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Abstract We see a cut-free infinitary sequent system for common knowledge. Its

sequents are essentially trees and the inference rules apply deeply inside of these trees.

This allows to give a syntactic cut-elimination procedure which yields an upper bound

of ϕ20 on the depth of proofs, where ϕ is the Veblen function.
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1 Introduction

Common knowledge is a well-studied notion in epistemic logic, where modali-
ties express knowledge of agents. Two standard textbooks on epistemic logic
and common knowledge in particular, are [6] by Fagin, Halpern, Moses, and
Vardi and [12] by Meyer and van der Hoek.

The fact that a proposition A is common knowledge can be expressed by
the infinite conjunction ”all agents know A and all agents know that all
agents know A and so on”. In order to express this in a finite way we can
use fixpoints: common knowledge of A is then defined to be the greatest
fixpoint of λX.everybody knows A and everybody knows X. This notion was
introduced by Halpern and Moses [8] and further studied in [6].

The traditional way to formalise common knowledge is to use a Hilbert-
style axiom system. Such a system has a fixpoint axiom, which states that
common knowledge is a fixpoint, and an induction rule, which states that
this fixpoint is the greatest fixpoint. However, this approach does not work
well for designing a Gentzen-style sequent calculus. In particular, Alberucci
and Jäger show in [2] that a cut-free sequent system designed in this way is
not complete.

To obtain a complete cut-free system Alberucci and Jäger replace the induc-
tion rule by an infinitary ω-rule. This results in a system in which common
knowledge is a greatest fixpoint. Although this system has been further
studied in [11, 9], no syntactic cut-elimination procedure has been found.
Cut-elimination was proved only indirectly by showing completeness of the
cut-free system.

In the present paper, we give a syntactic cut-elimination procedure for an
infinitary system of common knowledge. Since our deductive system for
common knowledge includes an ω-rule with infinitely many premises, we
have proofs of transfinite depth. We will also assign transfinite ranks to
formulas. We obtain our cut-elimination result by using the method of
predicative cut-elimination, see Pohlers [14, 15] and Schütte [17], which is a
standard tool for the proof-theoretic analysis of systems of set theory and
second order number theory.

In our system we use deep sequents which are essentially trees and where
rules apply anywhere deep inside of these trees. The general idea of ap-
plying rules deeply has been proposed several times in different forms and
for different purposes. Schütte already used it in order to obtain systems
without contraction and weakening, which he considered more elegant [16].
Guglielmi used it to give a proof-theoretic system for a certain substructural
logic which cannot be captured in the sequent calculus. To do so, he devel-
oped the calculus of structures, a formalism which is centered around deep
inference and abolishes the traditional format of sequent calculus proofs [7].
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The calculus of structures then has also been developed for modal logic [18].
Based on these ideas, Brünnler introduced the notion of deep sequent and
gave a systematic set of sequent systems and a corresponding cut-elimination
procedure for the modal logics between K and S5 [5]. Kashima had used
the same notion of sequent already in [10] in order to give cut-free sequent
systems for some tense logics.

Several cut-free systems for logics with common knowledge exist already.
The one that is closest to our system was introduced by Tanaka in [19]
for predicate common knowledge logic and is based on Kashima’s ideas. It
essentially also uses what we call deep sequents. In fact, if one disregards
the rather different notation and some choices in the formulation of rules,
then one could say that our system is the propositional part of Tanaka’s
system. There are also finitary systems. Abate, Goré and Widmann, for
example, introduce a cut-free tableau system for common knowledge in [1].
Cut-free system have also been studied in the context of explicit modal logic
by Artemov [4] and by Antonakos [3].

However, we do not know of syntactic cut-elimination procedures for any of
the systems mentioned. Typically, cut-elimination is established only indi-
rectly. There are cut-elimination procedures for similar logics, for example
by Pliuskevicius’ for an infinitary system for linear time temporal logic in
[13]. For linear temporal logic he does not need deep sequents. For this logic
it is enough to use indexed formulas of the form Ai which denotes A at the
i-th moment in time.

