
Weak Systems of Explicit Mathematics

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Daria Spescha
von Zug und Pigniu

Leiter der Arbeit:

Prof. Dr. T. Strahm

Institut für Informatik und angewandte Mathematik

Weak Systems of Explicit Mathematics

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Daria Spescha
von Zug und Pigniu

Leiter der Arbeit:

Prof. Dr. T. Strahm

Institut für Informatik und angewandte Mathematik

Acknowledgements

I am indebted to various people who helped and supported me in dif-
ferent ways in the course of writing this thesis. I would like to express
my gratitude to them.

First of all, I want to thank Prof. Thomas Strahm for his continuous
supervision and patience. I am also grateful to Prof. Gerhard Jäger
who made this thesis possible. I would like to thank the current and
previous members of the TIL group for advice, interesting coffee breaks
and lots of pool games in Münchenwiler. Among them I want to mention
especially Peppo Brambilla, Jürg Krähenbühl, Roman Kuznets, Dieter
Probst, David Steiner and Thomas Studer. Further, many thanks go to
Prof. Andrea Cantini for his thorough reading of and valuable remarks
on this thesis.

People from outside the academia also contributed a lot to this thesis. I
am very grateful for and to all my great friends who made sure I did not
forget about the illogical part of life and kept encouraging me whenever
stubborn proofs gave me a hard time.

Last but not least, I want to thank my family. I am much indebted to
my parents, Eusebius and Marilis, for their constant support and I owe
a lot to my grandmothers, Agnes Spescha and Marie Baeriswyl.

Finally, I thank the Swiss National Science Foundation for its financial
support.

i

Contents

1 Prologue 1

2 Introduction to Explicit Mathematics 7

2.1 Applicative Theories . 8

2.1.1 The Basic Theory of Operations and Numbers BON 9

2.1.2 Induction Schemes over BON 12

2.1.3 Extensions of BON 14

2.1.4 Weak Applicative Theories 15

2.2 Types . 22

2.2.1 Elementary Explicit Types 23

2.2.2 Finite Axiomatisation of EET 25

2.2.3 Weaker Theories with Types 27

2.3 Semantics of Explicit Mathematics 28

2.4 Extensions . 31

2.5 Related Work . 33

3 Weak Axiom Systems including Types 35

3.1 The Theory PET . 36

3.1.1 Axioms of PET 38

iii

CONTENTS

3.1.2 Restricted Elementary Ccomprehension 39

3.2 Lower Bounds . 43

3.3 Upper Bounds . 49

3.4 Extensions for PET . 53

3.4.1 Uniformity and Universal Quantification 54

3.4.2 Axiom of Choice 56

3.4.3 Totality and Extensionality 57

3.5 Further Complexity Classes 57

3.5.1 Polynomial Time and Simultaneously Linear Space 59

3.5.2 Polynomial Space and Linear Space 60

4 Disjoint Union And Realisability 67

4.1 The Theory PET+Ji . 68

4.1.1 Axiomatisation of PET+Ji 69

4.1.2 Sequent Calculus Reformulation 74

4.2 A Model for PET+Ji . 83

4.3 Realisability for Positive Formulas 85

4.4 Realising Some Extensions 93

4.5 Classical Version . 95

5 Epilogue 99

A Logic of Partial Terms 105

B Function Algebras for Complexity Classes 109

C A Pairing Function in PTLS 113

Bibliography 118

iv

CONTENTS

Keyword Index 127

Symbol Index 129

Axiom Index 131

List of Definitions and Theorems 133

v

Chapter 1

Prologue

The goal of this thesis is to investigate weak systems of Explicit Math-
ematics. In other words, the aim is to establish a characterisation of
weak complexity classes by means of theories of Explicit Mathematics.

Explicit Mathematics was first introduced in the 1970s by Feferman
[16, 17, 18] as a framework for Bishop-style constructivism. Originally,
Explicit Mathematics was used to provide a constructive justification for
strong (impredicative) systems. For example some inherently impred-
icative systems of set theory and second-order arithmetic can be reduced
to theories of Explicit Mathematics. In recent years, Explicit Mathe-
matics was also employed to compare (sub)systems of Peano Arithmetic.
Although the first systems of Explicit Mathematics were intuitionistic
theories, later theories based on classical logic were also studied.

Systems of Explicit Mathematics are second-order theories that deal
with two kinds of objects: the basic elements are operations and the
second order part consists of collections of operations called types. A
distinguishing feature is that types are referenced by uniformly gener-
ated operations, so-called names. The connection between types and
their names is established by the naming relation <.

The first order part is handled by the so-called Applicative Theories.

1

1. Prologue

Although Applicative Theories have been developed as the basis for
Explicit Mathematics, they turned out to be of independent interest.
A characteristic of Applicative Theories is that operations can freely
be applied to each other and also self-application is allowed, but the
result might not be defined. Since undefinedness plays an important
role, Explicit Mathematics is based on Beeson’s Logic of Partial Terms.

In Applicative Theories, the focus is on the intensional aspect of the
operations, whereas types are extensional constructs. While types are
defined merely by their elements, the names provide information about
the construction of the type they are referring to. This immediately im-
plies that a type has several names. In the most popular theory EET+J,
all types are generated from two basic ones, the type of natural num-
bers and the identity type, by closure under conjunction, complement,
domains (existential quantification) and inverse images. Furthermore,
there is a special type constructor called join that allows us to generate
the disjoint union of a uniformly generated family of types.

The induction scheme of a theory usually has an effect on its strength.
The most common induction principles are the so-called set induction
(i.e. induction on Boolean functions over the natural numbers), type
induction and full formula induction.

Systems of Explicit Mathematics are powerful and can be strengthened
even more by potent principles such as inductive generations, some form
of the axiom of choice or power types. The systems studied so far are
ranging in strength from PRA to highly impredicative systems.

Explicit Mathematics also proved to be a convenient tool for studying
logical frameworks for programming languages e.g. by Feferman [20, 21,
22]. Mostly functional programming languages have been considered,
however also other programming languages were investigated. Studer
[58] used the system EET+J to give formal semantics for Featherweight
Java, a limited version of the programming language Java. Hayashi and
Nakano [29] investigated the extraction of programs from proofs in the
context of Feferman style Explicit Mathematics.

2

In computer science, however, we are more interested in feasible func-
tions. The most familiar proof-theoretically weaker theories, i.e. theories
of strength below PRA, are systems of Bounded Arithmetic of Buss [3].
They are weak fragments of Peano Arithmetic and are formulated in an
extension of the language of PA. The weakening is achieved by restrict-
ing the use of quantifiers to bounded quantifiers in induction formulas.

A well-known recursion-theoretic approach to weaker complexity classes
are function algebras as surveyed e.g. by Clote [11]. They start off from
a given set of basic functions and generate functions by the closure under
a set of functionals that serve as function combinators.

In this thesis, we follow a different approach by working in the setting of
Explicit Mathematics. The advantage of working in this setting is the
natural flavour of functions since all individual objects are operations
and some basic operations are already an integral part of the theo-
ries, while even basic functions need tedious coding and bootstrapping
in Bounded Arithmetic. In Explicit Mathematics, functions are repre-
sented by terms and the strength is determined by the terms that are
provably defined for all inputs whereas in Bounded Arithmetic functions
are defined by formulas and the strength is defined via representable
functions.

Our goal is to develop theories whose proof-theoretic strength is below
PRA while including type induction. In the presence of types, type in-
duction appears to be the most natural induction principle. It entails
formula induction restricted to the formula class for which comprehen-
sion is available.

So far, weak theories have only been studied for Applicative Theories
–among others– by Strahm [53, 54] and Cantini [5, 6]. While the orig-
inal formulation of Applicative Theories is based on natural numbers,
Strahm’s theories take binary words as the foundation. Furthermore, in-
duction is constrained to a limited formula class. Strahm [53] proposed
theories that correspond to the four complexity classes of functions com-
putable

3

1. Prologue

1. in polynomial time,
2. simultaneously in polynomial time and linear space,
3. in polynomial space and
4. in linear space.

In this thesis, we will use these theories extensively.

Krähenbühl [44] introduced a theory of full Explicit Mathematics of
proof-theoretic strength PRA in the presence of type induction. The
desired complexity is essentially achieved by omitting the complement
type constructor.

We continue this approach and restrict the available type constructors
even more. In addition to omitting complements, we replace the type
of binary words by initial segments of binary words.

As mentioned above, the principle of disjoint union stands out as a
type constructor with great expressive power. Informally, if we have an
operation f : a→ < where a is the name of a type, then we can construct
the type j(a, f) := {(x, y) : x ∈ a, y ∈ fx}. Due to its expressiveness,
this principle is delicate to deal with in weak theories. However, we show
that the join principle does not increase the proof-theoretic strength in
intuitionistic logic while increasing the expressivity.

We are now going to give an outline of this thesis. In Chapter 2, we give
an introduction to Explicit Mathematics and provide a brief overview
on previous research in this field. Then, in Chapter 3, we describe
the weak theories mentioned above. We give detailed proofs for the
theory PET that corresponds to the polynomial time computable func-
tions and adapt those for the other complexity classes. The proof of the
lower bounds is done by embedding Strahm’s weak Applicative Theories
while the upper bounds are established by means of a model theoretic
argument. Furthermore, we consider some extensions as studied by Can-
tini [6], among them we focus on the Uniformity Principle that allows us
to introduce an additional type constructor for universal quantification.

