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Abstract

Operational set theory, in the form described below, is an enterprise
which consolidates classical set theory with some central concepts of Fe-
ferman’s explicit mathematics. It provides for a careful distinction be-
tween operations and set-theoretic functions and as such reconciles set
theory with needs arising in constructive environments and even in those
enhanced by computer science.
In the following we consider, primarily from a proof-theoretic perspective,
the theory OST and some of its most important extensions and determine
their consistency strengths by exhibiting equivalent systems in the realm
of traditional theories of sets and classes.
Keywords: Operational set theory, explicit mathematics, proof theory,
classical and constructive set theories

1 Introduction

Operational set theory, in the form described below, is a comparatively young
enterprise which consolidates classical set theory with some central concepts of
Feferman’s explicit mathematics. It provides for a careful distinction between
operations and set-theoretic functions and as such reconciles set theory with
needs arising in constructive environments and even in those oriented towards
computer science.

The general topic of explicit mathematics originated in Feferman’s seminal
paper [14], where several formal systems, including the famous theory T0,
where introduced. The original aim of explicit mathematics was to provide an
appropriate framework for Bishop-style constructive mathematics, and it can
be seen as one specific effort in parallel to rather different work by others; see
Feferman [16] for a thorough discussion of this aspect.

However, soon it turned out that explicit mathematics also plays an important
role in reductive proof theory and as an axiomatic approach to abstract com-
putability. In Buchholz, Feferman, Pohlers and Sieg [11] important subsystems
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of T0 are related to subsystems of second order arithmetic; the question con-
cerning the exact proof-theoretic strength of full T0 is settled by Jäger [26]
and Jäger and Pohlers [33].

Feferman [15] lays the foundations for later work about the connections be-
tween explicit mathematics and generalized recursion theory and presents
some first important results. In Feferman and Jäger [21] and Jäger and Strahm
[35] the proof theory of the non-constructive µ-operator and the Suslin oper-
ator in an explicit context are studied; Jäger and Strahm [34, 36] deal with
various forms of explicit reflections, in particular with Mahloness and ana-
logues of Π3 reflection.

The proofs of these and many other results about explicit mathematics make
heavy use of interesting set-theoretic concepts, at least implicitly. Very often
(the intuitive background of) a proof-theoretic argument depends on a subtle
interplay between notions in classical set theory and their admissible, con-
structive or recursive analogues. Operational set theory turns these implicit
analogies into explicit generalizations. A central ingredient of this approach is
a strict distinction between operations, which may be interpreted as compu-
tations or even programs, and functions in the set-theoretic sense, i.e. binary
right-unique relations.

Feferman [18] is the starting points of the following considerations and intro-
duces the system OST of operational set theory and a few extensions, mo-
tivated by the aim to develop a common language for small large cardinal
notions as in classical set theory, admissible set and recursion theory. Fefer-
man [19] presents variants of these systems closer in syntax to original explicit
mathematics, and Feferman [20] is a polished up version of parts of [18].

Related work by Cantini and Crosilla [12] is about a constructive set theory
with operations COST, which may be considered as a constructive version of
OST, and may be regarded as providing a bridge between Aczel’s constructive
set theory CZF, see Aczel [1, 2, 3], and explicit mathematics. As predecessors
of present day operational set theory we may consider Beeson [10], presenting
an interesting computation system based on set theory and formulated as a
theory of sets and rules, and Feferman [17], where some of the central ideas
are outlined.

The present article begins with a rough description of the landscape of set
theory and then studies OST and its extensions by operational power set and
operational unbounded existential quantification. Afterwards we determine
their consistency strengths by exhibiting equivalent systems in the realm of
traditional set theory and describe an interesting extension of OST which is
conservative over ZFC.
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2 Aspects of the set-theoretic landscape

No doubt, Zermelo-Fraenkel set theory with the axiom of choice is the gen-
erally accepted framework for wide parts of everyday mathematics. From a
foundational perspective, however, the general picture is much richer, and –
very roughly – we can distinguish three areas:

I. Classical set theories. Clearly, ZF and ZFC are the two most prominent
exponents. But there is also von Neumann-Bernays-Gödel set theory NBG,
a theory of sets and classes which yields the same results as ZFC. Morse-
Kelley set theory MK is a significant strengthening of NBG permitting highly
non-elementary class formation. Further natural strengthenings of NBG are
obtained by adding reflection principles such as Π1

1 reflection or strict Π1
1

reflection.

On the other hand, theories like ZF, ZFC and their extensions have signifi-
cant drawbacks from a logical perspective. To mention only a few: (i) They
heavily violate the principle of parsimony; most mathematical theorems can
be proved from much weaker set existence axioms. (ii) They demand that
all mathematical objects (also, for example, computer programs) are realized
as sets. (iii) They have only very huge models and, for example, no recursive
models. (iv) They do not differentiate between levels of existence and between
constructively/recursively and classically valid assertions.

II. Constructive set and type theories. A first possible reaction is to
replace classical set theories by their constructive variants. Prominent example
of those are:

• Myhill’s CST (cf. [42]) and the intuitionistic version IZF of ZF.

• Martin-Löf type theories (cf. [39, 40]).

• Aczel’s constructive set theory CZF and its extensions à la Aczel and
Rathjen (cf. [1, 2, 3, 4]).

• Proof development systems and proof assistants such as Coq, HOL and
Nuprl (cf. [13, 22, 43]).

Most of these systems use intuitionistic logic and have the disjunction and
existence property.

III. Admissible set theories. An alternative is to abide with classical logic,
but to weaken the set existence axioms dramatically. Most distinctive along
these lines is the system KPω of Kripke-Platek set theory with infinity. In cal-
ibrating the proof-theoretic strength of subsystems of second order arithmetic
and set theory, theories of iterated admissible sets play an important role; for
example:

• KPu and KPi for admissible and recursively inaccessible universes (cf.
[23, 25, 24, 28]).
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• KPm and KPω+ (Πn-Ref) for recursively Mahlo universes and universes
satisfying Πn reflection (cf. [44, 45, 5, 6]).

• admissibility without foundation, i.e. systems like KPi0, KPm0 and
KPu0 + (Πn-Ref) which are obtained from the above theories by drop-
ping ∈-induction; they represent the wide spectrum of predicative and
metapredicative theories (cf. [27, 28, 31, 34, 36, 49, 50]).

Recent proof-theoretic work of Rathjen (cf.,e.g., [46, 47]) about extensions of
Kripke-Platek set theory leading to Π1

2-CA may be subsumed under classical
and admissible set theories.

It has already been mentioned in the introduction that there exist interesting
connections between notions of classical set theory and their recursive or ad-
missible analogues. A typical example is the notion of regular cardinal which
collapses to admissible ordinal if we replace arbitrary set-theoretic functions
by recursive functions; see Richter and Aczel [48] for more on this from a
recursion-theoretic perspective.

