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Abstract

We define a rank function rk, mapping modal µ-formulae on ordi-
nals less than ωω, such that rk(µx.ϕ) > rk(ϕn(x)) for all approximants
ϕn(x) ≡ ϕ[x/ϕn−1(x)], and rk(ϕ) > rk(ψ) for all proper subformulae
ψ of ϕ. The corresponding structural induction on formulae, which
additionally uses that the approximants ϕn(x) are less complex than
the fixpoint µx.ϕ itself, is thus justified by transfinite induction on
ωω. We show that ωω is the least such ordinal. We further give an
algorithm to compute rk(ϕ) by primitive recursion, and we show how
to get formulae ϕ of any rank rk(ϕ) in a uniform way.
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1 Introduction

The modal µ-calculus, introduced by Kozen [13], is an extension of modal
logic (e.g. Hughes and Cresswell [9]) with least and greatest fixpoint construc-
tors and therefore allows us to study fixpoints on an abstract level. Indeed,
the modal µ-calculus is a powerful logic of programs subsuming dynamic and
temporal logics like PDL (Fischer and Ladner [8]), PLTL (Pnueli [14]), CTL
(Clarke and Emerson [6]) and CTL∗ (Emerson and Halpern [7]).

The standard semantics of the modal µ-calculus is based on transition sys-
tems. Given a transition system T with states S, a formula ϕ is interpreted
as the set of states ||ϕ||T ⊆ S where the property expressed by the formula
ϕ holds. For x positive in ϕ, the formula µx.ϕ denotes the least fixpoint
||µx.ϕ||T of the monotone operator S ′ 7→ ||ϕ||T [x 7→S′], which by Knaster-Tarski
Theorem (cf. [12],[15]) exists and can be computed by iterating this operator,
i.e. if we define L0

ϕ,x = ∅, Lξ+1
ϕ,x = ||ϕ||T [x 7→Lξϕ,x] and Lλϕ,x =

⋃
ξ<λ L

ξ
ϕ,x for limit

ordinals λ, then for some ordinal ξ with ξ < |S|+ , that is |ξ| ≤ |S|, we get
that Lξϕ,x = ||µx.ϕ||T .

For any finite transition system T , the least fixpoint Lξϕ,x is reached after
finitely many steps ξ = |ξ| ≤ |S| < ω, and if the formula ϕ is safe for iteration
in x and T , that is if Lnϕ,x = ||ϕn(x)[x/⊥]||T for all natural numbers n, where
ϕn+1(x) ≡ ϕ[x/ϕn(x)], then the least fixpoint can be written as

||µx.ϕ||T =
⋃
n<ω

||ϕn(x)[x/⊥]||T .

The analog for the greatest fixpoint is ||νx.ϕ||T =
⋂
n<ω ||ϕn(x)[x/>]||T . Be-

cause of these equalities and having in mind the collection of all (finite) tran-
sition systems, from a semantical point of view, the approximants ϕn(x)[x/⊥]
and ϕn(x)[x/>] can be considered less complex than µx.ϕ and νx.ϕ respec-
tively.

If we want to study this complexity on the syntactic level, then first of
all we need to replace the semantic notion of a formula ϕ to be safe for
iteration in x and T ; Therefore, in the following, a formula ϕ is called safe,
if all free variables of ϕ are distinct from all bound variables of ϕ, hence ϕ
is safe for iteration in arbitrary x and T . It is not obvious at all, how the
approximants ϕn(x) can be seen to be less complex than µx.ϕ and νx.ϕ in
a purely syntactic way, i.e. how to find a rank function f , mapping formulae
to ordinals such that

� f(ψ) < f(ϕ) if ψ is a proper subformula of ϕ,

� f(ϕn(x)) < f(σx.ϕ) for all natural numbers n and σ ∈ {µ, ν}, if ϕ is
safe.
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A first attempt to find such an f might result in mapping formulae to the
lexicographic ordering of ω×ω by ϕ 7→ (n(ϕ), l(ϕ)), i.e. f(ϕ) = ω·n(ϕ)+l(ϕ),
where l(ϕ) is the ordinary length of the formula and n(ϕ) measures the
nesting of µ and ν. But as we are going to see, this must fail because the
range of f , ran(f) = ω2, is to small.

In this thesis we explicitly define a rank function rke by primitive re-
cursion, meeting the two requirements and being optimal in the following
sense: The quality of rank functions is measured by comparing their range,
that is, by comparing the ordinal

⋃
ran(f), and the range of rke, that is

ran(rke) = ωω, is shown to be as small as possible.
For applications, where this kind of rank functions f are used in proofs by

induction on the formula rank f(ϕ), we refer to [2],[3],[4],[5],[10]. In contrast
to the formula rank defined in [10], we here define the rank function rke

without using the syntactic constructs σnx.ϕ for approximants.
Besides the rank functions f , we even want to consider arbitrary well-

founded binary relations C on the set of formulae, fulfilling two analogous
requirements, i.e.

� ψ C ϕ if ψ is a proper subformula of ϕ,

� ϕn(x) C σx.ϕ for all natural numbers n and σ ∈ {µ, ν}, if ϕ is safe.

But given such a relation C, by transfinite recursion we can always find a
corresponding rank function fC, that is fC(ϕ) =

⋃
{fC(ψ)+1 | ψ C ϕ}, such

that the range of fC is equal to the order type of C (Thm. 43).
In this thesis we show that the range of rke is ωω by determining upper

and lower bounds. We further get that ωω is minimal, that is, the range of
any such rank function is at least ωω, and hence any well-founded relation C
satisfying the requirements above has order type at least ωω.

After introducing the preliminaries in the next section, we show the exis-
tence of a rank function rk in Section 3, and we prove the upper bound ωω for
its range. rke is introduced in Section 4, where its equivalence to rk is shown.
In Section 5 the lower bound ωω for the range of rk and rke is provided. And
finally in Section 6 we show how to generate formulae of arbitrary comlexity,
with respect to this rank functions.
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2 Preliminaries

The language Lµ of the modal µ-calculus results by adding greatest and least
fixpoint operators to propositional modal logic. More precisely, given a set
of countably many propositional variables, Var , and the set Cst = {⊥,>} of
propositional constants, we define the atoms, Atm = Var ∪ Cst, the literals,
Lit = Atm ∪ {∼p | p ∈ Var}, and we inductively define the collection L+

µ of
modal µ-formulae (or simply formulae), such that Lit ⊂ L+

µ and whenever
ϕ, ψ ∈ L+

µ and x ∈ Var then the following are also modal µ-formulae

(ϕ ∧ ψ) , (ϕ ∨ ψ) , ¬ϕ , ♦ϕ , �ϕ , µx.ϕ , νx.ϕ.

Remark 1. L+
µ has two kinds of negation symbols, ∼ and ¬. Usually only

one of the symbols is present in the modal µ-calculus, but in the following
we can easily cover both cases.

The language Lµ of the modal µ-calculus is some subset of L+
µ , such that

only one of the symbols ∼ or ¬ is present in Lµ, and occurrences of the
variable x (Def. 30) in a formula µx.ϕ or νx.ϕ must be positive, that is, any
free occurence of x in ϕ is not preceded by the symbol ∼, or it is preceded
by an even number of symbols ¬ (Def. 33, Rem. 34), for example the formula
µx.¬(µx.x ∧ ¬x) is fine.

The length l(ϕ) of a formula ϕ is defined such that

l(ϕ) =


0 ϕ ∈ Lit,

l(α) + 1 ϕ ≡ ¬α,♦α,�α, µx.α, νx.α,
l(α) + l(β) + 1 ϕ ≡ α ∧ β, α ∨ β.

The fixpoint operators µx, νx bind the variable x in a way similar to the
quantifiers in predicate logic. Therefore we use standard terminology as for
quantifiers; free(ϕ) denotes the set of all propositional variables occurring free
in ϕ (Def. 32), and bound(ϕ) denotes the set of those variables x occurring
in the form µx or νx in ϕ. We further define the set of variables in ϕ,
var(ϕ) = free(ϕ) ∪ bound(ϕ) ⊂ Var. We write ψ ≤ ϕ, if ψ is a subformula of
ϕ (Def. 35), and ψ < ϕ for the proper subformulae. Our notion of subformula
is such that literals do not have proper subformulae, hence x 6< ∼x. sub(ϕ) is
the set of all subformulae of ϕ, and we further define the atoms of a formula
atm(ϕ) = var(ϕ) ∪ (sub(ϕ) ∩ Cst) ⊂ Atm.

Remark 2. If ϕ ≡ µy.∼x then x, y 6≤ ϕ, hence x, y 6∈ sub(ϕ), but we have
x, y ∈ var(ϕ).
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A variable x ∈ bound(ϕ) is called well-bound in ϕ if x 6∈ free(ϕ) and if
there is only one single occurrence of either µx or νx in ϕ. A formula ϕ is
called well-bound if all x ∈ bound(ϕ) are so.

Substitution and complementation of formulae are defined simultanously:
Let x be a propositional variable and let ψ, ϕ be formulae, then ϕ[x/ψ],
the formula where all free occurrences of x are replaced by ψ, is defined by
induction on the structure of ϕ. For literals ϕ ∈ Lit we define

ϕ[x/ψ] =


ψ if ϕ ≡ x,

ψ if ϕ ≡ ∼x,
ϕ otherwise,

substitution distributes over boolean and modal connectives,

ϕ[x/ψ] =

{
◦(α[x/ψ]) if ϕ ≡ ◦α and ◦ ∈ {¬,♦,�},
α[x/ψ] ◦ β[x/ψ] if ϕ ≡ α ◦ β and ◦ ∈ {∧,∨},

and for the fixpoints σ ∈ {µ, ν} we define that

(σy.α)[x/ψ] =

{
σy.α if y ≡ x,

σy.(α[x/ψ]) otherwise.

The complement ϕ of the formula ϕ is defined inductively, such that
x = ∼x, ∼x = x, ⊥ = >, > = ⊥ and ¬α = ¬α, by using de Morgan
dualities for the boolean connectives, α ∧ β = α ∨ β and α ∨ β = α ∧ β, the
usual modal dualities, ♦α = �α and �α = ♦α, and for µx, νx we define
that

µx.α = νx.(α[x/∼x]) and νx.α = µx.(α[x/∼x]).

We further need the iterated substitution ϕn(x) of a formula ϕ for x ∈ Var
and n ≥ 0, that is ϕ0(x) = x and ϕn+1(x) = ϕ[x/ϕn(x)].

