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Abstract

We present two sequent calculi for the modal µ-calculus over S5 and prove
their completeness by using classical methods. One sequent calculus has an an-
alytical cut rule and could be used for a decision procedure the other uses a
modified version of the induction rule. We also provide a completeness theorem
for Kozen’s Axiomatisation over S5 without using the completeness result estab-
lished by Walukiewicz for the modal µ-calculus over arbitrary models.

Keywords: Modal µ-calculus, modal logic, proof-theory, sequent calculus, com-
pleteness

1 Introduction

Modal µ-calculus is an extension of modal logic with least and greatest fixpoint con-
structors and allows us to study fixpoints, which play an important role as extensions
for many modal logics, on a sufficiently abstract level.

The expression ‘µ-calculus’ combined with the idea to introduce fixpoint construc-
tors to monotonic functions on complete lattices was first introduced by Scott and
De Bakker in [9]. The book of Arnold and Niwinski [4] provides a good overview
over this general notion of µ-calculus. Modal µ-calculus can be seen as a special case
where we restrict ourselves to the complete lattice given by the powerset of states
of a transition system. It was introduced by Kozen in his seminal work [8]. There,
also the axiomatisation Koz is introduced which is basically the extension of minimal
modal logic K with the so-called Park fixpoint induction principles. Kozen himself
could prove completeness for the aconjunctive fragment but failed for the full lan-
guage. Full completeness was established by Walukiewicz in [12], the proof is very
involved and strongly relies on methods from automata theory and infinite games.

For proof-theorists induction principles in a modal context represent a big chal-
lenge and are quite difficult to handle in a pure syntactical manner. Therefore, proof-
theoretical research on the modal µ-calculus has concentrated on, mainly infinitary,
systems different from Koz (see e.g. Jäger, Kretz and Studer in [7], Studer in [10] and
Dam and Sprenger [6]). One aim of our work is to study proof-theoretically fixpoints
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and induction on S5-models. In order to do this we present two sequent calculi, T1
S5µ

and T2
S5µ , for the modal µ-calculus over S5.

The first calculus, T1
S5µ , uses a modified induction rule, compared to the one used

in Kozen’s Axiomatisation. We show its correctness and, by working exclusively syn-
tactically in the calculus, that for formulae in a certain normal form T1

S5µ proves that
the fixpoint is reached after two iterations. This result has first been proved in the
joint work with Facchini [2] by using game-theoretical methods and the correspon-
dence of parity games with modal µ-calculus. Then, we show completeness of the
second system, T2

S5µ , by using a canonical model construction. The calculus T2
S5µ

only uses an analytical cut rule and, therefore, could provide a decision procedure for
validity. By embedding T1

S5µ into T2
S5µ we get completeness and correctness for both

calculi.
Finally, we show the completeness for Kozen’s Axiomatisation over S5, KozS5. The

main ingredient of the completeness proof is the fact that for formulae in normal form
the fixpoint is reached after two iterations and that KozS5 proves the equivalence of a
formula with its normal form. Our completeness proof does not use the completeness
result of Walukiewicz over arbitrary structures.

In the next section we introduce the modal µ-calculus. In section 3 we define the
calculi T1

S5µ and T2
S5µ . Section 4 is devoted to T1

S5µ and section 5 to T2
S5µ . In section

6 we embed T1
S5µ in T2

S5µ and prove their completeness and correctness. We conclude
by showing completeness of KozS5.

2 The propositional modal µ-calculus

2.1 Syntax

The language of the modal µ-calculus results by adding greatest and least fixpoint
operators to propositional modal logic. More precisely, given a countable infinite
set P of propositional variables, the collection, Lµ, of modal µ-formulae (or simply
µ-formulae) is defined as follows:

ϕ ::= p | ∼p | > | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ | µx.ϕ | νx.ϕ

where p, x ∈ P and x occurs only positively in σx.ϕ (σ ∈ {ν, µ}), that is, ∼x is not a
subformula of ϕ. Lmod denotes the pure modal fragment of Lµ.

The fixpoint operators µ and ν can be viewed as quantifiers. Therefore we use
the standard terminology and notations as for quantifiers and, for instance, free(ϕ)
denotes the set of all propositional variables occurring free in ϕ and bound(ϕ) those
occurring bound. By renaming bound variables we can achieve that bound and free
variables are distinct. If nothing else mentionned we assume that this is the case.
If ψ is a subformula of ϕ, we write ψ ≤ ϕ. We write ψ < ϕ when ψ is a proper
subformula.

Let ϕ(x) and ψ be two µ-formulae. The substitution of all occurrences of x with
ψ in ϕ is denoted by ϕ[x/ψ] or sometimes simply ϕ(ψ). Simultaneous substitution
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of all xi by ψi (i ∈ {1, . . . , n}) is denoted by ϕ[x1/ψ1, . . . , xn/ψn]. If Γ is the set
of formulae {α1, α2, . . .} then Γ[x/ψ] denotes the set {α1[x/ψ], α2[x/ψ], . . .}. For a
formal introduction of substitution we refer to Alberucci [1].

The negation ¬ϕ of a µ-formula ϕ is defined inductively such that ¬p ≡∼p and
¬(∼p) ≡ p, by using de Morgan dualities for boolean connectives and the usual modal
dualities for ♦ and �. For µ, ν we define

¬µx.ϕ(x) ≡ νx.¬ϕ(x)[x/¬x] and ¬νx.ϕ(x) ≡ µx.¬ϕ(x)[x/¬x].

