Justifying induction on
modal p-formulae

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von
Jirg Krahenbiuhl
2009

Leiter der Arbeit:

Dr. Thomas Studer
Institut fiir Informatik und angewandte Mathematik






Abstract

We define a rank function rk, mapping modal p-formulae on ordi-
nals less than w*, such that rk(uz.@) > rk(¢™(x)) for all approximants
©"(x) = plr/e" (x)], and rk(p) > rk(y)) for all proper subformulae
1 of . The corresponding structural induction on formulae, which
additionally uses that the approximants ¢™(z) are less complex than
the fixpoint pz.@ itself, is thus justified by transfinite induction on
w*”. We show that w* is the least such ordinal. We further give an
algorithm to compute rk(¢) by primitive recursion, and we show how

to get formulae ¢ of any rank rk(y) in a uniform way.

Contents

1 Introduction|

5 Proliimnas

[3 Minimal p-ranks with range w*)

4 Effective computation of the y-rankl

5> Minimum range w* for u-ranks|

6 Generating formulae of any rank]

|7 Appendix]|

10

16

22

23

25



Acknowledgment

I deeply thank my friend and advisor, Luca Alberucci, who ignited my inter-
est in the subject of this thesis, and whose help and advice for finding the
right questions and answers is always of great value.

A big thanks goes to my thesis supervisor, Thomas Studer, who actually
made possible the writing of this thesis, and whose careful proofreading and
valuable comments substantially improved the final output.



1 Introduction

The modal p-calculus, introduced by Kozen [13], is an extension of modal
logic (e.g. Hughes and Cresswell [9]) with least and greatest fixpoint construc-
tors and therefore allows us to study fixpoints on an abstract level. Indeed,
the modal p-calculus is a powerful logic of programs subsuming dynamic and
temporal logics like PDL (Fischer and Ladner [§]), PLTL (Pnueli [14]), CTL
(Clarke and Emerson [6]) and CTL* (Emerson and Halpern [7]).

The standard semantics of the modal p-calculus is based on transition sys-
tems. Given a transition system 7 with states .S, a formula ¢ is interpreted
as the set of states |¢[, € S where the property expressed by the formula
¢ holds. For x positive in ¢, the formula px.p denotes the least fixpoint
| .| of the monotone operator S’ — |7, gy, which by Knaster-Tarski
Theorem (cf. [12],[15]) exists and can be computed by iterating this operator,
i.e. if we define L) , = 0, LS = lelrip s ) and L} = Ueey LS, for limit
ordinals A, then for some ordinal ¢ with £ < |S|*, that is |¢] < |S], we get
that L, — |zl

For any finite transition system 7, the least fixpoint Lfm is reached after
finitely many steps £ = |£] < |S| < w, and if the formula ¢ is safe for iteration
in x and 7, that is if L} , = |¢"(z)[z/L]| for all natural numbers n, where
") = plz/"(x)], then the least fixpoint can be written as

luzely = | 1" (@)[z/ Ll

n<w

The analog for the greatest fixpoint is |vz.¢|,; = ), |¢™(x)[z/T]|,. Be-
cause of these equalities and having in mind the collection of all (finite) tran-
sition systems, from a semantical point of view, the approximants ¢" (z)[z/L]
and ¢"(z)[x/T] can be considered less complex than pz.p and vz.p respec-
tively.

If we want to study this complexity on the syntactic level, then first of
all we need to replace the semantic notion of a formula ¢ to be safe for
iteration in x and 7; Therefore, in the following, a formula ¢ is called safe,
if all free variables of ¢ are distinct from all bound variables of ¢, hence ¢
is safe for iteration in arbitrary x and 7. It is not obvious at all, how the
approximants ¢"(x) can be seen to be less complex than pz.p and vzr.@ in
a purely syntactic way, i.e. how to find a rank function f, mapping formulae
to ordinals such that

e f(v) < f(p) if ¢ is a proper subformula of ¢,

e f(¢"(z)) < f(oz.p) for all natural numbers n and o € {u, v}, if ¢ is
safe.



A first attempt to find such an f might result in mapping formulae to the
lexicographic ordering of wxw by ¢ — (n(), l(¢)), i.e. f(p) =w-n(p)+i(p),
where [(¢) is the ordinary length of the formula and n(yp) measures the
nesting of p and v. But as we are going to see, this must fail because the
range of f, ran(f) = w?, is to small.

In this thesis we explicitly define a rank function rk® by primitive re-
cursion, meeting the two requirements and being optimal in the following
sense: The quality of rank functions is measured by comparing their range,
that is, by comparing the ordinal | Jran(f), and the range of rk® that is
ran(rk®) = w®, is shown to be as small as possible.

For applications, where this kind of rank functions f are used in proofs by
induction on the formula rank f(¢), we refer to [2],[3],[4],[5],[10]. In contrast
to the formula rank defined in [I0], we here define the rank function rk°
without using the syntactic constructs o™x.p for approximants.

Besides the rank functions f, we even want to consider arbitrary well-
founded binary relations < on the set of formulae, fulfilling two analogous
requirements, i.e.

e Y < if 1 is a proper subformula of ¢,
e ©"(x) < ox.p for all natural numbers n and o € {u, v}, if ¢ is safe.

But given such a relation <, by transfinite recursion we can always find a
corresponding rank function fo, that is f4(p) = U{f<(¥)+1 | ¥ < ¢}, such
that the range of f is equal to the order type of <1 (Thm.|43).

In this thesis we show that the range of rk® is w* by determining upper
and lower bounds. We further get that w“ is minimal, that is, the range of
any such rank function is at least w®, and hence any well-founded relation <
satisfying the requirements above has order type at least w*.

After introducing the preliminaries in the next section, we show the exis-
tence of a rank function rk in Section 3, and we prove the upper bound w* for
its range. rk® is introduced in Section 4, where its equivalence to rk is shown.
In Section 5 the lower bound w* for the range of rk and rk® is provided. And
finally in Section 6 we show how to generate formulae of arbitrary comlexity,
with respect to this rank functions.



2 Preliminaries

The language £, of the modal p-calculus results by adding greatest and least
fixpoint operators to propositional modal logic. More precisely, given a set
of countably many propositional variables, Var , and the set Cst = {L, T} of
propositional constants, we define the atoms, Atm = Var U Cst, the [literals,
Lit = Atm U {~p | p € Var}, and we inductively define the collection L} of
modal p-formulae (or simply formulae), such that Lit C E,Jj and whenever
p, Y € E:[ and x € Var then the following are also modal u-formulae

(eAY), (V) , o, Op, Op, ur.e, vep.

Remark 1. E: has two kinds of negation symbols, ~ and —. Usually only
one of the symbols is present in the modal p-calculus, but in the following
we can easily cover both cases.

The language £, of the modal ji-calculus is some subset of Ej, such that
only one of the symbols ~ or = is present in £,, and occurrences of the
variable = (Def.[30) in a formula pz.¢ or va.p must be positive, that is, any
free occurence of x in ¢ is not preceded by the symbol ~, or it is preceded
by an even number of symbols = (Def. , Rem., for example the formula
px.~(pz.x A —x) is fine.

The length l[(p) of a formula ¢ is defined such that

0 @ € Lit,
) =< 1l(a) +1 0 = —a, Qa, Do, pz.a, ve.o,
la)+1(B)+1 o=aAB,aVp.

The fixpoint operators px, vx bind the variable z in a way similar to the
quantifiers in predicate logic. Therefore we use standard terminology as for
quantifiers; free(y) denotes the set of all propositional variables occurring free
in ¢ (Def.32), and bound(y) denotes the set of those variables 2 occurring
in the form px or vx in ¢. We further define the set of variables in ¢,
var(yp) = free(p) U bound(yp) C Var. We write ¢ < ¢, if ¢ is a subformula of
¢ (Det.35), and ¢ < ¢ for the proper subformulae. Our notion of subformula
is such that literals do not have proper subformulae, hence z £ ~x. sub(y) is
the set of all subformulae of ¢, and we further define the atoms of a formula
atm(y) = var(¢) U (sub(p) N Cst) C Atm.

Remark 2. If ¢ = py.~z then z,y € ¢, hence x,y & sub(y), but we have
x,y € var(p).