Operational set theory is the approach to isolate the basic common principle
underlying each of the areas I –III. The central notion is that of operation
which may be interpreted classically, constructively or recursively. In this
regard it is very much like Feferman’s marriage of convenience for explicit
mathematics [15].

3 The theory OST and its relatives

The presentation of the theory OST and its extensions follows Jäger [29, 30];
all unexplained notions and further motivation can be found there.

Let L1 be a typical language of admissible or classical set theory with a symbol
for the element relation as its only relation symbol and countably many set
variables a, b, c, f, g, u, v, w, x, y, z, . . . (possibly with subscripts). The formulas
of L1 are defined as usual.

L◦, the language of OST and its extensions, augments L1 by the binary func-
tion symbol ◦ for partial term application, the unary relation symbol ↓ (de-
fined) and the following constants: (i) the combinators k and s; (ii) >, ⊥, el,
non, dis, e and E for logical operations; (iii) S, R, C and P for set-theoretic
operations. The meaning of these constants follows from the axioms below.

The terms (r, s, t, r1, s1, t1, . . .) of L◦ are inductively generated as follows:

1. The variables and constants of L1 are terms of L◦.

2. If s and t are terms of L◦, then so is ◦(s, t).

In the following we often abbreviate ◦(s, t) as (s◦t), as (st) or – if no confusion
arises – simply as st. We also adopt the convention of association to the left
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so that s1s2 . . . sn stands for (. . . (s1s2) . . . sn). In addition, we often write
s(t1, . . . , tn) for st1 . . . tn if this seems more intuitive. Moreover, we frequently
make use of The vector notation ~s is used as shorthand for a finite string
s1, . . . , sn of L◦ terms whose length is either not important or evident from
the context.

Self-application is possible and meaningful, but it is not necessarily total; there
may be terms which do not denote an object. We make use of the definedness
predicate ↓ to single out those which do, and (t↓) is read “t is defined” or “t
has a value”.

The formulas (A,B,C,D,A1, B1, C1, D1, . . .) of L◦ are inductively generated
as follows:

1. All expressions of the form (s ∈ t) and (t↓) are formulas of L◦; the
so-called atomic formulas.

2. If A and B are formulas of L◦ , then so are ¬A, (A ∨B) and (A ∧B).

3. If A is a formula and t a term of L◦ which does not contain x, then
(∃x ∈ t)A, (∀x ∈ t)A, ∃xA and ∀xA are formulas of L◦.

We will often omit parentheses and brackets whenever there is no danger of
confusion. Since we will be working within classical logic, the remaining logical
connectives can be defined as usual; equality of sets is introduced by

(s = t) := (s↓) ∧ (t↓) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s).

The free variables of t and A are defined in the conventional way; the closed
L◦ terms and closed L◦ formulas, also called L◦ sentences, are those which do
not contain free variables.

Given an L◦ formula A and a variable u not occurring in A, we write Au for the
result of replacing each unbounded set quantifier ∃x(. . .) and ∀x(. . .) in A by
(∃x ∈ u)(. . .) and (∀x ∈ u)(. . .), respectively. Suppose now that ~u = u1, . . . , un

and ~s = s1, . . . , sn. Then A[~s/~u] is the L◦ formula which is obtained from A
by simultaneously replacing all free occurrences of the variables ~u by the L◦
terms ~s; in order to avoid collision of variables, a renaming of bound variables
may be necessary. If the L◦ formula A is written as B[~u ], then we often simply
write B[~s ] instead of B[~s/~u ]. Further variants of this notation will be obvious.

The logic of OST is the classical logic of partial terms due to Beeson [8, 9],
including the common equality axioms. Partial equality of terms is introduced
by

(s ' t) := (s↓ ∨ t↓ → s = t)

and says that if either s or t denotes anything, then they both denote the same
object.

The non-logical axioms of OST comprise axioms about the applicative struc-
ture of the universe, some basic set-theoretic properties, the representation
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of elementary logical connectives as operations and operational set existence
axioms. They divide into four groups.

I. Applicative axioms.

(1) k 6= s,

(2) kxy = x,

(3) sxy↓ ∧ sxyz ' (xz)(yz).

Thus the universe is a partial combinatory algebra. We have λ-abstraction
and thus can introduce for each L◦ term t a term (λx.t) whose variables are
those of t other than x such that

(λx.t)↓ ∧ (λx.t)y ' t[y/x].

As usual we can generalize λ abstraction to several arguments by simply it-
erating abstraction for one argument. Accordingly, we set for all L◦ terms t
and all variables x1, . . . , xn,

(λx1 . . . xn.t) := (λx1.(. . . (λxn.t) . . .)).

Often the term (λx1 . . . xn.t) is also simply written as λx1 . . . xn.t. If ~x is the
sequence x1, . . . , xn, then λ~x.t stands for λx1 . . . xn.t and t~x for tx1 . . . xn.

Furthermore, there exists a closed L◦ term fix, a so-called fixed point operator,
with

fix(f)↓ ∧ (fix(f) = g → gx ' f(g, x)).

II. Basic set-theoretic axioms. They state that: (i) there is the empty set;
(ii) there are unordered pairs and unions; (iii) there exists an infinite ordinal;
(iv) ∈-induction is available for arbitrary formulas A[x] of L◦,

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].(L◦-I∈)

To increase readability, we will freely use standard set-theoretic terminology;
also, if A[x] is an L◦ formula, then {x : A[x]} denotes the collection of all sets
satisfying A; it may be (extensionally equal to) a set, but this is not necessarily
the case. In particular, we set

B := {x : x = > ∨ x = ⊥} and V := {x : x↓}

so that B stands for the unordered pair consisting of the truth values > and
⊥, which is a set by the previous axioms. V is the collection of all sets but
not a set itself. The following shorthand notations, for n an arbitrary natural
number,

(f : a→ b) := (∀x ∈ a)(fx ∈ b),

(f : an+1 → b) := (∀x1, . . . , xn+1 ∈ a)(f(x1, . . . , xn+1) ∈ b)
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express that f , in the operational sense, is a unary and (n+1)-ary mapping
from a to b, respectively. They do not say, however, that f is a unary or
(n+1)-ary function in the set-theoretic sense.

In the previous definition the set variables a and/or b may be replaced by
V and/or B. So, for example, (f : a → V) means that f is an operation
which is total on a, and (f : V → b) means that f maps all sets into b. If we
have (f : a → B), we may regard f as a definite predicate on a; if we have
(f : V → B), we call f a total characteristic operation.

III. Logical operations axioms.

(L1) > 6= ⊥.

(L2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = > ↔ x ∈ y).

