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Abstract

We study the extension OST(E, P) of Feferman’s operational set the-
ory OST provided by adding operational versions of unbounded exis-
tential quantification and power set and determine its proof-theoretic
strength in terms of a suitable theory of sets and classes.
Keywords: Operational set theory, proof theory, theories of sets and
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1 Introduction

This paper is a direct sequel of Jäger [15] and answers the question about
the exact consistency-theoretic strength of Feferman’s operational set the-
ory extended by operational versions of unbounded existential quantification
and power set. We will show that this system, called OST(E,P), is equicon-
sistent with a natural theory of sets and classes NBG<E0 which is obtained
from usual von Neumann-Bernays-Gödel theory NBG by adding ∈-induction
for arbitrary formulas and a specific form of iteration of elementary class
comprehension.

Up to a certain degree, operational set theory may be regarded as a set-
theoretic variant of explicit mathematics; see Feferman [7]. In its current
form, OST has been introduced in Feferman [8] and is also presented in
the more recent Feferman [9]. A series of proof-theoretic results about OST
and some of its most interesting extensions is established in Jäger [15], and
we refer the reader to these three articles for motivation and all sorts of
background information about operational set theory. Cantini and Crosilla
[6] is a further interesting approach to operational set theory and devoted to
its relationship to constructive set theory à la Aczel [1, 2, 3].

As mentioned above, this paper deals with a specific problem left open so
far. Familiarity with Feferman [8, 9] and/or Jäger [15] is highly desirable in
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order to be able to appreciate the general setting and some of the technical
approaches which can only be sketched in the following.

We begin with a brief introduction of the theory OST(E,P), following more or
less directly Jäger [15]. Afterwards we turn to von Neumann-Bernays-Gödel
set theory NBG and its extension NBG<E0 , obtained by iterating elementary
class comprehension sufficiently. The next section deals with interpreting
NBG<E0 into OST(E,P), before we reduce OST(E,P) to NBG<E0 – thus es-
tablishing their proof-theoretic equivalence – via an intermediate theory of
inductive definitions over set theory.

2 The theory OST(E,P)

Let L1 be a typical language of admissible or classical set theory with a
symbol for the element relation as its only relation symbol and countably
many set variables a, b, c, f, g, u, v, w, x, y, z, . . . (possibly with subscripts).
The formulas of L1 are defined as usual.

L◦, the language of OST(E,P), augments L1 by the binary function symbol
◦ for partial term application, the unary relation symbol ↓ (defined) and the
following constants: (i) the combinators k and s; (ii) >, ⊥, el, non, dis, e
and E for logical operations; (iii) S, R, C and P for set-theoretic operations.
The meaning of these constants follows from the axioms below.

The terms (r, s, t, r1, s1, t1, . . .) of L◦ are inductively generated as follows:

1. The variables and constants of L◦ are terms of L◦.

2. If s and t are terms of L◦, then so is ◦(s, t).

In the following we often abbreviate ◦(s, t) as (s◦ t), (st) or simply as st. We
also adopt the convention of association to the left so that s1s2 . . . sn stands
for (. . . (s1s2) . . . sn). In addition, we often write s(t1, . . . , tn) for st1 . . . tn if
this seems more intuitive. Moreover, we frequently make use of the vector
notation ~s as shorthand for a finite string s1, . . . , sn of L◦ terms whose length
is either not important or evident from the context.

Self-application is possible and meaningful, but it is not necessarily total,
and there may be terms which do not denote an object. We make use of the
definedness predicate ↓ to single out those which do, and (t↓) is read “t is
defined” or “t has a value”.

The formulas (A,B,C,D,A1, B1, C1, D1, . . .) of L◦ are inductively generated
as follows:
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1. All expressions of the form (s ∈ t) and (t↓) are formulas of L◦; the
so-called atomic formulas.

2. If A and B are formulas of L◦, then so are ¬A, (A ∨B) and (A ∧B).

3. If A is a formula of L◦, then so are ∃xA and ∀xA.

Since we will be working within classical logic, the remaining logical connec-
tives can be defined as usual. We will often omit parentheses and brackets
whenever there is no danger of confusion. The free variables of t and A are
defined in the conventional way; the closed L◦ terms and closed L◦ formu-
las, also called L◦ sentences, are those which do not contain free variables.
Equality of sets is introduced by

(s = t) := (s↓) ∧ (t↓) ∧ ∀x(x ∈ s ↔ x ∈ t).

Suppose now that ~u = u1, . . . , un and ~s = s1, . . . , sn. Then A[~s/~u] is the
L◦ formula which is obtained from A by simultaneously replacing all free
occurrences of the variables ~u by the L◦ terms ~s; in order to avoid collision of
variables, a renaming of bound variables may be necessary. If the L◦ formula
A is written as B[~u ], then we often simply write B[~s ] instead of B[~s/~u ].
Further variants of this notation will be obvious.

The logic of OST(E,P) is the classical logic of partial terms due to Beeson
[4, 5], including the common equality axioms. Partial equality of terms is
introduced by

(s ' t) := (s↓ ∨ t↓ → s = t)

and says that if either s or t denotes anything, then they both denote the
same object.

The non-logical axioms of OST(E,P) comprise axioms about the applicative
structure of the universe, some basic set-theoretic properties, the represen-
tation of elementary logical connectives as operations and operational set
existence axioms. They divide into four groups.

I. Applicative axioms.

(1) k 6= s,

(2) kxy = x,

(3) sxy↓ ∧ sxyz ' (xz)(yz).
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Thus the universe is a partial combinatory algebra. We have λ-abstraction
and thus can introduce for each L◦ term t a term (λx.t) whose variables are
those of t other than x such that

(λx.t)↓ ∧ (λx.t)y ' t[y/x].

As usual we can generalize λ abstraction to several arguments by simply
iterating abstraction for one argument. Accordingly, we set for all L◦ terms
t and all variables x1, . . . , xn,

(λx1 . . . xn.t) := (λx1.(. . . (λxn.t) . . .)).

Often the term (λx1 . . . xn.t) is also simply written as λx1 . . . xn.t. If ~x is the
sequence x1, . . . , xn, then λ~x.t stands for λx1 . . . xn.t and t~x for tx1 . . . xn.

Furthermore, there exists a closed L◦ term fix, a so-called fixed point opera-
tor, with

fix(f)↓ ∧ (fix(f) = g → gx ' f(g, x)).

II. Basic set-theoretic axioms. They comprise: (i) the existence of the
empty set; (ii) pair, union and infinity; (iii) ∈-induction is available for arbi-
trary formulas A[x] of L◦,

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].(L◦-I∈)

To increase readability, we will freely use standard set-theoretic terminology.
Also, if A[x] is an L◦ formula, then {x : A[x]} denotes the collection of all
sets satisfying A; it may be (extensionally equal to) a set, but this is not
necessarily the case. In particular, we set

B := {x : x = > ∨ x = ⊥} and V := {x : x↓}

so that B stands for the unordered pair consisting of the truth values > and
⊥, which is a set by the previous axioms. V is the collection of all sets but
not a set itself. The following shorthand notations, for n an arbitrary natural
number,

(f : a→ b) := (∀x ∈ a)(fx ∈ b),

(f : an+1 → b) := (∀x1, . . . , xn+1 ∈ a)(f(x1, . . . , xn+1) ∈ b)

express that f , in the operational sense, is a unary and (n+1)-ary mapping
from a to b, respectively. They do not say, however, that f is a unary or
(n+1)-ary function in the set-theoretic sense.
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In the previous definition the set variables a and/or b may be replaced by V
and/or B. So, for example, (f : a→ V) means that f is an operation which
is total on a, and (f : V → b) means that f maps all sets into b. If we have
(f : a→ B), we may regard f as a definite predicate on a. The n-ary Boolean
operations are those f for which (f : Bn → B).

III. Logical operations axioms.

(L1) > 6= ⊥.

(L2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = > ↔ x ∈ y).

(L3) (non : B → B) ∧ (∀x ∈ B)(non(x) = > ↔ x = ⊥).

(L4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = > ↔ (x = > ∨ y = >)).

(L5) (f : a→ B) → (e(f, a) ∈ B ∧ (e(f, a) = > ↔ (∃x ∈ a)(fx = >))).

(L6) (f : V → B) → (E(f) ∈ B ∧ (E(f) = > ↔ ∃x(fx = >))).

Axiom (6) provides for unbounded existential quantification. It is not avail-
able in OST and gives us more power in representing formulas by terms; see
the following lemma.

The pure formulas of L◦ are those L◦ formulas which do not contain the
function symbol ◦ or the relation symbol ↓. Hence they are the usual formulas
of set theory, possibly containing additional constants. The logical operations
make it possible to represent all such formulas by constant L◦ terms.

Lemma 1 Let ~u be the sequence of variables u1, . . . , un. For every pure
formula A[~u] of L◦ with at most the variables ~u free, there exists a closed
L◦ term tA such that the axioms introduced so far yield

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

In Feferman [8, 9] and Jäger [15] we have a corresponding result for OST and
∆0 formulas. It should be obvious how, by making use of (6) to deal with
unbounded quantifiers, it can be lifted to pure formulas of L◦.

IV. Operational set-theoretic axioms.

(S1) Separation for definite operations:

(f : a→ B) → (S(f, a)↓ ∧ ∀x(x ∈ S(f, a) ↔ (x ∈ a ∧ fx = >))).
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(S2) Replacement:

(f : a→ V) → (R(f, a)↓ ∧ ∀x(x ∈ R(f, a) ↔ (∃y ∈ a)(x = fy))).

(S3) Choice:
∃x(fx = >) → (Cf↓ ∧ f(Cf) = >).

(S4) Power set:
(P : V → V) ∧ ∀x∀y(x ∈ Py ↔ x ⊂ y).

This finishes the description of the non-logical axioms of OST(E,P). Recall
that OST is the subsystem of OST(E,P) in which the axioms (L6) and (S4)
are omitted.

From Feferman [8] and Jäger [15] we know that, provably in the systems OST
and OST(E,P), there exist closed L◦ terms ∅ for the empty set, uopa for
forming unordered pairs, un for forming unions, p for forming ordered pairs
(Kuratowski pairs) and prod for forming Cartesian products. In addition,
there are closed L◦ terms pL and pR which act as projections with respect
to p, i.e.

pL(p(a, b)) = a and pR(p(a, b)) = b.