A variable x € bound(y) is called well-bound in ¢ if x ¢ free(yp) and if
there is only one single occurrence of either pux or vz in ¢. A formula ¢ is
called well-bound if all x € bound(y) are so.

Substitution and complementation of formulae are defined simultanously:
Let = be a propositional variable and let ¢, ¢ be formulae, then plz/v],
the formula where all free occurrences of x are replaced by v, is defined by
induction on the structure of ¢. For literals ¢ € Lit we define

v oif p=x,
ple/d]=¢ ifp=nrz,
¢ otherwise,

substitution distributes over boolean and modal connectives,

o(afx/v]) if ¢ = oa and o € {—, 0,0},

A {a[x/w} oflr/u] i =aofandoe (A V),

and for the fixpoints o € {u, v} we define that

oy.ov ify=u,
oy.a)lz /Y] =
(oy-)le/y) {ay.(a[x/w]) otherwise.

The complement p of the formula ¢ is defined inductively, such that
T=r~x, ~T =z, L =T, T =1and Sa = -, by using de Morgan
dualities for the boolean connectives, « A f =@V  and aV =a A [, the
usual modal dualities, o = Oa and Do = @, and for puz, ve we define
that

nr.a = ve.(alz/~z]) and vr.a = px.(alr/~z)).

We further need the iterated substitution ¢"(x) of a formula ¢ for x € Var
and n > 0, that is ¢%(z) = z and " (z) = plz/P"(z)].

Remark 3. If p,¢) € £, C L} then ¢[z/y] and ¢"(z) need not be L,-
formulae, e.g. if ¢ = py.x and ¢ = ~y then pla/y] = py.~y & L,. Or if
© =~y A py.x then @*(x) = ~y A py.(~y A py.x) € L,,.

Two formulae ¢, ¥ are equal up to renaming of a bound variable, ¢ ~ 1,
if there exist two formulae a(z’), 8(z”) and variables x,y ¢ var(a) such that
¢ = B2 Jox.al/z]] and Y = B[2"[oy.alz’/y]]. The relation ~ is the
transitive closure of ~1, such that ¢ ~,, ¥ holds for formulae that are equal
up to renaming of bound variables.



Remark 4. If ¢ = px.(z A px.x) and ¥ = py.(y A pe.x) then ¢ £y 9, but
© ~oo ¥ because of ¢ ~q px.(x A pz.z) ~ py.(y A pz.z) ~p 1.

The standard semantics for the modal p-calculus is given by transi-
tion systems. A transition system 7T is a triple (S,—,\) consisting of a
nonempty set S of states, a binary transition relation — on S, and a valua-
tion A : Var — ©(S) (p(S) the powerset of S), assigning to each variable x a
set A(z) € S. Given a transition system 7 = (S, —, \), a subset S C S and
a variable x, we denote by 7 [x +— S| the system (S, —, \'), where X is

S if y =z,
N(y) = .
Ay) otherwise.

The set of states of a transition system 7 = (S,—,\) where ¢ holds,
is called the denotation of ¢ in T and is denoted by |¢|,. We inductively
define ||, simultaneously for all A (with S, — fixed), such that |z|, = A(z),
[~y = S\A(z) for @ € Var, [ L], =0, [T, =S, [-al; = S\|a], and

lanBlr = lals OBl eV Bly = lalr UlBls,

[Baly ={aeS[vb((a —b) = be o)},
[0l = {a €S [3b((a = b)AbE |af)},

Jva.aly = S €SS C lolrps}
.l = (S €S | lalzps) € ST

Remark 5. For later use we compute some denotations of formulae in the
transition system 7 = (S, —, ) = ({a,b},{a — b}, A).

_ n )0 bE M),
[0yl ={a € S[3b((a =) AbEAY)} = {{a} be ).
lvyaly = HS' €S IS Clalry, s} = A@),

o b ¢ Ay),
|(vy.x) A Oyl + = {{a} NA(z) be Ay),

lvy.((vy.x) AOy)| =0  because if b € A(y) then A(y) Z {a} N A(z),
e JUE =0 b

- (vy.2) Ol {U{@, T S

lvy.ve.((vy.x) AOy)|, =0  because if b € A(y) then A(y) € {a}.



The operator I, , with I, .(S) = |a| 7, can be shown to be monotone
for variables x occurring only positive in « (Thm., hence by Knaster-
Tarski Theorem (cf. [12],[I5]) for such = we have that |uz.af; and |vz.af,
are the least and the greatest fixpoints of I, ,, respectively (Thm.{0). If
we iterate the operator, such that L), = 0, GO, = S, L§! = L..(L5,),
ng;} = I,.(G%,,) and Lt = U£<p Lgx, Gl ., = ﬂ£<p G¢, , for limit ordinals

a,T

p, then for some ordinal ¢ with |¢] < |S| we get (Thm.
luraly = I, and  |vraly = GS,,.

Remark 6. (cf. Rem.[5) For a = (vy.z) A Oy and for the transition sys-
tem 7 = ({a,b}, {a — b}, \) with A(z) = A(y) = {a, b}, we find the fixpoint
Gl = |vz.a|; = {a} such that I,,({a}) = {a}. But the fixpoint property
is not reflected in the denotation, i.e. |vz.a|, # |a[z/vz.of|; = 0. Notice
that bound(a) N free(a) # 0.

If two formulae ¢, ¢ are such that bound(y) Nfree(¢)) = (), then it can be
shown that for all transition systems 7" we have [olz/¢]|7 = [l7p gy,
(Thm.[42)). By using this fact for formulae «a with bound(«) N free(a) = 0,

we get
Loo = la"(@)z/ Ly and  Gg, = [o"(@)[z/T]l;-

Remark 7. (cf. Rem.[f) For the formula a = (vy.z) A Oy and for the tran-
sition system 7 = ({a,b},{a — b}, \) with \(x) = A(y) = {a, b}, we have
Gow ={a} #0 = |0*(@)[z/T]|+.

If in addition to bound(«) N free(«) = B, we have that z is positive in «,
that is I, , is monotone, then for finite transition systems 7" with |S| < n we
get that

[vr.a(@)l; = la"(@)z/T]l; and |pr.a()l; = |a"(@)z/ L],
In the following a formulae ¢ is called safe, if bound(yp) N free(y) = 0.

Remark 8. Well-bound formulae are safe, and for any formula ¢ we can
find a well-bound formula ¢* such that ¢ ~, ¢*. Notice further, that
subformulae of well-bound formulae are well-bound, but subformulae of safe
formulae need not be safe, e.g. if ¢ = x A px.x then px.p is safe, but ¢ is
not.

By Q we denote the first uncountable ordinal (hence the union of a count-
able subset of 2 is in €2, and (2 is closed under addition). For any set X there



is the set QX of all functions f : X — €, i.e. the set of all sequences of or-
dinals indexed by elements of X. 0 € Q¥ is the function which maps every
argument to 0.

A subset F C E; is closed under subformulae if ¢» € F whenever ¢ < ¢
and ¢ € F. And F is closed under approzimation if ¢™(x) € F for all
natural numbers n, if ur.p € F or vr.p € F and ¢ is safe. Further we
call F an initial segment of formulae, if it is closed under subformulae and
approximation.

Remark 9. Observe that £,, is an initial segment of formulae, i.e. it is closed

under approximation. For ¢"(z) to be in £,, it is important that ¢ is safe,
see Remark [l

For initial segments 7 C L, a p-rank on F is any mapping |.| : F —
such that

o [ <lp|if ¥ <o,

e |o"(x)| < |ox.| for all natural numbers n and o € {u, v}, if ¢ is safe.



3 Minimal p-ranks with range w”

In order to define a p-rank on £} we first define the mapping [¢] : Q¥ — Q
for any formula ¢. We need the following: Given a sequence s € QY2 a
variable x and ¢ € Q, the sequence s[z:£] € QV2" is defined such that

st (y) = {5 r=Y,

s(y) otherwise.

The composition in x of f,g: QY — Qis (fo,g)(s) = f(s[z:g(s)]), and the
iteration of f in x is f2 = fo, (f") with f = 0.
The first part of the following definition is by Afshari and Leigh [I].