(L3) (non : B → B) ∧ (∀x ∈ B)(non(x) = > ↔ x = ⊥).

(L4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = > ↔ (x = > ∨ y = >)).

(L5) (f : a→ B) → (e(f, a) ∈ B ∧ (e(f, a) = > ↔ (∃x ∈ a)(fx = >))).

The ∆0 formulas of L◦ are those L◦ formulas which do not contain the function
symbol ◦, the relation symbols ↓ or unbounded quantifiers. Hence they are
the usual ∆0 formulas of set theory, possibly containing additional constants.
The above logical operations make it possible to represent all ∆0 formulas by
constant L◦ terms. For a proof of the following see Feferman [18, 20].

Lemma 1 Let ~u be the sequence of variables u1, . . . , un. For every ∆0 for-
mula A[~u] of L◦ with at most the variables ~u free, there exists a closed L◦
term tA such that the axioms introduced so far yield

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

IV. Operational set-theoretic axioms.

(S1) Separation for definite operations:

(f : a→ B) → (S(f, a)↓ ∧ ∀x(x ∈ S(f, a) ↔ (x ∈ a ∧ fx = >))).

(S2) Replacement:

(f : a→ V) → (R(f, a)↓ ∧ ∀x(x ∈ R(f, a) ↔ (∃y ∈ a)(x = fy))).

(S3) Choice:
∃x(fx = >) → (Cf↓ ∧ f(Cf) = >).
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This finishes the description of the non-logical axioms of OST. A significant
strengthening OST(P) of OST is obtained by adding the operational form of
the power set axiom

(P : V → V) ∧ ∀x∀y(x ∈ Py ↔ x ⊂ y).(P)

Note that in OST and OST(P) we cannot treat unbounded existential quan-
tification operationally. For that we use the constant E and the additional
axiom

(f : V → B) → (E(f) ∈ B ∧ (E(f) = > ↔ ∃x(fx = >))).(E)

In the following we write OST(E,P) for OST(P) + (E). This is the strongest
operational theory we consider in this article.

Call those formulas of L◦ which do not contain the function symbol ◦ or the
relation symbol ↓ pure formulas of L◦; they are the same as those of L1 plus
the constants of OST. Then (E) permits the extension of Lemma 1 to pure
formulas.

Lemma 2 Let ~u be the sequence of variables u1, . . . , un. For every pure for-
mula A[~u] of L◦ with at most the variables ~u free, there exists a closed L◦
term tA such that OST(E,P) proves

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

Its proof is analogous to the proof of Lemma 1; simply use (E) to deal with
unbounded quantifiers.

From Feferman [18] and Jäger [29] we know that, provably in the systems OST,
there exist closed L◦ terms ∅ for the empty set, uopa for forming unordered
pairs, un for forming unions, p for forming ordered pairs (Kuratowski pairs)
and prod for forming Cartesian products. In addition, there are closed L◦
terms pL and pR which act as projections with respect to p, i.e.

pL(p(a, b)) = a and pR(p(a, b)) = b.

To comply with the set-theoretic conventions, we generally write {a, b} instead
of uopa(a, b), ∪a instead of un(a), 〈a, b〉 instead of p(a, b) and a × b instead
of prod(a, b). Remember that ω is a constant for the first infinite ordinal and
belongs to the base language L1. OST is also fairly strong with respect to
definition by cases.

Lemma 3 There exist closed L◦ terms d=, d∅ and dB such that OST proves:

1. (u = v ∧ d=(a, b, u, v) = a) ∨ (u 6= v ∧ d=(a, b, u, v) = b).

2. (u = ∅ ∧ d∅(a, b, u) = a) ∨ (u 6= ∅ ∧ d∅(a, b, u) = b).

3. dB(a, b,>) = a ∧ dB(a, b,⊥) = b.
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We end this section with an interesting aspect of our axiom about operational
choice: it provides for a form of global choice and as such is of some relevance in
connection with von Neumann-Bernays-Gödel set theory NBG to be introduced
later.

Theorem 4 (Global choice) There exists a closed L◦ term choice such that
OST proves

(choice : V → V) ∧ ∀x(x 6= ∅ → choice(x) ∈ x) ∧ choice(∅) = >.

The above results about definition by cases and this theorem about global
choice are proved in Jäger [30]; see also Feferman [20] where it is pointed
out that (AC) is provable in OST, but the proof actually demonstrates our
statement of global choice.

Recall the system KPω of Kripke-Platek set theory with infinity. It is formu-
lated in L1 and based on classical first order predicate calculus with equality.
Its non-logical axioms are pair, union, infinity, ∆0 separation, ∆0 collection
and ∈-induction for arbitrary formulas of L1. We write (AC) for the axiom of
choice and (V=L) for the axiom of constructibility. As well-known from the
literature, KPω, KPω + (AC) and KPω + (V=L) are of the same consistency
strength, and KPω + (V=L) is conservative over KPω for absolute formulas.

L1(P) is first order language obtained from L1 by adding a new binary relation
symbol P. The formulas of L1(P) are defined as the formulas of L1, but with
expressions of the form P(r, s) permitted as additional atomic formulas. The
∆0(P) formulas are those formulas of L1(P) which do not contain unbounded
quantifier; in particular, each P(r, s) is ∆0(P).

The extension KP(P) of KPω is formulated in L1(P) and characterized by: (i)
it encompasses pair, union, infinity ∆0(P) separation and ∆0(P) collection;
(ii) ∈-induction is formulated for arbitrary L1(P) formulas; (iii) the new axiom
(P) provides the meaning of the relation symbol P,

∀x∃yP(x, y) ∧ ∀x∀y(P(x, y) ↔ ∀z(z ∈ y ↔ z ⊂ x)).(P)

The following theorem, which is proved in Feferman [20] and Jäger [29], is not
surprising and establishes a lower bound for the proof-theoretic strength of
OST.

Theorem 5 1. The theory KPω + (AC) is contained in OST.

2. The theory KP(P) + (AC) is contained in OST(P).

Our next goal is to look for upper proof-theoretic bounds, and the method to
find those is to model OST and OST(P).
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4 Modeling OST and OST(P)

There are two principal ways for constructing models of OST: one goes back to
Feferman [18, 20] and uses ideas from generalized recursion theory, the other
is presented in detail in Jäger [29] and is based on interpreting the application
operation of OST via a suitably defined (nonmonotonic) inductive definition.
Both will be briefly sketched in the following.