To comply with the set-theoretic conventions, we generally write {a, b} in-
stead of uopa(a, b), ∪a instead of un(a), 〈a, b〉 instead of p(a, b) and a × b
instead of prod(a, b).

We end this section with remarks about a form of definition by cases and
global choice in OST and OST(E,P). This will be relevant later, when
we interpret an extension of von Neumann-Bernays-Gödel set theory into
OST(E,P).

Lemma 2 There exist closed L◦ terms d=, d∅ and dB such that OST proves:

1. (u = v ∧ d=(a, b, u, v) = a) ∨ (u 6= v ∧ d=(a, b, u, v) = b).

2. (u = ∅ ∧ d∅(a, b, u) = a) ∨ (u 6= ∅ ∧ d∅(a, b, u) = b).

3. dB(a, b,>) = a ∧ dB(a, b,⊥) = b.

Proof. A lemma in Feferman [8, 9] and Jäger [15] about the representation
of ∆0 formulas implies that there exists a closed term t so that OST proves
(t : V5 → B) and

t(a, b, c, u, v) = > ↔ ((u = v ∧ c = a) ∨ (u 6= v ∧ c = b)).

Now simply set d= := λabuv.C(λc.t(a, b, c, u, v)) and verify that it has the
required property. The terms d∅ and dB are easily defined from d=. 2
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Theorem 3 There exists a closed L◦ term choice such that OST proves

(choice : V → V) ∧ ∀x(x 6= ∅ → choice(x) ∈ x) ∧ choice(∅) = >.

Proof. We recall that any λ term is defined and pick choice to be the closed
term defined by

choice := λx.d∅(λy.>, λy.C(λz.el(z, y)), x)x.

The assertion of our theorem follows from the axioms for el and C and the
previous lemma. 2

3 The theory NBG<E0

A well-established theory of sets and classes is the so-called von Neumann-
Bernays-Gödel set theory NBG. It is presented in full detail, for example, in
Levy [19] and Mendelson [20]; here we confine ourselves on those facts which
will be essential for what follows.

NBG is a theory of sets and classes conservative over the system ZFC of
Zermelo-Fraenkel set theory with the axiom of choice. NBG is known to be
finitely axiomatizable although the version we are going to present below
permits axiom schemas and as such is an infinite axiomatization.

L2, the language of NBG, augments L1 by a second sort of countably many
variables U, V,W,X, Y, Z, . . . (possibly with subscripts) for classes. The set
terms of L2 are the terms of L1, as class terms we simply have the class
variables.

The formulas (A,B,C,D,A1, B1, C1, D1, . . .) of L2 are inductively generated
as follows:

1. If s and t are set terms of L2 and U is a class variable, then all ex-
pressions of the form (s ∈ t) and (s ∈ U) are (atomic) formulas of
L2.

2. If A and B are formulas of L2, then so are are ¬A, (A∨B) and (A∧B).

3. If A is a formula and t a set term of L2 which does not contain x, then
∃xA, ∀xA, ∃XA and ∀XA are formulas of L2.

As before, the remaining logical connectives are introduced as abbreviations,
and we will often omit parentheses and brackets whenever there is no dan-
ger of confusion. Equalities between sets/sets, sets/classes, classes/sets and
classes/classes are not atomic formulas of L2 but defined as

(Var 1 = Var 2) := ∀x(x ∈ Var 1 ↔ x ∈ Var 2)
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where Var 1 and Var 2 denote set or class variables. A formula of L2 is called
elementary or a Π1

0 formula if it does not contain bound class variables; free
class variables, however, are permitted. The Σ1

1 formulas of L2 are those of
the form ∃XA with elementary A.

The logic of NBG is classical two-sorted logic with equality for the first sort.
The non-logical axioms of NBG are given in six groups. To increase readabil-
ity, we freely use standard set-theoretic terminology.

I. Elementary comprehension For any elementary formula A[u] of L2:

∃X∀y(y ∈ X ↔ A[y]).(ECA)

Hence every elementary NBG formula A[u] defines a class, which is typically
written as {x : A[x]}. It may be (extensionally equal to) a set, but this is not
necessarily the case. The intersection of a class with a set, however, is always
supposed to produce a set by the following principle of Aussonderung.

II. Aussonderung

∀X∀y∃z(z = X ∩ y).(AUS)

From logical reasons, (ECA) and (AUS) we conclude that there is a unique
set which has no members; it is denoted by ∅.

III. Basic set existence

∀x∀y∃z(z = {x, y}),(Pair)

∀x∃y(y = ∪x),(Union)

∀x∃y∀z(z ∈ y ↔ z ⊂ x),(Powerset)

∃x(∅ ∈ x ∧ (∀y ∈ x)(y ∪ {y} ∈ x)).(Infinity)

As in OST(E,P) we write 〈a, b〉 for the ordered pair of the sets a and b à la
Kuratowski. Class relations are classes which consist of ordered pairs only,
and class functions are class relations which assign to every set exactly one
set; i.e. for all U we set:

Rel [U ] := ∀x(x ∈ U → ∃y∃z(x = 〈y, z〉),

Fun[U ] := Rel [U ] ∧ ∀x∃!y(〈x, y〉 ∈ U).

If U is a function we write U(x) for the uniquely determined y associated to
x by U . Replacement states that the range of a set under a function is a set.

8



IV. Replacement

∀X(Fun[X] → ∀y∃z(z = {X(u) : u ∈ y})).(REP)

Global choice is a very uniform principle of choice which claims the existence
of a class function which picks an element of any non-empty set.

V. Global choice

∃X(Fun[X] ∧ ∀y(y 6= ∅ → X(y) ∈ y)).(GC)

To complete the list of axioms of NBG, we add foundation. In NBG it is
claimed that the element relation is well-founded with respect to classes.

VI. Class foundation

∀X(X 6= ∅ → ∃y(y ∈ X ∧ X ∩ y = ∅)).(Class-I∈)

A set a is called an ordinal if a itself and all its elements are transitive, On
stands for the class of all ordinals; i.e.

On := {x : Tran[x] ∧ (∀y ∈ x)Tran[y]}.

The axioms (Infinity) and (Class-I∈) imply that there exists a least infinite
ordinal, which we denote by ω, as usual. The elements of ω are identified
with the natural numbers in the sense that 0 := ∅, 1 := {0}, 2 := 1 ∪ {1}
and so on. In the following the first small Greek letters α, β, γ, . . . (possibly
with subscripts) are supposed to range over On.

According to a well-known result, NBG is a conservative extension of ZFC.
A proof of this fact can be found, for example, in Levy [19].

Theorem 4 A sentence of the language L1 is provable in NBG if and only
if it is provable in ZFC.

In order to characterize OST(E,P) in terms of a theory of sets and classes
we introduce the extension NBG<E0 of the system NBG: we add to NBG the
schema of ∈-induction for arbitrary L2 formulas A[u],

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x],(L2-I∈)

plus axioms (It-ECA) about specific iterations of elementary comprehension,
to be described below. Before formulating them, we have to say a few words
about the notation system (E0,C).

The basic idea is very simple: (E0,C) provides notations for all order types
which we obtain from the ordinals together with the order type of the class of
all ordinals by closing those under addition and ω-exponentiation. As such,
(E0,C) can be considered as the canonical blowing up of (ε0, <) triggered by
replacing the natural numbers by the ordinals. In particular:
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(i) E0 is an elementarily definable class, and C is an elementarily definable
strict linear ordering on E0.

(ii) For any ordinal α the code α := 〈0, α〉 of α belongs to E0; for any
ordinals α and β, we have α C β if and only if α < β.

(iii) E0 contains an element Ω such that (Ω,C) is an isomorphic copy of
(On, <).

(iv) There are a binary class function ⊕ and a unary class function Expω,
both elementary, such that E0 is closed under ⊕ and Expω. These two
functions are for the addition and ω-exponentiation of elements of E0 in
the expected sense.

In the following we write (a+ b) – or often simply a+ b – for ⊕(a, b) and ωa

for Expω(a). For all natural numbers n, the ordinal terms Ωn are inductively
defined by

Ω0 := ωΩ+1 and Ωn+1 := ωΩn .

All additional relevant details concerning (E0,C) are worked out in detail
in Jäger and Krähenbühl [16]. In particular, it is shown there that, for
any standard natural number k, the theory NBG + (L2-I∈) proves transfinite
induction along C up to Ωk. To be precise, given an L2 formula A[u], we set

TI C[v, A] := ∀x((∀y C x)A[y] → A[x]) → (∀x C v)A[x],

formulating transfinite induction with respect to the formula A[u] along the
relation C up to v. See Jäger and Krähenbühl [16] for the following.

Lemma 5 For any standard natural number k and for any formula A of the
language L2 we have

NBG + (L2-I∈) ` TI C[Ωk, A].

Hierarchies of classes are coded in NBG by working with projections of classes.
For this purpose, we set

(U)a := {x : 〈a, x〉 ∈ U} and Σ(U, a) := {〈b, x〉 ∈ U : b C a}.

Therefore, Σ(U, a) stands for the disjoint union of the projections of U , col-
lected along C up to a.

Definition 6 Let A[U, V, u, v] be an elementary L2 formula with at most the
variables U, V, u, v free. Then we write HierA[a, U, V ] for the elementary L2

formula
(∀b C a)((V )b = {x : A[U,Σ(V, b), b, x]}).
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NBG<E0 is the theory of sets and classes which extends NBG + (L2-I∈) by
claiming the existence of such hierarchies along each initial segment of E0:
the axioms of NBG<E0 comprise the axioms of NBG, the schema (L2-I∈) plus
the schema

∀X∃YHierA[Ωk, X, Y ](It-ECA)

for all standard natural numbers k and all elementary formulas A[U, V, u, v]
of L2 with at most the variables U, V, u, v free.

4 Embedding NBG<E0 into OST(E,P)

Our next aim is to show that NBG<E0 can be embedded into OST(E,P). To
do so, we begin with selecting a translation ˇ which maps the set variables u
and class variables U of L2 to set variables ǔ and Ǔ of L1 so that no conflicts
arise. The basic idea is that the L2 set variables will be interpreted as ranging
over the sets of OST(E,P) and the L2 class variables as ranging over T, the
total operations from V to B;

(f ∈ T) := ∀x(fx = > ∨ fx = ⊥).

