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Abstract. We study the strictness of the modal µ-calculus hierarchy
over some restricted classes of transition systems. First, we show that
the hierarchy is strict over reflexive frames. By proving the finite model
theorem for reflexive systems the same results holds for finite models.
Second, we prove that over transitive systems the hierarchy collapses to
the alternation-free fragment. In order to do this the finite model theorem
for transitive transition systems is also proved. Further, we verify that if
symmetry is added to transitivity the hierarchy collapses to the purely
modal fragment.

1 Introduction

The modal µ-calculus is an extension of modal logics, with least and greatest
fixpoint operators. The term “µ-calculus” and the idea of extending modal logic
with fixpoints appeared for the first time in the paper of Scott and De Bakker
[SB69] and was further developed by others. Nowadays, the term “modal µ-
calculus” stands for the formal system introduced by Kozen [Koz83]. It is a
powerful logic of programs subsuming dynamic and temporal logics like PDL,
PLTL, CTL and CTL∗. Hence, it provides us with the capability of expressing
and reasoning about assertions concerning “temporal” properties of dynamic
(reactive and parallel) systems with potentially infinite behavior. We refer to
Bradfield and Stirling’s tutorial article [BS01] or Stirling’s book [Sti01] for a
thorough introduction to this system.

The standard semantics of the modal µ-calculus is given by transition sys-
tems. As usual, formulae are interpreted as subsets of a system, the set of states
where the property expressed by the formula holds. Many natural properties such
as “there is an infinite path” can be expressed by a modal µ-formula. Further,
most such properties are given by formulae with alternation depth two, where
the alternation depth is the number of non-trivial nestings of least and greatest
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fixpoints. Nevertheless, it is mathematically interesting to see whether the ex-
pressive power of the modal µ-calculus increases with the alternation depth. If
this is the case then we have a strict hierarchy otherwise we have a collapse at
some point.

By a result of Bradfield [Bra981,Bra982] the hierarchy over arbitrary tran-
sition systems is strict, a result independently proved by Lenzi in [Len96] but
only for the positive fragment. Subsequently, Arnold showed in [Arn99] that the
hierarchy is also strict over binary trees by using the Banach-Cacciopoli fixpoint
theorem. His proof has been naturally extended to the class of all models by one
of the authors in [Alb02].

Having seen the strictness over arbitrary transition systems, it can be asked
whether the alternation hierarchy remains strict for restricted classes of transi-
tion systems such as those that are reflexive or those that are transitive. In the
case of transitive systems, to our knowledge, the first attempt to answer this
question is presented by Lenzi in [Len06]. There, he shows that on transitive
frames every Büchi automaton is equivalent to a co-Büchi automaton, and con-
versely4. This implies that over transitive frames the modal µ-calculus collapses
to the level of Büchi automata (and to co-Büchi automata). Because, for exam-
ple, well-foundedness is not definable in the modal fragment, the hierarchy is non
trivial. Thus, since over arbitrary graphs the intersection of Büchi and co-Büchi
automata corresponds to the alternation-free fragment, Lenzi conjectured that
the full modal µ-calculus collapses to the alternation-free fragment ([Len08]). It
is interesting to note that Visser has shown in [Vis96] that in the case of re-
flexive and transitive models, where well-foundedness is false and therefore can
be expressed by a modal formula, the non-triviality of the fixpoint hierarchy
is testified by the formula stating the existence of an infinite path alternately
labelled with p, ¬p, p, ¬p, etc.

In this paper we answer positively Lenzi’s conjecture for the class of all
transitive systems by giving an explicit syntactical translation of the full modal
µ-calculus into the alternation-free fragment. This result is first showed for finite
transition systems and then generalized, by proving a finite model theorem, to
all transitive systems. We also verify, again by giving an explicit syntactical
translation, that if we add symmetry to transitivity all collapses to the purely
modal fragment. Further, by adapting Arnold’s proof for the general case, we
show that the hierarchy remains strict over reflexive frames. By proving a finite
model theorem for reflexive transition systems the corresponding result holds
even on finite models.

In the next section we introduce the modal µ-calculus and some additional,
not standard, notions. In Section 3 we introduce evaluation games and show their
relevance for the modal µ-calculus. In Section 4 some finite model theorems
are proved. In Sections 5 and 6 the collapse of the hierarchy over transitive-

4 A complete proof of this fact, extended to the class of finite simple graphs (a class
which contains - modulo bisimulation - the class of finite transitive graphs) can be
found in [DL∞].
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symmetric and over transitive systems are proved. In Section 7 we prove the
strictness of the hierarchy over reflexive transition systems.

Related work

The question whether the modal µ-calculus hierarchy collapses on special classes
of transition systems has been addressed in various other works. A prominent
subclass, coming from Gödel-Löb logic, is the class of transitive upward well-
founded frames. As shown by Visser in [Vis05] and van Benthem in [vBe06] by
using the de Jongh-Sambin fixpoint Theorem, the modal µ-calculus collapses to
its modal fragment. A direct proof of this result without using de Jongh-Sambin
Theorem is given by the authors in [AF∞]. In [tCFL07] ten Cate, Fontaine
and Litak show that on the class of finite trees with the descendant relation
the modal µ-calculus collapses to the modal fragment. Concerning the hierarchy
on transitive frames d’Agostino and Lenzi in [DL∞] propose a different proof
which uses Theorem 24 of this paper. Further, Dawar and Otto in [DO∞] give
a characterization of the bisimulation invariant fragment of Monadic Second
Order Logic over transitive frames. From their result, by using the Finite Model
Theorem for transitive frames (Theorem 15), the collapse of the modal µ-calculus
follows, too.

2 The propositional modal µ-calculus

In this section we introduce syntax, semantics of the modal µ-calculus and the
alternation depth hierarchy.

2.1 Syntax

The language of the modal µ-calculus, Lµ, results by adding greatest and least
fixpoint operators to propositional modal logic. More precisely, given a set P
of propositional variables, the collection Lµ of modal µ-formulae (or simply µ-
formulae) is defined as follows:

ϕ ::= p | ∼ p | > | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ | µx.ϕ | νx.ϕ

where p, x ∈ P and x occurs only positively in ηx.ϕ (η = ν, µ), that is, ∼ x is
not a subformula of ϕ. LM denotes the pure modal fragment of Lµ.

The fixpoint operators µ and ν can be viewed as quantifiers. Therefore we
use the standard terminology and notations as for quantifiers and, for instance,
free(ϕ) denotes the set of all propositional variables occurring free in ϕ and
bound(ϕ) those occurring bound. Further, we define var(ϕ) = free(ϕ)∪bound(ϕ).
If ψ is a subformula of ϕ, we write ψ ≤ ϕ. We write ψ < ϕ when ψ is a proper
subformula. sub(ϕ) is the set of all subformulae of ϕ.

Let ϕ(x) and ψ be two µ-formulae. The substitution of all occurrences of
x with ψ in ϕ is denoted by ϕ[x/ψ] or sometimes simply ϕ(ψ). Simultaneous
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substitution of all xi by ψi (i ∈ {1, . . . , n}) is denoted by ϕ[x1/ψ1, . . . , xn/ψn].
For serial substitution such as (ϕ[x1/ψ1])[x2/ψ2] we often omit the parentheses
and write ϕ[x1/ψ1][x2/ψ2].

Remark 1. Note, that if ϕ(x), ψ ∈ Lµ then ϕ[x/ψ] need not be a µ-formula, for
example, if we set ϕ ≡ µy.x and ψ ≡∼ y then we have ϕ[x/ψ] ≡ µy. ∼ y 6∈ Lµ.
Nevertheless, in this paper, if nothing else mentionned, an expression like ϕ[x/ψ]
will denote well defined µ-formula. For a formal introduction of substitution we
refer to Alberucci [Alb08].

The negation ¬ϕ of a µ-formula ϕ is defined inductively such that ¬p ≡∼ p
and ¬(∼ p) ≡ p, by using de Morgan dualities for boolean connectives and the
usual modal dualities for ♦ and �. For µ, ν we define

¬µx.ϕ(x) ≡ νx.¬ϕ(x)[x/¬x] and ¬νx.ϕ(x) ≡ µx.¬ϕ(x)[x/¬x].

As usual, we introduce implication ϕ→ ψ as ¬ϕ ∨ ψ and equivalence ϕ↔ ψ as
(ϕ→ ψ) ∧ (ϕ→ ψ).

We say that a variable x ∈ bound(ϕ) is well-bounded in ϕ if no two distinct
occurrences of fixpoint operators in ϕ bind x, and x occurs only once in ϕ. A
propositional variable p is guarded in a formula ϕ ∈ Lµ if every occurrence of
p in ϕ is in the scope of a modal operator. A formula ϕ of Lµ is said to be
guarded if and only if for every subformula of ϕ of the form ηx.δ, x is guarded
in δ. A formula ϕ of Lµ is said to be well-named if it is guarded and every
x ∈ bound(ϕ) is well-bounded in ϕ. For all well-named ϕ, if x is bound in ϕ
then there is exactly one subformula ηx.δ ≤ ϕ which bounds x, this formula
is denoted by ϕx. In the subsection of the semantics, by Lemma 2 we will see
that any µ-formula ϕ is equivalent to a well-named formula wn(ϕ), therefore, if
nothing else mentionned, we assume that all formulae are well-named.

If x ∈ bound(ϕ) and x is in the scope of a ♦ operator in ϕx, resp. � operator,
then we say that x is weakly existential in ϕ, resp. weakly universal in ϕ. If
x ∈ bound(ϕ) and x is in the scope only of ♦ operators in ϕx, resp. � operators,
then we say that x is existential in ϕ, resp. universal in ϕ. Let ϕ(x) be a µ-
formula. If x is free and occurs only positively in ϕ, then we define ϕn(x) for all
n inductively such that ϕ1(x) = ϕ(x) and such that

ϕk+1(x) ≡ ϕ[x/ϕk(x)].

We define ϕn(>) = ϕn[x/>], and analogously for ϕn(⊥).
The rank, rank(ϕ), of a formula ϕ is an ordinal number defined inductively

as follows:

– rank(p) = rank(∼ p) = 1
– rank(M α) = rank(α) + 1 where M∈ {�,♦}
– rank(α ◦ β) = max{rank(α), rank(β)}+ 1 where ◦ ∈ {∧,∨}
– rank(ηx.α) = sup{rank(αn(x)) + 1 ; n ∈ N} where η ∈ {ν, µ}.
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The fact that the definition of rank terminates is shown in the joint work with
Krähenbühl [AK∞] (see also [Alb08]). It is an easy exercise to show that for all
formulae ϕ we have that rank(ϕ) = rank(¬ϕ).

The next lemma shows that wellnaming iterated formulae which are already
well-named does not affect the rank. It follows by the fact that since ϕ is well-
named the equivalent well-named formula for ϕn(>) is given by simply renaming
bound variables.

Lemma 1 For all well-named formulae ϕ such that x appears only positively
and all n ∈ N we have that

rank(ϕn(>)) = rank(wn(ϕn(>))).

Similarly for ⊥.

Given a µ-formula ϕ, for all set of bound variables X ⊆ bound(ϕ), the formula
ϕfree(X) is obtained from ϕ by eliminating all fixpoint operators binding a vari-
able x ∈ X but leaving the previously bound variables x as a free occurrences.
Further, if X = {xi, . . . , xn} ⊆ bound(ϕ) then we define

ϕ−X ≡ ϕfree(X)[x1/⊥, . . . , xn/⊥].

2.2 Semantics

The semantics of modal µ-calculus is given by transition systems. A transition
system T is of the form (S,→T , λT ) where S is a set of states →T is a binary
relation on S called the accessibility relation and λ : P→ ℘(S) is a valuation for
all propositional variables. A transition system T with a distinguished state s
is called a pointed transition system and denoted by (T , s). T denotes the class
of all pointed transition systems. Given any property P , by TP we denote the
subclass of pointed transition systems satisfying the property P . In particular
Tr denotes all pointed reflexive transition systems, Tst all pointed symmetric
and transitive transition systems, Tt all pointed transitive transition systems
and Trst denotes all pointed transition systems where the accessibility relation
is an equivalence relation, that is, it denotes the class of all S5 models. Given
any property P , with TPf we denote the subclass of finite pointed transition
systems satisfying the property P . For example, Ttf denotes all finite pointed
transition systems where the accessibility relation is transitive.

Let λ be a valuation, p a propositional variable and S′ a subset of states S;
we set for all propositional variables p′

λ[p 7→ S′](p′) =

{
S′ if p′ = p,

λ(p′) otherwise.

