
The
Basic Feasible Functionals

in
Bounded Arithmetic

Diplomarbeit

der Philosophisch-naturwissenschaftlichen

Fakultät der Universität Bern

vorgelegt von

Simone Liniger

2008

Leiter der Arbeit: Prof. Dr. Thomas Strahm,

Institut für Informatik und

Angewandte Mathematik der Universität Bern

Abstract

The aim of this work is to elaborate the proof of the following main theorem,
which was introduced by Aleksandar Ignjatovic and Arun Sharma in their
paper ”Some Applications of Logic to Feasibility in Higher Types” from
2004:

The class BFF of the Basic Feasible Functionals is exactly

the class of Σb
1 provably total functions of S1

2.

That sounds interesting at first glance, but doesn’t have any meaning for
us, if we are not familiar with contained notions such as ”Basic Feasible
Functionals”, ”Σb

1 provably total” or ”S1
2”. Well, better so, since this work

would be nearly boring for us, if we already knew about those mentioned
terms:
Because the first section inter alia contains an explicit introduction of the
Basic Feasible Functionals and their features.
In the second section we introduce four second order theories, among other
things S1

2, which build the main tools for the proof of the above main theo-
rem.
The third section finally contains the main theorem and its proof.
Now, before rushing into the details, we want to know about the main as-
pects of this work to keep a rough overview. In this connection, let us firstly
say some words about feasibility, which is an important facet, and secondly
about our implementation of logic:
For something to be feasibly computable, it must be computable in practice
in the real world, not merely effectively computable in the sense of being re-
cursively computable. We already know, that functions are considered to be
feasibly computable, if they are computable on a Turing machine in polyno-
mial time. While this formalisation of the notion of a feasibly computable
function is commonly accepted, there is no similar agreement in relation
to the feasibility of functionals*. Kurt Mehlhorn introduced one possible
paradigm for the feasibility of type-2 functionals** by extending Alan Cob-
ham’s definition of feasible functions from 1964. Thereafter, Mehlhorn’s
class of functionals was studied by Mike Townsend, who calls the same class
Poly. This name clearly refers to the fact, that the functionals contained in
Poly are computable in polynomial time.
About the same time Stephen Cook and Bruce Kapron gave an oracle Tur-

1

ing machine model characterization of Mehlhorn’s class and named it Basic
Feasible Functionals, abbreviated BFF .
Now, let us say some words about our implementation of logic. A special
aspect here is, that our proofs are based on essential applications of logic.
We introduce a weak fragment of second order arithmetic with second order
variables ranging over type-1 functionals which suitably characterizes the
Basic Feasible Functionals. This characterization is a second order exten-
sion of Samuel Buss’s characterization of the polynomial time computable
functions.

Last but not least we want to mention that the two lectures ”Introduction
into Theoretical Computer Science” and ”Logic and Computer Science” are
assumed here.

* Functionals are functions which in turn take functions as arguments.

** A type-2 functional takes tupels, containing total functions from N to N and
natural numbers, as arguments.

Acknowledgements.
I am very grateful to Prof. Dr. Thomas Strahm, and also to Dr. Dieter
Probst, for their guidance, suggestions and useful discussions. I also want
to thank to my boyfriend Samuel Gutmann, to my friends Nora Nussbaum,
Diana Fagherazzi, Dr. Lolin Cuenca and to my family, especially to my
parents Katharina and Leo Liniger-Blaser for their mental support.

2

Contents

1 Introduction 5
1.1 Feasible Functions . 5

1.1.1 Theorem (Cobham) 5
1.1.2 Definition (composition) 5
1.1.3 Definition (limited recursion on notation) 6
1.1.4 Definition (limited recursion on notation*) 6

1.2 Basic Feasible Functionals . 7
1.2.1 Definition (Functional-types) 7
1.2.2 Definition (Rank (k,l)) 8
1.2.3 Definition (Basic Feasible Functionals BFF) 9
1.2.4 Theorem . 9
1.2.5 Definition (functional composition) 10
1.2.6 Definition (expansion) 10
1.2.7 Definition (functional substitution) 10
1.2.8 Definition (limited recursion on notation) 11
1.2.9 Definition (limited recursion on notation*) 11
1.2.10 Definition (Norm Functional) 12
1.2.11 Definition (Second Order Polynomials) 13
1.2.12 Definition (Polynomially Bounded Recursion On No-

tation with the Bound Q) 13
1.2.13 Theorem (Ignjatovic and Sharma [2002]) 14
1.2.14 Definition (multiple limited recursion on notation) . . 14
1.2.15 Theorem (Kapron and Cook [1996]) 14
1.2.16 Theorem (Mehlhorn [1976]) 15
1.2.17 Theorem (Kapron and Cook [1996]) 16
1.2.18 Definition (Computable in Polynomial Time) 16
1.2.19 Theorem (Ignjatovic and Sharma [2002]) 16

1.3 Logic . 17
1.3.1 Tait-Calculus . 17
1.3.2 Preface . 19

1.4 Formulas . 19
1.5 Notation . 21

2 Fragments of Second Order Arithmetic 22
2.1 The Second Order Formal Theory S1

2 22
2.1.1 The Language L2

B of S1
2 22

2.1.2 The Axioms of S1
2 . 23

2.1.3 The Induction-Schema of S1
2 25

2.1.4 Definition (Σb
1-definability in S1

2) 26
2.2 The second order theory Σb

1 − PIND 26
2.2.1 The Language B of Σb

1 − PIND 27
2.2.2 The Axioms of Σb

1 − PIND 28

3

2.2.3 The Induction-Schema of Σb
1 − PIND 29

2.3 The second order theory n− Σb
1 − PIND 29

2.3.1 The Language B of n− Σb
1 − PIND 29

2.3.2 The Axioms of n− Σb
1 − PIND 30

2.3.3 The Induction-Rule of n− Σb
1 − PIND 30

2.3.4 The rank rnn−Σb
1−PIND

(α) of a B-formula α 31
2.3.5 The reduction Lemma for n− Σb

1 − PIND 31
2.3.6 The cut elimination theorem for n− Σb

1 − PIND . . . 32
2.4 The second order theory QF − PIND 33

2.4.1 The Language B of QF − PIND 33
2.4.2 The Axioms of QF − PIND 33
2.4.3 The Induction-Rule of QF − PIND 33
2.4.4 The rank rnQF−PIND(α) of a B-formula α 34
2.4.5 The reduction Lemma for QF − PIND 34
2.4.6 The cut elimination theorem for QF − PIND 34
2.4.7 Lemma . 35
2.4.8 Theorem . 40
2.4.9 Theorem . 41
2.4.10 Theorem (The ∃-Inversion for QF -PIND) 43

3 Main Theorem 52
3.1 Theorem . 52
3.2 Lemma . 64
3.3 Main Theorem . 70

4

1 Introduction

1.1 Feasible Functions

As already mentioned in the Abstract, we say that a function is feasibly
computable, if it is computable on a Turing machine in polynomial time.
Now, Cobham established a fundamental result, which is formulated in the
following theorem 1.1.1 and builds the headstone of Townsend’s definition
1.2.3 of the Basic Feasible Functionalsmore below. We exclusively operate
on natural numbers, which are represented in the unbounded case by the
letters u, v and w and in the bounded case by x, y and z respectively. We
as well receive natural numbers by operating on them with terms, functions
or functionals.

1.1.1 Theorem (Cobham)

Functions which are computable on a Turing machine in polynomial
time are exactly functions which can be obtained from the basic
functions:

O(u) = 0,
S0(u) = 2u,
S1(u) = 2u+ 1,

P rni (u1, . . . , un) = ui,

Smash(u, v) = u]v = 2|u|·|v|,

by using composition (see definition 1.1.2) and limited recursion on
notation (see definition 1.1.3).

1.1.2 Definition (composition)

Let f be a function.
Then f is defined from g1, . . . , gl and h by composition if for all ~u:

f(~u) = h(~u, g1(~u), . . . , gl(~u)).

5

1.1.3 Definition (limited recursion on notation)

Let f be a function.
Then f is defined from g, h0, h1 and k by limited recursion on notation,
if for all ~u, v:

f(~u, 0) = g(~u), (1)
f(~u, 2v) = h0(~u, v, f(~u, v)), v > 0 (2)

f(~u, 2v + 1) = h1(~u, v, f(~u, v)), (3)
|f(~u, v)| ≤ |k(~u, v)|, (4)

where |f(~u, v)| = |w| stands for the length of the binary representation
of the natural number w, so

|w| = dlog2(w + 1)e.

We replace the above schema 1.1.3 of limited recursion on notation by the
following schema 1.1.4 of limited recursion on notation*, where equation
(6) combines the above equations (2) and (3), and condition (7) replaces
condition (4).

1.1.4 Definition (limited recursion on notation*)

Let f be a function.
Then f is defined from g and h by limited recursion on notation* if
for all ~u, v:

f(~u, 0) = g(~u), (5)

f(~u, v) = h(~u, v, f(~u, b1
2
vc)), (6)

|f(~u, v)| ≤ q(|~u|, |v|), (7)

where q is a polynomial with natural coefficients.

It is easy to see that Cobham’s theorem stays the same under application of
this new schema 1.1.4 of limited recursion on notation* in place of schema
1.1.3 of limited recursion on notation.

6

1.2 Basic Feasible Functionals

Before delving into the area of feasible functionals, we have to read some
general definitions concerning functionals. In the following definition 1.2.1
we see how the type of a functional, to which we have referred in the Ab-
stract, is defined:

1.2.1 Definition (Functional-types)

The set of types is defined inductively as follows:

(i) 0 is a type,

(ii) (δ → τ) is a type, if δ and τ are types.

We denote the set of functionals of type τ by Fn(τ).
Fn(τ) is defined inductively as follows:

(i) Fn(0) = N,

(ii) Fn(δ → τ) = {F | F : Fn(δ)→ Fn(τ)}.

After the above definition 1.2.1 it is easy to show that every type has a
unique normal form:

δ = τ1 → · · · → τk → 0,

where the missing parantheses are put in with association to the right. Hence
a functional F of type τ is considered in a natural way as a function of
variables X1, . . . , Xk with Xi ranging over Fn(τi), and returning a natural
number value:

F (X1)(X2) . . . (Xk) = F (X1, . . . , Xk).

7

Hence

A type-0 functional (or function) is a constant c ∈ N.

A type-1 functional (or function) is a total mapping from N to N. We will
denote

the set of all such functionals resp. functions by NN.

A type-2 functional is a total mapping from (NN)k × Nl to N, for some
k, l ∈ N.

And so on. . .

We concentrate on type-2 functionals in this work, for which the arguments
are tupels containing type-0 and type-1 functionals.

For type-≥ 3 functionals there exist several attempts to define polynomial
time objects, but there is still no general agreement in the definition of poly-
nomial time computability for them.

1.2.2 Definition (Rank (k,l))

A function F : (NN)k × Nl → N is called a type-2 functional of rank
(k, l).

We are enough prepared now to read Townsend’s definition of the Basic
Feasible Functionals. He considered them as the least class of functionals,
which together with the polynomial time computable functions contains
the Application Functional Ap, and which is closed under expansion (see
definition 1.2.6), functional composition (see definition 1.2.5), functional
substitution (see definition 1.2.7) and limited recursion on notation (see
definition 1.2.8). Townsend has also shown that the scheme of functional
substitution is redundant and so can be omitted. Thus we introduce the
following appropriately modified definition 1.2.3.

8

1.2.3 Definition (Basic Feasible Functionals BFF)

The class BFF of Basic Feasible Functionals is the least class of
functionals containing the following initial functions:

O(u) = 0,
S0(u) = 2u,
S1(u) = 2u+ 1,

P rni (u1, . . . , un) = ui,

Smash(u, v) = u]v = 2|u|·|v|,

and the Application Functional:

Ap(f, u) = f(u),

which is closed under functional composition (see definition 1.2.5),
expansion (see definition 1.2.6) and limited recursion on notation (see
definition 1.2.8).

