΣB
1 -HORN-definable.

4.4.1 Two-sorted Functions

So far, complexity classes are defined in terms of (two-sorted) relations. Now
we associate to each complexity class C a class of functions FC (number and
set functions). For example FP is the class of polynomial time computable
functions. We now define what it means for a function to be polynomially
bounded.

Definition 4.32 (Polynomially Bounded Function). A number function f or
a set function F is polynomially bounded if there exists a polynomial p(~x, ~y)

such that f(~x, ~Y ) ≤ p(~x, |~Y |) or |F (~x, ~Y )| ≤ p(~x, |~Y |) for all ~x ∈ Nk, for

some k, and all ~Y ∈ Pf (N)l, for some l i.

iRecall that Pf (N) denotes the set of all finite subsets of N.
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Recall that |X| denotes the function “one plus the largest element of X,
or 0 if X is empty”, i.e. |X| is equal to the length of the binary encoding
w(X).

Definition 4.33 (Graph of a Function). Given a number function f(~x, ~X),

its graph Gf (y, ~x, ~X) is the relation {(y, ~x, ~X) | y = f(~x, ~X)}. Analo-

gously, for a set function F (~x, ~X), its graph is the relation {(~x, ~X, Y ) | Y =

F (~x, ~X)}.

Definition 4.34 (Bit Graph of a Function). Given a set function F (~x, ~X),

its bit graph BF (i, ~x, ~X) is the relation {(i, ~x, ~X) | i ∈ F (~x, ~X)}.

Definition 4.35 (Function Class). Let C be a two-sorted complexity class
(of relations). Then the corresponding class FC of functions consists of all
polynomially bounded number functions whose graphs are in C, together with
all polynomially bounded set functions whose bit graphs are in C.

For example, the set functions in FAC0 are those polynomially bounded
functions whose bit graphs are in AC0. In [11, 12, 10] and others, these
functions are called rudimentary. The following corollary is an immediate
consequence of definition 4.35 and the ΣB

0 representation theorem 4.27.

Corollary 4.36. A set function is in FAC0 iff it is polynomially bounded
and its bit graph is ΣB

0 -definable. A number function is in FAC0 iff it is
polynomially bounded and its graph is ΣB

0 -definable.

The next corollary follows immediately from the above.

Corollary 4.37. A set function is in FAC0 iff it is ΣB
0 -bit-definable.

Our goal is to show that the provably total functions of V1 are exactly
the functions in FP. In [4], Cobham first introduced a machine-independent
characterisation of FP and we will use this characterisation for proving the
latter fact about V1. First, we define the function chop(x,X) as the func-
tion that returns all elements y ∈ X that are strictly smaller than x. I.e.
chop(x,X) returns the initial segment of length x of the binary string w(X).
chop has the ΣB

0 -bit-defining axiom

chop(x,X)(z)↔ z < x ∧X(z) (4.59)

and is therefore in FAC0 by corollary 4.37.
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Notation We often write X<t instead of chop(t,X) to make things more
readable.

Definition 4.38 (Bounded Recursion on Notation). A set function F (y, ~x, ~X)

is defined by bounded recursion on notation from set functions G(~x, ~X) and

H(y, ~x, ~X,Z) iff

F (0, ~x, ~X) = G(~x, ~X) (4.60)

F (y + 1, ~x, ~X) = H
(
y, ~x, ~X, F (y, ~x, ~X)

)<t(y,~x, ~X)
(4.61)

for some polynomial t in y, ~x, | ~X| (i.e. t is an L2
A-term).

Now we state a two-sorted version of Cobham’s theorem. For details, see
[4] and [6].

Theorem 4.39 (Cobham’s Characterisation of FP). A set function is in FP
iff it can be obtained from FAC0 set functions by finitely many applications
of composition and bounded recursion on notation.

We could also define the notion of bounded recursion on notation for
number functions. However, the following lemma shows that this is not
explicitly necessary.

Lemma 4.40. A number function f(~x, ~X) is in FP iff there exists a set

function F (~x, ~X) in FP s.t. f(~x, ~X) = |F (~x, ~X)|.

Proof. Given a number function f(~x, ~X) in FP we can easily define a set

function F (~x, ~X) as

F (~x, ~X) = {z | z < f(~x, ~X)}

with |F (~x, ~X)| = f(~x, ~X). The converse direction of the lemma is obvious.
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4.5 Parikh’s Theorem

Parikh’s theorem is useful in proving the lower bound of V1 (section 4.7).
For the proof of Parikh’s theorem, as well as for the proof of the witnessing
theorem 4.95, it is important that the proofs are in so-called free variable
normal form.

Definition 4.41 (Free Variable Normal Form (FVNF)). Let Π be an LK2-Φ
proof of the sequent Γ ` ∆. We call the free variables in Γ ` ∆ parameter
variables of Π. We say that Π is in free variable normal form if 1. no free
variable is eliminated (in the sense that it occurs in the top sequent but not
in the bottom sequent) in Π by any rule except the ∀-right and ∃-left rules
where, in addition, no eigenvariable is a parameter variable, and 2. every
nonparameter free variable in Π is used exactly once as an eigenvariable.

Lemma 4.42 (FVNF Lemma). Let L be a language containing at least one
number constant symbol and one set constant symbol. Every LK2-Φ proof
can be transformed into an LK2-Φ proof (with the same end sequent) in free
variable normal form.

Proof. Note that the only rules, other than the ones mentioned above, that
can eliminate a free variable are the ∀-left and ∃-right rules and the cut rule.
Also note that Π is a tree. In this context, when we say a free variable b
occurs “above” a sequent, we mean that b occurs somewhere between this
sequent and a leaf of the tree, i.e. an axiom. We can transform Π into free
variable normal form by the following procedure: Select an upper-most rule
in Π which eliminates a free variable (abort the procedure if there is none).
If the rule is ∀-right or ∃-left and the eliminated eigenvariable b (M) occurs
somewhere in Π other than above this rule, then replace b (M) by a new
variable b′ (M ′) (which does not occur in Π) in every sequent above this
rule. If the rule is ∀-left, ∃-right or cut, then replace every variable that is
eliminated by the rule by the same constant symbol c (C) in every sequent
above this rule. Repeat the procedure as long as necessary.

Note that the language L2
A does not contain a constant symbol for sets.

Therefore, in order to put an LK2-Φ proof into free variable normal form
it might be necessary to extend the underlying theory by allowing the set
constant symbol ∅ and adding the axiom |∅| = 0 to Φ. The following lemma
makes clear that this results in a conservative extension (cf. definition 4.21)
of the theory.

Lemma 4.43. Let T ⊇ V0 and let L be the language of T. The theory T′

obtained by adding the axiom |∅| = 0 to T is a conservative extension of T.
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Proof. Let M be a model of T and σ an arbitrary assignment. We show
that there exists a set X with |X| = 0 in the universe ofM and that this X is
unique. By ΣB

0 -COMP, there exists an X s.t. M[σ(X/X)] |= |X| ≤ 0. By
lemma 4.15 (5) we have M[σ(X/X)] |= |X| = 0. From lemma 4.7 (2) and
the axiom SE it follows that X is unique. We can conclude from this that
the models of T and T′ differ only in the sense that models of T′ map the
constant symbol ∅ to the empty set. Hence every L-formula in T′ is also in
T.

Corollary 4.44. Let T ⊇ V0. Then T |= ∃!X
(
|X| = 0

)
∧ ∃!X ∀x¬X(x).

Proof. By the proof of lemma 4.43 above we have T |= ∃!X |X| = 0 and the
rest follows from the axiom L1 and lemma 4.7 (2)i.

V1 (as well as V0) is a so-called polynomially bounded theory, a concept

we now define. We say that a number term t(~x, ~X) is a bounding term

for a function f or F in a theory T if T |= ∀~x∀ ~X f(~x, ~X) ≤ t(~x, ~X) or

T |= ∀~x∀ ~X |F (~x, ~X)| ≤ t(~x, ~X), respectively. We call f or F polynomially
bounded in T if f (F ) has an L2

A-bounding term in T.

Definition 4.45 (Polynomially Bounded Theory). A theory T over L is
called polynomially bounded if (1) T ⊇ V0, (2) it can be axiomatised by a set
of bounded formulas, (3) every function f or F of L is polynomially bounded
in T.

V0 and V1 are polynomially bounded theories since all their axioms are
bounded formulas and, because they are L2

A-theories, the functions 0, 1,+,×, ||
all have (trivial) L2

A-bounding terms.

Lemma 4.46 (Monotonicity of L2
A-terms). Let t(x1, . . . , xn) be an L2

A-number
term. Then

V0 |= x1 ≤ y1 ∧ · · · ∧ xn ≤ yn → t(x1, . . . , xn) ≤ t(y1, . . . , yn)

Proof. The proof is by structural induction on the term t(~x). For conve-
nience, we write ~x ≤ ~y for x1 ≤ y1 ∧ · · · ∧ xn ≤ yn. Let M be a model of
V0. In the base case, t(~x) ≡ xi for some i and M |= ~x ≤ ~y → xi ≤ yi holds
trivially. The cases t(~x) ≡ 0 and t(~x) ≡ 1 follow from lemma 4.7 (5). If t(~x)
has the form t1(~x) + t2(~x), then, by induction hypothesis,

V0 |= ~x ≤ ~y → t1(~x) ≤ t1(~y),

V0 |= ~x ≤ ~y → t2(~x) ≤ t2(~y)
(4.62)

i¬x < 0
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We have to show that for an arbitrary σ, M[σ] |= ~x ≤ ~y → t1(~x) + t2(~x) ≤
t1(~y) + t2(~y). Assume M[σ] |= ~x ≤ ~y. Then, by (4.62), M[σ] |= t1(~x) ≤
t1(~y) and M[σ] |= t2(~x) ≤ t2(~y) and it follows from lemma 4.15 (13) that
M[σ] |= t1(~x) + t2(~x) ≤ t1(~y) + t2(~y). The case t(~x) ≡ t1(~x)× t2(~x) is proved
analogously using lemma 4.15 (14). The last case is t(~x) ≡ |X| (note that
set variables are the only L2

A set terms). Then the lemma follows trivially
from lemma 4.7 (5).

Note that L2
A-number terms represent polynomials. The next lemma

shows that in a theory with only polynomially bounded functions, all terms
are polynomially bounded. We need this lemma for the proof of Parikh’s
theorem.

Lemma 4.47. Let T ⊇ V0 be a theory and L ⊇ L2
A be the language of T.

If all functions of L are polynomially bounded in T, then for each L-number
term s(~x, ~X) and L-set term S(~x, ~X), there is an L2

A-number term t(~x, ~X)
s.t.

T |= s(~x, ~X) ≤ t(~x, ~X), and

T |= |S(~x, ~X)| ≤ t(~x, ~X), respectively,

and all terms involved contain only the variables ~x and ~X.

Proof. The proof is by structural induction on s and S. If s is a variable
x, then T |= x ≤ x by lemma 4.7 (5). If S is a variable X, then also
T |= |X| ≤ |X| (note that |X| is an L2

A-number term). If s is of the form

f
(
t1( ~x1, ~X1), . . . , tn( ~xn, ~Xn), T1(~y1, ~Y1), . . . , Tm( ~ym, ~Ym)

)
then, by the induction hypothesis, we have for all i = 1, . . . , n and j =
1, . . . ,m

T |= ti(~xi, ~Xi) ≤ ti(~xi, ~Xi) for some L2
A-number term ti(~xi, ~Xi),

T |= |Tj(~yj, ~Yj)| ≤ rj(~yj, ~Yj) for some L2
A-number term rj(~yj, ~Yj)

(4.63)

Since f is polynomially bounded in T, it has an L2
A-bounding term t(~x, ~X)

in T. Hence we havei

T |= f
(
t1( ~x1, ~X1), . . . , Tm( ~ym, ~Ym)

)
≤ t
(
t1( ~x1, ~X1), . . . , Tm( ~ym, ~Ym)

)
(4.64)

iWe use t1, . . . , Tm as an abbreviation for t1, . . . , tn, T1, . . . , Tm.
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Since t(~x, ~X) is an L2
A-number term, the only set terms in t(~x, ~X) are set

variables. Furthermore, a set variable Xi of ~X can only occur in a subterm

|Xi|. Therefore t(~x, ~X) can be rewritten as t(~x, ~|X|) and (4.64) as

T |= f
(
t1( ~x1, ~X1), . . . , Tm( ~ym, ~Ym)

)
≤ t
(
t1( ~x1, ~X1), . . . , |Tm( ~ym, ~Ym)|

)
(4.65)

By the sublemma below and (4.63) we have

T |= t
(
t1( ~x1, ~X1), . . . , |Tm( ~ym, ~Ym)|

)
≤ t
(
t1( ~x1, ~X1), . . . , rm( ~ym, ~Ym)

)
(4.66)

It then follows from transitivity (lemma 4.15 (10)) that

T |= f
(
t1( ~x1, ~X1), . . . , Tm( ~ym, ~Ym)

)
≤ t
(
t1( ~x1, ~X1), . . . , rm( ~ym, ~Ym)

)
(4.67)

which is what we want since the RHS of (4.67) is an L2
A-number term.

The case where S is of the form F
(
t1( ~x1, ~X1), . . . , Tm( ~ym, ~Ym)

)
is proved

in the same way replacing f(. . . ) with |F (. . . )|.

Sublemma. Given an L2
A-number term t(~x) and L-number terms ~s =

s1, . . . , sn, ~r = r1, . . . , rn with T |= si ≤ ti for all i = 1, . . . , n. Then
T |= t(s1, . . . , sn) ≤ t(r1, . . . , rn).
Proof. Follows immediately from the monotonicity of L2

A-terms (lemma
4.46).

Now we are ready to prove the following special case of Parikh’s theorem
from which the general form (theorem 4.49) will follow.

Lemma 4.48 (Parikh’s Theorem, Special Case). Let T be a polynomially

bounded theory and A(y, ~x, ~X) be a bounded formula with all free variables
indicated. Assume

T |= ∃yA(y, ~x, ~X). (4.68)

Then there exists an L2
A-term t(~x, ~X) with no variables other than ~x, ~X s.t.

T |= ∃y ≤ t(~x, ~X)A(y, ~x, ~X).