Since the treatment of the join principle is more complicated for weak
theories, we discuss its addition to PET in Chapter 4. First, we switch to

4

intuitionistic logic and reformulate the theory in sequent calculus style.
Then we give a syntactical proof for the upper bounds by means of a
realisability relation for positive formulas. We also sketch how to adapt
this for the classical case without join. In Chapter 5 we summarise the
results of this thesis.

In the appendix, we summarise some basics that are assumed to be
known in this thesis together with the formal introduction of a pairing
function extensively used in this thesis. We first recapitulate Beeson’s
Logic of Partial Terms in Appendix A for completeness. In Appendix B,
we give a résumé of the function algebra characterisations of the weak
complexity classes since they play an important role in the context of
this thesis. Finally, in Appendix C, we formally introduce pairing and
projection functions in the class of functions computable simultaneously
in polynomial time and linear space. The existence of these functions
is well-known, see e.g. Ferreira [26]. However, the detailed construction
has not yet been spelled out in the setting of Applicative Theories.

5

1. Prologue

6

Chapter 2

Introduction to Explicit

Mathematics

Explicit Mathematics was first developed in the early 1970s by Solomon
Feferman [16, 18] as a basis for Bishop-style constructivism. Feferman
[17] intended to provide a unifying framework to relate set-theoretic and
recursion-theoretic interpretations. Later, Explicit Mathematics turned
out to be a useful tool for the proof-theoretic analysis of (sub)systems
of second order arithmetic.

Systems of Explicit Mathematics are second order systems and consist
basically of two different kinds of objects, namely individuals (opera-
tions) and types. The operational core is formed by the so-called Ap-
plicative Theories. They provide the rules how individuals are applied to
each other. Full systems of Explicit Mathematics add a type structure
to the underlying applicative structure. Types are collections of individ-
uals and are referenced by uniformly constructed operations, also called
(explicit) names.

Types are extensional objects, i.e. two types are equal if they contain the
same elements. By contrast, the first order part focuses on the inten-
sional aspect of operations. The names of the types are uniformly cre-

7

2. Introduction to Explicit Mathematics

ated and indicate how the types they are referring to were constructed.

The most famous original system T0 introduced by Feferman [16] is
formulated in intuitionistic logic, whereas later also classical theories
were investigated. The underlying basis is Beeson’s Logic of Partial
Terms LPT as recapitulated in Appendix A. In this setting, application
of individuals to each other is not necessarily total. In other words,
there is the possibility of the result of an application being undefined.

The focus of this thesis lies on weak systems of Explicit Mathematics.
Among the systems previously studied are theories corresponding to
primitive recursive arithmetic PRA and Peano arithmetic PA.

In this chapter, we give a short overview over some relevant aspects of
Explicit Mathematics while emphasising comparatively weak systems.
Following the structure of Explicit Mathematics, we introduce several
Applicative Theories in Section 2.1. Afterwards, we turn to the type
structure and recapitulate different axiomatisations of types and names
in Section 2.2. Since we use model-theoretic arguments later, we discuss
the semantics in Section 2.3. In Section 2.4 we sketch some interesting
extensions, some of which also play a role in later chapters. Finally, we
briefly mention some related work in Section 2.5.

2.1 Applicative Theories

Applicative Theories form the basis of Explicit Mathematics. They pro-
vide the framework for the first order part and define the behaviour of
elementary operations. At the beginning, they were merely developed
as an underlying system while studying type construction. However,
Applicative Theories turned out to offer interesting proof-theoretic re-
sults independent of the type structure. For more details refer e.g. to
the overview article by Jäger, Kahle and Strahm [37] or to Strahm [52].

In Applicative Theories, all objects are operations which may arbitrar-
ily be applied to each other. Also self-application is allowed, although
not necessarily total. These systems focus on the intensional aspect of

8

2.1. Applicative Theories

functions, in contrast to set-theoretic approaches. The natural numbers
are often employed to build the basic mathematical structure.

Several interesting extensions of Applicative Theories where studied,
such as a µ-operator in Feferman and Jäger [25, 24] or truth theories
based on similar systems among others by Cantini [7] or by Kahle [41].
Also total applicative theories where the Logic of Partial Terms is re-
placed by ordinary first order logic was investigated e.g. by Jäger and
Strahm [35]. For more details on these extensions, the reader is referred
to the respective literature.

Applicative Theories were discovered to be useful for characterising weak
complexity classes like polynomial time computable functions by Cantini
[5, 6] and Strahm [56, 57, 54]. Especially in [53], Strahm studied four sys-
tems corresponding to the complexity classes for functions computable
in polynomial time, simultaneously in polynomial time and linear space,
in linear space, and in polynomial space. Those will be crucial in this
thesis. In contrast to the stronger systems, binary words turned out to
provide the more convenient basic structure than the natural numbers.

In Section 2.1.1, we first present the Basic Theory of Operations and
Numbers as the standard formulation and the foundation for most sys-
tems of Explicit Mathematics. Different induction schemes used in this
context are then presented in Section 2.1.2 and some important exten-
sions are recapitulated in Section 2.1.3. Finally, the above mentioned
weak systems are summarised in Section 2.1.4. For all these systems,
the underlying logic is Beeson’s Logic of Partial Terms as presented in
Beeson [1]. To make this thesis self-contained, the axioms and rules are
summarised in Appendix A.

2.1.1 The Basic Theory of Operations and Numbers BON

We recapitulate in this section the most common applicative theory, the
Basic Theory of Operations and Numbers BON. Its axioms define the
general operations of combinatory algebra and pairing and, in addition,

9

2. Introduction to Explicit Mathematics

deal with the basic properties of natural numbers. The theory BON

as presented here follows the notation developed e.g. in Feferman and
Jäger [25, 24]. We are following the general outline of Jäger [34] where
the presented results concerning BON are taken from.

The language LN of BON contains countably many (individual) variables
a, b, c, f, g, h, x, y, z, . . . (possibly with subscripts) and the following con-
stants: k, s (combinators), p, p0, p1 (pairing and projections), 0 (zero),
sN (numerical successor), pN (numerical predecessor), dN (definition by
cases for numbers), and rN (recursion). Furthermore, the language com-
prises a binary function symbol · (application), and a unary relation
symbol N (natural numbers) is added to the relations ↓ (defined) and
= (equality) as given by LPT (c.f. Appendix A). Application is writ-
ten in infix notation and (a· b) is usually abbreviated (ab) or just ab.
Moreover application is associative to the left, i.e. a0a1 . . . an stands for
(. . . (a0a1) . . . an). Furthermore, we use the following abbreviations:

t′ := sNt 1 := 0′

(s, t) := pst (t)i := pit (i = 0, 1)

(t0) := t0 (t0, . . . , tn+1) := ((t0, . . . , tn), tn+1)

Concerning the predicate N, the following shortcuts are used:

t ∈ N := N(t)

(∃x ∈ N)A[x] := ∃x(x ∈ N ∧A[x])

(∀x ∈ N)A[x] := ∀x(x ∈ N→ A[x])

t : N 7→ N := (∀x ∈ N)(tx ∈ N)

t : Nn+1 7→ N := (∀x ∈ N)(tx : Nn 7→ N)

For BON, the strictness axioms of LPT result in the following:

(D1) t↓ if t is a variable or a constant.

(D2) (s· t)↓ → s↓ ∧ t↓.

(D3) t1 = t2 → t1↓ ∧ t2↓.

10

2.1. Applicative Theories

(D4) N(t)→ t↓.

The theory BON contains axioms of common combinatory algebra and
consists of axioms defining the behaviour of the basic operators such as
pairing, definition by cases and primitive recursion. Furthermore, the
natural numbers are specified as the closure of 0 under the successor
operator sN. Formally, the axioms of BON are spelled out as follows:

I. Partial Combinatory Algebra

(1) kxy = x

(2) sxy↓ ∧ sxyz ' xz(yz)

II. Pairing and Projection

(3) p0(x, y) = x ∧ p1(x, y) = y

III. Natural Numbers

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N)
(5) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x)
(6) (∀x ∈ N)(x 6= 0→ pNx ∈ N ∧ (pNx)′ = x)

IV. Definition by Numerical Cases

(7) u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x

(8) u ∈ N ∧ v ∈ N ∧ u 6= v → dNxyuv = y

V. Primitive Recursion on N

(9) (f : N 7→ N) ∧ (g : N3 7→ N)→ (rNfg : N2 7→ N)
(10) (f : N 7→ N) ∧ (g : N3 7→ N) ∧ x ∈ N ∧ y ∈ N ∧ h = rNfg

→ hx0 = fx ∧ hxy′ = gxy(hxy)

We now recapitulate some crucial properties of BON. Theorem 2.1 is
common in the setting of Explicit Mathematics and follows from the
axioms about combinatory algebra, see e.g. Beeson [1], Feferman [16]
or Hindley and Seldin [30]. It states that λ abstraction of common λ

calculus can be simulated in this setting.