As we see, the class of Basic Feasible Functionals BFF extends the class
of feasible functions (see theorem 1.1.1) in a minimal way. There are only
two differences:

The first one is addition of the Application Functional Ap(f, u) to the set
of basic functions. And the second difference is addition of expansion (see
definition 1.2.6) to the set of closure conditions. All the rest coincides com-
pletely.
In any reasonable model of feasibility in higher types, such a Basic Feasible
Functional must be considered feasible. The only functions which belong to
the class of the BFF ’s are naturally just the polynomial time computable
functions as we see in the following theorem 1.2.4.

1.2.4 Theorem

A type-1-functional F : Nk → N is basic feasible iff it is polynomial time
computable.

9

The following definitions for type-2 functionals are second order extensions
of the corresponding definitions for type-1 functionals. The primal difference
are certainly the arguments, which now are tupels contaning total functions
from N to N and natural numbers:

1.2.5 Definition (functional composition)

Let F be a type-2 functional.
Then F is defined from G1, . . . , Gl, H by functional composition if:

F (~f, ~u) = H(~f, ~u,G1(~f, ~u), . . . , Gl(~f, ~u)),

for all ~f, ~u.

1.2.6 Definition (expansion)

Let F be a type-2 functional.
Then F is defined from G by expansion if:

F (~f,~g, ~u,~v) = G(~f, ~u),

for all ~f,~g, ~u,~v.

1.2.7 Definition (functional substitution)

Let F be a type-2 functional.
Then F is defined from G1, . . . , Gl, H by functional substitution, if:

F (~f, ~u) = H(~f, ~u, λv.G1(~f, ~u, v), . . . , λv.Gl(~f, ~u, v)),

for all ~f, ~u, v.

10

1.2.8 Definition (limited recursion on notation)

Let F be a type-2 functional.
Then F is defined from G, H0, H1 and K by limited recursion on
notation, if:

F (~f, ~u, 0) = G(~f, ~u), (1)

F (~f, ~u, 2v) = H0(~f, ~u, v, F (~f, ~u, v)), v > 0, (2)

F (~f, ~u, 2v + 1) = H1(~f, ~u, v, F (~f, ~u, v)), (3)

|F (~f, ~u, v)| ≤ |K(~f, ~u, v)|, (4)

for all ~f, ~u, v.

For our further work we analogously as in the first subsection replace the
schema 1.2.8 of limited recursion on notation by the following schema 1.2.9
of limited recursion on notation*, where again equation (6) replaces the
above equations (2) and (3), and condition (7) stands in place of condition
(4). Condition (4) is equivalent to the condition F (~f, ~u, v) ≤ K*(~f, ~u, v) for
K*(~f, ~u, v) = 1]K(~f, ~u, v) .− 1 = 2|K(~f,~u,v)| .−1.

1.2.9 Definition (limited recursion on notation*)

Let F be a type-2 functional.
Then F is defined from G,H,K by limited recursion on notation*, if
for all ~f, ~u, v:

F (~f, ~u, 0) = G(~f, ~u), (5)

F (~f, ~u, v) = H(~f, ~u, v, F (~f, ~u, bv
2
c)), v > 0, (6)

F (~f, ~u, v) ≤ K(~f, ~u, v). (7)

11

And again we are allowed to replace the schema 1.2.8 of limited recursion
on notation by the new schema 1.2.9 of limited recursion on notation* in
the definition 1.2.3 of the BFF ’s.

The growth rate of a Basic Feasible Functional clearly cannot be ma-
jorised by a first order polynomial. Thus we can’t have simple analogues
for schemas involving polynomial bounds as for feasible functions. Also the
machine models of feasibility in higher types differ basically from those of
first order feasibility.

And that’s why we need the following definitions introduced by Kapron and
Cook[1996].

1.2.10 Definition (Norm Functional)

The functional of type NN → NN, defined such that

f 7→ |f |,

where
|f |(u) = max|v|≤u|f(v)|,

is called the norm functional.
The function |f | is called the norm of the function f .

Kapron and Cook have shown that the functional of type (1, 1) such that
〈f, u〉 7→ |f |(|u|) is not basic feasible and that it neighter can be majorised
by any Basic Feasible Functional.

They also introduced the class of Second Order Polynomials (see definition
1.2.11), which limit the growth rate of the Basic Feasible Functionals.
But surprisingly, as we will see in the following definition 1.2.11, Second
Order Polynomials themselves are not basic feasible. This fact is a conse-
quence of the above mentioned result of Kapron and Cook.

12

1.2.11 Definition (Second Order Polynomials)

Let x0, x1, . . . and f0, f1, . . . be sets of first and second order variables
respectively; then the set of Second Order Polynomials in |f0|, |f1|, . . .
and |x0|, |x1|, . . . is defined inductively as the least set of terms of the
language LP containing constants c for each natural number n ∈ N and
all terms |x0|, |x1|, . . . and which satifies the following closure condition:
If P andQ are second order polynomials and fi is a second order variable,
then P +Q, P ·Q and |fi|(P) are also second order polynomials.

Second order polynomials play quite the same role which first order poly-
nomials play for feasible functions of type Nk → N. But to repeat the major
difference between them: While first order polynomials are feasibly com-
putable functions themselves, Second Order Polynomials are not Basic
Feasible Functionals.

We can now state the best possible second order analogues of the corre-
sponding first order definition and theorem:

1.2.12 Definition (Polynomially Bounded Recursion On Notation
with the Bound Q)

Let Q(|f |, |~u|) be a second order polynomial and let G(f, ~u) and
H(f, ~u, z, v) be two Basic Feasible Functionals. Assume that the func-
tional F (f, ~u, v) satisfies

F (f, ~u, 0) = G(f, ~u), (1)

F (f, ~u, v) = H(f, ~u, v, F (f, ~u, bv
2
c)), v > 0, (2)

|F (f, ~u, v)| ≤ Q(|f |, |~u|, |v|). (3)

Then we say that F is defined from functionals G, H by Polynomially
Bounded Recursion On Notation with the Bound Q.

13

1.2.13 Theorem (Ignjatovic and Sharma [2002])

Assume that the functional F (f, ~u, v) is defined from the function-
als G(f, ~u) and H(f, ~u, z, v) by Polynomially Bounded Recursion On
Notation with the Bound Q(|f |, |~u|, |v|). Then F (f, ~u, v) is a Basic
Feasible Functional.

We need the following definition 1.2.14 for the second order theories
Σb

1-PIND, n − Σb
1-PIND and QF -PIND, which will be introduced later

in the second section.

1.2.14 Definition (multiple limited recursion on notation)

Let Fi for 1 ≤ i ≤ n be type-2 functionals, and let Gi, Hi and Ki for
1 ≤ i ≤ n be Basic Feasible Functionals.
Then Fi are defined by multiple limited recursion on notation from
Gi, Hi and Ki, if:

Fi(~f, ~u, 0) = Gi(~f, ~u),

Fi(~f, ~u, v) = Hi(~f, ~u, v, F1(~f, ~u, b1
2
vc), . . . , Fn(~f, ~u, b1

2
vc)),

F1(~f, ~u, v) ≤ K1(~f, ~u, v),

Fi(~f, ~u, v) ≤ Ki(~f, ~u, v, F1(~f, ~u, u), . . . , Fi−1(~f, ~u, v)), for 2 ≤ i ≤ n,

for all ~f, ~u, v.

As we see, limited recursion on notation* (see definition 1.2.9) is a special
case of the just introduced multiple limited recursion on notation, namely
the case n = 1.

1.2.15 Theorem (Kapron and Cook [1996])

Basic Feasible Functionals are closed for multiple limited recursion
on notation.

14

As in the first subsection of this section relating to feasible functions we
analogously turn to the Turing machine model characterization of Basic
Feasible Functionals. We use the usual model for computability with
Oracle Turing Machines OTM .
Function inputs are presented using oracles corresponding to the input func-
tions. Such oracles are queried using separate ”write-only oracle input
tapes” and ”read-only oracle output tapes”, while the machine is in the
”oracle query state”.
To query function input f at the value x, x is written in binary notation on
the oracle input tape associated with f , and the corresponding oracle query
state is entered. After entering the oracle state which corresponds to f , the
value f(x) appears on the oracle output tape associated with f , the oracle
input tape is then erased and both the write head of the oracle input tape
and the read head of the oracle output tape are placed at the corresponding
initial cells of the tapes.
Thus, iterations of the form f(f(. . . f(x) . . .)) cannot be computed without
the machine having to copy the intermediate results from the oracle output
tape to the oracle input tape.
In general, there are two possible conventions for accounting for the running
time of an oracle call:
In Mehlhorn’s model (see 1.2.16), an oracle call has unit cost, while in the
Kapron and Cook model (see 1.2.17), the oracle call described above has a
cost of |f(x)| time steps.
Mehlhorn [1976] and Kapron and Cook [1996] proved the following theorems
1.2.16 and 1.2.17:

1.2.16 Theorem (Mehlhorn [1976])

A type-2-functional F (~f, ~u), where ~f ∈ (NN)k and ~u ∈ Nl is basic
feasible if and only if there exists an Oracle Turing Machine M with
oracles for functions ~f and a Basic Feasible Functional K(~f, ~u) such
that M computes F (~f, ~u) and the running time T (~f, ~u) with a unit cost
for each oracle query, satisfies

∀~f∀~x (T (~f, ~x) ≤ K(~f, ~x)).

15

1.2.17 Theorem (Kapron and Cook [1996])

A type-2-functional F (~f, ~u), where ~f ∈ (NN)k and ~u ∈ Nl is basic
feasible if and only if there exists an Oracle Turing Machines M with
oracles for functions ~f and a second order polynomial P (|~f |, |~u|) such
that M computes F (~f, ~u) and the running time T (~f, ~u) with |fi(z)| as
the cost for an oracle query of fi ∈ ~f at oracle input value z, satisfies

∀~f∀~x (T (~f, ~x) ≤ P (|~f |, |~x|)).

And Ignjatovic and Sharma combined the best features of the just intro-
duced theorems 1.2.16 and 1.2.17:

1.2.18 Definition (Computable in Polynomial Time)

A functional F (~f, ~u) is computable in polynomial time if there exists an
Oracle Turing Machine M with oracles for functions ~f and a second
order polynomial P (|~f |, |~u|) such that M computes F (~f, ~u) and for all
~f, ~u the running time T (~f, ~u) obtained by counting each oracle query as
a single step regardless of the size of the oracle output, satisfies

T (~f, ~u) ≤ P (|~f |, |~u|).

1.2.19 Theorem (Ignjatovic and Sharma [2002])

A functional F (~f, ~u) is a Polynomial T ime Computable Functional if
and only if it is a Basic Feasible Functional.

16

1.3 Logic

We have seen in the Abstract, that all our proofs are based on the appli-
cation of essential tools of logic. That’s why we devote to the field of logic
in this subsection. The notation of the Hilbert-Calculus is assumed, but we
give among other things a short introduction of the Tait-Calculus, which we
also already know from the lecture ”Logic and Computer Science”.
The languages of the theories we are going to work with, will be introduced
in the second section. Here we only give a short ”reminder” of the axioms
and rules of inference of the Tait-Calculus.

1.3.1 Tait-Calculus

In the Tait-Calculus, we define the idea of the provability for finite sets of
formulas. We denote these sets by the letters Γ,∆, where the comma stands
for disjunction. Hence Γ,∆, α, δ means Γ ∪∆ ∪ {α} ∪ {δ}.

1. The axioms of TA:

Every set of formulas, which can be written as

Γ, α,¬α,

is an axiom of TA, where α is an arbitrary literal.