Proof. Let Φ be the set of all axioms of T, closed under substitution of terms
for free variables. Note that Φ ⊆ T and Φ is also an axiomatisation of T.
From the anchored completeness theorem 3.24, we conclude that the sequent
` ∃yA(y,~a, ~M) i has an anchored LK2-Φ proof Π ii. Π features the subformula

iHere, the bound variables have been replaced by free variables according to our variable
convention on page 21.

iiNote that ∃yA(y,~a, ~M) is a logical consequence of (4.68) and theories are closed under
logical consequence.
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property (lemma 3.26) and by lemma 4.41 we can assume that Π is in free
variable normal form by adding the axiom |∅| = 0 to Φ if the language of T
does not contain a set constant symbol. Since T is polynomially bounded, all
axioms in Φ are bounded formulas. Hence, by the subformula property, every
formula in every sequent in Π is either bounded or is equal (syntactically)

to ∃yA(y,~a, ~M). Additionally, ∃yA(y,~a, ~M) cannot occur in an antecedent.
The reason is the following: If some antecedent contained this formula, then
it would have been eliminated somewhere along Π by either the cut or the ¬-
right rule. The former case is not possible since cuts are restricted to bounded
formulas (i.e. Φ) and in the latter case, a formula ¬∃yA(y,~a, ~M) would occur
in Π which contradicts the subformula property. We will now convert Π to
an LK2-Φ proof Π̂ of ∃y ≤ t′(~a, ~M)A(y,~a, ~M) for some number term t′(~a, ~M)

with no variables other than ~a, ~M . Then T |= ∃y ≤ t′(~a, ~M)A(y, ~x, ~X)
follows from the completeness theorem. It then follows from lemma 4.47
and transitivity (lemma 4.15 (10)) that there exits an L2

A-term t(~a, ~M) s.t.

T |= ∃y ≤ t(~a, ~M)A(y, ~x, ~X). However, the case where the extra constant

symbol ∅ was added needs special care. In this case t(~a, ~M, |∅|) may contain
|∅| i. But since then Φ contains |∅| = 0, we can conclude that Φ |= ∃y ≤
t(~a, ~M, 0)A(y, ~x, ~X) and hence T |= ∃y ≤ t(~a, ~M, 0)A(y, ~x, ~X) since T ∪
{|∅| = 0} is a conservative extension of T (lemma 4.43).

The procedure that converts Π is defined inductively on the depth of a
sequent S in Π. It replaces every sequent S in Π by a suitable sequent Ŝ,
sometimes adding a short derivation. We give an exact definition of the
procedure and make clear that the following claim holds:

For every sequent S of Π: If S does not contain ∃yA(y,~a, ~M), then Ŝ = S.
Otherwise Ŝ is the same as S with the exception that all occurrences of
∃yA(y,~a, ~M) are replaced by one single occurrence of ∃y ≤ tA(y,~a, ~M), for
some number term t that does only contain variables which occur free in S.

Note that the cases where S does not contain ∃yA(y,~a, ~M) are trivial (just
let Ŝ = S). For convenience, we treat all cedents as multisets and ignore the
order of the formulas. It will be clear that this is not a restriction since we
only ignore finitely many applications of the exchange rules of LK2.

Base case: If S is an axiom, then it does not contain ∃yA(y,~a, ~M) (since
all non-logical axioms are bounded).

Case I: S is obtained by the inference

Γ ` ∆ (weakening-right)
Γ ` ∆,∃yA(y,~a, ~M)

iNote that ∅ cannot occur in ∃yA(y, ~x, ~X) because T does not contain ∅.
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where S is the bottom sequent. Let S1 denote the top sequent of this infer-
ence. If ∆ does not contain ∃yA(y,~a, ~M), then simply let Ŝ = Γ ` ∆,∃y ≤
0A(y,~a, ~M). If ∆ contains ∃yA(y,~a, ~M), then apply the induction hypothesis
and let Ŝ = Ŝ1.

Case II: S is obtained using the ∃-right rule on the formula A(s,~a, ~M)
for some number term s. Hence S is the bottom sequent in the inference

Γ ` ∆, A(s,~a, ~M)

Γ ` ∆,∃yA(y,~a, ~M)

We distinguish two cases: Either ∆ contains ∃yA(y,~a, ~M) or not. If ∆ does

not contain ∃yA(y,~a, ~M), then it follows from lemma 4.7 (5) that there is an
LK2-Φ proof of ` s ≤ s. We can replace S with the derivation

` s ≤ s

Γ ` ∆, s ≤ s Γ ` ∆, A(s,~a, ~M)

Γ ` ∆, s ≤ s ∧ A(s,~a, ~M)

Γ ` ∆,∃y ≤ sA(y,~a, ~M)

where Ŝ is the bottom sequent. Note that if s contains free variables, then
they still occur in the original sequent S since Π is in free variable normal
form and therefore no free variable is eliminated by the ∃-right rule.

If ∆ contains one or more occurrences of ∃yA(y,~a, ~M), then, by the in-

duction hypothesis, the (modified) sequent Γ ` ∆, A(s,~a, ~M) has the form

Γ ` ∆′,∃y ≤ tA(y,~a, ~M), A(s,~a, ~M) (4.69)

As in the above case, we can derive a sequent

Γ ` ∆′,∃y ≤ tA(y,~a, ~M),∃y ≤ sA(y,~a, ~M) (4.70)

From the axiom B8 and lemma 4.15 (3) it follows that T |= s ≤ s + t and
T |= t ≤ s+ t. Then, by transitivity of ≤ (lemma 4.15 (10)), we have

T |= ∃y ≤ sA(y,~a, ~M)→ ∃y ≤ (s+ t)A(y,~a, ~M),

T |= ∃y ≤ tA(y,~a, ~M)→ ∃y ≤ (s+ t)A(y,~a, ~M)

and by completeness there are LK2-Φ proofs of the sequents

∃y ≤ sA(y,~a, ~M) ` ∃y ≤ (s+ t)A(y,~a, ~M), (4.71)

∃y ≤ tA(y,~a, ~M) ` ∃y ≤ (s+ t)A(y,~a, ~M) (4.72)
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Using the weakening rule on (4.70), (4.71) and (4.72) allows us to apply the
cut rule twice to obtain the sequent Ŝ

Γ ` ∆′,∃y ≤ (s+ t)A(y,~a, ~M) (4.73)

Again, the variables of s occur in the original sequent (4.69). The same holds
for t (by induction hypothesis).

If S is obtained using the ∃-right rule on a formula B(s′), different from

A(s,~a, ~M), then S is the bottom sequent of the inference

Γ ` ∆, s′ ≤ rB(s′)

Γ ` ∆,∃y ≤ rB(y)

In this case no problems arise. We can just apply the induction hypothesis
to the top sequent and then apply the ∃-right rule.

Case II′: S is obtained using the set ∃-right rule on a formula B(S).
Then S is the bottom sequent of the inference

Γ ` ∆, S ≤ rB(S)

Γ ` ∆,∃Y ≤ rB(Y )

This case poses no problems and we can just apply the induction hypothesis
to the top sequent and then apply the set ∃-right rule (as above).

Case III: S is obtained by the ∃-left rule. In this case, the ∃ quantifier
introduced is bounded because ∃yA(y,~a, ~M) is the only unbounded formula
in Π and it never occurs in an antecedent (cf. discussion above). Thus S is
the bottom sequent of an inference

b ≤ r ∧B(b),Γ ` ∆
(∃-left)

∃x ≤ rB(x),Γ ` ∆

If ∆ does not contain ∃yA(y,~a, ~M), then nothing needs to be done, i.e. let

Ŝ = S. The case where ∆ contains ∃yA(y,~a, ~M), however, requires special
care. By the induction hypothesis, the top sequent was converted to

b ≤ r ∧B(b),Γ ` ∆′,∃y ≤ s(b)A(y,~a, ~M) (4.74)

But here, the eigenvariable b possibly occurs in the introduced term s(b).
Therefore the restriction of the ∃-left rule might be violated. In order to
apply the ∃-left rule to (4.74) we need to replace s(b) by a term that does
not contain b and whose variables occur free in S. Here we use the fact that
the functions of T are polynomially bounded. By lemma 4.47, there are L2

A-
terms r′ and s′(b) (with the same variables as r and s(b), respectively) s.t.
T |= r ≤ r′ and T |= s(b) ≤ s′(b). Note that all variables except b in s(b)
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occur free in S by induction hypothesis and that r (and thus r′) does not
contain b because of the eigenvariable restriction. We now show that s′(r′)
is the term we are looking for. We first establish

T |= b ≤ r → s(b) ≤ s′(r′). (4.75)

Let M be a model of T and σ an arbitrary assignment. Assume M[σ] |=
b ≤ r. Then M[σ] |= b ≤ r′ (lemma 4.15 (10)). Lemma 4.46 implies
M[σ] |= s′(b) ≤ s′(r′) and it follows again from lemma 4.15 (10) thatM[σ] |=
s(b) ≤ s′(r′). Therefore (4.75) holds. It is easy to check (using again lemma
4.15 (10)) that the following holds

T |= b ≤ r ∧ ∃y ≤ s(b)A(y,~a, ~M)→ ∃y ≤ s′(r′)A(y,~a, ~M)

and therefore (by the completeness theorem) the following sequent has an
LK2-Φ proof

b ≤ r,∃y ≤ s(b)A(y,~a, ~M) ` ∃y ≤ s′(r′)A(y,~a, ~M). (4.76)

With structural rules and ∧-left we obtain

b ≤ r ∧B(b),Γ, ∃y ≤ s(b)A(y,~a, ~M) ` ∆′,∃y ≤ s′(r′)A(y,~a, ~M). (4.77)

Now we can apply the cut rulei with cut formula ∃y ≤ s(b)A(y,~a, ~M) on
(4.74) and (4.77) and obtain the sequent

b ≤ r ∧B(b),Γ ` ∆′,∃y ≤ s′(r′)A(y,~a, ~M) (4.78)

Since s′(r′) does not contain b we can now apply the ∃-left rule to obtain the
sequent Ŝ

∃x ≤ rB(x),Γ ` ∆′,∃y ≤ s′(r′)A(y,~a, ~M)

Case III′: S is obtained by the set ∃-left rule. In this case, the ∃
quantifier introduced is again bounded and S is the bottom sequent of an
inference

M ≤ r ∧B(M),Γ ` ∆

∃X ≤ rB(X),Γ ` ∆

We proceed exactly as in case III with the eigenvariable b replaced by M .
Case IV: S is obtained by the ∀-right rule. In this case, the ∀ quantifier

introduced is bounded (see case III). Thus S is the bottom sequent of an
inference

iNote that this application of the cut rule needs not be anchored.
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Γ ` ∆, b ≤ r → B(b)
(∀-right)

Γ ` ∆,∀x ≤ rB(x)

If ∆ does not contain ∃yA(y,~a, ~M), then let Ŝ = S. The case where ∆

contains ∃yA(y,~a, ~M) requires again special care because the eigenvariable
restriction might be violated. In this case, by the induction hypothesis, the
top sequent was converted to

Γ ` ∆′,∃y ≤ s(b)A(y,~a, ~M), b ≤ r → B(b) (4.79)

In order to apply the ∀-right rule to (4.79) we need to replace s(b) by a term
that does not contain b and whose variables occur free in S. We proceed as
in case III to obtain an LK2-Φ proof of the sequent (cf. (4.76))

b ≤ r,∃y ≤ s(b)A(y,~a, ~M) ` ∃y ≤ s′(r′)A(y,~a, ~M). (4.80)

Using the ¬-right rule together with weakenings and an application of the
∨-right rule (recall that ¬b ≤ r ∨B(b) ≡ b ≤ r → B(b)) we obtain

Γ,∃y ≤ s(b)A(y,~a, ~M) ` ∆′,∃y ≤ s′(r′)A(y,~a, ~M), b ≤ r → B(b) (4.81)

Now we can apply the cut rule with cut formula ∃y ≤ s(b)A(y,~a, ~M) on
(4.81) and (4.79) and obtain the sequent

Γ ` ∆′,∃y ≤ s′(r′)A(y,~a, ~M), b ≤ r → B(b) (4.82)

Since s′(r′) does not contain b we can now apply the ∀-right rule to obtain
the sequent Ŝ

Γ ` ∆′,∃y ≤ s′(r′)A(y,~a, ~M), ∀x ≤ rB(x).

Case IV′: S is obtained by the set ∀-right rule. In this case, S is the
bottom sequent of an inference

Γ ` ∆,M ≤ r → B(M)
(∀-right)

Γ ` ∆,∀X ≤ rB(X)

We proceed exactly as in case IV with the eigenvariable b replaced by M .
Case V: S is obtained by a rule with two premises, i.e. ∧-right, ∨-left

or cut. Note that in all cases, the formula ∃yA(y,~a, ~M) can only occur in
the context ∆ (cf. discussion above). Here, the following problem arises:
The contexts (i.e. ∆) of the two premises might have been converted to

∆′,∃y ≤ t1A(y,~a, ~M) and ∆′, ∃y ≤ t2A(y,~a, ~M) with t1 6≡ t2. In this case
we can proceed as in case II to convert the two premises such that ∆ has the
form ∆′,∃y ≤ (t1 + t2)A(y,~a, ~M).

Case VI: S is obtained by the inference
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Γ ` ∆,∃yA(y,~a, ~M),∃yA(y,~a, ~M)
(contraction-right)

Γ ` ∆,∃yA(y,~a, ~M)

Let S1 denote the top sequent of this inference. In this case we apply the
induction hypothesis and set Ŝ = Ŝ1.

Case VII: In all remaining cases (especially the ∀-left rules) we can apply
the induction hypothesis to the top sequent and then apply the corresponding
rule again.

Theorem 4.49 (Parikh’s Theorem). Let T be a polynomially bounded the-

ory and A(~x, ~y, ~X, ~Y ) be a bounded formula with all free variables indicated.
Assume

T |= ∃~y∃~Y A(~x, ~y, ~X, ~Y ). (4.83)

Then there exists an L2
A-number term t(~x, ~X) with no variables other than

~x, ~X s.t.
T |= ∃~y ≤ t(~x, ~X) ∃~Y ≤ t(~x, ~X) A(~x, ~y, ~X, ~Y ). (4.84)

Proof of Parikh’s Theorem from Lemma 4.48. Let M be a model of T and
σ an arbitrary assignment. By the assumption (4.83) we have

M[σ] |= ∃~y∃~Y A(~x, ~y, ~X, ~Y ). (4.85)

From axiom B8 and lemma 4.15 it follows that for all i = 1, . . . , n and for
all j = 1, . . . ,m

M[σ] |= yi ≤ y1 + · · ·+ yn + |Y1|+ · · ·+ |Ym|
M[σ] |= |Yj| ≤ y1 + · · ·+ yn + |Y1|+ · · ·+ |Ym|

(4.86)

and thereforei

M[σ] |= ∃z∃~y ≤ z∃~Y ≤ zA(~x, ~y, ~X, ~Y ). (4.87)

Since ∃~y ≤ z∃~Y ≤ zA(~x, ~y, ~X, ~Y ) is a bounded formula we can now apply
lemma 4.48 and obtain

M[σ] |= ∃z ≤ t(~x, ~X)∃~y ≤ z∃~Y ≤ zA(~x, ~y, ~X, ~Y ). (4.88)

for some L2
A-number term t(~x, ~X) with all variables indicated. By transitivity

(lemma 4.15 (10)) we obtain

M[σ] |= ∃~y ≤ t(~x, ~X)∃~Y ≤ t(~x, ~X)A(~x, ~y, ~X, ~Y ). (4.89)

Therefore T |= ∃~y ≤ t(~x, ~X)∃~Y ≤ t(~x, ~X)A(~x, ~y, ~X, ~Y ) and we are done.

iby mapping “z” to (y1 + · · ·+ yn + |Y1|+ · · ·+ |Ym|)M[σ]
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4.6 Properties of V1

In this section we present some definitions and results that are needed to
prove the lower and the upper bound of V1 in the following sections.

