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Abstract. The Logic of Proofs LP, introduced by Artemov, encodes the
same reasoning as the modal logic S4 using proofs explicitly present in
the language. In particular, Artemov showed that three operations on
proofs (application ·, positive introspection !, and sum +) are sufficient
to mimic provability concealed in S4 modality. While the first two oper-
ations go back to Gödel, the exact role of + remained somewhat unclear.
In particular, it was not known whether the other two operations are
sufficient by themselves. We provide a positive answer to this question
under a very weak restriction on the axiomatization of LP.

The Logic of Proofs LP was introduced in [Art95] as an explicit counterpart
of the modal logic of provability S4 (an almost identical format was suggested
by Gödel in a lecture that remained unpublished until [Göd95]). In this new
format, the inability to interpret the Reflection Principle directly into formal
arithmetic is overcome by an introduction of explicit proofs into the language.
These proof objects, with some basic operations on them, are sufficient to fully
realize all valid facts about provability that can be formulated in a less precise
modal language. These proof objects, which Artemov called proof polynomials
or proof terms, are constructed according to the following grammar:

t ::= x | c | (t · t) | (t+ t) | ! t ,

where x stands for a proof variable, c stands for a proof constant, and the
operations + and · are by default associated to the left. Proof polynomials enable
us to build new formulas via a new formula construct t :F read t is a proof of F .
The language of LP is obtained by adding this construct to the propositional
language, e.g., with ⊥ and→ as basic connectives (by default, we will consider→
to be associated to the right).

In fulfillment of Gödel’s original program, in [Art95] (see also [Art01]) it
was shown that the Logic of Proofs LP in this language serves as a missing link
between S4 and provability in formal arithmetic, thereby providing a long-sought
provability semantics for S4. The axioms and rules of the Logic of Proofs are as
follows:
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Axioms and rules of LP:
A1. A complete axiomatization of classical propositional logic by finitely many

axiom schemes; rule modus ponens;
A2. Application Axiom s : (F → G)→ (t :F → (s · t) :G);
A3. Sum Axiom s :F → (s+ t) :F , t :F → (s+ t) :F ;
A4. Reflection Axiom t :F → F ;
A5. Proof Checker Axiom t :F → ! t : t :F ;
R4. Axiom Internalization Rule:

c :A
,

where A is an axiom and c is a proof constant.
The connection between S4 and formal arithmetic via LP is given by the

following two statements through an operation (·)◦ of forgetful projection, defined
recursively by p◦ = p, ⊥◦ = ⊥, (F → G)◦ = F ◦ → G◦, (t :F )◦ = 2(F ◦):

Theorem 1 (Arithmetical Completeness, [Art95, Art01]). For any LP-
formula F , LP ` F iff all arithmetical interpretations1 of F are provably valid.

Theorem 2 (Realization Theorem, [Art95, Art01]). For any modal for-
mula F , S4 ` F iff LP ` F r for some LP-formula F r such that (F r)◦ = F .

Thus, a modal statement about provability can first be refined by realizing oc-
currences of 2 with specific proof polynomials; the resulting LP-formula can then
be interpreted in the arithmetical language. The proof of the Realization Theo-
rem is constructive: there exists an algorithm that restores proof polynomials to
replace 2’s in any given modal theorem. More precisely, the algorithm requires a
cut-free Gentzen derivation of the given modal formula as input and constructs
polynomials based on this derivation. The following lemma is a fundamental
feature of proof terms and is central to the realization algorithm:

Lemma 1 (Lifting Lemma, [Art95, Art01]). If

G1, . . . , Gn, s1 :H1, . . . , sk :Hk `LP F ,

it is possible to construct a +-free proof term t(x1, . . . , xn, y1, . . . , yk) such that

x1 :G1, . . . , xn :Gn, s1 :H1, . . . , sk :Hk `LP t(x1, . . . , xn, s1, . . . , sk) :F .

Thus, all derivations in LP can be emulated by operations on proof terms with-
out the use of +. The other two operations on proofs—application · and proof
checker !—were present already in Gödel’s lecture [Göd95] (in a slightly different
but essentially equivalent form). The former is the internalized version of modus
ponens, and the latter is a proof verifier. Note that the forgetful projections
of the corresponding axioms, A2 and A5 respectively, are nothing but familiar
Hilbert–Bernays–Löb postulates about provability.