Definition 10.
(1) For every ¢ € L we define the function [¢] : Q¥ — Q such that

0 ¢ € Cst,
s(x) © =x,~,
[l(s) = { [e](s) + 1 ¢ = ~a, Qa, Oa,

max{[a](s), [B](s)} +1 ¢ =anf,aVvp,
[ sup, <, {[a];(s) + 1} © = pr.o, ve.a.

(2) For every ¢ € L we define the function [p] : QY — Q such that

(0 ¢ € Cst,
s(z) Y = x,~e,
N [a]'(s) +1 v = —a, Qa, Oa,
L] (s) = max{[[a]]/(s), [[ﬁ]]/(s)} +1 p=aAp,aVp,
supn<w{[[a]}/2(s) + 1} © = px.a, ve.a, « safe,
\ [afz/L]] (s) + 1 © = px.a, vr.a, « not safe.

(3) The functions rk, rk’ : £ — Q are defined such that
k() = [¢](0) and  rk'(¢) = [¢]'(0).

In the remaining of this section we show that rk and rk" are p-ranks on
E: with range w*”. We show that rk’(¢) is minimal with respect to any other
p-rank, and that rk is minimal for well-bound formulae, i.e rk(¢) = rk’(¢) for
well-bound formulae . In order to do this we need the following technical
lemma.

10



Lemma 11.

For all ¢ € L}, z,y € Var, { €  and natural numbers n we have

(1) [l = lple/~a]] and [plz/ L] = [¢[z/T]] and [¢] = [¢]
(2) « g free(v) = [pl(s[z:£]) = [el(s)

3) x £y, yEfree(y) = (lelol¥])y
( 0
(
(

1)

)

) =
4) bound(y) N free(v) = = [elz/¢]]
)

)

)

[elye-[v]
= [¢]o.[¥]

5) wsafe = [pl; = [¢"(x)[z/L]]

6) Statements (1)—(5) still hold if [.] is replaced by [.]’

(7) ¢ well-bound = [¢] = [¢]
Proof. Part 1 is proved by induction on I(y) and is left to the reader.

Part 2 is proved by induction on {(); We only consider the case ¢ = py.1p

and we are going to show [¢])(s[z:¢]) = [¢],(s) by induction on n, hence
lel(s[z:€]) = [¢](s). Assumlng x ¢ free(p) we either have that x = y or

x ¢ free(y). If n = 0 then [¢/]) = 0 by definition. For n+1> 0 and = # y
(similar for z = y) we have that

Oy[[%ﬁ]] (S[z ]) = [&]((sl:€D)y:T1 (s[z:€])])
)) by i.h. for n

:€])  because z £y
[[zp]]”“( ). by ih. for I(¢)

Part 3 is proved by induction on n. For n = 0 we have

([elox[vl)y = 0 = 00 [¢] = [l 0x[¥]-

For the induction step n + 1 > 0 we have the following

(Lelos D)y (s) = ([edoulv)oy(Lelos [ ]y (5)
= ([eloz[¥Doy([elyoal¥])(s) by ih. for n
= ([elo=[¥D)(sly:€])  with & = ([l e=[¢])(s)
= [l (Csly=eD =1 (s[y:ED)
= [el((sly=ED =11 (s)]) by Part 2, y & free(4))
= [ ((s[z:[w](s)])y:€])  because z # y
= ([eloylely) (slz:[](s)])  because & = ] (s[z:[¥](s)])
= [l ou[¥l(s



Part 4 goes by induction on [(¢). In case p = ~x, we use Part 1. But
here we only consider the case p = uy.a. If x # y then

[l /v]](s) = sup, ., {[afz/¢]],(s) + 1}
= sup, ., {([e]o.[¥]);(s) + 1} by ih. for I(a)
= sup, o, {[e],o[¥](s) + 1} by Part 3, x £y, y & free(y))
= sup, ., { [, (s[z:[¥](s)]) + 1}
=[] (slz:[¥](s)]) = [e]ea](s),
else if = y then x ¢ free(¢), hence [plz/V]](s) = [¢](s) = []ox[¥](s) by

Part 2.

For Part 5 we assume bound(p) N free(p) = @) and we are going to show
[elr = [¢™(z)[x/L]] by induction on n. For n = 0 this is 0 = [L], and for
n+1>0 we get

[e]2t" = [eloulell = [¢louly"(x)[z/L]] by ih. forn
— [ole/o"(2){a/ L] by Part 4, bound() N free("(x) = 0
= [(elz/¢"(@)])[x/L]] = [¢"* (2)[x/L].

Part 6 is proved analogous to (1)—(5). We only need to consider the new
case in the proofs by induction on I(¢) for (1),(2) and (4), that is the case
¢ = py.a where «vis not safe. For Part 6/(1), e.g. because of I(a[y/L]) = l(«)
and @ly/~vy|ly/L] = aly/T| = aly/L], by using the i.h. we get that

[ma] (s) = lvyaly/~yll'(s) = [aly/~y)ly/ LI (s) + 1
= [afy/01'(s) + 1 = [aly/ L] (s) + 1 = [uy.a'(s).
For Part 6/(2), with @ ¢ free() we have x ¢ free(afy/L]), hence by i.h.
[ny.a (sla:€]) = [aly/L]] (s[z:€]) + 1 = [aly/L]]'(s) + 1 = [uy.a] (s).
For Part 6/(4), if 2 % y then by i.h. and because y ¢ free(1)) we get that
[uy-ala /) (s) = [alz/¥]] /L]]]’ES) +1 = [aly/L/¢)l'(s) +1

= [aly/ L o:[] (s) + 1 = [ofy/LI] (slz:[] (s)]) + 1
= [uy-of (slo:[] (5)]) = [uy-o] os[¥] (5)-

Part 7 is proved by induction on I(¢), by using that subformulae of well-
bound formulae are well-bound and safe. O

The following theorem shows that rk and rk” are p-ranks on L7, and that
rk'((p) is minimal with respect to any other p-rank.

12



Theorem 12. (Minimal p-ranks)

(1) rk and rk" are g-ranks on L}

(2) If [.| : F — Qs any p-rank on an initial segment F C L,
then we have that

(i) rk'(p) < || for all p € F,
(ii) rk(y) < |p]| for all well-bound ¢ € F.

Proof. Part 1 is proved by induction on [(p). The only non trivial case is
where ¢ is px.a or vx.a, but this case follows by Lemma .56 and
because of [a]L(0) = rk(a) and [«]”(0) = [a"(z)[z/L]](0) = rk(a™(x)) for
safe o (the same for [.]" and rk’).

Part 2(i) is proved by induction on the p-rank rk'(¢). We only consider
the case where ¢ = uz.a. If « is safe, then

K (pz.c) = [pa.a] (0) = sup,, . {([a(2)];(0) + 1}
= sup,.,.{([o"(2)[z/L]]'(0) + 1} by[Ll]6

<sup, .. {la"(z)|+1} by ih. for a"(z)
< |ux.a|. by definition of p-rank

Otherwise if « is not safe, then
K (uz.) = [u.a] (0) = [ale/LI(0) +1 < [a] +1 < |uz.al.
Part 2(ii) follows by Lemma [11]7 and Part 2(i). O

The next lemma shows that rk’ and rk are surjective functions onto the
same ordinal.

Lemma 13. (Surjectivity)

For all g, € L}, £ € Qand F € {£,, L]} we have that

(1) ¥ Moo v = [[90]] = [[1/}]]
(2) Eerk[F] = & CrkF]
(3) rk'[F] = rk[F]

Proof. For Part 1 we first show ([a]o.[z])? =[]} for z & free(a) by induc-
tion on n.

13



For n = 0 this is 0 = 0, and for n + 1 > 0 we have

([ado:[=])z ™ (s) = (Iado:[=])ox([a]o:[2]); (s)

{l )
= (Haﬂoz[[ﬂ])%[[OéHZ(S) by i.h. for n
= (laJo:[x])(s[=:€])
= [o]((s[z:])[z:[z](s[z:£])]) let & = [a](s)
= [a]((s[z:£])[:¢])
= [a]((s[z:&])[x:€]) = [@](s[z:¢]) by [[1]2, = & free(a)
= [oo.[a](s) = [a]2 " (s).