4.1 Feferman’s model construction

We follow Feferman [20] and quote from there: The underlying applicative
structure of OST is interpreted in the codes for functions that are Σ1 defin-
able in parameters, obtained by uniformizing the Σ1 predicates. This proceeds
as in Barwise [7], pp. 164- 167, which is applicable since under the assumption
(V=L), the universe is recursively listed in the sense given there. The treat-
ment in Barwise must be modified slightly to account for parameters; this is
done as follows. First one constructs a Σ1 formula ψ[w, x, y, z] such that for
each Σ1 formula θ[x, y, z] one can effectively find an e ∈ ω with θ[x, y, z] equiv-
alent to ψ[e, x, y, z]. Then one uniformizises ψ with respect to y, i.e. produces
a Σ1 formula ψ∗[w, x, y, z] that satisfies

(1) ψ∗[w, x, y, z] → ψ[w, x, y, z],

(2) ∃yψ∗[w, x, y, z] → ∃!yψ[w, x, y, z].

Given a set parameter p, one takes 〈e, p〉 to be the code of the partial function

(3) 〈e, p〉(x) = y ↔ ψ∗[e, x, y, p].

One can then defined generalized “S-n-m” functions in a straightforward way,
and from those give a model of the applicative axioms of OST. The rest of
the interpretation proceeds in a straightforward way.

This construction is very elegant and compact. It depends, however, on some
features specific of admissible recursion theory, and it seems not so clear
whether it can be generalized to a framework for significant strengthenings
of OST.

4.2 Inductive model construction

Alternatively, we can provide a direct inductive definition of the application
operation. Apart from being more direct, this way of modeling OST has the
advantage that it can be directly adapted (see below) to dealing with strong
extensions of OST.

We use lower case Greek letters α, β, γ, δ . . . (possibly with subscripts) for
ordinals – they are ∆0 definable in KPω – and write (α < β) for (α ∈ β).
Furthermore, (a ∈ Lα) states that the set a is an element of the αth level Lα

of the constructible hierarchy, and (a <L b) means that a is smaller than b
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according to the well-ordering <L on L. It is well-known that the assertions
(a ∈ Lα) and (a <L b) are ∆ over KPω; see, e.g., Barwise [7] or Kunen [37].

The following approach is similar to those in Feferman and Jäger [21] and
Jäger and Strahm [34] and begins with some notational preparations. For any
natural number n greater than 0 we select (i) a ∆0 formula Tupn(a) formalizing
that a is an ordered n-tuple and (ii) a ∆0 formula (a)n = b formalizing that b
the projection of a on its nth component so that

Tupn(a) ∧ (a)1 = b1 ∧ . . . ∧ (a)n = bn → a = 〈b1, . . . , bn〉.

Then we fix pairwise different sets k̂, ŝ, >̂, ⊥̂, êl, n̂on, d̂is, ê, Ê, Ŝ, R̂, Ĉ and P̂
none of which belongs to the collection of ordered pairs and triples; they will
later act as the codes of the corresponding constants of L◦. We are going to
code the L◦ terms kx, sx, sxy, . . . by the ordered tuples 〈k̂, x〉, 〈̂s, x〉, 〈̂s, x, y〉,
. . . of the corresponding form. For example, to satisfy kxy = x we interpret
kx as 〈k̂, x〉, and “〈k̂, x〉 applied to y” is taken to be x.

Next let R be a fresh 4-place relation symbol and extend L1 to the language
L1(R) with expressions R(α, a, b, c) as additional atomic formulas. We also
abbreviate

R<α(a, b, c) := (∃β < α)R(β, a, b, c).

For finding the required interpretation of the application operation of OST
within KPω + (V=L) we work with a specific L1(R) formula, introduced in
the following definition. Afterwards, this formula together with Σ recursion
will help to provide what we need.

Definition 6 We choose A[R,α, a, b, c] to be the L1(R) formula defined as

A[R,α, a, b, c] := c ∈ Lα ∧ B[R,α, a, b, c],

where B[R,α, a, b, c] is an auxiliary L1(R) formula given as the disjunction
of the following clauses:

(1) a = k̂ ∧ c = 〈k̂, b〉,

(2) Tup2(a) ∧ (a)1 = k̂ ∧ (a)2 = c,

(3) a = ŝ ∧ c = 〈̂s, b〉,

(4) Tup2(a) ∧ (a)1 = ŝ ∧ c = 〈̂s, (a)2, b〉,

(5) Tup3(a) ∧ (a)1 = ŝ ∧

(∃x, y ∈ Lα)(R<α((a)2, b, x) ∧ R<α((a)3, b, y) ∧ R<α(x, y, c)),

(6) a = êl ∧ c = 〈êl, b〉,

(7) Tup2(a) ∧ (a)1 = êl ∧ (a)2 ∈ b ∧ c = >̂,

(8) Tup2(a) ∧ (a)1 = êl ∧ (a)2 /∈ b ∧ c = ⊥̂,
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(9) a = n̂on ∧ b = >̂ ∧ c = ⊥̂,

(10) a = n̂on ∧ b = ⊥̂ ∧ c = >̂,

(11) a = d̂is ∧ c = 〈d̂is, b〉,

(12) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = >̂ ∧ c = >̂,

(13) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = >̂ ∧ c = >̂,

(14) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = ⊥̂ ∧ c = ⊥̂,

(15) a = ê ∧ c = 〈ê, b〉,

(16) Tup2(a) ∧ (a)1 = ê ∧ (∃x ∈ b)R<α((a)2, x, >̂) ∧ c = >̂,

(17) Tup2(a) ∧ (a)1 = ê ∧ (∀x ∈ b)R<α((a)2, x, ⊥̂) ∧ c = ⊥̂,

(18) a = Ŝ ∧ c = 〈Ŝ, b〉,

(19) Tup2(a) ∧ (a)1 = Ŝ ∧ (∀x ∈ b)(R<α((a)2, x, >̂) ∨ R<α((a)2, x, ⊥̂)) ∧

(∀x ∈ c)(x ∈ b ∧ R<α((a)2, x, >̂)) ∧

(∀x ∈ b)(R<α((a)2, x, >̂) → x ∈ c),

(20) a = R̂ ∧ c = 〈R̂, b〉,

(21) Tup2(a) ∧ (a)1 = R̂ ∧ (∀x ∈ b)(∃y ∈ c)R<α((a)2, x, y) ∧

(∀y ∈ c)(∃x ∈ b)R<α((a)2, x, y),

(22) a = Ĉ ∧ R<α(b, c, >̂) ∧ (∀x ∈ Lα)(x <L c → ¬R<α(b, x, >̂)) ∧

(∀β < α)(∀x ∈ Lβ)¬R<β(b, x, >̂).

We immediately see that A[R,α, a, b, c] is ∆ over KPω with respect to the
language L1(R). It is also easy to verify that A[R,α, a, b, c] is deterministic in
the following sense: from A[R,α, a, b, c] we can conclude that exactly one of
the clauses (1)–(22) of the previous definition is satisfied for these α, a, b, c.