Given a transition system T = (S,→T , λT ), then T [p 7→ S′] denotes the transi-
tion system (S,→T , λT [p 7→ S′]). This notions are generalized straightforwardly
to λ[x1 7→ S1, . . . , xn 7→ Sn] and T [x1 7→ S1, . . . , xn 7→ Sn]. Given a transition
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system T , the denotation of ϕ in T , ‖ϕ‖T , that is, the set of states satisfying
a formula ϕ is defined inductively on the structure of ϕ. Simultaneously for all
transition systems we set

– ‖p‖T = λ(p) and ‖ ∼ p‖T = S− λ(p) for all p ∈ P,
– ‖α ∧ β‖T = ‖α‖T ∩ ‖β‖T ,
– ‖α ∨ β‖T = ‖α‖T ∪ ‖β‖T ,
– ‖�α‖T = {s ∈ S | ∀t((s→T t)⇒ t ∈ ‖α‖T )},
– ‖♦α‖T = {s ∈ S | ∃t((s→T t) ∧ t ∈ ‖α‖T )},
– ‖νx.α‖T =

⋃
{S′ ⊆ S | S′ ⊆ ‖α(x)‖T [x7→S′]}, and

– ‖µx.α‖T =
⋂
{S′ ⊆ S | ‖α(x)‖T [x 7→S′] ⊆ S′}.

We say that a pointed transition system (T , s) is a model of a µ-formula if and
only if s ∈ ‖ϕ‖T . By ‖ϕ‖ we denote the class of all models of ϕ and by ‖ϕ‖P the
class of all models of ϕ with property P . For a formula ϕ(x) and set of states
S′ ⊆ S we sometimes write ‖ϕ(S′)‖T instead of ‖ϕ(x)‖T [x 7→S′]. When clear from
the context we use ‖ϕ(x)‖T for the function

‖ϕ(x)‖T :

{
℘(S)→ ℘(S)
S′ 7→ ‖ϕ(S′)‖T .

By Tarski-Knaster Theorem, c.f. [Tar55], ‖νx.α(x)‖T is the greatest fixpoint and
‖µx.α(x)‖T the least fixpoint of the operator ‖α(x)‖T .

The next two lemmas state some basic properties of denotations. Their proofs
are left to the reader.

Lemma 2 For all transition systems T = (S,→T , λT ) and all formulae ϕ we
have that

1. ‖¬ϕ‖T = S− ‖ϕ‖T ,
2. ‖ηx.ηy.ϕ(x, y)‖T = ‖ηx.ϕ(x, x)‖T , where η ∈ {µ, ν},
3. ‖νx.ϕ(x)‖T = ‖ϕ(>)‖T , if all occurrences of x are not guarded,
4. ‖µx.ϕ(x)‖T = ‖ϕ(⊥)‖T , if all occurrences of x are not guarded.
5. There is a well-named formula wn(ϕ) such that ‖ϕ‖T = ‖wn(ϕ)‖T .

Lemma 3 Given well-named formulae ϕ, α, αi, β, βi, ψ, ψi ∈ Lµ, i ∈ {1, . . . , k}.
For all transition systems T the following holds:

1. If free(ψi) ∩ bound(ϕ) = ∅ for all i ∈ {1, . . . , k} then

‖ϕ[x1/ψ1, . . . , xk/ψk]‖T = ‖ϕ‖T [x1 7→‖ψ1‖T ,...,xk 7→‖ψk‖T ].

2. If ψ ≤ ϕ and xi ∈ free(ψ) ∩ bound(ϕ), with i = 1, . . . , k, then

‖ψ[x1/ϕx1 , . . . , xk/ϕxk ]‖T = ‖ψ‖T [x1 7→‖ϕx1‖T ,...,xk 7→‖ϕxk‖T ].
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3. If free(ψi) ∩ bound(α) = free(ψi) ∩ bound(β) = ∅ and xi ∈ free(α) ∩ free(β)
for all i ∈ {1, . . . , k} and for every transition system T we have that

‖α‖T = ‖β‖T

then, for every transition system T we have that

‖α[x1/ψ1, . . . , xk/ψk]‖T = ‖β[x1/ψ1, . . . , xk/ψk]‖T .

4. Let free(αi) ∩ bound(ϕ) = free(βi) ∩ bound(ϕ) = ∅ and let xi ∈ free(ϕ) occur
positively in ϕ, where i = 1, . . . , k. If for every transition system T we have
that

‖αi‖T ⊆ ‖βi‖T , for every i ∈ {1, . . . , k},

then we have that

‖ϕ[x1/α1, . . . , xk/αk]‖T ⊆ ‖ϕ[x1/β1, . . . , xk/βk]‖T .

Let T = (S,→T , λ) be a transition system and s, s′ two states in S. A se-
quence s0, s1, . . . , sn such that si →T si+1, s0 = s and sn = s′ is a path of length
n connecting s to s′. We say that s′ is reachable from s. A subset S′ ⊆ S of the
set of states is called a strongly connected component if for all s, s′ ∈ S′ we have
that s′ is reachable from s. For each s by scc(s) we denote the greatest strongly
connected component which contains s if there is one and scc(s) = ∅ if s is not
contained in any strongly connected component. Note, that the notion scc(s) is
well-defined. Given a pointed transition system (T , s) and a state s′ in it, we
define the depth of s′, dp(s′), to be the length of the shortest path from s to
s′. Since parts which are non connected to the point s will be irrelevant in the
sequel we assume that all transition system are connected and, therefore, that
dp(s′) is defined for all s′.

2.3 The alternation depth hierarchy

Let Φ ⊆ Lµ. For η ∈ {ν, µ}, η(Φ) is the smallest class of formulae such that:

– Φ,¬Φ ⊂ η(Φ);
– If ψ(x) ∈ η(Φ) and x occurs only positively, then ηx.ψ ∈ η(Φ);
– If ψ,ϕ ∈ η(Φ), then ψ ∧ ϕ,ψ ∨ ϕ,♦ψ,�ψ ∈ η(Φ);
– If ψ,ϕ ∈ η(Φ) and free(ψ) ∩ bound(ϕ) = ∅ then ϕ[x/ψ] ∈ η(Φ)

With the help of this definition, we introduce the syntactical hierarchy for the
modal µ-calculus. For all n ∈ N, we define the class of µ-formulae Σµ

n and Πµ
n

inductively as follows:

– Σµ
0 := Πµ

0 := LM;
– Σµ

n+1 = µ(Πµ
n );

– Πµ
n+1 = ν(Σµ

n).



8

∆µ
n := Σµ

n ∩Πµ
n

The fixpoint alternation depth, ad, of a formula is the number of non-trivial
nestings of alternating least and greatest fixpoints. Formally, the alternation
depth of ϕ ∈ Lµ is given by

ad(ϕ) := inf{k : ϕ ∈ ∆µ
k+1}.

All Σµ
n and Πµ

n form the syntactical modal µ-calculus hierarchy, which is strict.
The fixpoint alternation free fragment corresponds to the class ∆µ

2 .

Lemma 4 For all µ-formulae ϕ there is a well-named formula wn(ϕ) such that
for all T we have ‖ϕ‖T = ‖wn(ϕ)‖T and ad(ϕ) = ad(wn(ϕ)).

Proof. We have just to verify that the construction of wn(ϕ) given by parts 2 to
4 of Lemma 2 does not increase the alternation depth of the formula. But this
is straightforward. a
Given Lemma 1 and Lemma 4, we can assume that wn is a function associating
to every formula ϕ a well-named formula wn(ϕ) which has the same alternation
depth and the same denotation in every transition system and such that, if ϕ is
well-named, it also preserves the rank of ϕn(>) and ϕn(⊥), for every n.

The semantical modal µ-calculus hierarchy over T consists of all ΣµT
n and

ΠµT
n , which are classes of pointed transition systems defined inductively as fol-

lows:
ΣµT
n = {‖ϕ‖ : ϕ ∈ Σµ

n}
ΠµT
n = {‖ϕ‖ : ϕ ∈ Πµ

n}
As usual, the ambiguous classes are defined by

∆µT
n := ΣµT

n ∩ΠµT
n .

The semantical modal µ-calculus hierarchy over TP , for any property P , is de-
fined analogously.

Theorem 5 ([Bra981,Bra982]) The semantical modal µ-calculus hierarchy over
T is strict.

From now on, when we write about the modal µ-calculus hierarchy, we always
mean the semantical modal µ-calculus hierarchy.

Example 1. It is instructive to have a look at two typical µ-formulae. The first
formula express the property of “always eventually p”

νx.(µy.(p ∨ ♦y)) ∧�x).

Indeed, it says that from any node of a model, we can reach a node where p holds.
Since this formula is in Πµ

1 , this kind of property can be expressed without any
alternation. Moreover, it can be shown that cannot be reduced to a purely modal
formula. The second formula defines the property of “there is a path where p
holds infinitely often”

νx.µy.((p ∨ ♦y)) ∧ ♦x).
It can be verified that the alternation is really needed, that is, that the class of
models of this formula is in ΠµT

2 \Σ
µT
2 .
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3 Evaluation games for the modal µ-calculus

Evaluation games are a very important tool in the modal µ-calculus and will play
a crucial role in the sequel. After introducing some general notions for infinite
games we define the evaluation games. The last subsection is about the concept
of game formula.

3.1 Parity games

Let V be a set. By V ∗ we denote the set of finite sequences on V , and by V +

we denote the set of nonempty sequences. Finally, by V ω we denote the set of
infinite sequences over V .

A game G is defined in terms of an arena A and a winning condition W . In our
case an arena is simply a bi-partite graph A = 〈V0, V1, E〉, where V0∩V1 = ∅ and
the edge relation, or set of moves, is E ⊆ (V0 ∪ V1)× (V0 ∪ V1). Let V = V1 ∪ V2

be the set of vertices, or positions, of the arena. Given two vertices a, b ∈ V ,
we say that b is a successor of a, if (a, b) ∈ E. The set of all successors of a is
sometimes denoted by aE or E(a). We say that b is reachable from a if there are
a1, . . . , an ∈ V such that a1 = a, an = b and for every 0 < i < n, ai+1 ∈ aiE.

A play in the arena A can be finite or infinite. In the former case, the play
is a non empty finite path π = a1 . . . an ∈ V + such that for every 0 < i < n,
ai+1 ∈ aiE and anE = ∅. In the last case, the play consists in an infinite path
π = a1 . . . an · · · ∈ V ω with ai+1 ∈ aiE for every i > 0. Thus a finite or infinite
play in a game can be seen as the trace of a token moved on the arena by two
Players, Player 0 and Player 1, in such a way that if the token is in position
a ∈ Vi, then Player i has to choose a successor of a where to move the token.

The set of winning conditions W is a subset of V ω. Thus, given a game
G = (A,W ) a play π is winning for Player 0 iff

1. if π is finite, then the last position an of the play is in V1,
2. if π is infinite, then it must be a member of W .

A play is winning for Player 1 if it is not winning for Player 0. In this framework
we are interested in what is called a parity winning condition. That is, given a
set of vertices V , we assume a coloring or ranking function Ω : V → ω such that
Ω[V ] is bounded. Then, the set W of winning conditions is defined as the set of
all infinite sequences π such that the greatest priority appearing infinitely often
in Ω(π) is even.

Let A be an arena. A strategy for Player i is simply a function σi : V ∗Vi → V ,
with i = 1, 2. A prefix a1 . . . an of a play is said to be compatible or consistent
with σi iff for every j with 1 ≤ j < n and aj ∈ Vi, it holds that σi(a1 . . . aj) =
aj+1. A finite or infinite play is compatible or consistent with σi if each of its
prefix which is in V ∗Vi is compatible with σi. The strategy σi is said to be a
winning strategy for Player i on W if every play consistent with σi is winning
for Player i. A position a ∈ V is winning for Player i in the parity game G iff
there is a strategy σ for Player i such that every play compatible with σ which
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starts from a is winning for Player i. A winning strategy σ is called memoryless if
σ(a1 . . . an) = σ(b1 . . . bn), when an = bn. For parity games we have a memoryless
determinacy result.

Theorem 6 ([EJ91,Mos91]) In a parity game, one of the Players has a mem-
oryless winning strategy from each vertex.

Having in mind this theorem, in the sequel we assume that all winning strategies
are memoryless, that is, a winning strategy in a parity games for Player 0 is a
function σ : V0 → V , analogously for Player 1.

3.2 Evaluation games for the modal µ-calculus

In this subsection we will see, given ϕ ∈ Lµ and a pointed transition system
(T , s0) with T = (S,→T , λT ), how to determine the corresponding parity game
E(ϕ, (T , s0)), called also the evaluation game of ϕ over (T , s0).