Consequently, the atomic formulas (s ∈ U) and (s /∈ U) are interpreted as
(Ǔ š = >) and (Ǔ š = ⊥), respectively.

Definition 7 The translations A+ and A− of an L2 formula A are induc-
tively defined as follows:

1. If A is a formula (u ∈ v), then A+ := (ǔ ∈ v̌) and A− := (ǔ /∈ v̌).

2. If A is a formula (u ∈ V ), then

A+ := (V̌ ǔ = >) and A− := (V̌ ǔ = ⊥).

3. If A is a formula ¬B, then A+ := B− and A− := B+; if A is a
formula (B ∨ C), then A+ := (B+ ∨ C+) and A− := (B− ∧ C−); if A
is a formula (B ∧ C), then A+ := (B+ ∧ C+) and A− := (B− ∨ C−).

4. If A is a formula ∃xB[x], then A+ := ∃x̌B+[x̌] and A− := ∀x̌B−[x̌]; if
A is a formula ∀xB[x], then A+ := ∀x̌B+[x̌] and A− := ∃x̌B−[x̌].

5. If A is a formula ∃XB[X], then

A+ := (∃X̌ ∈ T)B+[X̌] and A− := (∀X̌ ∈ T)B−[X̌];

if A is a formula ∀XB[X], then

A+ := (∀X̌ ∈ T)B+[X̌] and A− := (∃X̌ ∈ T)B−[X̌].
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This translation is so that A− is equivalent to the negation of A+ and vice
versa provided that all class parameters in A are interpreted by operations
from T. This is spelled out in detail in the following lemma which can be
proved by routine induction on A.

Lemma 8 For all formulas A[U1, . . . , Un] of L2 with at most the indicated
class variables free and possibly additional set parameters, OST proves:

n∧
i=1

(fi ∈ T) → (¬A+[f1, . . . , fn] ↔ A−[f1, . . . , fn]).

Given this interpretation of class variables, Lemma 1 can be lifted in a suit-
able sense from pure formulas of L◦ to the translations of elementary formulas
of L2. For the proof of the following lemma proceed by induction on buildup
of the formula and simply follow the corresponding proofs in Feferman [8, 9],
taking into account what we remarked subsequent to Lemma 1; the previous
lemma helps to treat negation.

Lemma 9 For every elementary formula A[~U,~v] of L2 with at most the

class variables ~U and set variables ~v free, there exists a closed L◦ term tA
such that OST(E,P) proves

tA↓ ∧ (∀~x ∈ T)(tA(~x) : Vn → B) ∧ (∀~x ∈ T)∀~y(A+[~x, ~y] ↔ tA(~x, ~y) = >).

Here we assume that the length of the vector ~U agrees with that of ~x and
that both vectors ~v and ~y have length n.

This lemma provides for the translation of elementary comprehension; see
Theorem 11 below. For dealing with replacement, we abbreviate

RelC [f ] := f ∈ T ∧ ∀x(fx = > → ∃y∃z(x = 〈y, z〉)),

FunC [f ] := RelC [f ] ∧ ∀x∃!y(f〈x, y〉 = >),

expressing that f is a code of a class relation and class function, respectively.
The translation of replacement is a consequence of the following lemma.

Lemma 10 For any a and f we can prove in OST that

FunC [f ] → ∃x(x = {y : (∃z ∈ a)(f〈z, y〉 = >)}).

Proof. Depending on f , first let s := λz.C(λy.f〈z, y〉). Hence s is defined
and, provided that FunC [f ], axiom (S3) about operational choice implies
(s : V → V) and

∀z(f〈z, sz〉 = >).(*)
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Then consider R(s, a). In view of axiom (S2) about operational replacement
we conclude that R(s, a) is the set for which

∀y(y ∈ R(s, a) ↔ (∃z ∈ a)(y = sz)).

Because of FunC [f ] and (*) this implies

R(s, a) = {y : (∃z ∈ a)(f〈z, y〉 = >)},

thus finishing the proof of our assertion. 2

After this preparatory work, the embedding of NBG into OST(E,P) is easily
achieved.

Theorem 11 The theory NBG + (L2-I∈) can be embedded into OST(E,P);
i.e. for all closed formulas A of L2 we have

NBG + (L2-I∈) ` A =⇒ OST(E,P) ` A+.

Proof. This assertion is established once we have shown, by induction on
the length of the derivation in NBG, that

NBG ` A[U1, . . . , Un] =⇒ OST(E,P) `
n∧

i=1

(Ǔi ∈ T) → A+[Ǔ1, . . . , Ǔn]

for all formulas A[U1, . . . , Un] of L2 with at most the indicated free class
variables and possibly additional set parameters. If A[U1, . . . , Un] is a logical
axiom or the conclusion of an inference, the assertion follows, possibly using
the induction hypothesis, by simple reasoning within OST(E,P). Hence it
only remains to treat the non-logical axioms of NBG:

1. The translation of Aussonderung is easily proved in OST(E,P) by means
of separation for definite operations; all basic set existence axioms of NBG are
basic set-theoretic axioms of OST or a consequence of operational power set
(S4); the translation of class foundation and the translation of any instance
of (L2-I∈) are directly implied by (L◦-I∈).
2. A[U1, . . . , Un] is an instance of elementary comprehension. Then there ex-
ists an elementary L2 formula B[U1, . . . , Un, ~v, w] with at most the indicated
free variables such that A[U1, . . . , Un] is

∃X∀y(y ∈ X ↔ B[U1, . . . , Un, ~v, y]).

Now we select a closed L◦ term tB as provided by Lemma 9 and define
s := λy.tB(Ǔ1, . . . , Ǔn, ~v, y). Hence, in view of Lemma 9, OST(E,P) proves

n∧
i=1

(Ǔi ∈ T) → (s ∈ T ∧ ∀y(sy = > ↔ B+[Ǔ1, . . . , Ǔn, ~v, y])).
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This means that s is a suitable code for the witness claimed to exist by
elementary comprehension.

3. A[U1, . . . , Un] is replacement. Then it is the axiom

∀X(Fun[X] → ∀y∃z(z = {X(u) : u ∈ y})),

the translation of which is equivalent to

(∀X̌ ∈ T)(FunC [X̌] → ∀y∃z(z = {v : (∃u ∈ y)(X̌〈u, v〉 = >)})).

According to Lemma 10, this assertion is provable in OST(E,P).

4. A[U1, . . . , Un] is global choice. Then it is the axiom

∃X(Fun[X] ∧ ∀y(y 6= ∅ → X(y) ∈ y)).

Recalling Theorem 3, we know that global choice is available in OST(E,P).
All we have to do is to rewrite it so that it validates the translation of the
axiom (GC) of NBG. For this purpose we first pick a closed L◦ term eq
for the characteristic function of equality of sets, which exists according to
Lemma 1 or the corresponding lemmas of Feferman [8, 9], and define

s := λxy.eq(x, 〈y, choice(y)〉) and t := λx.E(sx).

For any a, we then have (sa : V → B) so that, by axiom (L6), E(sa) ∈ B.
Consequently, t ∈ T. Together with axiom (L6), the definitions of s and t
also yield

∀x(tx = > ↔ ∃y(x = 〈y, choice(y)〉)).

Since (choice : V → V) and choice(a) ∈ a for all non-empty a, we conclude
FunC [t] and

∀y∀z(y 6= ∅ ∧ t〈y, z〉 = > → z ∈ y),

and thus t is a suitable witness for the translation of (GC). This finishes our
proof since now (the translations of) all non-logical axioms of NBG have been
proved in OST(E,P). 2

We are left with the iteration axioms (It-ECA) of NBG<E0 . They will be
handled by combining a fixed point construction on operations with verifying,
by transfinite induction along initial segments of (E0,C), that we obtain a
family of operations belonging to T.

In order to speak about transfinite induction along the elementary (E0,C)
within the framework of OST(E,P), we first fix a closed L◦ term `C which
codes the ordering C on E0 in the sense of Lemma 9. In the context of L◦
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we write (a C b) for (`C(a, b) = >) and (a 6C b) for (`C(a, b) = ⊥). Then as
before (but now within the language L◦) transfinite induction along C up to
an element v is canonically defined, for an L◦ formula A[u], by

TI C[v, A] := ∀x((∀y C x)A[y] → A[x]) → (∀x C v)A[x].

As shown above, NBG is contained in OST(E,P). Therefore the following
lemma is proved by a direct adaptation of the corresponding result in Jäger
and Krähenbühl [16], and there is no need to reproduce any details here.

Lemma 12 For any standard natural number k and for any formula A[u]
of L◦ we have

OST(E,P) ` TI C[Ωk, A].

As mentioned above, this lemma will play a crucial role in the proof of
the subsequent Theorem 14. However, it is convenient to afore supply the
operational version of a specific form of disjoint union.

Lemma 13 There exists a closed L◦ term jn such that OST(E,P) proves:

1. (∀b C a)∀x(f(b, x) ∈ B) → ∀x(jn(f, a, x) ∈ B).

2. (∀b C a)∀x(f(b, x) ∈ B) → ∀x(jn(f, a, x) = > ↔ J(f, a, x)).

Here J(f, a, x) expresses that x is an element of the disjoint union of the
classes coded by fb with b C a, i.e.

J(f, a, x) := (∃y C a)∃z(x = 〈y, z〉 ∧ f(y, z) = >).

Proof. As an auxiliary term, we introduce

s := λfabc.dB(λy.f(b, y), λy.>, `C(b, a))c.

This term s is closed and defined and satisfies

(∀b C a)∀x(f(b, x) ∈ B) ∧ u C a → s(f, a, u, v) = f(u, v),(1)

u 6C a → s(f, a, u, v) = >.(2)

In particular, we can conclude from (1) and (2) that

(∀b C a)∀x(f(b, x) ∈ B) → ∀y∀z(s(f, a, y, z) ∈ B).(3)

Now consider the formula J(λyz.s(f, a, y, z), a, x), i.e.

(∃y C a)∃z(x = 〈y, z〉 ∧ s(f, a, y, z) = >).
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Because of (3) and by means of the logical operation axioms we can find a
closed L◦ term jn such that

(∀b C a)∀x(f(b, x) ∈ B) → ∀x(jn(f, a, x) ∈ B),

(∀b C a)∀x(f(b, x) ∈ B) → ∀x(jn(f, a, x) = > ↔ J(λyz.s(f, a, y, z), a, x)).