For any L1 formula B[α, a, b, c] with at most the indicated free variables we
write A[B,α, a, b, c] for the L1 formula resulting by replacing each occurrence
of an atomic formula of the form R(α, r, s, t) in A[R,α, a, b, c] by B[α, r, s, t].
The following theorem is a special case of “Definition by Σ Recursion” as
developed in Barwise [7].

Theorem 7 There exists a Σ formula B[α, a, b, c] of L1 with at most α, a,
b and c free so that KPω proves

B[α, a, b, c] ↔ A[B,α, a, b, c].(Σ-Rec/A)
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Any such a formula B[α, a, b, c] may be used to describe the αth level of the
interpretation of the OST application (ab ' c). Accordingly, we proceed as
follows.

Definition 8 Let BA[α, a, b, c] be a Σ formula of L1 associated to the operator
form A[R,α, a, b, c] according to (Σ-Rec/A) of the previous theorem. Then we
define

ApA[a, b, c] := ∃αBA[α, a, b, c].

As can be easily checked, ApA[a, b, c] is functional in its third argument. It is
therefore suitable for handling the L◦ terms within KPω + (V=L). To each
term t of L◦ we associate a formula JtKA(u) of L1 expressing that u is the
value of t under the interpretation of the OST-application via the Σ formula
ApA[a, b, c].

Definition 9 For each L◦ term t we introduce an L1 formula JtKA(u), with
u not occurring in t, which is inductively defined as follows:

1. If t is a set variable, then JtKA(u) is the formula (t = u).

2. If t is a constant, then JtKA(u) is the formula (t̂ = u).

3. If t is the term (rs), then we set

JtKA(u) := ∃x∃y(JrKA(x) ∧ JsKA(y) ∧ ApA[x, y, u]).

Observe that for every term t of L◦ its translation JtKA(u) is a Σ formula of
L1. By this treatment of the terms of L◦, the translation of arbitrary formulas
of L◦ into formulas of L1 is predetermined.

Definition 10 The translation of an L◦ formula A into the L1 formula A∗

is inductively defined as follows:

1. For the atomic formulas of L◦ we stipulate

(t↓)∗ := ∃xJtKA(x),

(s ∈ t)∗ := ∃x∃y(JsKA(x) ∧ JtKA(y) ∧ x ∈ y).

2. If A is a formula ¬B, then A∗ is ¬B∗.

3. If A is a formula (B ♦ C) for ♦ being the binary junctor ∨ or ∧, then
A∗ is (B∗ ♦ C∗).

4. If A is a formula (∃x ∈ t)B[x], then

A∗ := ∃y(JtKA(y) ∧ (∃x ∈ y)B∗[x]).
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5. If A is a formula (∀x ∈ t)B[x], then

A∗ := ∀y(JtKA(y) → (∀x ∈ y)B∗[x]).

6. If A is a formula QxB[x] for a quantifier Q, then A∗ is QxB∗[x].

This translation of L◦ formulas leads directly to an interpretation of OST in
KPω+(V=L). The corresponding interpretation result is proved in Jäger [29].

Theorem 11 The theory OST is interpretable in KPω + (V=L); i.e. for all
formulas A of L◦ we have

OST ` A =⇒ KPω + (V=L) ` A∗.

As remarked earlier, KPω + (V=L) is a conservative extension of KPω for
absolute formulas. If we combine this with Theorem 5 and Theorem 11, we
obtain the following corollary, which settles the question of the consistency
strength of OST. This result was first established in Feferman [18].

Corollary 12 The theory OST is conservative over KPω for absolute formu-
las. In particular, OST and KPω are equiconsistent.

We establish an upper bound for OST(P) by an easy modification of the argu-
ment in the previous section: only extend the disjunction in Definition 6 by a
clause taking care of the constant P.

Definition 13 We choose C[R,α, a, b, c] to be the ∆(P) formula of L1(P, R)
defined as

C[R,α, a, b, c] := c ∈ Lα ∧ (B[R,α, a, b, c] ∨ (a = P̂ ∧ P(b, c))),

where B[R,α, a, b, c] is the formula introduced in Definition 6.

In KP(P) we have Σ(P) recursion. Completely in the line of the previous
section we apply it now, of course, to the operator form C[R,α, a, b, c], yielding
the following analogue of Theorem 7.

Theorem 14 There exists a Σ(P) formula B[α, a, b, c] of L1(P, R) with at
most α, a, b and c free so that KP(P) proves

B[α, a, b, c] ↔ C[B,α, a, b, c].(Σ(P)-Rec/C)

Naturally, each Σ(P) formula B[α, a, b, c] fulfilling this recursion equation
(Σ(P)-Rec/C) is now a possible candidate for interpreting the OST(P) ap-
plication (ab ' c).

Definition 15 Let BC[α, a, b, c] be a Σ(P) formula of L1(P) associated to
the operator form C[R,α, a, b, c] according to (Σ(P)-Rec/C) of the previous
theorem. Then we define

ApC[a, b, c] := ∃αBC[α, a, b, c].
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It only remains to proceed as in the previous section, but with ApA[a, b, c]
replaced by ApC[a, b, c]. For each L◦ term t, an L1(P) formula JtKC(u) is
introduced, saying that u is the value of the term t under the interpretation
of the OST(P) application via ApC[a, b, c]. Finally, following the pattern of
Definition 10 and based on these JtKC(u), each L◦ formula A is canonically
translated into a formula A] of L1(P).

The interpretation of OST(P) in KP(P)+(V=L) is a straightforward extension
of Theorem 11. For details see Jäger [29].

Theorem 16 The theory OST(P) is interpretable in KP(P)+(V=L); i.e. for
all formulas A of L◦ we have

OST(P) ` A =⇒ KP(P) + (V=L) ` A].

Unfortunately, the combination of Theorem 5 and Theorem 16 does not com-
pletely settle the question about the consistency strength of OST(P) yet. So
far we have an interesting lower and an interesting upper bound, but it still has
to be determined what the relationship between KP(P) and KP(P) + (V=L)
is.

5 The theories OST(E, P) and OSTr(E, P)

This section is dedicated to the extension OST(E,P) of OST – baptized OST+
(Pow)+(Uni) in Feferman [18, 20] – and its subsystem OSTr(E,P). OST(E,P)
provides for unbounded existential quantification and power set and brings us
into the realm of ZFC and beyond.

The subsystem OSTr(E,P) of OST(E,P) is designed to be a witness of an
operational set theory of the same strength as ZFC, sought in Feferman [18].
It is obtained from OST(E,P) by simply restricting the schema of ∈-induction
for arbitrary formulas to ∈-induction for sets.

It should be fairly straightforward to prove in OST(E,P) that ZFC is consis-
tent, implying that OST(E,P) is stronger than ZFC; actually this also follows
from Theorem 18 below. To characterize it in terms of consistency strength it
is natural to turn to theories of sets and classes.