4.6.1 Set Arrays and Sequence Numbers

For the prove of the next lemma we need the notion of maximum nesting
depth.

Definition 4.50 (Maximum Nesting Depth ]). Let F be a set of function
symbols. The maximum nesting depth ]F t of a term t with respect to F is
defined as follows

]Fx = 0, ]FX = 0,

]Ff(t1, . . . , Tn) =

{
max(]F t1, . . . , ]FTn) if f 6∈ F
max(]F t1, . . . , ]FTn) + 1 if f ∈ F ,

]FF (t1, . . . , Tn) =

{
max(]F t1, . . . , ]FTn) if F 6∈ F
max(]F t1, . . . , ]FTn) + 1 if F ∈ F .

The maximum nesting depth ]FA of a formula A with respect to F is defined
as follows

]FP (t1, . . . , Tn) = max(]F t1, . . . , ]FTn),

]F(A⊗B) = max(]FA, ]FB),

]F∃xA = ]F∃XA = ]F∀xA = ]F∀XA = ]FA

The next lemma shows that we can add a ΣB
0 (L2

A)-bit-defining axiom
to a polynomially bounded theory, and then, for every ΣB

0 (L)-formula over
the resulting language L, the resulting theory contains a provably equivalent
ΣB

0 (L2
A)-formula. It will later follow from lemma 4.72 that the resulting

theory is even a conservative extension.

Remark 4.51. Note that theorem 4.76 in section 4.6.3 only guarantees that
the equivalent formula is ΣB

1 .

Lemma 4.52 (ΣB
0 -Transformation Lemma). Let T be a polynomially bounded

theory and let L be its language. Assume that L has the same predicate sym-
bols as L2

A. Further, assume that for every number function f in L, T con-
tains a ΣB

0 (L2
A)-defining axiom for f , and for every set function F in L, T

contains a ΣB
0 (L2

A)-bit-defining axiom for F . Then for every ΣB
0 (L)-formula

A+ there is a ΣB
0 (L2

A)-formula A s.t.

T |= A+ ↔ A (4.90)

62



Proof. The proof is by induction on the maximum nesting depth ]L\L2
A
A+ of

A+ w.r.t to function symbols in L \ L2
A. If ]L\L2

A
A+ = 0, then A+ is already

a ΣB
0 (L2

A)-formula and there is nothing to prove.
For the induction step it is enough to consider atomic formulas. By

assumption, we have to consider the predicate symbols of L2
A: ∈,≤,=. We

show the case of ∈. The other cases are similar. We first assume that A+

has the form F (~t, ~T )(s). By assumption, T contains a bit-defining axiom

F (~x, ~X)(i)↔ i < r(~x, ~X) ∧ AF (i, ~x, ~X)

for F , where r(~x, ~X) is an L2
A-term and AF (i, ~X, ~X) is a ΣB

0 (L2
A)-formula.

Hence
T |= A+ ↔ s < r(~t, ~T ) ∧ AF (s,~t, ~T ) (4.91)

Note that in the RHS of (4.91) the terms ~T can only occur in the form |~T |.
Hence, when we consider only the function symbols not in L2

A, every atomic
subformula of the RHS is of the form B(~s′) where B(~x) is an atomic L2

A-
formula. Let n be the arity of ~s′. Hence, for all i = 1, . . . , n, the term s′i
is either of the form f(~t, ~T ) or |G(~t, ~T )| for f,G ∈ L \ L2

A. In both cases it
follows either from the defining axiom of f or from lemma 4.53 below and
from the fact that T is polynomially bounded (cf. definition 4.45) that there

exists a ΣB
0 (L2

A)-formula Ci(z, ~x, ~X) and an L2
A-term r′i(~x, ~X) s.t.

T |= z = s′i ↔ z ≤ r′i(~t, ~T ) ∧ Ci(z,~t, ~T )

Therefore

T |= B(~s′)↔ ∃z1 ≤ r′1(~t, ~T ) . . . ∃zn ≤ r′n(~t, ~T )B(z1, . . . , zn)∧
∧

i=1,...,n

Ci(zi,~t, ~T )

(4.92)
Note that the maximum nesting depth of the RHS of (4.92) is strictly smaller
than of A+. Therefore we can apply the induction hypothesis to obtain a
(provably) equivalent ΣB

0 (L2
A)-formula for every atomic subformula of the

RHS of (4.91). It is easy to check that this gives us a ΣB
0 (L2

A)-formula that
is provably equivalent to A+.

Now assume that A+ has the form X(s). When we consider only the
function symbols not in L2

A, then, as above, we can write A+ as A+(~s′) where

every term s′i is either of the form f(~t, ~T ) or |G(~t, ~T )|, for f,G ∈ L \L2
A. By

the same argument as above we have

T |= z = s′i ↔ z ≤ ri(~t, ~T ) ∧ Ci(z,~t, ~T )

for some ΣB
0 (L2

A)-formula Ci(z, ~x, ~X) and an L2
A-term ri(~x, ~X). Then T

proves the corresponding formula of the form (4.92) and we can apply the
induction hypothesis.
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Lemma 4.53 (Auxiliary Lemma for Lemma 4.52). Assume that a theory
T ⊇ V0 contains the ΣB

0 (L2
A)-bit-defining axiom

F (~x, ~X)(i)↔ i < t(~x, ~X) ∧ A(i, ~x, ~X) (4.93)

for a set function F . Then there exists a ΣB
0 (L2

A)-formula B(z, ~x, ~x) s.t.

T |= z = |F (~x, ~X)| ↔ B(z, ~x, ~X)

Proof. It follows from the axioms of V0 and corollary 4.44 (which shows that
the empty set is unique) that

T |= z = |F (~x, ~X)| ↔ ∃x < z
((
x+ 1 = z ∧ F (~x, ~X)(x)

)
∨ z = 0

)
By replacing F (~x, ~X)(x) with the RHS of (4.93) we obtain what we want.

Note that it follows from lemma 4.52 that if we extend V1 by ΣB
0 -

defining axioms and ΣB
0 -bit-defining axioms, then the resulting theory V1(L)

also proves ΣB
1 (L)-COMP and ΣB

1 (L)-IND, where L is the resulting lan-
guage. This is due to the fact that by lemma 4.52, all ΣB

0 (L)-subformulas of
ΣB

1 (L)-COMP and ΣB
1 (L)-IND have provably equivalent ΣB

0 (L2
A)-formulas

in V1(L).
It will be useful to be able to encode multiple numbers into one number.

In order to do this we need a pairing function. Since this function needs not
be bijective (only injective) we can use a function that is simpler than the
well-known pairing function of Cantor.

Definition 4.54 (Pairing Function). For number terms s, t we define

〈s, t〉 ≡def (s+ t)× (s+ t+ 1) + 2× t

Of course we can encode arbitrary n-tuples by defining 〈s1, . . . , sn〉 ≡def

〈〈s1, . . . , sn−1〉, sn〉. The pairing function is injective (in V0 and also in I∆0),
but the proof thereof is cumbersome and we omit it.

Lemma 4.55. V0 proves that the pairing function is injective, i.e.i

V0 |= 〈x1, y1〉 = 〈x2, y2〉 ↔ (x1 = x2 ∧ y1 = y2)

Corollary 4.56.

V0 |= 〈x1, . . . , xn〉 = 〈y1, . . . , yn〉 ↔ (x1 = y1 ∧ · · · ∧ xn = yn)

iNote that the direction ← trivially holds because of the requirement that = is inter-
preted as the equality relation.
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Proof. By induction on n. By lemma 4.55 we have

V0 |= 〈〈x1, . . . , xn−1〉, xn〉 = 〈〈y1, . . . , yn−1〉, yn〉 ↔
(〈x1, . . . , xn−1〉 = 〈y1, . . . , yn−1〉 ∧ xn = yn)

By the induction hypothesis we have

V0 |= 〈〈x1, . . . , xn−1〉, xn〉 = 〈〈y1, . . . , yn−1〉, yn〉 ↔
(x1 = y1 ∧ · · · ∧ xn−1 = yn−1 ∧ xn = yn)

and are done.

Lemma 4.57 (Strict Monotonicity of 〈x, y〉).

V0 |= (x1 < y1 ∧ · · · ∧ xn < yn)→ 〈x1, . . . , xn〉 < 〈y1, . . . , yn〉

Proof. It follows from the monotonicity of L2
A-terms (lemma 4.46) that

V0 |= (x1 ≤ y1 ∧ · · · ∧ xn ≤ yn)→ 〈x1, . . . , xn〉 ≤ 〈y1, . . . , yn〉

Then the lemma follows from corollary 4.56 (contraposition of direction →).

We now show that V0 contains the comprehension axioms (definition 4.3)
also for more than one variable, a result we will use later.

Definition 4.58 (Φ-MULTICOMP). Let Φ be a set of formulas. Then
Φ-MULTICOMP is the set of all formulas of the form

∃X ≤ 〈y1, . . . , yn〉∀z1 < y1 . . . ∀zn < yn

(
X(〈z1, . . . , zn〉)↔ A(z1, . . . , zn)

)
where n ≥ 2, A(z1, . . . , zn) ∈ Φ and X does not occur free in A(z1, . . . , zn).

Lemma 4.59 (Multiple Comprehension). Let T ⊇ V0 be a theory, L its lan-
guage and assume T |= ΣB

0 (L)-COMP. Then T |= ΣB
0 (L)-MULTICOMP.

Proof. We show the case n = 2 and it will be clear that the same proof works
for all n ≥ 2. I.e. we have to show

T |= ∃X ≤ 〈y1, y2〉∀z1 < y1∀z2 < y2

(
X(〈z1, z2〉)↔ A(z1, z2)

)
. (4.94)

By ΣB
0 -COMP we have

T |= ∃X ≤ 〈y1, y2〉∀z < 〈y1, y2〉(
X(z)↔ ∃v1 < z∃v2 < z

(
z = 〈v1, v2〉 ∧ A(v1, v2)

)) (4.95)
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Let M be a model of T and let σ be an arbitrary assignment. By (4.95) we
have for some X

M[σ(X/X)] |= |X| ≤ 〈y1, y2〉 ∧ ∀z < 〈y1, y2〉(
X(z)↔ ∃v1 < z∃v2 < z

(
z = 〈v1, v2〉 ∧ A(v1, v2)

)) (4.96)

We want to show that

M[σ(X/X)] |= ∀z1 < y1∀z2 < y2

(
X(〈z1, z2〉)↔ A(z1, z2)

)
(4.97)

i.e. for arbitrary z1, z2

M[σ(X/X)(z1/z1)(z2/z2)] |=

z1 < y1 →
(
z2 < y2 →

(
X(〈z1, z2〉)↔ A(z1, z2)

)︸ ︷︷ ︸
(∗)

)
(4.98)

So assume M[σ(X/X)(z1/z1)(z2/z2) |= z1 < y1 ∧ z2 < y2. We have to show
that (∗) holds in this M[σ(. . . )]. By lemma 4.57, M[σ(. . . )] |= 〈z1, z2〉 <
〈y1, y2〉 and therefore by (4.96)

M[σ(. . . )] |= X(〈z1, z2〉)↔

∃v1 < 〈z1, z2〉∃v2 < 〈z1, z2〉
(
〈z1, z2〉 = 〈v1, v2〉 ∧ A(v1, v2)

)) (4.99)

Because =M is the true equality relation it follows that (∗) holds inM[σ(. . . )].
Therefore (4.97) holds and (4.94) as well.

Since the above pairing function (definition 4.54) encodes a finite set of
numbers (actually a finite sequence of numbers) as one number, a set X
can be viewed as an “array” of sets of natural numbers. And therefore the
encoding w(X) encodes an array of binary strings (cf. section 4.4). Now we
can use the above concepts to define a function row(i,X) that returns row
i of the “array” X. Intuitively, row(i,X) contains a number z iff the pair
〈i, z〉 is in the set X.

Definition 4.60. The function row(i,X) has the ΣB
0 -bit-defining axiom

row(i,X)(z)↔ z < |X| ∧X(〈i, z〉)

We often write X[i] instead of row(i,X). T(row) is the extension of T
obtained by adding the above axiom to T.

Corollary 4.61. row is in FAC0.

Proof. By corollary 4.36.
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Notation Let T be a theory and let F be a list of functions that are defin-
able in T or bit-definable. Then T(F) denotes the theory that is obtained by
adding to T the defining axioms or the bit-defining axioms for the function
symbols in F .

The following lemma shows that in V0(row), for any n sets X1, . . . , Xn there
exists a set Y (an “array”) that encodes X1, . . . , Xn.

Lemma 4.62.

V0(row) |= ∃Y ≤ 〈n, |X1|+ · · ·+ |Xn|〉
(
X1 = Y [0] ∧ · · · ∧Xn = Y [n− 1]

)
Proof. By lemma 4.52 and lemma 4.59,

V0(row) |= ΣB
1 (row)-MULTICOMP

and hence

V0(row) |= ∃Y ≤ 〈n, |X1|+ · · ·+ |Xn|〉 ∀x < n∀y < |X1|+ · · ·+ |Xn|(
Y (〈x, y〉)↔

(
x = 0 ∧X1(y)

)
∨ · · · ∨

(
x = n− 1 ∧Xn(y)

))
Then the lemma follows from definition 4.60, the fact that V0 proves the
formula x < y → x < y + z (lemma 4.15) and the axiom SE.

With the help of the row function, multiple existential set quantifiers can
be collapsed into a single one, as the next lemma shows.

Definition 4.63 (single ΣB
1 -formula). A ΣB

1 -formula of the form ∃X ≤
tA(X), where A(X) ∈ ΣB

0 , is called a single ΣB
1 -formula.

Lemma 4.64. Let T ⊇ V0(row) be a polynomially bounded theory over a
language L. Then for every ΣB

1 (L)-formula A there is a single ΣB
1 (L)-formula

A′ s.t. T |= A↔ A′.

Proof. By assumption, A has the form

∃X1 ≤ t1 . . . ∃Xn ≤ tnB(X1, . . . , Xn)

where B(X1, . . . , Xn) ∈ ΣB
0 (L). Consider the single ΣB

1 (L)-formula

A′ ≡ ∃Z ≤ 〈n, t1 + · · ·+ tn〉(
|Z[0]| ≤ t1 ∧ · · · ∧ |Z[n− 1]| ≤ tn ∧B(Z[0], . . . , Z[n− 1])

)
We have to show that T |= A↔ A′. The direction A′ → A is logically valid
and the direction A → A′ follows from lemma 4.62 and the monotonicity of
L2
A-terms (lemma 4.46).
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We use a similar idea to let a set X encode a sequence x0, . . . , xn of
numbersi and we define the function seq to extract an xi. Intuitively, seq(i,X)
returns the smallest number of X[i], or |X| if X[i] is empty.

Definition 4.65. The function seq(i,X) has the defining axiom

y = seq(i,X)↔
(
y < |X| ∧X(〈i, y〉) ∧ ∀z < y¬X(〈i, z〉)

)
∨(

∀z < |X|¬X(〈i, z〉) ∧ y = |X|
)

We often write X [i] instead of seq(i,X).