2. The rules of inference of TA are:

(a) ”Conjunction”:

Γ, α0 Γ, α1

Γ, α0 ∧ α1
(∧),

17

(b) ”Disjunction”:

Γ, αi
Γ, α0 ∨ α1

(∨),

where i ∈ {0, 1}. In addition the order is not relevant,

(c) ”Universal Quantifier”:

Γ, α(u)
Γ, ∀xα(x)

(∀),

where the free variable u must not be contained in Γ, ∀xα(x),

(d) ”Existential Quantifier”:

Γ, α(t)
Γ, ∃xα(x)

(∃),

where t is a term,

(e) ”Cut”:

Γ, α Γ, ¬α
Γ

(♦),

where the rank of the cut accords to the rank of its cut-formulas
α resp. ¬α.

We are going to see in the second section, how the rank of a formula is
defined.

18

1.3.2 Preface

Closing this short logic-subsection 1.3, we turn to a notation which will be
used frequently in the second and third section and which we should also
already know from the lecture ”Logic and Computer Science”:

Let Th stand for an arbitrary theory and let Γ represent an arbitrary finite
set of formulas. Then we say that:

1. Th Γ, if Γ can be derived from Th.

2. Th n Γ, if there exists a derivation of Γ in the theory Th, whose
length is at most n.

3. Th r Γ, if the rank of every cut in the derivation of Γ in the theory
Th is less than r.

4. Th n

r Γ, if there is a derivation of Γ in the theory Th, whose depth is
at most n and the rank of every cut in it is less than r.

1.4 Formulas

In this subsection 1.4 we inter alia explain the complexity of those formulas
we will frequently need in our proofs. So if the complexity of a formula is
not commented cohesively, we can look the definition up here.

To get a clearer representation later in our proofs, we also define the following
equivalences concerning bounded formulas:

1. (∀x ≤ t)α :≡ ∀x(x ≤ t→ α),

2. (∃x ≤ t)α :≡ ∃x(x ≤ t ∧ α),

3. (∀x < |t|)α :≡ ∀x(x < |t| → α),

4. (∃x < |t|)α :≡ ∃x(x < |t| ∧ α),

5. s < t :≡ s ≤ t ∧ ¬(s = t).

19

The hierarchy of bounded formulas (e.g.
∑b

i ,
∏b
i) of the second order arith-

metic is obtained from the corresponding hierarchies of bounded formulas
of the first order bounded arithmetic. That means by counting the alterna-
tions of bounded quantifiers ignoring sharply bounded ones.
After the above introduced equivalences we have:

1. Σb
0 = Πb

0 is the set of formulas all of whose quantifiers are sharply
bounded.

2. Σb
k+1 is defined inductively by:

(a) Σb
k+1 ⊆ Πb

k,

(b) If α is in Σb
k+1 then so are (∃x ≤ t)α and (∀x ≤ |t|)α,

(c) If α, β ∈ Σb
k+1 then α ∧ β and α ∨ β are in Σb

k+1,

(d) If α ∈ Σb
k+1 and β ∈ Πb

k+1 then ¬β and β → α are in Σb
k+1.

We allow the Application Functional Ap(f, u) = f(u) to appear in the
atomic formulas.

An open formula θ is a formula without any quantifiers.

A Σ0
1-formula is a formula consisting of one existential quantifier followed

by an open formula.

An n−Σb
1 formula is composed of at most n bounded existential quantifiers

(no sharply bounded universal quantifiers), followed by an open formula θ.

20

1.5 Notation

If there isn’t any other declaration, we use the following notation:

1. Constants: c, i, j, k, l, m, n, r,

2. Free variables: a, b, u, v, w,

3. Bounded variables: d, e, q, x, y, z,

4. Type-1 Functionals: f , g, h,

5. Type-2 Functionals: F , G, H, K, T ,

6. Terms: s, t,

7. Formulas: Θ, Ψ, α, z, δ, θ, φ, ψ,

8. Sets of formulas: Γ, ∆.

21

2 Fragments of Second Order Arithmetic

In this section we give an introduction of the logic tools we need to prove
our main theorem in the third and last section:
In the first subsection 2.1 we introduce the second order theory S1

2 and the
definition of ”Σb

1-definable in S1
2” or ”provably total in S1

2” respectively.
In the following subsections 2.2, 2.3 and 2.4 we introduce three second order
theories Ψ − PIND, where Ψ stands for the complexity of the formula in
the induction schema (Ψ − PIND). The first theory is Σb

1 − PIND, the
second one is n− Σb

1 − PIND and the third and last one is QF − PIND,
where QF is a shortcut of Quantor-Free. So the formulas in the induction
schema (QF − PIND) are open formulas.

2.1 The Second Order Formal Theory S1
2

The formal theories Si2, i ∈ N, are second order extensions of Buss’s Si2,
i ∈ N. In this work we concentrate on the theory S1

2, i = 1, where one sort
of variables u, v, w range over the set of type-0 functionals (constants) and
the second sort of variables f, g, h range over the set of type-1 functionals
(total functions from N to N). Our aim is to characterize type-2 feasible
functionals in the same way how Buss characterized polynomial time com-
putable functions with the theory S1

2 (see Buss[1986]).

2.1.1 The Language L2
B of S1

2

The theories Si2 are formulated in the following language L2
B:

L2
B = {≤, 0, 1, +, ·, |u|, bu

2
c,], u � v, Ap(f, u)}.

As we see, L2
B extends the language of Buss’s theories Si2 only by two sym-

bols, firstly by u � v:

u � v = b u

2|u|−v
c,

22

and secondly by the Application Functional Ap(f, u):

Ap(f, u) = f(u).

Besides, the two languages coincide exactly.

u � v produces the number of the first more significant v bits of u in the
binary representation of u, for example:

134 � 6 ≡ 100001, where 134 ≡ 10000110.

2.1.2 The Axioms of S1
2

The set of axioms of the second order theories Si2 firstly contains the BASIC
axioms, which build the set of axioms of Buss’s first order theories Si2, and
secondly some axioms for u � v.

Well then, the BASIC-Axioms are a finite set of 32 open axioms, defining
simple properties of the function and relation symbols:

1. v ≤ u → S0(v) ≤ S0(u),

2. u 6= S0(u),

3. 0 ≤ u,

4. (u ≤ v ∧ u 6= v) ↔ (S0(u) ≤ v),

5. u 6= 0 → 2 · u 6= 0,

6. u ≤ v ∨ v ≤ u,

7. (u ≤ v ∧ v ≤ u) → u = v,

8. (u ≤ v ∧ v ≤ w) → u ≤ w,

23

9. |0| = 0,

10. u 6= 0 → (|2 · u| = S0(|u|) ∧ |S0(2 · u)| = S0(|u|)),

11. |S0(0)| = S0(0),

12. u ≤ v → |u| ≤ |v|,

13. |u]v| = S0(|u| · |v|),

14. 0]u = S0(0),

15. u 6= 0 → [1](2 · u) = 2 · (1]u) ∧ 1](S0(2 · u)) = 2 · (1]u)],

16. u]v = v]u,

17. |u| = |v| → u]w = v]w,

18. |u| = |u| + |v| → u]v = (u]v) · (v]v),

19. u ≤ u + v,

20. u ≤ v ∧ u 6= v → S0(2 · u) ≤ 2 · v ∧ S0(2 · u) 6= 2 · v,

21. u + v = v + u,

22. u + 0 = u,

23. u + S0(v) = S0(u+ v),

24. (u+ v) + w = u+ (v + w),

25. u+ v ≤ u+ w ↔ v ≤ w ,

26. u · 0 = 0,

27. u · S0(v) = (u · v) + u,

28. u · v = v · u,

29. u · (v + w) = (u · v) + (u · w),

30. u ≥ S0(0) → (u · v ≤ u · w ↔ v ≤ w),

31. u 6= 0 → (|u| = S0(|bu2 c|),

32. u = bv2c ↔ (2 · u = v ∨ S0(2 · u) = v).

24

And finally, relating to u � v, we add the following four axioms:

1. u � 0 = 0,

2. u ≥ 1 → u � 1 = 1,

3. v < |u| → u � v = bu�(v+1)
2 c,

4. v ≥ |u| → u � v = u.

2.1.3 The Induction-Schema of S1
2

Theories Si2 are finally obtained from the extended BASIC by adding eihter
one of the following two induction schemas for

∑b
i formulas:

(Σb
i−PIND) : (A(~f, ~u, 0) ∧ (∀x(A(~f, ~u, bx2 c)→ A(~f, ~u, x)))) → ∀xA(~f, ~u, x),

(Σb
i−LIND) : (A(~f, ~u, 0) ∧ (∀x(A(~f, ~u, x)→ A(~f, ~u, x+1)))) → ∀xA(~f, ~u, |x|).

We say “either one of”, because the two theories (BASIC +
∑b

i −PIND)
and (BASIC +

∑b
i −LIND) are equivalent, so we have

(BASIC +
∑b

i -PIND) ≡ (BASIC +
∑b

i −LIND).

(For the proof see Buss[1986]. It goes equally easily by means of the set of
axioms in 2.1.2 concerning u � v.)

To make reading more comfortable, from now on we set:

(i) ~ϕ = ~f, ~u,

(ii) ~ξ = ~f, ~x,

where ~ϕ represents any unbounded, ~ξ any bounded tupel of function and
number variables.

25

Consequently we adjust the above introduced induction schemas on our new
notation:

(
∑b

i -PIND): (A(~ϕ, 0) ∧ (∀x(A(~ϕ, bx2 c)→ A(~ϕ, x)))) → ∀xA(~ϕ, x),

(
∑b

i -LIND): (A(~ϕ, 0) ∧ (∀x(A(~ϕ, x)→ A(~ϕ, x+1)))) → ∀xA(~ϕ, |x|).

In the end of this subsection we turn to the following definition 2.1.4 of the
Σb

1-definability of a functional F in the theory S1
2. As alluded in the be-

ginning of this section we also use the term ”provably total in S1
2” as a

supposably rather known synonyme of ”Σb
1-definable in S1

2”.
The definition 2.1.4 is the second order extension of the corresponding first
order definition in Buss[1986]:

2.1.4 Definition (Σb
1-definability in S1

2)

A functional F is Σb
1-definable in the theory S1

2, if there exists a
Σb

1 formula ΨF (~ϕ, v), such that

S1
2 ∀~ξ ∃!y ΨF (~ξ, y),

where

〈Nk, (NN)m〉 |= ∀~ξ ΨF (~ξ, F (~ξ)).

2.2 The second order theory Σb
1 − PIND

The second order theory Σb
1 − PIND is obtained from the just introduced

theory S1
2 by expanding the language L2

B of S1
2 with new functional symbols

and by adding recursion equations to the set of axioms of S1
2, so that the

resulting set is closed under multiple limited recursion on notation (see
definition 1.2.14). Moreover the theory Σb

1−PIND expands S1
2 by allowing

functional symbols to appear in the induction schema.

26

2.2.1 The Language B of Σb
1 − PIND

The language B of the theory Σb
1 − PIND expands the language L2

B of S1
2

with new functional symbols.

Hence B firstly contains the in the meantime well-known symbols:

≤, 0, 1, +, ·, |u|, bu2 c,], u � v,

which come from the language L2
B of S1

2, and secondly the following induc-
tively defined functional symbols:

1. Every functional symbol of L2
B is a functional symbol of B.

2. O is a functional symbol of rank (0, 1) of B.

3. S0 is a functional symbol of rank (0, 1) of B.

4. S1 is a functional symbol of rank (0, 1) of B.

5. Sg is a functional symbol of rank (0, 1) of B.

6. Nadi is a functional symbol of rank (0, 2) of B.

7. Smash is a functional symbol of rank (0, 2) of B.

8. Min is a functional symbol of rank (0, 2) of B.

9. Max is a functional symbol of rank (0, 2) of B.

10. Prni is a functional symbol of rank (0, n) of B.

11. Ap is a functional symbol of rank (1, 0) of B.

12. If G is a functional symbol of rank (k, l) of B, then so is the functional
symbol Expm,n(G) of rank (k +m, l + n).

13. If H is a functional symbol of rank (k, l+n) of B, and G1, . . . , Gl are
functional symbols each of rank (k, l) of B, then so is the functional
symbol Comp(H,G1, . . . , Gl) of rank (k, l).