The operation + in Artemov’s system was a novelty. It corresponds to the
combination of two proofs, e.g., concatenation of Hilbert-style derivations where
1 We are omitting all technical details of what an arithmetical interpretation is since

this is not the focus of this paper; these details can be found in [Art01].
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the resulting derivation proves all the formulas proven by either of the con-
catenated derivations. This operation firmly plants LP in the realm of multi-
conclusion proofs, i.e., proof terms must be capable of proving multiple formulas
at the same time.2 But it is not immediately clear how crucial the presence of +
is for the Realization Theorem, although + is actively used in Artemov’s realiza-
tion algorithm, as well as in other realization proofs (see [Art95, Art01, Fit05,
BK06, Fit07]). Fitting showed in [Fit05] that all S4-theorems can be realized
without + if subformulas in them are allowed to be duplicated. But + was still
used to eliminate the duplicates. In this paper, we show that S4 can actually be
realized in LP without + although proof terms must remain multi-conclusion.

Artemov’s realization algorithm from [Art95] works by induction on a given
cut-free Gentzen derivation of a given S4-theorem. We will briefly recapture
the +-sensitive steps of the algorithm referring the reader to the source for
further details. All occurrences of 2 (or simply 2’s for brevity) in the derivation
are broken into families of related ones. Clearly, all 2’s from a family must
be realized by the same proof term. Note that in any cut-free derivation, the
polarity of all 2’s from one family must be the same. Negative families can be
realized by arbitrary proof terms (e.g., by distinct proof variables in the original
algorithm), and so can positive families if no 2 in them is introduced by a
(2R)-rule. For our purposes, it is important to realize all negative families by
the same proof variable x. The algorithm realizes each sequent Γ ⇒ ∆ in the
derivation by an LP-theorem t : (∧Γ r → ∨∆r) by induction on the depth of the
Gentzen derivation, with the outer term t capturing a Hilbert derivation of the
realization ∧Γ r → ∨∆r of the sequent Γ ⇒ ∆.

The only part of the algorithm that requires the use of + is the realization
of the positive 2’s in front of F in (2R)-rules, which have the form

2Γ ⇒ F

2Γ ⇒ 2F
(2R) . (1)

For lack of space, we only outline the differences from Artemov’s way of realizing
the 2 in front of F . By the Lifting Lemma, the Deduction Theorem, and propo-
sitional reasoning, there is a term t(x) such that LP ` x : Γ r → t(x) : (x : Γ r),
where x is the proof variable that realizes all negative 2’s, Γ = {G1, . . . , Gn} is
a multiset, Γ r = {Gr

1, . . . , G
r
n} is its realization, and x :Γ r = x :Gr

1 ∧ · · · ∧ x :Gr
n

realizes the common antecedent of both premise and conclusion of (1).
In general, the ith introduction of 2F from a given family by (2R) yields

its own term ti(x). The outer terms si for the premises of (2R)-rules such that,
by IH, LP ` si : (x : Γ r

i → F r), where F r is the realization of F , also differ.
Artemov’s algorithm combined different realizations si · ti(x) of the positive 2

in front of F using plus: namely, Artemov showed that LP ` x : Γ r
i → q : F r,

i = 1, . . . , N , for q = s1 · t1(x) + · · · + sN · tN (x), where N is the number of
(2R)-rules used to introduce 2’s from the family. Thus, this q can serve as a
realization for this family of 2’s (outer terms for the conclusions of the rules are
then easy to construct using the Lifting Lemma).
2 There exist single-conclusion versions of LP (see [Kru01]), but they cannot corre-

spond to any normal modal logic.
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If Γi = ∅ for some 1 ≤ i ≤ N , i.e., if some of the (2R)-rules in the family
infer⇒ 2F from⇒ F , no + is necessary for realizing the 2 in front of F . By IH,
in this case, LP ` F r. By the Lifting Lemma, there exists a ground +-free term q′

such that LP ` q′ :F r. Clearly, this term can be used to realize the whole family
because in this case LP ` x :Γ r

i → q′ :F r for all i = 1, . . . , N .
So let us assume that Γi 6= ∅ for all 1 ≤ i ≤ N . To be able to avoid the use

of +, we need to unify all ti(x) from the same family. We will use the following

Definition. Each formula is a balanced conjunction (disjunction) of depth 0. If
A and B are both balanced conjunctions (disjunctions) of depth k, then A ∧ B
(A ∨B) is a balanced conjunction (disjunction) of depth k + 1.3