Together with assertion (1) this shows that the term jn has the required
property. 2

Theorem 14 Let k be a standard natural number and A[U, V, u, v] an el-
ementary L2 formula with at most the variables U, V, u, v free. Then there
exists a closed L◦ term itA for which we can prove in OST(E,P):

1. f ∈ T ∧ a C Ωk → ∀x(itA(f, a, x) ∈ B).

2. f ∈ T ∧ a C Ωk →
∀x(itA(f, a, x) = > ↔ A+[f, λy.jn(itAf, a, y), a, x]).

Proof. We fix an element f of T and proceed in three steps. Firstly,
Lemma 9 shows

(∀g ∈ T)∀x∀y(tA(f, g, x, y) ∈ B),(1)

(∀g ∈ T)∀x∀y(tA(f, g, x, y) = > ↔ A+[f, g, x, y])(2)

for an appropriately selected closed L◦ term tA. Secondly, we make use of the
fixed point operator (see Section 2) to provide a closed L◦ term itA fulfilling
the partial equality

itA(f, a, x) ' tA(f, λy.jn(itAf, a, y), a, x)(3)

for any a and x. Thirdly, we establish ∀x(itA(f, a, x) ∈ B) for all a C Ωk by
transfinite induction along C. The induction hypothesis gives us

(∀b C a)∀x(itA(f, b, x) ∈ B).

Therefore, by Lemma 13, we also have ∀x(jn(itAf, a, x) ∈ B). This means
λy.jn(itAf, a, y) ∈ T which, by (1), yields

tA(f, λy.(jn(itAf, a, y), a, u) ∈ B

for every u. Combined with (3), we conclude ∀x(itA(f, a, x) ∈ B), and our
first assertion is proved.

The second assertion easily follows from the first since, given a C Ωk, it
implies that λy.jn(itAf, a, y) ∈ T. Hence (2) and (3) yield what we want. 2
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Corollary 15 The theory NBG<E0 can be embedded into OST(E,P); i.e. for
all closed formulas A of L2 we have

NBG<E0 ` A =⇒ OST(E,P) ` A+.

Proof. Keeping the proof of Theorem 11 in mind, we just have to interpret
the iteration axioms (It-ECA). Hence let k be a standard natural number and
A[U, V, u, v] an elementary L2 formula with at most the variables U, V, u, v
free. We have to show that the translation of ∀X∃YHierA[Ωk, X, Y ], i.e.

(∀f ∈ T)(∃g ∈ T)Hier+
A[Ωk, f, g],

is provable in OST(E,P). Pick the closed L◦ term itA of the previous theorem
and, given f ∈ T, set

s := λx.jn(λay.itA(f, a, y),Ωk, x).

Lemma 13 and the previous theorem provide all we need to verify that s is
a suitable witness for g. 2

This corollary determines a lower bound of the consistency strength of our
operational set theory OST(E,P). Our goal of the next sections is to show
that this bound is sharp.

5 An inductive extension of ZF

Similar to Feferman and Jäger [10], Jäger and Studer [18] or Jäger and
Strahm [17] we will utilize an inductive model constructions. However, this
model is not constructed within NBG<E0 directly but within a new system
Er

F(ZFW) + (LF-I∈). In the next section Er
F(ZFW) + (LF-I∈) will be reduced

to NBG<E0 .

When building up the inductive model of OST(E,P), we have to handle
the choice axiom (S3). For this end it is convenient to have a global well-
ordering of the set-theoretic universe at our disposal. Therefore, let L1(W)
be the extension of L1 by the fresh binary relation symbol W and let ZFW
be the extension of ZF which comprises all axioms of ZF – formulated, of
course, with respect to the new language L1(W) – plus the following global
well-ordering axiom

∀x∃!αW(x, α) ∧ ∀x∀y∀α(W(x, α) ∧W(y, α) → x = y).(GWO)
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From axiom (GWO) the desired well-ordering of the universe of sets is canon-
ically obtained if we set

a <W b := ∃α∃β(W(a, α) ∧ W(b, β) ∧ α < β).(<W)

Now we pick an n-ary relation symbol R which does not belong to the lan-
guage L1(W) and write L1(W , R) for the extension of L1(W) by R. An
L1(W , R) formula which contains at most a1, . . . , an free is called an n-ary
operator form, and we let A[R, a1, . . . , an] range over such forms.

Based on a model M of ZFW with universe |M|, any n-ary operator form
A[R,~a] gives rise to subsets Iζ

A of |M|n generated inductively for all ordinals
ζ (not only those belonging to |M|) by

I<ζ
A :=

⋃
η<ζ

Iη
A and Iζ

A := {〈~x〉 ∈ |M|n : M |= A[I<ζ
A , ~x]}.

These sets Iζ
A are the stages of the inductive definition induced by A[R,~a],

relative to M; for many models M, operator forms A[R,~a] and ordinals ζ
the Iζ

A are not elements of |M|. We now enrich ZFW so that we can speak
about such stages.

Given an n-ary operator form A[R, a1, . . . , an], the theory Er
A(ZFW) is for-

mulated in the language LA which extends L1(W) by adding a new sort of
so called stage variables ρ, σ, τ, . . . (possibly with subscripts) as well as new
binary relation symbols ≺ and ≡ for the less and equality relation for stage
variables, respectively, plus an (n+ 1)-ary relation symbol QA.

The atomic formulas of LA are the atomic formulas of L1(W) as well as all
expressions (σ ≺ τ), (σ ≡ τ) and QA(σ,~s). Usually we write Qσ

A(~s) instead
of QA(σ,~s).

The formulas (A,B,C,A1, B1, C1, . . .) of LA are generated from these atoms
by closure under negation, conjunction and disjunction, bounded and un-
bounded quantification over sets, bounded stage quantification (∃σ ≺ τ) and
(∀σ ≺ τ) as well as unbounded stage quantification ∃σ and ∀σ. The ∆S

0 (A)
formulas are those LA formulas that do not contain unbounded stage quan-
tifiers. An LA formula A is is called ΣS(A) if all positive occurrences of
unbounded stage quantifiers in A are existential and all negative occurrences
of unbounded stage quantifiers in A are universal; it is called ΠS(A) if all
positive occurrences of unbounded stage quantifiers in A are universal and
all negative occurrences of unbounded stage quantifiers in A are existential.

Further, given an LA formula A and a stage variable σ not occurring in A, we
write Aσ to denote the LA formula which is obtained from A by replacing all
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unbounded stage quantifiers Qτ in A by bounded stage quantifiers (Qτ ≺ σ).
Additional abbreviations are

Q≺σ
A (~s) := (∃τ ≺ σ)Qτ

A(~s) and QA(~s) := ∃σQσ
A(~s).

Clearly, any formula of L1(W) is a ∆S
0 (A) formula, and Aσ is ∆S

0 (A) for any
LA formula A.

The theory Er
A(ZFW) is formulated in classical two-sorted predicate logic

with equality in both sorts; in addition, it contains as non-logical axioms all
ZFW-axioms of the language L1(W), some axioms about stage variables and
operator forms, reflection for ΣS(A) formulas, separation and replacement
for ∆S

0 (A) formulas plus induction along ∈ and ≺ for ∆S
0 (A) formulas.

I. ZFW-axioms. All axioms of the theory ZFW formulated in the language
L1(W); they do not refer to stage variables or relation symbols associated to
operator forms.

II. Linearity axioms. For all stage variables ρ, σ and τ :

σ ⊀ σ ∧ (ρ ≺ σ ∧ σ ≺ τ → ρ ≺ τ) ∧ (σ ≺ τ ∨ σ ≡ τ ∨ τ ≺ σ).

III. Operator axioms. For all ~u:

Qσ
A(~u) ↔ A[Q≺σ

A , ~u].

IV. ∆S
0 Separation. For all ∆S

0 (A) formulas A[u] and all a:

∃x(x = {y ∈ a : A[y]}).(∆S
0 -Sep)

V. ∆S
0 Replacement. For all ∆S

0 (A) formulas A[u, v] and all a:

(∀x ∈ a)∃!yA[x, y] → ∃z∀y(y ∈ z ↔ (∃x ∈ a)A[x, y]).(∆S
0 -Rep)

VI. ΣS reflection. For all ΣS(A) formulas A:

A → ∃σAσ.(ΣS-Ref)

VII. ∆S
0 induction along ∈ and ≺. For all ∆S

0 (A) formulas A[u]:

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x],(∆S
0 -I∈)

∀σ((∀τ ≺ σ)A[τ ] → A[σ]) → ∀σA[σ].(∆S
0 -I≺)
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It is important to observe that the stage variables do not belong to the
collection of sets; they constitute a different entity which is used to “enumer-
ate” the stages of the inductive definition associated to each operator form.
However, in the form of ∆S

0 (A) separation and ∆S
0 (A) replacement they can

nevertheless help to constitute new sets in a carefully restricted way.

The theory Er
A(ZFW) is a restricted system (hence the superscript “r”) in

the sense that the axioms in groups IV, V and VII are restricted to ∆S
0 (A)

formulas. By Er
A(ZFW)+(LA-I∈) is meant Er

A(ZFW) extended by the schema
of ∈-induction for arbitrary LA formulas A[u],

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].(LA-I∈)

It remains to follow the pattern of the embedding of OSTr(E,P) into a similar
theory ZFLr

Ω, as carried through in Jäger [15]. For any natural number
n greater than 0 we select (i) a ∆0 formula Tupn(a) formalizing that a is
an ordered n-tuple and (ii) a ∆0 formula (a)n = b formalizing that b the
projection of a on its nth component so that

Tupn(a) ∧ (a)1 = b1 ∧ . . . ∧ (a)n = bn → a = 〈b1, . . . , bn〉.

Then we fix pairwise different sets k̂, ŝ, >̂, ⊥̂, êl, n̂on, d̂is, ê, Ê, Ŝ, R̂, Ĉ
and P̂ which all do not belong to the collection of ordered pairs and triples;
they will later act as the codes of the corresponding constants of L◦. We are
going to code the L◦ terms kx, sx, sxy, . . . by the ordered tuples 〈k̂, x〉, 〈̂s, x〉,
〈̂s, x, y〉, . . . of the corresponding form. For example, to satisfy kxy = x we

interpret kx as 〈k̂, x〉, and “〈k̂, x〉 applied to y” is taken to be x.