14. If, for 1 ≤ i ≤ n, Gi are functional symbols of rank (k, l) of B, and Hi

are functional symbols of rank (k, l+n+1) of B, and Ki are functional
symbols of rank (k, l + i) of B, then so is
Reci(G1, . . . , Gn, H1, . . . ,Hn,K1, . . . ,Kn) of rank (k, l + 1).

27

Accessory to 12.:
To keep a clear notation, we write Exp in place of Expm,n.

2.2.2 The Axioms of Σb
1 − PIND

First of all there are the BASIC-Axioms (see 2.1.2), secondly the following
Equality-Axioms:

(a) s = s,

(b) s = t → (α(s)→ α(t)),

and third of all the BASIC2-Axioms, which we define as follows for all Basic
Feasible Functionals:

1. O(u) = 0,

2. S0(u) = 2u,

3. S1(u) = 2u+ 1,

4. Sg(u) = u .− (u .− 1)

5. Nadi(u, v) = u .− v,

6. S1(u, v) = u]y = 2|u|·|v|,

7. Min(u, v) = Sg(u .− v) · v + Sg(v .− u) · u

8. Max(u, v) = Sg(u .− v) · u+ Sg(v .− u) · v

9. Prni (u1, . . . , un) = ui,

10. Ap(f, u) = f(u),

11. Exp(G)(~f,~g, ~u, ~y) = g(~ϕ),

12. Comp(H,G1, . . . , Gl)(~~ϕ) = H(~ϕ,G1(~ϕ), . . . , Gl(~ϕ)),

13. Reci(~G, ~H, ~K)(~ϕ, 0) = Gi(~ϕ),

(u ≥ 1) → Reci(~G, ~H, ~K)(~ϕ, u) = Min(s, t), where

s ≡ Hi(~ϕ, u,Rec1(~G, ~H, ~K)(~ϕ, bu2 c), . . . , Recn(~G, ~H, ~K)(~ϕ, bu2 c)),

t ≡ Ki(~ϕ, u,Rec1(~G, ~H, ~K)(~ϕ, u), . . . , Reci−1(~G, ~H, ~K)(~ϕ, u)),

where ~G = G1, . . . , Gn, ~H = H1, . . . ,Hn and ~K = K1, . . . ,Kn.

28

Because of the fact that all polytime functions belong to the Basic Feasible
Functionals (see theorem 1.2.4), it is obvious that the type-1-functional
Nadi (natural difference) also belongs to the BFF ’s.

2.2.3 The Induction-Schema of Σb
1 − PIND

Finally, we receive the theory Σb
1−PIND by adding the following induction

schema to the above system of axioms. The induction schema (
∑b

1−PIND)
newly allows functionals to appear in it:

(
∑b

1−PIND) : (z(~ϕ, 0)) ∧ ∀x(z(~ϕ), bx2 c)→ z(~ϕ), x)) → ∀xz(~ϕ, x).

Now we are going to introduce the two second order theories n − Σb
1 −

PIND and QF − PIND. In opposition to the previous theories S1
2 and

Σb
1 − PIND, these two won’t be written in the Hilbert-Calculus, but in

the Tait-Calculus (see 1.3.1). The new notation concerns in each case the
axioms and the induction schema, whereas the latter now rather becomes
an induction rule than an axiom.

2.3 The second order theory n− Σb
1 − PIND

As the name of this theory n − Σb
1 − PIND betrays, it only differs in the

complexity of the formula in the induction rule from the above introduced
theory Σb

1 − PIND.

2.3.1 The Language B of n− Σb
1 − PIND

(See 2.2.1).

29

2.3.2 The Axioms of n− Σb
1 − PIND

Firstly there are the Equality-Axioms:

(a) Γ, s = s,

(b) Γ, s 6= t, ¬α(s), α(t),

and secondly the BASIC- respective BASIC2-Axioms:

∆, α,

where ∆ is a set of formulas and α is one of the BASIC- or one of the
BASIC2-Axioms.

2.3.3 The Induction-Rule of n− Σb
1 − PIND

(n−Σb
1−PIND) :

Γ(~ϕ), ψ(~ϕ, 0) Γ(~ϕ), ¬ψ(~ϕ, bv2c), ψ(~ϕ, v))
Γ(~ϕ), ψ(~ϕ, t(~ϕ))

,

where ψ is an n−Σb
1-formula and the free variable v must not be contained

in Γ(~ϕ), ψ(~ϕ, t(~ϕ)).

Before introducing the cut elimination theorem for n−Σb
1−PIND in 2.3.6,

we firstly

turn to the definition of the rank rnn−Σb
1−PIND

(α) of a B-formula α in 2.3.4
and

secondly to the reduction Lemma for n− Σb
1 − PIND in 2.3.5.

30

2.3.4 The rank rnn−Σb
1−PIND

(α) of a B-formula α

We define the rank rnn−Σb
1−PIND

(α) of a B-formula α inductively as fol-
lows:

1. rnn−Σb
1−PIND

(α) = 0,

if α has at most n bounded existential quantifiers and no sharply
bounded

universal quantifiers, else

2. rnn−Σb
1−PIND

(α ∧ δ) =

rnn−Σb
1−PIND

(α ∨ δ) =

sup(rnn−Σb
1−PIND

(α), rnn−Σb
1−PIND

(δ)) + 1.

3. rnn−Σb
1−PIND

(∃xα(x)) =

rnn−Σb
1−PIND

(∀xα(x)) =

rnn−Σb
1−PIND

(α(u)) + 1.

2.3.5 The reduction Lemma for n− Σb
1 − PIND

For all natural numbers m, n and r, for all formulas α with
rnn−Σb

1−PIND
(α) ≤ r, we have:

n− Σb
1 − PIND

m

r Γ, α and n− Σb
1 − PIND

n

r ∆,¬α

=⇒

n− Σb
1 − PIND

m+n

r Γ,∆

So, if we receive a set of formulas after having applied the cut-rule in an
n − Σb

1 − PIND derivation d, it is possible to get the same set of formu-
las without applying the cut-rule in another n−Σb

1 − PIND derivation d′,
whose depth is greater than the depth of d.

31

So, now we are prepared to read the cut elimination theorem 2.3.6 for
n− Σb

1 − PIND:

2.3.6 The cut elimination theorem for n− Σb
1 − PIND

For all natural numbers n and r we have:

n− Σb
1 − PIND

n

r Γ =⇒ n− Σb
1 − PIND

2r(n)

1 Γ

as a consequence of the fact that:

n− Σb
1 − PIND

n

r+1 Γ =⇒ n− Σb
1 − PIND

2n

r Γ,

where 2r(n) is defined inductively as follows:

20(n) := n,

2r+1(n) := 22r(n).

As we see, the just introduced ”cut elimination” is effectively a ”partial cut
elimination”:
We only eliminate those cuts, where the rank of the cut formula is greater
than zero. Hence we don’t apply the cut elimination to induction formulas,
which means to n− Σb

1 formulas.
Therefore the proof of this theorem goes equal to the proof of the cor-
responding result which we know from the lecture ”Logic and Computer
Science”.

32

2.4 The second order theory QF − PIND

The theory QF −PIND again only differs in the complexity of the formula
in the induction rule from the theory Σb

1 − PIND.

2.4.1 The Language B of QF − PIND

(See 2.2.1).

2.4.2 The Axioms of QF − PIND

(See 2.3.2).

2.4.3 The Induction-Rule of QF − PIND

(QF−PIND) :
Γ(~ϕ), θ(~ϕ, 0) Γ(~ϕ), ¬θ(~ϕ, bv2c), θ(~ϕ), v)

Γ(~ϕ), θ(~ϕ, t(~ϕ))
,

where θ is a QF -formula, respectively an open formula and the free variable
v must not be contained in Γ(~ϕ), θ(~ϕ, t(~ϕ)).

The following definition 2.4.4 of the rank rnQF−PIND(α) of a B-formula
α, the reduction Lemma for QF − PIND in 2.4.5 and the cut elimination
theorem for QF − PIND in 2.4.6 correspond to the analogue definition,
Lemma and theorem before in 2.3.4, 2.3.5 and 2.3.6 relating to the theory
n− Σb

1 − PIND:

33

2.4.4 The rank rnQF−PIND(α) of a B-formula α

We define the rank rnQF−PIND(α) of a B-formula α inductively as follows:

1. rnQF−PIND(α) = 0,

if α is an open formula, else:

2. rnQF−PIND(α ∧ δ) =

rnQF−PIND(α ∨ δ) =

sup(rnQF−PIND(α), rnQF−PIND(δ)) + 1.

3. rnQF−PIND(∃xα(x)) =

rnQF−PIND(∀xα(x)) =

rnQF−PIND(α(u)) + 1.

2.4.5 The reduction Lemma for QF − PIND

For all natural numbers m, n and r, for all formulas α with
rnQF−PIND(α) ≤ r, we have:

QF − PIND m

r Γ, α and QF − PIND n

r ∆,¬α

=⇒

QF − PIND m+n

r Γ,∆

2.4.6 The cut elimination theorem for QF − PIND

For all natural numbers n and r we have:

QF − PIND n

r Γ =⇒ QF − PIND 2r(n)

1 Γ

34

as a consequence of the fact that:

QF − PIND n

r+1 Γ =⇒ QF − PIND 2n

r Γ,

where 2r(n) is defined inductively as follows:

20(n) := n,

2r+1(n) := 22r(n).

In the next Lemma 2.4.7 we show that for any open formula θ there exists a
characteristical functional Fθ in B which builds the analogue of the charac-
teristical function we know from the lecture ”Introduction into Theoretical
Computer Science”:

2.4.7 Lemma

Let θ be any open formula of rank (k, l).

Then there exists a functional Fθ(~ϕ) ∈ B, so that

(a) QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1)

and

(b) QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

35

Proof:

Case 1:

θ is of the form s = t, where s and t are terms.
We define Fθ(~ϕ) for all ~ϕ as:

Fθ(~ϕ) = Sg(s(~ϕ) .− t(~ϕ) + t(~ϕ) .− s(~ϕ)),

which directly implies that Fθ is an element of B (see 2.3.1).

(a):

The formula

∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1)

is valid. Hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1).

(b):

The following equivalences can be derived in QF − PIND (we
renounce the proof of this fact):

θ(~ϕ)

↔

s(~ϕ) = t(~ϕ)

↔

s(~ϕ) .− t(~ϕ) + t(~ϕ) .− s(~ϕ) = 0

↔

Sg(s(~ϕ) .− t(~ϕ) + t(~ϕ) .− s(~ϕ)) = 0

↔

Fθ(~ϕ) = 0.

Hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

36

Case 2:

θ is of the form θ0 ∧ θ1.
We define Fθ(~ϕ) for all ~ϕ as:

Fθ(~ϕ) = Max(Fθ0(~ϕ), Fθ1(~ϕ)),

which directly implies that Fθ is an element of B.

(a):

Now

∀~ϕ(Max(Fθ0(~ϕ), Fθ1(~ϕ)) = 0 ∨ Max(Fθ0(~ϕ), Fθ1(~ϕ)) = 1),

hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1).

(b):

The following equivalences can again be derived in QF −PIND:

θ(~ϕ)

↔

θ0(~ϕ) ∧ θ1(~ϕ)

↔

Fθ0(~ϕ) = 0 ∧ Fθ1(~ϕ) = 0

↔

Max(Fθ0(~ϕ), Fθ1(~ϕ)) = 0

↔

Fθ(~ϕ) = 0.

Hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

37

Case 3:

θ is of the form θ0 ∨ θ1.
We define Fθ(~ϕ) for all ~ϕ as:

Fθ(~ϕ) = Min(Fθ0(~ϕ), Fθ1(~ϕ)),

which directly implies that Fθ is an element of B.

(a):

Now

∀~ϕ(Min(Fθ0(~ϕ), Fθ1(~ϕ)) = 0 ∨ Min(Fθ0(~ϕ), Fθ1(~ϕ)) = 1),

hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1).

(b):

And again the following equivalences can be derived in QF −
PIND:

θ(~ϕ)

↔

θ0(~ϕ) ∨ θ1(~ϕ)

↔

Fθ0(~ϕ) = 0 ∨ Fθ1(~ϕ) = 0

↔

Min(Fθ0(~ϕ), Fθ1(~ϕ)) = 0

↔

Fθ(~ϕ) = 0.

Hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

38

Case 4:

θ is of the form ¬θ0.
We define Fθ(~ϕ) for all ~ϕ as:

Fθ(~ϕ) = 1 .− Fθ0(~ϕ),

which directly implies that Fθ is an element of B.

(a):

Now
∀~ϕ(1 .− Fθ0(~ϕ) = 0 ∨ 1 .− Fθ0(~ϕ) = 1),

hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1).

(b):

The following equivalences can again be derived in QF −PIND:

θ(~ϕ)

↔

¬θ0(~ϕ)

↔

Fθ0(~ϕ) = 1

↔

1 .− Fθ0(~ϕ) = 0

↔

Fθ(~ϕ) = 0.

Hence

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

♣

39

The following theorem 2.4.8 corresponds to the theorem ”Definition by
Cases” from the lecture ”Introduction into Theoretical Computer Science”:

2.4.8 Theorem

Let θ be an open formula, for which

QF − PIND θ(t1(~ϕ)), θ(t2(~ϕ)),

where t1(~ϕ), t2(~ϕ) are terms.
Then there exists a functional G(~ϕ) ∈ B, so that

QF − PIND θ(G(~ϕ)).

Proof:

After Lemma 2.4.7 there exists a functional Fθ ∈ B, so that for all ~ϕ:

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1)

and

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

Hence we can define G(~ϕ) as follows:

G(~ϕ) = (1 .− Fθ(~ϕ)) · t1(~ϕ) + F (~ϕ) · t2(~ϕ),

which directly implies that G(~ϕ) is an element of B.

Hence the fact that

QF − PIND θ(t1(~ϕ)), θ(t2(~ϕ)),

directly implies that

QF − PIND θ(G(~ϕ)).

♣

40

2.4.9 Theorem

Let θ be an open formula. Then there exists a functional H ∈ B, so
that

QF − PIND (∃y < |x|)θ(y) ↔ θ(H(x)).

Proof:

We define the functional H as follows:

H(u) = minv<|u|(θ(v)).

After Lemma 2.4.7 there exists a functional Fθ ∈ B, so that:

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ∨ Fθ(~ϕ) = 1)

and

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

Hence we can define the functional H as an element of the language B as
follows:

H(0) = 0,

H(u) = (1 .−Sg(H(bu2 c)
.−|bu2 c|)) · ((1

.−Fθ(|bu2 c|)) · |b
u
2 c|+Fθ(|bu2 c|) · |u|),

H(u) ≤ S0(u) ∀u.

We recognize at first sight that H only contains symbols of the language
B and is defined by limited recursion on notation, which directly implies
that H ∈ B.
But because of the fact that it is not easy to deduce what the functional
H does step by step with its argument u to finally deliver, if it exists, the
minimal natural number v < |u|, for which θ(v) holds, we explain it via the
corresponding commented algorithm:

41

Case 1: u = 0,

H(u) = H(0) = 0. Trivial.

Case 2: u > 0,

H(u) =

if H(bu2 c) = |bu2 c|, then
if Fθ(|bu2 c|) = 0, then

|bu2 c|,
else |u|,

else H(bu2 c).

We firstly check for the argument u > 0, if H(bu2 c) = |bu2 c| to see if we have
already found the minimal number v < |u| until |bu2 c|, |u|−1 respectively. If
yes, we also check if Fθ(|bu2 c|) is equal to zero, so that both directions ”→”
and ”←” of our formula are fulfilled.
If ¬(H(bu2 c) = |bu2 c|), we repeat the whole thing and check if H(bu4 c) =
|bu4 c|, and so on...
In the case that we don’t find any number v < |u|, so that Fθ(v) = 0, we
return |u|.

We suppose that our formula is valid in QF − PIND after the upper defi-
nition of the functional H and abdicate the detailed inductive proof of:

QF − PIND ∀~ϕ(Fθ(~ϕ) = 0 ↔ θ(~ϕ)).

♣

The result, which is formulated in the next theorem 2.4.10, is relevant for
the proof of Lemma 3.2 in the third section.

42

2.4.10 Theorem (The ∃-Inversion for QF -PIND)

Let Γ be a set of open formulas or Σ0
1-formulas.

Then the following implication holds:

QF − PIND n

1 Γ(~ϕ), ∃zθ(~ϕ, z)

=⇒

There exists a term t(~ϕ) ∈ B, so that

QF − PIND Γ(~ϕ), θ(~ϕ, t(~ϕ)).

Proof:

We prove by induction on the length of the proof.

Case 1:

If the derivation ends with an axiom, then the ”length” of the
derivation is equal to zero.
Hence the formula ∃zθ(~ϕ, z) can’t be the main formula, but is
contained in the set of side-formulas Γ(~ϕ). We deduce that it is
an axiom itself. So it is sure, that we can find any term t, for
which it is valid in QF − PIND.

Case 2:

The derivation ends with an (∧)-conclusion.
So Γ(~ϕ) is of the form Γ(~ϕ), θ0 ∧ θ1, where θ0 ∧ θ1 can go into
Γ(~ϕ).
In this second case the last conclusion looks like:

Γ(~ϕ), ∃zθ(~ϕ, z), θ0 Γ(~ϕ), ∃zθ(~ϕ, z), θ1

Γ(~ϕ), ∃zθ(~ϕ, z), θ0 ∧ θ1
(∧).

43

Under the induction hypothesis there exist terms t0(~ϕ),
t1(~ϕ) ∈ B, so that:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ0,

and

QF − PIND Γ(~ϕ), θ(~ϕ, t1(~ϕ)), θ1.

After an (∨)-conclusion in the above case with θ(~ϕ, t1(~ϕ)) and
in the lower case with θ(~ϕ, t0(~ϕ)), we receive:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ(~ϕ, t1(~ϕ)), θ0,

and

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ(~ϕ, t1(~ϕ)), θ1.

Now we apply the (∧)-conclusion on these two received sets of
formulas, so:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ(~ϕ, t1(~ϕ)), θ0 ∧ θ1,

which accords to

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ(~ϕ, t1(~ϕ)).

After Lemma 2.4.8 there exists a functional F ∈ B, so that

F (~ϕ) =

t0(~ϕ), if θ(~ϕ, t0(~ϕ)),

t1(~ϕ), else.

44

Hence F (~ϕ) accords to the term t(~ϕ) we have been looking for:

QF − PIND Γ(~ϕ), θ(~ϕ, t(~ϕ)).

Case 3:

The derivation ends with an (∨)-conclusion.
So Γ(~ϕ) is of the form Γ(~ϕ), θ0 ∨ θ1, where θ0 ∨ θ1 can go into
Γ(~ϕ).
In this third case the last conclusion looks like:

Γ(~ϕ), ∃zθ(~ϕ, z), θ0

Γ(~ϕ), ∃zθ(~ϕ, z), θ0 ∨ θ1
(∨).

Under the induction hypothesis there exists a term t0(~ϕ) ∈ B,
so that:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ0.

Now we apply an (∨)-conclusion to the just received formula:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ0 ∨ θ1,

which accords to

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)),

where t0(~ϕ) is our searched term t(~ϕ).

45

Case 4:

The derivation ends with an (∃)-conclusion.

Case 4.1.:

The last conclusion looks like:

Γ(~ϕ), ∃zθ(~ϕ, z), θ(~ϕ, t0(~ϕ))
Γ(~ϕ), ∃zθ(~ϕ, z)

(∃).

Under the induction hypothesis there exists a term
t1(~ϕ) ∈ B, so that:

QF−PIND Γ(~ϕ), θ(~ϕ, t1(~ϕ)), θ(~ϕ, t0(~ϕ)).

After Lemma 2.4.8 there exists a functional F ∈ B, so
that

F (~ϕ) =

t0(~ϕ), if θ(~ϕ, t0(~ϕ)),

t1(~ϕ), else.

And again, F (~ϕ) accords to the term t(~ϕ) we have
been looking for:

QF − PIND Γ(~ϕ), θ(~ϕ, t(~ϕ)).

Case 4.2.:

Γ(~ϕ) is of the form Γ(~ϕ), ∃z0θ0(~ϕ, z0), where ∃z0θ0(~ϕ, z0)
can go into Γ(~ϕ). The last conclusion looks like:

Γ(~ϕ), ∃zθ(~ϕ, z), θ0(~ϕ, u0)
Γ(~ϕ), ∃zθ(~ϕ, z), ∃z0θ0(~ϕ, z0)

(∃).

46

Under the induction hypothesis there exists a term
t0(~ϕ) ∈ B, so that:

QF −PIND Γ(~ϕ), θ(t0(~ϕ), ~ϕ), θ0(~ϕ, u0).

Now we apply an (∃)-conclusion to the above received
formula:

QF−PIND Γ(~ϕ), θ(t0(~ϕ), ~ϕ), ∃z0θ0(~ϕ, z0),

which accords to

QF − PIND Γ(~ϕ), θ(t0(~ϕ), ~ϕ),

where t0(~ϕ) is our term t(~ϕ).

Case 5:

The derivation ends with a (♦)-conclusion (cut).
In this fifth case the last conclusion looks like:

Γ(~ϕ), ∃zθ(~ϕ, z), θ0 Γ(~ϕ), ∃zθ(~ϕ, z), ¬θ0

Γ(~ϕ), ∃zθ(~ϕ, z)
(♦),

where θ0 is an open formula.

Under the induction hypothesis there exist terms t0(~ϕ), t1(~ϕ) ∈
B,
so that:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ0,

and

QF − PIND Γ(~ϕ), θ(~ϕ, t1(~ϕ)), ¬θ0.

47

After an (∨)-conclusion in the above case with θ(~ϕ, t1(~ϕ)) and
in the lower case with θ(~ϕ, t0(~ϕ)), we receive:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ(~ϕ, t1(~ϕ)), θ0,

and

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ), θ(~ϕ, t1(~ϕ)), ¬θ0.

Now we apply the (♦)-conclusion to these two received formulas,
so:

QF − PIND Γ(~ϕ), θ(~ϕ, t0(~ϕ)), θ(~ϕ, t1(~ϕ)).

After Lemma 2.4.8 there exists a functional F ∈ B, so that

F (~ϕ) =

t0(~ϕ), if θ(~ϕ, t0(~ϕ)),

t1(~ϕ), else.

And again, F (~ϕ) accords to the term t(~ϕ) we have been looking
for:

QF − PIND Γ(~ϕ), θ(~ϕ, t(~ϕ)).

Case 6:

The derivation ends with a (QF − PIND)-conclusion.
So Γ(~ϕ) is of the form Γ(~ϕ), θ0(~ϕ, t0(~ϕ)), where θ0(~ϕ, t0(~ϕ)) can
go into Γ(~ϕ).