Since seq has a ΣB
0 -defining axiom, it follows from lemma 4.36 that seq ∈

FAC0. Later, it follows from lemma 4.78 that the function seq is ΣB
0 -definable

in V0.

4.6.2 The Replacement Scheme

In section 4.8 we need the fact that any formula of the form

∀x ≤ t1∃X ≤ t2A(x,X) (4.100)

where A(x,X) is ΣB
0 , is provably equivalent in V0 to a ΣB

1 -formula. In-
formally, the idea is to use the function row introduced in section 4.6.1 to
encode the finitely many values of X for every x ≤ t1 by a set array Z.
To characterise formulas of the form (4.100) we introduce the new formula
classes eΣ

B
i and eΠ

B
i (the e stands for “extended”).

Definition 4.66 (eΣ
B
i and eΠ

B
i ). Let L ⊇ L2

A. Then

eΣ
B
0 (L) = eΠ

B
0 (L) = ΣB

0 (L).

For i ≥ 0, eΣ
B
i+1(L) is eΠ

B
i (L), closed under ∨,∧,∀x ≤ t, ∃x ≤ t and ∃X ≤ t.

eΠ
B
i+1(L) is eΣ

B
i (L), closed under ∨,∧, ∀x ≤ t,∃x ≤ t and ∀X ≤ t.

Definition 4.67 (Replacement Scheme). Let Φ be a set of L-formulas. The
replacement scheme Φ-REPL is the set of all L∪{row}-formulas of the form

∀x ≤ b∃X ≤ c A(x,X) → ∃Z ≤ 〈b, c〉∀x ≤ b
(∣∣Z[x]

∣∣ ≤ c ∧ A(x, Z[x])
)

(4.101)
where A(x,X) ∈ Φ.

We first show that the right to left direction of (4.101) is a valid formula.

iNote that it is not sufficient to “sort” X since X is not a multiset.
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Lemma 4.68. Let BL be the LHS and BR be the RHS of (4.101). Then the
formula BR → BL is valid.

Proof. Note that the above statement is stronger than BR ⇒ BL (cf. defi-
nition 2.5 of logical consequence). We have to show that for every structure
M and for every assignment σ, ifM[σ] |= BR, thenM[σ] |= BL. So assume
M[σ] |= BR. Then there is a Z s.t. for all x we have

M[σ(Z/Z)(x/x)] |= x ≤ b→
∣∣Z[x]

∣∣ ≤ c ∧ A(x, Z[x])

Let Z′ denote the element M|Z[x]|[σ]. Then it is obvious that Z′ satisfies the
existential set quantifier in BL.

We want to show that V1 and the theory Ṽ1 that we will introduce in
section 4.8 prove ΣB

1 -REPL.

Lemma 4.69. Let T ⊇ V0 be a polynomially bounded theory over a language
L. Assume that T |= ΣB

i+1(L)-IND, for some i ≥ 0. Then T(row) |=
ΣB

i+1(L)-REPL.

Proof sketch. We first prove that T proves ΠB
i (L)-REPL and we first show

the case where i = 0. Let A(x,X) be a ΠB
0 (L)-formula, i.e. a ΣB

0 (L)-formula.
Let M |= T(row) and let σ be an arbitrary assignment. Assume that the
LHS of the replacement scheme (4.101) holds in M[σ], i.e.

M[σ] |= ∀x ≤ b∃X ≤ c A(x,X). (4.102)

Then we have to show that

M[σ] |= ∃Z ≤ 〈b, c〉∀x ≤ b
(∣∣Z[x]

∣∣ ≤ c ∧ A(x, Z[x])
)

(4.103)

(4.103) is a ΣB
1 (L)-formula. Therefore we can apply ΣB

1 (L)-IND. We show

M[σ] |= z ≤ b→ ∃Z ≤ 〈z, c〉∀x ≤ z
(∣∣Z[x]

∣∣ ≤ c ∧ A(x, Z[x])
)

(4.104)

Let B(z) be the formula in (4.104). M[σ] |= B(0) follows from (4.102) (for
“x = 0”). Then M[σ] |= B(z + 1) follows from the induction hypothesis
M[σ] |= B(z), (4.102) and ΣB

0 -COMP.
For i ≥ 0, let A(x,X) be a ΠB

i (L)-formula. Then (4.103) is not a ΣB
i+1(L)-

formula. But, according to lemma 4.23, it is equivalent to

∃Z ≤ 〈b, c〉∀Y ≤ b
(∣∣Z[|Y |]

∣∣ ≤ c ∧ A(|Y |, Z[|Y |])
)

(4.105)

which is equivalent to a ΣB
i+1(L)-formula and hence we can proceed by in-

duction as in the case of i = 0. Hence T(row) |= ΠB
i (L)-REPL. It then

follows that T(row) also proves ΣB
i+(L)-REPL. For details, see [6].
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Now we can prove the lemma that allows us to eliminate formulas of
the form (4.100). Recall (definition 4.63) that a single ΣB

1 -formula is a ΣB
1 -

formula with one single (bounded) existential set quantifier.

Lemma 4.70. Let T be a polynomially bounded theory over a language L
with T(row) |= ΣB

0 (L)-REPL. Then for every eΣ
B
1 (L)-formula A there is a

single ΣB
1 (L)-formula A′ s.t. T |= A↔ A′.

Proof. We prove the lemma by structural induction (cf. definition 4.66) on
the eΣ

B
1 (L)-formula A. The base case is trivial because then A is a ΣB

0 (L)-
formula and obviously T |= A ↔ ∃X ≤ tA, for some X not occurring in A.
For the induction step, the only interesting case is A ≡ ∀x ≤ tB(x), where
B(x) is a eΣ

B
1 (L)-formula. By the induction hypothesis, B(x) is equivalent

in T to a single ΣB
1 (L)-formula ∃X ≤ t′B′(x,X), where B′(x,X) ∈ ΣB

0 (L),
hence

T |= A↔ ∀x ≤ t∃X ≤ t′B′(x,X). (4.106)

From T(row) |= ΣB
0 (L)-REPL and lemma 4.68 it follows that the RHS of

(4.106) is equivalent in T(row) to a single ΣB
1 (L ∪ {row})-formula A′. And

by the ΣB
0 -Transformation lemma 4.52, there exists a provably equivalent

(in T(row)) formula A′′ without occurrences of the row function (i.e. we
eliminate row in every atomic subformula of A′). It follows that T(row) |=
A ↔ A′′ and since T(row) is a conservative extension of T by lemma 4.72
belowi, we also have T |= A↔ A′′.

Then the other cases are easily proved with the help of lemma 4.64 which
allows us to collapse several bounded set quantifiers into a single one.

Corollary 4.71. For every eΣ
B
1 -formula A, there is a single ΣB

1 -formula A′

s.t. V1 |= A↔ A′.

4.6.3 Conservative Extensions and Transformations

The following lemma shows that adding definable predicates and functions
to an existing theory results in a conservative extension of that theory.

Lemma 4.72 (Extension by Definition). Assume that T1 results from T2

by adding to T1 the defining axioms of Φ-definable predicates and functions,
for some Φ. Then T2 is a conservative extension of T1.

Proof. Let A be a formula in the language of T1 and assume that T2 |= A.
LetM be a model of T1. We extendM by interpreting the “new” predicate

iNote that row ∈ FAC0 by corollary 4.61. It will follow from lemma 4.78 that all FAC0

functions are ΣB
0 -definable in V0.
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and function symbols such that the corresponding defining axioms hold in
M. This interpretation is uniquely determined by the defining axioms and
the totality condition (in the case of functions). Let M′ be the obtained
model. Then M′ is a model of T2, hence M′ |= A. Since M is identical to
M′ with the exception of the new symbols, we also have M |= A. Because
M is an arbitrary model of T1, we have T1 |= A.

It is important to note, however, that extending a theory T by adding
a bit-definable set function together with its bit-defining axiom does not in
general lead to a conservative extension of T. However, the following lemma
holds. Recall definition 4.32 about polynomially bounded functions.

Definition 4.73 (ΣB
0 -Closure). Let Φ be a set of formulas over L ⊇ L2

A.
Then ΣB

0 (Φ) is the closure of Φ under the operations ¬,∨,∧ and bounded
number quantification. That is, if A,B ∈ ΣB

0 (Φ) and t is an L2
A-term not

containing x, then the following formulas are also in ΣB
0 (Φ): ¬A, (A∨B), (A∧

B),∀x ≤ tA, ∃x ≤ tA.

Note that ΣB
0 (ΣB

0 ) = ΣB
0 but ΣB

0 (ΣB
1 ) 6= ΣB

1 . We will use the next lemma
when we prove in lemma 4.78 that the FAC0 functions are ΣB

0 -definable in
V0 (i.e. the lower bound of V0).

Lemma 4.74. Let T ⊇ V0 be a theory over L, and Φ a set of ΣB
0 (L)-

formulas. Suppose T |= Φ-COMP. Then any polynomially bounded number
function whose graph is Φ-definable is ΣB

0 (Φ)-definable in T. And any poly-
nomially bounded set function that is Φ-bit-definablei is ΣB

0 (Φ)-definable in
T.

Proof. Let F be a polynomially bounded set function that is Φ-bit-definable.
Then there are an L2

A-term t(~x, ~X) and a formula A ∈ Φ s.t. F has the
following bit-defining axiom

F (~x, ~X)(i)↔ i < t(~x, ~X) ∧ A(i, ~x, ~X)

The graph of F can be ΣB
0 (Φ)-defined from its bit graph as

Y = F (~x, ~X) ↔ |Y | ≤ t(~x, ~X) ∧ ∀i < t(~x, ~X)
(
Y (i)↔ A(i, ~x, ~X)

)
(4.107)

Let GF stand for the RHS of (4.107). Since T |= Φ-COMP we can use

comprehension for the formula A(i, ~x, ~X) to obtain

T |= ∃Y ≤ t(~x, ~X)∀i < t(~x, ~X)
(
Y (i)↔ A(i, ~x, ~X)

)
ii.e. the graph relation of F is Φ-definable.
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which is equal toi T |= ∃Y GF . Because comprehension is unique by the
axiom SE (see page 34) it follows that T |= ∃!Y GF . Since theories are closed

under universal quantification we obtain T |= ∀~x∀ ~X∃!Y GF . Therefore F is
ΣB

0 (Φ)-definable in T (because GF ∈ ΣB
0 (Φ)).

Next, let f be a polynomially bounded number function whose graph
is Φ-definable. Then the graph of f has a defining axiom which we can
strengthen because f is bounded by a polynomial. Let the L2

A-term t(~x, ~X)
be this bounding polynomial. The defining axiom of f ’s graph is then

y = f(~x, ~X) ↔ y < t(~x, ~X) ∧ A(y, ~x, ~X)

for a formula A ∈ Φii. We need to show that T proves the uniqueness of y.
Since T |= Φ-MIN (theorem 4.17) we have

T |= A(y, ~x, ~X)→
(
∃z ≤ y

(
A(z, ~x, ~X) ∧ ¬∃z′ < zA(z′, ~x, ~X)

))
Therefore, there is a least element y s.t. A(y, ~x, ~X) holds and the axioms
B1-B12 quarantee that this y is unique. Therefore we can define f in T by
the following defining axiom

y = f(~x, ~X) ↔ ∀z < y¬A(z, ~x, ~X) ∧ y < t(~x, ~X)→ A(y, ~x, ~X)

and it follows from the above discussion that

T |= ∀~x∀ ~X∃!y∀z < y¬A(z, ~x, ~X) ∧ y < t(~x, ~X)→ A(y, ~x, ~X)

The next corollary follows from lemma 4.74, lemma 4.72 and the fact that
ΣB

0

(
ΣB

0 (L)
)

= ΣB
0 (L).

Corollary 4.75. Let T be a theory over a language L and assume T |=
ΣB

0 (L)-COMP. The theory resulting from T by adding to T the ΣB
0 (L)-

defining axioms or the ΣB
0 (L)-bit-defining axioms for a collection of number

or set functions is a conservative extension of T.

In contrast to lemma 4.52, we now state a transformation theorem for
Σ1

1-definable functions.

irecall definition 4.1 of ∃X ≤ t
iiWe use the trivial fact that if f is bounded by some polynomial p, then the function

value of f is sharply bounded (i.e. <) by some polynomial, namely p + 1. See definition
4.32.
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Theorem 4.76 (ΣB
1 -Transformation). Let T be a polynomially bounded the-

ory and L ⊇ L2
A∪{row} its language. Assume that T |= ΣB

0 (L)-REPL. Let
T′ be an extension of T, obtained by adding to T a Σ1

1(L)-definable function
(in T) and its defining axiom. Let L′ be the resulting language of T′. Then

(a) T′ is a conservative extension of T.

(b) T′ is polynomially bounded.

(c) For every ΣB
0 (L′)-formula A+, there is a ΣB

1 (L)-formula A s.t. T′ |=
A+ ↔ A.

(d) For every ΣB
1 (L′)-formula A+, there is a ΣB

1 (L)-formula A s.t. T′ |=
A+ ↔ A.

(e) T′ |= ΣB
1 (L′)-REPL.

Proof. (a) is an immediate consequence of theorem 4.72.
(b): It follows from Parikh’s theorem that the Σ1

1-definable functions of
T are polynomially bounded. Hence T′ is polynomially bounded as well.

(c): We show the case where the Σ1
1(L)-definable function is a set func-

tion. Let F (~x, ~X) be this function. It follows from Parikh’s theorem that F is

ΣB
1 (L)-definable in T (cf. (b)). Thus there is a ΣB

1 (L)-formula AF (~x, ~X, Y )
s.t.

N2
′ |= Y = F (~x, ~X)↔ AF (~x, ~X, Y ), (4.108)

T′ |= Y = F (~x, ~X)↔ AF (~x, ~X, Y ), (4.109)

T |= ∀~x∀ ~X∃!Y ≤ t(~x, ~X) AF (~x, ~X, Y ) (4.110)

for some L2
A-term t(~x, ~X)i. We show that there is a eΣ

B
1 (L)-formula A′ s.t.

T′ |= A+ ↔ A′. Then by lemma 4.70 there is a single ΣB
1 (L)-formula A s.t.