The arena of E(ϕ, (T , s0)) is the triple 〈V0, V1, E〉 which is defined recursively
such that

〈ϕ, s0〉 ∈ V

(remember that V = V0 ∪ V1) and such that if 〈ψ, s〉 ∈ V then we distinguish
the following cases:

– If ψ ≡ (¬)p and p ∈ free(ϕ). In this case we set E〈ψ, s〉 = ∅ and

〈ψ, s〉 ∈ V1 iff

{
s ∈ λT (ψ) if ψ ≡ p
s 6∈ λT (ψ) if ψ ≡ ¬p.

– If ψ ≡ x and x ∈ bound(ϕ). In this case we set

(〈ψ, s〉, 〈ϕx, s〉) ∈ E

and we have
〈ψ, s〉 ∈ V0 iff x is a µ-variable.

– If ψ ≡ α ∧ β then we have 〈ψ, s〉 ∈ V1, and if ψ ≡ α ∨ β then we have
〈ψ, s〉 ∈ V0. In both cases it holds that

(〈ψ, s〉, 〈α, s〉) ∈ E and (〈ψ, s〉, 〈β, s〉) ∈ E

– If ψ ≡ �α then we have 〈ψ, s〉 ∈ V1, and if ψ ≡ ♦α then we have 〈ψ, s〉 ∈ V0.
In both cases it holds that

(〈ψ, s〉, 〈α, s′〉) ∈ E for all s′ such that s→T s′.

– If ψ ≡ νx.α then we have 〈ψ, s〉 ∈ V1, and if ψ ≡ µx.α then we have
〈ψ, s〉 ∈ V0. In both cases it holds that

(〈ψ, s〉, 〈α, s〉) ∈ E.
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We complete the definition of the parity game E(ϕ, (T , s0)) by defining the (par-
tial) priority function Ω : V → ω. The function is first defined on states of the
form 〈ηx.δ, s〉 ∈ V , where η ∈ {µ, ν}. In this case we have that:

Ω(〈ψ, s〉) =


ad(ηx.δ) if η = µ and ad(ηx.δ) is odd, or

η = ν and ad(ηx.δ) is even;
ad(ηx.δ)− 1 if η = µ and ad(ηx.δ) is even, or

η = ν and ad(ηx.δ) is odd.

For a state of the form 〈x, s〉, where x ∈ bound(ϕ), we set

Ω(〈x, s〉) := Ω(〈ϕx, s〉).

For all the other states 〈α, s〉 we distinguish two cases. If there is a least
formula ηx.δ ∈ sub(ϕ) such that ηx.δ > α we set

Ω(〈α, s〉) := Ω(〈ηx.δ, s〉).

If there is no such formula then we set

Ω(〈α, s〉) =

{
min{Ω(ηx.δ) : ηx.δ ≤ ϕ} if ϕ ∈ ∆µ

n, n > 1
1 if ϕ ∈ ∆µ

1 .

It can easily be seen that if there is a formula ηx.δ > α then there is also a
least one. Therefore, the second case refers to subformulae α of ϕ which can not
be regenerated by a fixpoint application in a parity game. In the following we
simply write minΩ and maxΩ instead of min{Ω(〈α, s〉) : 〈α, s〉 ∈ V } and of
max{Ω(〈α, s〉) : 〈α, s〉 ∈ V }.

Remember that if the play π is finite, Player 0 wins iff the last vertex of the
play belongs to V1, and if the play π is infinite, Player 0 wins iff the greatest
priority appearing infinitely often even.

Theorem 7 ([ES89]) (T , s) ∈ ‖ϕ‖ iff Player 0 has a winning strategy for
E(ϕ, (T , s)).

This result can be seen as the “game-theoretical version” of what is usually called
the Fundamental Theorem of the semantic of the modal µ-calculus. The proofs
of the following Lemma is by unwinding the definitions of winning strategy.

Lemma 8 Let T = (S,→T , λT ) be a transition system and ϕ(x1, . . . , xk) be
a formula where all xi occurs positively. Let σ be a strategy for Player 0 in
E(ϕ(x1, . . . , xk), (T , s)). Suppose that for all vertices of the form 〈xi, s′〉 which
are reachable by σ we have that s′ ∈ Ai ⊆ S, with i = 1, . . . , k. Then σ can
be converted into a winning strategy for Player 0 in E(ϕ(x1, . . . , xk), (T [x1 7→
A1, . . . , xk 7→ Ak], s)).

Example 2. Evaluation game E(νx.�((p ∨ �⊥) ∧ x), (T , s1)). T is as in Figure
1, that is, it has states {s1, s2, s3} and p holds in s1 and s2, and the accessibility
relation is as depicted in Figure 1.
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Fig. 1.

In Figure 2, you find the arena of E(νx.�((p ∨ �⊥) ∧ x), (T , s1)). In order
to simplify the picture we identified vertices of the form 〈νx.�((p∨�⊥)∧ x), s〉
with the vertices of the form 〈�((p ∨ �⊥) ∧ x), s〉. Note, that this does not
change essentially the evaluation game. Further, the graph given by the non-
dotted edges represents the part of the arena which can be reached by a play
given the strategy of Player 0 where he chooses, if there is the possibility, the
non-dotted instead of the dotted move. Note, that it is a winning strategy. It is
left as an exercise to verify that νx.�((p ∨�⊥) ∧ x) is valid if for all reachable
states in a transition system we have that either, the state is terminal, or, p
holds in the state.

〈�((p ∨ �⊥) ∧ x), s1〉

�� ''PPPPPPPPPPPP

〈(p ∨ �⊥) ∧ x, s3〉

xxpppppppppp

��
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〈p ∨ �⊥, s3〉

}} ��

〈x, s3〉

ν

��

〈(p ∨ �⊥), s2〉

�� $$

〈x, s2〉

ν

��
〈p, s3〉 〈�⊥, s3〉 〈�((p ∨ �⊥) ∧ x), s3〉 〈p, s2〉 〈�⊥, s2〉 〈�((p ∨ �⊥) ∧ x), s2〉

aaWW

Fig. 2.

3.3 Game formulae

Given a parity game E(ϕ, (T , s)) for a formula ϕ we define the pointed game
transition system T (E(ϕ, (T , s))) = ((S,→T , λT ), s0) such that the states S are
the vertices V and the distinguished state s0 = 〈ϕ, s〉, and such that the tran-
sition relation →T is the edge relation E of the parity game. If ad(ϕ) = n then
the valuation λT is specified for the new propositional variables

{ci : 0 ≤ i ≤ n} ∪ {di : 0 ≤ i ≤ n}.
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For all ψ ∈ sub(ϕ) we define our valuation for these propositional variables such
that

λT (di) = {〈ψ, s〉 : 〈ψ, s〉 ∈ V0 and Ω(〈ψ, s〉) = i} and

λT (ci) = {〈ψ, s〉 : 〈ψ, s〉 ∈ V1 and Ω(〈ψ, s〉) = i}.

In the following we introduce the game formulae and show that with them it is
possible to test the existence of a winning strategy for Player 0 in an evaluation
game.

Definition 1. For all n ≥ 1 we define the Σµ
n game formula WΣµn such that:

WΣµn :≡

{
µxn−1.νxn−2. . . . νx0

(∨n−1
i=0 (di ∧ ♦xi) ∨

∨n−1
i=0 (ci ∧�xi)

)
n even

µxn.νxn−1. . . . µx1

(∨n
i=1(di ∧ ♦xi) ∨

∨n
i=1(ci ∧�xi)

)
n odd

The Πµ
n game formula WΠµn is defined such that:

WΠµn :≡

{
νxn.µxn−1. . . . µx1

(∨n
i=1(di ∧ ♦xi) ∨

∨n
i=1(ci ∧�xi)

)
n even

νxn−1.µxn−2. . . . νx0

(∨n−1
i=0 (di ∧ ♦xi) ∨

∨n−1
i=0 (ci ∧�xi)

)
n odd

For n = 0 we define
WΣµ0

:≡WΠµ0
:≡WΣµ1

.

It is clear from definition that for all n ≥ 1 we have that WΣµn ∈ Σµ
n and

WΠµn ∈ Πµ
n .

Proposition 9 ([EJ91,Wal02]) Let G an arbitrary parity game such that minΩ ∈
{0, 1} and maxΩ = n. We have that if n is even (resp. odd):

(a) if minΩ = 0 then Player 0 has a winning strategy for G if and only if
T (G) ∈ ‖WΠµn+1

‖ (resp. T (G) ∈ ‖WΣµn+1
‖),

(b) if minΩ = 1 then Player 0 has a winning strategy for G if and only if
T (G) ∈ ‖WΠµn‖ (resp. T (G) ∈ ‖WΣµn‖)

From Proposition 9 and the definition of an evaluation game, it follows immedi-
ately that:

Corollary 10 Let ϕ be a Πµ
n -formula (resp. Σµ

n-formula) and let (T , s) be an
arbitrary pointed transition system. We have that Player 0 has a winning strategy
for E(ϕ, (T , s)) if and only if T (E(ϕ, (T , s))) ∈ ‖WΠµn‖ (resp. (T , s) ∈ ‖WΣµn‖).

Therefore, by applying Proposition 7 and Corollary 10, we have the following
result:

Corollary 11 Let ϕ be a Πµ
n -formula (resp. Σµ

n-formula) and let (T , s) be an
arbitrary pointed transition system. We have that

(T , s) ∈ ‖ϕ‖ if and only if T (E(ϕ, (T , s))) ∈ ‖WΠn‖ (resp.(T , s) ∈ ‖WΣn‖).
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4 Finite model theorems

In this section we prove finite model theorems for the modal µ-calculus over the
class of all reflexive and over the class of all transitive transition systems. Let us
first state the well-known finite model theorem for general transition systems.

Theorem 12 ([Koz88,ES89]) For all modal µ-formulae ϕ for which there is
a transition system T and a state s in T such that s ∈ ‖ϕ‖T there is a finite
transition system T F and a state sF such that sF ∈ ‖ϕ‖T F .

4.1 Finite model theorem for reflexive transition systems

Let ϕ be a µ-formula. By induction on the structure of ϕ we define the formula
ϕref as follows:

– (∼)pref ≡ (∼)p,
– (α ◦ β)ref = αref ◦ βref where ◦ ∈ {∧,∨},
– (�α)ref = �αref ∧ αref ,
– (♦α)ref = ♦αref ∨ αref , and
– (ηx.α)ref = ηx.αref where η ∈ {µ, ν}.

The next Lemma is by induction on the structure of the formula.

Lemma 13 Let T be a finite transition system and let T ref be its reflexive
closure. For all µ-formulae ϕ the following holds

s ∈ ‖ϕref‖T if and only if s ∈ ‖ϕ‖T ref .

With the help of this lemma we can easily prove the finite model property for
reflexive transition systems.

Theorem 14 For all modal µ-formulae ϕ for which there is a reflexive transi-
tion system T and a state s in T such that s ∈ ‖ϕ‖T there is a finite reflexive
transition system T F and a state sF such that sF ∈ ‖ϕ‖T F .

Proof. Let ϕ be a µ-formula and T a reflexive transition system with a state s
such that s ∈ ‖ϕ‖T . Since T is reflexive we have that T = T ref and therefore
by Lemma 13 we have that

s ∈ ‖ϕref‖T .

By the general Finite Model Theorem 12 we get that there is a finite transition
system T F and a state sF such that

sF ∈ ‖ϕref‖T F .

If we define T Fref to be the reflexive closure of T F by applying again Lemma
13 we get

sF ∈ ‖ϕ‖T Fref

and we have found the finite reflexive model and a state in it satisfying ϕ. a
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4.2 Finite model theorem for transitive transition systems

Let ϕ be a µ-formula. By induction on the structure of ϕ we define the formula
ϕtr as follows:

– (∼)ptr ≡ (∼)p,
– (α ◦ β)tr = αtr ◦ βtr where ◦ ∈ {∧,∨},
– (�α)tr = νx.�(αtr ∧ x),
– (♦α)tr = µx.♦(αtr ∨ x), and
– (ηx.α)tr = ηx.αtr where η ∈ {µ, ν}.

As in the reflexive case, the next Lemma is proved by induction on the
structure of the formula.

Lemma 15 Let T be a finite transition system and let T tr be its transitive
closure. For all µ-formulae ϕ the following holds

s ∈ ‖ϕtr‖T if and only if s ∈ ‖ϕ‖T tr .

By using Lemma 15, mutatis mutandis, the proof of the finite model property
for transitive transition systems is exactly the same as for Theorem 14.

Theorem 16 For all modal µ-formulae ϕ for which there is a transitive transi-
tion system T and a state s in T such that s ∈ ‖ϕ‖T there is a finite transitive
transition system T F and a state sF such that sF ∈ ‖ϕ‖T F .