Remark 3. If ϕ, ψ ∈ Lµ ⊂ L+
µ then ϕ[x/ψ] and ϕn(x) need not be Lµ-

formulae, e.g. if ϕ ≡ µy.x and ψ ≡ ∼y then ϕ[x/ψ] ≡ µy.∼y 6∈ Lµ. Or if
ϕ ≡ ∼y ∧ µy.x then ϕ2(x) ≡ ∼y ∧ µy.(∼y ∧ µy.x) 6∈ Lµ.

Two formulae ϕ, ψ are equal up to renaming of a bound variable, ϕ ∼1 ψ,
if there exist two formulae α(z′), β(z′′) and variables x, y 6∈ var(α) such that
ϕ ≡ β[z′′/σx.α[z′/x]] and ψ ≡ β[z′′/σy.α[z′/y]]. The relation ∼∞ is the
transitive closure of ∼1, such that ϕ ∼∞ ψ holds for formulae that are equal
up to renaming of bound variables.
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Remark 4. If ϕ ≡ µx.(x ∧ µx.x) and ψ ≡ µy.(y ∧ µx.x) then ϕ 6∼1 ψ, but
ϕ ∼∞ ψ because of ϕ ∼1 µx.(x ∧ µz.z) ∼1 µy.(y ∧ µz.z) ∼1 ψ.

The standard semantics for the modal µ-calculus is given by transi-
tion systems. A transition system T is a triple (S,→, λ) consisting of a
nonempty set S of states, a binary transition relation → on S, and a valua-
tion λ : Var→ ℘(S) (℘(S) the powerset of S), assigning to each variable x a
set λ(x) ⊆ S. Given a transition system T = (S,→, λ), a subset S′ ⊆ S and
a variable x, we denote by T [x 7→ S′] the system (S,→, λ′), where λ′ is

λ′(y) =

{
S′ if y ≡ x,

λ(y) otherwise.

The set of states of a transition system T = (S,→, λ) where ϕ holds,
is called the denotation of ϕ in T and is denoted by ||ϕ||T . We inductively
define ||ϕ||T , simultaneously for all λ (with S,→ fixed), such that ||x||T = λ(x),
||∼x||T = S\λ(x) for x ∈ Var, ||⊥||T = ∅, ||>||T = S, ||¬α||T = S\||α||T and

||α ∧ β||T = ||α||T ∩ ||β||T , ||α ∨ β||T = ||α||T ∪ ||β||T ,

||�α||T = {a ∈ S | ∀b((a→ b)⇒ b ∈ ||α||T )},

||♦α||T = {a ∈ S | ∃b((a→ b) ∧ b ∈ ||α||T )},

||νx.α||T =
⋃
{S′ ⊆ S | S′ ⊆ ||α||T [x 7→S′]},

||µx.α||T =
⋂
{S′ ⊆ S | ||α||T [x 7→S′] ⊆ S′}.

Remark 5. For later use we compute some denotations of formulae in the
transition system T = (S,→, λ) = ({a, b}, {a→ b}, λ).

||♦y||T ={a ∈ S | ∃b((a→ b) ∧ b ∈ λ(y))} =

{
∅ b 6∈ λ(y),

{a} b ∈ λ(y),

||νy.x||T =
⋃
{S′ ⊆ S | S′ ⊆ ||x||T [y 7→S′]} = λ(x),

||(νy.x) ∧ ♦y||T =

{
∅ b 6∈ λ(y),

{a} ∩ λ(x) b ∈ λ(y),

||νy.((νy.x) ∧ ♦y)||T = ∅ because if b ∈ λ(y) then λ(y) 6⊆ {a} ∩ λ(x),

||νx.((νy.x) ∧ ♦y)||T =

{⋃
{∅} = ∅ b 6∈ λ(y),⋃
{∅, {a}} = {a} b ∈ λ(y),

||νy.νx.((νy.x) ∧ ♦y)||T = ∅ because if b ∈ λ(y) then λ(y) 6⊆ {a}.
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The operator Iα,x with Iα,x(S
′) = ||α||T [x 7→S′] can be shown to be monotone

for variables x occurring only positive in α (Thm. 39), hence by Knaster-
Tarski Theorem (cf. [12],[15]) for such x we have that ||µx.α||T and ||νx.α||T
are the least and the greatest fixpoints of Iα,x, respectively (Thm. 40). If
we iterate the operator, such that L0

α,x = ∅, G0
α,x = S, Lξ+1

α,x = Iα,x(L
ξ
α,x),

Gξ+1
α,x = Iα,x(G

ξ
α,x) and Lρα,x =

⋃
ξ<ρ L

ξ
α,x, G

ρ
α,x =

⋂
ξ<ρG

ξ
α,x for limit ordinals

ρ, then for some ordinal ξ with |ξ| ≤ |S| we get (Thm. 41)

||µx.α||T = Lξα,x and ||νx.α||T = Gξ
α,x.

Remark 6. (cf. Rem. 5) For α ≡ (νy.x) ∧ ♦y and for the transition sys-
tem T = ({a, b}, {a→ b}, λ) with λ(x) = λ(y) = {a, b}, we find the fixpoint
G1
α,x = ||νx.α||T = {a} such that Iα,x({a}) = {a}. But the fixpoint property

is not reflected in the denotation, i.e. ||νx.α||T 6= ||α[x/νx.α]||T = ∅. Notice
that bound(α) ∩ free(α) 6= ∅.

If two formulae ϕ, ψ are such that bound(ϕ)∩ free(ψ) = ∅, then it can be
shown that for all transition systems T we have ||ϕ[x/ψ]||T = ||ϕ||T [x7→||ψ||T ]

(Thm. 42). By using this fact for formulae α with bound(α) ∩ free(α) = ∅,
we get

Lnα,x = ||αn(x)[x/⊥]||T and Gn
α,x = ||αn(x)[x/>]||T .

Remark 7. (cf. Rem. 5) For the formula α ≡ (νy.x) ∧ ♦y and for the tran-
sition system T = ({a, b}, {a→ b}, λ) with λ(x) = λ(y) = {a, b}, we have
G2
α,x = {a} 6= ∅ = ||α2(x)[x/>]||T .

If in addition to bound(α) ∩ free(α) = ∅, we have that x is positive in α,
that is Iα,x is monotone, then for finite transition systems T with |S| ≤ n we
get that

||νx.α(x)||T = ||αn(x)[x/>]||T and ||µx.α(x)||T = ||αn(x)[x/⊥]||T .

In the following a formulae ϕ is called safe, if bound(ϕ) ∩ free(ϕ) = ∅.

Remark 8. Well-bound formulae are safe, and for any formula ϕ we can
find a well-bound formula ϕ∗ such that ϕ ∼∞ ϕ∗. Notice further, that
subformulae of well-bound formulae are well-bound, but subformulae of safe
formulae need not be safe, e.g. if ϕ ≡ x ∧ µx.x then µx.ϕ is safe, but ϕ is
not.

By Ω we denote the first uncountable ordinal (hence the union of a count-
able subset of Ω is in Ω, and Ω is closed under addition). For any set X there
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is the set ΩX of all functions f : X → Ω, i.e. the set of all sequences of or-
dinals indexed by elements of X. 0 ∈ ΩX is the function which maps every
argument to 0.

A subset F ⊆ L+
µ is closed under subformulae if ψ ∈ F whenever ψ < ϕ

and ϕ ∈ F . And F is closed under approximation if ϕn(x) ∈ F for all
natural numbers n, if µx.ϕ ∈ F or νx.ϕ ∈ F and ϕ is safe. Further we
call F an initial segment of formulae, if it is closed under subformulae and
approximation.

Remark 9. Observe that Lµ is an initial segment of formulae, i.e. it is closed
under approximation. For ϕn(x) to be in Lµ it is important that ϕ is safe,
see Remark 3.

For initial segments F ⊆ L+
µ , a µ-rank on F is any mapping |.| : F → Ω

such that

� |ψ| < |ϕ| if ψ < ϕ,

� |ϕn(x)| < |σx.ϕ| for all natural numbers n and σ ∈ {µ, ν}, if ϕ is safe.
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3 Minimal µ-ranks with range ωω

In order to define a µ-rank on L+
µ we first define the mapping [[ϕ]] : ΩVar → Ω

for any formula ϕ. We need the following: Given a sequence s ∈ ΩVar, a
variable x and ξ ∈ Ω, the sequence s[x:ξ] ∈ ΩVar is defined such that

s[x:ξ](y) =

{
ξ x ≡ y,

s(y) otherwise.

The composition in x of f, g : ΩVar → Ω is (f◦xg)(s) = f(s[x:g(s)]), and the
iteration of f in x is fn+1

x = f◦x(fnx ) with f 0
x = 0.

The first part of the following definition is by Afshari and Leigh [1].

Definition 10.

(1) For every ϕ ∈ L+
µ we define the function [[ϕ]] : ΩVar → Ω such that

[[ϕ]](s) =



0 ϕ ∈ Cst,

s(x) ϕ ≡ x,∼x,
[[α]](s) + 1 ϕ ≡ ¬α,♦α,�α,
max{[[α]](s), [[β]](s)}+ 1 ϕ ≡ α ∧ β, α ∨ β,
supn<ω{[[α]]nx(s) + 1} ϕ ≡ µx.α, νx.α.

(2) For every ϕ ∈ L+
µ we define the function [[ϕ]]′ : ΩVar → Ω such that

[[ϕ]]′(s) =



0 ϕ ∈ Cst,

s(x) ϕ ≡ x,∼x,
[[α]]′(s) + 1 ϕ ≡ ¬α,♦α,�α,
max{[[α]]′(s), [[β]]′(s)}+ 1 ϕ ≡ α ∧ β, α ∨ β,
supn<ω{[[α]]′

n

x(s) + 1} ϕ ≡ µx.α, νx.α, α safe,

[[α[x/⊥]]]′(s) + 1 ϕ ≡ µx.α, νx.α, α not safe.

(3) The functions rk, rk′ : L+
µ → Ω are defined such that

rk(ϕ) = [[ϕ]](0) and rk′(ϕ) = [[ϕ]]′(0).

In the remaining of this section we show that rk and rk′ are µ-ranks on
L+
µ with range ωω. We show that rk′(ϕ) is minimal with respect to any other

µ-rank, and that rk is minimal for well-bound formulae, i.e rk(ϕ) = rk′(ϕ) for
well-bound formulae ϕ. In order to do this we need the following technical
lemma.
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Lemma 11.