11

2. Introduction to Explicit Mathematics

Theorem 2.1 (λ Abstraction) For every LN term t and any variable
x, there is a term (λx.t), such that the following holds for any term s:

1) FV (λx.t) = FV (t) \ {x}

2) BON ` (λx.t)↓

3) BON ` (λx.t)x ' t

4) BON ` s↓→ (λx.t)s ' t[s/x]

Despite the above theorem, λ abstraction is not simulated to the full
extent. In conventional λ calculus, the term (λx.t)[s/y] is equal to
(λx.t[s/y]). By contrast, a counter example for this can be constructed
in BON. However, the following substitution principle does hold for
BON:

Lemma 2.2 For all LN terms s and t and any two distinct variables x
and y, we have

BON ` (λx.t)[s/y]x ' t[s/y]

2.1.2 Induction Schemes over BON

Systems of Explicit Mathematics are usually equipped with an induction
scheme over the natural numbers. The choice of the induction generally
influences or even determines the proof-theoretic strength of the system.
Thus we present two different (common) induction schemes over BON,
resulting in theories with different proof-theoretic strength. The first
one makes induction for arbitrary formulas available, whereas the second
one restricts induction to so-called subsets of the natural numbers and
is therefore weaker.

Before stating the induction schemas, the concept of a subset of the
natural numbers has to be introduced. A subset a of N, denoted by the

12

2.1. Applicative Theories

formula SetN, shall be seen as its characteristic function:

SetN(a) := (∀x ∈ N)(ax = 0 ∨ ax = 1)

a ∈ SetN := SetN(a)

b ε a := ab = 0

Now we are ready to introduce two schemes for complete induction on
N, namely Set Induction and Formula Induction:

Set Induction on N For all LN terms t:

(S-IN) t ∈ SetN ∧ 0 ε t ∧ (∀x ∈ N)(x ε t→ x′ ε t)→ (∀x ∈ N)(x ε t)

Formula Induction on N For all formulas A[x] of LN:

(F-IN) A[0] ∧ (∀x ∈ N)(A[x]→ A[x′])→ (∀x ∈ N)A[x]

Remark 2.3 Axioms (9) and (10) are superfluous in the presence of
(F-IN). To be precise, there is a closed term recN (not containing rN)
such that the theory BON \ {(9), (10)}+ (F-IN) proves that

1) (f : N 7→ N) ∧ (g : N3 7→ N)→ (recN fg : N2 7→ N)

2) (f : N 7→ N) ∧ (g : N3 7→ N) ∧ x ∈ N ∧ y ∈ N ∧ h = recN fg

→ hx0 = fx ∧ hxy′ = gxy(hxy)

As mentioned above, the proof-theoretic strength of BON extended by
one of the induction schemes above depends on the choice of the schema:

Theorem 2.4 The proof-theoretic strength of BON plus induction was
established as follows:

BON + (S-IN) ≡ PRA

BON + (F-IN) ≡ PA

13

2. Introduction to Explicit Mathematics

2.1.3 Extensions of BON

Several additional axioms can be added to BON resulting in interesting
theories. In this section, we briefly mention the most common ones,
especially totality and extensionality of operations will be used later in
this thesis.

Applicative Theories are based on the Logic of Partial Terms where op-
erations are partial and terms need not be defined. However, sometimes
systems with totality of application are better suited. For this purpose,
we define the Totality Axiom:

(Tot) ∀x∀y(xy↓)

In the presence of (Tot), every term is provably defined, i.e. for any
term t, BON + (Tot) ` t↓. Therefore, the underlying Logic of Partial
Terms can be replaced by ordinary first-order predicate logic.

As mentioned above, Applicative Theories concentrate on the inten-
sional aspect of operation. At times however, extensionality for op-
erations is desired. Therefore we can add an axiom stating that two
operations are equal if they produce the same result for all arguments:

(Ext) ∀f∀g(∀x(fx ' gx)→ f = g)

A powerful means for generating functions from the base operations is
via definition by cases. Yet, the built-in operator dN works on natural
numbers only. To rectify this deficiency, we can extend LN by a new
constant dV for definition by cases on the universe and add the following
axiom

(dV) (u = v → dVxyuv = x) ∧ (u 6= v → dVxyuv = y)

Definition by cases on the universe is quite a strong principle, causing
conflicts with several other schemes as indicated below. We quickly
recapitulate the following ontological properties for BON:

14

2.1. Applicative Theories

Theorem 2.5 We have the following ontological properties:

1) BON + (dV) + (Ext) is inconsistent.

2) BON + (dV) + (Tot) is inconsistent.

2.1.4 Weak Applicative Theories

As mentioned before, Strahm –among others– studied different weak Ap-
plicative Theories. He presented a first system corresponding to polyno-
mial time computable functions in [57]. Later, in [53], a refined version
of this system was introduced together with systems for the complexity
classes of functions computable simultaneously in polynomial time and
linear space, in polynomial space and in linear space (c.f. Appendix B).
He then investigated functionals of higher types and proved in [54] that
the provably total type two functionals of PT coincide with the basic
feasible functionals as defined by Melhorn [47].

In this section, we present the four weak theories as introduced by
Strahm. As we will make heavy use of these systems later, we sum-
marise the crucial results in sufficient detail. Unless stated otherwise,
the definitions and theorems are recapitulated from Strahm [53].

When working with systems of strength lower than PRA, it is often more
convenient to work with binary words W instead of natural numbers. In
our context, binary words are considered as strings consisting of 0 and
1, and not as binary representations of natural numbers.

The language LW is very similar to LN, it differs mainly in the con-
stants which are intended to deal with binary words. LW comprises the
following constants: k, s (combinators), p, p0, p1 (pairing and projec-
tions), ε (empty word), s0 and s1 (successors), pW (predecessor), s` and
p` (lexicographic successor and predecessor), dW (definition by cases on
binary words), c⊆ (initial subword), lW (tally length), as well as ∗ and ×
(concatenation and multiplication). Similar to LN, LW adds the binary
function symbol · (application), and a unary relation symbol W (binary

15

2. Introduction to Explicit Mathematics

words) to those of LPT.

We use the same abbreviations as introduced for BON and define the
additional shortcuts:

0 := s0ε 1 := s1ε

s ⊆ t := c⊆st = 0 s ≤ t := lWs ⊆ lWt

Furthermore, the following shorthand notations are used with respect
to the predicate W where ~s = s1, . . . , sn:

~s ∈W := W(s1) ∧ · · · ∧W(sn),

Wa(s) := (W(s) ∧ s ≤ a),

~s ∈Wa := Wa(s1) ∧ · · · ∧Wa(sn),

(∃x ∈W)A := (∃x)(x ∈W ∧A),

(∀x ∈W)A := (∀x)(x ∈W→ A),

(∃x ≤ t)A := (∃x ∈W)(x ≤ t ∧A),

(∀x ≤ t)A := (∀x ∈W)(x ≤ t→ A),

(t : W 7→W) := (∀x ∈W)(tx ∈W),

(t : Wm+1 7→W) := (∀x ∈W)(tx : Wm 7→W).

We first recapitulate the basic theory B which is used as the foundation
for all four theories later. Besides the strictness axioms analogous to
BON, it consists of the following axiom groups defining the behaviour
of the built-in operators and predicates:

I. Partial Combinatory Algebra and Pairing

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz),
(3) p0(x, y) = x ∧ p1(x, y) = y.

II. Definition by Cases on W

(4) a ∈W ∧ b ∈W ∧ a = b → dWxyab = x,

16

2.1. Applicative Theories

(5) a ∈W ∧ b ∈W ∧ a 6= b → dWxyab = y.

III. Closure, Binary Successors and Predecessor

(6) ε ∈W ∧ (∀x ∈W)(s0x ∈W ∧ s1x ∈W),

(7) s0x 6= s1y ∧ s0x 6= ε ∧ s1x 6= ε,

(8) pW : W 7→W ∧ pWε = ε,

(9) x ∈W → pW(s0x) = x ∧ pW(s1x) = x,

(10) x ∈W ∧ x 6= ε → s0(pWx) = x ∨ s1(pWx) = x.

IV. Lexicographic Successor and Predecessor

(11) s` : W 7→W ∧ s`ε = 0,

(12) x ∈W → s`(s0x) = s1x ∧ s`(s1x) = s0(s`x),

(13) p` : W 7→W ∧ p`ε = ε,

(14) x ∈W → p`(s`x) = x,

(15) x ∈W ∧ x 6= ε → s`(p`x) = x.

V. Initial Subword Relation

(16) x ∈W ∧ y ∈W → c⊆xy = 0 ∨ c⊆xy = 1,

(17) x ∈W → (x ⊆ ε↔ x = ε),

(18) x ∈W ∧ y ∈W ∧ y 6= ε → (x ⊆ y ↔ x ⊆ pWy ∨ x = y).