From this we get [pz.alz/z]] = [pz.o] for « & var(a), because

[pz.alz/x]] = sup, o {[alz/=]];(s) + 1}
= sup, ., {([eJo.[z])2(s) + 1} by [11]}4, = & bound(w)
= sup, . {[a](s) + 1} = [uz.a]. because x & free()

For formulae ¢ ~1 ¢ such that ¢ = B[/ /px.afz/x]] and ¥ = B2/ /uy.alz/y]]
and z,y & var(a), we are now able to prove [¢] = [¢] by induction on I(f3).
The claim follows because ~, is the transitive closure of ~;.

Part 2 is proved by using the minimality of rk. First we observe that F is
an initial segment of formulae. We define |.| : F — Q by transfinite recursion

such that
el = H{lal + 11 k() < rk(g),a € F}.

.| is a p-rank because rk(v)) < rk(p) implies |p| > || + 1. By induction on
rk(y) we get || < rk(e), and this yields |¢| = rk(y) for well-bound ¢ by
Theorem [122(ii). For ¢ ~o 1 we get |¢] = |1)] by the definition of |.| and by
Part 1, and for any ¢ € F there is a well-bound ¢* € F such that ¢ ~, ©*,
hence |p| = |¢*| = rk(¢*) = rk(p), that is |¢| = rk(p) for all ¢ € F. Now
we assume that there is some ¢ < & with ¢ & rk[F]. Given such ¢ we define
the set Z = {rk(¢) | rk(¢) > ¢, € F}. We have Z # () because £ € rk[F],
hence there is some o € F with rk(yg) = min Z, and rk(a) < rk(pg) implies
rk(a) < ¢ for &« € F. But now we get

— Jool = {rk(@) + 1 | tk(a) < C,a € F} <.

in contradiction to rk(¢g) € Z. Hence there is no such ¢, and & C rk[F].
For Part 3 we show both inclusions. Let W C F be the set of all
well-bound formulae in F. We have that rk[F] = rk[WW] by Part 1, hence
rk[F] = rk' W] C rk'[F] by Lemma [L1]7. On the other hand for any ordinal
¢ = rk'(p) € rk[F] we have £ < rk(yp) by Theorem [12}2(i), hence either
¢ =rk(p) € rk[F] or £ € rk(yp) C rk[F] by Part 2, that is rk'[F] C rk[F]. O

14



Theorem 14. (Upper bound)

For all ¢, € E:, x € Var and natural numbers n we have that

(1) bound(y) Nfree(y)) =0, x & free(v))
= [elz/¢]](s) < [91(s) + [](s)
(2) [l (s) < [el(s) - m
(3) rk(p) <w” (ie. rk'[L]] = rk[L]] C w®)
Proof. Part 1 goes by induction on the p-rank rk(y). We only consider the

case ¢ = uy.a and x # y. To show this, we need a further case distinction:
If ¢ is well-bound, then « is safe and we have

[ele/¥1I(s) = sup, < {[ale/¢]];(s) + 1}
= sup, ., {([a]o.[¥]);(s) + 1} by .4, bound(«) N free(y)) =0
= sup, ., {([efyou[¥])(s) + 1} by[L1]3, = #y, x & free(y))

= sup, ., {([o" (W) [y/L]]e:[¥])(s) + 1} by [LL]5, a safe

sup, <, {[o" (y)[y/Ll[z/¢)](s) + 1} by [l1]4

< sup, <, {[¥1(s) + [o"(y)ly/ L]](s) + 1} i.h. for rk(a™(y)[y/L])
= [¥](s) +sup, . {[a];(s) + 1} by 5, « safe
= [¢1(s) + [l (s).

Otherwise if ¢ is not well-bound, then we can find a well-bound formula ¢*

with ¢* ~,, ¢ and bound(¢*) N free(¢)) = 0, hence p*[x /Y] ~o @lz/1]. B
Lemma [13]1, because of rk(¢*) = rk(y) and by the previous case we get

[elz/911(s) = ["[a/¢1(s) < [¥1(s) + ["1(s) = [¥1(s) + [l (s)-

Part 2 is first proved for well-bound formulae ¢ by induction on n. For
n =0 this is 0(s) < 0 and for n + 1 > 0 we get

[elz " () = [ @)/ L1)(s) = [pla/@" @)/ LT](s) by [T5

< I @)/ L)+ [l(s) ot S pente )

= lelz(s) + [#l(s) < el(s) - (n+1). by ihforn

For any formula ¢ there is a well-bound formula ¢* such that ¢* ~, ¢,
hence the full claim now follows because of [¢*] = [¢] by Lemma [13]1.
Part 3 is proved by induction on /(). We only consider ¢ = pz.c, but
for such ¢ we have rk(uz.ot) = sup,, ., {[a];(0) + 1} < rk(a) -w+1 < w* by
i.h. and Part 2. [l

15



4 Effective computation of the p-rank

In this section we provide an alternative definition of rk, namely rk®, which
is defined by primitive recursion and hence is effectively computable, and we
prove the equivalence of the two definitions.

Definition 15.

(1) Forevery ¢ € L we define (p) € QM™ such that (@), = 0if u & atm(p)
and otherwise

0 @ € Lit,
(o), +1 v = —a, Oa, Qa,

max{(a)y, (B)u}+1 o=aAf,aVp,
(a)y +1+{a), w @=pr.ave.a.

(2) We fix a mapping ¢ +— ¢* on L} such that ¢* is well-bound and
Y* ~s @, and such that ¢p* = ¢ if ¢ is well-bound. The mappings
e, rk®: E: —  are now defined such that

f(¢) = max{{p).} and rk(p) =f(¢").

uEAtm

Remark 16. f¢(p) = max {(¢),} because (¢), =0 for u & atm(y).

u€atm(yp)

The following technical lemmas are used to show the equivalence of rk
and rk®.

Lemma 17.

Let ¢ be well-bound and bound(y) Nvar(y)) = (), then we have that

o = 190 v ¢ free(p) or u ¢ atm(y),
/Y]y =

v max{{©)u, (V) + (©).} x € free(y) and u € atm(1)).

Proof. We distinguish three cases. In the first case we assume x ¢ free(p).

But then we have [z /1] = ¢ hence (p[x/¥])y = (p)u-

In the second case we assume = € free(y) and u ¢ atm(y). We show
this case by induction on [(¢). Further, we assume u € atm(y), because if
u & atm(p) Uatm(¢)) then (p[z/¢])u = (p)u = 0 by definition. If ¢ = =
then (p[z/¥])y = (¥)u = 0 = (p)u. For l(p) > 0, here we only consider

16



¢ = py.a. In this case we have y ¢ atm(v) because of the assumption
bound () Nvar(v)) = 0, hence

(plz/Y])u = (py-alz/Y])u = (alz/P])u + 1+ < [z /¢])y - w
=(a)y +1+ (), -w=(p),. byih

In this case we

l(p). If p = x,

In the third case we assume x € free(y) and u € atm(y

prove (p[z/¢])y = max{{(p)u, (¥)u + (©)} by induction o
then we have

(ole/v])u = (W) = max{0, (¥)u + 0} = max{(L)u, (V)u + (©)a}-

For I(¢) > 0, here we only consider the cases ¢ = a A and ¢ = py.a. If
v = a A we further distinguish the following two cases:
(i) In case x € free(a) N free(B), by using the i.h. we have the following

(plz/dN)u = ((a A B)[z/¢])u = max{{alz/Y])u, (Blz/P])u} + 1

)-

= max{max{(a@)u, (V)u + (@)s}, max{(B)u, (¥)u + (B)2}} + 1
= max{max{(@)u, (F)u}, max{{¥)u + (@)z, ()u + (F)2}} + 1
= max{max{(@)u, (F)u} + L, (¥)u + max{(a)s, (B)} + 1}

= max{(@)u, (V)u + (¥)a}-

(ii) For x ¢ free(ar) Nfree(3) we consider the case = & free(«) and z € free(3).
Because ¢ is well-bound, we have x ¢ bound(y), hence x ¢ atm(«) and
(a), =0, and from this we get

(plz/v])u = max{(alz/v])u, (Blz/¢])u} +1
= max{{a),, max{(B), (V) + (6)z}} +1 by i.h. and case two
= max{max{{a)u, (B)u}, (V)u + (B)a} + 1
= max{max{()u, (B)u} + 1, (V)u + max{{a)s, (B)z} + 1}

= max{(Q)u, (Y)u + (¥)a}-

If ¢ = py.a then y ¢ var(¢)) because of bound(y) N var(y)) = ), hence
(afz/v]), = (a), by case two, and finally we have

(pla/v])u = (alz/Y])u + 1+ (alz/Y])y - w = (a[z/¢])u + 1+ (a)y - w
= max{(a),, (¥), + (@)} + 1+ (o), -w by ih.