For all ϕ, ψ ∈ L+
µ , x, y ∈ Var, ξ ∈ Ω and natural numbers n we have

(1) [[ϕ]] = [[ϕ[x/∼x]]] and [[ϕ[x/⊥]]] = [[ϕ[x/>]]] and [[ϕ]] = [[ϕ]]

(2) x 6∈ free(ϕ) ⇒ [[ϕ]](s[x:ξ]) = [[ϕ]](s)

(3) x 6≡ y, y 6∈ free(ψ) ⇒ ([[ϕ]]◦x[[ψ]])ny = [[ϕ]]ny◦x[[ψ]]

(4) bound(ϕ) ∩ free(ψ) = ∅ ⇒ [[ϕ[x/ψ]]] = [[ϕ]]◦x[[ψ]]

(5) ϕ safe ⇒ [[ϕ]]nx = [[ϕn(x)[x/⊥]]]

(6) Statements (1)−(5) still hold if [[.]] is replaced by [[.]]′

(7) ϕ well-bound ⇒ [[ϕ]]′ = [[ϕ]]

Proof. Part 1 is proved by induction on l(ϕ) and is left to the reader.
Part 2 is proved by induction on l(ϕ); We only consider the case ϕ ≡ µy.ψ

and we are going to show [[ψ]]ny (s[x:ξ]) = [[ψ]]ny (s) by induction on n, hence
[[ϕ]](s[x:ξ]) = [[ϕ]](s). Assuming x 6∈ free(ϕ) we either have that x ≡ y or
x 6∈ free(ψ). If n = 0 then [[ψ]]ny = 0 by definition. For n + 1 > 0 and x 6≡ y
(similar for x ≡ y) we have that

[[ψ]]n+1
y (s[x:ξ]) = [[ψ]]◦y[[ψ]]ny (s[x:ξ]) = [[ψ]]((s[x:ξ])[y:[[ψ]]ny (s[x:ξ])])

= [[ψ]]((s[x:ξ])[y:[[ψ]]ny (s)]) by i.h. for n

= [[ψ]]((s[y:[[ψ]]ny (s)])[x:ξ]) because x 6≡ y

= [[ψ]](s[y:[[ψ]]ny (s)]) = [[ψ]]n+1
y (s). by i.h. for l(ψ)

Part 3 is proved by induction on n. For n = 0 we have

([[ϕ]]◦x[[ψ]])ny = 0 = 0◦x[[ψ]] = [[ϕ]]ny◦x[[ψ]].

For the induction step n+ 1 > 0 we have the following

([[ϕ]]◦x[[ψ]])n+1
y (s) = ([[ϕ]]◦x[[ψ]])◦y([[ϕ]]◦x[[ψ]])ny (s)

= ([[ϕ]]◦x[[ψ]])◦y([[ϕ]]ny◦x[[ψ]])(s) by i.h. for n

= ([[ϕ]]◦x[[ψ]])(s[y:ξ]) with ξ = ([[ϕ]]ny◦x[[ψ]])(s)

= [[ϕ]]((s[y:ξ])[x:[[ψ]](s[y:ξ])])

= [[ϕ]]((s[y:ξ])[x:[[ψ]](s)]) by Part 2, y 6∈ free(ψ)

= [[ϕ]]((s[x:[[ψ]](s)])[y:ξ]) because x 6≡ y

= ([[ϕ]]◦y[[ϕ]]ny )(s[x:[[ψ]](s)]) because ξ = [[ϕ]]ny (s[x:[[ψ]](s)])

= [[ϕ]]n+1
y ◦x[[ψ]](s).
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Part 4 goes by induction on l(ϕ). In case ϕ ≡ ∼x, we use Part 1. But
here we only consider the case ϕ ≡ µy.α. If x 6≡ y then

[[ϕ[x/ψ]]](s) = supn<ω{[[α[x/ψ]]]ny (s) + 1}
= supn<ω{([[α]]◦x[[ψ]])ny (s) + 1} by i.h. for l(α)

= supn<ω{[[α]]ny◦x[[ψ]](s) + 1} by Part 3, x 6≡ y, y 6∈ free(ψ)

= supn<ω{[[α]]ny (s[x:[[ψ]](s)]) + 1}
= [[ϕ]](s[x:[[ψ]](s)]) = [[ϕ]]◦x[[ψ]](s),

else if x ≡ y then x 6∈ free(ϕ), hence [[ϕ[x/ψ]]](s) = [[ϕ]](s) = [[ϕ]]◦x[[ψ]](s) by
Part 2.

For Part 5 we assume bound(ϕ) ∩ free(ϕ) = ∅ and we are going to show
[[ϕ]]nx = [[ϕn(x)[x/⊥]]] by induction on n. For n = 0 this is 0 = [[⊥]], and for
n+ 1 > 0 we get

[[ϕ]]n+1
x = [[ϕ]]◦x[[ϕ]]nx = [[ϕ]]◦x[[ϕn(x)[x/⊥]]] by i.h. for n

= [[ϕ[x/ϕn(x)[x/⊥]]]] by Part 4, bound(ϕ) ∩ free(ϕn(x)) = ∅
= [[(ϕ[x/ϕn(x)])[x/⊥]]] = [[ϕn+1(x)[x/⊥]]].

Part 6 is proved analogous to (1)−(5). We only need to consider the new
case in the proofs by induction on l(ϕ) for (1),(2) and (4), that is the case
ϕ ≡ µy.α where α is not safe. For Part 6/(1), e.g. because of l(α[y/⊥]) = l(α)
and α[y/∼y][y/⊥] ≡ α[y/>] ≡ α[y/⊥], by using the i.h. we get that

[[µy.α]]′(s) = [[νy.α[y/∼y]]]′(s) = [[α[y/∼y][y/⊥]]]′(s) + 1

= [[α[y/⊥]]]
′
(s) + 1 = [[α[y/⊥]]]′(s) + 1 = [[µy.α]]′(s).

For Part 6/(2), with x 6∈ free(ϕ) we have x 6∈ free(α[y/⊥]), hence by i.h.

[[µy.α]]′(s[x:ξ]) = [[α[y/⊥]]]′(s[x:ξ]) + 1 = [[α[y/⊥]]]′(s) + 1 = [[µy.α]]′(s).

For Part 6/(4), if x 6≡ y then by i.h. and because y 6∈ free(ψ) we get that

[[µy.α[x/ψ]]]′(s) = [[α[x/ψ][y/⊥]]]′(s) + 1 = [[α[y/⊥][x/ψ]]]′(s) + 1

= [[α[y/⊥]]]′◦x[[ψ]]′(s) + 1 = [[α[y/⊥]]]′(s[x:[[ψ]]′(s)]) + 1

= [[µy.α]]′(s[x:[[ψ]]′(s)]) = [[µy.α]]′◦x[[ψ]]′(s).

Part 7 is proved by induction on l(ϕ), by using that subformulae of well-
bound formulae are well-bound and safe.

The following theorem shows that rk and rk′ are µ-ranks on L+
µ , and that

rk′(ϕ) is minimal with respect to any other µ-rank.
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Theorem 12. (Minimal µ-ranks)

(1) rk and rk′ are µ-ranks on L+
µ .

(2) If |.| : F → Ω is any µ-rank on an initial segment F ⊆ L+
µ ,

then we have that

(i) rk′(ϕ) ≤ |ϕ| for all ϕ ∈ F ,

(ii) rk(ϕ) ≤ |ϕ| for all well-bound ϕ ∈ F .

Proof. Part 1 is proved by induction on l(ϕ). The only non trivial case is
where ϕ is µx.α or νx.α, but this case follows by Lemma 11.5/11.6 and
because of [[α]]1x(0) = rk(α) and [[α]]nx(0) = [[αn(x)[x/⊥]]](0) = rk(αn(x)) for
safe α (the same for [[.]]′ and rk′).

Part 2(i) is proved by induction on the µ-rank rk′(ϕ). We only consider
the case where ϕ ≡ µx.α. If α is safe, then

rk′(µx.α) = [[µx.α]]′(0) = supn<ω{([[α(x)]]′
n

x(0) + 1}
= supn<ω{([[αn(x)[x/⊥]]]′(0) + 1} by 11.6

≤ supn<ω{|αn(x)|+ 1} by i.h. for αn(x)

≤ |µx.α|. by definition of µ-rank

Otherwise if α is not safe, then

rk′(µx.α) = [[µx.α]]′(0) = [[α[x/⊥]]]′(0) + 1 ≤ |α|+ 1 ≤ |µx.α|.

Part 2(ii) follows by Lemma 11.7 and Part 2(i).

The next lemma shows that rk′ and rk are surjective functions onto the
same ordinal.

Lemma 13. (Surjectivity)

For all ϕ, ψ ∈ L+
µ , ξ ∈ Ω and F ∈ {Lµ,L+

µ } we have that

(1) ϕ ∼∞ ψ ⇒ [[ϕ]] = [[ψ]]

(2) ξ ∈ rk[F ] ⇒ ξ ⊂ rk[F ]

(3) rk′[F ] = rk[F ]

Proof. For Part 1 we first show ([[α]]◦z[[x]])nx = [[α]]nz for x 6∈ free(α) by induc-
tion on n.
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For n = 0 this is 0 = 0, and for n+ 1 > 0 we have

([[α]]◦z[[x]])n+1
x (s) = ([[α]]◦z[[x]])◦x([[α]]◦z[[x]])nx(s)

= ([[α]]◦z[[x]])◦x[[α]]nz (s) by i.h. for n

= ([[α]]◦z[[x]])(s[x:ξ])

= [[α]]((s[x:ξ])[z:[[x]](s[x:ξ])]) let ξ = [[α]]nz (s)

= [[α]]((s[x:ξ])[z:ξ])

= [[α]]((s[z:ξ])[x:ξ]) = [[α]](s[z:ξ]) by 11.2, x 6∈ free(α)

= [[α]]◦z[[α]]nz (s) = [[α]]n+1
z (s).

From this we get [[µx.α[z/x]]] = [[µz.α]] for x 6∈ var(α), because

[[µx.α[z/x]]] = supn<ω{[[α[z/x]]]nx(s) + 1}
= supn<ω{([[α]]◦z[[x]])nx(s) + 1} by 11.4, x 6∈ bound(α)

= supn<ω{[[α]]nz (s) + 1} = [[µz.α]]. because x 6∈ free(α)

For formulae ϕ ∼1 ψ such that ϕ ≡ β[z′/µx.α[z/x]] and ψ ≡ β[z′/µy.α[z/y]]
and x, y 6∈ var(α), we are now able to prove [[ϕ]] = [[ψ]] by induction on l(β).
The claim follows because ∼∞ is the transitive closure of ∼1.