(19) x ∈W ∧ y ∈W ∧ z ∈W ∧ x ⊆ y ∧ y ⊆ z → x ⊆ z

VI. Tally Length of Binary Words

(20) lW : W 7→W ∧ lWε = ε,

(21) x ∈W → lW(s0x) = s1(lWx) ∧ lW(s1x) = s1(lWx),

(22) x ∈W ∧ lW(x) = x → lW(s`x) = s1x,

(23) x ∈W ∧ lW(x) 6= x → lW(s`x) = lW(x),

(24) x ∈W ∧ y ∈W → x ≤ y ∨ y ≤ x.

Analogous to BON, we can simulate λ abstraction by means of k and s.

17

2. Introduction to Explicit Mathematics

Lemma 2.6 (λ Abstraction) For each term t and all variables x,
there is a term (λx.t) whose free variables are those of t except x and
such that B proves

(λx.t)↓ ∧ (λx.t)x ' t

We generalise λ abstraction to several arguments as usual by writing
(λx1 · · ·xn.t) for (λx1. · · · (λxn.t)).
As a consequence of the enclosure of combinatory algebra, the existence
of a recursion or fixpoint operator is also provable in B.

Lemma 2.7 (Recursion / Fixed point operator) There exists a
closed term fix such that B proves

fixf↓ ∧ fixfx ' f(fixf)x

Two basic operations on binary words are missing in B, namely word
concatenation and multiplication, which are usually written in infix no-
tation. Concatenation ∗ appends the second word to the first one as
expected. Multiplication a× b repeats the first word a length of b many
times. Formally, this is specified by the following axioms:

VII. Word Concatenation

(25) ∗ : W2 7→W,

(26) x ∈W → x ∗ ε = x,

(27) x ∈W ∧ y ∈W → x ∗ (siy) = si(x ∗ y) (i = 0, 1).

VIII. Word Multiplication

(28) × : W2 7→W,

(29) x ∈W → x× ε = ε,

(30) x ∈W ∧ y ∈W → x× (siy) = (x× y) ∗ x (i = 0, 1).

For convenience, we will write B(∗) for B expanded by axiom group VII.

and B(∗,×) for adding VII. and VIII. to B.

18

2.1. Applicative Theories

In the presence of the axioms about multiplication ×, the tally length
can be defined as the shortcut

lWs := 1× s

and the axioms of group VI. are derivable with suitable induction. We
will heavily work with a theory with multiplication later and are inter-
ested in keeping the number of axioms as minimal as possible. There-
fore, we let BOW stand for the theory comprising axiom groups I.–III.,
V. without (19), VII., and VIII.

Before we are able to state the induction principles for the desired theo-
ries, we first have to define the two formula classes Σb

W and Σb−
W , where

positive formulas are formulas containing neither negation (¬) nor im-
plication (→).

Definition 2.8 (Formula classes Σb
W and Σb−

W)
A formula A[f, x] belongs to the formula class Σb

W (Σb−
W) iff it is of the

form (∃y ≤ fx)B[f, x, y] where B is positive and does not contain W

(and does not contain the quantifier ∀). ~

In contrast to (F-IN) where induction was allowed for all formulas, the
induction schemes are in this context limited to formulas of the class
Σb

W. For any formula A[x] ≡ (∃y ≤ fx)B[f, x, y] in Σb
W we have

(Σb
W-IW) f : W 7→W ∧A[ε] ∧ (∀x ∈W)(A[pWx]→ A[x])

→ (∀x ∈W)A[x]

(Σb
W-I`) f : W 7→W ∧A[ε] ∧ (∀x ∈W)(A[p`x]→ A[x])

→ (∀x ∈W)A[x]

We are now ready to state Strahm’s theories designed to correspond to
the complexity classes mentioned before:

PT := B(∗,×) + (Σb
W-IW) PTLS := B(∗) + (Σb

W-IW)

PS := B(∗,×) + (Σb
W-I`) LS := B(∗) + (Σb

W-I`)

19

2. Introduction to Explicit Mathematics

For T any one of these four theories, T− is defined as the corresponding
theory with the only difference that the induction scheme is limited to
Σb−

W formulas instead of Σb
W formulas. Furthermore, let us mention that

PT is equivalent to BOW + (Σb
W-IW).

For these weak theories, the proof theoretic strength is defined via the
notion of provably total functions. Therefore, we first need to formally
define the concept of a provably total function. Before we can do this, we
have to observe that for every binary word w ∈W, there is a canonical
closed term w (“worderal”) representing w. w is constructed from the
empty word ε by applications of the successor functions s0 and s1.

Definition 2.9 (Provably total function)
A function F : Wn → W is called provably total in an LW theory T iff
there exists a closed term tF such that

1) T ` tF : Wn 7→W and

2) T ` tFw1 · · ·wn = F (w1 · · ·wn) for all w1, . . . , wn ∈W ~

In this definition, the first condition is crucial as the second condition
is provable for all recursive functions in PT.

In Strahm [53], the lower bounds for PT and PTLS are established by
deriving a natural form of bounded recursion on notation within the
theory. In contrast to BON, the recursion operator is not built-in by the
axioms. For its formulation, a cut-off operator is required. Informally
speaking, t | s is t if t ≤ s and s otherwise. More formally, we can make
use of definition by cases dW on W and the characteristic function c⊆,
i.e. t | s is simply an abbreviation for dWts(c⊆(lWt)(lWs))0.

Lemma 2.10 (Bounded recursion on notation) There is a closed
term rW in LW such that B + (Σb

W-IW) proves

f : W 7→W ∧ g : W3 7→W ∧ b : W2 7→W

→ (rWfgb : W2 7→W ∧ [x ∈W ∧ y ∈W ∧ y 6= ε ∧ h = rWfgb]

→ hxε = fx ∧ hxy = gxy(hx(pWy)) | bxy)

20

2.1. Applicative Theories

We also need a recursion scheme working along lexicographic ordering
analogous to the one used to characterise BRL in Appendix B.

Lemma 2.11 (Bounded lexicographic recursion) There is a closed
term r` in LW such that B + (Σb

W-I`) proves

f : W 7→W ∧ g : W3 7→W ∧ b : W2 7→W

→ (r`fgb : W2 7→W ∧ [x ∈W ∧ y ∈W ∧ y 6= ε ∧ h = r`fgb]

→ hxε = fx ∧ hxy = gxy(hx(p`y)) | bxy)

We can now summarise the main result of Strahm [53] claiming that
the four theories indeed have the desired proof-theoretic strength. The
previous two lemmas immediately entail the lower bounds for the four
theories which results in the following theorem:

Theorem 2.12 The following proof-theoretic bounds hold:

1) The provably total functions of PT coincide with FPtime.

2) The provably total functions of PTLS coincide with FPtimeLinspace.

3) The provably total functions of PS coincide with FPspace.

4) The provably total functions of LS coincide with FLinspace.

Remark 2.13 When analysing the proof of the above theorem in Strahm
[53], it is obvious that the corresponding theory T− suffices for achiev-
ing the desired proof-theoretic strength of each of the theories. The two
formula classes differ only in the admittance of the universal quanti-
fier. But the fact that (sub)formulas of the form ∀xA are permitted is
not exploited at any point in the proof of the lower bounds. Especially
Lemma 2.10 and Lemma 2.11 can be proved with induction over Σb−

W

formulas only.

21

2. Introduction to Explicit Mathematics

2.2 Types

As noted above, the focus of Explicit Mathematics usually is on the
type structure. After the discussion of the Applicative Theories in the
previous section, we are now ready to introduce the second order part.

In Explicit Mathematics, types are extensional and have (explicit) names
which are intensional. The names are individuals and generated via uni-
form operations. The link between names and the types they are refer-
ring to is established by the naming relation < following the notation of
Jäger [31]. Also the element relation ∈ connects individuals with types,
expressing that an individual is a member of a type.

While the first order part deals with the operations, the second order
part defines which types exist and how names are generated. Theories
of Explicit Mathematics are specified either by a comprehension scheme
or by means of a finite axiomatisation. In the first case, the existence of
a type X is (informally) assured such that X = {x : A[x]} for a formula
A of a certain formula class. The names are then constructed uniformly
by means of the constants ce where e is the Gödel number of A. In the
latter case, types are generated by means of a finite number of name
constructors.

The most prevailing theory, the theory of elementary explicit types EET,
is first presented in its original form via a comprehension scheme in
Section 2.2.1. As we will later give a finite axiomatisation for our theory
PET, we present the equivalent finite version of EET in Section 2.2.2. In
this way, the differences will be more apparent. We will also introduce
an additional induction principle, namely type induction.

So far, full systems of Explicit Mathematics were rather strong. To be
precise, the weakest theories studied are of strength PRA. Feferman
[21, 22] introduced a first system of strength PRA to provide a frame-
work for formalising functional programming languages. Krähenbühl
[44] introduced a theory called Σ+ET of the same strength. Since Σ+ET

is closely related to our theories, we present it in Section 2.2.3.

22

2.2. Types

2.2.1 Elementary Explicit Types

In this section, we introduce the theory EET of Elementary Explicit
Types following the outline given in Jäger [34]. Unless stated otherwise,
results are recapitulated therefrom.