As usual, we introduce implication ϕ → ψ as ¬ϕ ∨ ψ and equivalence ϕ ↔ ψ as
(ϕ→ ψ) ∧ (ϕ→ ψ).

If x ≤ ϕ and x is in the scope of a ♦ or in the scope of a � operator, then we say
that x is guarded in ϕ. A formula ϕ of Lµ is said to be guarded if for every subformula
of ϕ of the form σx.α (σ ∈ {µ, ν}), x is guarded in α. Let ϕ(x) be a µ-formula. If
x is free and occurs only positively in ϕ, then we define ϕn(x) for all n inductively
such that ϕ1(x) = ϕ and such that

ϕk+1(x) ≡ ϕ[x/ϕk(x)].

We define ϕn(⊥) as ϕn(x)[x/⊥] and ϕn(>) as ϕn(x)[x/>].
In the joint work with Krähenbühl [3] (see also [1]) we show that there exists a

measure for the syntactical complexity of formulae, rank(ϕ), which assigns to each
formula ϕ an ordinal number such that the following holds:

• rank(p) = rank(∼p) = rank(>) = rank(⊥) = 1

• rank(M α) = rank(α) + 1 where M∈ {�,♦}

• rank(α ◦ β) = max{rank(α), rank(β)}+ 1 where ◦ ∈ {∧,∨}

• rank(σx.α) = sup{rank(αn(x)) + 1 ; n ∈ N} where σ ∈ {ν, µ}.

It is an easy exercise to show that for all formulae ϕ we have that rank(ϕ) = rank(¬ϕ).
We say that a formula ϕ well-bounded if for all subformulae of the form σx.α (σ ∈

{µ, ν}) we have that x appears free at most once in α. By replacing all subformulae
σx.α(x, . . . , x) of ϕ by σx1. . . . σxn.α(x1, . . . , xn), where x1, . . . , xn are new variables
and σ ∈ {µ, ν}, we can convert ϕ to a well-bounded formula wb(ϕ).

Lemma 2.1. For formulae ϕ such that x appears only positively we have that if ϕ is
well-bounded then for all n ∈ N the formula ϕn(x) is well-bounded, too.

Proof. Follows from the fact that for all n ∈ N no variable gets newly bound by the
substitution ϕ[x/ϕn(>)]. Therefore, for all subformulae of ϕ[x/ϕn(>)] of the form
σx.α we have that x appears at most once free in α.

Kozen’s Axiomatisation, Koz, is a Hilbert-Style axiomatisation and consists of the
following axioms and rules.
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Axioms: Koz contains all axioms of the classical propositional calculus, the distri-
bution axiom

�(ϕ→ ψ)→ (�ϕ→ �ψ)

and the fixpoint axiom
νx.ϕ↔ ϕ(νx.ϕ).

Inference Rules: In addition to the classical Modus Ponens (MP) we have the
Necessitation Rule (Nec) from modal logic.

ϕ ϕ→ ψ

ψ
(MP)

ϕ

�ϕ
(Nec)

Further, for any formula ϕ(x) such that x appears only positively we have the Induc-
tion Rule (ind) to handle fixpoints.

ψ → ϕ(ψ)
ψ → νx.ϕ

(ind)

Kozen’s Axiomatisation over S5, KozS5, consists of the axioms and inference rules of
Koz and additionally of the S5 axiom schemes

T: �ϕ→ ϕ,

4: �ϕ→ ��ϕ, and

5: ♦ϕ→ �♦ϕ.

We write KozS5 ` ϕ if ϕ is provable in KozS5. S5 is obtained from KozS5 by omitting
induction and fixpoint axioms.

2.2 Semantics

The semantics of modal µ-calculus is given by transition systems. A transition system
T is of the form (S,→T , λT ) where S is a set of states, →T is a binary relation on S
called the accessibility relation and λ : P → ℘(S) is a valuation for all propositional
variables. In this paper we concentrate on transition systems whose accessibility
relation is an equivalence relation, that is, reflexive, transitive and symmetric. It is
the class of all S5-models.

Let λ be a valuation, p a propositional variable and S′ a subset of states S; we set
for all propositional variables p′

λ[p 7→ S′](p′) =

{
S′ if p′ = p,

λ(p′) otherwise.

Given a transition system T = (S,→T , λT ), then T [p 7→ S′] denotes the transition
system (S,→T , λT [p 7→ S′]). Given a transition system T , the denotation of ϕ in T ,
‖ϕ‖T , that is, the set of states satisfying a formula ϕ is defined inductively on the
structure of ϕ. Simultaneously for all transition systems we set

4



• ‖p‖T = λ(p) and ‖ ∼p‖T = λ(p) for all p ∈ P,

• ‖α ∧ β‖T = ‖α‖T ∩ ‖β‖T and ‖α ∨ β‖T = ‖α‖T ∪ ‖β‖T ,

• ‖�α‖T = {s ∈ S | ∀t((s→T t)⇒ t ∈ ‖α‖T )},

• ‖♦α‖T = {s ∈ S | ∃t((s→T t) ∧ t ∈ ‖α‖T )},

• ‖νx.α‖T =
⋃
{S′ ⊆ S | S′ ⊆ ‖α(x)‖T [x 7→S′]}, and

• ‖µx.α‖T =
⋂
{S′ ⊆ S | ‖α(x)‖T [x 7→S′] ⊆ S′}.