= max{()u + 1+ (@), - w, (V)u + (@)s + 1 + (@), - w}

Yus (V) + (P)a -

= max{ ().,

17



Lemma 18.

For any variables x,y, z, 2’ and any formula ¢ we have that

(1) x#Zy, v# 2, y,z ¢ bound(p) = (p['/y])e = (0[2'/2])x
(2) = ¢ bound(p), y,z Evar(p) = (plz/y]), = (vlr/2]).

(3) If ¢,9 are well-bound formulae with ¢ ~, ¥ and z € free(p),
then we have that (@), = (¢),.

Proof. For Part 1, we first observe that x € atm(p[2'/y]) iff z € atm(y[2'/z]),
because of x # y and = # z. Hence if z ¢ atm(p[2’/y]) then we have
(o2 /y])e = 0 = (p[z'/2]). The other case is proved by induction on I(yp). If
¢ € Lit then p[2'/y] € Lit and ¢[z'/z] € Lit hence (¢[z'/y]). = 0 = (¢[z'/2]) .
Using the induction hypothesis we get for o € {—,[0, 0} and ¢ = o« that

(el /yha = (a2 /yh)a + 1 = (a2'/2])a + 1 = (¢[2'/2])a-

Analogous for o € {A,V} and ¢ = ao . If 0 € {u, v} and p = ou.a, and in
case of u = 2/, we have p[2'/y] = ¢[2'/z]. Otherwise, if u # 2’ then because
of i.h. and y, z & bound(y), that is u # y and u # z, we have

(@l2'/yl)e = (ou.(al2'/Y]))
= (a2 /y])z + 1+ (a2 /y))u - w
= (afz'/z])e + 14 (alz'/2])u - w = {ou.(al2'/2]))e = (p[2"/2])a-

For Part 2, we first observe that y € atm(g[z/y]) iff z € atm(p|z/z]),
because of y,z & var(p). Hence if y ¢ atm(yp[x/y]) then we have that
(plz/yl)y = 0 = (p[r/z]).. The other case is proved by induction on [(p). If
¢ € Lit then p[z/y] € Lit and ¢[z/z] € Lit hence (p[z/y]), = 0= (p[z/z])..
Using the induction hypothesis we easily get the claim for ¢ built from
the connectives =, 00,0, A, V. If 0 € {u, v} and ¢ = ou.a then because
of x & bound(y) and y, z & var(y) we have u # x, u # y, u # z, and because
of i.h. and Part 1 we get

{plz/yl)y = (ou.(alz/y]))y
= (afz/yl)y + 1+ {alz/y])u - w
= (afe/2)). + 1+ {afz/2])u - w = (ou.(alz/2])). = (plz/2])..

For Part 3, we first observe that there is a finite sequence of formulae

(o

PC=Qo~LPL LN O =Y

18



such that ¢; is well-bound and x € free(y;) for i < n, hence it is enough to
prove the claim for ¢ ~; 1 instead of ¢ ~, ¥. Assuming ¢ ~ ¢, we have

p=pl"/oy.al/y]] and o = B[2"/oz.al2/2]],

for some y, z & var(a) and w.l.o.g. 2’ & bound(«). We further have x # y and
x # z because of z € free(p) N free(), and we have y, z ¢ bound(«) because
¢ and v are well-bound. Now by using Part 1 and Part 2 we get

(oy.al2'/yl)e = (alz'/y])e + 1+ (a2 /y])y - w
= (al'/2])e + 1+ (a]Z'/2]), - w = (0z.a[2'/2]) .

Using this and Lemma |17| we finally get (p), = (¥),. O
Lemma 19.

Let ¢ be well-bound and bound(¢) Nvar(y)) = (), then we have that
v efree(p) = f(elz/¢]) = max{f(p),f(¢¥) + (¥)}.

Proof. If x € free(p) then by Lemma (17 we have that (p[t/z]), = (), if
u ¢ atm(v) and that (p[v/z]), = max{(Q)u, (V)u + ().} if u € atm(v)).

Therefore, we get

ol = ma (ol = max § o
Y o u€Atm 14 wh uelgi}((w){ma)({<§0>u; <’l/}>u + <Qp>x}}
. Jdnax {{@hu}
max{uerer‘ii)((w)ﬂ@)u}, ugﬁi@){@%} + (P)az}

= max{i?ﬂ’é{w"}’ ueglt%w}((w)Rw“} + ()x}
- maX{F(@)? fe(1/)) + <90>m}
]

The next lemma is some kind of a generalisation of the previous two
lemmas.

Lemma 20.

Let xg, ..., x, € free(p) be pairwise distinct variables.

19



(1) If  is well-bound, y & bound(y) and x; # y for i < n then
{elzo/y]. . - [n/y])y = max{(p)y, maxi<n{ (@), }}-

(2) If plxo/vo] ... [xn/1hn] is well-bound, z; & var(y;) for i < j < n
and bound(y) Nvar(1);) = bound(¢);) Nvar(y;) = 0 for i < j < mn,
then we have that

f(plwo/ o] - - [wn/tn]) = max{f(p), maxi<, {f*(¢1) + ()} }-

Proof. Part 1is proved by induction on n by using Lemmal[I7] We further use
that o = p[zo/y] ... [zi_1/y] is well-bound, y & bound(a;) and (a;)., = (p).,
for all i < n. Part 2 is proved by induction on n by using Lemma [I9, No-
tice that §; = p[zo/vo] - . . [xi—1/1i—1] is well-bound, bound(5;) Nvar(y;) = 0,
x; € free(B;) and (5;)., = (@), for all i < n. O

The next theorem shows the equivalence of rk and rk®. Therefore, it
provides a method to compute the p-rank rk by primitive recursion.

Theorem 21. (Effective computation)
For all ¢ € £ we have that rk(p) = rk®(p)

Proof. Let * : E; — ) be the mapping used in Definition .2. By induction
on rk(p) we show that rk(y) = f¢(¢) for all well-bound formulae . The full
claim of the theorem follows by Lemma [13]1 because for any ¢ we then have
that

rk(ip) = rk(p™) = (") = rk*(0).
In the induction we only consider the case ¢ = pz.«. By Lemma [I1]5 and
because « is well-bound we get

rk(p) = sup,<.,{[al;(0) + 1} = sup,, . {rk(a"(x)) + 1}.

For each natural number n we have o™ (z)" ~4, a™(x) with a"(z)" well-bound.
Hence by Lemma [13]1 and i.h. we get

k() = sup, o, {rk(a”(z)") + 1} = sup, . {f*(a"(x)*) + 1}.

Now we compute f¢(a™(x)") by distinguishing two cases. In the first case we
assume that (a), =0 or x ¢ free(a), but then o"(z) = « for n > 0 and

rk(¢) = sup, . {fé(a(2)") + 1} =f(a*) + 1 =f¢(a) + 1 because a* = «
= max {{a), } +1 = max {{a), +1+{a), -w}="F(p).

u€EAtm

20



In the second case we assume that (o), > 0 and x € free(a)). For n > 0
we first show by induction on n that

fe(a”(z)") =f(a) + (@), - (n — 1).

For n = 1 we have o"(z)* = a* = a and n — 1 = 0. For n > 1 we have
a"(z) = afz/a™1(x)] and there are distinct variables wyg, ...,z and well-
bound formulae & and vy, ..., ¢, such that

S

~oo Glzo/x| ... [x) /2] and &lxg/x] . .. [xg /] is well-bound,

(1)

(2) a" Hx)" ~o ¢ for i <k,

(3) a™(x)" ~oo Glxo/t0] ... [xk/Pk] and &lxo/v0] . .. [xk/1k] is well-bound,
(4)

Hence we have x ¢ var(&) and bound(&) Nvar(1;) = bound(¢;) Nvar(¢;) = 0
for i < 7 <k, and we have the following two facts:

(1)
f(a) = f(alxo/x] ... [xr/x]) by i.h. for rk(a) and 131
= max{f(&), max;<,{f(x) + (&), } } by [20,2
= max{F(a), maxie{{a)e,}} = ().