EET is formulated in the language L2
N which is obtained by adding to LN

countably many type variables X,Y, Z, . . . (possibly with subscripts),
two binary relation symbols ∈ for elementship and < for naming, and
also new individual constants ce for all natural numbers e. To improve
readability, we will write the relation ∈ in infix notation. The relation
symbol ∈ is different from the shortcut t ∈ N, but this will always be
clear from the context.

The individual terms of L2
N are the same as in LN, but of course tak-

ing the new constants into account. The type terms of L2
N are simply

the type variables. The atomic formulas of L2
N are the ones of LN plus

expressions of the form s ∈ X, <(s,X), and X = Y for s an individ-
ual term and X,Y type variables. The formulas of L2

N are defined as
the closure of the atomic formulas under the usual logical connectives
as well as under existential and universal quantification in both sorts,
individuals and types.

Before stating the axioms, we need to define two formula classes:

Definition 2.14 (Stratified and elementary formulas)
1) A L2

N formula is called a stratified formula if the relation symbol
< does not occur.

2) An elementary formula is a formula which is stratified and where
no type variables are bound, either. ~

As we will mostly refer to types via their name, we introduce the fol-
lowing abbreviations where ~s = s1, . . . , sn,

#”

X = X1, . . . , Xn:

<(~s,
#”

X) := <(s1, X1) ∧ · · · ∧ <(sn, Xn)

<(s) := ∃X<(s,X)

<(~s) := <(s1) ∧ · · · ∧ <(sn)

23

2. Introduction to Explicit Mathematics

s
.∈ t := ∃X(<(t,X) ∧ s ∈ X)

(∀x ∈ X)A[x] := ∀x(x ∈ X → A[x])

(∃x ∈ X)A[x] := ∃x(x ∈ X ∧A[x])

The theory EET contains the axioms of BON where strictness is ex-
tended to respect the new relations:

(D5) s ∈ X → s↓

(D6) <(s,X)→ s↓

Furthermore, EET comprises the following two groups of axioms about
types. The first group ensures that every type has a name and that
types are indeed extensional. The second group formally defines the
uniform type generation for elementary formulas.

I. Explicit Representation and Extensionality

(E1) ∃x<(x,X)

(E2) <(s,X) ∧ <(s, Y)→ X = Y

(E3) ∀z(z ∈ X ↔ z ∈ Y)→ X = Y

II. Elementary Comprehension. Let A[x, ~y, ~Z] be an elementary for-
mula with Gödel number e such that x, ~y, ~Z is a conclusive list of
the free variables

(ECA1) ∃X∀x(x ∈ X ↔ A[x, ~u, ~Z])

(ECA2) <(~v,
#”

V) ∧ ∀x(x ∈ X ↔ A[x, ~u, ~V])→ <(ce(~u,~v), X)

Different induction schemes were already discussed in Section 2.1.2 for
Applicative Theories. Also for EET the choice of the induction deter-
mines the strength of the system. The two principles introduced over
BON, (S-IN) and (F-IN), can also be added to EET, whereat formula in-
duction is defined for all L2

N formulas. In full systems of Explicit Math-
ematics, there is an additional interesting induction principle, namely
type induction:

24

2.2. Types

(T-IN) 0 ∈ X ∧ (∀x ∈ N)(x ∈ X → sNx ∈ X)→ (∀x ∈ N)(x ∈ X)

When taking comprehension into account, (T-IN) is obviously equivalent
to restricting (F-IN) to elementary formulas.

The following theorem states the proof-theoretic strength of the differ-
ent induction principles added to EET. In the presence of (S-IN), the
strength is independent of the type structure. In contrast, formula in-
duction is a stronger principle when additional formulas regarding types
are allowed. In fact, EET+(F-IN) is proof-theoretically equivalent to the
system Π0

∞-CA of second order arithmetic with arithmetical comprehen-
sion. Type induction corresponds to formula induction for elementary
formulas and is therefore weaker than full formula induction.

Theorem 2.15 The following proof-theoretic equivalences were estab-
lished for EET plus induction:

EET+(S-IN) ≡ PRA

EET+(T-IW) ≡ PA

EET+(F-IN) ≡ Π0
∞-CA

2.2.2 Finite Axiomatisation of EET

Feferman and Jäger [24] introduced a finite axiomatisation of EET. The
proof of the equivalence of the two systems is spelled out in detail e.g.
in Jansen [39].

The finite axiomatisation is formulated in the language L2f
N which differs

from L2
N only in the constants available. Instead of the constants ce, L2f

N

contains new constants used as name generators: nat, id, co, int, inv, and
dom.

The axioms of EETf are the same as those of EET except for the com-
prehension axioms, (ECA1) and (ECA2). These are replaced by the
following axioms:

25

2. Introduction to Explicit Mathematics

I. Natural Numbers

(1) ∃X∀x(x ∈ X ↔ N(x))

(2) ∀x(x ∈ X ↔ N(x))→ <(nat, X)

II. Identity

(3) ∃X∀x(x ∈ X ↔ ∃y(x = (y, y)))

(4) ∀x(x ∈ X ↔ ∃y(x = (y, y)))→ <(id, X)

III. Complements

(5) ∃X∀x(x ∈ X ↔ x 6∈ Y)

(6) <(y, Y) ∧ ∀x(x ∈ X ↔ x 6∈ Y)→ <(coy,X)

IV. Intersection

(7) ∃X∀x(x ∈ X ↔ x ∈ Y ∧ x ∈ Z)

(8) <(y, Y) ∧ <(z, Z) ∧ ∀x(x ∈ X ↔ x ∈ Y ∧ x ∈ Z) →
<(int(y, z), X)

V. Domains

(9) ∃X∀x(x ∈ X ↔ ∃y((x, y) ∈ Y))

(10) <(y, Y) ∧ ∀x(x ∈ X ↔ ∃y((x, y) ∈ Y))→ <(dom(y), X)

VI. Inverse Images

(11) ∃X∀x(x ∈ X ↔ fx ∈ Y)

(12) <(y, Y) ∧ ∀x(x ∈ X ↔ fx ∈ Y)→ <(inv(f, y), X)

The equivalence of EET and EETf mainly follows from the following:

Lemma 2.16 For any elementary formula A[x, ~y, ~Z] of EETf with Gödel
number e, there is a closed term te depending on e such that EETf

proves:

1) ∃X∀x(x ∈ X ↔ A[x, ~y, ~Z])

2) <(~z, Z) ∧ ∀x(x ∈ X ↔ A[x, ~y, ~Z])→ <(te(~y, ~z), X)

26

2.2. Types

The other direction, i.e. the embedding of EETf into EET, is immediate
as all formulas stating membership conditions in the axioms above are
elementary formulas. Therefore, a closed L2

N term can be constructed
for every additional constant of L2f

N by means of the constants ce.

2.2.3 Weaker Theories with Types

In his Master thesis [44], Krähenbühl introduced the theory Σ+ET of
Positive Existential Comprehension. As this is the system of Explicit
Mathematics most closely related to our theories, we shortly summarise
the results in this section.

The theory Σ+ET is formulated in the language L2f
N and is given by

means of a finite axiomatisation in the flavour of EETf . To be precise,
the axioms are those of EETf except for complement. As disjunction
(union) has to be added in the absence of complement, we repeat the
axioms here in the more compact formulation of Krähenbühl [44]:

(1) <(nat) ∧ ∀x(x .∈ nat↔ x ∈ N)

(2) <(id) ∧ ∀x(x .∈ id↔ ∃y(x = (y, y)))

(3) <(a) ∧ <(b)→ <(un(a, b)) ∧ ∀x(x .∈ un(a, b)↔ (x .∈ a ∨ x .∈ b))

(4) <(a) ∧ <(b)→ <(int(a, b)) ∧ ∀x(x .∈ int(a, b)↔ (x .∈ a ∧ x .∈ b))

(5) <(a)→ <(dom(a)) ∧ ∀x(x .∈ dom(a)↔ ∃y((x, y) .∈ a))

(6) <(a)→ <(inv(f, a)) ∧ ∀x(x .∈ inv(f, a)↔ fx
.∈ a)

Krähenbühl also identifies the corresponding formula class Σ+E for the
comprehension scheme. Reflecting the type constructors above, this
class corresponds to the class of elementary formulas, except for the
lack of negation. Formally, it is defined as follows:

Definition 2.17 (Positive Existential Elementary Formulas)
The class of Σ+E formulas is inductively defined by the following:

1) For all terms s, t and any type variable X, the formulas s = t, s↓,
s ∈ N, and s ∈ X are Σ+E formulas.

27

2. Introduction to Explicit Mathematics

2) If A,B are Σ+E formulas, then so are A ∨B,A ∧B, and ∃xA for
any individual variable x. ~

A comprehension comprehension scheme analogous to Lemma 2.16 can
be proved in Σ+ET for Σ+E formulas.

As Σ+ET is obviously weaker than EET, only two induction principles
are investigated, namely (T-IN) and (F-IN). It emerges that Σ+ET+(T-IN)
and Σ+ET+(F-IN) are of the same strength as EET+(S-IN) and EET+(T-IN)
respectively. Formally, the result as established by Krähenbühl [44] is
spelled out as follows.