If s ∈ ‖ϕ‖T then we say that ϕ is valid in s and write s |=T ϕ or when clear from the
context simply s |= ϕ. An easy induction shows that s |= ϕ if and only if s 6|= ¬ϕ.
A formula ϕ is valid in T if it is valid in all states of T . We then write T |= ϕ. ϕ
is valid if it is valid in all S5 models. We then write |=S5 ϕ. For any finite set of
formulae Γ we write s |= Γ if we have s |=

∨
Γ, analogously for T |= Γ and |=S5 Γ.

For a formula ϕ(x) and set of states S′ ⊆ S we sometimes write ‖ϕ(S′)‖T instead
of ‖ϕ(x)‖T [x 7→S′]. When clear from the context we use ‖ϕ(x)‖T for the function

‖ϕ(x)‖T :

{
℘(S)→ ℘(S)
S′ 7→ ‖ϕ(S′)‖T .

By the well-known Tarski-Knaster Theorem, c.f. [11], ‖νx.α(x)‖T is the greatest
fixpoint and ‖µx.α(x)‖T the least fixpoint of the operator ‖α(x)‖T , we have that

‖νx.α(x)‖T = GFP(‖α(x)‖T ) and ‖µx.α(x)‖T = LFP(‖α(x)‖T ).

Further, by Tarski-Knaster Theorem we also have that

‖νx.α(x)‖T = ‖¬µx.¬α[x/¬x]‖T and ‖µx.α(x)‖T = ‖¬νx.¬α[x/¬x]‖T .

Using this result with an easy induction we can verify that negation is well-defined
in the sense that for any state s in a transition system T and any formula ϕ we have
that

s |=T ϕ if and only if s 6|=T ¬ϕ.

Part 1 of the following proposition is the correctness of KozS5 is a straightforward
induction on the length of the derivation, part 2 is a straightforward consequence of
the completeness of S5 (see e.g. [5]).

Proposition 2.2. (1) For all formulae ϕ ∈ Lµ we have that

KozS5 ` ϕ ⇒ |=S5 ϕ.

(2) For all formulae ϕ ∈ Lmod we have that

S5 ` ϕ ⇔ KozS5 ` ϕ ⇔ |=S5 ϕ.
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3 Introducing the sequent calculi T1
S5µ and T2

S5µ

In this section we introduce the Tait-style sequent calculi T1
S5µ and T2

S5µ . Our sequents
are sets of formulae denoted by major Greek letters, Γ,∆,Σ, etc.. Given a sequent Γ
by �Γ we denote the sequent {�α;α ∈ Γ} and analogously for ♦Γ and ¬Γ.

First, for all sets of formulae Γ we define sub(Γ) to be the smallest set such that
Γ ⊆ sub(Γ) and such that

• if α ∧ β, α ∨ β ∈ sub(Γ) then α, β ∈ sub(Γ),

• if �α,♦α,¬α ∈ sub(Γ) then α ∈ sub(Γ),

• if x appears at most once and guarded in α then µx.α ∈ sub(Γ) implies that
α2(⊥) ∈ sub(Γ), and νx.α ∈ sub(Γ) implies that α2(>) ∈ sub(Γ),

• if x appears at most once and not guarded in α then µx.α ∈ sub(Γ) implies that
α(⊥) ∈ sub(Γ), and νx.α ∈ sub(Γ) implies that α(>) ∈ sub(Γ).

Note, that by definition we have that sub(Γ) =
⋃
ϕ∈Γ sub(ϕ). And therefore, by induc-

tion on rank(ϕ) we can show that if Γ is finite then sub(Γ) is finite, too. The closure
of Γ, C(Γ), is defined as the following set

sub(Γ) ∪ {�α ; α ∈ sub(Γ) and α not of the form �β or ♦β} ∪ . . .

. . . ∪ {♦α ; α ∈ sub(Γ) and α not of the form �β or ♦β}.

We have that if Γ is finite then C(Γ) is also finite and that α ∈ C(Γ) if and only if
¬α ∈ C(Γ). Further, by using Lemma 2.1 we have the following lemma.

Lemma 3.1. If all formulae ϕ ∈ Γ are well-bounded then we have that all formulae
in C(Γ) are well-bounded.

In the following we present the relevant Tait-style inference rules.

Γ, νx.ϕ,¬νx.ϕ
(Axν)

Γ, p,∼p
(Ax)

Γ, α Γ, β
Γ, α ∧ β

(∧)
Γ, α, β

Γ, α ∨ β
(∨)

♦∆,�Γ, α
♦∆,�Γ,�α,Σ

(�)
Γ, ϕ

Γ,♦ϕ
(♦)

Γ, ϕ(µx.ϕ)
Γ, µx.ϕ

(unfµ)
Γ, ϕ(νx.ϕ)

Γ, νx.ϕ
(unfν)

♦∆,�Γ,¬ϕ, α(ϕ)
♦∆,�Γ,¬ϕ, νx.α,Σ

(ind+)

If x appears at most once and guarded in α(x):

Γ, α2(>)
Γ, νx.α

(ν2)
Γ, α2(⊥)
Γ, µx.α

(µ2)
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If x appears at most once and not guarded in α(x):

Γ, α(>)
Γ, νx.α

(ν)
Γ, α(⊥)
Γ, µx.α

(µ)

Γ, α ∆,¬α
Γ,∆

(cut)
Γ, α ∆,¬α

Γ,∆
(Ccut) where α ∈ C(Γ,∆).