5.1 NBG and a bit more

In surveying von Neumann-Bernays-Gödel set theory NBG and its extension
NBG<E0 we follow their presentation in Jäger [30]. The formalization of NBG
there is based on standard literature, for example Levy [38] and Mendelson
[41].

NBG is a theory of sets and classes conservative over the system ZFC of
Zermelo-Fraenkel set theory with the axiom of choice. NBG is known to be
finitely axiomatizable although the version we are going to present below per-
mits axiom schemas and as such is an infinite axiomatization.
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L2, the language of NBG, augments L1 by a second sort of countably many
variables U, V,W,X, Y, Z, . . . (possibly with subscripts) for classes. The set
terms of L2 are the terms of L1, as class terms we simply have the class
variables.

The formulas (A,B,C,D,A1, B1, C1, D1, . . .) of L2 are inductively generated
as follows:

1. If s and t are set terms of L2 and U is a class variable, then all expressions
of the form (s ∈ t) and (s ∈ U) are (atomic) formulas of L2.

2. If A and B are formulas of L2, then so are are ¬A, (A∨B) and (A∧B).

3. If A is a formula and t a set term of L2 which does not contain x, then
(∃x ∈ t)A, (∀x ∈ t)A, ∃xA, ∀xA, ∃XA and ∀XA are formulas of L2.

As before, the remaining logical connectives are introduced as abbreviations,
and we will often omit parentheses and brackets whenever there is no dan-
ger of confusion. Equalities between sets/sets, sets/classes, classes/sets and
classes/classes are not atomic formulas of L2 but defined as

(Var1 = Var2) := ∀x(x ∈ Var1 ↔ x ∈ Var2)

where Var1 and Var2 denote set or class variables. A formula of L2 is called
elementary or a Π1

0 formula if it does not contain bound class variables; free
class variables, however, are permitted. The Σ1

1 formulas of L2 are those of
the form ∃XA with elementary A.

The logic of NBG is classical two-sorted logic with equality for the first sort.
The non-logical axioms of NBG are given in six groups. To increase readability,
we freely use standard set-theoretic terminology.

I. Elementary comprehension For any elementary formula A[u] of L2:

∃X∀y(y ∈ X ↔ A[y]).(ECA)

Hence every elementary NBG formula A[u] defines a class, which is typically
written as {x : A[x]}. It may be (extensionally equal to) a set, but this is not
necessarily the case. The intersection of a class with a set, however, is always
supposed to produce a set by the following principle of Aussonderung.

II. Aussonderung

∀X∀y∃z(z = X ∩ y).(AUS)

From logical reasons, (ECA) and (AUS) we conclude that there is a unique set
which has no members; it is denoted by ∅.
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III. Basic set existence

∀x∀y∃z(z = {x, y}),(Pair)

∀x∃y(y = ∪x),(Union)

∀x∃y∀z(z ∈ y ↔ z ⊂ x),(Powerset)

∃x(∅ ∈ x ∧ (∀y ∈ x)(y ∪ {y} ∈ x)).(Infinity)

As in OST(E,P) we write 〈a, b〉 for the ordered pair of the sets a and b à la
Kuratowski. Class relations are classes which consist of ordered pairs only,
and class functions are class relations which assign to every set exactly one
set; i.e. for all U we set:

Rel [U ] := ∀x(x ∈ U → ∃y∃z(x = 〈y, z〉),

Fun[U ] := Rel [U ] ∧ ∀x∃!y(〈x, y〉 ∈ U).

If U is a function we write U(x) for the uniquely determined y associated to
x by U . Replacement states that the range of a set under a function is a set.

IV. Replacement

∀X(Fun[X] → ∀y∃z(z = {X(u) : u ∈ y})).(REP)

Global choice is a very uniform principle of choice which claims the existence
of a class function which picks an element of any non-empty set.

V. Global choice

∃X(Fun[X] ∧ ∀y(y 6= ∅ → X(y) ∈ y)).(GC)

Finally, in NBG it is claimed that the element relation is well-founded with
respect to classes.

VI. Class foundation

∀X(X 6= ∅ → ∃y(y ∈ X ∧ (∀z ∈ y)(z /∈ X))).(C-I∈)

The axioms (Infinity) and (C-I∈) imply that there exists a least infinite ordinal,
which we denote by ω, as usual. The elements of ω are identified with the
natural numbers in the sense that 0 := ∅, 1 := {0}, 2 := 1 ∪ {1} and so on.

The axioms in groups I - VI supply one possible axiomatization of NBG. Ac-
cording to a well-known result (cf., e.g., Levy [38]) NBG is a conservative
extension of ZFC.

Theorem 17 A sentence of the language L1 is provable in NBG if and only
if it is provable in ZFC.
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A first step in extending NBG is to add the principle of ∈-induction for arbi-
trary L2 formulas A[u],

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].(L2-I∈)

Besides that, we want to be able to iterate elementary comprehension along all
well-orderings which can be constructed from the ordinals and the order type
of all ordinals by closing them under addition and ω-exponentiation. For this
purpose we introduce a notation system (E0,≺) which can be considered as
the canonical blowing up of (ε0, <) triggered by replacing the natural numbers
by the ordinals. In particular:

(i) E0 is an elementarily definable class, and ≺ is an elementarily definable
binary class relation on E0.

(ii) For any ordinal α there exists a code α which belongs to E0.

(iii) E0 contains an element Ω such that (Ω,≺) is an isomorphic copy of the
class of all ordinals.

(iv) There are a binary class function ⊕ and a unary class function Expω,
both elementary, such that E0 is closed under ⊕ and Expω. These two
functions are for the addition and ω-exponentiation of elements of E0 in
the expected sense.

In the following we write (a+ b) – or often simply a+ b – for (a⊕ b) and ωa

for Expω(a). For all natural numbers n, the ordinal terms Ωn are inductively
defined by

Ω0 := Ω + 1 and Ωn+1 := ωΩn .

All additional relevant details concerning (E0,≺) are worked out in detail in
Jäger and Krähenbühl [32]. Amongst other things it is shown there that, for
any standard natural number n, the theory NBG + (L2-I∈) proves transfinite
induction along ≺ up to any Ωn.

Let A[U, V, u, v] be an elementary L2 formula with at most the indicated vari-
ables free. Then we write HierA[a, U, V ] for the elementary L2 formula

(∀b ≺ a)((V )b = {x : A[U,Σ(V, b), b, x]})

where Σ(V, b) stands for the class {〈x, c〉 ∈ V : c ≺ b} representing the disjoint
union of the projections of V up to b. This formula states that V codes the
hierarchy generated by iterating comprehension via A with class parameter U
along ≺ up to a.