T |= A′ ↔ A and hence T′ |= A+ ↔ A. We first show that it is sufficient to
consider the case where A+ is an atomic formula.

claim: Assume that for every atomic subformula B+ of A+ there is a

eΣ
B
1 (L)-formula B s.t. T′ |= B+ ↔ B. Then there is a eΣ

B
1 (L)-formula A

s.t. T′ |= A+ ↔ A.
The claim is easily proved by structural induction on A+. The base case

is trivial and the induction step follows immediately from the definition 4.66
of eΣ

B
1 .ii

Now we show (c) by induction on the maximum nesting depth ]FA
+ of

F in A+ (cf. definition 4.50 on p. 62). In the base case F does not occur

iIt follows also from Parikh’s theorem that ∃!Y can be bounded in (4.110).
iiNote that the case A+ ≡ ∀ ~X ≤ ~tA′ does not occur since A+ ∈ eΣB

1 (L′).
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in A+ and there is nothing to prove. Assume that F (~s, ~S) occurs in A+. We

can write A+ as A+
(
F (~s, ~S)

)
. From (4.109) and (4.110) it follows that

T′ |= A+
(
F (~s, ~S)

)
↔ ∃Y ≤ t(~s, ~S)

(
AF (~s, ~S, Y ) ∧ A+(Y )

)
(4.111)

where AF (~s, ~S, Y ) ∈ ΣB
1 (L′) and A+ ∈ ΣB

0 (L′). It follows from lemma 4.24
that the RHS of (4.111) is equivalent in T′ to a ΣB

1 (L′)-formula. Note that
in the RHS of (4.111) we have reduced the maximum nesting depth of F .
Therefore we can apply the induction hypothesis to all atomic subformulas
and are done.

For number functions the proof is analogously.
(d): Follows from (c) because a ΣB

1 (L′)-formula has the form ∃ ~X ≤
tB( ~X), where B( ~X) is ΣB

0 (L′). Then we can apply (c) to B( ~X) and obtain

an equivalent ΣB
1 (L)-formula ∃~Y ≤ sC(~Y ). It is immediate that T′ proves

the ΣB
1 (L)-formula

∃ ~X ≤ tB( ~X)↔ ∃ ~X ≤ t∃~Y ≤ sC(~Y ).

(e): Follows from the proof of lemma 4.69 (case i = 0) and (d).

Corollary 4.77. Let T0 be a polynomially bounded theory and L ⊇ L2
A ∪

{row} its language. Assume that T0 |= ΣB
0 (L)-REPL. Let T0 ⊂ T1 ⊂ T2 ⊂

. . . be a sequence of extensions of T0 where Li is the language of Ti and Ti+1

is obtained from Ti by adding to Ti the defining axiom of a function that is
Σ1

1(Li)-definable in Ti. Let

T =
⋃
i≥0

Ti

and let L be the resulting language of T. Then T is polynomially bounded
and a conservative extension of T0, T |= ΣB

1 (L)-REPL and each function
in L is Σ1

1(L0)-definable in T0. Furthermore, for every ΣB
1 (L)-formula A+

there is a ΣB
1 (L0)-formula A s.t. T |= A+ ↔ A.

Proof. We first show by induction on i that

(a) Ti is polynomially bounded,

(b) Ti is a conservative extension of T0,

(c) Ti |= ΣB
1 (Li)-REPL,

(d) for every ΣB
1 (Li)-formula A+ there is a ΣB

1 (L0)-formula A s.t. Ti |=
A+ ↔ A.
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The base case i = 0 holds by assumption. The induction step follows im-
mediately from theorem 4.76. By theorem 4.76 it is also clear that T is
polynomially bounded, T |= ΣB

1 (L)-REPL and that T proves the equiva-
lence of every ΣB

1 (L)-formula with some ΣB
1 (L0)-formula. It is a consequence

of the compactness theorem 3.27 that T is a conservative extension of T0.

Note that by lemma 4.69, V1 |= ΣB
1 -REPL. We will make use of corollary

4.77 when we prove the witnessing theorem in section 4.9 by setting T0 = V1

and T1 = V1(row).
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4.7 The Lower Bound of V1

In this section we show that each polytime function is provably total, i.e.
Σ1

1-definable, in V1. This result can be proved using Turing machine compu-
tations encoded as formulas. However, we will use Cobham’s characterisation
of FP instead (theorem 4.39). We will also use Parikh’s theorem 4.49.

The following lemma will serve as the base case in the inductive proof of
theorem 4.79. It characterises the lower bound of V0.

Lemma 4.78. Every function in FAC0 is ΣB
0 -definable in V0.

Proof. By corollaries 4.36 and 4.37, a number function is in FAC0 iff it is
polynomially bounded and its graph is ΣB

0 -definable, and a set function is in
FAC0 iff it is ΣB

0 -bit-definable instead. Because the ΣB
0 -closure (cf. definition

4.73) of ΣB
0 is ΣB

0 , it follows from lemma 4.74 that every FAC0 function is
ΣB

0 -definable in V0.

Theorem 4.79 (Lower Bound of V1). A (number or set) function in FP is
Σ1

1-definable in V1.

Proof. We show that the set functions in FP are Σ1
1-definable in V1. It

then follows from lemma 4.40 that the number functions in FP are also Σ1
1-

definable in V1.
The proof is by induction on the number of applications of composition

and bounded recursion on notation needed to define a function F from func-
tions in FAC0. The base case follows from lemma 4.78. By lemma 4.25, the
provably total functions of V1 are closed under composition. Therefore it
is sufficient for the induction step to show the case of bounded recursion on
notation. Suppose that G(~x, ~X) and H(y, ~x, ~X,Z) are Σ1

1-definable in V1,

and F (y, ~x, ~X) is defined from G and H by bounded recursion on notation,
i.e.

F (0, ~x, ~X) = G(~x, ~X) (4.112)

F (y + 1, ~x, ~X) = H
(
y, ~x, ~X, F (y, ~x, ~X)

)<t(y,~x, ~X)
(4.113)

for some polynomial t(y, ~x, ~X)i. Our goal is to find a Σ1
1-defining axiom for

the function F . Note that the RHS of (4.113) is a function composition.
Therefore we can define the function H< as

H<(y, ~x, ~X,Z) = chop
(
t(y, ~x, ~X), H(y, ~x, ~X,Z)

)
(4.114)

iNote that this polynomial corresponds to an L2
A-number term.
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The function chop (cf. page 50) is in FP by lemma 4.78 and it follows from
Cobham’s theorem 4.39 that H< is in FP. Therefore we replace (4.113) by

F (y + 1, ~x, ~X) = H<
(
y, ~x, ~X, F (y, ~x, ~X)

)
(4.115)

It follows from lemma 4.25 thatH< is also Σ1
1-definable in V1. Every function

value F (y, ~x, ~X) is finitely generated by y recursive steps. Therefore we try

to encode the values F (0, ~x, ~X), . . . , F (y, ~x, ~X) as a set array (cf. definition
4.60). A first guess for the defining axiom of F is

Y = F (y, ~x, ~X)↔ ∃W
(
W [0] = G(~x, ~X)∧

∀z < y
(
W [z + 1] = H<(z, ~x, ~X,W [z])

)
∧

Y = W [y]

) (4.116)

We should replace the equations involving G and H< in (4.116) with the
defining axioms of G and H<, respectively. By the induction hypothesis, G
and H< have Σ1

1-defining axioms. Therefore (cf. definition 4.19), G has a
defining axiom of the form

Y = G(~x, ~X)↔ ∃~UAG(~x, ~X, Y, ~U) (4.117)

where AG(~x, ~X, Y, ~U) ∈ ΣB
0 , and H< has a defining axiom of the form

Y = H<(y, ~x, ~X,Z)↔ ∃~V AH<(y, ~x, ~X,Z, Y, ~V ) (4.118)

where AH<(y, ~x, ~X,Z, Y, ~V ) ∈ ΣB
0 . Further we have

V1 |=∃!Y ∃~UAG(~x, ~X, Y, ~U), (4.119)

V1 |=∃!Y ∃~V AH<(y, ~x, ~X,Z, Y, ~V ). (4.120)

and by Parikh’s theorem

V1 |=∃!Y ≤ t1(~x, ~X) ∃~U ≤ t1(~x, ~X)AG(~x, ~X, Y, ~U), (4.121)

V1 |=∃!Y ≤ t2(y, ~x, ~X,Z) ∃~V ≤ t2(y, ~x, ~X,Z)AH<(y, ~x, ~X,Z, Y, ~V ) (4.122)

for some L2
A-terms t1(. . . ) and t2(. . . ). We can even simplify (4.122) using

the fact that each function value of H< is, according to (4.114), bounded by

the L2
A-number term t(y, ~x, ~X)i:

V1 |=∃!Y ≤ t(y, ~x, ~X) ∃~V ≤ t2(y, ~x, ~X,Z)AH<(y, ~x, ~X,Z, Y, ~V ) (4.123)

iIt is easy to check that V1(chop) |= X<t ≤ t.
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Now we can introduce the defining axioms for G and H< in (4.116) and
obtain

Y =F (y, ~x, ~X) ↔ ∃W
(
∃~U ≤ t1(~x, ~X)AG(~x, ~X,W [0], ~U)∧

∀z < y
(
∃~V ≤ t2(y, ~x, ~X,W [z])AH<(z, ~x, ~X,W [z],W [z + 1], ~V )

)
∧

Y = W [y]

)
(4.124)

The problem with (4.124) is that it is not a Σ1
1-formula because of the quan-

tifiers ∃~V which occur after ∀z < y. Let k be the number of existential
quantifiers in ∃~V and let ~V [z] stand for V1[z], . . . , Vk[z]. Then it is easy to
verify (using lemma 4.62) that the following formula is equivalent to (4.124)
in the (extended) standard model N2

′ (cf. definition 4.19).

Y =F (y, ~x, ~X) ↔ ∃W∃~U ≤ t1(~x, ~X)

∃~V ≤
〈
k, t2

(
y, ~x, ~X, t1(~x, ~X)

)
+ t2

(
y, ~x, ~X, t(y, ~x, ~X)

)
+ . . .

+ t2
(
y, ~x, ~X, t(y, ~x, ~X)

)〉(
AG(~x, ~X,W [0], ~U) ∧

∀z < y
(
AH<(z, ~x, ~X,W [z],W [z + 1], ~V [z])

)
∧

Y = W [y]

)
(4.125)

In the above formula, t2
(
y, ~x, ~X, t(y, ~x, ~X)

)
+ · · ·+ t2

(
y, ~x, ~X, t(y, ~x, ~X)

)
de-

notes a k−1 times addition. It remains to show the existence and uniqueness
in V1 of Y in the RHS of (4.125). We prove this in the extension V1(row)
of V1, obtained by adding the ΣB

0 -bit-defining axiom of the function row to
V1. I.e. we show

V1(row) |= ∃!Y ∃W∃~U ≤ t1(~x, ~X)∃~V ≤
〈
. . .
〉

(
AG(~x, ~X,W [0], ~U) ∧

∀z < y
(
AH<(z, ~x, ~X,W [z],W [z + 1], ~V [z])

)
∧

Y = W [y]

)
(4.126)
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It then follows from lemma 4.52 that the ΣB
0 (L2

A∪{row})-formulas Y = W [y],
AG(. . . ) and AH<(. . . ) can be replaced by equivalent (in V1(row)) ΣB

0 (L2
A)-

formulas and since V1(row) is a conservative extension of V1 it follows that F
is also Σ1

1-definable in V1. The fact that V1(row) is a conservative extension
of V1 follows from corollary 4.61 (row ∈ FAC0), lemma 4.78 and lemma 4.72.
We modify the RHS of (4.125) to obtain a ΣB

1 -formula.

∃W ≤
〈
y + 1, t1(~x, ~X) + t(y, ~x, ~X)

〉
∃~U ≤ t1(~x, ~X)

∃~V ≤
〈
k, t2

(
y, ~x, ~X, t1(~x, ~X)

)
+ t2

(
y, ~x, ~X, t(y, ~x, ~X)

)
+ . . .

+ t2
(
y, ~x, ~X, t(y, ~x, ~X)

)〉(
AG(~x, ~X,W [0], ~U) ∧

∀z < y
(
AH<(z, ~x, ~X,W [z],W [z + 1], ~V [z])

))
(4.127)

Note that we dropped the last conjunct of (4.125) for the moment. Let B(y)
denote the formula (4.127). We want to show that V1(row) proves B(y).
Since B(y) is a ΣB

1 -formula we can apply the number induction axiom (cf.
theorem 4.13) on y. LetM be a model of V1(row) and let σ be an arbitrary
assignment. We first have to show that M[σ] |= B(0). It suffices to showi

M[σ] |= ∃W ≤
〈
1, t1(~x, ~X) + t(0, ~x, ~X)

〉
∃~U ≤ t1(~x, ~X)AG(~x, ~X,W [0], ~U)

(4.128)
Let W′0 be the set that satisfies the quantifier ∃!Y in (4.121). By lemma 4.62
there exists a W0 s.t.

M[σ(W′0/W
′
0)(W0/W0)] |= |W0| ≤

〈
1, |W ′

0|
〉
∧W ′

0 = W0[0] (4.129)

and hence, by the monotonicity of L2
A-terms (lemma 4.46) and transitivity,

M[σ(W′0/W
′
0)(W0/W0)] |= |W0| ≤

〈
1, t1(~x, ~X)

〉
∧W ′

0 = W0[0].

Then it is obvious that this W0 also satisfies (4.128).
For the induction step we need to show that M[σ] |= ∀y

(
B(y)→ B(y +

1)
)
. And since σ is arbitrary it is enough to showM[σ] |= B(y)→ B(y+ 1).

icf. lemma 4.7 (2).
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Assume M[σ] |= B(y), hence we have

M[σ(W/W )] |= |W | ≤
〈
y + 1, t1(~x, ~X) + t(y, ~x, ~X)

〉
∃~U ≤ t1(~x, ~X)

∃~V ≤
〈
k, t2

(
y, ~x, ~X, t1(~x, ~X)

)
+ t2

(
y, ~x, ~X, t(y, ~x, ~X)

)
+ . . .

+ t2
(
y, ~x, ~X, t(y, ~x, ~X)

)〉(
AG(~x, ~X,W [0], ~U) ∧

∀z < y
(
AH<(z, ~x, ~X,W [z],W [z + 1], ~V [z])

))
(4.130)

for some W. By (4.123), we further have

M[σ(W/W )(W′/W ′)] |= |W ′| ≤ t(y + 1, ~x, ~X)

∃~V ≤ t2
(
y + 1, ~x, ~X,W [y]

)
AH<(y + 1, ~x, ~X,W [y],W ′, ~V )

(4.131)

for some W′. It follows from (4.121) that

M[σ(W/W )(W′/W ′)] |= y = 0→ W [y] ≤ t1(~x, ~X)

and it follows from (4.123) that

M[σ(W/W )(W′/W ′)] |= y 6= 0→ W [y] ≤ t(y, ~x, ~X).