Definition 3.2. The systems T1
S5µ and T2

S5µ are defined by the following rule schemes

• T1
S5µ : (Ax), (Axν), (∧), (∨), (�), (♦), (ind+), (unfµ), (unfν), (cut).

• T2
S5µ : (Ax), (∧), (∨), (�), (♦), (µ), (ν), (ν2), (µ2), (Ccut).

We write T1
S5µ ` Γ if there is a proof of Γ in T1

S5µ , T1
S5µ `n Γ if the proof has

length (depth of the proof tree) at most n, and we write T1
S5µ `<n Γ if it has length

less than n; analogously for T2
S5µ . By using the definition of negation we can get

different formulations of the inference rules above, such as,

¬Γ, α
¬�Γ,�α,Σ

(�) or
Γ,¬α2(>)
Γ,¬νx.α

(µ2) or
Γ,¬α2(⊥)
Γ,¬µx.α

(ν2).

Note, that in the case of T2
S5µ , since we have an analytical cut rule, the search space for

finding a proof of a given sequent is finite. Therefore, provability in T2
S5µ is decidable.

4 Correctness and more for T1
S5µ

Proposition 4.1 (Correctness). For all sequents Γ ⊂ Lµ we have that

T1
S5µ ` Γ =⇒ |=S5 Γ.

Proof. By induction on the length of derivation n. We restrict ourselves to transition
systems such that for all states s, s′ we have that s → s′ and s′ → s. This is an
admissible restriction since this is the case for all states s, s′ where s′ is reachable
from s, and since validity in a state depends only on the reachable part (including
the state itself) of the transition system. The base cases of the induction are trivial.
For the induction step we prove only the case where the last inference rule was (ind+).
In this case we have that Γ is of the form ♦∆,�∆′,¬ϕ, νx.α,Σ and we have that

T1
S5µ `<n ♦∆,�∆′,¬ϕ, α(ϕ).

By induction hypothesis for all S5-models T we have that

T |= ♦∆,�∆′,¬ϕ, α(ϕ).

Let s be a state in T . If s |= ♦∆,�∆′ then we trivially have s |= Γ. If this is not the
case then it can easily be seen that since the reachability relation is an equivalence
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relation for all s′ which are reachable from s we have s′ |= ϕ → α(ϕ). Therefore we
have that

T |= ϕ→ α(ϕ).

But then ‖ϕ‖T ⊆ ‖α(ϕ)‖T and by definition of ‖νx.α‖T we get ‖ϕ‖T ⊆ ‖νx.α‖T and
therefore we get that T |= Γ.

In the remaining part of this section we prove that for well-bounded and guarded
formulae νx.α we have that T1

S5µ ` νx.α ↔ α2(>) and that if x is not guarded in α
then we have that T1

S5µ ` α(>)↔ νx.α. We first show some structural properties of
T1

S5µ . The weakening lemma is proved by a straightforward induction on the length
of derivation.

Lemma 4.2 (Weakening). For all sequents Γ,∆ we have that

T1
S5µ ` Γ =⇒ T1

S5µ ` Γ,∆.

The following lemma states some basic properties of T1
S5µ . The proof is left to the

reader.

Lemma 4.3. The following facts hold

(1) For all ϕ we have T1
S5µ ` ¬ϕ,ϕ.

(2) T1
S5µ ` Γ, σx.α⇐⇒ T1

S5µ ` Γ, α(σx.α) where σ ∈ {µ, ν}.

(3) T1
S5µ ` Γ =⇒ T1

S5µ ` Γ[x/ϕ] for all ϕ.

(4) If x appears positively in α(x) then from T1
S5µ ` Γ, α(β) and T1

S5µ ` ¬β, γ we
infer T1

S5µ ` Γ, α(γ).

Lemma 4.4. The following facts hold

(1) T1
S5µ ` ¬σx.α(x, x), σx.σy.α(x, y) where σ ∈ {ν, µ}.

(2) T1
S5µ ` σx.α(x, x),¬σx.σy.α(x, y) where σ ∈ {ν, µ}.

Proof. Note, that if we prove both parts for the case where σ = ν then the case where
σ = µ follows by definition of negation, indeed, part 1 follows from part 2 and vice
versa.

For part 1 and σ = ν observe that by Lemma 4.3.1 ¬α(νx.α, νx.α), α(νx.α, νx.α)
is provable and by rule (unfµ) we get that the sequent ¬νx.α, α(νx.α, νx.α) is prov-
able, too. Applying twice the rule (ind+) leads to the first part.

For part 2 observe that by Lemma 4.3.1 and 4.3.2 the sequent

¬νx.νy.α(x, y), νy.α(νx.νy.α(x, y), y) (1)

is provable. Define ψ :≡ νy.α(νx.νy.α(x, y), y) then, by Lemma 4.3.1 and 4.3.2 we
have that ¬ψ, α(νx.νy.α(x, y), ψ) is provable. By applying this sequent and Equation
1 to Lemma 4.3.4 we get that T1

S5µ ` ¬ψ, α(ψ,ψ) and with (ind+) we get

T1
S5µ ` ¬ψ, νx.α(x, x).