5 The hierarchy on transitive and symmetric transition
systems

In this section, we prove the collapse of the semantical modal µ-calculus hierarchy
over Tst to the purely modal fragment. Let us begin with the following easy
lemma.

Lemma 17 Let T be a transitive transition system and let s′ ∈ scc(s). For all
µ-formulae ϕ we have that

s ∈ ‖ M ϕ‖T if and only if s′ ∈ ‖ M ϕ‖T

where M∈ {�,♦}.

Proof. Suppose that s ∈ ‖�ϕ‖T . This is equivalent to the fact that for all s′′

such that s →T s′′ we have that s′′ ∈ ‖ϕ‖T . On the other hand by definition
of scc we have for all s′ ∈ scc(s) that s →T s′ and s′ →T s. Therefore, for an
arbitrary state s′′ by transitivity we have s→T s′′ if and only if s′ →T s′′. This
implies that s ∈ ‖�ϕ‖T if and only if for all s′′ such that s′ →T s′′ we have that
s′′ ∈ ‖ϕ‖T which itself is equivalent to s′ ∈ ‖�ϕ‖T . The case for ♦ is proved
similarly. a
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Theorem 18 Let T be a transitive and symmetric transition system. We have
that

‖νx.ϕ(x)‖T = ‖ϕ(ϕ(>))‖T .

Proof. The ⊆ inclusion is clear. For the ⊇ inclusion, define A = ‖ϕ(ϕ(>))‖T ; by
definition of greatest fixpoint it is enough to show that we have

A ⊆ ‖ϕ(A)‖T . (1)

First recall that we assume that νx.ϕ(x) is well-named. This means that in the
formula ϕ(x) the variable x is in the scope of a modal operator and occurs only
once in ϕ. Therefore, we can assume that ϕ is of the form β(M α(x)) where
M∈ {♦,�}. Moreover x we have that M α(x) and M α(ϕ(x)) occur only once in
the formula tree of ϕ(ϕ(x)). Let s ∈ A, by Proposition 10 there is a winning
strategy σ for Player 0 in the evaluation game E(ϕ(ϕ(x)), (T [x 7→ S], s)). Let
π be an arbitrary play consistent with σ. If π reaches a vertex of the form
〈M α(x), s′〉 then the same play reaches a vertex of the form 〈M α(ϕ(x)), s′′〉.
Since σ is a winning strategy for Player 0 by Proposition 10 we have that

s′′ ∈ ‖ M α(ϕ(x))‖T [x 7→S] and s′ ∈ ‖ M α(x)‖T [x 7→S].

Since T is transitive and symmetric it clearly holds that s′′ ∈ scc(s′) and, by
applying Lemma 17, we have

s′ ∈ ‖ M α(ϕ(x))‖T [x7→S].

Hence, we have shown that for all plays π consistent with σ, if π reaches a
vertex of the form 〈M α(x), s′〉 then, by Theorem 7, there is a winning strategy
for Player 0 in the evaluation game E(M α(ϕ(x)), (T [x 7→ S], s′)). A fortiori,
this implies that if π reaches a vertex of the form 〈M α(x), s′〉 then there is a
winning strategy σ〈Mα(x),s′〉 for Player 0 in the evaluation game E(M α(x), (T [x 7→
‖ϕ(x)‖T [x 7→S]], s′)). Therefore, since ‖ϕ(x)‖T [x 7→S] ⊆ S, the strategy σ∗ given by
following σ but switching to the corresponding σ〈Mα(x),s′〉 when a position of the
form 〈M α(x), s′〉 is reached, is winning for Player 0 in E(ϕ(ϕ(x)), (T [x 7→ S], s)).
Let B := ‖ϕ(x)‖T [x7→S]. By construction of σ∗ we have that for all vertices
of the form 〈x, v〉 which are reachable by σ∗ it holds that v ∈ B. Then, by
applying Lemma 8, σ∗ can be converted into a winning strategy for Player 0 in
E(ϕ(ϕ(x), (T [x 7→ B], s)). By Theorem 7, we have that

s ∈ ‖ϕ(ϕ(B))‖T

which can be reformulated as s ∈ ‖ϕ(ϕ(ϕ(>)))‖T or s ∈ ‖ϕ(A)‖T . Therefore,
we have proved Equation 1 and completed the proof. a

Definition 2. The syntactical translation (�)t : Lµ → LM is defined recursively
on the structure of the formula such that pt = p, ⊥t = ⊥ and >t = >, such that
it distributes over boolean and modal connectives, and such that

(µx.ϕ)t =
(
wn(ϕ(ϕ(⊥)))

)t and (νx.ϕ)t =
(
wn(ϕ(ϕ(>)))

)t
.
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Note that (ϕ)t is defined via an application of (�)t either to a strict subformula
ψ of ϕ, or to a formula whose rank, by Lemma 1, is strictly smaller than the
rank of ϕ. Thus (�)t terminates and is well-defined.

The next corollary proves that on transitive and symmetric models, the se-
mantical hierarchy of the µ-calculus collapses to the class ∆µTst

1 . Its proof goes
by induction on the rank of a formula and uses Theorem 18.

Corollary 19 On transitive and symmetric transition systems we have that

‖ϕ‖T = ‖ϕt‖T .

Example 3. If we look at our example from Section 2, for “always eventually p”,
we have that

‖νx.(µy.(p ∨ ♦y)) ∧�x)‖T
st

= ‖(p ∨ ♦p) ∧�(p ∨ ♦p)‖T
st

and for “there is a path where p holds infinitely often”, we have that

‖νx.µy.((p ∨ ♦y)) ∧ ♦x)‖Tst

=
‖
(
p ∨ ♦(p ∧ ♦((p ∨ ♦(p ∧ ♦>)) ∧ ♦>)

)
∧ ♦((p ∨ ♦(p ∧ ♦>)) ∧ ♦>)‖Tst .

Remark 2. Because the previous proof applies to any S5 model, that is, for every
T ∈ Trst we have that:

‖ϕ‖T = ‖ϕt‖T
The fact that the modal µ-calculus hierarchy for S5-models collapses to the

pure modal fragment is indeed not surprising since for a S5-formula ϕ there
are only finitely many formulae with the same propositional variables which
are not equivalent over Trst and, therefore, it can easily be shown that for all
νx.ϕ(x) ∈ Lµ there is a n ∈ N such that ‖ϕn(>)‖Trst = ‖νx.ϕ‖Trst . The existence
of only finitely many non equivalent formulae follows from the fact that for
all S5-formulae ϕ there is a conjunctive modal normal form ψ such that ψ ≡
δ1 ∧ δ2 ∧ ..∧ δn where δ ≡ α∨�β1 ∨�β2 ∨ ...�βn ∨♦γ1 ∨♦γ2 ∨ ..∨♦γm and α,
βi and γj are propositional formulae5.

6 The hierarchy on transitive transition systems

We show that the modal µ-calculus hierarchy over Tt collapses to the alternation-
free fragment. This is done in four parts starting from subsection two. First,
any modal µ-formula is reduced to a semantically equivalent formula τ(ϕ) such
that normalized strategies on evaluation games, which will be introduced in the
third subsection, have certain nice properties. Then, we encode such normalized
winning strategies in modal µ-formulae and, finally, we show the collapse for
finite transitive transition system and, by using the previously proved finite
model theorem, generalize it to all transitive transition systems.

In the next subsection some technical notions like the one of unfolding a
formula in a model are introduced and some properties are proved.
5 Cf. Chapter 5 in [HC96].
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6.1 Some technical preliminaries

Remember that we suppose all µ-formulae well-named. First we introduce the
unfolding of a formula which generalizes the one of closure of a formula, intro-
duced by Kozen in [Koz83]. In order to do this, let ϕ and ψ be any µ-formulae
such that {x1, . . . , xn} = X ⊆ bound(ϕ). The unfolding of ψ in ϕ over X,
unfXϕ (ψ), is the formula defined recursively such that unf∅ϕ(ψ) ≡ ψ and such
that if X is of the form {x1, . . . , xn} then

unfXϕ (ψ) ≡ ψ[x1/unfX
−1

ϕ (ϕx1), . . . , xn/unfX
−n

ϕ (ϕxn)]

where X−i = {x1, . . . , xi−1, xi+1, . . . , xn}. It can easy be seen that we have
X ∩ free(unfXϕ (ψ)) = ∅.

In order to explain semantically the unfolding of a formula we introduce
for each transition system T the transition system induced by ϕ, T ϕ. For all
x ∈ bound(ϕ) we define a natural number l(x) recursively such that l(x) = 0 if
free(ϕx) ∩ bound(ϕ) = ∅ and such that

l(x) = max{l(xi) : xi ∈ free(ϕx) ∩ bound(ϕ)}+ 1

in the opposite case. For all transition systems T with valuation λ we define
new valuations λi and transition systems T i for all 0 ≤ i ≤ max{l(x) : x ∈
bound(ϕ)} =: N such that λ0 = λ and T 0 = T , and such that T k+1 is identical
to T k except for the valuation λk+1 which is defined as follows:

– λk+1|P\bound(ϕ) = λk|P\bound(ϕ);
– if x ∈ bound(ϕ):

λk+1(x) =

{
λk(x) if l(x) 6= k + 1
‖ϕx‖T k if l(x) = k + 1.

We define T ϕ to be T N and λϕ = λN . Note, that if we have a formula ψ such
that free(ψ)∩ bound(ϕ) is empty then, since the denotation of ϕ is independent
of the valuation of the bound variables, we have ‖ψ‖T = ‖ψ‖T ϕ . In particular,
we have ‖ϕ‖T = ‖ϕ‖T ϕ . Moreover note that for all xi ∈ bound(ϕ) it holds that
λϕ(xi) = ‖ϕxi‖T ϕ .

Lemma 20 For all formulae ϕ, all subformulae ψ ≤ ϕ, all X ⊆ bound(ϕ), and
all transition systems T we have that

‖ψ‖T ϕ = ‖unfXϕ (ψ)‖T ϕ .

Proof. By induction on the size of X. If X is empty, then by definition of un-
folding we have that

unfXϕ (ψ) ≡ ψ
and the claim is trivial. For the inductive step, suppose that X ∩ free(ψ) is the
set {x1, . . . , xm}. Hence, by definition we have

unfXϕ (ψ) ≡ ψ[x1/unfX
−1

ϕ (ϕx1), . . . , xm/unfX
−m

ϕ (ϕxm)].



19

Since bound(ψ)∩ free(ϕxi) = ∅ and free(unfX
−1

ϕ (ϕxi)) ⊆ free(ϕxi) for all i we get

that bound(ψ)∩ free((unfX
−1

ϕ (ϕxi)) = ∅. Therefore, by induction hypothesis and
Lemma 3.1 we get

‖unfXϕ (ψ)‖T ϕ = ‖ψ‖T ϕ[x1 7→‖ϕx1‖Tϕ ,...,xm 7→‖ϕxm‖Tϕ ].

Since for all xi we have that λϕ(xi) = ‖ϕxi‖T ϕ we get

‖unfXϕ (ψ)‖T ϕ = ‖ψ‖T ϕ .

a

The previous lemma tells us that on the transition system induced by ϕ the
denotation of any subformula of ϕ and the denotation of any of its unfolding
over ϕ are the same.

Other usefull properties of T ϕ are summarized in the next lemma.

Lemma 21 Let T = (S,→T , λT ) be a transition system, ϕ any µ-formula and
ψ ≤ ϕ.Then:

1. For every X ⊆ bound(ϕ) we have

‖ψfree(X)‖T ϕ = ‖ψ‖T ϕ .

2. For every X1, X2 ⊆ bound(ϕ), where X1 ∩X2 = ∅, we have

‖unfX2

ϕfree(X1)ψ
free(X1)‖T ϕ = ‖ψ‖T ϕ .

3. For every X1, X2 ⊆ bound(ϕ), where X1 ∩X2 = ∅, we have

‖unfX2
ϕ ψfree(X1)‖T ϕ = ‖ψ‖T ϕ .

Proof. Part 1. By Lemma 3.2 and since ‖ϕx‖T ϕ = λT
ϕ

(x) for all x ∈ bound(ϕ)
we get

‖ψfree(X)‖T ϕ = ‖ψfree(X)[x1/ϕx1 , . . . , xn/ϕxn ]‖T ϕ .

The proof ends with a straightforward induction on the structure of ψ proving
that for all transition systems T we have

‖ψ‖T ϕ = ‖ψfree(X)[x1/ϕx1 , . . . , xn/ϕxn ]‖T ϕ .

The only non trivial step is the one where ψ is of the form ηx.α (η ∈ {µ, ν}).
In this case, note that if any xi appears free in α then x appears only bound in
ϕxi .