The paper is organised as follows. We first present our deep sequent sys-
tem for common knowledge and prove the invertibility of its rules and the
admissibility of the structural rules. Then we embed the Hilbert system for
common knowledge into our deep sequent system, which gives us complete-
ness. The main part of the paper is devoted to establishing the reduction
lemma, then the cut-elimination theorem follows from that in the standard
way. As a result we obtain an upper bound for the depth of proofs in our
system. Some discussion about future work ends this paper.

2 The Deep Sequent System

Formulas. We are considering a language with h agents for some h > 0.
Propositions p and their negations p̄ are atoms, with ¯̄p defined to be p. For-
mulas are denoted by A,B,C,D. They are given by the following grammar:

A ::= p | p̄ | (A ∨ A) | (A ∧ A) | 3iA | 2iA | ∗3A | ∗2A ,

where 1 ≤ i ≤ h. The formula 2iA is read as “agent i knows A” and the
formula ∗2A is read as “A is common knowledge”. The connectives 2i and
∗2 have 3i and ∗3 as their respective De Morgan duals.
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Given a formula A, its negation Ā is defined as usual using the De Morgan
laws, A ⊃ B is defined as Ā∨B and ⊥ is defined as p∧p̄ for some proposition
p. The formula 2A is an abbreviation for “everybody knows A”:

2A = 21A ∧ . . . ∧ 2hA and 3A = 31A ∨ . . . ∨ 3hA.

A sequence of n ≥ 0 modal connectives can be abbreviated, for example

2
nA = 2 . . . 2

︸ ︷︷ ︸

n−times

A

Formula rank. For a formula A we define its rank rk(A) as follows:

rk(p) = rk(p̄) = 0
rk(A ∧ B) = rk(A ∨ B) = max (rk (A), rk (B)) + 1
rk(2iA) = rk(3iA) = rk(A) + 1
rk( ∗2A) = rk( ∗3A) = ω + rk(A)

Lemma 1 (Some properties of the rank). For all formulas A we have that
(i) rk(A) = rk(Ā),
(ii) there are m,n < ω such that rk(A) = ω · m + n,
(iii) for all k < ω we have rk(2kA) < rk( ∗2A).

Proof. Statements (i) and (ii) are immediate. For (iii), an induction on k

yields that rk(2kA) = rk(A) + k · h. By (ii) it is then enough to check that
for all k we have ω · m + n + k · h < ω + ω · m + n.

Deep sequents. A (deep) sequent is a finite multiset of formulas and boxed
sequents. A boxed sequent is an expression [Γ]i where Γ is a sequent and
1 ≤ i ≤ h. Sequents are denoted by Γ,∆,Λ,Π,Σ. A sequent is always of
the form

A1, . . . , Am, [∆1]i1 , . . . , [∆n]in ,

where the ij denote agents and thus range from 1 to h. As usual, the comma
denotes multiset union and there is no distinction between a singleton mul-
tiset and its element. The corresponding formula of the above sequent is ⊥
if m = n = 0 and otherwise

A1 ∨ · · · ∨ Am ∨ 2i1D1 ∨ · · · ∨ 2inDn ,

where D1 . . . Dn are the corresponding formulas of the sequents ∆1 . . . ∆n.
Often we do not distinguish between a sequent and its corresponding for-
mula, e.g. a model of a sequent is a model of its corresponding formula. A
sequent has a corresponding tree whose nodes are marked with multisets of
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Γ{a, ā} ∧
Γ{A} Γ{B}