With Equation 1 and (cut) we get the result.
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Proposition 4.5. For all formulae ϕ ∈ Lµ we have that

T1
S5µ ` ϕ↔ wb(α).

Proof. By formula structure of ϕ. The base cases where ϕ is a propositional variable
p of ∼p are clear. If ϕ is of the form α ∧ β, α ∨ β,�α or ♦α then the induction steps
are straightforward. If ϕ is of the form νx.α(x, . . . , x) then by Lemma 4.4 we have
that νx.α(x, . . . , x)↔ νx1. . . . νxn.α(x1, . . . , xn) is provable and we get the induction
step. Similarly for ϕ of the form µx.α.

In order to prove the next lemma we define a measure, m(x, ϕ(x)), for the com-
plexity of ϕ relative to x . Given a formula ϕ(x) and a variable x we define m(x, ϕ(x))
such that

• m(x, ϕ) = 0 if x 6∈ free(ϕ),

• m(x, x) = m(x,∼x) = 0

• m(x, α ◦ β) = max(m(x, α),m(x, β)) + 1 where ◦ ∈ {∧,∨}, and

• m(x,4α) = m(x, σy.α) = m(x, α) + 1 where 4 ∈ {�,♦} and σ ∈ {µ, ν}.

Lemma 4.6. The following facts hold

(1) For any formula ϕ(x) such that x 6∈ free(α, β) and such that x appears only
positively in ϕ we have that

T1
S5µ ` ♦∆,�Γ,¬α, β =⇒ T1

S5µ ` ♦∆,�Γ,¬ϕ(α), ϕ(β).

(2) If x appears guarded, positive and only once in α then we have

T1
S5µ ` ¬α2(>), α3(>).

Proof. The first part is proved by induction on m(x, ϕ(x)). If m(x, ϕ(x)) = 0 then
either ϕ ≡ x or x 6∈ free(ϕ). If ϕ ≡ x then the implication of the claim is trivially
true. If x 6∈ free(ϕ) then the claim follows by Lemma 4.3.1. If m(x, ϕ) > 0 then ϕ is
of the form γ ∧ δ, γ ∨ δ,�γ,♦γ, µy.γ(x, y) or νy.γ(x, y). We prove the case where ϕ
is of the form νy.γ(x, y). The case where ϕ is of the form µy.γ(x, y) is dual and all
the other cases are a straightforward induction.

So, let ϕ be of the form νy.γ(x, y). Note, that for all α such that x 6∈ free(α, β)
we have that m(x, γ(x, νy.γ(α, y))) < m(x, νy.γ(x, y)). Therefore, if we assume that
T1

S5µ ` ♦∆,�Γ,¬α, β by induction hypothesis we can infer

T1
S5µ ` ♦∆,�Γ,¬γ(α, νy.γ(α, y)), γ(β, νy.γ(α, y)).

An application of (unfµ) gives us that ♦∆,�Γ,¬νy.γ(α, y), γ(β, νy.γ(α, y)) is provable
and with (ind+) we get the induction step

T1
S5µ ` ♦∆,�Γ,¬νy.γ(α, y), νy.γ(β, y).
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In order to prove that second part assume that α(x) is of the form β(4γ(x))
where 4 ∈ {�,♦}. Further, note that α(>) ≡ β(4γ(>)). By Lemma 4.3.1 we have
that

T1
S5µ ` ¬4 γ(β(4γ(>))),4γ(β(4γ(>))),¬4 γ(>)

and with part 1 where ϕ ≡ 4γ(β(x)) we get that

T1
S5µ ` ¬4 γ(β(4γ(>))),4γ(β(4γ(β(4γ(>))))),¬4 γ(β(4γ(>))).

which means

T1
S5µ ` ¬4 γ(β(4γ(>))),4γ(β(4γ(β(4γ(>))))).

and by applying part 1 where ϕ ≡ β(x) again we have that

T1
S5µ ` ¬β(4γ(β(4γ(>)))), β(4γ(β(4γ(β(4γ(>)))))).

which ends the proof of part 2.

The next theorem shows that for certain formulae the fixpoints are reached after
two iterations and, therefore, provides a purely syntactical proof of a result which
was proven with game theoretical methods in the joint work with Facchini [2].

Theorem 4.7. If x appears guarded, positive and only once in α(x) then we have
that

(1) T1
S5µ ` (α2(>)↔ νx.α) ∧ (α2(⊥)↔ µx.α), and

(2) |=S5 (α2(>)↔ νx.α) ∧ (α2(⊥)↔ µx.α).

Proof. For part 1 the fact that α2(>)→ νx.α is an easy consequence of Lemma 4.6.2.
The converse direction follows from the fact that α2(νx.α) ← νx.α is provable and
from Lemma 4.3.4. The provability of α2(⊥)↔ µx.α follows from the provability of
α2(>) ↔ νx.α and from definition of negation. Part 2 follows from Proposition 4.1
and part 1.

Let us end the section by proving that not guarded fixpoints are reached after one
iteration.

Lemma 4.8. If x appears not guarded, positively and only once in ϕ ∈ Lµ, and if ϕ
is well-bounded then we have that

(1) T1
S5µ ` ϕ(>)↔ νx.ϕ,

(2) T1
S5µ ` ϕ(⊥)↔ µx.ϕ, and

(3) T1
S5µ ` (α→ β)→ (ϕ(α)→ ϕ(β)).