Part 2 is proved by using the minimality of rk. First we observe that F is
an initial segment of formulae. We define |.| : F → Ω by transfinite recursion
such that

|ϕ| =
⋃
{|α|+ 1 | rk(α) < rk(ϕ), α ∈ F}.

|.| is a µ-rank because rk(ψ) < rk(ϕ) implies |ϕ| ≥ |ψ| + 1. By induction on
rk(ϕ) we get |ϕ| ≤ rk(ϕ), and this yields |ϕ| = rk(ϕ) for well-bound ϕ by
Theorem 12.2(ii). For ϕ ∼∞ ψ we get |ϕ| = |ψ| by the definition of |.| and by
Part 1, and for any ϕ ∈ F there is a well-bound ϕ∗ ∈ F such that ϕ ∼∞ ϕ∗,
hence |ϕ| = |ϕ∗| = rk(ϕ∗) = rk(ϕ), that is |ϕ| = rk(ϕ) for all ϕ ∈ F . Now
we assume that there is some ζ < ξ with ζ 6∈ rk[F ]. Given such ζ we define
the set Z = {rk(ϕ) | rk(ϕ) > ζ, ϕ ∈ F}. We have Z 6= ∅ because ξ ∈ rk[F ],
hence there is some ϕ0 ∈ F with rk(ϕ0) = minZ, and rk(α) < rk(ϕ0) implies
rk(α) < ζ for α ∈ F . But now we get

rk(ϕ0) = |ϕ0| =
⋃
{rk(α) + 1 | rk(α) < ζ, α ∈ F} ≤ ζ,

in contradiction to rk(ϕ0) ∈ Z. Hence there is no such ζ, and ξ ⊂ rk[F ].
For Part 3 we show both inclusions. Let W ⊂ F be the set of all

well-bound formulae in F . We have that rk[F ] = rk[W ] by Part 1, hence
rk[F ] = rk′[W ] ⊆ rk′[F ] by Lemma 11.7. On the other hand for any ordinal
ξ = rk′(ϕ) ∈ rk′[F ] we have ξ ≤ rk(ϕ) by Theorem 12.2(i), hence either
ξ = rk(ϕ) ∈ rk[F ] or ξ ∈ rk(ϕ) ⊂ rk[F ] by Part 2, that is rk′[F ] ⊆ rk[F ].
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Theorem 14. (Upper bound)

For all ϕ, ψ ∈ L+
µ , x ∈ Var and natural numbers n we have that

(1) bound(ϕ) ∩ free(ψ) = ∅, x 6∈ free(ψ)
⇒ [[ϕ[x/ψ]]](s) ≤ [[ψ]](s) + [[ϕ]](s)

(2) [[ϕ]]nx(s) ≤ [[ϕ]](s) · n
(3) rk(ϕ) < ωω (i.e. rk′[L+

µ ] = rk[L+
µ ] ⊆ ωω)

Proof. Part 1 goes by induction on the µ-rank rk(ϕ). We only consider the
case ϕ ≡ µy.α and x 6≡ y. To show this, we need a further case distinction:
If ϕ is well-bound, then α is safe and we have

[[ϕ[x/ψ]]](s) = supn<ω{[[α[x/ψ]]]ny (s) + 1}
= supn<ω{([[α]]◦x[[ψ]])ny (s) + 1} by 11.4, bound(α) ∩ free(ψ) = ∅
= supn<ω{([[α]]ny◦x[[ψ]])(s) + 1} by 11.3, x 6= y, x 6∈ free(ψ)

= supn<ω{([[αn(y)[y/⊥]]]◦x[[ψ]])(s) + 1} by 11.5, α safe

= supn<ω{[[αn(y)[y/⊥][x/ψ]]](s) + 1} by 11.4

≤ supn<ω{[[ψ]](s) + [[αn(y)[y/⊥]]](s) + 1} i.h. for rk(αn(y)[y/⊥])

= [[ψ]](s) + supn<ω{[[α]]ny (s) + 1} by 11.5, α safe

= [[ψ]](s) + [[ϕ]](s).

Otherwise if ϕ is not well-bound, then we can find a well-bound formula ϕ∗

with ϕ∗ ∼∞ ϕ and bound(ϕ∗) ∩ free(ψ) = ∅, hence ϕ∗[x/ψ] ∼∞ ϕ[x/ψ]. By
Lemma 13.1, because of rk(ϕ∗) = rk(ϕ) and by the previous case we get

[[ϕ[x/ψ]]](s) = [[ϕ∗[x/ψ]]](s) ≤ [[ψ]](s) + [[ϕ∗]](s) = [[ψ]](s) + [[ϕ]](s).

Part 2 is first proved for well-bound formulae ϕ by induction on n. For
n = 0 this is 0(s) ≤ 0 and for n+ 1 > 0 we get

[[ϕ]]n+1
x (s) = [[ϕn+1(x)[x/⊥]]](s) = [[ϕ[x/ϕn(x)[x/⊥]]]](s) by 11.5

≤ [[ϕn(x)[x/⊥]]](s) + [[ϕ]](s)
by Part 1, x 6∈ free(ϕn(x)[x/⊥]),
bound(ϕ) ∩ free(ϕn(x)) = ∅

= [[ϕ]]nx(s) + [[ϕ]](s) ≤ [[ϕ]](s) · (n+ 1). by i.h for n

For any formula ϕ there is a well-bound formula ϕ∗ such that ϕ∗ ∼∞ ϕ,
hence the full claim now follows because of [[ϕ∗]] = [[ϕ]] by Lemma 13.1.

Part 3 is proved by induction on l(ϕ). We only consider ϕ ≡ µx.α, but
for such ϕ we have rk(µx.α) = supn<ω{[[α]]nx(0) + 1} ≤ rk(α) · ω + 1 < ωω by
i.h. and Part 2.

15



4 Effective computation of the µ-rank

In this section we provide an alternative definition of rk, namely rke, which
is defined by primitive recursion and hence is effectively computable, and we
prove the equivalence of the two definitions.

Definition 15.

(1) For every ϕ ∈ L+
µ we define 〈ϕ〉 ∈ ΩAtm such that 〈ϕ〉u = 0 if u 6∈ atm(ϕ)

and otherwise

〈ϕ〉u =


0 ϕ ∈ Lit,

〈α〉u + 1 ϕ ≡ ¬α,�α,♦α,
max{〈α〉u, 〈β〉u}+ 1 ϕ ≡ α ∧ β, α ∨ β,
〈α〉u + 1 + 〈α〉x · ω ϕ ≡ µx.α, νx.α.

(2) We fix a mapping ϕ 7→ ϕ∗ on L+
µ such that ϕ∗ is well-bound and

ϕ∗ ∼∞ ϕ, and such that ϕ∗ ≡ ϕ if ϕ is well-bound. The mappings
fe, rke : L+

µ → Ω are now defined such that

fe(ϕ) = max
u∈Atm

{〈ϕ〉u} and rke(ϕ) = fe(ϕ∗).

Remark 16. fe(ϕ) = max
u∈atm(ϕ)

{〈ϕ〉u} because 〈ϕ〉u = 0 for u 6∈ atm(ϕ).

The following technical lemmas are used to show the equivalence of rk
and rke.

Lemma 17.

Let ϕ be well-bound and bound(ϕ) ∩ var(ψ) = ∅, then we have that

〈ϕ[x/ψ]〉u =

{
〈ϕ〉u x 6∈ free(ϕ) or u 6∈ atm(ψ),

max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x} x ∈ free(ϕ) and u ∈ atm(ψ).

Proof. We distinguish three cases. In the first case we assume x 6∈ free(ϕ).
But then we have ϕ[x/ψ] ≡ ϕ hence 〈ϕ[x/ψ]〉u = 〈ϕ〉u.

In the second case we assume x ∈ free(ϕ) and u 6∈ atm(ψ). We show
this case by induction on l(ϕ). Further, we assume u ∈ atm(ϕ), because if
u 6∈ atm(ϕ) ∪ atm(ψ) then 〈ϕ[x/ψ]〉u = 〈ϕ〉u = 0 by definition. If ϕ ≡ x
then 〈ϕ[x/ψ]〉u = 〈ψ〉u = 0 = 〈ϕ〉u. For l(ϕ) > 0, here we only consider
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ϕ ≡ µy.α. In this case we have y 6∈ atm(ψ) because of the assumption
bound(ϕ) ∩ var(ψ) = ∅, hence

〈ϕ[x/ψ]〉u = 〈µy.α[x/ψ]〉u = 〈α[x/ψ]〉u + 1 + 〈α[x/ψ]〉y · ω
= 〈α〉u + 1 + 〈α〉y · ω = 〈ϕ〉u. by i.h.

In the third case we assume x ∈ free(ϕ) and u ∈ atm(ψ). In this case we
prove 〈ϕ[x/ψ]〉u = max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x} by induction on l(ϕ). If ϕ ≡ x,
then we have

〈ϕ[x/ψ]〉u = 〈ψ〉u = max{0, 〈ψ〉u + 0} = max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x}.

For l(ϕ) > 0, here we only consider the cases ϕ ≡ α ∧ β and ϕ ≡ µy.α. If
ϕ ≡ α ∧ β we further distinguish the following two cases:
(i) In case x ∈ free(α) ∩ free(β), by using the i.h. we have the following

〈ϕ[x/ψ]〉u = 〈(α ∧ β)[x/ψ]〉u = max{〈α[x/ψ]〉u, 〈β[x/ψ]〉u}+ 1

= max{max{〈α〉u, 〈ψ〉u + 〈α〉x},max{〈β〉u, 〈ψ〉u + 〈β〉x}}+ 1

= max{max{〈α〉u, 〈β〉u},max{〈ψ〉u + 〈α〉x, 〈ψ〉u + 〈β〉x}}+ 1

= max{max{〈α〉u, 〈β〉u}+ 1, 〈ψ〉u + max{〈α〉x, 〈β〉x}+ 1}
= max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x}.