Γ{A ∧ B}
∨

Γ{A,B}
Γ{A ∨ B}

2i
Γ{[A]i}

Γ{2iA}
3i

Γ{3iA, [∆, A]i}

Γ{3iA, [∆]i}

∗2
Γ{2kA} for all k ≥ 1

Γ{ ∗2A}
∗3

Γ{ ∗3A,3kA}
Γ{ ∗3A}

Figure 1: System DC

nec
Γ

[Γ]i
wk

Γ{∅}
Γ{∆}

ctr
Γ{∆,∆}
Γ{∆}

cut
Γ{A} Γ{Ā}

Γ{∅}

Figure 2: Necessitation, weakening, contraction and cut

formulas and whose edges are marked with agents. The corresponding tree
of the above sequent is

{A1, . . . , Am}
i1

i2 in−1

in

tree(∆1) tree(∆2) . . . tree(∆n−1) tree(∆n)

,

where tree(∆1) . . . tree(∆n) are the corresponding trees of ∆1 . . . ∆n. Often
we do not distinguish between a sequent and its corresponding tree, e.g. the
root of a sequent is the root of its corresponding tree.

Sequent contexts. A context is a sequent with exactly one occurrence of the
symbol { }, the hole, which does not occur inside formulas. Such contexts
are denoted by Γ{ }, ∆{ }, and so on. The hole is also called the empty
context. The sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆.
For example, if Γ{ } = A, [[B], { }] and ∆ = C, [D] then

Γ{∆} = A, [[B], C, [D]] .

Inference rules. In an instance of the inference rule ρ

ρ
Γ1 Γ2 . . .

∆

we call Γ1,Γ2 . . . its premises and ∆ its conclusion. An axiom is a rule with-
out premises. We will not distinguish between an axiom and its conclusion.
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A system, denoted by S, is a set of rules. Figure 1 shows system DC, our
infinitary deep sequent calculus for the logic of common knowledge.

Derivations and proofs. A tree is well-founded if it does not have an infinite
path. A derivation in a system S is a well-founded tree whose nodes are
labelled with sequents and which is built according to the inference rules
from S. Derivations are visualised as upward-growing trees, so the root is
at the bottom. The sequent at the root is the conclusion and the sequents
at the leaves are the premises of the derivation. A proof of a sequent Γ in a
system is a derivation in this system with conclusion Γ where all leaves are
axioms. We write S ` Γ if there is a proof of Γ in system S.

Cut rank. The cut rank of an instance of cut as shown in Figure 2 is the
rank of its cut formula A. For an ordinal γ we define the rule cutγ which is
cut with at most rank γ and the rule cut<γ which is cut with a rank strictly
smaller than γ. The cut rank of a derivation is the supremum of the cut
ranks of its cuts. For a system S and ordinals α and γ and a sequent Γ we
write S

α

γ
Γ to say that there is a proof of Γ in system S+cut<γ with depth

bounded by α.

Admissibility and invertibility. An inference rule ρ with premises Γ1,Γ2 . . .

and conclusion ∆ is depth- and cut-rank-preserving admissible for a system
S if whenever S

α

γ
Γi for each premise Γi then S

α

γ
∆. For each rule ρ

there is its inverse, denoted by ρ̄, which has the conclusion of ρ as its only
premise and any premise of ρ as its conclusion. An inference rule ρ is depth-
and cut-rank-preserving invertible for a system S if γ̄ is depth- and cut-rank
preserving admissible for S.

In the following, we sometimes omit the “depth- and cut-rank preserving”
before either admissible or invertible. Figure 2 shows the structural rules
necessitation, weakening and contraction, which are admissible for system
DC.

Lemma 2 (Admissibility of the structural rules). For system DC the following
hold:
(i) The necessitation rule is depth- and cut-rank-preserving admissible.
(ii) The weakening rule is depth- and cut-rank-preserving admissible.
(iii) All rules are depth- and cut-rank-preserving invertible.
(iv) The contraction rule is depth- and cut-rank-preserving admissible.