In this sixth case the last conclusion looks like:

48

Γ(~ϕ), ∃zθ(~ϕ, z), θ0(~ϕ, 0) Γ(~ϕ), ∃zθ(~ϕ, z), ¬θ0(~ϕ, b b2c), θ0(~ϕ, b)
Γ(~ϕ), ∃zθ(~ϕ, z), θ0(~ϕ, t0(~ϕ))

,

where θ0 is an open formula.

Under the induction hypothesis there exist terms t1(~ϕ), t2(~ϕ) ∈
B,
so that firstly

QF − PIND Γ(~ϕ), θ(~ϕ, t1(~ϕ)), θ0(~ϕ, 0), (1)

and secondly

QF − PIND Γ(~ϕ), θ(~ϕ, t2(~ϕ)), ¬θ0(~ϕ, b b
2
c), θ0(~ϕ, b). (2)

We apply the (QF −PIND)-conclusion to the just received sets
of formulas in (1) and (2). Hence the following formula is also
valid in QF − PIND:

[θ0(~ϕ, 0) ∧ ∀i < |t0(~ϕ)| (θ0(~ϕ, t0(~ϕ) � i)→ θ0(~ϕ), t0(~ϕ � (i+1)))]

→

θ0(~ϕ, t0(~ϕ),).

Again as a consequence of the availability of the above formula
in
QF − PIND, the next formula also holds in QF − PIND:

(θ0(~ϕ, 0) → θ0(~ϕ, t0(~ϕ)))

∨

[∃i < |t0(~ϕ)| (θ0(~ϕ, t0(~ϕ) � i) ∧ ¬θ0(~ϕ, t0(~ϕ) � (i+ 1)))].

After theorem 2.4.9 there exists a functional F ∈ B, so that

49

∃i < |t0(~ϕ)| (θ0(~ϕ, t0(~ϕ) � i) ∧ ¬θ0(~ϕ, t0(~ϕ) � (i+ 1)))

↔

(θ0(~ϕ, bF (t0(~ϕ)
2

)c) ∧ ¬θ0(~ϕ, F (t0(~ϕ))).

Hence the formula

(θ0(~ϕ, 0) → θ0(~ϕ, t0(~ϕ)))

∨

(θ0(~ϕ, bF (t0(~ϕ)
2

)c) ∧ ¬θ0(~ϕ, F (t0(~ϕ)))

is valid in QF − PIND, which we can also write as:

QF − PIND

¬θ0(~ϕ, 0), θ0(~ϕ, t0(~ϕ)), θ0(~ϕ, bF (|t0(~ϕ|)c
2

), (3)

and

QF − PIND

¬θ0(~ϕ, 0), θ0(~ϕ, t0(~ϕ)), ¬θ0(~ϕ, F (|t0(~ϕ|)) (4)

respectively.

Now we replace the free variable b in (2) by F (|t0(~ϕ|):

QF − PIND

Γ(~ϕ), θ(~ϕ, t2(~ϕ)), ¬θ0(~ϕ, bF (|t0(~ϕ|)
2

c), θ0(~ϕ, F (|t0(~ϕ|)) (5)

After an application of the (♦)-rule to (3) and (5) we receive:

QF − PIND

Γ(~ϕ), θ(~ϕ, t2(~ϕ)), θ0(~ϕ, t0(~ϕ)), ¬θ0(~ϕ, 0), θ0(~ϕ, F (|t0(~ϕ|)).
(6)

50

We apply the (♦)-rule once more to (4) and (6):

QF − PIND Γ(~ϕ), θ(~ϕ, t2(~ϕ), θ0(~ϕ, t0(~ϕ)), ¬θ0(~ϕ, 0). (7)

After a final application of the (♦)-rule to (1) and (7) we receive:

QF−PIND Γ(~ϕ), θ(~ϕ, t1(~ϕ)), θ(~ϕ, t2(~ϕ)), θ0(~ϕ, t0(~ϕ)),

which accords to

QF − PIND Γ(~ϕ), θ(~ϕ, t1(~ϕ)), θ(~ϕ, t2(~ϕ)).

And again after Lemma 2.4.8 there exists a functional G ∈ B,
so that

G(~ϕ) =

t1(~ϕ), if θ(~ϕ, t1(~ϕ)),

t2(~ϕ), else.

The functional G(~ϕ) accords to the term t(~ϕ) we have been look-
ing for:

QF − PIND Γ(~ϕ), θ(~ϕ, t(~ϕ)).

♣

We don’t have to prove the case of the (∀)-conclusion, because:
According to the assumption, Γ(~ϕ) only contains open formulas
or Σ0

1-formulas. Furthermore our proof is partial cut-free which
implies that there can’t have been any universal quantifiers in
the whole proof.

51

3 Main Theorem

In this third section we finally want to prove our main theorem 3.3. Hence
we are going to show that for any type-2 functional F the following is valid:

F ∈ BFF
⇐⇒

F is Σb
1-definable in the theory S1

2.

We start with the easier direction ”=⇒” in the theorem 3.1.
The proof of the converse ”⇐=” is identical to the Buss proof of the corre-
sponding result for S1

2 and the polynomial time computable functions (see
Buss[1986]), with one single exception:
We are going to use Sieg’s method of Herbrand Analyses from Sieg[1985].
Lemma 3.2 in the second part of this section, replaces Lemma 1.3.4 from
Sieg[1991]. The essential step of the whole proof, which we already men-
tioned in the Abstract, is contained in the proof of this Lemma 3.2:
Because of the fact that the Basic Feasible Functionals are closed under
multiple limited recursion on notation and by the closure of the language
B, we are allowed to substitute a chain of interdependent existential quan-
tifiers by Basic Feasible Functionals, which are closed under mlrn.
In the proof of the main theorem 3.3 we finally inter alia combine both
proofs of theorem 3.1 and Lemma 3.2.

3.1 Theorem

Every Basic Feasible Functional F is Σb
1-definable in the theory S1

2.

Proof:

As we know, the class BFF of the Basic Feasible Functionals (see defini-
tion 1.2.3) is closed under expansion, functional composition and limited
recursion on notation*.

Consequently we have exactly these three possibilities for our functional F :

52

1. F is defined by expansion.

2. F is defined by functional composition.

3. F is defined by limited recursion on notation*.

To avoid having very large formulas in this proof, we apply the following
abbreviations (here in relation to F , respectively ΘF):

• ~tF for ~t1, . . . ,~tk,

• ~zF for ~z1, . . . , ~zk,

• ~zF ≤ ~t
F

for ~z1 ≤ ~t1(~ξ) ∧ . . . ∧ ~zk ≤ ~tk(~ξ, ~z1, . . . , ~zk−1),

• ∃~zF ≤ ~t
F

for ∃~z1 ≤ ~t1(~ξ) . . . ∃~zk ≤ ~tk(~ξ, ~z1, . . . , ~zk−1).

We prove by induction on the respective complexity of definition of F that
there exists a Σb

1 formula ΘF (~ϕ, ~wF , v) and a sequence of terms ~t
F
, tk+1,

such that

S1
2 ∀~ξ [∃~zF ≤ ~t

F ∃!y ≤ tk+1(~ξ,~zF) ΘF (~ξ,~zF , y)],

where

〈Nk, (NN)m〉 |= ∀~ξ (∃~zF ≤ ~t
F

) ΘF (~ξ,~zF , F (~ξ)),

because this directly implies the Σb
1-definability of F in S1

2 (see definition
2.1.4).

From the fact that:

S1
2 ∀~ξ [∃~zF ≤ ~t

F ∃!y ≤ tk+1(~ξ,~zF) ΘF (~ξ,~zF , y)],

it follows that

53

S1
2 ∀~ξ ∃!y (∃~zF ≤ ~t

F
) [y ≤ tk+1(~ξ,~zF) ∧ ΘF (~ξ,~zF , y)].

By the informations on page 19 the formula ΨF (~ϕ, v), defined as

ΨF (~ϕ, v) ≡ (∃~zF ≤ ~t
F

) [v ≤ tk+1(~ϕ,~zF) ∧ ΘF (~ϕ,~zF , v)].

is a Σb
1 formula.

So we have

S1
2 ∀~ξ ∃!y ΨF (~ξ,~zF , y),

which accords to the wanted form.

Because of the reason that there exist three different cases for the definition
of F , our proof is subdevided into the corresponding three parts. The first
and second part will be easy to understand. But because of the recursivity,
the third part will demand more from us to get the idea.

1. F is defined by expansion

F is defined by expansion from G(~ϕ) (see definition 1.2.6):

F (~f,~g, ~u,~v) = G(~ϕ).

By induction hypothesis there exists a formula ΘG and a sequence of terms

~t
G
, tGk+1, such that

S1
2 ∀~ξ [(∃~zG ≤ ~tG) ∃!y ≤ tGk+1(~ξ,~zG) ΘG(~ξ,~zG, y)].

We define ΘF as follows:

ΘF ≡ ΘG,

54

and correspondingly:

~zF ≡ ~zG, as well as ~t
F ≡ ~t

G
.

Hence the induction hypothesis directly implies that

S1
2 ∀~ξ [(∃~zF ≤ ~tF) ∃!y ≤ tFk+1(~ξ,~zF) ΘF (~ξ,~zF , y)].

2. F is defined by functional composition

F is defined by functional composition from G1(~ϕ), . . . , Gl(~ϕ), H(~f,~v, ~u)
(see definition 1.2.5):

F (~u,~v) = H(~f,G1(~ϕ), . . . , Gl(~ϕ), ~u).

By the induction hypothesis there exist formulas ΘG1 , . . . ,ΘGl
, ΘH and se-

quences of terms ~t
G1
, tG1
k+1, . . . ,

~t
Gl
, tGl
k+1 and ~t

H
, tHk+1, such that firstly for all

1 ≤ j ≤ l

S1
2 ∀~ξ [(∃~zGj ≤ ~tGj) ∃!gj ≤ t

Gj

k+1(~ξ, zGj) ΘGj (~ξ,~zGj , gj)],

and secondly

S1
2 ∀~ξ ∀~g [(∃~zH ≤ ~tH) ∃!h ≤ tHk+1(~ξ,~g,~zH) ΘH(~ξ,~g,~zH , h)],

at which ~g is an abbreviation of g1, . . . , gl.

Correspondingly to the definition of F , we define the formula ΘF as follows:

ΘF (~ϕ, ~wG1 , . . . , ~wGl , g1, . . . , gl, h)

≡

ΘG1(~ϕ, ~wG1 , g1) ∧ . . . ∧ ΘGl
(~ϕ, ~wGl , gl) ∧ ΘH(~ϕ,~g, ~wH , h).

55

Hence the induction hypothesis directly implies that

S1
2

∀~ξ [(∃~zG1 ≤ ~tG1) ∃g1 ≤ tG1
k+1(~ξ, zG1) . . . (∃~zGl ≤ ~tGl) ∃gl ≤ tGl

k+1(~ξ, zGl)

∃~zH ≤ ~tH∃!h ≤ tHk+1(~ξ,~g,~zH) ΘF (~ξ,~zG1 , . . . ,~zGl , g1, . . . , gl, h)].

3. F is defined by limited recursion on notation*

F is defined by limited recursion on notation* from G, H and K (see defi-
nition 1.2.9):

F (~ϕ, 0) = G(~ϕ), (”initial value”)

F (~ϕ, v) = H(~ϕ, v, F (~ϕ, bv
2
c)), v > 0, (”recursion on notation”)

|F (~ϕ, v)| ≤ |K(~ϕ, v)|, (”bounding”)

for all ~ϕ.

By induction hypothesis there are formulas ΘG, ΘH , ΘK and terms

~t
G
, tGk+1, ~t

H
, tHk+1, ~t

K
, tKk+1, such that:

(a) S1
2 ∀~ξ [(∃~zG ≤ ~tG) ∃!yG ≤ tGk+1(~ξ,~zG) ΘG(~ξ,~zG, yG)],

(b) S1
2 ∀~ξ∀y∀z [(∃~zH ≤ ~tH) ∃!yH ≤ tHk+1(~ξ, y, z,~zH) ΘH(~ξ, y, z,~zH , yH)],

(c) S1
2 ∀~ξ∀y [(∃~zK ≤ ~tK) ∃!yK ≤ tKk+1(~ξ, y,~zK) ΘK(~ξ, y,~zK , yK)].