NBG<E0 is defined to be the theory of sets and classes which consists of NBG,
full ∈-induction (L2-I∈) plus the additional axioms

∀X∃YHierA[Ωn, X, Y ]
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for all standard natural numbers n and all elementary formulas A[U, V, u, v]
of L2 with at most the variables U, V, u, v free. So it permits iteration of
elementary class comprehension along each (standard) initial segment of E0.

In operational set theory we call an operation f a total characteristic operation
if is totally defined and takes values in B only;

TCO(f) := ∀x(fx ∈ B).

By regarding the class variables of L2 as variables of L◦ ranging over total
characteristic operations and by translating an atomic L2 formula (a ∈ U) into
(fa = >), where f is the L◦ variable associated to the L2 variable U , every
L2 formula A canonically translates into an L◦ formula A◦. This translation
is such that

∃XA[X]◦ = ∃x(TCO(x) ∧A◦[x]),

∀XA[X]◦ = ∀x(TCO(x) → A◦[x]),

always modulo a renaming of the variables if necessary. This translation leads
to the following interpretation theorem.

Theorem 18 1. The theory NBG is interpretable in OSTr(E,P).

2. The theory NBG<E0 is interpretable in OST(E,P).

The second part of this theorem is proved in Jäger [30]; the first part follows
directly from an inspection of this proof. A result equivalent to the first asser-
tion can be found in Jäger [29] where it is shown that ZFC can be embedded
into OSTr(E,P).

5.2 Inductive extensions of ZF

By the previous theorem we have lower proof theoretic bounds for OSTr(E,P)
and OST(E,P), and what remains is to show that that these bounds are sharp.
This will be achieved by utilizing inductive model constructions again. They
can be carried out in the auxiliary theories Er(ZFW) and Er(ZFW) + (LS-I∈),
depending on how much induction we have to model, which are reducible to
NBG and NBG<E0 , respectively.

When building up the inductive model of OST(E,P), we have to handle the
choice axiom (S3). For this end it is convenient to have a global well-ordering
of the set-theoretic universe at our disposal. Therefore, let L1(W) be the
extension of L1 by the fresh binary relation symbol W, and let ZFW be the
extension of ZF which comprises all axioms of ZF – formulated, of course, with
respect to the new language L1(W) – plus the following well-ordering axiom

∀x∃!αW(x, α) ∧ ∀x∀y∀α(W(x, α) ∧W(y, α) → x = y).(W)
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From axiom (W) the desired well-ordering of the universe of sets is canonically
obtained if we set

a <W b := ∃α∃β(W(a, α) ∧ W(b, β) ∧ α < β).(<W)

Analogously to Section 4.2 we pick an n-ary relation symbol R which does not
belong to the language L1(W) and write L1(W, R) for the extension of L1(W)
by R. An L1(W, R) formula which contains at most a1, . . . , an free is called
an n-ary operator form, and we let F[R, a1, . . . , an] range over such forms.

Based on a model M of ZFW with universe |M|, any n-ary operator form
F[R,~a] gives rise to subsets Iζ

F of |M|n generated inductively for all ordinals
ζ (not only those belonging to |M|) by

I<ζ
F :=

⋃
η<ζ

Iη
F and Iζ

F := {〈~x〉 ∈ |M|n : M |= F[I<ζ
F , ~x]}.

These sets Iζ
F are the stages of the inductive definition induced by F[R,~a],

relative to M; for many models M, operator forms F[R,~a] and ordinals ζ the
Iζ
F are not elements of |M|. We now enrich ZFW so that we can speak about

such stages.

The theory Er(ZFW) is formulated in the language LS which extends L1(W)
by adding a new sort of so called stage variables ρ, σ, τ, . . . (possibly with
subscripts) as well as new binary relation symbols ≺ and ≡ for the less and
equality relation for stage variables, respectively. Moreover, LS includes an
(n+ 1)-ary relation symbol QF for each operator form F[R, a1, . . . , an].

The set terms of LS are the set terms of L1, and the atomic formulas of LS

are the atomic formulas of L1(W) plus all expressions (σ ≺ τ), (σ ≡ τ) and
QF(σ,~s) for each n-ary operator form F[R,~a]. Usually we write Qσ

F(~s) instead
of QF(σ,~s).

The formulas (A,B,C,A1, B1, C1, . . .) of LS are generated from these atomic
formulas by closure under negation, conjunction and disjunction, bounded and
unbounded quantification over sets, bounded stage quantification (∃σ ≺ τ)
and (∀σ ≺ τ) as well as unbounded stage quantification ∃σ and ∀σ. The
∆S

0 formulas are those LS formulas that do not contain unbounded stage
quantifiers. An LS formula A is is called ΣS if all positive occurrences of
unbounded stage quantifiers in A are existential and all negative occurrences
of unbounded stage quantifiers in A are universal; it is called ΠΩ if all positive
occurrences of unbounded stage quantifiers in A are universal and all negative
occurrences of unbounded stage quantifiers in A are existential.

Further, we write Aσ to denote the LS formula which is obtained from A by
replacing all unbounded stage quantifiers Qτ in A by bounded stage quantifiers
(Qτ ≺ σ). Additional abbreviations are

Q≺σ
F (~s) := (∃τ ≺ σ)Qτ

F(~s) and QF(~s) := ∃σQσ
F(~s).
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Clearly, any formula of L1(W) is a (trivial) ∆S
0 formula, and Aσ is ∆S

0 for any
LS formula A.

The theory Er(ZFW) is formulated in classical two sorted predicate logic with
equality in both sorts; in addition it contains as non-logical axioms all ZFW-
axioms of the language L1(W), some axioms about stage variables and op-
erator forms, reflection for ΣS formulas, separation and replacement for ∆S

0

formulas plus induction along ∈ and along ≺ for ∆S
0 formulas.

I. ZFW-axioms. All axioms of the theory ZFW formulated in the language
L1(W); they do not refer to stage variables or relation symbols associated to
operator forms.

II. Linearity axioms. For all stage variables ρ, σ and τ :

σ ⊀ σ ∧ (ρ ≺ σ ∧ σ ≺ τ → ρ ≺ τ) ∧ (σ ≺ τ ∨ σ ≡ τ ∨ τ ≺ σ).

III. Operator axioms. For all operator forms F[R, ~u] and all set terms ~s:

Qσ
F(~s) ↔ F[Q≺σ

F , ~s].