Proof. (i) and (ii) follow from a routine induction on the depth of the proof.
The same works for the ∧,∨,2i and ∗2-rules in (iii). The inverses of all
other rules are just weakenings. For (iv) we also proceed by induction on
the depth of the proof tree, using invertibility of the rules. The cases for the
propositional rules and for the 2i, ∗2, ∗3-rules are trivial. For the 3i-rule we
consider the formula 3iA from its conclusion Γ{3iA, [∆]i} and its position
inside the premise of contraction Λ{Σ,Σ}. We have the cases 1) 3iA is
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inside Σ or 2) 3iA is inside Λ{ }. We have three subcases for case 1: 1.1)
[∆]i inside Λ{ }, 1.2) [∆]i inside Σ, 1.3) Σ,Σ inside [∆]i. There are two
subcases of case 2: 2.1) [∆]i inside Λ{ } and 2.2) [∆]i inside Σ. All cases
are either simpler than or similar to case 2.2, which is as follows:

Λ′{3iA,Σ′, [∆, A]i,Σ
′, [∆]i}

3i
Λ′{3iA,Σ′, [∆]i,Σ

′, [∆]i}
ctr

Λ′{3iA,Σ′, [∆]i}

;
Λ′{3iA,Σ′, [∆, A]i,Σ

′, [∆]i}
3̄i

Λ′{3iA,Σ′, [∆, A]i,Σ
′, [∆, A]i}

ctr
Λ′{3iA,Σ′, [∆, A]i}

3i
Λ′{3iA,Σ′, [∆]i}

,

where the instance of 3̄i in the proof on the right is removed because it is
depth-preserving admissible and the instance of contraction is removed by
the induction hypothesis.

Lemma 3 (Admissibility of the general identity axiom). For all contexts Γ{ }

and all formulas A we have DC

2·rk(A)

0 Γ{A, Ā}.

Proof. We perform an induction on rk(A) and a case analysis on the main
connective of A. The cases for atoms and for the propositional connectives
are obvious. For A = 2iB and A = ∗2B we respectively have

Γ{[B, B̄]i,3iB̄}
3i

Γ{[B]i,3iB̄}
2i

Γ{2iB,3iB̄}

and
...

Γ{2kB,3kB̄}
∗3

Γ{2kB, ∗3B̄}
...

∗2 1≤k<ω

Γ{ ∗2B, ∗3B̄}

.

On the left by induction hypothesis we get a proof of the premise of depth
2 · rk(B) and thus a proof of the conclusion of depth 2 · rk(B) + 2 = 2 ·
(rk(B) + 1) = 2 · rk(2iB). On the right by Lemma 1 we can apply the
induction hypothesis for each premise to get a proof of depth 2 · rk(2kB) =
2 ·(rk (B)+k ·h) and thus a proof of the conclusion of depth 2 ·(rk (B)+ω) ≤
2 · (ω + rk(B)) = 2 · rk( ∗2B).

3 Embedding the Hilbert System

In this section we introduce the Hilbert system HC which is essentially the
same as system KC

h from the book [6]. System HC is obtained from some
Hilbert system for classical propositional logic by adding the axioms and
rules shown in Figure 3. Soundness and completeness for HC is shown in [6].
We will now embed HC into DC and thus establish completeness of DC. We
omit a definition of the semantics and a proof of soundness of DC. We feel
that it is straightforward and would not add much to the current paper.
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(K) 2iA ∧ 2i(A ⊃ B) ⊃ 2iB (CCL) ∗2A ⊃ (2A ∧ 2 ∗2A)

(IND)
B ⊃ (2A ∧ 2B)

B ⊃ ∗2A
(MP)

A A ⊃ B

B
(NEC)

A

2iA

Figure 3: System HC

Theorem 4. For each formula A if HC ` A then there are m,n < ω such
that DC

ω·m

ω·n A.