For finding the required interpretation of the application operation of the
theory OST(E,P) we introduce a specific ternary operator form F[R, a, b, c],
with R being a fresh ternary relation symbol.

Definition 16 The operator form F[R, a, b, c] is defined to be the disjunction
of the following clauses:

(1) a = k̂ ∧ c = 〈k̂, b〉,

(2) Tup2(a) ∧ (a)1 = k̂ ∧ (a)2 = c,

(3) a = ŝ ∧ c = 〈̂s, b〉,

(4) Tup2(a) ∧ (a)1 = ŝ ∧ c = 〈̂s, (a)2, b〉,

(5) Tup3(a) ∧ (a)1 = ŝ ∧ ∃x∃y(R((a)2, b, x) ∧ R((a)3, b, y) ∧ R(x, y, c)),
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(6) a = êl ∧ c = 〈êl, b〉,

(7) Tup2(a) ∧ (a)1 = êl ∧ (a)2 ∈ b ∧ c = >̂,

(8) Tup2(a) ∧ (a)1 = êl ∧ (a)2 /∈ b ∧ c = ⊥̂,

(9) a = n̂on ∧ b = >̂ ∧ c = ⊥̂,

(10) a = n̂on ∧ b = ⊥̂ ∧ c = >̂,

(11) a = d̂is ∧ c = 〈d̂is, b〉,

(12) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = >̂ ∧ c = >̂,

(13) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = >̂ ∧ c = >̂,

(14) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = ⊥̂ ∧ c = ⊥̂,

(15) a = ê ∧ c = 〈ê, b〉,

(16) Tup2(a) ∧ (a)1 = ê ∧ (∃x ∈ b)R((a)2, x, >̂) ∧ c = >̂,

(17) Tup2(a) ∧ (a)1 = ê ∧ (∀x ∈ b)R((a)2, x, ⊥̂) ∧ c = ⊥̂,

(18) a = Ŝ ∧ c = 〈Ŝ, b〉,

(19) Tup2(a) ∧ (a)1 = Ŝ ∧ (∀x ∈ b)(R((a)2, x, >̂) ∨ R((a)2, x, ⊥̂)) ∧

∀x(x ∈ c ↔ x ∈ b ∧R((a)2, x, >̂)),

(20) a = R̂ ∧ c = 〈R̂, b〉,

(21) Tup2(a) ∧ (a)1 = R̂ ∧ (∀x ∈ b)(∃y ∈ c)R((a)2, x, y) ∧

(∀y ∈ c)(∃x ∈ b)R((a)2, x, y),

(22) a = Ĉ ∧ R(b, c, >̂) ∧ ∀x(x <W c → ¬R(b, x, >̂)) ∧ ∀x¬R(Ĉ, b, x),

(23) a = P̂ ∧ ∀x(x ∈ c ↔ x ⊂ b),

(24) a = Ê ∧ ∃xR(b, x, >̂) ∧ c = >̂,

(25) a = Ê ∧ ∀xR(b, x, ⊥̂) ∧ c = ⊥̂.
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This definition differs from the corresponding definition in Jäger [15] only
in the global well-ordering <L being replaced by the global well-ordering
<W , a change without any consequences for the considerations leading to
Theorem 19.

As in Jäger [15] it is easily shown that QF(a, b, c) is functional in its third
argument and, therefore, suitable for translating the operational application
of OST(E,P).

Definition 17 For each L◦ term t we introduce an LF formula JtKF(u), with
u not occurring in t, which is inductively defined as follows:

1. If t is a set variable, then JtKF(u) is the formula (t = u).

2. If t is a constant, then JtKF(u) is the formula (t̂ = u).

3. If t is the term (rs), then we set

JtKF(u) := ∃x∃y(JrKF(x) ∧ JsKF(y) ∧ QF(x, y, u)).

For any L◦ term t, the formula JtKF(u) expresses that u is the value of t under
the interpretation of the operational application via the formula QF(a, b, c).
By this treatment of the terms of L◦, the translation of arbitrary formulas
of L◦ into formulas of LF is predetermined.

Definition 18 The translation of an L◦ formula A into the LF formula A∗

is inductively defined as follows:

1. For the atomic formulas of L◦ we stipulate

(t↓)∗ := ∃xJtKF(x),

(s ∈ t)∗ := ∃x∃y(JsKF(x) ∧ JtKF(y) ∧ x ∈ y).

2. If A is a formula ¬B, then A∗ is ¬B∗.

3. If A is a formula (B � C) for � being the binary junctor ∨ or ∧, then
A∗ is (B∗ � C∗).

4. If A is a formula QxB[x] for a quantifier Q, then A∗ is QxB∗[x].

The proof of the first part of the following theorem can be directly taken form
Jäger [15]. Its second part is a direct consequence from the first because every
instance of (L◦-I∈) translates into an instance of (LF-I∈).
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Theorem 19 The theories OSTr(E,P) and OST(E,P) are interpretable in
Er

F(ZFW) and Er
F(ZFW) + (LF-I∈), respectively; i.e. for all formulas A of L◦

we have:

1. OSTr(E,P) ` A =⇒ Er
F(ZFW) ` A∗.

2. OST(E,P) ` A =⇒ Er
F(ZFW) + (LF-I∈) ` A∗.

In combination with Corollary 15 this result implies the proof-theoretic equiv-
alence of the systems OST(E,P) and NBG<E0 as soon as the reduction of the
theory Er

F(ZFW) + (LF-I∈) to NBG<E0 is established. This is the content on
the next section.

6 Reducing ErA(ZFW) + (LA-I∈) to NBG<E0

It is notationally convenient to restrict ourselves from now to a unary op-
erator form A[R, a]. It is obvious, however, that and how all results of this
section can be generalized to operator forms of arbitrary arities. We begin
our reduction process with embedding Er

A(ZFW) + (LA-I∈) into the auxil-
iary system G∞A , which is a Gentzen-style reformulation of Er

A(ZFW) with an
additional infinitary rule branching over all ordinals. Afterwards, we carry
through a partial cut elimination argument before an asymmetric interpre-
tation in NBG<E0 is performed.

In the following we develop, within NBG<E0 , the infinitary system G∞A . For
this purpose we code the set variables as the pairs 〈0, n〉, the stage variables
as the pairs 〈1, n〉, n always a natural number. For every set a we have the
set constant 〈2, a〉 and for every b ∈ E0 the stage constant 〈3, b〉. For natural
numbers n, sets a and elements b of E0 we set

en := 〈0, n〉, ξn := 〈1, n〉,

pa := 〈2, a〉, qb := 〈3, b〉.

We also fix several elementary class functions defined, for arbitrary sets a, b, c,
by (some are written in infix or another mnemonically convenient notation):

(a ∈̇ b) := 〈4, a, b〉, Ẇ (a, b) := 〈5, a, b〉,

(a ≺̇ b) := 〈6, a, b〉, (a ≡̇ b) := 〈7, a, b〉,

Q̇A(a, b) := 〈8, a, b〉, ¬̇ a := 〈9, a〉,

(a ∨̇ b) := 〈10, a, b〉, (a ∧̇ b) := 〈11, a, b〉,
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∃̇ a b := 〈12, a, b〉, ∀̇ a b := 〈13, a, b〉,

(∃̇ a ≺̇ b) c := 〈14, a, b, c〉, (∀̇ a ≺̇ b) c := 〈15, a, b, c〉.

To proceed with our development of G∞A within NBG<E0 , all formulas of G∞A
are presented as sets, mimicking the built up of the formulas of LA with
additional sets and stage constants.

Definition 20 The class F∞
A is defined to be the smallest class which satis-

fies the following closure properties:

(1) For all natural numbers m,n and all sets a, b the class F∞
A contains

(em ∈̇ en), (em ∈̇ pa), (pa ∈̇ em), (pa ∈̇ pb),

Ẇ (em, en), Ẇ (em, pa), Ẇ (pa, em), Ẇ (pa, pb).

(2) For all natural numbers m,n and all elements a, b of E0, the class F∞
A

contains

(ξm ≺̇ ξn), (ξm ≺̇ qa), (qa ≺̇ ξm), (qa ≺̇ qb),

(ξm ≡̇ ξn), (ξm ≡̇ qa), (qa ≡̇ ξm), (qa ≡̇ qb).

(3) For all natural numbers m,n, all sets a and all elements b of E0, the
class F∞

A contains

Q̇A(ξm, en), Q̇A(ξm, pa), Q̇A(qb, en), Q̇A(qb, pa).

(4) For all x, y ∈ F∞
A , the class F∞

A also contains

¬̇ x, (x ∨̇ y), (x ∧̇ y).

(5) For all x ∈ F∞
A and all natural numbers n, the class F∞

A also contains

∃̇ en x, ∀̇ en x, ∃̇ ξn x, ∀̇ ξn x.

(6) For all x ∈ F∞
A , all natural numbers m,n and all elements a of E0, the

class F∞
A also contains

(∃̇ ξm ≺̇ ξn)x, (∃̇ ξm ≺̇ qa)x (∀̇ ξm ≺̇ ξn)x, (∀̇ ξm ≺̇ qa)x.

This definition could be reformulated as an explicit elementary formula, for
the prize of being less perspicuous. We are not going to work out the details,
only formulate the corresponding assertion.
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Lemma 21 F∞
A is an elementarily definable class of NBG<E0.

It is also elementarily decidable whether elements of F∞
A contain set or stage

constants or whether a set or stage variable occurs freely (in the usual sense)
within an element of F∞

A . Moreover, there is an elementary class function
Sub mapping any set constant pa, set variable em and element x of F∞

A onto
that element Sub(pa, em, x) of F∞

A which is obtained from x by replacing all
free occurrences of em by pa. The simultaneous replacements

Sub(〈pa1 , . . . , pam , qb1 , . . . , qbn〉, 〈ei1 , . . . , eim , ξj1 , . . . , ξjn〉, x)

of free occurrences of set and stage variables within an element x of F∞
A are

dealt with accordingly.