In any case, by the monotonicity of L2
A-terms (lemma 4.46) and transitivity,

we have

M[σ(W/W )(W′/W ′)] |= W [y] ≤ t1(~x, ~X) + t(y, ~x, ~X). (4.132)

and thus we can adjust (4.131) and obtain

M[σ(W/W )(W′/W ′)] |= |W ′| ≤ t(y + 1, ~x, ~X)

∃~V ≤ t2
(
y + 1, ~x, ~X, t1(~x, ~X) + t(y, ~x, ~X)

)
AH<(y + 1, ~x, ~X,W [y],W ′, ~V )

(4.133)

Informally, we now have a set (array) W that encodes the function values

F (i, ~x, ~X), for all i ≤ y, and a set W′ that contains the value F (y + 1, ~x, ~X).
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Our objective is to concatenate them to obtain a set W′′ that satisfies the
quantifier ∃W in B(y + 1). Note that we cannot apply lemma 4.62 because
there is not necessarily a numeral n such thatM[σ] |= y+1 = n. The reason
is that V1 has models other than the standard model N2

i. The concatenation
is done by multiple comprehension (lemma 4.59):

M[σ(W/W )(W′/W ′)] |=

∃W ′′ ≤
〈
y + 1 + 1, t1(~x, ~X) + t(y + 1, ~x, ~X)

〉
∀z1 < y + 1 + 1∀z2 < t1(~x, ~X) + t(y + 1, ~x, ~X)(
W ′′(〈z1, z2〉)↔

(
z1 < y + 1 ∧W (〈z1, z2〉)

)
∨
(
z1 = y + 1 ∧W ′(z2)

))
(4.134)

Hence V1(row) |= B(y). It follows that the “existence part” of (4.126) holds
since, informally, W [y] satisfies the quantifier ∃Y .

Now to uniqueness. Recall definition 4.5 of ∃!. It is enough to show

V1(row) |=
∃~U ≤ t1(~x, ~X)

∃~V ≤
〈
k, t2

(
y, ~x, ~X, t1(~x, ~X)

)
+ t2

(
y, ~x, ~X, t(y, ~x, ~X)

)
+ . . .

+ t2
(
y, ~x, ~X, t(y, ~x, ~X)

)〉(
AG(~x, ~X,W1[0], ~U) ∧

∀z < y
(
AH<(z, ~x, ~X,W1[z],W1[z + 1], ~V [z])

)
∧ Y = W1[y]

)
∧

∃~U ≤ t1(~x, ~X)

∃~V ≤
〈
k, t2

(
y, ~x, ~X, t1(~x, ~X)

)
+ t2

(
y, ~x, ~X, t(y, ~x, ~X)

)
+ . . .

+ t2
(
y, ~x, ~X, t(y, ~x, ~X)

)〉(
AG(~x, ~X,W2[0], ~U) ∧

∀z < y
(
AH<(z, ~x, ~X,W2[z],W2[z + 1], ~V [z])

)
∧ Y = W2[y]

)
→
(
i ≤ y → W1[i] = W2[i]

)
(4.135)

iNote that PA has non-standard models (cf. for example [9]) and since every model
of (two-sorted) PA is also a model of V1, V1 also has non-standard models.

81



Let C(i) denote the RHS of (4.135). Since C(i) is a ΣB
1 -formula we can

again apply the number induction axiom. Let M |= V1(row) and let σ
be an arbitrary assignment. M[σ] |= C(0) follows immediately from the
uniqueness of Y in (4.119). For the induction step, assume M[σ] |= C(i).
We show M[σ] |= C(i + 1). If M[σ] 6|= i + 1 ≤ y, then M[σ] |= C(i + 1)
holds trivially. So assume M[σ] |= i + 1 ≤ y. Then, by lemma 4.15 (16)
i, M[σ] |= i < y. Then M[σ] |= W1[i + 1] = W2[i + 1] follows from the
induction hypothesis (cf. (4.135)) and the uniqueness of Y in (4.120).

ix+ 1 ≤ y → x < y
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4.8 An Alternative Axiomatisation of V1

We show that V1 can be axiomatised by ΣB
0 -COMP and ΣB

1 -IND instead
of ΣB

1 -COMP. The idea is then to replace the axiom scheme ΣB
1 -IND with

a new LK2 induction rule. The reason is that the formulas of ΣB
1 -COMP are

in general not equivalent to ΣB
1 -formulas and, in the proof of the witnessing

theorem for V1, we want to avoid that non-Σ1
1-formulas occur in LK2 proofs.

Definition 4.80 (Ṽ1). Ṽ1 is the theory axiomatised by the axioms B1-B12,
L1,L2,SE, ΣB

0 -COMP and ΣB
1 -IND.

Note that Ṽ1 is also an extension of V0. Our objective is to prove that

V1 = Ṽ1 (theorem 4.85 below). To this end, we will need to prove that Ṽ1

contains the ΣB
1 -COMP axioms. This proof is based on the fact that formu-

las of the form ∀x ≤ t1∃X ≤ t2A(x,X), where A(x,X) is ΣB
0 , are provably

equivalent in V0 to a ΣB
1 -formula. This was proved in section 4.6.2. For the

proof of theorem 4.85 below we need a number function numones(y,X) that
returns the number of elements of a set X that are strictly smaller than y.
numones has the following ΣB

1 -defining axiom

numones(y,X) = z ↔ z ≤ y∧

∃Z ≤ 1 + 〈y, y〉

(
Z [0] = 0 ∧ Z [y] = z∧

∀u < y
((
X(u)→ Z [u+1] = Z [u] + 1

)
∧

(
¬X(u)→ Z [u+1] = Z [u]

)))
(4.136)

The proofs of the next three lemmas are left as an exercise.

Lemma 4.81. numones is ΣB
1 -definable in Ṽ1, i.e. (4.136) is a defining

axiom of numones in Ṽ1.

Lemma 4.82.

Ṽ1(numones) |= ∃x < y

(
X(x) ∧ ¬Y (x) ∧ ∀u < y

(
u 6= x→

(
X(u)↔ Y (u)

)))
→ numones(y,X) = numones(y, Y ) + 1

Intuitively, the following axiom scheme Φ-MAX states that for every
formula A(x) ∈ Φ, if A(0), then there exists a maximum number x ≤ y that
satisfies A(x).

83



Definition 4.83 (Φ-MAX). Φ-MAX is the set of formulas of the form

A(0)→ ∃x ≤ y
(
A(x) ∧ ¬∃z ≤ y

(
x < z ∧ A(z)

))
, (4.137)

for all A(x) ∈ Φ.

Lemma 4.84. Ṽ1 |= ΣB
1 -MAX.

Theorem 4.85. V1 = Ṽ1

Proof. The direction Ṽ1 ⊆ V1 follows from theorem 4.13.

For the other direction, it is sufficient to show that Ṽ1 proves the ΣB
1 -COMP

axiom scheme:
∃X ≤ y∀z < y

(
X(z)↔ A(z)

)
(4.138)

where A(z) ∈ ΣB
1 . Unfortunately, (4.138) is not a ΣB

1 -formula and is not (in
general) equivalent to onei. Therefore we cannot apply ΣB

1 -IND directly on
(4.138). Consider the formula

∀z < y
(
Y (z)→ A(z)

)
(4.139)

(4.139) is equivalent to a ΣB
1 -formula in Ṽ1 by lemma 4.70 ii. Let B(y, Y )

denote this ΣB
1 -formula. Now consider the formula

C(w, y) ≡ ∃Y ≤ y
(
B(y, Y ) ∧ w = numones(y, Y )

)
(4.140)

Now we need the ΣB
1 -MAX scheme. By lemma 4.81, numones is Σ1

1-definable

in Ṽ1. It then follows from corollary 4.77 that Ṽ1(numones) is a conservative

extension of Ṽ1 and that every ΣB
1 (numones)-formula is provably equivalent

in Ṽ1(numones) to some ΣB
1 (L2

A)-formula. Since Ṽ1 |= ΣB
1 -MAX (lemma

4.84), it follows that Ṽ1(numones) |= ΣB
1 (numones)-MAX.

Now we apply ΣB
1 (numones)-MAX to C(w, y). Let M |= Ṽ1(numones)

and let σ be arbitrary. Then we have

M[σ] |= C(0, y)→ ∃x ≤ y
(
C(x, y) ∧ ¬∃z ≤ y(x < z ∧ C(z, y))

)
(4.141)

We first show that M |= C(0, y), i.e.

M[σ] |= ∃Y ≤ y
(
B(y, Y ) ∧ 0 = numones(y, Y )

)
(4.142)

iWith regard to lemma 4.70, the problem is the negation of ¬X(z) in the direction ←.
iiNote that ¬Y (z) ∨ ∃ ~X ≤ ~tA(z)↔ ∃ ~X ≤ t

(
¬Y (z) ∨A(z)

)
is valid.
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Lemma 4.44 shows that there is a unique empty set and it is clear that the
empty set satisfies the quantifier ∃Y in (4.142). Hence we haveM |= C(0, y)
and by (4.141)

M[σ] |= ∃x ≤ y
(
C(x, y) ∧ ¬∃z ≤ y(x < z ∧ C(z, y))

)
(4.143)

i.e. there exists a “maximum” w0 s.t.

M[σ(w0/w0)] |= w0 ≤ y ∧
(
C(w0, y) ∧ ¬∃z ≤ y(w0 < z ∧ C(z, y))

)
(4.144)

Hence M[σ(w0/w0)] |= C(w0, y), i.e.

M[σ(w0/w0)(Y/Y )] |= Y ≤ y ∧
(
B(y, Y ) ∧ w0 = numones(y, Y )

)
(4.145)

for some Y. It follows from lemma 4.82 that Y satisfies the quantifier ∃X in
(4.138).
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4.9 The Upper Bound of V1

Now we show that V1 is not too strong, i.e. that all provably total functions
in V1 are in FP. This will follow from the so-called witnessing theorem for

V1. For its proof we use the theory Ṽ1 for which we showed the identity to
V1 in section 4.8.

4.9.1 The System LK2-Ṽ1

Instead of using the axioms of Ṽ1 as non-logical axioms in the system LK2,
we replace the ΣB

1 -IND axiom scheme by a new inference rule.
We assume that in LK2, terms do not contain bound variables x, y, z, . . .

and X, Y, Z, . . . , bound variables do not occur free in formulas and free vari-
ables do not occur bound (cf. variable convention on page 21).

Definition 4.86 (Φ-Ind rule). The Φ-Ind rule consists of inferences of the
form

Γ, A(b) ` A(b+ 1),∆
(Φ-Ind)

Γ, A(0) ` A(t),∆

where Φ is a set of formulas and the eigenvariable b does not occur in the
bottom sequent.

Definition 4.87 (LK2-Ṽ1). The rules of the sequent system LK2-Ṽ1 consist
of the rules of LK2 (section 3.3.1) and the ΣB

1 -Ind rule. The non-logical

axioms of LK2-Ṽ1 consist of the sets B1-B12, L1,L2,SE, ΣB
0 -COMP and

εL, all closed under substitution of terms for free variablesi.

By an LK2-Ψ + Φ-Ind proof we mean an LK2-Ψ proof where additionally
the Φ-Ind rule is admitted.

Theorem 4.88 (Soundness of LK2-Ψ + Φ-Ind). Let Φ,Ψ be sets of formulas.
If a sequent Γ ` ∆ has an LK2-Ψ + Φ-Ind proof, then (Γ ` ∆)F is a theorem
of the theory axiomatised by Ψ ∪ Φ-IND.

Proof. From our definition of a theory (definition 2.9) it follows that it suffices
to check that Ψ ∪ Φ-IND |= (Γ ` ∆)F. This is proved by induction on the
number of sequents in a proof. The derivational soundness theorem 3.10
provides already all the cases except, of course, the case of the Φ-Ind rule.
Thus it remains to show that if the top sequent of this rule is a logical

iSubstitution of terms for free variables is necessary in order to prove anchored com-
pleteness.
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consequence of Ψ ∪ Φ-IND, then so is the bottom sequenti. Let M be a
model of Ψ ∪ Φ-IND and assume that M satisfies the top sequent, i.e.

M |=
∧
Γ

∧ A(b)→ A(b+ 1) ∨
∨
∆

(4.146)

Note that ∧
Γ

→
(
A(b)→ A(b+ 1)

)
∨
∨
∆

(4.147)

is provably equivalentii to the formula in (4.146). And because the eigenvari-
able b does not occur in Γ ∪∆, we have

M |=
∧
Γ

→ ∀b
(
A(b)→ A(b+ 1)

)
∨
∨
∆

(4.148)

We have to show that M satisfies the bottom sequent, i.e.

M[σ] |=
∧
Γ

∧ A(0)→ A(t) ∨
∨
∆

(4.149)

for an arbitrary assignment σ. So assume

M[σ] |=
∧
Γ

∧ A(0) (4.150)

By (4.148), we have M[σ] |= ∀b
(
A(b)→ A(b + 1)

)
∨
∨
∆

. If M[σ] |=
∨
∆

, then

(4.149) is obviously satisfied. If M[σ] |= ∀b
(
A(b) → A(b + 1)

)
, then, by

M |= Φ-IND, we haveM[σ] |= ∀xA(x) and henceM[σ] |= A(t) and (4.149)
follows.

Corollary 4.89 (Soundness of LK2-Ṽ1). If a sequent Γ ` ∆ has an LK2-Ṽ1

proof, then (Γ ` ∆)F is a theorem of Ṽ1.

We generalise definition 3.15 of an anchored proof.

Definition 4.90 (Anchored LK2-Ψ + Φ-Ind Proof). An LK2-Ψ + Φ-Ind proof
is called anchored provided that every cut formula is either in Ψ or is one of
the formulas A(0), A(t) in an instance of the Φ-Ind rule.

iNote that in this case, the bottom sequent is not a logical consequence of the top
sequent, as it is the case with all other rules.

iii.e. the corresponding formula of the form A↔ B is valid.
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Theorem 4.91 (Anchored Completeness of LK2-ΨεL + Φ-Ind). Let Φ,Ψ be
sets of L-formulas and let Φ′,Ψ′ be their closures under substitution of terms
for free variables, respectively. If (Γ ` ∆)F is a logical consequence of ΨεL ∪
Φ-IND, then Γ ` ∆ has an anchored LK2-Ψ′εL + Φ′-Ind proof.

Proof. As in the proof of lemma 4.91, we slightly modify the proof of the
completeness lemma 3.12. Here, a sequent is called active if it is a leaf of
the proof tree and is not directly derivable from a logical axiom of LK2 or
from a non-logical axiom of ΨεL using only weakening and exchange rules.
Recall that in our enumeration of (Ai, tj, Tk), the terms tj and Tk do not
contain bound variables (variable convention on page 21). We begin with an
end sequent Γ ` ∆ and work upwards by subsequently modifying the proof Π.

Loop: Let (Ai, tj, Tk) be the next tuple in the enumeration.

1. Step: If Ai ∈ Ψ′εL , then every active sequent Π ` Ω is replaced with
the derivation

` Ai
(weakening)

Π ` Ω, Ai Π, Ai ` Ω
(cut)

Π ` Ω

2. Step: If Ai ∈ Φ′ and Ai contains at least one free occurrence of some
free variable c, then let b be a fresh free number variable not yet used
in Π, and let Ai(b) be the result of substituting b for c in Ai(c). Then
every active sequent Π ` Ω is replaced with the derivation

Π ` Ω, Ai(0)

Π, Ai(b) ` Ai(b+ 1),Ω

Π, Ai(0) ` Ai(tj),Ω

Ai(tj),Π ` Ω

Ai(tj),Π, Ai(0) ` Ω

Π, Ai(0) ` Ω

Π ` Ω

where the top-left inference is by the Φ-Ind rule and the other inferences
are by the weakening, exchange and the cut rule (note that the cut
formulas are in Φ).