Theorem 2.18 The following proof-theoretic equivalences were estab-
lished for Σ+ET plus induction:

Σ+ET+(T-IN) ≡ PRA

Σ+ET+(F-IN) ≡ PA

2.3 Semantics of Explicit Mathematics

In this section, we give an overview over the most crucial components
of the semantics of Explicit Mathematics. Analogous to the setup of
systems of Explicit Mathematics, models consist of two layers. The first
part models the underlying Applicative Theory. Interpretations for the
second-order elements (types, and naming and element relations) are
then constructed on top of this first-order model.

Thus, we first mention some common models for the theory BON with-
out going into details. Then we state a recipe for constructing models
for EET from models of BON. Finally, we give a short description of the
open term modelM(λη) that will play a decisive role later in Chapter 4.

Definition 2.19 (LN and LW structure)
A LN (LW) structure M is given by a tuple

M = (M,N, I,App,⊥)

28

2.3. Semantics of Explicit Mathematics

with the following properties:

(i) The universe M is a non-empty set and usually written |M|.
(ii) N is a non-empty subset of M .
(iii) I is a mapping assigning to each constant c of LN (LW) an element

I(c) in M that is also abbreviated cM.
(iv) App is a partial binary function on M and sometimes written ·M.
(v) ⊥ is an object not belonging to M . ~

The notions of variable valuations and validity in M are defined as
usual for predicate logic, where the relation N (W) is interpreted by
N and undefinedness is represented by ⊥. Furthermore, the so-called
numeral n of a natural number n is defined as the closed standard term
representing n. It is constructed by repeatedly applying the successor
sN to 0.

Depending on the purpose, different models for BON are considered,
those presented here are taken from Jäger [34]. Given the design of BON,
a very natural model is the so-called recursion-theoretic model PRF .
The universe |PRF| consists of the natural numbers N and the relation
N is also interpreted by N. Therefore, PRF |= ∀xN(x). Furthermore,
for e ∈ N, {e} stands for the partial recursive function over N with
index e. Application is given as the partial function N × N N by
e·PRF n :' {e}(n). The constants are interpreted by indices of suitable
functions. It is easy to see that the such constructed PRF is a model
of BON + (F-IN).

There are two common syntactical models, the (closed) term models
CT T and CNT . Both use a convenient notion of term reduction. They
mostly differ in their universe, |CT T | consists of the equivalence classes
of the closed L terms with respect to reduction whereas |CNT | is com-
posed of the closed L terms in normal form. Constants are interpreted
by themselves and the natural number by the numerals (respectively
the equivalence classes thereof). Application in CT T is given by the
equivalence class of the resulting term, whereas in CNT application is
interpreted by taking the strong normal form of the resulting term. Both

29

2. Introduction to Explicit Mathematics

structures are models of BON+(F-IN). Moreover, CT T also validates
(Tot) in contrast to CNT .

Of course, there are many more models for Applicative Theories, how-
ever it would go beyond the scope of this thesis to sketch them.

We now turn to models for full systems of Explicit Mathematics and
first define the notion of a structure.

Definition 2.20 (L2
N structure)

A L2
N structure N is given as a tuple

N = (M, T , E ,R, (me : e ∈ N))

such that the following conditions are satisfied.

(i) M is a LN structure,
(ii) T is a non-empty set of subsets of |M|,
(iii) E and R are non-empty subsets of |M| × T ,
(iv) (me : e ∈ N) is a family of elements of |M|. ~

Variable valuations and validity are extended as usual to the language
L2

N. We now give a rough description for constructing a model of EET

from a model of BON as specified before.

1. Take any model M of BON.

2. Define interpretations for constants cNe := (λx.(0, e, x))M.

3. E is the usual ∈ relation on |M| × T .

4. Inductively define sets of names RNk ⊆ |M| for every k ∈ N. In
parallel, define the extension ext(m) for each m ∈ RNk . Inter-
pretations at level k are defined as Tk := {ext(m) : m ∈ RNk }
and the naming relation is the mapping of the names to their
extension Rk := {(m,n) : m ∈ RNk , n ∈ ext(m)}. Let Nk =
(M, Tk,Rk, (cNe))

– For the base case, if A[x, ~y] is an elementary formula without

30

2.4. Extensions

type variables and e its Gödel number, we add ce
N (~n) to RN0 .

ext(ce
N (~n)) = {m ∈ |M| :M |= A[m,~n]}

– For k > 0, add cNe (~n, ~q) to RNk such that e is the code of an el-
ementary formula A[x, ~y, ~X] and ~q ∈ RNk−1. ext(ce

N (~n, ~q)) =
{m ∈ |M| :M |= A[m,~n, ~q]}

5. The types are now interpreted by T :=
⋃
k∈N Tk and the naming

relation by R :=
⋃
k∈NRk.

Any structure constructed according to this recipe from a model of BON

is indeed a model of EET. Furthermore, ifM models (F-IN) in LN, then
N validates (T-IN) for L2

N.

Later in this thesis, we will make use of the open term model M(λη)
and thus give a short recapitulation here. In contrast to CT T and CNT ,
the universe |M(λη)| consists of open terms instead of closed terms. To
be precise, it contains the terms of ordinary λ calculus extended by con-
stants according to those of LW or LN. Equality is defined by common
βη reduction, in other words, two terms are equal if they have common
reduct under βη reduction. The constants are interpreted by themselves.
For more details on the interpretation of the combinatory algebra part
refer e.g. to Hindley and Seldin [30]. Additional reduction rules are
added to the usual βη ones to deal with the other basic operations of
BON or PT, as was described in a similar setting by Cantini [7, §4A].
Actually, M(λη) models (Tot) and therefore validates the applicative
theory based on ordinary first order predicate calculus.

2.4 Extensions

Since the introduction of Explicit Mathematics in the early seventies,
several extensions have been discussed. In this section, we recapitulate
some of them which are relevant later in this thesis and mention very
quickly further extensions.

31

2. Introduction to Explicit Mathematics

Two common extensions are totality and extensionality for operations
which were already introduced in Section 2.1.3. They mainly affect the
first-order part and are therefore independent of the type structure.

In the original formulation of Feferman [16], an additional type con-
structor was present, the so-called join operator which constructs the
disjoint union of a family of types. The join principle was studied over
several theories and turned out to be an expressively powerful schema.
Formally, join is formulated by means of an additional constant j as
follows:

(J) <(a,X)∧(∀x ∈ X)∃Y <(fx, Y)→ ∃Z(<(j(a, f), Z) ∧ Σ[X, f, Z])

where Σ[X, f, Z] is an abbreviation for the following formula:

∀x(x ∈ Z ↔ x = ((x)0, (x)1) ∧ (x)0 ∈ X ∧ ∃Y (<(f(x)0, Y) ∧ (x)1 ∈ Y)

The join principle has been studied over several systems of explicit math-
ematics, among them EET plus induction and Σ+ET plus induction. It
is an interesting principle with nice applications. Indeed, Studer [58]
used EET+J as the basis for formalising Featherweight Java, a limited
version of the widespread programming language Java.

Despite its expressive power, join does in most cases not increase the
proof-theoretic strength of the studied system. For example, Krähen-
bühl [44] proved that the addition of join does not increase the strength
of Σ+ET with neither (T-IN) nor (F-IN). However, for stronger systems
join makes a difference in strength due to Feferman [16, 18]. While the
proof-theoretic strength of EET+J+(T-IN) is still PA, the join principle
increases the strength in the presence of (F-IN), resulting in the system
Π0
∞-CA<ε0 .

Further type constructor schemes were studied such as different forms
of power types among others by Cantini and Minari [10], Jäger [32] and
Krähenbühl [44]. Also several ontological principles as for example “ev-
erything is a name” (∀<) were investigated. However, caution is advised

32

2.5. Related Work

when combining those, as some combinations result in inconsistent sys-
tems. E.g. EET+J+∀< is inconsistent while both EET+J and EET+∀<
are consistent.

Moreover, comprehension for other formula classes was investigated, e.g.
for stratified formulas. However, full comprehension (i.e. comprehension
for all formulas) leads to the Russell paradox and is therefore again
inconsistent. For more details, refer to the corresponding literature,
especially to the overviews given in Jäger [34], Jansen [39]

2.5 Related Work

In this section, we shortly discuss related fields of research. For more
information about the systems mentioned, we refer to the respective
literature.

In the context of Explicit Mathematics, further systems have been stud-
ied that are much stronger than the systems described above. We can
only mention a few of them. The principle of inductive generations was
part of Feferman’s original system T0 [16]. Jäger and Studer [36] dis-
cussed it in an extension of T0 by the Limit axiom and the Mahlo axiom.
Also the widespread concept of universes was investigated among oth-
ers by Feferman [19], Jäger, Kahle and Studer [38], and Strahm [52].
Furthermore, Probst [49] studied pseudo-hierarchies in the setting of
Explicit Mathematics.

Feferman [21, 22] also studied weaker systems where he establishes a
framework to formalise functional programming languages. The weakest
systems presented are of strength PRA.

Worth mentioning are also the systems of Operational Set Theory as
suggested by Feferman [15] and further researched by Jäger [33]. An-
other theory relating sets and operations was presented by Beeson [1].