(i)
fe(a”(x)") = f(alxo /o] . . . [xr/¥x]) by i.h. for rk(a”(z)") and I3l1
(

e

— ma{f°(A), maxiy (F(13) + (@), )} by 02
= max{f(&),f(a"*(2)") + maxj<x{(&)s,}} ih. for rk(a" ! (z))
= max{f*(),f*(a" " (x)") + (alwo/a] ... [wn/a])s} by RO
= max{f*(a),f*(a" " (z)") + (a)s} by[§3
(@), F(

= max{f°(&),f(a) + (@), - (n —2) + (@)} by i.h. forn —1
=fa)+ (a), - (n—1). by ih. and (i)

For n > 1 we have f¢(a™(z)") + 1 < f¢(a™*!(2)") because of {a), > 0 hence

k() = sup, . {f*(a"(2)") + 1} = sup, . {f*(a"(z)")}
=fa) + (a), - w="Ff(a)+ 1+ (), -w=Tf(p).

21



5 Minimum range w“ for u-ranks

Having established the equivalence of rk and rk®, this now allows us to provide
the sharp lower bound w* for rk[£,] = rk'[£,] in the remaining of this section.
The lower bound is given by computing the p-rank rk®(¢) of a special class
of formulae .

Definition 22.

We fix an infinite sequence of propositional variables pg, p1,... such
that p; # p; for i # j, and we define the formulae W% and ®F such that

TP = (Ppar Ao A (A Do),
(I)k = 1 /\po k’ = O,
" UD(ntk—1) - - - PP k> 0.

Theorem 23. (Lower bound)
For all natural numbers n and k we have that
(1) u € atm(®F) = (®F), =k
(2) w* C (L) = KL,
Proof. Part 1 is proved by induction on k. If k = 0 and u € atm(®F)
we have that (®F), = (LApo)y = 1 = &% If k > i > 0 then define

i = UWPnti - - - 1Pn-YETL. We show u € atm(®F) = (p;), = w™*! by induction
on i.

e If i =0 then
(Podu = (U5 D+ 1+ (U7, w0 =w
because of 0 < (WF=1), < (Wr-1) <.
e For k >4 >0 we have (;_1)y = (®i—1)p,,; = w" by L.h. hence

(©i)u = (UPn+i-Pi-1)u = (Pic1)u + 1+ <90i—1>pn+i "W

=W+ 14w w=0u"t

Since (®F), = (pr_1). = w* the first part is proved.

Part 2 holds because we have w* = rk(®F) € rk[L,] for all natural numbers
k by Part 1 and Theorem [21} hence w* C rk[£,] by Lemma (132, that is
w¥ Crk[L,]. O

Corollary 24.
rk[L,] = rK[L,] = rk[L)] = K [LF] = w®

22



6 Generating formulae of any rank

In this section we show how to generate formulae of arbitrary rank in a

uniform way.
Definition 25.

For ordinals £ with 0 < £ < w" there is a unique representation in
cantor normal form (see cf. [11]), that is

= W™ 4. 4w with w>ky>...>k,>0.

Based on the cantor normal form we define the mapping © : w* — L,
such that

1 £E=0,
®§ = (I)If[po/@o] § =onr Wka

Cblfiko+...+kn_1 LPO/@MOJF...-W’%A] & =cnr wko + 4 Wkn,
Remark 26. Some examples to illustrate the structure of the formula ©¢.

O.2 = ®3[po/ L] = pupoppr(p2 A (p1 A L)),
Oz = 3[po/O.2] = pupapps(pa A (p3 A ppappi (p2 A (p1 A L)),
Ou224wr2 = LA (LA pps(ps A ppapps(pa A (ps A ppappr(p2 A (p1 A L)))))).

Theorem 27.
For all £ < w¥ we have that
I’k/(gg) = I’k(@g) == I’ke(@g) :f
Proof. This is proved by induction on £&. We simultaneously show the follow-
ing:

(1) atm(®§) = {J_7p07 e apko-‘r-..-i—kn}\{p()} for f —CNF wko + ...+ wkn7
atm(6) = {L},

(i) O is well-bound,
(iii) rk°(©¢) = &.

23



If £ =0 then ©¢ = L is well-bound, atm(L) = {L}, rk®(L) = max {0} =0.
ucAtm

If € =pp W4 Fwrrand ( =who 4. 4wkt < fand s = ko+...+kns
(for n =01let ¢ = 0 and s = 0) then O = ®}" [py/O.]. By the definition of
@} . we have that ®}7 _ is well-bound and

bound(q)]lgis) - atm((j[)]lﬁis)\{J-’pO} - {p1+87 s ?ps+kn}'

By i.h. we get that ©, is well-bound, and that atm(©;) = {L,p1,...,ps}.

Thus, because there is only one occurrence of py in @’fips and because of

bound(®}" ) Nvar(©;) = ), we have that
atm(©¢) = {L,p1,...,Pstk, } and O is well-bound.

Now because O¢, O, and ®}_ are well-bound and because py € free(®}:,)
and bound(®},) Nvar(©;) = 0 the following holds by Lemma :

k®(O¢) = rk* (@1, [po/Oc]) = max{rk*(Y7,), rk(O¢) + (@17 ) }
= max{w", rk(0¢) + Wk} = rk°(0;) + Wk by 31
=(+uw"=¢  byih.

Since O is well-bound, we get rk'(O;) = rk(O¢) = rk®(0;) = £ for £ < w® by
Lemma [[117 and Theorem 211 O

24



7 Appendix

In this appendix we give some thorough definitions of notions that are used
in the preliminaries, and we prove some important propositions stated in the
preliminaries. In the following N stands for the set of natural numbers.

Definition 28.

For any natural number k we inductively define the set of numbers
U, € N such that k € Uy, and if n € Uy, then 2n € U, and 2n+1 € Uy,

The next lemma is the key to some definitions below, because it helps to
assign unique numbers to the nodes of any binary tree in a uniform way.

Lemma 29.

For any natural number k£ > 0 we have that

(H)nelU, & U,CU
(2) Usk UUsgpyr = U \ {k}
(3) Ug N U1 =10

Proof. For Part 1 we have < because n € U,, C U. For = we show U,, C Uy
by induction on m € U,,. If m = n then m € U,. If m > n then m = 2r or
m = 2r 4+ 1 for some r € U, and by i.h. » € U, hence m € Uy.

For Part 2 we get Usr U Usgr1 C Uy \ {k} by Part 1. And we show
Uk \ {k} C Us U Usgyy by induction on m € Uy \ {k}. We observe that
{2k, 2k + 1} C Ugy, U Uy, and for 2k +1 < m € Uy \ {k} we have m = 2n
or m = 2n + 1 for some n € Uy \ {k}, and by i.h. we get n € Usy U Usgi1
hence m € Us, U Usgy.

For Part 3 we assume Uy N U1 # 0 and m = min(Uy, N Ugy1). We have
m >k + 1 because k € Uy and k+ 1 ¢ Ug. Hence m =2n or m =2n+ 1
with n € Uy N U1, in contradiction to the minimality of m. O

Definition 30. (Occurrences of symbols)
(1) The set of symbols S, of the language £ is defined such that
+ _
Sy =AtmU{~, =, AV, 0,00 U{px | v € Var} U{vr |z € Var}.