Clearly, (a →̇ b), for any sets a and b, stands for (¬̇ a ∨̇ b), and other
abbreviations of this sort are used as expected. To give an example, if an
element ϕ of F∞

A is given as ψ[e1, . . . , em], then ψ[pa1 , . . . , pam ] is often written
instead of Sub(〈pa1 , . . . , pam〉, 〈e1, . . . , em〉, ϕ).

The previous definition is so that Gödel numbers, all belonging to F∞
A , can

be canonically assigned to the formulas of LA. For this purpose we begin
with fixing a mapping \ which assigns natural numbers to all set and stage
variables, making sure that different variables are mapped onto different
natural numbers.

If u, v are set variables and σ, τ stage variables of LA, we define

p(u ∈ v)q := (e\(u) ∈̇ e\(v)), pW(u, v)q := Ẇ (e\(u), e\(v)),

p(σ ≺ τ)q := (ξ\(σ) ≺̇ ξ\(τ)), p(σ ≡ τ)q := (ξ\(σ) ≡̇ ξ\(τ)),

pQσ
A(u)q := Q̇A(ξ\(σ), e\(u)).

The Gödel numbers of the non-atomic formulas of LA are inductively calcu-
lated in compliance with the equations

p¬Aq := ¬̇ pAq,

p(A ∨B)q := (pAq ∨̇ pBq),

p(A ∧B)q := (pAq ∧̇ pBq),

p∃xAq := ∃̇ e\(x) pAq,

p∀xAq := ∀̇ e\(x) pAq,

p∃σAq := ∃̇ ξ\(σ) pAq,
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p∀σAq := ∀̇ ξ\(σ) pAq,

p(∃σ ≺ τ)Aq := (∃̇ ξ\(σ) ≺̇ ξ\(τ)) pAq,

p(∀σ ≺ τ)Aq := (∀̇ ξ\(σ) ≺̇ ξ\(τ)) pAq.

The elements of F∞
A are called L∞A formulas and will be denoted by the

small Greek letters θ, ϕ, χ and ψ (possibly with subscripts). To increase the
readability we often omit the dots when it is clear from the context that we
speak about elements of F∞

A .

The set-closed formulas of L∞A are those L∞A formulas which do not contain
free set variables and stage constants (but they may contain free stage vari-
ables and set constants); the closed formulas of L∞A are those L∞A formulas
which contain neither free set variables nor free stage variables. We collect
the set-closed formulas of L∞A in the class SCF∞

A and the closed formulas of
L∞A in the class CF∞

A ; both classes are elementary definable.

The capital Greek letters Θ,Φ,Ψ, . . . (possibly with subscripts) denote finite
sequences of set-closed L∞A formulas. If Φ is the sequence of set-closed L∞A
formulas ϕ1, . . . , ϕm and Ψ the sequence of set-closed L∞A formulas ψ1, . . . , ψn,
then

〈16,m, n, ϕ1, . . . , ϕm, ψ1, . . . , ψn〉

is the sequent with antecedent Φ and succedent Ψ; typically, it will be written
as (Φ ⊃ Ψ) or simply as Φ ⊃ Ψ.

The ∆S
0 (A), ΣS(A) and ΠS(A) formulas of L∞A are defined analogously to

the corresponding classes of LA formulas; set and stage constants are now,
of course, permitted as parameters. Furthermore, a formula of L∞A is ΣS

1 (A)
if it is ∆S

0 (A) or of the form ∃ξnϕ[ξn] where ϕ[ξn] is a ∆S
0 (A) formula of L∞A ;

it is ΠS
1 (A) if it is ∆S

0 (A) or of the form ∀ξnϕ[ξn] where ϕ[ξn] is a ∆S
0 (A)

formula of L∞A .

Looking at the axioms of the groups (I)–(V) of the theory Er
A(ZFW), we can

convince ourselves that corresponding axioms can be formulated within the
language L∞A , all belonging to ∆S

0 (A). We replace all free occurrences of
set variables within these axioms by set constants and collect the resulting
set-closed formulas in the class AX A.

Definition 22 The degree dg(ϕ) of a set-closed L∞A formula ϕ is inductively
defined as follows:

1. If ϕ is a set-closed ΣS
1 (A) formula of L∞A , then dg(ϕ) := 0.
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2. For all set-closed L∞A formulas not belonging to ΣS
1 (A) we set

dg(¬ψ) := dg(ψ) + 1,

dg(ψ1 ∨ ψ2) := max(dg(ψ1), dg(ψ2)) + 1,

dg(ψ1 ∧ ψ2) := max(dg(ψ1), dg(ψ2)) + 1,

dg(∃enψ[en]) := dg(ψ[p∅]) + 1,

dg(∀enψ[en]) := dg(ψ[p∅]) + 1,

dg(∃ξnψ[ξn]) := dg(ψ[ξn]) + 1,

dg(∀ξnψ[ξn]) := dg(ψ[ξn]) + 1,

dg((∃ξn ≺ ξm)ψ[ξn]) := dg(ψ[ξn]) + 2,

dg((∀ξn ≺ ξm)ψ[ξn]) := dg(ψ[ξn]) + 2.

G∞A is an extension of the classical Gentzen sequent calculus LK (cf., e.g.,
Girard [11] or Takeuti [22]) by additional axioms and rules of inference which
take care of the non-logical axioms of Er

A(ZFW). Universal set quantification
in the succedent and the corresponding existential set quantification in the
anticedent are infinitary rules branching over the collection of all sets. The
axioms and rules of G∞A can be grouped as follows.

I. Axioms. For all set-closed ∆S
0 (A) formulas ϕ of L∞A , all elements ψ of

AX A and all sets a, b:

(A1) ϕ ⊃ ϕ,

(A2) ⊃ ψ,

(A3) ⊃ (pa ∈ pb) if a ∈ b,

(A4) ⊃ (pa /∈ pb) if a /∈ b.

II. Structural rules. The structural rules of G∞A consist of the usual weak-
ening, exchange and contraction rules.

III. Propositional rules. The propositional rules of G∞A consist of the usual
rules for introducing the propositional connectives on the left and right hand
sides of sequents.
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IV. Quantifier rules for sets. Formulated only for succedents; there are
also corresponding rules for the anticedents. For all set variables en, all set
constants pa and all set-closed formulas ϕ[p∅] of L∞A :

Φ ⊃ Ψ, ϕ[pa]

Φ ⊃ Ψ, ∃enϕ[en]
,

Φ ⊃ Ψ, ϕ[pb] for all sets b

Φ ⊃ Ψ, ∀enϕ[en]
.

V. Quantifier rules for stages. Formulated only for succedents; there
are also corresponding rules for the anticedents. By (?) we mark those rules
where the designated free variables are not to occur in the conclusion. For
all stage variables ξk, ξm, ξn and all set-closed formulas ϕ[ξn] of L∞A :

Φ ⊃ Ψ, ϕ[ξm]

Φ ⊃ Ψ, ∃ξnϕ[ξn]
,

Φ ⊃ Ψ, ϕ[ξm]

Φ ⊃ Ψ, ∀ξnϕ[ξn]
(?),

Φ ⊃ Ψ, ξm ≺ ξk ∧ ϕ[ξm]

Φ ⊃ Ψ, (∃ξn ≺ ξk)A[ξn]
,

Φ ⊃ Ψ, ξm ≺ ξk → ϕ[ξm]

Φ ⊃ Ψ, (∀ξn ≺ ξk)ϕ[ξn]
(?).

VI. ΣS reflection rules. For all set-closed ΣS(A) formulas ϕ of L∞A and all
stage variables ξn which are not free in ϕ:

Φ ⊃ Ψ, ϕ

Φ ⊃ Ψ, ∃ξnϕξn
.

VII. ∆S
0 induction rules along ≺. For all stage variables ξk, ξm, ξn and

all set-closed ∆S
0 (A) formulas ϕ[ξn] of L∞A :

Φ ⊃ Ψ, ∀ξk((∀ξn ≺ ξk)ϕ[ξn] → ϕ[ξk])

Φ ⊃ Ψ, ϕ[ξm]
.

VIII. Cuts. For all set-closed formulas ϕ of L∞A :

Φ ⊃ Ψ, ϕ Φ, ϕ ⊃ Ψ

Φ ⊃ Ψ
.

The formula ϕ is called the cut formula of this cut; the degree of a cut is the
degree of its cut formula.

Since G∞A has inference rules which branch over all sets, namely the rules for
introducing universal quantification over sets in the succedents and existen-
tial quantification over sets in the anticedents, infinite proof trees may occur.
We confine ourselves to those whose depths are bounded by initial segments
of E0.
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Definition 23 Let k be an arbitrary standard natural number. For any no-
tation a C Ωk, any n < ω and any sequent Φ ⊃ Ψ, we define G∞(A,k) `a

n Φ ⊃ Ψ
by induction on a.

1. If Φ ⊃ Ψ is an axiom of G∞A , then we have G∞(A,k)) `a
n Φ ⊃ Ψ for all

a C Ωk and n < ω.

2. If G∞(A,k) `ax
n Φx ⊃ Ψx and ax C a for every premise of a rule which is

not a cut, then we have G∞(A,k) `a
n Φ ⊃ Ψ for the conclusion Φ ⊃ Ψ of

this rule.

3. If G∞(A,k) `ai
n Φi ⊃ Ψi and ai C a for the two premises Φi ⊃ Ψi of a cut

(i = 1, 2) whose degree is less than n, then we have G∞(A,k) `a
n Φ ⊃ Ψ

for the conclusion Φ ⊃ Ψ of this cut.

To be precise, given a standard natural number k, we employ axiom (It-ECA)
to introduce a class U such that, for any a C Ωk, the projection (U)a consists
of all pairs (Φ ⊃ Ψ, n) for which we have G∞(A,k) `a

n Φ ⊃ Ψ.

G∞(A,k) `a
0 Φ ⊃ Ψ says that there exists a cut-free proof in G∞A whose depth is

bounded by the notation a and a C Ωk. If we have G∞(A,k) `a
1 Φ ⊃ Ψ, then

only ΣS
1 (A) formulas are permitted as cut formulas.

The axioms (A2)–(A3), the ΣS(A) reflection rules and the ∆S
0 (A) induction

rules along ≺ block total cut elimination. But since the main formulas of
these axioms and rules belong to ΣS

1 (A), partial cut elimination – eliminating
all those cuts whose cut formula is not from ΣS

1 (A) – can be proved by
standard techniques as presented, for example, in Schütte [21].