In thesis, the focus is on weak systems, i.e. systems where the prov-
ably total functions are at most the functions computable in polynomial

33

2. Introduction to Explicit Mathematics

space. In this context, familiar systems are the systems of bounded
arithmetic as discussed by Buss [3] or Hájek and Pudlák [28]. They deal
with weak complexity classes by bounding the quantifiers. To the same
field also belongs the work of Kraj́ıček [45] and Ferreira [26, 27]

A different approach to weak complexity classes are tiered systems. In
this context, the restriction is not by bounding quantifiers but by distin-
guishing different kinds of variables and controlling their usage employ-
ing so-called safe induction. The class of polynomial time computable
functions in this setting was studied by Bellantoni and Cook [2] and
Leivant [46]. In the setting of Applicative Theories, Cantini studied
systems with different types of variables in [9, 5]. A similar concept in
a different setting was investigated by Ostrin and Wainer [48].

Systems dealing with truth are an interesting field in logic. Different
theories about truth were also studied in the setting of Explicit Mathe-
matics and especially Applicative Theories. Cantini [7] gives a thorough
overview of truth theories in this setting. Kahle [42, 40] studied several
versions based on the theory BON. Furthermore, Cantini [8] considered
weak truth theories (i.e. corresponding to the polynomial time com-
putable functions) in the setting of Applicative Theories.

In connection with weak complexity classes, higher type functionals are
also of importance. A reasonable notion of feasibly computable func-
tions is more complex in this context than for functions N → N. A
prominent proposal to capture this meaning are the Basic Feasible Func-
tionals introduced by Melhorn [47]. Further research in this direction
was conducted by Cook and Urquhart [14]. In the setting of Applicative
Theories, Strahm [53, 54] embeds the system of Cook and Urquhart in
PT and also relates his weak theories to the basic feasible functionals.

34

Chapter 3

Weak Axiom Systems

including Types

In this chapter, we will discuss systems of Explicit Mathematics corre-
sponding to weak complexity classes. Among the weakest full systems
studied in the same setting was the system Σ+ET corresponding to
PRA in the presence of type induction as recapitulated in Section 2.2.3.
Weaker theories were only studied for the applicative framework as sum-
marised in Section 2.1.4. Our goal is to work out theories corresponding
to feasible complexity classes, i.e. complexity classes interesting for com-
puter science.

To be precise, we are interested in theories characterising the complex-
ity classes FPtime, FPtimeLinspace, FPspace, and FLinspace (see
Appendix B). In other words, we seek second order counterparts of
Strahm’s applicative theories PT, PTLS, PS, and LS as introduced in
[53] (cf. Section 2.1.4).

For this purpose, we start off from the weak applicative theories repli-
cated in the last chapter. We proceed by adding type existence ax-
ioms and replacing induction for Σb

W formulas by type induction. Our
type existence axioms are very naturally presented by means of a finite

35

3. Weak Axiom Systems including Types

axiomatisation in the spirit of EETf (cf. Section 2.2.2). They corre-
spond to a natural restriction of elementary comprehension presented
in Section 2.2.1. In the process, our main focus will be on the theory
PET whose provably total functions are the polynomial time computable
ones.

Cantini [6] studies several extensions for weak applicative theories not
increasing the proof-theoretic strength. We will make use of those and
add some to our theory PET. Thereby, especially the uniformity prin-
ciple is interesting as it gives rise to a nice type constructor making the
type generators more symmetric.

In the course of specifying weak systems of full Explicit Mathematics, we
will first introduce the theory PET for FPtime in Section 3.1 by giving a
finite axiomatisation as well as a corresponding comprehension scheme.
Thereafter, we establish the desired upper and lower bounds of PET in
Section 3.2 and Section 3.3, respectively. The proof of the upper bounds
employs a model theoretic argument, but later, in Section 4.5, we will
also point out a syntactical proof of the same result. In Section 3.4, we
discuss the above mentioned extensions based on Cantini [6]. Finally,
Section 3.5 states theories whose respective proof-theoretic strength cor-
responds to the remaining three complexity classes.

Part of the results presented in this chapter were already published in
Spescha and Strahm [51] and we make free use of this paper.

3.1 The Theory PET

In this section, we introduce PET, the theory of polynomial time oper-
ations with explicit types, by a finite axiomatisation. Later we present
a comprehension scheme corresponding to the given type constructors.

PET is formulated in the second order language L2
W which extends the

language LW of PT by type variables U, V,W,X, Y, Z, . . . , binary relation
symbols < (naming) and ∈ (elementhood), as well as (individual) con-
stants w (initial segment of W), id (identity), dom (domain), un (union),

36

3.1. The Theory PET

int (intersection), and inv (inverse image). The relation symbol ∈ differs
from the symbol used in the shortcut a ∈ W introduced in 2.1.4, but it
will always be clear from the context.

The individual terms r, s, t of L2
W are those of LW, but taking into ac-

count the new constants, whereas the type terms consist of the type
variables only. The formulas A,B,C, . . . of L2

W (possibly with sub-
scripts) are built from the atomic formulas of LW (see Appendix A) as
well as formulas of the form (s ∈ X), <(s,X) and (X = Y), by closing
under negation, disjunction, conjunction, implication, as well as exis-
tential and universal quantification over both individuals and types. If
A is an L2

W formula, we let FVI(A) and FVT (A) denote the set of its
free individual and type variables, respectively. Finally, we write FVI(t)
for the set of individual variables occurring in the term t.

Definition 3.1 (Free Variables FVI(A) and FVT (A))
For an individual term t, the set of individual variables FVI(t) is defined
by induction on the build-up:

t ≡ x (individual variable) =⇒ FVI(t) = {x}
t ≡ c (constant) =⇒ FVI(t) = ∅
t ≡ t0· t1 =⇒ FVI(t) = FVI(t0) ∪ FVI(t1)

The sets FVI(A) and FVT (A) of free individual and type variables re-
spectively are defined by induction on the construction of the formula
A:

A ≡ t↓ |W(t) =⇒ FVI(A) = FVI(t)

FVT (A) = ∅
A ≡ t0 = t1 =⇒ FVI(A) = FVI(t0) ∪ FVI(t1)

FVT (A) = ∅
A ≡ t ∈ X | <(t,X) =⇒ FVI(A) = FVI(t)

FVT (A) = {X}
A ≡ X = Y =⇒ FVI(A) = ∅

FVT (A) = {X,Y }

37

3. Weak Axiom Systems including Types

A ≡ ¬B =⇒ FVI(A) = FVI(B)

FVT (A) = FVT (B)

A ≡ B � C =⇒ FVI(A) = FVI(B) ∪ FVI(C)

� ∈ {∧,∨,→} FVT (A) = FVT (B) ∪ FVT (C)

A ≡ ∀xB | ∃xB =⇒ FVI(A) = FVI(B) \ {x}
FVT (A) = FVT (B)

A ≡ ∀XB | ∃XB =⇒ FVI(A) = FVI(B)

FVT (A) = FVT (B) \ {X} ~

As before, types are extensional and their names can be seen as inten-
sional. Since we mostly refer to types by using their names, we use the
same abbreviations like <(s) and t

.∈ s as defined in Section 2.2.1. Fur-
thermore, we let Wa(x) abbreviate (W(x) ∧ x ≤ a). We are now ready
to spell out the axioms of PET in detail.

3.1.1 Axioms of PET

The logic of our system is the usual predicate logic with equality for
both sorts as before. The logical axioms of PET are analogous to those
of EET (see Section 2.2.1).

PET consists of the axioms of BOW as listed in Section 2.1.4 plus the
following axiom groups about types. The axioms in group I. are the so-
called ontological axioms about the naming relation and extensionality.
They are identical to those of EET and stated here for completeness.
In group II. we state the axioms about type existence and finally, we
include the induction schema in group III.

I. Explicit Representation and Extensionality

(O.1) ∃x<(x,X)

(O.2) <(a,X) ∧ <(a, Y)→ X = Y

(O.3) ∀z(z ∈ X ↔ z ∈ Y)→ X = Y

38

3.1. The Theory PET

II. Type Existence Axioms

(wa) a ∈W→ <(w(a)) ∧ ∀x(x .∈ w(a)↔Wa(x))

(id) <(id) ∧ ∀x(x .∈ id↔ ∃y(x = (y, y)))

(un) <(a)∧<(b)→ <(un(a, b))∧∀x(x .∈ un(a, b)↔ (x .∈ a∨x .∈ b))

(int) <(a)∧<(b)→ <(int(a, b))∧∀x(x .∈ int(a, b)↔ (x .∈ a∧x .∈ b))

(dom) <(a)→ <(dom(a)) ∧ ∀x(x .∈ dom(a)↔ ∃y((x, y) .∈ a))

(inv) <(a)→ <(inv(f, a)) ∧ ∀x(x .∈ inv(f, a)↔ fx
.∈ a)

III. Type Induction on W

(T-IW) ε ∈ X ∧ (∀x ∈W)(pWx ∈ X → x ∈ X)→ (∀x ∈W)(x ∈ X)

Please note that the induction step in (T-IW) requires that both s0x ∈ X
and s1x ∈ X if x ∈ X.