Part 2. We prove the equation by induction on the size of X2. If X2 is
empty, the equation holds by the previous point. For the inductive step, given
{xi1 , . . . , xik} = X2∩free(ψfree(X1)), we have that by definition of unf the formula
‖unfX2

ϕfree(X1)ψ
free(X1)‖T ϕ is equal to

‖ψfree(X1)[xi1/unf
X
−i1
2

ϕfree(X1)(ϕfree(X1))xi1 , . . . , xik/unf
X
−ik
2

ϕfree(X1)(ϕfree(X1))xik ]‖T ϕ .
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Since free(unf
X
−i1
2

ϕfree(X1)(ϕfree(X1))xi1 ) ⊆ free(ϕfree(X1))xi1 ) and since we have that

free(ϕfree(X1))xi1 ) ∩ bound(ψfree(X1)) = ∅ we get

free(unf
X
−i1
2

ϕfree(X1)(ϕfree(X1))xi1 ) ∩ bound(ψfree(X1)) = ∅.

With Lemma 3.1 we get the equality with

‖ψfree(X1)‖
T ϕ[xi1 7→‖unf

X
−i1
2

ϕfree(X1) (ϕ
free(X1))xi1

‖Tϕ ,...,xik 7→‖unf
X
−ik
2

ϕfree(X1) (ϕ
free(X1))xik

‖Tϕ ]

and by induction hypothesis this expression is equal to

‖ψfree(X1)‖T ϕ[xi1 7→‖ϕxi1 ‖Tϕ ,...,xik 7→‖ϕxik ‖Tϕ ].

Since in T ϕ we have that λ(xij ) = ‖ϕxij ‖T ϕ the last expression is equal to
‖ψfree(X1)‖T ϕ .

Part 3. Suppose {xi1 , . . . , xik} = X2 ∩ free(ψfree(X1)). Following the same
argumentation as in part 2 we get that ‖unfX2

ϕ ψfree(X1)‖T ϕ is equal to

‖ψfree(X1)‖
T ϕ[xi1 7→‖unf

X
−i1
2

ϕ ϕxi1
‖Tϕ ,...,xik 7→‖unf

X
−ik
2

ϕ ϕxik
‖Tϕ ]

.

With Lemma 20 we get the equality with

‖ψfree(X1)‖T ϕ[xi1 7→‖ϕxi1 ‖Tϕ ,...,xik 7→‖ϕxik ‖Tϕ ],

and because in T ϕ we have that λ(xij ) = ‖ϕxij ‖T ϕ the last expression is equal
to ‖ψfree(X1)‖T ϕ which by part 1 is equal to ‖ψ‖T ϕ . a

Lemma 22 Let ϕ be a µ-formula and T = (S,→T , λT ) be a transition system.
For all X ⊆ bound(ϕ), all xk ∈ X = bound(ϕ) \X, all ψ ≤ ϕ and all x /∈ X we
have that

1. ‖unfX
ϕ−X

ψ−X‖T ⊆ ‖unf
X∪{xk}
ϕ−X

−k ψ
−X−k‖T ,

2. ‖unfX
ϕ−X

ψ−X‖T ⊆ ‖unfbound(ϕ)
ϕ ψ‖T ,

3. ‖unfX
ϕ−X

(ϕ−X)x‖T ϕ ⊆ ‖ϕx‖T ϕ ,
4. ‖ψ−X‖T ϕ−X ⊆ ‖ψ‖T ϕ .

Proof. Suppose σ is a winning strategy for Player 0 in E(unfX
ϕ−X

ψ−X , (T , s)).
By definition, any winning play for Player 0 starting from 〈unfX

ϕ−X
ψ−X , s〉 and

compatible with σ do not reach a position of type 〈⊥, s′〉. Thus, this strategy
determines a winning strategy for Player 0 in E(unf

X∪{xk}
ϕ−X

−k ψ
−X−k , (T , s)). Part

1 is then obtained by applying Theorem 7. Part 2 follows by a finite reiteration
of part 1. In order to obtain part 3 just apply Lemma 20 to part 2 and note that,
since x /∈ X, (ϕ−X)x ≡ (ϕx)−X . Part 4 is also a consequence of an application
of Lemma 20 to part 2. a
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6.2 A first reduction

We begin with a Lemma whose proof is standard.

Lemma 23 Let T be a transitive transition system and let s, s′ be two stated
such that s→T s′. For all µ-formulae ϕ we have that

s ∈ ‖�ϕ‖T =⇒ s′ ∈ ‖�ϕ‖T and

s′ ∈ ‖♦ϕ‖T =⇒ s ∈ ‖♦ϕ‖T .

Theorem 24 Let T be a transitive transition system and let νx.ϕ(x) be a for-
mula such that x is weakly universal. We have that

‖νx.ϕ(x)‖T = ‖ϕ(ϕ(>))‖T .

Proof. The ⊆ inclusion is clear. For the ⊇ inclusion, define A = ‖ϕ(ϕ(>))‖T ; by
definition of greatest fixpoint it is enough to show that we have

A ⊆ ‖ϕ(A)‖T . (2)

First, recall that we assume that νx.ϕ(x) is well-named. This means that in the
formula ϕ(x) the variable x is in the scope of a modal operator and, therefore,
we can assume that ϕ is of the form β(�α(x)). Moreover x occurs only once in
ϕ. This implies that �α(x) and �α(ϕ(x)) occur only once in the formula tree
of ϕ(ϕ(x)). Let s ∈ A, by Theorem 7 there is a winning strategy σ for Player
0 in the evaluation game E(ϕ(ϕ(x)), (T [x 7→ S], s)). Let π be an arbitrary play
consistent with σ. If π reaches a vertex of the form 〈�α(x), s′〉 then the same
play reaches a vertex of the form 〈�α(ϕ(x)), s′′〉, with �α(x) ≤ �α(ϕ(x)) and
s′ reachable from s′′ in T [x 7→ S]. Since σ is a winning strategy for Player 0 by
Proposition 10 we have that

s′′ ∈ ‖�α(ϕ(x))‖T [x 7→S] and s′ ∈ ‖�α(x)‖T [x7→S].

Since T [x 7→ S] is transitive we have that s′′ →T [x 7→S] s′ and, by applying Lemma
23, we have

s′ ∈ ‖�α(ϕ(x))‖T [x 7→S].

Hence, we have shown that for all plays π consistent with σ, if π reaches a
vertex of the form 〈�α(x), s′〉 then, by Theorem 7, there is a winning strategy
for Player 0 in the evaluation game E(�α(ϕ(x)), (T [x 7→ S], s′)). A fortiori,
this implies that if π reaches a vertex of the form 〈�α(x), s′〉 then there is a
winning strategy σ〈�α(x),s′〉 for Player 0 in the evaluation game E(�α(x), (T [x 7→
‖ϕ(x)‖T [x 7→S]], s′)). Therefore, since ‖ϕ(x)‖T [x 7→S] ⊆ S, the strategy σ∗ given by
following σ but switching to the corresponding σ〈�α(x),s′〉 when a position of the
form 〈�α(x), s′〉 is reached, is winning for Player 0 in E(ϕ(ϕ(x)), (T [x 7→ S], s)).
Let B := ‖ϕ(x)‖T [x7→S]. By construction of σ∗ we have that for all vertices
of the form 〈x, v〉 which are reachable by σ∗ it holds that v ∈ B. Then, by
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applying Lemma 8, σ∗ can be converted into a winning strategy for Player 0 in
E(ϕ(ϕ(x), (T [x 7→ B], s)). By Theorem 7, we have that

s ∈ ‖ϕ(ϕ(B))‖T [x7→S]

which can be reformulated as s ∈ ‖ϕ(ϕ(ϕ(>)))‖T or s ∈ ‖ϕ(A)‖T . Therefore,
we have proved Equation 2 and completed the proof. a

Definition 3. The syntactical translation τ : Lµ → Lµ is defined recursively
on the structure of the formula such that τ(p) = p, τ(¬p) = ¬p, τ(⊥) = ⊥ and
τ(>) = >, such that it distributes over boolean and modal connectives, and such
that

– τ(µx.ϕ) = τ
(
wn(ϕ(ϕ(⊥)))

)
, x is weakly existential in ϕ

– τ(µx.ϕ) = wn(µx.τ(ϕ)), x is universal in ϕ
– τ(νx.ϕ) = τ

(
wn(ϕ(ϕ(>)))

)
, x is weakly universal in ϕ

– τ(νx.ϕ) = wn(νx.τ(ϕ)), x is existential in ϕ.

First, note that in each defining clause τ(ϕ) is defined via an application of τ to
a formula whose rank, by Lemma 1, is strictly smaller than the rank of ϕ. Thus
τ terminates and is well-defined. Note also, that it can be proved by induction
on the structure of ϕ that all variables which are existential (resp. universal)
in ϕ are weakly existential (resp. universal) in τ(ϕ) and that therefore for all
µx.α ≤ τ(ϕ) we have that x is weakly universal and for all νx.α ≤ τ(ϕ) we have
that x is weakly existential.

Corollary 25 On transitive transition systems we have that

‖ϕ‖T = ‖τ(ϕ)‖T .

Proof. By induction on rank(ϕ). If rank(ϕ) = 1 or rank(ϕ) is a successor ordinal
the proof is straightforward. If rank(ϕ) is a limit ordinal then ϕ is of the form
ηx.α. We distinguish four cases. If ϕ is of the form νx.α and x is existential
in ϕ the induction step is straightforward. Similarly for ϕ of the form µx.α
and x is universal in ϕ. If ϕ is of the form νx.α and x is in the scope of a �
in ϕ the induction step follows from Theorem 24 and Lemma 4. In the third
case, if ϕ is of the form µx.α and x is in the scope of a ♦ in ϕ then ¬ϕ is of
the form νx.¬α[x/¬x] and x is in the scope of a � in ¬ϕ. Since in this case
rank(ϕ) = rank(¬ϕ) we can apply the induction step as in the third case. a

6.3 Normalizing the winning strategies

Let T be a transitive transition system and ϕ a µ-formula. Consider an arbitrary
(memoryless) strategy σ for Player 0, not necessarily winning. We define the
restriction of E(ϕ, (T , s0)) on σ, denoted by E|σ(ϕ, (T , s0)), as follows:

– The set of positions V |σ of the restriction is given by all nodes which are the
positions of some play compatible with σ starting from position 〈ϕ, s0〉,
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– The arena of E|σ(ϕ, (T , s0)) is the triple 〈V0|σ, V1|σ, E|σ〉 where:
1. V0|σ = ∅,
2. V1|σ = V |σ,
3. if 〈ψ, s〉 ∈ V |σ ∩ V1 then E|σ(〈ψ, s〉) = E(〈ψ, s〉), and
4. if 〈ψ, s〉 ∈ V |σ ∩ V0 then E|σ(〈ψ, s〉) = {σ(〈ψ, s〉)}.

– The ranking function Ω|σ is given by the restriction of Ω on V |σ.

Note, that if T is finite then V |σ is finite, too. We have that in E|σ(ϕ, (T , s0))
the only Player who can move is Player 1. This can be done because the moves
for Player 0 are already completely determined by the (memoryless) strategy σ.
Clearly, any play in E|σ(ϕ, (T , s0)) is a play in E(ϕ, (T , s0)) compatible with σ.
We say that a play π in E|σ(ϕ, (T , s0)) is winning for Player 0 if and only if
the play π is winning for Player 0 in E(ϕ, (T , s0)). If σ is a winning strategy for
Player 0 then any play in E|σ(ϕ, (T , s0)) is winning for Player 0.

Example 4. Look at the arena depicted in Example 2. The non-dotted part of
the picture represents the arena of a restricted evaluation game.

Definition 4. Let T be a finite transitive transition system and ϕ a µ-formula.
Suppose there is a winning strategy σ for Player 0 in the parity game E(ϕ, (T , s0)).
Then, for every position 〈ψ, s〉 of E|σ(ϕ, (T , s0)), we define a measure d(〈ψ, s〉).
We distinguish two cases in the definition, depending on whether the strongly
connected component scc(〈ψ, s〉) of 〈ψ, s〉 in E|σ(ϕ, (T , s0)) is empty or not:

1. scc(〈ψ, s〉) = ∅ :

d(〈ψ, s〉) =

{
0 if E|σ(〈ψ, s〉) = ∅
max{d(〈φ, s′〉) : 〈φ, s′〉 ∈ E|σ(〈ψ, s〉)}+ 1 else

2. scc(ψ, s) 6= ∅ :

d(〈ψ, s〉) = 0 if
⋃
{E|σ(〈α, s〉) : 〈α, s〉 ∈ scc(ψ, s)} \ scc(ψ, s) = ∅,

else
d(〈ψ, s〉) = max{d(〈φ, s′〉) : 〈φ, s′〉 /∈ scc(〈ψ, s〉) and exists

〈ξ, s′′〉 ∈ scc(〈ψ, s〉) with 〈φ, s′〉 ∈ E|σ(〈ξ, s′′〉)}+ 1.