Theorem 24 (Partial cut elimination) Let k be a standard natural num-
ber. Then NBG<E0 proves for all n < ω, all a ∈ E0 such that ωa C Ωk and
all sequents Φ ⊃ Ψ that

G∞(A,k) `a
n+2 Φ ⊃ Ψ → G∞(A,k) `ωa

n+1 Φ ⊃ Ψ.

G∞A is so that apart from ∈-induction, all axioms of Er
A(ZFW) + (LA-I∈) are

directly verified within G∞A . For proving the instances of (LA-I∈) infinite
derivations are required in general.

Lemma 25 Let k be a standard natural number. Then NBG<E0 proves for
all set-closed L∞A formulas ϕ[p∅]:

1. For all ordinals α, all sets a of set-theoretic rank α and all ordinals β
such that β = ωα + ω + 1,

G∞(A,k) `
β
0 ∀em((∀en ∈ em)ϕ[en] → ϕ[em]) ⊃ ϕ[pa].
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2. G∞(A,k) `Ω
0 ∀em((∀en ∈ em)ϕ[en] → ϕ[em]) ⊃ ∀emϕ[em].

Proof. We let ψ be the formula ∀em((∀en ∈ em)ϕ[en] → ϕ[em]) and show
the first assertion by induction on α. Given a set a of rank α, the induction
hypothesis implies for all b ∈ a

G∞(A,k) `
γ
0 ψ ⊃ ϕ[pb](1)

where γ := ωα. If b /∈ a, then according to (A4) and weakening

G∞(A,k) `1
0 ψ ⊃ pb /∈ pa.(2)

From (1) and (2) we conclude, for any set b,

G∞(A,k) `
γ+1
0 ψ ⊃ pb /∈ pa ∨ ϕ[pb].

By universal set quantification we thus have

G∞(A,k) `
γ+2
0 ψ ⊃ (∀en ∈ pa)ϕ[en],

and from this, simple manipulations within G∞A also lead to

G∞(A,k) `
γ+ω
0 ψ, (∀en ∈ pa)ϕ[en] → ϕ[pa] ⊃ ϕ[pa].

Universal set quantification within the anticedent therefore finishes the proof
of our first assertion. The second assertion follows from the first by a universal
set quantification in the succedent. 2

It is now routine to verify by induction on the lengths of the proofs in the sys-
tem Er

A(ZFW)+(LA-I∈) that every theorem of Er
A(ZFW)+(LA-I∈) is derivable

in G∞A .

Theorem 26 Let k be a standard natural number and A a formula of LA

without free set variables. If A is derivable in the theory Er
A(ZFW)+(LA-I∈),

then there exist standard natural numbers m and n such that NBG<E0 proves

G∞(A,k) `Ω+m
n ⊃ pAq.

Applying Theorem 24 finitely often we can strengthen this theorem to an
interpretation of Er

A(ZFW)+(LA-I∈) in G∞A with proofs whose cut formulas are
ΣS

1 (A) formulas and whose depths are bounded by Ωk for suitable standard
natural numbers k.

Corollary 27 Let A be a formula of LA without free set variables. If A is
derivable in Er

A(ZFW)+(LA-I∈), then there exists a standard natural number
k such that NBG<E0 proves that there exists a notation a C Ωk such that

G∞(A,k) `a
1 ⊃ pAq.

30



We continue by defining what it means that elements of F∞
A are true. In the

following definition of this notion the set quantifiers range over the universe
of sets; the existential and universal stage quantifiers, on the other hand, are
interpreted over (not necessarily the same) initial segments of E0.

Before going into the details of this definition, we have to take care of the
well-ordering relation W of ZFW. This is done by observing that the global
choice axiom (GC) of NBG induces a well-ordering of the universe: in NBG
we can prove that there exists a class, call it Wglob , for which

∀x∃!α(〈x, α〉 ∈ Wglob).(G-WO)

Obviously, Wglob is the right candidate to interpret W . Also, we write Â[U, a]
for the formula of L2 which is obtained from our operator form A[R, a] by
replacing all occurrences of W(x, y) by (〈x, y〉 ∈ Wglob) and all occurrences
of R(x) by (x ∈ U). Many of formulas we work with until the end of this
section contain the class Wglob as parameter, but we forbear from indicating
this parameter in general.

Let us write (U)Cx for the class
⋃
{(U)y : y C x} and (U)<m for the class⋃

{(U)n : n < m}. Then the iteration axiom (It-ECA) has two special cases:
first,

∃X(∀y C Ωk)((X)y = {x : Â[(X)Cy, x]}),(It-1)

and second, for any elementary L2 formula A[U, V, u, v] with at most the
variables U, V, a, b free,

∀X∃Y (∀m < ω)((Y )m = {x : A[X, (Y )<m, x,m]}).(It-2)

(It-1) and (It-2) play an important role in the next considerations, but before
applying them a further (lengthy) definition is needed. In this definition Lh
is the elementary class function which assigns to each element a of F∞

A the
number Lh(a) of occurrences of logical connectives in a.

Definition 28 Let k be a standard natural number. Then Satk[U, V, a, b] is
defined to be the elementary formula

a ∈ CF∞
A ∧ Lh(a) = b ∧ Ak[U, V, a],

where Ak[U, V, a] is the auxiliary formula taken to be the disjunction of the
following clauses:

(1) ∃x∃y(a = (px ∈̇ py) ∧ x ∈ y),
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(2) ∃x∃y(a = Ẇ (px, py) ∧ 〈x, y〉 ∈ Wglob),

(3) (∃x, y C Ωk)(a = (qx ≺̇ qy) ∧ x C y),

(4) (∃x C Ωk)(a = (qx ≡̇ qx)),

(5) ∃x(∃y C Ωk)(a = Q̇A(qy, px) ∧ 〈y, x〉 ∈ U),

(6) ∃x(a = ¬̇ x ∧ x /∈ V ),

(7) ∃x∃y(a = (x ∨̇ y) ∧ (x ∈ V ∨ y ∈ V )),

(8) ∃x∃y(a = (x ∧̇ y) ∧ x ∈ V ∧ y ∈ V ),

(9) ∃x(∃m < ω)(a = ∃̇ em x ∧ ∃y(Sub(py, em, x) ∈ V )),

(10) ∃x(∃m < ω)(a = ∀̇ em x ∧ ∀y(Sub(py, em, x) ∈ V )),

(11) ∃x(∃m < ω)(a = ∃̇ ξm x ∧ (∃y C Ωk)(Sub(qy, ξm, x) ∈ V )),

(12) ∃x(∃m < ω)(a = ∀̇ ξm x ∧ (∀y C Ωk)(Sub(qy, ξm, x) ∈ V )),

(13) ∃x(∃y C Ωk)(∃m < ω)(a = (∃̇ ξm ≺̇ qy)x ∧

(∃z C y)(Sub(qz, ξm, x) ∈ V )),

(14) ∃x(∃y C Ωk)(∃m < ω)(a = (∀̇ ξm ≺̇ qy)x ∧

(∀z C y)(Sub(qz, ξm, x) ∈ V )).

The next step is now to apply principle (It-2) to this formula Satk[U, V, a, b],
providing us with a class W such that, for all natural numbers m,

(W )m = {x ∈ CF∞
A : Lh(x) = m ∧ Satk[U, (W )<m, x,m]}.

Therefore (W )<ω :=
⋃
{(W )m : m < ω} consists of all elements of CF∞

A

which are true in the intended sense, with the only exception that the relation
symbol QA is interpreted by the class U . To correct this deficiency, all we
have to do is to replace U by the appropriate interpretation for QA. For that
we have principle (It-1).

Definition 29 Let k be a standard natural number. Then we define

Tr (A,k)[a] :=


∃X∃Y ( (∀z C Ωk)((X)z = {x : Â[(X)Cz, x]}) ∧

(∀m < ω)((Y )m = {x : Satk[X, (Y )<m, x,m]}) ∧

(∃m < ω)(a ∈ (Y )m) ).
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Although Tr (A,k)[a] is not an elementary L2 formula, NBG<E0 guarantees that
it defines a class, namely, given a standard natural number k, we easily derive
from (It-1) that there exists a unique class U with

(∀z C Ωk)((U)z = {x : Â[(U)Cz, x]}) ∧ U = Σ(Ωk, U);

therefore and since Satk[U, V, a, b] only refers to segments of U less than Ωk,
the schema (It-2) furnishes us with a unique class V for which

(∀m < ω)((V )m = {x : Satk[U, (V )<m, x,m]}) ∧ V = Σ(ω, V ).

These observations immediately establish that the L∞A formulas which are
true in the sense of Definition 29 form a class.

Lemma 30 For every standard natural number k we can prove in NBG<E0

that
∃X∀y(y ∈ X ↔ Tr (A,k)[y]).

It should now be evident that the formulas of LA are directly represented by
their Gödel numbers and this truth definition. If ~u is the sequence u1, . . . , un,
then we write p~u and e\(~u) for the sequences pu1 , . . . , pun and e\(u1), . . . , e\(un),
respectively.

Lemma 31 For every standard natural number k and for every L1 formula
A[~u] with at most the variables ~u free the theory NBG<E0 proves

∀~x(A[~x] ↔ Tr (A,k)[Sub(〈p~x〉, 〈e\(~u)〉, pA[~u]q)]).

The proof of this assertion is by simple induction on the complexity of the LA

formula A[~u], and there is no need to present it in detail. A further property
of our truth definition deals with the stages of the inductive definition. Its
proof can be omitted as well.

Lemma 32 For every standard natural number k the theory NBG<E0 proves
that for any class U which satisfies

(∀y C Ωk)((U)y = {x : Â[(U)Cy, x]})

we also have, for all sets a and all b C Ωk:

1. a ∈ (U)b ↔ Tr (A,k)[Sub(〈pa, qb〉, 〈e\(u), ξ\(σ)〉, pQσ
A(u)q)],

2. a ∈ (U)b ↔ Tr (A,k)[Sub(〈pa, qb〉, 〈e\(u), ξ\(σ)〉, pA[Q≺σ
A , u]q)].
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After this brief respite for introducing the truth definitions Tr (A,k), we re-
turn to G∞A and use them to reflect G∞A within NBG<E0 . A first observation
concerns some axioms of G∞A .