Proof. The proof is by induction on the length of the derivation in HC. If
A is a propositional axiom of HC then there is a finite derivation of A in
system DC such that all premises are instances of the general identity axiom.
Thus we obtain DC

ω·m

0 A for some m < ω by admissibility of the general
identity axiom (Lemma 3).

If A is an instance of (K), then we obtain DC

ω·m

0 A for some m < ω from
the following derivation and admissibility of the general identity axiom to
take care of the premises.

3iĀ,3i(A ∧ B̄), [B,A, Ā]i
3i

3iĀ,3i(A ∧ B̄), [B,A]i 3iĀ,3i(A ∧ B̄), [B, B̄]i
∧

3iĀ,3i(A ∧ B̄), [B,A ∧ B̄]i
3i

3iĀ,3i(A ∧ B̄), [B]i
2i

3iĀ,3i(A ∧ B̄),2iB
∨2

2iA ∧ 2i(A ⊃ B) ⊃ 2iB

If A is an instance of (CCL), then we obtain DC

ω·m

0 A for some m < ω

from the following derivation and again admissibility of the general identity
axiom to take care of the premises. An argument similar to the one used to
derive the general identity axiom guarantees that all premises of the ∗2 rule
are derivable with depth smaller than rk( ∗2A).
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3Ā,2A
∗3,wk

∗3Ā,2A

...

...

[3kĀ,2kA]i
3i,wk

3i3
kĀ, [2kA]i

∨,wk
3

k+1Ā, [2kA]i
∗3,wk

∗3Ā, [2kA]i
...

∗2 1≤k<ω

∗3Ā, [ ∗2A]i
2i

∗3Ā,2i ∗2A
...

∧ 1≤i≤h

∗3Ā,2 ∗2A
∧

∗3Ā,2A ∧ 2 ∗2A
∨

∗2A ⊃ (2A ∧ 2 ∗2A)

If the last rule in the derivation is an instance of (MP), then by the induction
hypothesis there are m1,m2, n1, n2 < ω such that DC

ω·m1

ω·n1
A and DC

ω·m2

ω·n2

A ⊃ B. Thus we get DC

ω·m1

ω·n1
A,B by weakening admissibility and DC

ω·m2

ω·n2

Ā,B by invertibility. An application of cut yields DC

ω·m
ω·n B for m =

max (m1,m2) + 1 and n = max (n1, n2, rk(B) + 1).

If the last rule in the derivation is an instance of (NEC), then the claim
follows from the induction hypothesis, the fact that nec is cut-rank- and
depth-preserving admissible, and an application of 2i.

If the last rule in the derivation is an instance of (IND), then by the induction
hypothesis there are m1, n1 < ω such that DC

ω·m1

ω·n1
B ⊃ (2A ∧2B). Then

by invertibility of the ∧- and ∨-rules we obtain

1) DC

ω·m1

ω·n1
B̄,2B and 2) DC

ω·m1

ω·n1
B̄,2A.

Let n2 be such that rk(2B) < ω ·n2. We set n = max (n1, n2). By induction

on k we show that for all k ≥ 1 there is an m2 < ω such that DC

ω·m1+m2

ω·n
B̄,2kA. The case k = 1 is given by 2) and the induction step is as follows:

B̄,2B

...

B̄,2kA
nec

[B̄,2kA]i
3i,wk

3iB̄, [2kA]i
2i

3iB̄,2i2
kA

∨,wk
3B̄,2i2

kA
...

∧ 1≤i≤h

3B̄,2k+1A
cut

B̄,2k+1A ,

where the premise on the left is 1) and the premise on the right follows by
induction hypothesis. The claim follows by applications of ∗2 and ∨.
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4 Cut-Elimination

We write α # β for the natural sum of α and β which, in contrast to the
ordinary ordinal sum, does not cancel additive components. For an intro-
duction to ordinals, and a definition of the natural sum in particular, we
refer to Schütte [17]. The binary Veblen function ϕ is generated inductively
as follows:

1. ϕ0β := ωβ,

2. if α > 0, then ϕαβ denotes the βth common fixpoint of the functions
λξ.ϕγξ for γ < α.