(For the other steps, proceed as in steps 2 to 4 of the completeness
lemma 3.12.)

End of the loop.
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If the above procedure terminates, then Π is an anchored LK2-Ψ′εL + Φ′-
Ind proof of Γ ` ∆. Again, we have to show that if it does not terminate,
then ΨεL ∪ Φ-IND 6|= (Γ ` ∆)F.

So assume that the above procedure runs forever and let Π denote the
resulting infinite tree. Now we modify Π by “fading out” all the intermediate
rule applications introduced at step 2. I.e. we replace each subtree of Π of
the form

Π ` Ω, Ai(0)

Π, Ai(b) ` Ai(b+ 1),Ω

Π, Ai(0) ` Ai(tj),Ω

Ai(tj),Π ` Ω

Ai(tj),Π, Ai(0) ` Ω

Π, Ai(0) ` Ω

Π ` Ω

with

Π ` Ω, Ai(0) Π, Ai(b) ` Ai(b+ 1),Ω Ai(tj),Π ` Ω

Π ` Ω

Note that the resulting tree (we still call it Π) is no longer an LK2-Ψ′εL+Φ′-
Ind proof. But that’s not a problem since Π only serves the purpose of
constructing a structure.

Π still has an infinite path π (by König’s Lemma 3.11) and we use π to
define a structure M and an assignment σ s.t. M |= ΨεL ∪ Φ-IND and
M[σ] 6|= (Γ ` ∆)F. Let σ and M be as in the completeness lemma 3.12.

Hence, for any predicate symbol P , (~t, ~T ) ∈ PM holds iff the formula P (~t, ~T )
occurs in the antecedent of some sequent in π. We claim again that every
formula A occurring in an antecedent along π is true inM[σ] and that every
formula A occurring in a succedent along π is false in M[σ]. The argument
is again the same as in the proof of the completeness lemma 3.12. Therefore
M[σ] 6|= (Γ ` ∆)F.

It remains to show that M |= ΨεL ∪ Φ-IND. Every formula Ai ∈ Ψ′εL
occurs in an antecedent of π (cf. step 1). Therefore, by the above claim,
we have M[σ] |= Ai and hence M[σ] |= Ψ′εL . But since Ψ′εL is closed under
substitution of terms for free variables, we have M |= Ψ′εL and hence M |=
ΨεL .

To show that M |= Φ-IND we consider an arbitrary formula Ai ∈ Φ′.
We assume that Φ′ is nonempty, otherwise what we claim is trivially true.
With respect to step 2 (recall that we have modified Π and hence π!), we
distinguish three cases, whereas the third case excludes the first and the
second.

If π contains a sequent of the form Π ` Ω, Ai(0), then, by the above claim,
M[σ] 6|= Ai(0). If π contains a sequent of the form Π, Ai(b) ` Ai(b + 1),Ω,
then M[σ] |= Ai(b) and M[σ] 6|= Ai(b + 1) and hence M[σ] 6|= Ai(b) →
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Ai(b+ 1). As a consequence, M[σ] 6|= ∀x(Ai(x)→ Ai(x+ 1)). In both cases
we have M[σ] |= Ai-IND.

If π does neither contain Π ` Ω, Ai(0) nor Π, Ai(b) ` Ai(b + 1),Ω, then,
for every number term tj, π contains Ai(tj),Π ` Ω (note that every tuple
(Ai, tj, Tk) occurs infinitely often in our enumeration). It follows that, for
every tj, the formula Ai(tj) occurs in an antecedent of π. Therefore, by the
above claim, M[σ] |= Ai(tj) for every number term tj. Since the “number”
universe of M consists precisely of all number terms and σ maps terms to
themselves we have M[σ] |= ∀xAi(x) and hence M[σ] |= Ai-IND.

Since the choice of Ai ∈ Φ′ was arbitrary, it follows thatM[σ] |= Φ′-IND
and (since Φ′-IND is closed under substitution of terms for free variables)
M |= Φ′-IND. Therefore M |= Φ-IND and we are done.

The following corollary is immediate from the above and theorem 4.85.

Corollary 4.92. Every theorem of V1 has an anchored LK2-Ṽ1 proof.

The advantage of LK2-Ψ′εL + Φ′-Ind proofs is that they contain only cut

formulas of Φ′ ∪ ΨεL and not of Φ′-IND. Therefore, for LK2-Ṽ1, the cut
formulas are in ΣB

1 . We now restate the subformula property (lemma 3.26)
for the case of LK2-Ψ + Φ-Ind proofs.

Lemma 4.93 (Subformula Property of LK2-Ψ+Φ-Ind). Let Ψ and Φ be sets
of formulas, closed under substitution of terms for free variables, and let Π
be an anchored LK2-Ψ+Φ-Ind proof of a sequent Γ ` ∆. Then every formula
in every sequent of Π is a subformula of a formula in Γ ` ∆ or of a formula
in Ψ ∪ Φ.

Proof. The proof is the same as for lemma 3.26. The only new case is the
Φ-Ind rule, where the formulas A(b), A(b+ 1), A(0), A(t) are all in Φ.

Obviously, the subformula property holds also for LK2-Ṽ1, as a special
case of LK2-Ψ + Φ-Ind. Recall (page 67) that T(F) is the theory T together
with the defining axioms or bit-defining axioms for functions F , that are
definable in T or bit-definable. Note that by theorem 4.79, all functions
in FP are definable in V1. The witnessing theorem 4.95 follows from the
following special case.

Lemma 4.94 (Witnessing Lemma). Let A(~x, ~X, Y ) be a ΣB
0 -formula and

assume that V1 |= ∃Y A(~x, ~X, Y ). Then there exists a set function F ∈ FP
such that

V1(F ) |= A
(
~x, ~X, F (~x, ~X)

)
.
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Proof. We assume that V1 contains a Σ1
1-formula ∃Y A(~x, ~X, Y ). By the

above anchored completeness theorem (corollary 4.92) there is an anchored

LK2-Ṽ1 proof Π of the sequent ` ∃Y A(~x, ~X, Y ). We assume that Π is in
free variable normal form (cf. page 52) by adding the axiom |∅| = 0 to

V1 (and Ṽ1, respectively). Additionally, free variables can be eliminated

by the ΣB
1 -Ind rule. Recall that in LK2-Ṽ1, the only nonlogical axioms are

ΣB
0 -COMP and the axioms B1 to SE on page 35, i.e. they are either ΣB

1 - or
ΣB

0 -formulas. From the subformula property (lemma 3.26), we can conclude
that all formulas in Π are either Σ1

1- or ΣB
0 -formulas. Note that ΣB

1 ⊆ Σ1
1

and that the Σ1
1-formulas have at most one existential set quantifier in front.

Therefore, every sequent in Π is of the form

∃X1A1(X1), . . . ,∃XmAm(Xm),Γ ` ∆,∃Y1B1(Y1), . . . ,∃YnBn(Yn) (4.151)

where m,n ≥ 0 and all Ai and Bj as well as Γ,∆ are ΣB
0 -formulas. As in the

proof of Parikh’s theorem 4.49 we treat the sequents as multisets and ignore
applications of the exchange rules. We proceed by induction on the depth in
the prooftree Π of a sequent S of the form (4.151) and show that there exists
a finite set of polytime functions F = {. . . , F1, . . . , Fn, . . . } s.t.

V1(F) |=
(
A1(N1), . . . , Am(Nm),Γ `

∆, B1

(
F1(~a, ~M, ~N)

)
, . . . , Bn

(
Fn(~a, ~M, ~N)

))F (4.152)

where ~a, ~M are exactly the free variables of the sequent (4.151) and ~N are
new distinct free variables replacing the bound variables X1, . . . , Xm (note

that ~a and ~M may be different for different sequents.). In the following, we
write Ŝ for the corresponding sequent of the form (4.152).

From this we can conclude that for the end sequent ` ∃Y A(~x, ~X.Y ) of
Π there is a set F of polytime set functions and an F ∈ F s.t. V1(F) |=
A(~a, ~M,F (~a, ~M)). By theorem 4.79 (lower bound of V1), all functions in
F are Σ1

1-definable in V1 and it follows from corollary 4.77 that V1(F) is

a conservative extension of V1(F ). Therefore V1(F ) |= A(~a, ~M,F (~a, ~M)).
Because V1(F ) is also a conservative extension of V1(F )\{|∅| = 0} (lemma
4.43) and since we will never use the constant ∅ for the defining axioms of

F , we have V1(F ) \ {|∅| = 0} |= A(~a, ~M,F (~a, ~M)) and are done.
In the following inductive proof we know that no free variable (and hence

no parameter of previously introduced witnessing functions) is eliminated by
any rule except ∃-left, set ∃-left, ∀-righti and ΣB

1 -Ind. This follows from the

iNote that the set ∀-rules do not occur because all formulas in Π are Σ1
1 or ΣB

0 .
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fact that Π is in free variable normal form. We will treat these four cases
accordingly.

Base case: S is an axiom of LK2-Ṽ1. If S contains only ΣB
0 -formulas, then

what we claim is trivially satisfied. Otherwise, if S is a logical axiom, then it
has the form ∃Y B(~a, ~M, Y ) ` ∃Y B(~a, ~M, Y ) with all free variables indicated.
We need to find a polytime witnessing function F s.t.

V1(F ) |= B(~a, ~M,N)→ B(~a, ~M,F (~a, ~M,N)). (4.153)

The ΣB
0 -bit-defining axiom F (~a, ~M,N)(z)↔ N(z) defines such a witnessing

function. If S is the ΣB
0 -COMP axiom, then it has the form

` ∃X ≤ b∀z < b
(
X(z)↔ B(z, b,~a, ~M)

)
(4.154)

with all free variables indicated, and we have to find a polytime witnessing
function F s.t.

V1(F ) |= |F (b,~a, ~M)| ≤ b ∧ ∀z < b
(
F (b,~a, ~M)(z)↔ B(z, b,~a, ~M)

)
(4.155)

The ΣB
0 -bit-defining axiom

F (b,~a, ~M)(z)↔ z < b ∧B(z, b,~a, ~M) (4.156)

defines such a function F .
Case II: S is obtained by an application of the ΣB

1 -Ind rule. This is the
most interesting and most difficult case. Hence S is the bottom sequent of
an inference

Π, ∃X ≤ r(b)B(b,X) ` ∃X ≤ r(b+ 1)B(b+ 1, X),Ω
(ΣB

1 -Ind)
Π, ∃X ≤ r(0)B(0, X) ` ∃X ≤ r(t)B(t,X),Ω

(4.157)

where the eigenvariable b does not occur in the bottom sequent S and B(x,X)
is a ΣB

0 -formula. Note that if the induction formula is in ΣB
0 , then we can

just apply the induction hypothesis and are done.
In the following, for a set Π in a sequent S, let Π̂ denote the conversion

of Π in Ŝ according to (4.152). By induction hypothesis there is a collection
F of polytime functions including a function F s.t.

V1(F) |= Π̂, |N | ≤ r(b) ∧B(b,N) `
|F (~a, b, ~M,N)| ≤ r(b+ 1) ∧B

(
b+ 1, F (~a, b, ~M,N)

)
, Ω̂

(4.158)

Note that b (the eigenvariable) and N do not occur in Π̂ and can only occur
in Ω̂ as arguments to witnessing functions. We need to find a new witnessing
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function F ′ for the formula ∃X ≤ r(t)B(t,X) in S. Since F is in FP, the fol-
lowing function F ′, defined by bounded recursion on notation, is also in FP by
Cobham’s theorem 4.39 (below, we do not write the irrelevant parameters):

F ′(0, X) = X

F ′(y + 1, X) = chop
(
r(y + 1), F

(
y, F ′(y,X)

)) (4.159)

where r is the polynomial represented by the L2
A-term r in (4.157).

Let F1(b,N1), . . . , Fm(b,Nm) (we omit the irrelevant parameters ~a, ~M) be
the witnessing functions of Ω̂ in (4.158). For each i = 1, . . . ,m, we define
the function composition F ′i (b,Ni, ) = Fi

(
b, F ′(b,Ni)

)
. Note that all F ′i are

in FP according to Cobham’s theorem 4.39. If we replace N with F ′(b,N) in
(4.158) we obtain

Π̂, |F ′(b,N)| ≤ r(b) ∧B(b, F ′(b,N)) `
|F (b, F ′(b,N))| ≤ r(b+ 1) ∧B

(
b+ 1, F (b, F ′(b,N))

)
, Ω̂′

(4.160)

where, additionally, Ω̂′ is Ω̂ with F ′i (b,Ni) replacing Fi(b,Ni), for all i (recall
that all Ni are distinct). Let F ′ = F∪{F ′, F ′1, . . . , F ′m}. (4.160) is also a the-
orem of V1(F)′ because N (and every Ni) is implicitly universally quantified
in (4.158). Now consider the sequent

Π̂, |F ′(b,N)| ≤ r(b) ∧B
(
b, F ′(b,N)

)
`

|F ′(b+ 1, N)| ≤ r(b+ 1) ∧B
(
b+ 1, F ′(b+ 1, N)

)
, Ω̂′

(4.161)

where F (b, F ′(b,N)) was replaced by F ′(b + 1, N). It follows from the def-
inition (4.159) of F ′ that (4.161) is also a theorem of V1(F ′). Fortunately,
the sequent (4.161) has the form

Π̂, C(b,N) ` C(b+ 1, N), Ω̂′ (4.162)

where
C(b,N) ≡ |F ′(b,N)| ≤ r(b) ∧B

(
b, F ′(b,N)

)
and C(b,N) is a ΣB

0 (F ′)-formula. Unfortunately, b occurs as a parameter
(and nowhere else) to the witnessing functions F ′i (in Ω̂′). But b must not
occur in the desired sequent Ŝ i. Therefore we try to remove b from Ω̂′ and
introduce the number function h(X) with the following defining axiom

h(X) = y ↔ y ≤ t ∧
(
¬C(y + 1, X) ∨ y = t

)
∧ ∀x ≤ yC(x,X) (4.163)

iNote that the fact that b occurs in Ω̂′ prohibits us from applying the ΣB
1 (F ′)-IND rule

on (4.162)
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where the term t comes from (4.157). Intuitively, h(X) is the smallest y ≤ t
such that ¬C(y+1, X), or t if there exists no y ≤ t that satisfies ¬C(y+1, X).
It will soon be clear what we need this function for. For each i = 1, . . . ,m
we define

F ′′i (X) = F ′i
(
h(X), X

)
F ′′i is in FP according to Cobham’s theorem 4.39. Let Ω̂′′ be like Ω̂′ with
the exception that each occurrence of F ′i (b,Ni) is replaced with F ′′i (Ni). We
define

F ′′(X) = F ′(t,X) (4.164)

It follows again from theorem 4.39 that F ′′ is in FP. Now we define the
sequent Ŝ (recall (4.152)) as

Ŝ = Π̂, |N | ≤ r(0) ∧B(0, N) `
|F ′′(N)| ≤ r(t) ∧B

(
t, F ′′(N)

)
, Ω̂′′

(4.165)

Let F ′′ = F ′ ∪ {h, F ′′1 , . . . , F ′′m, F ′′}. We finally have to show that Ŝ is a
theorem of V1(F ′′). It follows from the definition of F ′ (F ′(0, N) = N) that
(4.165) is equivalent in V1(F ′′) to

Π̂, |F ′(0, N)| ≤ r(0) ∧B
(
0, F ′(0, N)

)
`

|F ′′(N)| ≤ r(t) ∧B
(
t, F ′′(N)

)
, Ω̂′′

(4.166)

Then it follows from the definition (4.164) of F ′′ that (4.166) is equivalent in
V1(F ′′) to

Π̂, |F ′(0, N)| ≤ r(0) ∧B
(
0, F ′(0, N)

)
`

|F ′(t, N)| ≤ r(t) ∧B
(
t, F ′(t, N)

)
, Ω̂′′

(4.167)

which is identical to
Π̂, C(0, N) ` C(t, N), Ω̂′′. (4.168)

Hence it suffices to show that V1(F ′′) proves (4.168). Since b is implicitly
universally quantified in (4.162), it follows thati

V1(F ′′) |= Π̂, C
(
h(N), N

)
` C

(
h(N) + 1, N

)
, Ω̂′′. (4.169)

Now, by the definition of the function h, we have

V1(F ′′) |= C(0, N) ` C
(
h(N), N

)
, and (4.170)

V1(F ′′) |= C
(
h(N) + 1, N

)
` C(t, N). (4.171)

iIf in doubt about Ω̂′′, check the definition of Ω̂′′.
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The reason is the following (we arguei “in” the theory V1(F ′′)): By the last
conjunct of (4.163), C

(
h(N), N

)
holds. Therefore V1(F ′′) proves (4.170).