10



Proof. We first prove that part 3 implies part 1. The proof of the fact that part 1
implies part 2 is left to the reader. In order to see that part 3 implies part 1 first
observe that T1

S5µ ` νx.ϕ → ϕ(>) is a consequence of Lemma 4.3.4 and of the fact
that νx.ϕ→ ϕ(νx.ϕ) is provable. In order to show the other implication we assume
that we have part 1 for ϕ and arbitrary α, β. Set α ≡ > and β ≡ ϕ(>). Then from
part 1 we get

T1
S5µ ` (> → ϕ(>))→ (ϕ(>)→ ϕ(ϕ(>))).

By some classical propositional reasoning we get that

(> → ϕ(>))→ (ϕ(>)→ ϕ(ϕ(>)))

is equivalent to ϕ(>)→ ϕ(ϕ(>)) and an application of (ind+) gives part 1.
It remains to prove part 3. This is done by induction on rank(ϕ). Note, that for

the induction hypothesis we can use the statements of parts 1 and 2. The base cases
are where ϕ is the propositional variable x or a variable p are trivial. The induction
steps for ϕ of the form γ ∧ δ, γ ∨ δ are straightforward.

If ϕ is of the form �γ or ♦γ then since x is not guarded in ϕ we have that
x 6∈ free(γ) and the claim of part 3 is trivial.

If ϕ is of the form νy.γ(x, y) then we distinguish two cases. In the first case y is
not guarded in γ. Then, by induction hypothesis for all α, β have that

T1
S5µ ` (α→ β)→ (γ(α,>)→ γ(β,>)) (2)

By induction hypothesis for part 1 we get that

T1
S5µ ` γ(x,>)↔ νy.γ(x, y)

and with Lemma 4.3.3 we get that

T1
S5µ ` γ(α,>)↔ νy.γ(α, y) and T1

S5µ ` γ(β,>)↔ νy.γ(β, y).

Two applications of Lemma 4.3.4 to Equation 2 give us the induction step. In the
second case we have that y is guarded in γ. The induction step goes similarly by
using the fact that by induction hypothesis we have that

T1
S5µ ` (α→ β)→ (γ(α, γ(α,>))→ γ(β, γ(β,>)))

and that from Theorem 4.7, since νy.γ is assumed to be well-bounded, we have that

T1
S5µ ` γ(α, γ(α,>))↔ νy.γ(α, y) and T1

S5µ ` γ(β, γ(β,>))↔ νy.γ(β, y).

The case where ϕ is of the form µx.γ is proven similarly as the case where ϕ is of the
form νx.γ.

Corollary 4.9. If x appears not guarded, positive and only once in ϕ(x) ∈ Lµ, and
if ϕ is well-bounded then we have that

|=S5 (νx.ϕ↔ ϕ(>)) ∧ (µx.ϕ↔ ϕ(⊥)).

11



5 Completeness of T2
S5µ

In this section we prove completeness for well-bounded of T2
S5µ . We start with a

lemma showing some basic properties of T2
S5µ . The proof is left to the reader.

Lemma 5.1. For all formulae α and sets of formulae Γ,∆ we have that

(1) If T2
S5µ ` Γ then T2

S5µ ` Γ,∆,

(2) T2
S5µ ` α,¬α,

(3) T2
S5µ ` ¬�α, α, T2

S5µ ` ¬�α,��α, and T2
S5µ ` ¬♦α,�♦α.

In order to prove completeness we need some well-known notions: A set of formu-
lae Γ is called consistent if for all finite subsets Γ′ ⊆ Γ we have that T2

S5µ 6` ¬Γ′. It
is maximal consistent if for all formulae α such that Γ, α is consistent we have that
α ∈ Γ. The canonical model for a formula ϕ, Mϕ, is defined such that the set of
states is

{M ∩ C(ϕ);M is maximal consistent and {ϕ,¬ϕ} ∩M 6= ∅},

for two states M,M ′ we have that M → M ′ if {α;�α ∈ M} ⊆ M ′, and for all
propositional variables p ≤ ϕ we have that λ(p) = {M ; p ∈M}.

Note that by the following Lemma 5.2.1 we can not have that a propositional
variable p and its negation ∼p occur in the same maximal consistent set and that the
valuation λ is well-defined. The next lemma shows some basic properties of canonical
models.

Lemma 5.2. Let Mϕ be a canonical model. For all states M and all formulae
α, β ∈ C(ϕ) we have that

(1) α ∈M ⇔ ¬α 6∈M .

(2) If α ∧ β ∈ C(ϕ) then: α ∧ β ∈M ⇔ α, β ∈M .

(3) If α ∨ β ∈ C(ϕ) then: α ∨ β ∈M ⇔ (α ∈M) or (β ∈M).

(4) α ∈M and T2
S5µ ` ¬α, β then β ∈M .