Note that the number of conjuncts (disjuncts) in a balanced conjunction (dis-
junction) is always a degree of 2. We will require that all x : Γ r

i , i = 1, . . . , N ,
be fully balanced conjunctions of the same depth. Making them balanced is not
difficult if they all have the same length, a degree of 2. Hence, our task is to
inflate them artificially to the same size without changing the meaning of for-
mulas x : Γ r

i . This can be achieved by duplicating the last element in each Γi

sufficiently many times (remember that Γi 6= ∅), using Weakening, and associat-
ing the resulting conjunction in a balanced way. These duplicate assumptions are
eliminated by Contraction immediately after the (2R)-rule. Neither Weakening
nor Contraction present difficulties for a +-free realization.

It is easy to check that for any collection of sets Γ r
i , each of cardinality 2k, and

for corresponding balanced conjunctions x :Γ r
i , LP ` x :Γ r

i → tk(x) : (x :Γ r
i ) for

terms tk(x) recursively defined by t0(x) = !x, tk+1(x) = c∧ · tk(x) · tk(x), where
LP ` c∧ : (A→ B → A∧B) for any LP-formulas A and B. The existence of such
+-free c∧ is guaranteed by the Lifting Lemma and the Substitution Property.

We now show how to replace Artemov’s term q for a positive family of 2’s
with a +-free term q′ such that LP ` x :Γ r

i → q′ :F r, i = 1, . . . , N . The rest of
Artemov’s original algorithm remains unchanged and effectively yields a +-free
realization. We use

q′ = syl
(
dn, en · s1 · · · s2n

)
· tk(x) , (2)

where 2n−1 < N ≤ 2n, sN+1 = . . . = s2n = sN , the cardinality of all Γ r
i ’s is 2k,

LP ` en :
(

(A1 → B)→ · · · → (A2n → B)→ (A1 ∨ · · · ∨A2n → B)
)
, (3)

t : (A→ B), s : (B → C) `LP syl(t, s) : (A→ C) , (4)
LP ` dn : (Ai → A1 ∨ · · · ∨A2n), i = 1, . . . , 2n (5)

for any formulas A1, . . . , A2n , A, B, and C and any terms t and s, where dis-
junctions A1 ∨ · · · ∨ A2n are always balanced of depth n. The existence of the
+-free term en from (3) follows from the Lifting Lemma and the Substitution
Property. So does the existence of +-free syl(x, y) from (4); it is explicitly con-
structed in [BK09]. It is not hard to show that dn can be recursively defined
3 Balanced conjunctions were first applied in the context of LP in [BK09].
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by making d0 = x, dn+1 = syl(dn, c∨), where LP ` c∨ : (A → A ∨ B) and
LP ` c∨ : (B → A ∨ B) for any formulas A and B. The existence of such a
+-free term c∨ is not generally guaranteed. But if axiom schemes A → A ∨ B
and B → A ∨B are both present in A1, then any constant can serve as c∨. We
have proved the following

Theorem 3. If A→ A∨B and B → A∨B are axioms of LP for any formulas A
and B, then modal logic S4 can be realized in LP without the use of +.

It should be noted that Artemov’s original Realization Theorem put an ad-
ditional restriction of normality on realizations, namely, that all negative 2’s in
an S4-theorem should be realized by distinct proof variables. The +-free real-
ization constructed in Theorem 3 is not normal because all negative 2’s in it
are realized by the same proof variable rather than by many distinct ones. The
proof of the following theorem is omitted due to space constraints.

Theorem 4. There are theorems of modal logic S4 that do not have normal
+-free realizations in LP.
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