Now consider the middle conjunct of (4.163). If the first disjunct holds, then
¬C
(
h(N) + 1, N

)
. If the second disjunct holds, then h(N) = t and C(t, N)

holds by the last conjunct. In any case, V1(F ′′) proves (4.171).
Now we can use the rules of LK2 (since they are sound w.r.t. to the axioms

of V1(F ′′)). First we apply the cut rule (after the obvious applications of
the weakening rules) to (4.169) and (4.170) and obtain the sequent

Π̂, C(0, N) ` C
(
h(N) + 1, N

)
, Ω̂′′ (4.172)

Then we do the same with (4.172) and (4.171) and obtain (4.168). Hence
V1(F ′′) |= Ŝ.

Case III: S is obtained by an inference of the form

Π ` Ω, B(T )
(set ∃-right)

Π ` Ω,∃XB(X)

Let S1 denote the top sequent. Note that since V1 is an L2
A-theory, T can

either be a free variable or the constant symbol ∅ (introduced when putting
Π in free variable normal form). If T is a free variable M , then M must occur
in Π or Ω (because Π is in FVNF). We need to find a witnessing function F

s.t. M and the witnessing term F (~a, ~M, ~N,M) are always mapped to equal
elements in the universe. The ΣB

0 -bit-defining axiom

F (~a, ~M, ~N,M)(z)↔ z < |M | ∧M(z) (4.173)

defines such a function F . Then the induction hypothesis V1(F) |= Ŝ1

implies V1(F ∪F ) |= Ŝ. Note that F ∈ FP by corollary 4.37. If T is ∅, then
let F be the function defined by the ΣB

0 -bit-defining axiom

F (~a, ~M, ~N)(z)↔ z < 0 (4.174)

It follows from lemma 4.7 (2)ii and the contrapositions of the axioms L2 and

B12 that V1(F ∪ F ) |= |F (~a, ~M, ~N)| = 0, and then from axiom SE that

V1 |= F (~a, ~M, ~N) = ∅ (note that we added |∅| = 0 to V1). Then the
induction hypothesis V1(F) |= Ŝ1 implies V1(F ∪ F ) |= Ŝ.

Case IV: S is obtained by an inference of the form

Π, B(M) ` Ω
(set ∃-left)

Π,∃XB(X) ` Ω

iNote that we implicitly use the number axioms of V1 and some its theorems (lemma
4.15).

iiV1 |= ¬z < 0
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where the eigenvariable M does not occur in S. Let S1 denote the top sequent.
Note that Ŝ contains a new free variable N for the quantifier variable X. For
S we can use the same witnessing functions as for S1 with Fi(~a,N, ~M, ~N)

replacing Fi(~a,M, ~M, ~N) for each witnessing function Fi of S1. Then we can
apply the induction hypothesis and are done.

Case V: S is obtained by an inference of the form

Π, b ≤ t ∧B(b) ` Ω
(∃-left)

Π,∃x ≤ tB(x) ` Ω

where the eigenvariable b does not occur in S. We cannot use the same
witnessing functions as for the top sequent because the argument b is elim-
inated. Therefore, the argument b of the witnessing functions of the top
sequent needs to be replaced by something. We define the function g(~a, ~M)
as the minimum b ≤ t that satisfies B(b). g has the following ΣB

0 -defining
axiom

y = g(~a, ~M)↔ y ≤ t ∧B(y) ∧ ∀x < y¬B(x) (4.175)

Since g is obviously polynomially bounded (by t), it follows from corol-
lary 4.36 that g is in FP (even in FAC0). For each witnessing function

Fi(~a, b, ~M, ~N) of the top sequent we can now define a witnessing function

F ′i (~a, ~M, ~N) for Ŝ by function composition as follows

F ′i (~a, ~M, ~N) = Fi

(
~a, g(~a, ~M), ~M, ~N

)
By Cobham’s theorem 4.39, F ′i is in FP.

Case V’: The case where S is obtained by the ∀-right rule is proved
analogously.

Case VI: S is obtained by an inference of the form

Π ` Ω, A Π ` Ω, B
(∧-right)

Π ` Ω, A ∧B
Let S1 and S2 denote the two top sequents, respectively. The problem with
this rule is that the witnessing functions of S1 and S2 are not necessarily
the same and it is not immediately clear which functions we have to chose.
We illustrate this by the example where Ω consists of the single formula
∃XC(X). Then, by the induction hypothesis, we have

V1(F1) |=
∧

Π̂→ A ∨ C
(
F1(. . . )

)
, (4.176)

V1(F2) |=
∧

Π̂→ B ∨ C
(
F2(. . . )

)
(4.177)
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for some witnessing functions F1 ∈ F1 and F2 ∈ F2. We need a new witness-
ing function F s.t.

V1(F1 ∪ F2 ∪ {F}) |=
∧

Π̂→ (A ∧B) ∨ C
(
F (. . . )

)
Note that we cannot simply take F = F1 because we do not know which
disjunct in the RHS of (4.176) is true. Informally, if C

(
F1(. . . )

)
is true, then

we can take F1, otherwise we take F2
i. Hence F can be defined as

F (. . . )(z)↔
(
C
(
F1(. . . )

)
∧ F1(. . . )(z)

)
∨
(
¬C
(
F1(. . . )

)
∧ F2(. . . )(z)

)
(4.178)

In general, Ω has the form (cf. (4.151))

Ω ≡ Ω′,∃Y1C1(Y1), . . . ,∃YnCn(Yn),

for n ≥ 0, where all Ci, all formulas in Ω′ as well as A and B are ΣB
0 -formulas.

For i = 1, . . . , n, let F 1
i (. . . ) and F 2

i (. . . ) be the witnessing functions in Ŝ1

and Ŝ2, respectively. Then we define the new witnessing functions Fi as in
(4.178), with F 1

i replacing F1 and F 2
i replacing F2.

Case VI’: The case where S is obtained by the ∨-left rule is proved
analogously.

Case VII: S is obtained by an inference of the form

Π ` Ω, A,A
(contraction-right)

Π ` Ω, A

If A is a ΣB
0 -formula, then we can just apply the induction hypothesis and

are done. If A has the form ∃XB(X), then, by induction hypothesis, there
are witnessing functions F1 ∈ F and F2 ∈ F s.t.

V1(F) |=
∧

Π̂→ B
(
F1(~a, ~M)

)
∨B

(
F2(~a, ~M)

)
∨
∨

Ω̂ (4.179)

We need a new witnessing function F s.t.

V1(F ∪ {F}) |=
∧

Π̂→ B
(
F (~a, ~M)

)
∨
∨

Ω̂

As in case VI, we cannot simply take F = F1 or F = F2 because we do not
know which of the disjuncts in the RHS of (4.179) is true. An appropriate

function F is defined by (replace . . . with ~a, ~M)

F (. . . )(z)↔
(
B
(
F1(. . . )

)
∧ F1(. . . )(z)

)
∨
(
¬B
(
F1(. . . )

)
∧ F2(. . . )(z)

)
iNote that it doesn’t matter if C

(
F2(. . . )

)
is false, because then A ∧B is true.
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Case VII’: If S is obtained from the contraction-left rule and the formula
A is of the form ∃XB(X), then we just replace every witnessing function
Fi(. . . , N1, N2) with Fi(. . . , N,N), where N is the new fresh variable intro-
duced for X in S and N1, N1 are the (distinct) free variables for X in the top
sequent.

Case VIII: S is obtained by an inference of the form

Π ` Ω, A Π, A ` Ω
(Cut)

Π ` Ω

Let S1 and S2 denote the two top sequents, respectively. Assume first that
the cut formula A is a ΣB

0 -formula. Then we proceed similarly as in case VI.
Let F 1

1 , . . . , F
1
n be the winteesing functions for Ω in Ŝ1 and F 2

1 , . . . , F
2
n in Ŝ2,

respectively. Then we define new witnessing function F1, . . . , Fn for Ŝ by

Fi(. . . )(z)↔
((
¬A ∧ F 1

i (. . . )(z)
)
∨
(
A ∧ F 2

i (. . . )(z)
))

(4.180)

If A is not a ΣB
0 -formula, then A has the form ∃XB(X) and B(X) is a

ΣB
0 -formula. Let G(~a, ~M) be the witnessing function for B(X) in Ŝ1 and let

N be the fresh introduced for X in Ŝ2. Let F 1
1 (~a, ~M), . . . , F 1

n(~a, ~M) be the

witnessing functions for Ω in Ŝ1 and let F 2
1 (~a, ~M,N), . . . , F 2

n(~a, ~M,N) be the
witnessing functions for Ω in Ŝ2. The new witnessing functions F1, . . . , Fn

for Ω in Ŝ are defined by

Fi(~a, ~M)(z)↔
(
¬B
(
G(~a, ~M)

)
∧ F 1

i (~a, ~M)(z)
)
∨(

B
(
G(~a, ~M)

)
∧ F 2

i (~a, ~M,G(~a, ~M))(z)
)

Case IX: The case where S is obtained by a weakening rule is easy. In
the case of weakening-left, nothing needs to be done. For weakening-right
we can introduce an arbitrary witnessing function in FP for the case that the
introduced formula has the form ∃XB(X).

Case X: There is nothing to do for the exchange, ¬-introduction, ∃-right,
∀-left, ∨-right and ∧-left rules (see also the remark about the subformula
property at the beginning of the proof). Note that ∃-right and ∀-left do not
eliminate free variables.

The following general witnessing theorem follows from the above special
case.

Theorem 4.95 (Witnessing Theorem). Let A(~x, ~y, ~X, ~Y ) be a ΣB
0 -formula

and suppose that
V1 |= ∃~y∃~Y A(~x, ~y, ~X, ~Y ).
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Then there exist functions f1, . . . , fm, F1, . . . , Fn ∈ FP such that

V1(f1, . . . , fm, F1, . . . , Fn) |=
A
(
~x, f1(~x, ~X), . . . , fm(~x, ~X), ~X, F1(~x, ~X), . . . , Fn(~x, ~X)

)
.

Proof from Lemma 4.94. Assume V1 |= ∃~y∃~Y A(~x, ~y, ~X, ~Y ). Then we also
have

V1(row) |= ∃~y∃~Y A(~x, ~y, ~X, ~Y ). (4.181)

Let m and n be the “arities” of ~y and ~Y , respectively. We claim that

V1(row) |= ∃Z
(∣∣Z[0]

∣∣ = y1 ∧ · · · ∧
∣∣Z[m− 1]

∣∣ = ym ∧
Z[m] = Y1 ∧ · · · ∧ Z[m+ n− 1] = Yn

) (4.182)

The proof of this claim is analogous to the proof of lemma 4.62. Then it
follows from (4.181) and (4.182) that

V1(row) |= ∃Z A
(
~x,
∣∣Z[0]

∣∣, . . . , ∣∣Z[m− 1]
∣∣, ~X, Z[m], . . . , Z[m+ n− 1]

)︸ ︷︷ ︸
B(~x, ~X,Z)

(4.183)

where B(~x, ~X,Z) is a ΣB
0 (L2

A ∪ {row})-formula. By lemma 4.52, there is a

ΣB
0 (L2

A)-formula B′(~x, ~X,Z) s.t.

V1(row) |= B(~x, ~X,Z)↔ B′(~x, ~X,Z) (4.184)

Since V1(row) is a conservative extension of V1 (by corollary 4.77), it follows
from (4.184) and (4.183) that

V1 |= ∃ZB′(~x, ~X,Z) (4.185)

Now we can apply the witnessing lemma 4.94. I.e. there exists a set function
F ∈ FP s.t.

V1(F ) |= B′
(
~x, ~X, F (~x, ~X)

)
(4.186)

Therefore, by (4.184),

V1(row, F ) |= B
(
~x, ~X, F (~x, ~X)

)
(4.187)

and by (4.183)

V1(row, F ) |= A
(
~x,
∣∣F (~x, ~X)[0]

∣∣, . . . , ∣∣F (~x, ~X)[m− 1]
∣∣,

~X, F (~x, ~X)[m], . . . , F (~x, ~X)[m+ n− 1]
) (4.188)
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Now let

f1(~x, ~X) =
∣∣F (~x, ~X)[0]

∣∣, . . . , fm(~x, ~X) =
∣∣F (~x, ~X)[m− 1]

∣∣,
F1(~x, ~X) = F (~x, ~X)[m], . . . , Fn(~x, ~X) = F (~x, ~X)[m+ n− 1]

Let F denote {f1, . . . , fm, F1, . . . , Fn}. Then we have

V1(F ∪ {row, F}) |= A
(
~x, f1, . . . , fm, ~X, F1, . . . , Fn

)
where fi stands for fi(~x, ~X) (analogously for Fi). V1(F ∪ {row, F}) is a
conservative extension of V1(F) by corollary 4.77. Therefore

V1(F) |= A
(
~x, f1, . . . , fm, ~X, F1, . . . , Fn

)
and we are done.

The following corollary follows immediately from the above witnessing
theorem.

Corollary 4.96. Every number or set function that is Σ1
1-definable in V1 is

in FP.

And together with the lower bound of V1 (theorem 4.79) we obtain our
main result.

Corollary 4.97 (V1 characterises FP). The Σ1
1-definable functions of V1

are exactly the polynomial time computable functions FP.

And we can strengthen the above using Parikh’s theorem 4.49.

Corollary 4.98. The ΣB
1 -definable functions of V1 are exactly the polyno-

mial time computable functions FP.
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