To reach our aim in this third part as well, we have to bring the ”initial
value”-, the ”recursion on notation”- and the ”bounding”-part together in
one Σb

1-formula ΘF and its corresponding prefix.

56

According to this we are going to prove by induction on y, that

S1
2 ∀~ξ∀y ΨF (~ξ, y, t, e,~zK , d),

where

ΨF (~ξ, y, t, e,~zK , d)

≡

∃~zK ≤ ~tK ∃t ≤ y ∃e ≤ SqBd(tKk+1(~ξ, t,~zK), y) ∃!d ≤ e ΘF (~ξ, y, t, e,~zK , d).

The Σb
1-formula ΘF is the conjunction of the following two formulas Θ1

F

under (a) and Θ2
F under (b), whereas the ”bounding part” is included in

both formulas:

(a) ”initial value” and ”bounding”:

Θ1
F ≡ (∃~zG ≤ ~tG) ∃!yG ≤ tGk+1(~ξ,~zG) [A ∧ B ∧ C];

A ≡ ΘG(~ξ,~zG, yG)

corresponds to the functional value F (~ξ, 0),

B ≡ ∃q0 ≤ tKk+1(~ξ, t,~zK) ΘK(~ξ, 0,~zK , q0)

corresponds to the bounding value q0 of F (~ξ, 0),

C ≡ (e)0 = Min(yG, q0)

corresponds to the first instance of the sequence of e:

(e)0 = F (~ξ, 0) = Min(yG, q0) = yG. The func-

tional value yG has to be less or equal to its bounding

value q0.

57

(b) ”recursion on notation” and ”bounding”:

Θ2
F ≡ (∀i < |y|) [L ∧ M ∧ N ∧ P ∧ Q];

L ≡ ∃qi+1 ≤ tKk+1(~ξ, t,~zK) ΘK(~ξ, y � (i+ 1),~zK , qi+1)

corresponds to the bounding values q1, . . . , q|y| of the

functional values:

F (~ξ, 1) = F (~ξ, y � 1),

. . .

F (~ξ, by4c) = F (~ξ, y � (|y| − 2)),

F (~ξ, by2c) = F (~ξ, y � (|y| − 1)),

F (~ξ, y) = F (~ξ, y � |y|),

M ≡ (e)i ≤ tKk+1(~ξ, t,~zK)

corresponds to the instances

e0 = F (~ξ, 0),

e1 = F (~ξ, 1),

. . .

e|y|−2 = F (~ξ, by4c),

e|y|−1 = F (~ξ, F (~ξ, by2c))
of the sequence of e. These are smaller or equal to

their corresponding bounding values, which are other-

wise smaller or equal to tKk+1(~ξ, t,~zK),

N ≡ (∃~zH ≤ ~tH)∃!yH ≤ tHk+1(~ξ, y � i, (e)i,~zH)ΘH(~ξ, y � i, (e)i, ~zH , yH)

corresponds to the functional values:

F (~ξ, 0) = F (~ξ, y � 0),

F (~ξ, 1) = F (~ξ, y � 1),

58

. . .

F (~ξ, by4c) = F (~ξ, y � (|y| − 2)),

F (~ξ, by2c) = F (~ξ, y � (|y| − 1))).

Logically these are exactly the values we need, after

the rules of the ”recursion on notation*”, to finally

calculate F (~ξ, y).

P ≡ (e)i+1 = Min(yH , qi+1)

Min(yH , qi+1) = yH for all i < |y|, because the func-

tional values are smaller or equal to their correspond-

ing bounding values.

Q ≡ (e)|y| = d

corresponds to the functional value F (~ξ, y).

After this precise explanation of the Σb
1-formula ΘF ≡ Θ1

F ∧ Θ2
F , we firstly

turn to Buss’s ”Sequence Bound”-functional SqBd(u, v) and afterwards to
the buildup of the sequence of e:

SqBd(u, v) = (2v + 1)#(4(2u+ 1)2) = 2(2v+1)·(4(2u+1)2).

The SqBd-Functional puts an upper bound on codes of sequences of length
at most |v|+ 1, consisting of numbers less or equal than u.

59

Here in the formula ΨF we have

SqBd(tKk+1(~ϕ, t, ~wK), v)

=

(2v + 1) # (4(2(tKk+1(~ϕ, t, ~wK)) + 1)2)

=

(2v + 1) # (4(2(tKk+1(~ϕ, t, ~wK)) + 1) · (2(tKk+1(~ϕ, t, ~wK)) + 1))

=

[(S(S(0)) · v + 1)

#

(S(S(S(S(0)))) · (S(S(0)) · (tKk+1(~ϕ, t, ~wK)) + 1)·

·(S(S(0))(tKk+1(~ϕ, t, ~wK)) + 1))],

which is a term in S1
2. (see Buss’s ”Bounded Arithmetic”, Chapter 4.1).

This fact implies that
ΨF (~ξ, y, t, e, ~wK , d)

≡

∃~zK ≤ ~tK ∃t ≤ y ∃e ≤ SqBd(tKk+1(~ξ, t,~zK), y) ∃!d ≤ e ΘF (~ξ, y, t, e,~zK , d)

is a Σb
1-formula in S1

2.

Hence we are allowed to apply the induction schema (Σb
1 − PIND) (see

2.1.3) in this third part of our proof. But before doing this, let us have a
look at the structure of e:

After the definition of SqBd(u, v), every instance of the sequence of e has
to be less or equal to tKk+1(~ξ, t,~zK) and the length of the sequence of e must
be less or equal to |y|+ 1. Here

e = 〈 F (~ϕ, 0), . . . , F (~ϕ, bv
8
c), F (~ϕ, bv

4
c), F (~ϕ, bv

2
c), F (~ϕ, v) 〉,

with what all the conditions are fulfilled after the induction hypothesis.
Now then the sequence e contains those values we need to finally calculate
F (~ϕ, v) after the ”recursion on notation”. And at the last position e|v| there
is the result F (~ϕ, v) = d:

60

(e)0 = F (~ϕ, 0),

...

(e)|v|−1 = F (~ϕ, bv
2
c),

(e)|v| = F (~ϕ, v).

For example:

v = 33 = 100001 (in binary notation).
So |v| = blog2(33)c = 6, which implies that |e| ≤ 7:

e = 〈 F (~ϕ, 0), F (~ϕ, 1), F (~ϕ, 2), F (~ϕ, 4), F (~ϕ, 8), F (~ϕ, 16), F (~ϕ, 33) 〉,

where

(e)0 = F (~ϕ, 0) = G(~ϕ),

(e)1 = F (~ϕ, 1) = H(~ϕ, 1, F (~ϕ, b1
2
c)) = H(~ϕ, y, F (~ϕ, 0)),

...

(e)6 = F (~ϕ, 33) = H(~ϕ, 33, F (~ϕ, b33
2
c)) = H(~ϕ, y, F (~ϕ, 16)).

Now let us finally prove that

S1
2 ∀~ξ∀y ΨF (~ξ, y, t, e,~zK , d)

by induction on y with the induction schema (Σb
1 − PIND):

(Σb
1 − PIND) : [A(~ϕ, 0) ∧ ∀y(A(~ϕ, by

2
c)→ A(~ϕ), y)] → ∀yA(~ϕ, y),

where in our case the Σb
1-formula A(~ϕ, v) naturally corresponds to the for-

mula ΨF .

61

1. Basis: ΨF (~ϕ, 0, t, e, ~wK , d)

ΨF (~ϕ, 0, t, e, ~wK , d) accords to the ”initial value”, which is calculated in the
formula Θ1

F under (a). y = 0 implies that also t = 0 and i = 0. So we only
have one cycle through the formula (b). In this only cycle we do not more
than calculating another time what we calculated before in the formula (a).

The fact that

S1
2 ΨF (~ϕ, 0, t, e, ~wK , d)

follows directly from the induction hypothesis.

2. Inductive step: ∀y(ΨF (~ϕ, by2c, t, e, ~w
K , d)) → ΨF (~ϕ, y, t, e, ~wK , d))

accords to the formula Θ2
F under (b), the ”recursion on notation”, because

for all y we need the value of F (~ϕ, by2c) to calculate F (~ϕ, y).

We assume, that

ΨF (~ϕ, bv
2
c, t, e, ~wK , d)

holds in S1
2.

So we have a sequence e = 〈 F (~ϕ, 0), F (~ϕ, 1), . . . , F (~ϕ, bv2c) 〉, where d =
F (~ϕ, bv2c) is the instance at the last position.
Every instance of e is less or equal to tKk+1(~ϕ, t, ~wK) for a given term t which
is otherwise less or equal to bv2c.
For these given t, e and d, the formula ΨF holds in the theory S1

2.

As a result of these facts, ΨF also holds in S1
2 for d′, e′ and t′, which are

defined as follows:

d′ = F (~ϕ, v),

e′ = 〈 F (~ϕ, 0), F (~ϕ, 1), . . . , F (~ϕ, bv2c, F (~ϕ, v)) 〉,

t′ =

t if F (~ϕ, v) ≤ tKk+1(~ϕ, t, ~wK),

v else.

62

The fact that F (~ϕ, v) ≤ tKk+1(~ϕ, v, ~wK), follows directly from the induction
hypothesis. Therefore and after the induction hypothesis every instance of
e′ is less or equal to t′.

♣

63

3.2 Lemma

Now we turn to the Lemma 3.2, which as mentioned in the beginning of this
section, replaces Lemma 1.3.4 from Sieg[1991], and which contains the main
part of the ”⇐=”-proof of our theorem 3.3.

Let ∆ be a set containing only existential formulas (with the existential
quantifier bounded or unbounded). Then

n− Σb
1 − PIND ∆

=⇒

QF − PIND ∆.

Proof:

Because of the fact that the two theories n−Σb
1−PIND and QF −PIND

coincide with the exception of the complexity of the formula in the induction
rule, we only have to prove this case.
We proceed by induction on the number of applications of the induction rule
applied to n− Σb

1-formulas.
To remind: n−Σb

1-formulas contain at most n existential quantifiers followed
by an open formula.

Let us suppose that the claim of the Lemma 3.2 holds for derivations with
k applications of the induction rule.

Now we assume that

(n− Σb
1 − PIND) ∆

with a derivation d with k + 1 such applications of the induction rule.
After the cut elimination theorem for n− Σb

1 − PIND in 2.3.6 we can also
assume, that all cuts in the derivation d are on induction or atomic formulas
only.

So let us now examine this derivation d:

Consider a top-most instance of the induction rule applied to an n − Σb
1-

formula ψ. By ”top-most” we mean, that it concerns an application of the

64

induction rule so that all other applications of the induction rule appear-
ing above it in d are on open formulas. We surely ignore these applica-
tions of open induction, because our interest in this proof lies in reducing
(n− Σb

1 − PIND)-applications to (QF − PIND)-applications.

Now, let us have a look at the above mentioned ”top-most” instance of the
induction-rule applied to an n− Σb

1-formula ψ:

Γ(~ϕ), ψ(~ϕ, 0) Γ(~ϕ), ¬ψ(~ϕ, b b2c), ψ(~ϕ, b)
Γ(~ϕ), ψ(~ϕ, t(~ϕ))

.

As denoted above we want to prove now that we can reduce this application
of (n− Σb

1 − PIND) to an application of open induction.

Concerning the n − Σb
1-formula ψ, we prove this Lemma 3.2 explicitly for

the case n = 2. Thus we keep the overview. For n ≥ 3 we would have large
formulas which generally are hard to read. Besides it is easy to conclude the
proof of the general case n ∈ N from this proof of the case n = 2.