For all finite transition systems d is a well-defined measure. Indeed, if we have a
finite transition system we obviously have a finite arena which can be collapsed
to a finite and well-founded graph by identifying all vertices in the arena which
are in the same strongly connected component. It is clear that on finite and
well-founded graphs d is well-defined. By noting that on the original arena the
measure of a vertex corresponds to its measure of the collapsed arena we get
that d is well-defined.

Lemma 26 Let T be a finite transitive transition system and ϕ ∈ Σµ
2 . Suppose

there is a winning strategy σ for Player 0 in the parity game E(ϕ, (T , s0)). If
y ∈ bound(ϕ) is a µ-variable, then for every position 〈y, s〉 ∈ V |σ, we have that
scc(〈y, s〉) = ∅.
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Proof. If scc(〈y, s〉) 6= ∅ then Player 1 can determine a play π in E|σ(ϕ, (T , s0))
where 〈y, s〉 occurs infinitely often, since in E|σ(ϕ, (T , s0)) only Player 1 moves
and therefore can stay as long as he wants in a strongly connected component.
Remember that ϕ ∈ Σµ

2 . Thus, there is no ν-variable free in ϕy. Moreover,
if y ∈ free(ϕx), where x is an arbitrary ν-variable, we have that Ω(〈y, s〉) is
strictly greater than the priorities of x and ϕx positions. Therefore, π is winning
for Player 1. But since π is compatible with σ, the play must be winning for
Player 0, too. A contradiction. a

Given the restriction of E(ϕ, (T , s0)) on a winning strategy σ and the measure
d on V |σ we define the normalization of σ, denoted by σN, as follows:

– For all positions 〈♦β, s′〉 ∈ V |σ we have that

σN(〈♦β, s′〉) = σ(〈♦β, s′〉),

if

d(σ(〈♦β, s′〉)) = min{d(〈β, s̄〉) : 〈β, s̄〉 ∈ E(〈♦β, s′〉) reachable from 〈♦β, s′〉 in V |σ}

else
σN(〈♦β, s′〉) = 〈β, s′′〉,

where 〈β, s′′〉 ∈ E(〈♦β, s′〉) is a vertex reachable from 〈♦β, s′〉 in V |σ such
that

d(〈β, s′′〉) = min{d(〈β, s̄〉) : 〈β, s̄〉 ∈ E(〈♦β, s′〉) reachable from 〈♦β, s′〉 in V |σ}.

– If ψ is not of the form ♦β then we simply set σN(〈ψ, s〉) = σ(〈ψ, s〉).

Intuitively, given a winning strategy σ for Player 0 on E(ϕ, (T , s0)), the normal-
ized strategy σN for Player 0 is given by adapting σ such that for all vertexes
of the form 〈♦β, s′〉 Player 0 moves to a vertex 〈β, s′′〉 whose measure is the
minimal measure of all positions of the type 〈β, s̄〉 reachable from 〈♦β, s′〉 which
are still winning in E(ϕ, (T , s0)). We have the following lemma.

Lemma 27 Let T be a finite transitive transition system. If σ is a winning
strategy for Player 0 on E(ϕ, (T , s0)) then σN is a winning strategy for Player 0
on E(ϕ, (T , s0)), too.

Proof. First we prove the following claim:
Claim : E|σ and E|σN coincide on every non empty scc of E|σN(ϕ, (T , s0)).
The proof of the claim goes as follow. If there is no position of the form

〈♦β, s〉 in a scc of E|σN(ϕ, (T , s0)), the claim is trivially verified. Consider now
an arbitrary scc(〈♦β, s〉) of E|σN(ϕ, (T , s0)). Let 〈ψ, t〉 ∈ scc(〈♦β, s〉), in order to
prove the claim we have to show that E|σN(〈ψ, t〉) = E|σ(〈ψ, t〉).

(a) If ψ is not of the form ♦α, then E|σN(〈ψ, t〉) = E|σ(〈ψ, t〉).
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(b) For the case where ψ = ♦α then suppose that E|σN(〈ψ, t〉) 6= E|σ(〈ψ, t〉) and
that E|σN(〈ψ, t〉) = {〈α, t′〉}. Note, that by construction of σN the position
〈α, t′〉 is the only successor of 〈ψ, t〉. Since E|σN(〈ψ, t〉) 6= E|σ(〈ψ, t〉) it must
hold that

d(〈α, t′〉) < d(〈ψ, t〉) (3)

where d is the depth defined on E|σ(ϕ, (T , s0)). Since scc(〈♦α, t〉) 6= ∅ and
since 〈α, t′〉 is the only position reachable in one step from 〈♦α, t〉 we have
that 〈α, t′〉 ∈ scc(〈♦α, t〉) and therefore that 〈♦α, t〉 is reachable from 〈α, t′〉
in E|σN(ϕ, (T , s0)). Since reachability in E|σN(ϕ, (T , s0)) implies reachability
in E|σ(ϕ, (T , s0)) we can infer that d(〈α, t′〉) ≥ d(〈♦α, t〉), where d is the
depth defined on E|σ(ϕ, (T , s0)). This is a contradiction to point 3 and
therefore the claim is proved.

Consider an arbitrary play π in the graph of E|σN(ϕ, (T , s0)). If π is finite, then
by construction of the normalized arena the play is winning for Player 0. If π is
infinite then from a certain position, say 〈α, t〉, we are in a scc of E|σN(ϕ, (T , s0)).
But then by the previous claim after 〈α, t〉 the strategies of σ and σN coincide.
Since by construction of σN the position 〈α, t〉 is winning in E|σ(ϕ, (T , s0)) the
highest priority appearing infinitely often in π often must be even and, therefore
π is a winning play in E(ϕ, (T , s0)) for Player 0. a

In the next lemma we prove that, when considering Σµ
2 -formulae, normalized

strategies have a nice and very usefull property.

Lemma 28 Let T be a finite transitive transition system and ϕ ∈ Σµ
2 such that

all ν-variables are weakly existential. Let σN be a normalized winning strategy for
Player 0 on E(ϕ, (T , s0)). Consider a position 〈x, s1〉 in E|σN(ϕ, (T , s0)) where
x ∈ bound(ϕ) is a ν-variable. Then, if there is a position 〈y, s2〉 reachable from
〈x, s1〉 in V |σN , where y ∈ bound(ϕ) is a µ-variable, then there is no position
〈x, s3〉 reachable from 〈y, s2〉 in V |σN .

Proof. Suppose there is a play π consistent with σN such that we have the
following regenerations: 〈x, s1〉 then 〈y, s2〉 and then 〈x, s3〉, where x is a ν-
variable and y a µ-variable. Note that, since ϕ ∈ Σµ

2 , we have that y ∈ free(ϕx),
and therefore ϕx < ϕy. This implies that in π we must have positions of the
form 〈♦(β(x)), s′1〉 and 〈β(x), s′′1〉 before 〈x, s1〉, and also positions of the form
〈♦(β(x)), s′3〉 and 〈β(x), s′′3〉 before 〈x, s3〉 but after 〈y, s2〉. By construction of
normalized strategy and by the transitivity of T it holds that d(〈β(x), s′′1〉) =
d(〈β(x), s′′3〉) but also that d(〈β(x), s′′1〉) = d(〈β(x), s′′3〉) = d(〈y, s2〉). This implies
that scc(〈y, s2〉) 6= ∅. Because σN is a winning strategy for Player 0, by Lemma
26 we get the desired contradiction. a

We immediately can restate the previous lemma as the following theorem.

Theorem 29 Suppose a finite transitive transition system T , a formula ϕ ∈ Σµ
2

such that all ν-variables are weakly existential and a normalized winning strategy,
σN, of Player 0 in E(ϕ, (T , s)). If in a play π consistent with σN there is a
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regeneration of a ν-variable x then either there is no more regeneration of a
µ-variable after the first regeneration of x or, if there is such a regeneration of
a µ-variable, then after this position there is no more regeneration of x.

6.4 Encoding normalized winning strategies

In Definition 5 we define the formulae NS−ϕ (X ′, y) and NS+
ϕ (x,X ′) used to en-

code the main properties of the normalization of winning strategies of ϕ given
by Theorem 29. Encoding, in this context, will be formalized in the two main
Lemmas of the section, Lemmas 31 and 32. The intuition behind these formulae
is the following:

– NS−ϕ (X ′, y) reflects the fact that we are regenerating y and any ν-variable
regenerated afterwards will be an element of X ′,

– NS+
ϕ (x,X ′) reflects the fact that we are regenerating x and if we regenerate

any µ-variable then afterwards any ν-variable regenerated will be an element
of X ′.

In the sequel, in order to ease notation, we write a formula of the form ϕ
free(X)
y

instead of (ϕfree(X))y.

Definition 5. Let ϕ be a Σµ
2 -formula. Let Y = {y1, . . . , yk} be the set of all

µ-variables in ϕ and X be the set of all ν-variables in ϕ. For all subsets of
X ′ ⊂ X, all ν-variables x such that x ∈ X/X ′ and all µ-variables y we define
the formulae NS+

ϕ (x,X ′) and NS−ϕ (X ′, y) recursively on the size of X ′ such that

NS−ϕ (∅, y) ≡ unfYϕ−X ((ϕ−X)y)

and, such that

NS+
ϕ (x, ∅) ≡ (unfXϕfree(Y )ϕ

free(Y )
x )[y1/NS−ϕ (∅, y1), . . . , yk/NS−ϕ (∅, yk)].

If X ′ = {xi1 , . . . , xil} and X ′ = X \X ′, then

NS−ϕ (X ′, y) ≡ (unfY
(ϕ−X′ )free(X′)(ϕ

−X′)free(X′)
y )[ xi1/NS+

ϕ−X′
(xi1 , X

′−i1),
...
xik/NS+

ϕ−X′
(xil , X

′−il)],

and
NS+

ϕ (x,X ′) ≡ (unfX
′

ϕfree(Y∪X′)ϕ
free(Y ∪X′)
x )[ y1/NS−ϕ (X ′, y1),

...
yk/NS−ϕ (X ′, yk),
xi1/NS+

ϕ (xi1 , X
′−i1),

...
xil/NS+

ϕ (xil , X
′−il)].
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Note that by construction we have that for every ν-variable x, every µ-variable
y and every set of ν-variables X ′, free(NS+

ϕ (x,X ′)), free(NS−ϕ (X ′, y)) ⊆ free(ϕ)
and bound(NS+

ϕ (x,X ′)), bound(NS−ϕ (X ′, y)) ⊆ bound(ϕ).

Lemma 30 Let ϕ ∈ Σµ
2 , y be µ-variable in ϕ and X ′ be a proper subset of the

set of all ν-variables. Suppose that xi is a ν-variable such that xi 6∈ X ′. We have
that

NS−ϕ (X ′, y),NS+
ϕ (xi, X ′) ∈ ∆µ

2 .

Proof. The proof goes by induction on the size of X ′. If X ′ = ∅ then clearly
NS−ϕ (X ′, Y ) ∈ Σµ

1 and, by definition of the formula, NS+
ϕ (x,X ′) ∈ ∆µ

2 . The
induction step follows from the definitions by noting that the class ∆µ

2 is closed
under substitution of ∆µ

2 formulae if no new variable is bound. a

Lemma 31 Let ϕ be a Σµ
2 -formula and X be the set of all ν-variables in ϕ.

Suppose that all x ∈ X are weakly existential. Let (T , s0) be a finite transitive
transition system such that there is a normalized winning strategy σN in the
evaluation game E(ϕ, (T , s0)). The following holds for every X ′ ⊆ X where
X ′ = X/X ′:

1. If there is a play consistent with σN which reaches a position 〈y, s〉 (y a µ-
variable in ϕ) such that on this play before 〈y, s〉 there are positions 〈x, s〉
for all x ∈ X ′ then it holds that

s ∈ ‖NS−ϕ (X ′, y)‖T ϕ .

2. If there is a play consistent with σN which reaches for the first time a position
〈x, s〉 (x a ν-variable in ϕ) such that on this play before 〈x, s〉 there are
positions 〈x, s〉 for all x ∈ X ′ \ {x} then it holds that

s ∈ ‖NS+
ϕ (x,X ′)‖T ϕ .