(2) The set of occurrences of symbols in a formula o, Symb(¢) C S x N is
defined by Symb(p) = f(p,1) with f: L7 x N — o(S;F x N) such that

{(p,n)} © € Atm,

o) = fla,2n) U {(o,n)} p =oa,0 e {~,~,0,00}
Fla,20) U £(8,20+1) U{(o,n)} = aof, o€ {AV],
flo,2n) U{(ox,n)} p=ox.a, 0 € {u,v}

25



(3) The set of occurrences of free variables in a formula ¢, Free(yp) C VarxN
is defined by Free(¢) = g(p, 1) with g : £ x N — p(Var x N) such that

0 ¢ € Cst
{(p.n)} ¢ € Var,

Y=o, o € {~,—, 0,0},
Ug(B,2n+1) ¢ =aof, o€ {A,V},
\({z} xN) ¢=or.a, o€ {uv}

(4) The set of occurrences of bound variables in ¢, Bound(p) C Var x N is
defined by Bound(p) = h(p, 1) with i : L xN — p(Var x N) such that

0 @ € Atm

h(c, 2n) Y =oq, o € {~,, 0,0},
h(a,2n) U h(B,2n+1) @ =aof, o€ {A,V},
h(a,2n)U{(ox,n)} ¢ =ox.a, o€ {u,v}.

h(p,n) =

Remark 31. Observe that Free(¢) U Bound(y) C Symb(y).

Having at hand the sets of occurrences Free(y) and Bound(yp), it is easy
to define the sets of free and bound variables of .

Definition 32. (Free and bound variables)

The set of free variables free(¢) C Var and the set of bound variables
bound(y) C Var of a formula ¢ are defined such that

free(p) = {z | (x,n) € Free(yp)},
bound(y) = {z | (cz,n) € Bound(p).}

Definition 33. (Preceding symbols)

The set of preceding symbols pre(p,n) C Symb(p) of an occurrence
(s,m) € Symb(¢p) of the symbol s € S in the formula  is defined such
that

pre(p,n) = {(t, k) € Symb(p) | k < n,n € Uy}.

Remark 34. The number of negation symbols — preceding an occurrence
(x,n) € Symb(p) of a variable x in the formula ¢ is equal to the cardinality
of the set {k | (=, k) € pre(p,n)}.

26



Definition 35. (Subformulae)

The subformulae sub(p) C E:[ of a formula ¢ are defined such that

{o} ¢ € Lit

subl(p) — {¢} Usub(a) p =oa,0 € {—,0,0},
{p}Usub(a)Usub(B) ¢ =aofB,0e{A V],
{¢} Usub(a) p=ox.a,0 € {p, v}

In the following we prove some important properties of the semantics of
the modal p-calculus.

Lemma 36. (Complementation)

For any transition system 7 = (S, —, A) and formula ¢ € L we have
1217 = Il

Proof. We show @], =S\ |¢]; by induction on [(¢). We have that

[Llr =1Tlr =S=5S\0=S\|Ll,
[Tl = 1Ll7 =0 =S\S=S\[Tl,
[zl = |~2lr =S\ 2],

[~zl7 =zl =S\ G\ [zly) =S\ |~z

Further by using the induction hypothesis we get that

[=aly = [-aly =S\ [aly = S\ [-al,
la ABly =lavBly = lalz U lBly = (S\lalr) U (S\15l7)
=S\ (laly N15l7) =S\ (lee A Bl7),
laV Bly =lanBly =@l 0 1Blr = (S\ lelr) N (S\18]7)
=S\ (laly Ulsly) =S\ (ler v Bl7),
[Oaly = [0al; ={a €S |3b((a—b)Abe |alr)}
=S\{aeS[vb((a = b)=be|aly)} =S\ [Dalr,
[Oal; = [Oal; ={a €S |¥b((a—b) =be [al)}
=5\{aeS[3b((@a =b)Abelalr)} =S\ |0als,

27



[7zaly = |pe.(@lz/~a])|y = ({S' €S| [ale/~a]lzy, sy € S}
= ﬂ{sl C S|l rpessy €5}
= ﬂ{sl CS[S\elrpesy) €S}
= ﬂ{sl CSI(S\S) Clalrpe syt
=S\ U{(S \S)CS|(S\S)C ||04”T[1H(5\5/)}}

=5\ |va.al,
lrzaly = lve.@le/~a))ly = (S €SS C [ale/~allzy. s}
= U{Sl CS|S Clalrp syt
= U{S/ CSIS C S\ alrp syt
= U{Sl CS| ||04”T[xH(S\5/)] C (S\9)}
=S\ ﬂ{(S \S) STl sy € (S\S)}
=5\ Juz.aly. 0
The following definition is used to prove Theorem

Definition 37. (Negation normal form)

For any formula ¢ € L} we define its negation normal form ¢ € L
such that
@ ¢ € Lit

a 0 = —a,
5={0@ p=onoe (0,0}

dof p=aofoec{A V]
lor.a p=or.a,0 € {pv}

N\

The next lemma shows that with respect to the semantics, we can restrict
ourselfs to formulae in negation normal form.

Lemma 38. (Normal form)
For any formula ¢ € £} we have that

(1) The negation symbol — does not occur in @.

(2) p=0¢
(3) |¢l- = lels for all transition systems 7.

28



Proof. Part 1, 2 and 3 are proved by induction on [(¢). Part 1 holds by the
definition of . We use Part 1 to prove Part 2, and we use Lemma to
prove Part 3. [

Theorem 39. (Monotonicity)
For variables x occurring positive in the formula ¢ € E:Lr we have for
any transition system 7 = (S, —, A) that
SCScs = |blrpas) € lelrpsy
Proof. W.l.o.g. we assume that the negation symbol = does not occur in ¢,
because otherwise we use Lemma and consider H@HT[IHS,] = || Tloes]
(observe that x occurs positive in ¢ because it does so in ).

The lemma is proved by induction on (). For ¢ € Lit we have ¢ # ~x
because x occurs positive in ¢, and if ¢ = x then we have

||15H7[stq =S S =y [2—S"]

and in all other cases of literals ¢, |¢|(,. sy = [#l7psn- By using the
induction hypothesis we further have
la A Blresy = lalrpesy V18l 7pmsy
C lalzpsn N 1Bl ripmsny =l A Bl zamsm;
laV Blrpmsy = lalrpesy Y18l rpmsy
S lalrpes Y8l sy =l V Blrpesm,

[Pl 7y = {a € S[Vb((a = b) = b € |alr,s))}
C{aeS|Y((a—b)=be|alr st = Dalrp s,

[0l rjasy = {a €S 3b((a = b) A € [l 7,g)}
C{aeS|3((a—=b)Abe |alrp s}t = [0 rpsm-

If ¢ = oy.a and y = o then clearly |¢ly, gy = I¢ly s Otherwise if
y Z x we get that

[vy-alzsy = QS S| QC Il rppmsypyar}

= U{Q CSIQC |alizyqpuest

- U{Q S S[QC |aliryqpuost = lvy-alru s,
iyl rmsy = [ HQ S S | o sy €

= ﬂ{Q < S| lalry—qyus; € QU

- ﬂ{Q CS el irpoqusy € Q= lpy-alry sy O

29



Theorem 40. (Fixpoint theorem, Knaster [12])

If the variable x is occurring positive in the formula ¢ then for all
transition systems 7 we have that |pz.¢|, and |vx.¢|, are the least
and the greatest fixpoint of the mapping S’ = [¢](,,_s/, respectively.

Proof. Let T = (S,—, \) be any transition system. We define the shortcuts

I(S) = |6l 1ppesy: L = luzply and G = |vz.¢|,. By Theorem 39| and by
definition we have that

scs” = I(S)cCIE)
L=({s'cs|I(s)cs]},
G=|J{scs|s 19}

We show that G is the greatest fixpoint. Let Hg = {S' C S| S C I(9)}.
For any S’ € Hg we have S’ C @, hence by the monotonicity of I we get
I(S) C I(G), that is §" C I(S') C I(G). Because of ' C I(G) for any
S" € Hg we now get | J Hg C I(G), that is G C I(G). Again by monotonicity
we get I(G) C I(I(G)), hence I(G) € Hg and I(G) C|JHg = G. We have
G = I(G). For any fixpoint S = I(S') we have S’ € Hg, that is S’ C G

The least fixpoint L is proved analogous. O

Theorem 41. (Fixpoint by iteration)

Let 7 = (S, —, A) be a transition system, x a variable occurring positive
in the formula ¢ and

L0 =0, L* = lel 7pre) and L7 = U, L* for limit ordinals p,
G'=S, G* = lol 7iaey and G* =N, G*¢ for limit ordinals p,

then there is an ordinal |£| < |S| such that

L8 = L = uaply and G =G = v,

Proof. Let I(S') = |¢] .- By induction on £ we have L& C L because
of L' =( C I(§) = L', and L&' = I(L8) C I(LE) = LEFDH! by ih. and
the monotonicity of I, Theorem B9, and for limit ordinals £ we have for any
¢ < & that I(LS) C I(U<<g LS) = I(L%) = L™ by the monotonicity of I,
hence by i.h. we get L& = {J. o L C U L' = U, I(L6) C LS.