Proof. We prove only part 1. All other parts go through with similar arguments.
First, we see that if α,¬α ∈ M then by definition of consistent set we have that
T1

S5µ 6` ¬α, α but by Lemma 5.1 this is not the case. Now, assume that there is an
α ∈ C(ϕ) such that α,¬α 6∈ M and assume that ϕ ∈ M (instead of ¬ϕ ∈ M). We
claim that either M ∪{α} or M ∪{¬α} is consistent. For, this was not the case then
we would have T2

S5µ ` ¬M,¬α and T2
S5µ ` ¬M,α. But since ϕ ∈M and α ∈ C(ϕ) by

(Ccut) we have that
T2

S5µ ` ¬M

and, therefore, that M is not consistent.
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Proposition 5.3. For any formula ϕ ∈ Lµ the canonical modelMϕ is an S5 model,
that is, the accessibility relation is reflexive, transitive and symmetric.

Proof. For reflexivity we have to show that for all states M of Mϕ we have that
�α ∈M implies α ∈M . But this is a consequence of Lemma 5.1.3 and Lemma 5.2.4.

For transitivity we have to show that

M →M ′ and M ′ →M ′′ =⇒ (�α ∈M =⇒ α ∈M ′′).

Assume that �α ∈ M . We distinguish two cases. In the first case we have that
��α ∈ C(ϕ). Then, since by Lemma 5.1.3 we have that

T2
S5µ ` ¬�α,��α (3)

with Lemma 5.2.4 we get that ��α ∈ M , and by construction also α ∈ M ′′. In the
second case we have that ��α 6∈ C(ϕ). Then, by construction of C(ϕ) we have that
α is either of the form �β or of the form ♦β. In the first case we have that �β ∈M ′

and since we have Equation 3 also for β we get that ��β ∈M ′ and from that we get
�β ∈M ′′. In the latter case we that ♦β ∈M ′. Since by Lemma 5.1.3 we have

T2
S5µ ` ¬♦β,�♦β

with similar arguments we get that ♦β ∈M ′′.
For the symmetry we have to show that

M →M ′ =⇒ (�α ∈M ′ =⇒ α ∈M).

Assume the contrapositive, that is, M → M ′ and �α ∈ M ′ and ¬α ∈ M . Then, by
Lemma 5.1.3 and Lemma 5.2.4, we have that ¬�α ∈ M . Again we distinguish two
cases:

If �¬�α ∈ C(ϕ), then, since by Lemma 5.1.3 we have that T2
S5µ ` �α,�¬�α by

Lemma 5.2.4 we get that �¬�α ∈M and by construction that ¬�α ∈M ′, which is
a contradiction.

If �¬�α 6∈ C(ϕ) then by construction α is of the form �β or ♦β. In the former
case we have that ¬�β ∈M but then �¬�β ∈M and, therefore, ¬�β ∈M ′, which
is a contradiction. In the latter case we have that ¬♦β ∈ M but then �¬♦β ∈ M
and, therefore, ¬♦β ∈M ′, which is a contradiction, too.

Lemma 5.4. Let ϕ be a well-bounded formula. For all formulae α ≤ ϕ and all states
M of the canonical model Mϕ we have that

α ∈M =⇒ M |= α.

Proof. By induction on the rank of α. Note, that by Lemma 3.1 we have that all
α ∈ M are well-bounded. The cases where α is of the form p,∼ p, β ∧ γ, β ∨ γ go
through straightforwardly with Lemma 5.2. The cases where α is of the form ♦β or
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�β go through with standard arguments. If α is of the form µx.β since α is well-
bounded we have that x has at most one free occurrence in β. If x appears guarded
in β then note that by Lemma 5.1.2 we have that T2

S5µ ` ¬β2(⊥), β2(⊥) and one
application of (ν2) yields T2

S5µ ` ¬µx.β, β2(⊥) and, therefore by Lemma 5.2.4, that
β2(⊥) ∈ M . We can apply the induction hypothesis and we get that M |= β2(⊥).
With Theorem 4.7 we get that

M |= µx.β.

The case where x is not guarded in β goes similarly and if α is of the form νx.β then
we also use similar arguments.

Theorem 5.5. For all well-bounded formulae ϕ ∈ Lµ we have that

|=S5 ϕ =⇒ T2
S5µ ` ϕ.

Proof. We prove the contrapositive. If we have that T2
S5µ 6` ϕ then ¬ϕ is consistent

and can be extended to a maximal consistent set. Therefore, in the canonical model
Mϕ there is a state M such that ¬ϕ ∈M . Since ¬ϕ is also well-bounded by Lemma
5.4 we have that M |= ¬ϕ and, therefore, that 6|=S5 ϕ.

6 Completeness and correctness of T1
S5µ and T2

S5µ

Lemma 6.1. For all sequents Γ we have that

T2
S5µ ` wb(Γ) ⇒ T1

S5µ ` Γ.

Proof. By Proposition 4.5 we equivalently can show that

T2
S5µ ` wb(Γ) ⇒ T1

S5µ ` wb(Γ).

This is shown by induction on the proof length n of T2
S5µ ` wb(Γ). The case where

n = 0 is clear. If n > 0 the induction step goes by case distinction on the last inference
rule. All cases except the case where the last inference rule was (ν2), (µ2), (µ), (ν) are
straightforward. For the case where it was (µ2) we have that wb(Γ) is of the form
∆, νx.ϕ(x) and that

T2
S5µ `<n ∆, ϕ2(>).