Proof. Let Y = {y1, . . . , yk} be the set of all µ-variables in ϕ. We prove the two
points simultaneously by induction on the size of X ′. If X ′ = ∅ we have that
NS−ϕ (∅, y) ≡ unfYϕ−X ((ϕ−X)y). If there is a play consistent with σN reaching a
position of the form 〈y, s〉 whereby for all ν-variables there has been a regener-
ation in this play before, then, since σN is a normalized strategy, by Theorem
29 there can not be any regeneration of a ν-variable after 〈y, s〉. Therefore σN

determines a winning strategy in

E(unfYϕ−X ((ϕ−X)y), (T , s))

and with Theorem 7 we get the induction base for part 1. For part 2 remember
that

NS+
ϕ (x, ∅) ≡ (unfXϕfree(Y )ϕ

free(Y )
x )[y1/NS−ϕ (∅, y1), . . . , yk/NS−ϕ (∅, yk)].

Suppose that there is a play consistent with σN which reaches for the first time
a position 〈x, s〉 (x ∈ X) such that on this play before 〈x, s〉 there are positions
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〈x, s〉 for all x ∈ X \{x}. Then, since σN is a normalized strategy, by Theorem 29
for every play extending this position which is compatible with σN, either there
are only regenerations of ν-variables, or, if there is a regeneration of a 〈y, s〉, then
after this regeneration there is no more regeneration of a ν-variable. Therefore
σN determines a winning strategy in

E((unfXϕfree(Y )ϕ
free(Y )
x )[y1/NS−ϕ (∅, y1), . . . , yk/NS−ϕ (∅, yk)], (T , s))

and with Theorem 7 we get the induction base for part 2.
For the induction step of part 1, let X ′ = {xi1 , . . . , xil} and let 〈y, s〉 be a

position of a play consistent with σN such that all x ∈ X ′ have been regenerated
before. Then, by Theorem 29 for all ν-variables xi regenerated afterwards in the
play we have xi ∈ X ′. By construction for such a position 〈xi, si〉 we will have
that all ν-variables in X ′ are regenerated before this position. Define X ′−i =
X ′ \ {xi}. It can easily be seen that 〈xi, si〉 satisfy the condition of part 2 and,
since xi ∈ X ′, that X ′−i ( X ′. Therefore, we can apply induction hypothesis of
part 2 and get

si ∈ ‖NS+(xi, X ′−i)‖T .

Recapitulating, we have that for all plays consistent with σN starting from
〈y, s〉 if a ν-variable xi is regenerated by a position 〈xi, si〉 then we have si ∈
‖NS+(xi, X ′−i)‖T and otherwise we have only regenerations of µ-variables. But
by Lemmas 3.1 and 8 this means that σN gives us a winning strategy in the
evaluation game

E(γ, (T , s))

where

γ ≡ unfY
(ϕ−X′ )free(X′)((ϕ

−X′)free(X′)
y )[ xi1/NS+

ϕ−X′
(xi1 , X

′−i1),
...
xil/NS+

ϕ−X′
(xil , X

′−il)].

By noting that γ ≡ NS−ϕ (X ′, y) and using Theorem 7 we finish the induction
step for part 1.

For the induction step of part 2 let 〈x, s〉 be a position of a play consistent
with σN such that all x ∈ X ′ have been regenerated before. There are only three
disjoint classes of winning plays (consistent with σN) extending the position
〈x, s〉 and they are obtained by considering all possible regenerations of bound
variables after this position:

1. The class of plays in which afterwards we regenerate a xi ∈ X ′ in a position
〈xi, si〉, and before this position there was no regeneration of a µ-variable.
In this case we can apply the induction hypothesis for part 2 to the set X ′−i

and get
si ∈ ‖NS+

ϕ (xi, X ′−i)‖T .
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2. The class of plays in which afterwards we regenerate a µ-variable y in a
position 〈y, sy〉, and before this position there was no regeneration of a xi ∈
X ′. In this case, we can apply part 1, where the induction step is already
done, and get

sy ∈ ‖NS−ϕ (X ′, y)‖T .
3. The class of plays in which there is no regeneration of z ∈ X ′ ∪ Y , but

there are eventually only regenerations of xi ∈ X ′. Because these plays are
consistent with σN, they are winning. Therefore, they are winning in the
evaluation game E((unfX

′

ϕ−(Y∪X′)ϕ
−(Y ∪X′)
x ), (T , s)), too.

By Lemmas 3.1 and 8 we have that

s ∈ ‖(unfX
′

ϕfree(Y∪X′)ϕ
free(Y ∪X′)
x )[ y1/NS−ϕ (X ′, y1),

...
yk/NS−ϕ (X ′, yk),
xi1/NS+

ϕ (xi1 , X
′−i1),

...
xil/NS+

ϕ (xil , X
′−il)]‖T .

and this ends the induction step of part 2 and the proof. a

Lemma 32 Let ϕ be a Σµ
2 -formula and X be the set of all ν-variables in ϕ. Sup-

pose that all ν-variables are weakly existential. Then, for every finite transitive
transition system T and for every X ′ ⊆ X it holds that

1. For every y ∈ Y we have

‖NS−ϕ (X ′, y)‖T ϕ ⊆ ‖ϕy‖T ϕ , and

2. for every x ∈ X ′ =: X/X ′ we have

‖NS+
ϕ (x,X ′)‖T ϕ ⊆ ‖ϕx‖T ϕ .

Proof. Let Y = {y1, . . . , yk} be the set of all µ-variables. We prove the two points
simultaneously by induction on the size of X ′. Suppose X ′ is empty. Then we
have that NS−ϕ (∅, y) ≡ unfYϕ−X ((ϕ−X)y) and by Lemma 22.3 we obtain

‖unfYϕ−X ((ϕ−X)y)‖T ϕ ⊆ ‖ϕy‖T ϕ .

Therefore we complete the base case of the induction for part 1. For part 2
remember that

NS+
ϕ (x, ∅) ≡ (unfXϕfree(Y )ϕ

free(Y )
x )[y1/NS−ϕ (∅, y1), . . . , yk/NS−ϕ (∅, yk)].

Thus, by the induction base of part 1 and by Lemma 3.4, we have that

‖(unfXϕfree(Y )ϕ
free(Y )
x )[y1/NS−ϕ (∅, y1), . . . , yk/NS−ϕ (∅, yk)]‖T ϕ

⊆
‖(unfXϕfree(Y )ϕ

free(Y )
x )[y1/ϕy1 , . . . , ym/ϕym ]‖T ϕ .
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But because in T ϕ we have that λ(y) = ‖ϕy‖T ϕ and by applying Lemma 3.1
and Lemma 21.2, it holds that

‖(unfXϕfree(Y )ϕ
free(Y )
x )[y1/ϕy1 , . . . , ym/ϕym ]‖T ϕ ⊆ ‖ϕx‖T ϕ .

Therefore

‖(unfXϕfree(Y )ϕ
free(Y )
x )[y1/NS−ϕ (∅, y1), . . . , yk/NS−ϕ (∅, yk)]‖T ϕ ⊆ ‖ϕx‖T ϕ .

This ends the induction base for both parts 1 and 2.
Let X ′ = {xi1 , . . . , xil}. For the induction step of part 1, remember that

NS−ϕ (X ′, y) ≡ unfY
(ϕ−X′ )free(X′)((ϕ

−X′)free(X′))y[ xi1/NS+

ϕ−X′
(xi1 , X

′−i1),
...
xil/NS+

ϕ−X′
(xil , X

′−il)].

By induction hypothesis, by Lemma 3.4 and because in T ϕ−X
′

the evaluation of
a variable xij ∈ X ′ is equal to ‖(ϕ−X′)xij ‖T ϕ−X′ , we obtain

‖NS−ϕ (X ′, y)‖T ϕ = ‖ unfY
(ϕ−X′ )free(X′)((ϕ

−X′)free(X′)
y )

[xi1/NS+

ϕ−X′
(xi1 , X

′−i1),
...
xil/NS+

ϕ−X′
(xil , X

′−il)]‖T
⊆ ‖unfY

(ϕ−X′ )free(X′)((ϕ
−X′)free(X′))y‖T ϕ−X′ .

With Lemma 21.2 we obtain

‖unfY
(ϕ−X′ )free(X′)((ϕ

−X′)free(X′)
y )‖

T ϕ−X
′ = ‖(ϕ−X′)y‖T ϕ−X′ .

Finally, because by Lemma 22.4 it holds that ‖(ϕ−X′)y‖T ϕ−X′ ⊆ ‖ϕy‖T ϕ we get

‖NS−ϕ (X ′, y)‖T ϕ ⊆ ‖ϕy‖T ϕ .

For the induction step of part 2 if X = X \X ′, then by induction hypothesis
and by part 1 we have for every finite transitive transition system T

‖NS−ϕ (X ′, y1)‖T ϕ ⊆ ‖ϕy1‖T ϕ ,
...

‖NS−ϕ (X ′, yk)]‖T ϕ ⊆ ‖ϕyk‖T ϕ ,
‖NS+

ϕ (xi1X
′−i1)‖T ϕ ⊆ ‖ϕxi1‖T ϕ ,

...
‖NS+

ϕ (xilX
′−il)‖T ϕ ⊆ ‖ϕxil ‖T ϕ .
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Therefore, by Lemmas 3.4 and 3.1, and because in T ϕ we have that λ(z) =
‖ϕz‖T ϕ , for every z ∈ bound(ϕ), we get

‖(unfX
′

ϕfree(Y∪X′)(ϕ
free(Y ∪X′)
x ))[ y1/NS−ϕ (X ′, y1),

...
yk/NS−ϕ (X ′, yk)
xi1/NS+

ϕ (xi1 , X
′−i1),

...
xil/NS+

ϕ (xil , X
′−il)]‖T ϕ

⊆ ‖unfX
′

ϕfree(Y∪X′)(ϕ
free(Y ∪X′)
x )‖T ϕ .

We can apply Lemma 21.2 and obtain

‖(unfX
′

ϕfree(Y∪X′)(ϕfree(Y ∪X′)
x ))‖T ϕ ⊆ ‖ϕx‖T ϕ .

Because this implies that

‖NS+
ϕ (x,X ′)‖T ϕ ⊆ ‖ϕx‖T ϕ

this ends the induction step of part 2 and the proof of the Lemma. a

6.5 The collapse over transitive models

Everything now is ready to prove the collapse of the µ-hierarchy over finite
transitive transition systems.

Definition 6. For the formula ϕ ∈ Σµ
2 such that X = {x1, . . . , xm} is the set

of all ν-variables in ϕ. We define a new formula ρ(ϕ) ∈ ∆µ
2 such that

ρ(ϕ) ≡ ϕfree(X)[x1/NS+
ϕ (x1, X

−1), . . . , xm/NS+
ϕ (xm, X−m)].

Remark 3. By Lemma 30 it can easily be seen that ρ(ϕ) is indeed a ∆µ
2 -formula.

Theorem 33 For all ϕ ∈ Σµ
2 and all finite transitive transition systems T we

have that
‖ϕ‖T = ‖ρ(τ(ϕ))‖T .

Proof. First, we observe that τ(ϕ) ∈ Σµ
2 and that by Corollary 25 we have that

‖ϕ‖T = ‖τ(ϕ)‖T . Thus, we can assume that each ν-variable in ϕ ∈ Σµ
2 is weakly

existential and any µ-variable weakly universal. If X = {x1, . . . , xm} is the set
of all ν-variables in ϕ, by definition of ρ we have to prove that

‖ϕ‖T = ‖ϕfree(X)[x1/NS+
ϕ (x1, X

−1), . . . , xm/NS+
ϕ (xm, X−m)]‖T .

“⊇”: First note that because for every xi ∈ X it holds that ‖NS+
ϕ (xi, X−i)‖T =

‖NS+
ϕ (xi, X−i)‖T ϕ , the models T [x1 7→ ‖NS+

ϕ (x1, X
−1)‖T , . . . , xm 7→ ‖NS+

ϕ (xm, X−m)‖T ‖]
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and T ϕ[x1 7→ ‖NS+
ϕ (x1, X

−1)‖T ϕ , . . . , xm 7→ ‖NS+
ϕ (xm, X−m)‖T ϕ‖] agree on the

free variables of ϕfree(X). Therefore we have

‖ϕfree(X)[x1/NS+
ϕ (x1, X

−1), . . . , xm/NS+
ϕ (xm, X−m)]‖T =

‖ϕfree(X)[x1/NS+
ϕ (x1, X

−1), . . . , xm/NS+
ϕ (xm, X−m)]‖T ϕ

With Lemma 32 and, because all ν-variables appear positively in ϕ, by applying
Lemma 3.4 we get that

‖ϕfree(X)[x1/NS+
ϕ (x1, X

−1), . . . , xm/NS+
ϕ (xm, X−m)]‖T ϕ

⊆
‖ϕfree(X)[x1/ϕx1 , . . . , xm/ϕxm ]‖T ϕ

By Lemma 3.4 and because in T ϕ we have that λ(xi) = ‖ϕxi‖T ϕ , we obtain

‖ϕfree(X)[x1/ϕx1 , . . . , xm/ϕxm ]‖T ϕ ⊆ ‖ϕfree(X)‖T ϕ .
Since by Lemma 21.2 we have that ‖ϕfree(X)‖T ϕ = ‖ϕ‖T we get this inclusion.