(ii) For x 6∈ free(α)∩ free(β) we consider the case x 6∈ free(α) and x ∈ free(β).
Because ϕ is well-bound, we have x 6∈ bound(ϕ), hence x 6∈ atm(α) and
〈α〉x = 0, and from this we get

〈ϕ[x/ψ]〉u = max{〈α[x/ψ]〉u, 〈β[x/ψ]〉u}+ 1

= max{〈α〉u,max{〈β〉u, 〈ψ〉u + 〈β〉x}}+ 1 by i.h. and case two

= max{max{〈α〉u, 〈β〉u}, 〈ψ〉u + 〈β〉x}+ 1

= max{max{〈α〉u, 〈β〉u}+ 1, 〈ψ〉u + max{〈α〉x, 〈β〉x}+ 1}
= max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x}.

If ϕ ≡ µy.α then y 6∈ var(ψ) because of bound(ϕ) ∩ var(ψ) = ∅, hence
〈α[x/ψ]〉y = 〈α〉y by case two, and finally we have

〈ϕ[x/ψ]〉u = 〈α[x/ψ]〉u + 1 + 〈α[x/ψ]〉y · ω = 〈α[x/ψ]〉u + 1 + 〈α〉y · ω
= max{〈α〉u, 〈ψ〉u + 〈α〉x}+ 1 + 〈α〉y · ω by i.h.

= max{〈α〉u + 1 + 〈α〉y · ω, 〈ψ〉u + 〈α〉x + 1 + 〈α〉y · ω}
= max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x}.
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Lemma 18.

For any variables x, y, z, z′ and any formula ϕ we have that

(1) x 6≡ y, x 6≡ z, y, z 6∈ bound(ϕ) ⇒ 〈ϕ[z′/y]〉x = 〈ϕ[z′/z]〉x
(2) x 6∈ bound(ϕ), y, z 6∈ var(ϕ) ⇒ 〈ϕ[x/y]〉y = 〈ϕ[x/z]〉z
(3) If ϕ, ψ are well-bound formulae with ϕ ∼∞ ψ and x ∈ free(ϕ),

then we have that 〈ϕ〉x = 〈ψ〉x.

Proof. For Part 1, we first observe that x ∈ atm(ϕ[z′/y]) iff x ∈ atm(ϕ[z′/z]),
because of x 6≡ y and x 6≡ z. Hence if x 6∈ atm(ϕ[z′/y]) then we have
〈ϕ[z′/y]〉x = 0 = 〈ϕ[z′/z]〉x. The other case is proved by induction on l(ϕ). If
ϕ ∈ Lit then ϕ[z′/y] ∈ Lit and ϕ[z′/z] ∈ Lit hence 〈ϕ[z′/y]〉x = 0 = 〈ϕ[z′/z]〉x.
Using the induction hypothesis we get for ◦ ∈ {¬,�,♦} and ϕ ≡ ◦α that

〈ϕ[z′/y]〉x = 〈α[z′/y]〉x + 1 = 〈α[z′/z]〉x + 1 = 〈ϕ[z′/z]〉x.

Analogous for ◦ ∈ {∧,∨} and ϕ ≡ α ◦ β. If σ ∈ {µ, ν} and ϕ ≡ σu.α, and in
case of u ≡ z′, we have ϕ[z′/y] ≡ ϕ[z′/z]. Otherwise, if u 6≡ z′ then because
of i.h. and y, z 6∈ bound(ϕ), that is u 6≡ y and u 6≡ z, we have

〈ϕ[z′/y]〉x = 〈σu.(α[z′/y])〉x
= 〈α[z′/y]〉x + 1 + 〈α[z′/y]〉u · ω
= 〈α[z′/z]〉x + 1 + 〈α[z′/z]〉u · ω = 〈σu.(α[z′/z])〉x = 〈ϕ[z′/z]〉x.

For Part 2, we first observe that y ∈ atm(ϕ[x/y]) iff z ∈ atm(ϕ[x/z]),
because of y, z 6∈ var(ϕ). Hence if y 6∈ atm(ϕ[x/y]) then we have that
〈ϕ[x/y]〉y = 0 = 〈ϕ[x/z]〉z. The other case is proved by induction on l(ϕ). If
ϕ ∈ Lit then ϕ[x/y] ∈ Lit and ϕ[x/z] ∈ Lit hence 〈ϕ[x/y]〉y = 0 = 〈ϕ[x/z]〉z.
Using the induction hypothesis we easily get the claim for ϕ built from
the connectives ¬,�,♦,∧,∨. If σ ∈ {µ, ν} and ϕ ≡ σu.α then because
of x 6∈ bound(ϕ) and y, z 6∈ var(ϕ) we have u 6≡ x, u 6≡ y, u 6≡ z, and because
of i.h. and Part 1 we get

〈ϕ[x/y]〉y = 〈σu.(α[x/y])〉y
= 〈α[x/y]〉y + 1 + 〈α[x/y]〉u · ω
= 〈α[x/z]〉z + 1 + 〈α[x/z]〉u · ω = 〈σu.(α[x/z])〉z = 〈ϕ[x/z]〉z.

For Part 3, we first observe that there is a finite sequence of formulae

ϕ ≡ ϕ0 ∼1 ϕ1 ∼1 . . . ∼1 ϕn ≡ ψ

18



such that ϕi is well-bound and x ∈ free(ϕi) for i ≤ n, hence it is enough to
prove the claim for ϕ ∼1 ψ instead of ϕ ∼∞ ψ. Assuming ϕ ∼1 ψ, we have

ϕ ≡ β[z′′/σy.α[z′/y]] and ψ ≡ β[z′′/σz.α[z′/z]],

for some y, z 6∈ var(α) and w.l.o.g. z′ 6∈ bound(α). We further have x 6≡ y and
x 6≡ z because of x ∈ free(ϕ) ∩ free(ψ), and we have y, z 6∈ bound(α) because
ϕ and ψ are well-bound. Now by using Part 1 and Part 2 we get

〈σy.α[z′/y]〉x = 〈α[z′/y]〉x + 1 + 〈α[z′/y]〉y · ω
= 〈α[z′/z]〉x + 1 + 〈α[z′/z]〉z · ω = 〈σz.α[z′/z]〉x.

Using this and Lemma 17 we finally get 〈ϕ〉x = 〈ψ〉x.

Lemma 19.

Let ϕ be well-bound and bound(ϕ) ∩ var(ψ) = ∅, then we have that

x ∈ free(ϕ) ⇒ fe(ϕ[x/ψ]) = max{fe(ϕ), fe(ψ) + 〈ϕ〉x}.

Proof. If x ∈ free(ϕ) then by Lemma 17 we have that 〈ϕ[ψ/x]〉u = 〈ϕ〉u if
u 6∈ atm(ψ) and that 〈ϕ[ψ/x]〉u = max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x} if u ∈ atm(ψ).
Therefore, we get

fe(ϕ[x/ψ]) = max
u∈Atm

{〈ϕ[x/ψ]〉u} = max

 max
u6∈atm(ψ)

{〈ϕ〉u}

max
u∈atm(ψ)

{max{〈ϕ〉u, 〈ψ〉u + 〈ϕ〉x}}

= max

 max
u6∈atm(ψ)

{〈ϕ〉u}

max{ max
u∈atm(ψ)

{〈ϕ〉u}, max
u∈atm(ψ)

{〈ψ〉u}+ 〈ϕ〉x}

= max{max
u∈Atm

{〈ϕ〉u}, max
u∈atm(ψ)

{〈ψ〉u}+ 〈ϕ〉x}

= max{fe(ϕ), fe(ψ) + 〈ϕ〉x}.

The next lemma is some kind of a generalisation of the previous two
lemmas.

Lemma 20.

Let x0, . . . , xn ∈ free(ϕ) be pairwise distinct variables.
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(1) If ϕ is well-bound, y 6∈ bound(ϕ) and xi 6= y for i ≤ n then

〈ϕ[x0/y] . . . [xn/y]〉y = max{〈ϕ〉y,maxi≤n{〈ϕ〉xi}}.

(2) If ϕ[x0/ψ0] . . . [xn/ψn] is well-bound, xj 6∈ var(ψi) for i < j ≤ n
and bound(ϕ) ∩ var(ψi) = bound(ψi) ∩ var(ψj) = ∅ for i < j ≤ n,
then we have that

fe(ϕ[x0/ψ0] . . . [xn/ψn]) = max{fe(ϕ),maxi≤n{fe(ψi) + 〈ϕ〉xi}}.

Proof. Part 1 is proved by induction on n by using Lemma 17. We further use
that αi ≡ ϕ[x0/y] . . . [xi−1/y] is well-bound, y 6∈ bound(αi) and 〈αi〉xi = 〈ϕ〉xi
for all i ≤ n. Part 2 is proved by induction on n by using Lemma 19. No-
tice that βi ≡ ϕ[x0/ψ0] . . . [xi−1/ψi−1] is well-bound, bound(βi) ∩ var(ψi) = ∅,
xi ∈ free(βi) and 〈βi〉xi = 〈ϕ〉xi for all i ≤ n.

The next theorem shows the equivalence of rk and rke. Therefore, it
provides a method to compute the µ-rank rk by primitive recursion.

Theorem 21. (Effective computation)

For all ϕ ∈ L+
µ we have that rk(ϕ) = rke(ϕ)

Proof. Let ∗ : L+
µ → Ω be the mapping used in Definition 15.2. By induction

on rk(ϕ) we show that rk(ϕ) = fe(ϕ) for all well-bound formulae ϕ. The full
claim of the theorem follows by Lemma 13.1 because for any ϕ we then have
that

rk(ϕ) = rk(ϕ∗) = fe(ϕ∗) = rke(ϕ).

In the induction we only consider the case ϕ ≡ µx.α. By Lemma 11.5 and
because α is well-bound we get

rk(ϕ) = supn<ω{[[α]]nx(0) + 1} = supn<ω{rk(αn(x)) + 1}.

For each natural number n we have αn(x)∗ ∼∞ αn(x) with αn(x)∗ well-bound.
Hence by Lemma 13.1 and i.h. we get

rk(ϕ) = supn<ω{rk(αn(x)∗) + 1} = supn<ω{fe(αn(x)∗) + 1}.

Now we compute fe(αn(x)∗) by distinguishing two cases. In the first case we
assume that 〈α〉x = 0 or x 6∈ free(α), but then αn(x) ≡ α for n > 0 and

rk(ϕ) = supn<ω{fe(αn(x)∗) + 1} = fe(α∗) + 1 = fe(α) + 1 because α∗ ≡ α

= max
u∈Atm

{〈α〉u}+ 1 = max
u∈Atm

{〈α〉u + 1 + 〈α〉x · ω} = fe(ϕ).
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In the second case we assume that 〈α〉x > 0 and x ∈ free(α). For n > 0
we first show by induction on n that

fe(αn(x)∗) = fe(α) + 〈α〉x · (n− 1).