By induction hypothesis we have that T1
S5µ ` ∆, ϕ2(>). Since x appears guarded

and at most once in ϕ(x) by Lemma 4.6.2 we have that T1
S5µ ` ¬ϕ2(>), ϕ3(>) and,

therefore, with (ind+) we get that T1
S5µ ` ¬ϕ2(>), νx.ϕ. With cut we get the desired

result. The case for (ν2) goes similar. The cases for (µ), (ν) use Lemma 4.8 and are
analogous.

Combining Lemma 6.1 with Theorem 5.5 and Proposition 4.1 yields the following
theorem.

Theorem 6.2 (Completeness and correctness). Let Γ be any sequent. We have that

|=S5 Γ ⇔ T2
S5µ ` wb(Γ) ⇔ T1

S5µ ` Γ.
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7 Conclusion: Completeness of KozS5

We first define a translation t : Lwb
µ → Lmod from the class of well-bounded µ-formulae

to the modal fragment recursively such that t(p) ≡ p and t(∼p) ≡∼p, such that t
distributes over boolean and modal connectives and such that:

• If x appears guarded in α then

t(µx.α) ≡ t(α)[x/t(α)[x/⊥]] and t(νx.α) ≡ t(α)[x/t(α)[x/>]].

• If x is not guarded in α then

t(µx.α) ≡ t(α)[x/⊥] and t(νx.α) ≡ t(α)[x/>].

The fact that the definition of t terminates follows from the in the defining clauses
rank decreases and the formula remains well-bounded. Further, note that we have
that t(ϕ) ∈ Lmod.

Lemma 7.1. For all well-bounded formulae ϕ we have that

KozS5 ` ϕ↔ t(ϕ).

Proof. By induction on rank(ϕ). In the proof we abbreviate t(α)[x/t(α)] by (t(α))2,
and analogously for (t(α))3. The base cases of the induction are trivial and the induc-
tion steps where the formula ϕ is of the from α∧β, α∨β,�α or ♦α are straightforward.
If ϕ is of the form νx.α and x is guarded in α then, since t(α) ∈ Lmod, by Proposition
2.2 and Theorem 4.7 we have that

KozS5 ` (t(α))2[x/>]↔ (t(α))3[x/>].

An application of (ind) yields KozS5 ` (t(α))2[x/>] → νx.t(α). And since also
νx.t(α)→ (t(α))2[x/>] is provable we get

KozS5 ` (t(α))2[x/>]↔ νx.t(α)

Since by induction hypothesis we have that KozS5 ` α ↔ t(α) we also can show
that KozS5 ` νx.α↔ νx.t(α) and, therefore, we get that

KozS5 ` (t(α))2[x/>]↔ νx.α.

The induction step follows from the fact that t(νx.α) ≡ (t(α))2[x/>]. If ϕ is of
the form νx.α and x is not guarded in α then the induction step follows by an
analogous argument using the fact that by Proposition 2.2 and Corollary 4.9 we have
that KozS5 ` t(α)[x/>] ↔ (t(α))2[x/>]. The cases where ϕ is of the form µx.α are
analogous to the previous cases.

The next lemma is proved like Proposition 4.5 by using the fact that the proof of
Lemma 4.4 goes through also with the normal induction rule (ind) instead of (ind+).
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Lemma 7.2. For all formulae ϕ ∈ Lµ we have that

KozS5 ` ϕ↔ wb(ϕ).

Theorem 7.3 (Completeness and correctness of KozS5). For all formulae ϕ ∈ Lµ we
have that

|=S5 ϕ ⇔ KozS5 ` ϕ.

Proof. The correctness is Proposition 2.2. For the completeness note that by correct-
ness, Lemma 7.1 and Lemma 7.2 we have that

|=S5 ϕ↔ t(wb(ϕ)).

Therefore if |=S5 ϕ then |=S5 t(wb(ϕ)). Since t(wb(ϕ)) ∈ Lmod by Proposition 2.2 we
have that KozS5 ` t(wb(ϕ)) and with Lemma 7.2 and 7.1 we finish the proof.

Concluding Remark. We have three crucial steps in the completeness proof of
KozS5. First, the completeness of KozS5 over the modal fragment, second, the fact
that KozS5 proves the equivalence of ϕ and t(wb(ϕ)), and, third, that for guarded
and well-bounded ϕ we have that ϕ2(>) and ϕ3(>) are semantically equivalent (and
analogously for not guarded formulae). As said in the introduction the third fact
was shown in a joint work with Facchini [2] by using game-theoretical methods and
the correspondence of parity games and modal µ-calculus. Therefore, by using this
game-theoretical result the completeness proof for KozS5 would have been possible
without the ”detour” via T1

S5µ and T2
S5µ . Nevertheless, introducing T1

S5µ and T2
S5µ

allowes us to give a purely proof-theoretically proof of this equivalence without using
any connections to game-theory. Further, in the case of T2

S5µ , it allows us provide a
calculus with analytical cut.
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[3] Alberucci L., Krähenbühl J.: Justifying Induction on Modal µ-Formulae.
In Preparation.

[4] Arnold A., Niwinski D.: Rudiments of mu-calculus. North-Holland (2001)

16



[5] Chellas B.: Modal Logic. Cambridge University Press (1980)

[6] Dam M., Sprenger C.: On the structure of inductive reasoning: circular and
tree-shaped proofs in the µ-calculus. In A.D.Gordon, editor, Foundations of
Software Science and Computational Structures: 6th International Conference,
Springer LNCS 2620 (2003)
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