“⊆”: Let s ∈ ‖ϕ‖T . By Theorem 7 there is a winning strategy in E(ϕ, (T , s))
and by Theorem 29 it can be assumed to be normalized. Let π be any play
consistent with the strategy starting from 〈ϕ, s〉. We have that if there is a
(first) regeneration of a ν-variable xi in a position 〈xi, si〉 then by Lemma 31 we
have that

si ∈ ‖NS+(xi, X−i)‖T
where X is the set of all ν-variables in ϕ. Therefore, there is a winning strategy
for Player 0 in

E(ϕfree(X), (T [x1 7→ ‖NS+(x1, X
−1)‖T , . . . , xn 7→ ‖NS+(xn, X−n)‖T ], s))

By Theorem 7 we have that

s ∈ ‖ϕfree(X)‖T [x1 7→‖NS+(x1,X−1)‖T ,...,xn 7→‖NS+(xn,X−n)‖T ]

and with Lemma 3.1 we complete the proof. a

Corollary 34 The modal µ-calculus hierarchy on finite transitive systems col-
lapses to ∆µ

2 .

Proof. By Theorem 33 it holds that ΣµTtf
2 = ∆µTtf

2 . By duality, ΠµTtf
2 = ∆µTtf

2 .
By this fact it is therefore very easy to verify inductively that for every n > 0,
ΣµTtf

2+n = ΠµTtf
2+n = ∆µTtf

2 . a

Corollary 35 The modal µ-calculus hierarchy on transitive systems collapses
to ∆µ

2 .

Proof. Suppose that the hierarchy does not collapse. Therefore, there is a formula
ϕ such that for all formula ψ ∈ ∆µ

2 there is a transitive system T such that
T , s0 |= ¬(ϕ ↔ ψ). By Theorem 16, there is a finite transitive model T f such
that T f , sfi |= ¬(ϕ↔ ψ). But this cannot be the case by Corollary 34. a
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We end with the definition of a syntactical translation from Lµ to ∆µ
2 preserving

equivalence on transitive transition systems.

Definition 7. R : Lµ → ∆µ
2 is defined as

– R(p) = p and R(¬p) = ¬p
– R(⊥) = ⊥ and R(>) = >
– R(α ◦ β) = R(α) ◦R(β), where ◦ ∈ {∧,∨}
– R(M β) =M R(β), where M∈ {�,♦}
– R(µx.ϕ) = wn

(
ρ(τ(wn(µx.(R(ϕ)))))

)
– R(νx.ϕ) = ¬(R(µx.¬ϕ[x/¬x]))

Lemma 36 For all µ-formula ϕ we have that

1. R(ϕ) is well-defined, and
2. R(ϕ) ∈ ∆µ

2 .

Proof. We prove both parts simultaneously by induction on the structure of ϕ.
The induction cases for boolean and modal connectives are trivial. If ϕ is of
the form µx.α we have that R(µx.α) = wn

(
ρ(τ(wn(µx.(R(α)))))

)
. Because τ

is a well-defined syntactical transformation, and neither wn nor τ increase the
alternation depth of a formula, the application of ρ in the clause of R(µx.α) is
well-defined by induction hypothesis. Thus, R(ϕ) terminates and therefore it is
well-defined too. The fact that R(µx.α) ∈ ∆µ

2 follows by induction hypothesis,
by the fact that, by Remark 3, for all Σµ

2 -formulae ψ we have that ρ(ψ) ∈ ∆µ
2 ,

and because we know that τ and wn do not increase the alternation depth. If ϕ
is of the form νx.α, on one hand R(νx.α) is well-defined because the clause for
this form is defined via a reducing case R(µx.¬ϕ[x/¬x]), and, on the other hand
R(ϕ) ∈ ∆µ

2 because ∆µ
2 is closed under negation. a

Theorem 37 For all ϕ ∈ Lµ and all finite transitive transition systems T we
have that

‖ϕ‖T = ‖R(ϕ)‖T .

Proof. We prove the equivalence by induction on rank(ϕ) simultaneously for all
finite transitive transition systems T . The induction cases for boolean and modal
connectives are trivial. If ϕ is of the form µx.α we have that

‖R(µx.α)‖T = ‖wn
(
ρ(τ(wn(µx.R(α))))

)
‖T by definition of R

= ‖wn(µx.R(α))‖T τ(wn(µx.R(α))) ∈ Σµ
2 , Lemma 4

and Theorem 33
= ‖µx.α‖T by Lemma 4 and induction hy-

pothesis

If ϕ is of the form νx.α we do a similar induction step like above by using the
equivalence ‖νx.α‖T = ‖¬µx.¬α[x/¬x]‖T . a

We conclude by verifying that the syntactical translation R is also an explicit
syntactical translation of all modal µ-formulae to the alternation free fragment
preserving denotation in every transitive transition systems. The proof goes with
similar argument as in Corollary 35 and it is left to the reader.
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Theorem 38 For all ϕ ∈ Lµ and all transitive transition systems T we have
that

‖ϕ‖T = ‖R(ϕ)‖T .

Remark 4. Note, that due to the example of Visser in [Vis96] mentioned in the
introduction the alternation-free fragment is also the optimal bound if restrict
ourselves to transition systems which are transitive and reflexive.

Example 5. Let’s have a look at our example from Section 2. In the case of
“always eventually”, we have that

‖νx.(µy.(p ∨ ♦y)) ∧�x)‖T
t

= ‖(p ∨ ♦p) ∧�(p ∨ ♦p)‖T
t

.

For “infinitely often”, it holds that

‖νx.µy.((p ∨ ♦y)) ∧ ♦x)‖T
t

= ‖νx.(p ∧ ♦x)‖T
t

.

But, because from footnote 4 of the introduction we know that νx.(p ∧ ♦x)
cannot be reduced to any purely modal formula, contrary to the transitive and
symmetric case, over transitive transition systems “infinitely often” cannot be
expressed by a ∆µ

1 formula.

7 Strictness of the hierarchy for reflexive transition
systems

In this section we prove the strictness of the modal µ-calculus hierarchy on
reflexive transition systems. In doing this, we follows the argumentation of the
proof of the strictness of the hierarchy on all binary transition systems presented
in [Alb02]. First, we adapt the game transition system such that it is reflexive.

Let E(ϕ, (T , s)) be a parity game with priority function Ω and with corre-
sponding pointed game transition system T (E(ϕ, (T , s))). We extend the edge
relation E of the parity game to its reflexive closure Er = E∪{(s, s); s ∈ V0∪V1},
and change our priority function Ω to Ωr such that for all vertices 〈ψ, s〉 where
ψ ≡ ηx.δ (η ∈ {µ, ν}) we have

Ωr(〈ψ, s〉) = Ω(〈ψ, s〉) + 2

and such that for all other vertices we define:

– if minΩ is even

Ωr(〈ψ, s〉) =

{
0 if 〈ψ, s〉 ∈ V1

1 if 〈ψ, s〉 ∈ V0.

– if minΩ is odd

Ωr(〈ψ, s〉) =

{
2 if 〈ψ, s〉 ∈ V1

1 if 〈ψ, s〉 ∈ V0.
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The new resulting “reflexive” parity game is denoted as Er(ϕ, (T , s)). The
following Lemma can be proved by unwinding the definition of winning strategy.

Lemma 39 Player 0 has a winning strategy for Er(ϕ, (T , s)) iff Player 0 has a
winning strategy for E(ϕ, (T , s)).

Given a “reflexive” parity game Er(ϕ, (T , s)) the pointed game transition
system T (Er(ϕ, (T , s))) is defined analogously as above. Obviously, the pointed
game transition system T (Er(ϕ, (T , s))) is reflexive. We have that

Proposition 40 Let (T , s) be an arbitrary pointed transition system. For all
ϕ ∈ Πµ

n we have that

T (Er(ϕ, (T , s))) ∈ ‖WΠµn+2
‖ if and only if T (E(ϕ, (T , s))) ∈ ‖WΠµn‖

and dually for ϕ ∈ Σµ
n .

Proof. This follows directly by the definition of the “reflexive” parity game
Er(ϕ, (T , s)) and by applying Proposition 9 to Lemma 39. a

Corollary 41 Let (T , s) be an arbitrary pointed transition system. For all ϕ ∈
Πµ
n we have that:

T (Er(ϕ, (T , s))) ∈ ‖WΠµn+2
‖ if and only if (T , s) ∈ ‖ϕ‖.

and dually for ϕ ∈ Σµ
n .

Proof. By Proposition 40 and Corollary 11 we obtain our result. a

For all formulae ϕ we define a function fϕ (functional class) mapping a
pointed transition system (T , s) to a reflexive transition system fϕ(T , s) such
that

fϕ(T , s) := T (Er(ϕ, (T , s))).

The proof of the next Lemma follows similar arguments as the proof of the
same result for arbitrary transition systems proved by one of the authors in
[Alb02].

Lemma 42 For all formulae ψ ∈ Σµ
n (resp. Πµ

n ), n ∈ N, there is an equivalent
formula ϕ ∈ Σµ

n (resp. Πµ
n ) such that the function fϕ has a fixpoint in Tr, that

is, a pointed reflexive transition system (T F , sF ) such that

fϕ(T F , sF ) = (T F , sF ).

Theorem 43 For all natural numbers n ∈ N \ {0} we have that

ΣTr
n ( ΣTr

n+1 and ΠTr
n ( ΠTr

n+1.



36

Proof. We proof the contrapositive. Assume that we have

ΣTr
n+1 ⊆ ΣTr

n or ΠTr
n+1 ⊆ ΠTr

n .

Without restriction of generality, assume ΣTr
n+1 ⊆ ΣTr

n . Then, if ‖ϕ‖ ∈ Πµ
n+1 we

have ‖¬ϕ‖ ∈ Σµ
n+1 and by assumption ‖¬ϕ‖ ∈ Σµ

n and therefore ‖ϕ‖ ∈ Πµ
n .

Therefore, assuming the contrapositive leads to

ΣTr
n+1 ⊆ ΣTr

n and ΠTr
n+1 ⊆ ΠTr

n .

Since from ΣTr
n+1 ⊆ ΣTr

n , by definition, it can be inferred that ΠTr
n ⊆ ΣTr

n , and
from ΠTr

n+1 ⊆ ΠTr
n , by definition, it can be inferred that ΣTr

n ⊆ ΠTr
n , by assuming

the contrapositive we get that ΠTr
n+1 = ΠTr

n = ΣTr
n+1 = ΣTr

n and, obviously, we
then have for all k ∈ N that

ΠTr
n+k = ΠTr

n = ΣTr
n+k = ΣTr

n . (4)

Since WΣµn+2
∈ Σµ

n+2 we have that ¬WΣµn+2
∈ Πµ

n+2 and with equation 4 we get

‖¬WΣµn+2
‖T

r

∈ ΣTr
n .

By Lemma 42 there is a formula ϕ ∈ Σµ
n equivalent to ¬WΣn+2 and a pointed

transition system (T F , sF ) such that

(T F , sF ) = fϕ(T F , sF ).

Since fϕ(T , s) is defined as T (Er(ϕ, (T , s))), by Corollary 41, for all pointed
transition systems (T , s) we have that fϕ(T , s) ∈ ‖WΣn+2‖ if and only if (T , s) ∈
‖ϕ‖. Since ϕ is equivalent to ¬WΣn+2 we get that

(T F , sF ) ∈ ‖¬WΣn+2‖ iff (T F , sF ) ∈ ‖WΣn+2‖

which is a contradiction. a

Theorem 44 1. The modal µ-calculus hierarchy is strict over reflexive transi-
tion systems.

2. The modal µ-calculus hierarchy is strict over finite reflexive transition sys-
tems.

Proof. Part 1 is a corollary of Theorem 43. For Part 2, let ‖ϕ‖ ∈ ΣTr
n \ ΠTr

n .
Then, by Part 1 we know that for every ψ ∈ Σµ

n−1 it holds that ¬(ϕ↔ ψ) has a
reflexive model. By Theorem 14, this model can be finite. Hence ϕ ∈ Σµ

n is not
equivalent to any Σµ

n−1 formula on finite reflexive transition systems. a
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