For n = 1 we have αn(x)∗ ≡ α∗ ≡ α and n − 1 = 0. For n > 1 we have
αn(x) ≡ α[x/αn−1(x)] and there are distinct variables x0, . . . , xk and well-
bound formulae α̂ and ψ0, . . . , ψk such that

(1) α ∼∞ α̂[x0/x] . . . [xk/x] and α̂[x0/x] . . . [xk/x] is well-bound,

(2) αn−1(x)
∗ ∼∞ ψi for i ≤ k,

(3) αn(x)∗ ∼∞ α̂[x0/ψ0] . . . [xk/ψk] and α̂[x0/ψ0] . . . [xk/ψk] is well-bound,

(4) xi ∈ free(α̂) and xj 6∈ var(ψi) and xi 6≡ x for i < j ≤ k.

Hence we have x 6∈ var(α̂) and bound(α̂) ∩ var(ψi) = bound(ψi) ∩ var(ψj) = ∅
for i < j ≤ k, and we have the following two facts:
(i)

fe(α) = fe(α̂[x0/x] . . . [xk/x]) by i.h. for rk(α) and 13.1

= max{fe(α̂),maxi≤k{fe(x) + 〈α̂〉xi}} by 20.2

= max{fe(α̂),maxi≤k{〈α̂〉xi}} = fe(α̂).

(ii)

fe(αn(x)∗) = fe(α̂[x0/ψ0] . . . [xk/ψk]) by i.h. for rk(αn(x)∗) and 13.1

= max{fe(α̂),maxi≤k{fe(ψi) + 〈α̂〉xi}} by 20.2

= max{fe(α̂), fe(αn−1(x)
∗
) + maxi≤k{〈α̂〉xi}} i.h. for rk(αn−1(x))

= max{fe(α̂), fe(αn−1(x)
∗
) + 〈α̂[x0/x] . . . [xk/x]〉x} by 20.1

= max{fe(α̂), fe(αn−1(x)
∗
) + 〈α〉x} by 18.3

= max{fe(α̂), fe(α) + 〈α〉x · (n− 2) + 〈α〉x} by i.h. for n− 1

= fe(α) + 〈α〉x · (n− 1). by i.h. and (i)

For n > 1 we have fe(αn(x)∗) + 1 ≤ fe(αn+1(x)
∗
) because of 〈α〉x > 0 hence

rk(ϕ) = supn<ω{fe(αn(x)∗) + 1} = supn<ω{fe(αn(x)∗)}
= fe(α) + 〈α〉x · ω = fe(α) + 1 + 〈α〉x · ω = fe(ϕ).
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5 Minimum range ωω for µ-ranks

Having established the equivalence of rk and rke, this now allows us to provide
the sharp lower bound ωω for rk[Lµ] = rk′[Lµ] in the remaining of this section.
The lower bound is given by computing the µ-rank rke(ϕ) of a special class
of formulae ϕ.

Definition 22.

We fix an infinite sequence of propositional variables p0, p1, . . . such
that pi 6= pj for i 6= j, and we define the formulae Ψk

n and Φk
n such that

Ψk
n ≡ (pn+k ∧ . . . ∧ (pn ∧ p0)),

Φk
n ≡

{
⊥ ∧ p0 k = 0,

µp(n+k−1) . . . µpn.Ψ
k−1
n k > 0.

Theorem 23. (Lower bound)

For all natural numbers n and k we have that

(1) u ∈ atm(Φk
n) ⇒ 〈Φk

n〉u = ωk

(2) ωω ⊆ rk[Lµ] = rk′[Lµ]

Proof. Part 1 is proved by induction on k. If k = 0 and u ∈ atm(Φk
n)

we have that 〈Φk
n〉u = 〈⊥ ∧ p0〉u = 1 = ω0. If k > i ≥ 0 then define

ϕi = µpn+i . . . µpn.Ψ
k−1
n . We show u ∈ atm(Φk

n)⇒ 〈ϕi〉u = ωi+1 by induction
on i.

� If i = 0 then

〈ϕ0〉u = 〈Ψk−1
n 〉u + 1 + 〈Ψk−1

n 〉pn · ω = ω

because of 0 < 〈Ψk−1
n 〉u ≤ 〈Ψk−1

n 〉pn < ω.

� For k > i > 0 we have 〈ϕi−1〉u = 〈ϕi−1〉pn+i
= ωi by i.h. hence

〈ϕi〉u = 〈µpn+i.ϕi−1〉u = 〈ϕi−1〉u + 1 + 〈ϕi−1〉pn+i
· ω

= ωi + 1 + ωi · ω = ωi+1.

Since 〈Φk
n〉u = 〈ϕk−1〉u = ωk the first part is proved.

Part 2 holds because we have ωk = rk(Φk
n) ∈ rk[Lµ] for all natural numbers

k by Part 1 and Theorem 21, hence ωk ⊂ rk[Lµ] by Lemma 13.2, that is
ωω ⊆ rk[Lµ].

Corollary 24.

rk[Lµ] = rk′[Lµ] = rk[L+
µ ] = rk′[L+

µ ] = ωω
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6 Generating formulae of any rank

In this section we show how to generate formulae of arbitrary rank in a
uniform way.

Definition 25.

For ordinals ξ with 0 < ξ < ωω there is a unique representation in
cantor normal form (see cf. [11]), that is

ξ =CNF ω
k0 + . . .+ ωkn with ω > k0 ≥ . . . ≥ kn ≥ 0.

Based on the cantor normal form we define the mapping Θ : ωω → Lµ
such that

Θξ =


⊥ ξ = 0,

Φk
1[p0/Θ0] ξ =CNF ω

k,

Φkn
1+k0+...+kn−1

[p0/Θωk0+...+ωkn−1 ] ξ =CNF ω
k0 + . . .+ ωkn .

Remark 26. Some examples to illustrate the structure of the formula Θξ.

Θω2 = Φ2
1[p0/⊥] = µp2µp1(p2 ∧ (p1 ∧ ⊥)),

Θω2·2 = Φ2
3[p0/Θω2 ] = µp4µp3(p4 ∧ (p3 ∧ µp2µp1(p2 ∧ (p1 ∧ ⊥)))),

Θω2·2+ω+2 = ⊥ ∧ (⊥ ∧ µp5(p5 ∧ µp4µp3(p4 ∧ (p3 ∧ µp2µp1(p2 ∧ (p1 ∧ ⊥)))))).

Theorem 27.

For all ξ < ωω we have that

rk′(Θξ) = rk(Θξ) = rke(Θξ) = ξ

Proof. This is proved by induction on ξ. We simultaneously show the follow-
ing:

(i) atm(Θξ) = {⊥, p0, . . . , pk0+...+kn}\{p0} for ξ =CNF ω
k0 + . . .+ ωkn ,

atm(Θ0) = {⊥},

(ii) Θξ is well-bound,

(iii) rke(Θξ) = ξ.
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If ξ = 0 then Θ0 = ⊥ is well-bound, atm(⊥) = {⊥}, rke(⊥) = max
u∈Atm

{0} = 0.

If ξ =CNF ω
k0 + . . .+ωkn and ζ = ωk0 + . . .+ωkn−1 < ξ and s = k0 + . . .+kn−1

(for n = 0 let ζ = 0 and s = 0) then Θξ = Φkn
1+s[p0/Θζ ]. By the definition of

Φkn
1+s we have that Φkn

1+s is well-bound and

bound(Φkn
1+s) = atm(Φkn

1+s)\{⊥, p0} = {p1+s, . . . , ps+kn}.

By i.h. we get that Θζ is well-bound, and that atm(Θζ) = {⊥, p1, . . . , ps}.
Thus, because there is only one occurrence of p0 in Φkn

1+s and because of
bound(Φkn

1+s) ∩ var(Θζ) = ∅, we have that

atm(Θξ) = {⊥, p1, . . . , ps+kn} and Θξ is well-bound.

Now because Θξ, Θζ and Φkn
1+s are well-bound and because p0 ∈ free(Φkn

1+s)
and bound(Φkn

1+s) ∩ var(Θζ) = ∅ the following holds by Lemma 19:

rke(Θξ) = rke(Φkn
1+s[p0/Θζ ]) = max{rke(Φkn

1+s), rk
e(Θζ) + 〈Φkn

1+s〉p0}
= max{ωkn , rke(Θζ) + ωkn} = rke(Θζ) + ωkn by 23.1

= ζ + ωkn = ξ. by i.h.

Since Θξ is well-bound, we get rk′(Θξ) = rk(Θξ) = rke(Θξ) = ξ for ξ < ωω by
Lemma 11.7 and Theorem 21.
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7 Appendix

In this appendix we give some thorough definitions of notions that are used
in the preliminaries, and we prove some important propositions stated in the
preliminaries. In the following N stands for the set of natural numbers.

Definition 28.

For any natural number k we inductively define the set of numbers
Uk ⊆ N such that k ∈ Uk, and if n ∈ Uk then 2n ∈ Uk and 2n+ 1 ∈ Uk.

The next lemma is the key to some definitions below, because it helps to
assign unique numbers to the nodes of any binary tree in a uniform way.

Lemma 29.

For any natural number k > 0 we have that

(1) n ∈ Uk ⇔ Un ⊆ Uk

(2) U2k ∪ U2k+1 = Uk \ {k}
(3) Uk ∩ Uk+1 = ∅

Proof. For Part 1 we have⇐ because n ∈ Un ⊆ Uk. For⇒ we show Un ⊆ Uk
by induction on m ∈ Un. If m = n then m ∈ Uk. If m > n then m = 2r or
m = 2r + 1 for some r ∈ Un, and by i.h. r ∈ Uk hence m ∈ Uk.

For Part 2 we get U2k ∪ U2k+1 ⊆ Uk \ {k} by Part 1. And we show
Uk \ {k} ⊆ U2k ∪ U2k+1 by induction on m ∈ Uk \ {k}. We observe that
{2k, 2k + 1} ⊂ U2k ∪ U2k+1, and for 2k + 1 < m ∈ Uk \ {k} we have m = 2n
or m = 2n + 1 for some n ∈ Uk \ {k}, and by i.h. we get n ∈ U2k ∪ U2k+1

hence m ∈ U2k ∪ U2k+1.
For Part 3 we assume Uk ∩ Uk+1 6= ∅ and m = min(Uk ∩ Uk+1). We have

m > k + 1 because k 6∈ Uk+1 and k + 1 6∈ Uk. Hence m = 2n or m = 2n + 1
with n ∈ Uk ∩ Uk+1, in contradiction to the minimality of m.