Given a proof π we denote its depth by |π|. We write
α

β
Γ for DC

α

β
Γ.

Lemma 5 (Reduction Lemma). If there is a proof

π1

Γ{A}

π2

Γ{Ā}
cutγ

Γ{∅}

with π1 and π2 in DC + cut<γ then
|π1|# |π2|

γ
Γ{∅} .

Proof. By induction on |π1|# |π2|. We perform a case analysis on the two
lowermost rules in the given proofs. If one of the two rules is passive and
an axiom then Γ{∅} is axiomatic as well. If one is active and an axiom then
we have

Γ{a, ā}

π2

Γ{ā, ā}
cut0

Γ{ā}

;

π2

Γ{ā, ā}
ctr

Γ{ā}

,

and by contraction admissibility we have
|π2|

γ
Γ{ā} and thus

|π1|# |π2|

γ
Γ{ā}.

If some rule ρ is passive then we have

π1

Γ{A}

...

π2i

Γi{Ā}
...

ρ
Γ{Ā}

cutγ
Γ{∅}

;
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...

π1

Γ{A}
ρ̄

Γi{A}

π2i

Γi{Ā}
cutγ

Γi{∅}
...

ρ
Γ{∅}

,

where i ranges from 1 to the number of premises of ρ. By invertibility of ρ

we get
|π1|

γ
Γi{A}, thus by induction hypothesis

|π1|# |π2i|

γ
Γi{∅} for all i

and by ρ we get
|π1|# |π2|

γ
Γ{∅}.

This leaves the case that both rules are active and not axioms. We have:

(∧ − ∨):

π11

Γ{B}

π12

Γ{C}
∧

Γ{B ∧ C}

π21

Γ{B̄, C̄}
∨

Γ{B̄ ∨ C̄}
cutσ+1

Γ{∅}

;

π11

Γ{B}

π12

Γ{C}
wk

Γ{B̄, C}

π21

Γ{B̄, C̄}
cutσ

Γ{B̄}
cutσ

Γ{∅}

,

where by weakening admissibility we get
|π12|

γ
Γ{B̄, C}, and since σ <

σ + 1 = γ we get
α

γ
Γ{∅} for α = max (|π11|,max (|π12|, |π21|) + 1) + 1. It is

easy to check that α ≤ |π1|# |π2|.

(2i − 3i):

π11

Γ{[∆]i, [A]i}
2i

Γ{[∆]i,2iA}

π21

Γ{[∆, Ā]i,3iĀ}
3

Γ{[∆]i,3iĀ}
cutσ+1

Γ{[∆]i}

;
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π11

Γ{[∆]i, [A]i}
wk

2

Γ{[∆, A]i, [∆, A]i}
ctr

Γ{[∆, A]i}

π11

Γ{[∆]i, [A]i}
wk,2i

Γ{[∆, Ā]i,2iA}

π21

Γ{[∆, Ā]i,3iĀ}
cutσ+1

Γ{[∆, Ā]i}
cutσ

Γ{[∆]i}

,

where the premises of the upper cut have been derived by use of weakening
admissibility with depth |π11| + 1 and |π21|, the natural sum of which is

smaller than |π1|# |π2|. The induction hypothesis thus yields
(|π11|+1)# |π21|

γ

Γ{[∆, Ā]i} and since σ < σ + 1 = γ we get
|π1|# |π2|

γ
Γ{[∆]i} by the lower

cut.

( ∗2 − ∗3):

...

π1k

Γ{2kA}
...

∗2 k<ω

Γ{ ∗2A}

π21

Γ{ ∗3Ā,3jĀ}
∗3

Γ{ ∗3Ā}
cutω+σ

Γ{∅}

;

π1j

Γ{2jA}

...

π1k

Γ{2kA}
wk

Γ{2kA,3jĀ}
...