Now let v be the least ordinal such that |y| > |S| and assume L& # L&}
for all ¢ < v, then there is a one-one mapping f : v — S with f(§) € L¢F\ L8

30



in contradiction to |y| > |S|. Hence there is some £ < v with [¢] < |S| and
L¢ = L1 that is L¢ is a fixpoint of I. We have |uz.p|, C L¢ by Theorem
40, By induction on ¢ we show L C |ux.p| = ({S' €S| I(S) C S}, that
is L6 C S for any S C S with I(S') € S§'. Clearly L° = 0 C |ux.¢|,. Now
let S’ such that I(S') € S'. If £ = ( + 1 then LS C S’ by i.h., and by the
monotonicity of I we get L¢ = I(L¢) C I(S') C §'. If £ is a limit ordinal then
by i.h. we have L C §' for any ¢ < &, that is L* = [J._ L® € S'. We have
shown L¢ = L& = |uz.¢| ;.

The proof for G¢ = G¢*! = |vz.p| is analogous. O

Theorem 42. (Substitution)

If @, € L} are such that bound(y) N free(y)) = ), then for any transi-
tion system 7 = (S, —, \) we have that

lolz /]l 7 = ”SOHT[xHMT}
Proof. This is proved by induction on [(¢). For literals ¢ € Lit we have

|z[z/¢]l7 = 9]y = HQCHT[xHWHT]a
I~ele /Wy = [y = I=lr = S\ ly = I~el o,

by using Lemma . In all other base cases we have x ¢ free(¢) hence

lelz/Y]l7 = lelr = ||90||T[xH||w||T]-

By using the induction hypothesis we further get

|(=a) [z /Y]l = = (alz /YD = S\ lalz/¢]],
= S\l riampyi) = 1m0y
[( A B)z/Y]l = lalz/¢ll N 8[x/¢]l -
= lalz /Y]l gty 1812/ oo,
= (e A B) /Pl 7oy

|Qe)[z/¢]l 7 = [O(elz/¢])l 7
={a €S| Vb((a —b)=be |afz/V]|,)}
={aeS|[Vb((a—b)=0be ||Oé||T[m¢—>||1/)||T])}

= 10l 7ot
similar for ¢ = a VvV §5,0a. If ¢ = py.c and x = y then = ¢ free(p)
and |plz/dllr = ol = ”SOHT[IHMT], otherwise if x # y then because

31



of bound(y) N free(y)) = 0, hence y ¢ free(y)), we have that

|(y-a) /P = [py-(alz /)],
=S €S| lelz/¥]ly,_s €S}
=(}S' S S Helrymspomiotry, .o € S}
= (W' € S [l rysmpporn € S}
= (S S Holrputypis € St = loy-alrp ey,
The analogous argument for ¢ = vy.« finishes the proof. ]

The next theorem is some general statement about well-founded binary
relations.

Theorem 43. (Rank function)

Let < ba a well-founded binary relation on the set S, and F C S be a
<-downward closed set, i.e. if p € Fand ¢ < p theny € F. If fis the
mapping from S to the ordinals with fo(¢) = U{f<(¥) + 1| ¥ < ¢},
then for any ordinal £ and order preserving map g : F — &, i.e. if

p € F and ¢ < @ then g(v) < g(¢), we have that
U/alFl <&

Proof. We show f4(p) < g(¢) for ¢ € F by induction on <. If ¢ € F is such

that {¢ € F [ ¢ < ¢} =0 then {¢ | ¢ < ¢} =0, hence fq(p) =0 < g(p).
If p € Fand {¢ € F |9 <} # () then by i.h. we have that

fa(e) = J{Fa) + 110 <}
=Jlfa@) +11v e F, v <)
<Jow)+11ver, vayp)
<\ Holp) v eF, v et =g(p).

This yields f4(¢) < g(p) < £ for any ¢ € F, hence | fo[F] < €. O

32



References

1]
2]

[10]

[11]

[12]

[13]

AFSHARI B., LEIGH G.: Personal comunication (2008).

ALBERUCCI L., FACCHINI A.: The modal p-calculus hierarchy on
restricted classes of transition systems. Journal of Symbolic Logic
(to appear).

ALBERUCCI L., FACCHINI A.: On modal p-calculus and Godel-Lob
logic. Studia Logica (to appear).

ALBERUCCI L.: A syntactical treatment of simultaneous fixpoints
in the modal p-calculus. Technical Report IAM-09-001, University
of Berne (2009).

ALBERUCCI L.: Sequent calculi for the modal p-calculus over S5.
Journal of Logic and Computation (to appear).

CLARKE E.M., EMERSON E.A.: Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. Logic of

Programs 1981: 52-71 (1981).

EMERSON E.A., HALPERN J.Y.: “Sometimes” and “not never” re-

visited: on branching versus linear time temporal logic. Journal of
the ACM 33(1): 151-178 (1986).

FiscHER M., LADNER R.: Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences 18(2): 194—
211 (1979).

HucHEs G.E., CRESSWELL M.J.: A new introduction to modal
logic. Routledge (1996).

JAGER G., KRETZ M., STUDER T.: Canonical completeness of in-

finitary mu. Journal of Logic and Algebraic Programming 76 (2):
270-292 (2008).

JECH Th.: Set theory, the third millennium edition. Springer-Verlag
(2002).

KNASTER B.: Un théoréme sur les fonctions d’ensembles. Annales
de la Société Polonaise de Mathématique 6: 133-134 (1928).

KozeN D.: Results on the propositional p-calculus. Theoretical
Computer Science 27: 333-354 (1983).

33



[14] PNUELI A.: The temporal logic of programs. Foundations of Com-
puter Science 1977: 46-57 (1977).

[15] TARSKI A.: A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics 5(2): 285-309 (1955).

34



o(S),

T[l‘i—>S],

Il [
Ia,za @

[], 10 (Det. f10)

[]’, 10 (Det. [10)

rk, 10 (Def.

rk’, 10 (Det.

(@), 16 (Det. [13)

QO*, 16 (Det.
(), 16 (Det. [15)
rk®(), 16 (Def. |15)
Diy 22 (Def.

\Ifﬁ, 22 (Def. )

(I)l;“ 22 (Def. j
=CONF 23 (Def.
@E, 23 (Def.

N,

Uk, 25 (Def.

8:, 25 (Def. )
Symb(ip), 25 (Def.
Free(y), 26 (Def.
Bound(y), 26 (Det.
free(p), 26 (Def.
bound(y), 26 (Def.
pre(p,n), 26 (Def.
sub(), 27 (Det.
@, 28 (Def.

atom, [5]

cantor normal form, 23 (Def.
closed
under approximation, [J]
under subformulae, [9]
complementation, [6]
constant, [j]

denotation, [7]

fixpoint
greatest,
least,

35



property, [§] bound, 26 (Def.
formula, free, 26 (Det.

initial segment, [9] well-bound, [0]
iterated substitution, [6]

Knaster-Tarski Theorem,

length,
literal,

modal p-calculus,
modal p-formulae,

p-rank, [9)
negation normal form, 28 (Det.

occurrence
of a bound variable, 26 (Det.
of a free variable, 26 (Det.
of a symbol, 25 (Det.
ordinal,

positive, [5]

powerset, [7]

preceding symbol,
proper subformula,
propositional constant,
propositional variable,

renaming, [0

safe,

standard semantics,
states, [7]

subformula, 27 (Det.
substitution, [0]

symbols,

transition relation, [7]
transition system, [7]

valuation, [7]
variable,

36



	Introduction
	Preliminaries
	Minimal -ranks with range 
	Effective computation of the -rank
	Minimum range  for -ranks
	Generating formulae of any rank
	Appendix