Definition 30. (Occurrences of symbols)

(1) The set of symbols S+
µ of the language L+

µ is defined such that

S+
µ = Atm ∪ {∼,¬,∧,∨,♦,�} ∪ {µx | x ∈ Var} ∪ {νx | x ∈ Var}.

(2) The set of occurrences of symbols in a formula ϕ, Symb(ϕ) ⊂ S+
µ ×N is

defined by Symb(ϕ) = f(ϕ, 1) with f : L+
µ ×N→ ℘(S+

µ ×N) such that

f(ϕ, n) =


{(ϕ, n)} ϕ ∈ Atm,

f(α, 2n) ∪ {(◦, n)} ϕ ≡ ◦α, ◦ ∈ {∼,¬,♦,�},
f(α, 2n) ∪ f(β, 2n+1) ∪ {(◦, n)} ϕ ≡ α ◦ β, ◦ ∈ {∧,∨},
f(α, 2n) ∪ {(σx, n)} ϕ ≡ σx.α, σ ∈ {µ, ν}.
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(3) The set of occurrences of free variables in a formula ϕ, Free(ϕ) ⊂ Var×N
is defined by Free(ϕ) = g(ϕ, 1) with g : L+

µ ×N→ ℘(Var×N) such that

g(ϕ, n) =



∅ ϕ ∈ Cst

{(ϕ, n)} ϕ ∈ Var,

g(α, 2n) ϕ ≡ ◦α, ◦ ∈ {∼,¬,♦,�},
g(α, 2n) ∪ g(β, 2n+1) ϕ ≡ α ◦ β, ◦ ∈ {∧,∨},
g(α, 2n) \ ({x} × N) ϕ ≡ σx.α, σ ∈ {µ, ν}.

(4) The set of occurrences of bound variables in ϕ, Bound(ϕ) ⊂ Var × N is
defined by Bound(ϕ) = h(ϕ, 1) with h : L+

µ ×N→ ℘(Var×N) such that

h(ϕ, n) =


∅ ϕ ∈ Atm

h(α, 2n) ϕ ≡ ◦α, ◦ ∈ {∼,¬,♦,�},
h(α, 2n) ∪ h(β, 2n+1) ϕ ≡ α ◦ β, ◦ ∈ {∧,∨},
h(α, 2n) ∪ {(σx, n)} ϕ ≡ σx.α, σ ∈ {µ, ν}.

Remark 31. Observe that Free(ϕ) ∪ Bound(ϕ) ⊆ Symb(ϕ).

Having at hand the sets of occurrences Free(ϕ) and Bound(ϕ), it is easy
to define the sets of free and bound variables of ϕ.

Definition 32. (Free and bound variables)

The set of free variables free(ϕ) ⊂ Var and the set of bound variables
bound(ϕ) ⊂ Var of a formula ϕ are defined such that

free(ϕ) = {x | (x, n) ∈ Free(ϕ)},
bound(ϕ) = {x | (σx, n) ∈ Bound(ϕ).}

Definition 33. (Preceding symbols)

The set of preceding symbols pre(ϕ, n) ⊂ Symb(ϕ) of an occurrence
(s, n) ∈ Symb(ϕ) of the symbol s ∈ S+

µ in the formula ϕ is defined such
that

pre(ϕ, n) = {(t, k) ∈ Symb(ϕ) | k < n, n ∈ Uk}.

Remark 34. The number of negation symbols ¬ preceding an occurrence
(x, n) ∈ Symb(ϕ) of a variable x in the formula ϕ is equal to the cardinality
of the set {k | (¬, k) ∈ pre(ϕ, n)}.
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Definition 35. (Subformulae)

The subformulae sub(ϕ) ⊂ L+
µ of a formula ϕ are defined such that

sub(ϕ) =


{ϕ} ϕ ∈ Lit

{ϕ} ∪ sub(α) ϕ ≡ ◦α, ◦ ∈ {¬,♦,�},
{ϕ} ∪ sub(α) ∪ sub(β) ϕ ≡ α ◦ β, ◦ ∈ {∧,∨},
{ϕ} ∪ sub(α) ϕ ≡ σx.α, σ ∈ {µ, ν}.

In the following we prove some important properties of the semantics of
the modal µ-calculus.

Lemma 36. (Complementation)

For any transition system T = (S,→, λ) and formula ϕ ∈ L+
µ we have

||ϕ||T = ||¬ϕ||T .

Proof. We show ||ϕ||T = S \ ||ϕ||T by induction on l(ϕ). We have that

||⊥||T = ||>||T = S = S \ ∅ = S \ ||⊥||T ,
||>||T = ||⊥||T = ∅ = S \ S = S \ ||>||T ,
||x||T = ||∼x||T = S \ ||x||T ,
||∼x||T = ||x||T = S \ (S \ ||x||T ) = S \ ||∼x||T .

Further by using the induction hypothesis we get that

||¬α||T = ||¬α||T = S \ ||α||T = S \ ||¬α||T ,
||α ∧ β||T = ||α ∨ β||T = ||α||T ∪ ||β||T = (S \ ||α||T ) ∪ (S \ ||β||T )

= S \ (||α||T ∩ ||β||T ) = S \ (||α ∧ β||T ),

||α ∨ β||T = ||α ∧ β||T = ||α||T ∩ ||β||T = (S \ ||α||T ) ∩ (S \ ||β||T )

= S \ (||α||T ∪ ||β||T ) = S \ (||α ∨ β||T ),

||�α||T = ||♦α||T = {a ∈ S | ∃b((a→ b) ∧ b ∈ ||α||T )}
= S \ {a ∈ S | ∀b((a→ b)⇒ b ∈ ||α||T )} = S \ ||�α||T ,

||♦α||T = ||�α||T = {a ∈ S | ∀b((a→ b)⇒ b ∈ ||α||T )}
= S \ {a ∈ S | ∃b((a→ b) ∧ b ∈ ||α||T )} = S \ ||♦α||T ,
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||νx.α||T = ||µx.(α[x/∼x])||T =
⋂
{S′ ⊆ S | ||α[x/∼x]||T [x7→S′] ⊆ S′}

=
⋂
{S′ ⊆ S | ||α||T [x 7→(S\S′)] ⊆ S′}

=
⋂
{S′ ⊆ S | (S \ ||α||T [x 7→(S\S′)]) ⊆ S′}

=
⋂
{S′ ⊆ S | (S \ S′) ⊆ ||α||T [x 7→(S\S′)]}

= S \
⋃
{(S \ S′) ⊆ S | (S \ S′) ⊆ ||α||T [x7→(S\S′)]}

= S \ ||νx.α||T ,

||µx.α||T = ||νx.(α[x/∼x])||T =
⋃
{S′ ⊆ S | S′ ⊆ ||α[x/∼x]||T [x 7→S′]}

=
⋃
{S′ ⊆ S | S′ ⊆ ||α||T [x 7→(S\S′)]}

=
⋃
{S′ ⊆ S | S′ ⊆ (S \ ||α||T [x 7→(S\S′)])}

=
⋃
{S′ ⊆ S | ||α||T [x 7→(S\S′)] ⊆ (S \ S′)}

= S \
⋂
{(S \ S′) ⊆ S | ||α||T [x 7→(S\S′)] ⊆ (S \ S′)}

= S \ ||µx.α||T .

The following definition is used to prove Theorem 39.

Definition 37. (Negation normal form)

For any formula ϕ ∈ L+
µ we define its negation normal form ϕ̃ ∈ L+

µ

such that

ϕ̃ =



ϕ ϕ ∈ Lit

α ϕ ≡ ¬α,
◦(α̃) ϕ ≡ ◦α, ◦ ∈ {♦,�},
α̃ ◦ β̃ ϕ ≡ α ◦ β, ◦ ∈ {∧,∨},
σx.α̃ ϕ ≡ σx.α, σ ∈ {µ, ν}.

The next lemma shows that with respect to the semantics, we can restrict
ourselfs to formulae in negation normal form.

Lemma 38. (Normal form)

For any formula ϕ ∈ L+
µ we have that

(1) The negation symbol ¬ does not occur in ϕ̃.

(2) ˜̃ϕ ≡ ϕ̃

(3) ||ϕ̃||T = ||ϕ||T for all transition systems T .
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Proof. Part 1, 2 and 3 are proved by induction on l(ϕ). Part 1 holds by the
definition of ϕ̃. We use Part 1 to prove Part 2, and we use Lemma 36 to
prove Part 3.

Theorem 39. (Monotonicity)

For variables x occurring positive in the formula ϕ ∈ L+
µ we have for

any transition system T = (S,→, λ) that

S′ ⊆ S′′ ⊆ S ⇒ ||ϕ||T [x 7→S′] ⊆ ||ϕ||T [x 7→S′′]

Proof. W.l.o.g. we assume that the negation symbol ¬ does not occur in ϕ,
because otherwise we use Lemma 38 and consider ||ϕ̃||T [x 7→S′] = ||ϕ||T [x 7→S′]

(observe that x occurs positive in ϕ̃ because it does so in ϕ).
The lemma is proved by induction on l(ϕ). For ϕ ∈ Lit we have ϕ 6≡ ∼x

because x occurs positive in ϕ, and if ϕ ≡ x then we have

||x||T [x 7→S′] = S′ ⊆ S′′ = ||x||T [x 7→S′′],

and in all other cases of literals ϕ, ||ϕ||T [x 7→S′] = ||ϕ||T [x 7→S′′]. By using the
induction hypothesis we further have

||α ∧ β||T [x7→S′] = ||α||T [x7→S′] ∩ ||β||T [x 7→S′]

⊆ ||α||T [x 7→S′′] ∩ ||β||T [x 7→S′′] = ||α ∧ β||T [x 7→S′′],

||α ∨ β||T [x 7→S′] = ||α||T [x 7→S′] ∪ ||β||T [x 7→S′]

⊆ ||α||T [x 7→S′′] ∪ ||β||T [x 7→S′′] = ||α ∨ β||T [x 7→S′′],

||�α||T [x 7→S′] = {a ∈ S | ∀b((a→ b)⇒ b ∈ ||α||T [x 7→S′])}
⊆ {a ∈ S | ∀b((a→ b)⇒ b ∈ ||α||T [x 7→S′′])} = ||�α||T [x 7→S′′],

||♦α||T [x 7→S′] = {a ∈ S | ∃b((a→ b) ∧ b ∈ ||α||T [x7→S′])}
⊆ {a ∈ S | ∃b((a→ b) ∧ b ∈ ||α||T [x 7→S′′])} = ||♦α||T [x 7→S′′].