So, if n = 2, then ψ(~ϕ, b) is of the form

ψ(~ϕ, b) ≡ ∃z1 ≤ t0(~ϕ, b) ∃z2 ≤ t1(~ϕ, z1, b) θ(~ϕ, z1, z2, b),

where b does not appear in the sequence of variables ~ϕ, and θ is open.

Later in this proof we want to apply the ∃-Inversion 2.4.10. Therefore we
have to convert the formula ψ(b, ~ϕ) to the following defined formula ψ′(~ϕ, b):

ψ′(~ϕ, b) ≡ ∃z((z)1 ≤ t0(~ϕ, b) ∧ (z)2 ≤ t1(~ϕ, (z)1, b) ∧ θ(~ϕ, (z)1, (z)2, b),

which fulfills the preconditioned form and accordingly allows us to apply the
∃-Inversion.

After our assumption in the beginning of the proof, the following holds:

(a1) QF − PIND Γ(~ϕ), ψ′(~ϕ, 0),

(b1) QF − PIND Γ(~ϕ), ¬ψ(~ϕ, b b2c), ψ
′(~ϕ, b).

65

From now on we separate the sets of large formulas by lines to make read-
ing more comfortable. Hence the above sets of formulas, according to the
definitions of ψ and ψ′ above, tendered look like:

(a2) QF − PIND

Γ(~ϕ),

∃z((z)1 ≤ t0(~ϕ, 0) ∧ (z)2 ≤ t1(~ϕ, (z)1, 0) ∧ θ(~ϕ, (z)1, (z)2, 0)),

(b2) QF − PIND

Γ(~ϕ),

∀z1 ≤ t0(~ϕ, b b2c) ∀z2 ≤ t1(~ϕ, z1, b b2c) ¬θ(~ϕ, z1, z2, b b2c),

∃z((z)1 ≤ t0(~ϕ, b) ∧ (z)2 ≤ t1(~ϕ, (z)1, b) ∧ θ(~ϕ, (z)1, (z)2, b)).

After applying twice the (∀)-Inversion of the Tait-Calculus and some of the
De Morgan’s rules to the set of formulas in (b2), we receive the following set
of formulas in (b3):

(b3) QF − PIND

Γ(~ϕ),

(u1 ≤ t0(~ϕ, b b2c) ∧ u2 ≤ t1(~ϕ, u1, b b2c)) → ¬θ(~ϕ, u1, u2, b b2c),

∃z((z)1 ≤ t0(~ϕ, b) ∧ (z)2 ≤ t1(~ϕ, (z)1, b) ∧ θ(~ϕ, (z)1, (z)2, b)),

where the new free variable u is not contained in the derivation leading to
the set in (b2).

Now we apply the ∃-Inversion 2.4.10 to the sets of formulas in (a2) and in
(b3) and therefore receive the following sets in (a4) and in (b4). After the
∃-Inversion 2.4.10 there exist terms s0, d0, s1, d1 in the language B, so that:

(a4) QF − PIND

Γ(~ϕ),

s0(~ϕ) ≤ t0(~ϕ, 0) ∧ d0(~ϕ) ≤ t1(~ϕ, s0(~ϕ), 0) ∧ θ(~ϕ, s0(~ϕ), d0(~ϕ), 0),

66

(b4) QF − PIND

Γ(~ϕ),

(u1 ≤ t0(~ϕ, b b2c) ∧ u2 ≤ t1(~ϕ, u1, b b2c)) → ¬θ(~ϕ, u1, u2, b b2c),

s1(~ϕ, u1, u2, b) ≤ t0(~ϕ, b) ∧

d1(~ϕ, u1, u2, b) ≤ t1(~ϕ, s1(~ϕ, u1, u2, b), b) ∧

θ(~ϕ, s1(~ϕ, u1, u2, b), d1(~ϕ, u1, u2, b), b).

Now then we define two functionals F and G as follows:

F (~ϕ, 0) = s0(~ϕ),

F (~ϕ, b) = s1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b),
F (~ϕ, b) ≤ t0(~ϕ, b); (see (a4) and (b4))

and

G(~ϕ, 0) = d0(~ϕ),

G(~ϕ, b) = d1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b),
G(~ϕ, b) ≤ t1(~ϕ, F (~ϕ, b), b). (see (a4) and (b4))

We see that both functionals F and G are defined by multiple limited
recursion on notation. And by the closure of the language B such a defi-
nition is correct. Hence we are allowed to replace the free variables u1 and
u2 in (b4) by F (~ϕ, b b2c) and G(~ϕ, b b2c) and receive:

(b5) QF − PIND

Γ(~ϕ),

(F (~ϕ, b b2c) ≤ t0(~ϕ, b b2c) ∧ G(~ϕ, b b2c) ≤ t1(~ϕ, F (~ϕ, b b2c), b
b
2c)) →

¬θ(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b
b
2c),

s1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b) ≤ t0(~ϕ, b) ∧

d1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b) ≤ t1(~ϕ, s1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b), b) ∧

θ(~ϕ, s1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b), d1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b), b).

67

After the definition of the functionals F and G above we are also allowed to
make the following substitutions to the sets of formulas in (a4) and (b5):

s0(~ϕ) by F (~ϕ, 0),

d0(~ϕ) by G(~ϕ, 0),

s1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b) by F (~ϕ, b),

d1(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b) by G(~ϕ, b):

(a6) QF − PIND

Γ(~ϕ),

F (~ϕ, 0) ≤ t0(~ϕ, 0) ∧ G(~ϕ, 0) ≤ t1(~ϕ, F (~ϕ, 0), 0) ∧

θ(~ϕ, F (~ϕ, 0), G(~ϕ, 0), 0),

(b6) QF − PIND

Γ(~ϕ),

(F (~ϕ, b b2c) ≤ t0(~ϕ, b b2c) ∧ G(~ϕ, b b2c) ≤ t1(~ϕ, F (~ϕ, b b2c), b
b
2c)) →

¬θ(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b
b
2c),

F (~ϕ, b) ≤ t0(~ϕ, b) ∧ G(~ϕ, b) ≤ t1(~ϕ, F (~ϕ, b), b) ∧

θ(~ϕ, F (~ϕ, b), G(~ϕ, b), b).

Now we define an open formula θ0 as follows:

θ0(~ϕ, v, w, b) ≡ v ≤ t0(~ϕ, b) ∧ w ≤ t1(~ϕ, v, b) ∧ θ(~ϕ, v, w, b).

Then the above sets are of the following form:

(a7) QF − PIND

Γ(~ϕ), θ0(~ϕ, F (~ϕ, 0), G(~ϕ, 0), 0),

(b7) QF − PIND

Γ(~ϕ), ¬θ0(~ϕ, F (~ϕ, b b2c), G(~ϕ, b b2c), b
b
2c), θ0(~ϕ, F (~ϕ, b), G(~ϕ, b), b).

68

And after applying the induction rule for open formulas, we receive:

QF − PIND Γ(~ϕ), θ0(~ϕ, F (~ϕ, t(~ϕ)), G(~ϕ, t(~ϕ)), t(~ϕ)).

Hence after the definition of θ0:

QF − PIND

Γ(~ϕ),

F (~ϕ, t(~ϕ)) ≤ t0(~ϕ, t(~ϕ)) ∧

G(~ϕ, t(~ϕ)) ≤ t1(~ϕ, F (~ϕ, t(~ϕ)), t(~ϕ)) ∧

θ(~ϕ, F (~ϕ, t(~ϕ)), G(~ϕ, t(~ϕ)), t(~ϕ)).

So:

QF−PIND ∃z1 ≤ t0(~ϕ, b) ∃z2 ≤ t1(~ϕ, z1, b) θ(~ϕ, z1, z2, b).

And we have arrived at the end of our proof:

QF − PIND Γ(~ϕ), ψ(~ϕ, t(~ϕ)).

♣

69

3.3 Main Theorem

The class BFF of the Basic Feasible Functionals is exactly
the class of Σb

1 provably total functions of S1
2.

Proof:

”=⇒”:

See theorem 3.1.

”⇐=”:

After definition 2.1.4, for every Σb
1 provably total function F of S1

2, there
exists a Σb

1-formula ΨF , so that

S1
2 ∀~ξ ∃!y ΨF (~ξ, y),

which implies that there exists an S1
2-proof d with depth(d) < ∞ to prove

this formula ∀~ξ ∃!y ΨF (~ξ, y). So we also have a finite number m of applica-
tions of the S1

2 induction schema to Σb
1-formulas α1, . . . , αm in this derivation

d.
Σb

1-formulas without any sharply bounded universal quantifiers are called
strict Σb

1-formulas. Because of the fact that every Σb
1-formula is equal to a

strict Σb
1-formula (see Buss[1986]), and therewith to an n− Σb

1-formula, we
can say that also:

n− Σb
1 − PIND ∀~ξ ∃!y ΨF (~ξ, y)

for some n ∈ N, which we define as follows:
After the above informations, every formula αi, 1 ≤ i ≤ m can be written
as an n − Σb

1-formula. We now take that formula αi, 1 ≤ i ≤ m, which has
the greatest number of bounded existential quantifiers in its prefix. That
greatest number accords to our n.

We can also assume that the formula ΨF is a strict Σb
1-formula.

70

So by the previous Lemma 3.2:

QF − PIND ∀~ξ ∃!y ΨF (~ξ, y),

which directly implies that:

QF − PIND ∀~ξ ∃y ΨF (~ξ, y).

After applying the ∀-Inversion we have:

QF − PIND ∃y ΨF (~ϕ, y).

And after the ∃-Inversion 2.4.10 there exists a term t(~ϕ) ∈ B, so that:

QF − PIND ΨF (~ϕ, t(~ϕ)).

Because of the fact that all the terms in B correspond to Basic Feasible
Functionals, we have shown that the class of Σb

1 provably total functions
of QF − PIND, respectively of S1

2, is exactly the class of the BFF ’s.

♣

71

Bibliography

[1]

Aleksandar Ignjatovic and Arun Sharma:
”Some Applications of Logic to Feasibility in Higher
Types”,
Association for Computing Machinery (ACM),
Transactions on Computational Logic (TOCL),
Volume 5, P. 332-350, April 2004.

[2]

Samuel R. Buss:
”Bounded Arithmetic”,
Bibliopolis, Naples, 1986.

[3]

Samuel R. Buss:
”Bounded Arithmetic and Propositional Proof
Complexity” in:
”Logic of Computation”,
edited by H. Schwichtenberg, P. 67-122,
Springer-Verlag, Berlin, 1997.

[4]

Samuel R. Buss:
”Handbook of Proof Theory”,
Elsevier, North-Holland, 1998.

[5]

Stephen A. Cook and Bruce M. Kapron:
”Characterizations of the Basic Feasible Functionals
of Finite Type”, in:
Feasible Mathematics: A Mathematical Sciences Insti-
tute Workshop,
Eds. S. Buss, P. Scott, P. 71-96,
Birkhauser, 1990.

72

[6]

Stephen A. Cook and Bruce M. Kapron:
”A new Characterization of Type 2 Feasibility”
SIAM J. on Computing, 25(1), P.117-132, 1996.

[7]

P. Clote:
”Computation Models and Function Algebras”, in:
Handbook of Computability Theory, ed. E.R. Griffor,
Elsevier Science B.V., P. 589-681, 1999.

[8]

Gerhard Jaeger:
”Einfuehrung in die theoretische Informatik”,
Vorlesungsskript, Sommersemester 2004.

[9]

Gerhard Jaeger:
”Logik und Informatik”,
Vorlesungsskript, Sommersemester 2003/2004.

[10]

J. Barwise:
”Handbook of Mathematical Logic”,
North-Holland Publishing Company, 1977.

73

	Titelblatt
	DA