Lemma 33 For every standard natural number k and every ϕ the theory
NBG<E0 proves

ϕ ∈ AX A → Tr (A,k)[∀(ϕ)],

where ∀(ϕ) denotes the universal closure of ϕ with respect to its stage vari-
ables.

Proof. We work within NBG<E0 and let AX (A,k) be the class of all those
closed L∞A formulas which are obtained from the elements of AX A by sub-
stituting stage constants qa with a C Ωk for their free stage variables. It is
easily seen that our lemma follows from, for any ϕ,

ϕ ∈ AX (A,k) → Tr (A,k)[ϕ].(*)

If ϕ stems from an Er
A(ZFW) axiom of group (I), group (II) or group (III),

the formula Tr (A,k)[ϕ] follows directly from the axioms of NBG, the assertion
(G-WO), the linearity of the ordering C and Lemma 32.

If ϕ stems from an Er
A(ZFW) axiom of group (IV), the formula Tr (A,k)[ϕ]

translates into a statement of the form

∃x(x = {y ∈ a : Tr (A,k)[Sub(py, en, ψ)]})

for some ∆S
0 (A) formula ψ of L∞A which may contain en and several stage

variables free, but without any other free set variables. Choosing a class X
according to Lemma 30, this can be rewritten as

∃x(x = {y ∈ a : Sub(py, en, ψ) ∈ X})

and, therefore, is provable in NBG<E0 .

The last case we have to consider is that ϕ stems from an Er
A(ZFW) axiom

of group (V). Then Tr (A,k)[ϕ] translates into a statement of the form

(∀x ∈ a)∃!yTr (A,k)[Sub(〈px, py〉, 〈em, en〉, ψ)] →

∃z∀y(y ∈ z ↔ (∃x ∈ a)Tr (A,k)[Sub(〈px, py〉, 〈em, en〉, ψ)]).

for some ∆S
0 (A) formula ψ of L∞A which may contain em and en plus several

stage variables free, but without any other free set variables. As in the
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previous case, we make use of Lemma 30, pick a class X which has the same
extension as Tr (A,k) and transform the previous implication into

(∀x ∈ a)∃!y(Sub(〈px, py〉, 〈em, en〉, ψ) ∈ X) →

∃z∀y(y ∈ z ↔ (∃x ∈ a)(Sub(〈px, py〉, 〈em, en〉, ψ) ∈ X)).

As before, this assertion is a theorem of NBG<E0 . This completes the proof
of our auxiliary assertion (*) and thus of our lemma. 2

Given the interpretation of the ordering ≺ on the stages by our truth def-
inition, transfinite induction along C carries over directly to the truth of
induction along ≺. Hence the following result is evident.

Lemma 34 Let k be a standard natural number. Then NBG<E0 proves, for
every closed L∞A formula ∀ξmϕ[ξm] and every a C Ωk,

Tr (A,k)[(∀ξm ≺ qa)((∀ξn ≺ ξm)ϕ[ξn] → ϕ[ξm])] → Tr (A,k)[(∀ξm ≺ qa)ϕ[ξm]].

Let us now fix, for the rest of this paper, a few useful notations which are
required for Theorem 35 below:

(i) If Φ and Ψ are finite sequences of L∞A formulas, then (¬Φ∨Ψ) is the dis-
junction whose disjuncts are the negated formulas of Φ and the formulas
of Ψ.

(ii) If ϕ is an L∞A formula and a an element of E0, then ϕ(a) is the L∞A
formula obtained from ϕ by replacing all unrestricted stage quantifiers
Qξn by (Qξn ≺ qa).

(iii) If ϕ is an L∞A formula and a an element of E0, then the class SI (a, ϕ)
consists of all substitution instances of ϕ which are obtained from ϕ by
replacing all occurrences of free stage variables by stage constants from
{qx : x C a}.

(iv) Suppose that Φ and Ψ are finite sequence of set-closed formulas of L∞A .
If a and b are elements of E0, then we write SI (a, b,Φ ⊃ Ψ) for the class
SI (a, (¬Φ ∨ Ψ)(b)). Every element of SI (a, b,Φ ⊃ Ψ) is a closed L∞A
formula.

We assume that the reader can carry out all these syntactic transformations
in detail and is sufficiently convinced that they can be described by elemen-
tary L2 formulas. Notably, everything can be performed within NBG<E0 .

Now the stage is set for carrying through an asymmetric interpretation of
G∞(A,k). The technique of asymmetric interpretations is well-established in
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proof theory; see, for example, Schütte [21] and Jäger [12, 13]. Systems
similar to G∞A , with explicit stages of inductive definitions, have been treated
in Jäger [14, 15] and Jäger and Strahm [17].

Theorem 35 Let k be a standard natural number. In NBG<E0 we can prove
that, for all a, b, c C Ωk, all finite sequences Φ of set-closed ΠS(A) formu-
las, all finite sequences Ψ of set-closed ΣS(A) formulas and all closed L∞A
formulas ϕ,

G∞(A,k) `a
1 Φ ⊃ Ψ ∧ b+ ωa E c ∧ ϕ ∈ SI (b, c,Φ ⊃ Ψ) → Tr (A,k)[ϕ].

Proof. We show this theorem by induction on a, which is justified in view
of Lemma 5, and distinguish the following cases:

1. Φ ⊃ Ψ is an axiom or a conclusion of a structural rule, a propositional rule,
a quantifier rule for sets, a quantifier rule for stages or a ∆S

0 induction rule
along ≺. Then the assertion is trivially satisfied or follows from the induction
hypothesis and Lemma 34 (plus some obvious logical transformations).

2. Φ ⊃ Ψ is a conclusion of a ΣS reflection rule. Then the sequence Ψ is of
the form Ψ0,∃ξnψξn for some set-closed ΣS(A) formula ψ of L∞A , and there
exists an a0 C a such that

G∞(A,k) `
a0
1 Φ ⊃ Ψ0, ψ.(1)

Every ϕ ∈ SI (b, c,Φ ⊃ Ψ) is logically equivalent to a formula

χ(c) ∨ (∃ξn ≺ qc)θ
ξn ,

where χ ∈ SI (b, (¬Φ ∨Ψ0)) and θ ∈ SI (b, ψ). Set c0 := b+ ωa0 ; then by the
induction hypothesis we obtain from (1) that

Tr (A,k)[χ
(c0) ∨ θ(c0)]

which actually implies, since c0 C c,

Tr (A,k)[χ
(c0) ∨ (∃ξn ≺ qc)θ

ξn ].

By an obvious persistency argument, we can lift the bound c0 in χ(c0) to c
and conclude that Tr (A,k)[ϕ].

3. Φ ⊃ Ψ is a conclusion of a cut. By assumption, its cut formula has to
be a ∆S

0 (A) formula or a formula of the form ∃ξnθ[ξn], where θ[ξn] is ∆S
0 (A).

In the remainder we concentrate on the second and more complicated case.
Then there exists a1, a2 C a such that

G∞(A,k) `
a1
1 Φ ⊃ Ψ, ∃ξnθ[ξn],(2)
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G∞(A,k) `
a2
1 Φ, ∃ξnθ[ξn] ⊃ Ψ.(3)

Now pick a formula ϕ ∈ SI (b, c,Φ ⊃ Ψ). It can be written as ψ(c), where
ψ ∈ SI (b, (¬Φ ∨Ψ)). Set c1 := b+ ωa1 , take some ∃ξnχ[ξn] ∈ SI (b, ∃ξnθ[ξn])
and apply the induction hypothesis to (2). Then we obtain

Tr (A,k)[(∃ξn ≺ qc1)χ[ξn] ∨ ψ(c1)].(4)

Furthermore, by an inversion argument (we did not formulate it explicitly
but it can be proved in a straightforward way), assertion (3) also gives

G∞(A,k) `
a2
1 Φ, θ[ξm] ⊃ Ψ(5)

for a fresh stage variable ξm which does not occur in Φ ⊃ Ψ and ∃ξnθ[ξn].
For c2 := c1 + ωa2 and every qx such that x C c1 the induction hypothesis
applied to (5) – with a, b and c replaced by a2, c1 and c2, respectively – yields

Tr (A,k)[¬χ[qx] ∨ ψ(c2)]

and hence
Tr (A,k)[(∀ξn ≺ qc1)¬χ[ξn] ∨ ψ(c2)].

Together with (4) this implies

Tr (A,k)[ψ
(c1) ∨ ψ(c2)].

We recall that c2 = c1 + ωa2 = b + ωa1 + ωa2 E b + ωa E c and weaken the
previous, by persistency, to Tr (A,k)[ψ

(c)], as desired.

Therefore all possible cases for deriving the sequent Φ ⊃ Ψ within G∞(A,k) have
been considered, proving our theorem. 2

Corollary 36 Let k be a standard natural number and A a closed formula of
the language L1 of set theory. In NBG<E0 we can prove that, for all a C Ωk,

G∞(A,k) `a
1 pAq → Tr (A,k)[pAq].

Now it is time to bring everything together and to reduce operational set
theory OST(E,P) with unbounded existential quantification and power set
to the extension NBG<E0 of von Neumann-Bernays-Gödel set theory.

Theorem 37 (Reduction) The theory OST(E,P) can be reduced to the
system NBG<E0 with respect to all sentences of the first order language L1 of
set theory; i.e. for all closed formulas A of L1 we have

OST(E,P) ` A =⇒ NBG<E0 ` A.
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Proof. Let A be an L1 sentence provable in OST(E,P). Therefore, by
Theorem 19, we also have

Er
F(ZFW) + (LF-I∈) ` A.(+)

Now we turn to the infinitary system G∞F . This is the system analogous to the
system G∞A treated in Section 6 with the operator form A[R, a] replaced by the
operator form F[R, a, b, c]; all results carry over. According to Corollary 27,
we deduce from (+) that there exists a standard natural number k such that

NBG<E0 ` (∃a C Ωk)(G
∞
(F,k) `a

1 pAq).

Hence the previous corollary yields

NBG<E0 ` Tr (F,k)[pAq],

and it only remains to apply the reflection property described in Lemma 31
in order to derive NBG<E0 ` A. 2

Corollary 38 The theories OST(E,P) and NBG<E0 are equiconsistent.

This final result of this article is an immediate consequence of Corollary 15
and the previous reduction theorem.
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