If ϕ ≡ σy.α and y ≡ x then clearly ||ϕ||T [x 7→S′] = ||ϕ||T [x 7→S′′]. Otherwise if
y 6≡ x we get that

||νy.α||T [x 7→S′] =
⋃
{Q ⊆ S | Q ⊆ ||α||(T [x 7→S′])[y 7→Q]}

=
⋃
{Q ⊆ S | Q ⊆ ||α||(T [y 7→Q])[x 7→S′]}

⊆
⋃
{Q ⊆ S | Q ⊆ ||α||(T [y 7→Q])[x 7→S′′]} = ||νy.α||T [x 7→S′′],

||µy.α||T [x 7→S′] =
⋂
{Q ⊆ S | ||α||(T [x7→S′])[y 7→Q] ⊆ Q}

=
⋂
{Q ⊆ S | ||α||(T [y 7→Q])[x 7→S′] ⊆ Q}

⊆
⋂
{Q ⊆ S | ||α||(T [y 7→Q])[x 7→S′′] ⊆ Q} = ||µy.α||T [x 7→S′′].
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Theorem 40. (Fixpoint theorem, Knaster [12])

If the variable x is occurring positive in the formula ϕ then for all
transition systems T we have that ||µx.ϕ||T and ||νx.ϕ||T are the least
and the greatest fixpoint of the mapping S′ 7→ ||ϕ||T [x 7→S′], respectively.

Proof. Let T = (S,→, λ) be any transition system. We define the shortcuts
I(S′) = ||ϕ||T [x 7→S′], L = ||µx.ϕ||T and G = ||νx.ϕ||T . By Theorem 39 and by
definition we have that

S′ ⊆ S′′ ⇒ I(S′) ⊆ I(S′′),

L =
⋂
{S′ ⊆ S | I(S′) ⊆ S′},

G =
⋃
{S′ ⊆ S | S′ ⊆ I(S′)}.

We show that G is the greatest fixpoint. Let HG = {S′ ⊆ S | S′ ⊆ I(S′)}.
For any S′ ∈ HG we have S′ ⊆ G, hence by the monotonicity of I we get
I(S′) ⊆ I(G), that is S′ ⊆ I(S′) ⊆ I(G). Because of S′ ⊆ I(G) for any
S′ ∈ HG we now get

⋃
HG ⊆ I(G), that is G ⊆ I(G). Again by monotonicity

we get I(G) ⊆ I(I(G)), hence I(G) ∈ HG and I(G) ⊆
⋃
HG = G. We have

G = I(G). For any fixpoint S′ = I(S′) we have S′ ∈ HG, that is S′ ⊆ G.
The least fixpoint L is proved analogous.

Theorem 41. (Fixpoint by iteration)

Let T = (S,→, λ) be a transition system, x a variable occurring positive
in the formula ϕ and

L0 = ∅, Lξ+1 = ||ϕ||T [x 7→Lξ] and Lρ =
⋃
ξ<ρ L

ξ for limit ordinals ρ,

G0 = S, Gξ+1 = ||ϕ||T [x 7→Gξ] and Gρ =
⋂
ξ<ρG

ξ for limit ordinals ρ,

then there is an ordinal |ξ| ≤ |S| such that

Lξ = Lξ+1 = ||µx.ϕ||T and Gξ = Gξ+1 = ||νx.ϕ||T .

Proof. Let I(S′) = ||ϕ||T [x 7→S′]. By induction on ξ we have Lξ ⊆ Lξ+1, because

of L0 = ∅ ⊆ I(∅) = L1, and Lξ+1 = I(Lξ) ⊆ I(Lξ+1) = L(ξ+1)+1 by i.h. and
the monotonicity of I, Theorem 39, and for limit ordinals ξ we have for any
ζ < ξ that I(Lζ) ⊆ I(

⋃
ζ<ξ L

ζ) = I(Lξ) = Lξ+1 by the monotonicity of I,

hence by i.h. we get Lξ =
⋃
ζ<ξ L

ζ ⊆
⋃
ζ<ξ L

ζ+1 =
⋃
ζ<ξ I(Lζ) ⊆ Lξ+1.

Now let γ be the least ordinal such that |γ| > |S| and assume Lξ 6= Lξ+1

for all ξ < γ, then there is a one-one mapping f : γ → S with f(ξ) ∈ Lξ+1\Lξ
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in contradiction to |γ| > |S|. Hence there is some ξ < γ with |ξ| ≤ |S| and
Lξ = Lξ+1, that is Lξ is a fixpoint of I. We have ||µx.ϕ||T ⊆ Lξ by Theorem
40. By induction on ξ we show Lξ ⊆ ||µx.ϕ||T =

⋂
{S′ ⊆ S | I(S′) ⊆ S′}, that

is Lξ ⊆ S′ for any S′ ⊆ S with I(S′) ⊆ S′. Clearly L0 = ∅ ⊂ ||µx.ϕ||T . Now
let S′ such that I(S′) ⊆ S′. If ξ = ζ + 1 then Lζ ⊆ S′ by i.h., and by the
monotonicity of I we get Lξ = I(Lζ) ⊆ I(S′) ⊆ S′. If ξ is a limit ordinal then
by i.h. we have Lζ ⊂ S′ for any ζ < ξ, that is Lξ =

⋃
ζ<ξ L

ζ ⊆ S′. We have

shown Lξ = Lξ+1 = ||µx.ϕ||T .
The proof for Gξ = Gξ+1 = ||νx.ϕ||T is analogous.

Theorem 42. (Substitution)

If ϕ, ψ ∈ L+
µ are such that bound(ϕ)∩ free(ψ) = ∅, then for any transi-

tion system T = (S,→, λ) we have that

||ϕ[x/ψ]||T = ||ϕ||T [x 7→||ψ||T ]

Proof. This is proved by induction on l(ϕ). For literals ϕ ∈ Lit we have

||x[x/ψ]||T = ||ψ||T = ||x||T [x7→||ψ||T ],

||∼x[x/ψ]||T = ||ψ||T = ||¬ψ||T = S \ ||ψ||T = ||∼x||T [x7→||ψ||T ]

by using Lemma 36. In all other base cases we have x 6∈ free(ϕ) hence

||ϕ[x/ψ]||T = ||ϕ||T = ||ϕ||T [x 7→||ψ||T ].

By using the induction hypothesis we further get

||(¬α)[x/ψ]||T = ||¬(α[x/ψ])||T = S \ ||α[x/ψ]||T
= S \ ||α||T [x 7→||ψ||T ] = ||¬α||T [x 7→||ψ||T ],

||(α ∧ β)[x/ψ]||T = ||α[x/ψ]||T ∩ ||β[x/ψ]||T
= ||α[x/ψ]||T [x7→||ψ||T ] ∩ ||β[x/ψ]||T [x 7→||ψ||T ]

= ||(α ∧ β)[x/ψ]||T [x 7→||ψ||T ],

||(�α)[x/ψ]||T = ||�(α[x/ψ])||T
= {a ∈ S | ∀b((a→ b)⇒ b ∈ ||α[x/ψ]||T )}
= {a ∈ S | ∀b((a→ b)⇒ b ∈ ||α||T [x7→||ψ||T ])}
= ||�α||T [x 7→||ψ||T ],

similar for ϕ ≡ α ∨ β,♦α. If ϕ ≡ µy.α and x ≡ y then x 6∈ free(ϕ)
and ||ϕ[x/ψ]||T = ||ϕ||T = ||ϕ||T [x 7→||ψ||T ], otherwise if x 6≡ y then because
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of bound(ϕ) ∩ free(ψ) = ∅, hence y 6∈ free(ψ), we have that

||(µy.α)[x/ψ]||T = ||µy.(α[x/ψ])||T
=

⋂
{S′ ⊆ S | ||α[x/ψ]||T [y 7→S′] ⊆ S′}

=
⋂
{S′ ⊆ S | ||α||(T [y 7→S′])[x 7→||ψ||T [y 7→S′]]

⊆ S′}

=
⋂
{S′ ⊆ S | ||α||(T [y 7→S′])[x 7→||ψ||T ] ⊆ S′}

=
⋂
{S′ ⊆ S | ||α||(T [x 7→||ψ||T ])[y 7→S′] ⊆ S′} = ||µy.α||T [x 7→||ψ||T ].

The analogous argument for ϕ ≡ νy.α finishes the proof.

The next theorem is some general statement about well-founded binary
relations.

Theorem 43. (Rank function)

Let C ba a well-founded binary relation on the set S, and F ⊆ S be a
C-downward closed set, i.e. if ϕ ∈ F and ψ C ϕ then ψ ∈ F . If fC is the
mapping from S to the ordinals with fC(ϕ) =

⋃
{fC(ψ) + 1 | ψ C ϕ},

then for any ordinal ξ and order preserving map g : F → ξ, i.e. if
ϕ ∈ F and ψ C ϕ then g(ψ) < g(ϕ), we have that⋃

fC[F ] ≤ ξ.

Proof. We show fC(ϕ) ≤ g(ϕ) for ϕ ∈ F by induction on C. If ϕ ∈ F is such
that {ψ ∈ F | ψ C ϕ} = ∅ then {ψ | ψ C ϕ} = ∅, hence fC(ϕ) = 0 ≤ g(ϕ).
If ϕ ∈ F and {ψ ∈ F | ψ C ϕ} 6= ∅ then by i.h. we have that

fC(ϕ) =
⋃
{fC(ψ) + 1 | ψ C ϕ}

=
⋃
{fC(ψ) + 1 | ψ ∈ F , ψ C ϕ}

≤
⋃
{g(ψ) + 1 | ψ ∈ F , ψ C ϕ}

≤
⋃
{g(ϕ) | ψ ∈ F , ψ C ϕ} = g(ϕ).

This yields fC(ϕ) ≤ g(ϕ) < ξ for any ϕ ∈ F , hence
⋃
fC[F ] ≤ ξ.
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