∗2 k<ω

Γ{ ∗2A,3jĀ}

π21

Γ{ ∗3Ā,3jĀ}
cutω+σ

Γ{3jĀ}
cutσ+(j·h)

Γ{∅}

,

where the induction hypothesis applied on the upper cut gives us
|π1|# |π21|

γ

Γ{3jĀ} and since by Lemma 1 we have σ + j · h < ω + σ = γ the lower cut

yields
|π1|# |π2|

γ
Γ{∅}.

From the reduction lemma we obtain the first and the second elimination
lemma as usual, see for instance Pohlers [14, 15] or Schütte [17].

Lemma 6 (First Elimination Lemma). If
α

γ+1 Γ then
2α

γ
Γ.

Lemma 7 (Second Elimination Lemma). If
α

β+ωγ Γ then
ϕγα

β
Γ.
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The embedding of the Hilbert system into the deep sequent system together
with the second elimination lemma gives as the following corollary.

Theorem 8 (Cut Elimination). If A is a valid formula, then
ϕ20

0 A.

Proof. Let A be a valid formula. By the embedding of the Hilbert system
into the deep sequent system, there are natural numbers m,n such that
DC

ω·m

ω·n A. By the second elimination lemma we obtain DC

α

0 A where α =
ϕ1(. . . (ϕ1(ω · m)) . . .). We know ϕβ1

γ1 < ϕβ2
γ2 if β1 < β2 and γ1 < ϕβ2

γ2.
Thus α < ϕ20.

5 Conclusion

We have introduced an infinitary deep sequent system for common knowl-
edge and a syntactic cut-elimination procedure for it. We embedded the
Hilbert style system and obtained ϕ20 as upper bound on the length of
cut-free proofs for valid formulas.

To draw some more conclusions, let us look at the problem of cut elimination
in the ordinary sequent calculus, for example in the one by Alberucci and
Jäger. It has the following 2i-rule:

2i
A,Γ, ∗3∆

2iA,3iΓ, ∗3∆,Σ
,

where Γ,∆ and Σ are sets of formulas and 3iΓ is {3iA |A ∈ Γ}. The
problem here is the context restriction. Consider the following proof, where
the cut is multiplicative (context-splitting)

π1

A,Γ, ∗3B̄
2i

2iA,3iΓ,Σ, ∗3B̄

...

π2k

2
kB,∆

...
∗2 1≤k<ω

∗2B,∆
cut

2iA,3iΓ,Σ,∆

The typical transformation does not yield a proof of the conclusion, but a
proof of 2iA,3iΓ,Σ,3i∆.

Such a context restriction also occurs in the standard sequent calculus for
the modal logic K. While it is hardly elegant, at least it does not cause
any difficulties for syntactic cut-elimination for K. However, we see that the
context restriction poses a genuine problem for logics with more modalities
like in the logic of common knowledge. Our more general format for sequents
and inference rules solves the problem since it does not require context
restrictions.
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The first item on the list of future work is of course to embed our cut-free
deep sequent system into the ordinary cut-free sequent system by Alberucci
and Jäger. This would yield a syntactic cut-elimination procedure for their
system, since the embeddings with cut are straightforward. We think we
know how to do this, but we still have to check the details. The second item
on the list is cut-elimination for a system for S5-based common knowledge.
After all, S5 is the system for knowledge, and deep sequents easily handle
S5. Generalising contexts to allow two holes, the rule to add would be

S5
Γ{3A}{A}
Γ{3A}{∅}

.

After that, questions become more speculative. What is the mathematical
meaning of the upper bound on the depth of cut-free proofs? Is there a
kind of boundedness lemma in modal logic similar to the one used in the
analysis of set theories and second order arithmetic? Is ϕ20 the best possible
upper bound on the depth of proofs? What would be the equivalent of a
well-ordering proof in modal logic? And finally, how could one syntactically
eliminate cuts in a finitary system?
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