IV. ΣS reflection. For all ΣS formulas A:

A → ∃σAσ.(ΣS-Ref)

V. ∆S
0 Separation. For all ∆S

0 formulas A[u] and all set terms s:

∃x(x = {y ∈ s : A[y]}).(∆S
0 -Sep)

VI. ∆S
0 Replacement. For all ∆S

0 formulas A[u, v] and all set terms s:

(∀x ∈ s)∃!yA[x, y] → ∃z∀y(y ∈ z ↔ (∃x ∈ s)A[x, y]).(∆S
0 -Rep)

VII. ∆S
0 induction along ∈ and ≺. For all ∆S

0 formulas A[u]:

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x],(∆S
0 -I∈)

∀σ((∀τ ≺ σ)A[τ ] → A[σ]) → ∀σA[σ].(∆S
0 -I≺)

The theory Er(ZFW) is a restricted system (hence the superscript “r”) in the
sense that the axioms in groups V, VI and VII are restricted to ∆S

0 formu-
las. By Er(ZFW) + (LS-I∈) is meant Er(ZFW) extended by the schema of
∈-induction for arbitrary LS formulas.
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It is important to observe that the stage variables do not belong to the collec-
tion of sets; they constitute a different entity which is used to “enumerate” the
stages of the inductive definition associated to each operator form. However,
in the form of ∆S

0 separation and ∆S
0 replacement they can nevertheless help

to constitute new sets in a carefully restricted way.

Following the pattern of Section 4.2 we are now going to introduce a specific
inductive definition which will lead to a suitable treatment of the application
operation of OSTr(E,P) and OST(E,P). The decisive new aspect, see clauses
(24) and (25), is the treatment of operational unbounded existential quantifi-
cation. Also, the well-ordering of the set-theoretic universe generated by the
axiom (V = L), as it is used in Definition 6, is replaced by <W .

Definition 19 The operator form F[R, a, b, c] is defined to be the disjunction
of the following clauses:

(1) a = k̂ ∧ c = 〈k̂, b〉,

(2) Tup2(a) ∧ (a)1 = k̂ ∧ (a)2 = c,

(3) a = ŝ ∧ c = 〈̂s, b〉,

(4) Tup2(a) ∧ (a)1 = ŝ ∧ c = 〈̂s, (a)2, b〉,

(5) Tup3(a) ∧ (a)1 = ŝ ∧ ∃x∃y(R((a)2, b, x) ∧ R((a)3, b, y) ∧ R(x, y, c)),

(6) a = êl ∧ c = 〈êl, b〉,

(7) Tup2(a) ∧ (a)1 = êl ∧ (a)2 ∈ b ∧ c = >̂,

(8) Tup2(a) ∧ (a)1 = êl ∧ (a)2 /∈ b ∧ c = ⊥̂,

(9) a = n̂on ∧ b = >̂ ∧ c = ⊥̂,

(10) a = n̂on ∧ b = ⊥̂ ∧ c = >̂,

(11) a = d̂is ∧ c = 〈d̂is, b〉,

(12) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = >̂ ∧ c = >̂,

(13) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = >̂ ∧ c = >̂,

(14) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = ⊥̂ ∧ c = ⊥̂,

(15) a = ê ∧ c = 〈ê, b〉,

(16) Tup2(a) ∧ (a)1 = ê ∧ (∃x ∈ b)R((a)2, x, >̂) ∧ c = >̂,

(17) Tup2(a) ∧ (a)1 = ê ∧ (∀x ∈ b)R((a)2, x, ⊥̂) ∧ c = ⊥̂,

(18) a = Ŝ ∧ c = 〈Ŝ, b〉,
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(19) Tup2(a) ∧ (a)1 = Ŝ ∧ (∀x ∈ b)(R((a)2, x, >̂) ∨ R((a)2, x, ⊥̂)) ∧

∀x(x ∈ c ↔ x ∈ b ∧R((a)2, x, >̂)),

(20) a = R̂ ∧ c = 〈R̂, b〉,

(21) Tup2(a) ∧ (a)1 = R̂ ∧ (∀x ∈ b)(∃y ∈ c)R((a)2, x, y) ∧

(∀y ∈ c)(∃x ∈ b)R((a)2, x, y),

(22) a = Ĉ ∧ R(b, c, >̂) ∧ ∀x(x <W c → ¬R(b, x, >̂)) ∧ ∀x¬R(Ĉ, b, x),

(23) a = P̂ ∧ ∀x(x ∈ c ↔ x ⊂ b),

(24) a = Ê ∧ ∃xR(b, x, >̂) ∧ c = >̂,

(25) a = Ê ∧ ∀xR(b, x, ⊥̂) ∧ c = ⊥̂.

Clearly, QF(a, b, c) is functional in its third argument. All we have to do now is
to follow Section 4.2 again, this time with ApA[a, b, c] replaced by QF(a, b, c).
In parallel to Definition 9 an LS formula JtKF(u) is assigned to any L◦ term
t, saying that u is the value of the term t under the interpretation of the
OSTr(E,P) and OST(E,P) application via QF.

Employing these JtKF(u), each L◦ formula A is translated into a formula A♦

of LS in the obvious way, simply by following Definition 10. Please keep in
mind that A and A♦ are identical in the case that A is an L1 formula. With
the exception of the treatment of operational E, the following interpretation
result is as Theorem 16 and proved in Jäger [30].

Theorem 20 The theories OSTr(E,P) and OST(E,P) are interpretable in
Er(ZFW) and Er(ZFW) + (LS-I∈), respectively; i.e. for all formulas A of L◦
we have:

1. OSTr(E,P) ` A =⇒ Er(ZFW) ` A♦.

2. OST(E,P) ` A =⇒ Er(ZFW) + (LS-I∈) ` A♦.

If we are able to reduce Er(ZFW) and Er(ZFW)+(LS-I∈) to NBG and NBG<E0 ,
respectively, the consistency strength of OSTr(E,P) and that of OST(E,P) are
determined. This task is dealt with in Jäger [29, 30] by means of the following
conservation result.

Theorem 21 Let A be a formula of the language L1. Then we have:

1. Er(ZFW) ` A =⇒ NBG ` A.

2. Er(ZFW) + (LS-I∈) ` A =⇒ NBG<E0 ` A.

All together, Theorem 18, Theorem 20 and Theorem 21 complete the analysis
of the theories OSTr(E,P) and OST(E,P).
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Corollary 22 The theory OSTr(E,P) is equiconsistent with NBG and ZFC,
the theory OST(E,P) equiconsistent with NBG<E0. For all formulas A of the
language L1 we have:

1. OSTr(E,P) ` A ⇐⇒ NBG ` A ⇐⇒ ZFC ` A.

2. OST(E,P) ` A ⇐⇒ NBG<E0 ` A.

Actually, Jäger [29] introduces a theory ZFLr
Ω which is closely related to

Er(ZFW). It is shown there that OSTr(E,P) can be embedded into ZFLr
Ω

and that ZFLr
Ω can be reduced to ZF + (V = L), thus providing a proof of the

first assertion of the previous theorem.
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