The type existence axioms as presented here are a natural restriction
of the axioms of EETf (cf. Section 2.2.2). We omit complement and
replace the type of natural numbers by initial segments of binary words.
Besides, we have to add the existence of the union of two types in PET

as this follows from intersection and complement for EETf . The main
difference to Σ+ET (cf. Section 2.2.3) is the treatment of the base type
of binary words. By letting the binary words as a whole be a type, we
would immediately result in a theory of strength PRA again.

3.1.2 Restricted Elementary Ccomprehension

Most systems of Explicit Mathematics state type existence in the form
of a comprehension scheme for a specified formula class. In this spirit,
we show that the finite axiomatisation of PET gives rise to a natural
restriction of the schema of elementary comprehension specified in Sec-
tion 2.2.1. In the context of this much weaker theory, the formula class
used to define types is rather intricate.

Comprehension is available for the class of so-called Σb
T formulas. As

the name already suggests, they are not only a subset of the elementary

39

3. Weak Axiom Systems including Types

formulas, but also closely related to the class of Σb
W formulas used for

the induction scheme in Section 2.1.4. The relation symbol W is only
allowed for bounded terms t in the form of Wa(t). As we want to be
able to generate a formula defining the element condition for every type
generated via the type constructors above, we need to allow several
nested bounds. But in return, bounds have to be given as a (fixed) term
instead of the more liberal function term in (∃y ≤ fx)B[f, x, y] of Σb

W

formulas. Furthermore, we must ensure that bounds of subformulas do
not interfere with each other in composed formulas.

To ensure this condition, in addition to the notion of Σb
T formulas, we

have to define a set of designated free individual variables FVW(A) which
shall be thought of as the binary words bounding existential quantifiers
in a Σb

T formula A. These variables act as parameters in the compre-
hension schema below.

Definition 3.2 (Σb
T Formulas)

The class of Σb
T formulas of L2

W and the set of variables FVW(A) are
inductively defined as follows:

1) If A is an L2
W formula of the form (s = t), s↓ or (s ∈ X), then A

is a Σb
T formula and FVW(A) := ∅.

2) If A is the formula Wa(t) with a /∈ FVI(t), then A is a Σb
T formula

and FVW(A) := {a}.

3) If A is the formula (B ∧ C) or (B ∨ C) with B and C in Σb
T and,

in addition,

(FVI(B) \ FVW(B)) ∩ FVW(C) = ∅,
(FVI(C) \ FVW(C)) ∩ FVW(B) = ∅,

then A is a Σb
T formula and FVW(A) := FVW(B) ∪ FVW(C).

4) If A is the formula ∃xB with B ∈ Σb
T and x /∈ FVW(B), then A is

a Σb
T formula and FVW(A) := FVW(B). ~

40

3.1. The Theory PET

Remark 3.3 We observe that the above definition also captures formu-
las starting with a bounded (with respect to W) existential quantifier;
namely, if B[x] is a Σb

T formula, then (∃x ≤ a)B[x] can be expressed by
the Σb

T formula ∃x(Wa(x) ∧B[x]).

In the sequel we assume that for each L2
W formula A, we have a mapping

µA which assigns to each free type variable X in A a fresh individual
variable µA(X) that does not occur in A. We assume that µA is injec-
tive. The elegant notation in the following definition is adapted from
Krähenbühl [44].

Definition 3.4 (Naming Term ρAx.B)
Assume that A is a Σb

T formula. Then we define a term ρAx.B by
induction on the complexity of the formula B in Σb

T, where we assume
that x 6∈ FVW(B) and x not bound in B:

ρAx.(s = t) := inv(λx.(s, t), id),

ρAx.(s↓) := inv(λx.(s, s), id),

ρAx.(s ∈Wa) := inv(λx.s,w(a)),

ρAx.(s ∈ X) := inv(λx.s, µA(X)),

ρAx.(C ∧D) := int(ρAx.C, ρAx.D)

ρAx.(C ∨D) := un(ρAx.C, ρAx.D)

ρAx.(∃yC) := dom(ρAx.(C[(x)0/x, (x)1/y])). ~

We write ρx.A instead of ρAx.A. The following theorem states that we
can derive uniform comprehension for Σb

T formulas in PET.

Theorem 3.5 (Restricted elementary comprehension in PET)
Assume that A is a Σb

T formula with FVT (A) = {X1, . . . , Xn} and
FVW(A) = {w1, . . . , wm}. If we let zi := µA(Xi) for 1 ≤ i ≤ n, then we
have:

1) FVI(ρx.A) = (FVI(A) \ {x}) ∪ {z1, . . . , zn},

41

3. Weak Axiom Systems including Types

2) PET `W(~w) ∧ <(~z, ~X) → <(ρx.A),

3) PET `W(~w) ∧ <(~z, ~X) → (∀x)(x .∈ ρx.A↔ A).

Proof The theorem is immediately derivable from the definition of the
name term ρx.A for Σb

T formulas. 2

Using λ abstraction and projections, we obtain the following immediate
consequence of the above theorem.

Corollary 3.6 Assume that A[x,~v, ~w, ~X] is a Σb
T formula with the fol-

lowing free variables:

FVT (A) = {X1, . . . , Xn},
FVW(A) = {w1, . . . , wm},

FVI(A) \ FVW(A) = {x, v1, . . . , vk}.

Then we can find a closed L2
W term cA such that PET proves:

1) W(~w) ∧ <(~z, ~X) → <(cA(~v, ~w, ~z)),

2) W(~w) ∧ <(~z, ~X) → (∀x)(x .∈ cA(~v, ~w, ~z)↔ A[x,~v, ~w, ~X]).

It is easy to see that the opposite direction of the above theorem also
holds. More precisely, the schema of uniform Σb

T comprehension clearly
entails the type existence axioms as given in the finite axiomatisation
of PET. We only sketch the proof of this claim here. Let PETC be
the axiomatisation of PET where type existence is stated in the form of
the comprehension axioms analogous to (ECA1) and (ECA2) for EET,
but for Σb

T formulas. Then we can prove the existence of closed terms
tw, tid, tdom, tinv, tun, and tint in PETC such that these terms, informally
speaking, fulfil the type constructors given in the finite axiomatisation.
For example, take the formula A ≡ (∃y ≤ a)(x = y) and let e be its
Gödel number. Then we can choose tw := (λa.ce(a)). The remaining
terms are analogous and equivalent to the proof for EET and EETf

spelled out in detail e.g. in Jansen [39].

42

3.2. Lower Bounds

3.2 Lower Bounds

To establish the lower bounds of our theory, we embed PT− as intro-
duced in Section 2.1.4 into PET in this section. As mentioned before,
PT− is expressively weaker than PT, but the provably total functions
are still the polynomial time computable functions (cf. Remark 2.13).
Recall that PET is based on the theory BOW where some (derivable) ax-
ioms are omitted for the sake of minimality, among them Axiom (19) (on
page 17). Before we can specify the embedding, we have to prove some
auxiliary lemmas. Mainly, we reformulate type induction as bounded in-
duction scheme and we need to prove that every function on the binary
words can be bounded by a monotone function.

Theorem 3.5 establishes that any Σb
T-formula defines a type in PET.

With Axiom (T-IW) we have induction on any type which is equivalent
to induction for Σb

T-formulas. In the following, we will heavily use this
fact. For convenience we will also exploit the obvious equivalence

(∀x ∈W)(x ∈ X → s0x ∈ X∧s1x ∈ X)↔ (∀x ∈W)(pWx ∈ X → x ∈ X)

First, we prove the properties of the subword relation that are not stated
as an axiom in our present setting:

Lemma 3.7 The following statements are provable in PET:

1) x ∈W ∧ z ∈W ∧ x ⊆ pWz → x ⊆ z,

2) x ∈W ∧ y ∈W ∧ z ∈W ∧ x ⊆ y ∧ y ⊆ z → x ⊆ z (Transitivity),

3) x ∈W ∧ y ∈W ∧ x ⊆ y → x ≤ y,

4) x ∈W→ ε ⊆ x,

5) x ∈W ∧ y ∈W→ x ≤ y ∨ y ≤ x.

Proof In the following, we work informally in PET and assume that
x, y, z ∈W.

43

3. Weak Axiom Systems including Types

1) Immediate with Axiom (18).

2) The Σb
T-formula c⊆xy = 1∨c⊆yz = 1∨c⊆xz = 0 is a reformulation of

transitivity. We will prove it by induction on z and assume c⊆xy = 0
and c⊆yz = 0.

z = ε: With Axiom (17) we know that also y = ε and thus x = ε.
With the same axiom we immediately get x ⊆ z.

We assume that transitivity holds for pWz, now we will prove that
it also holds for z. With Axiom (18) we know that v ⊆ w iff either
v = w or v ⊆ pWw for any words v, w. If x = y or y = z, x ⊆ z is
immediate from the equality axioms. Otherwise we have x ⊆ pWy (i)
and y ⊆ pWz (ii). From (i) and part 1) of this lemma we get x ⊆ y.
Therefore, by induction hypothesis and (ii), also x ⊆ pWz. We get
x ⊆ z again with part 1).

3) We can write this property as c⊆xy = 1∨ c⊆(1×x)(1× y) = 0 which
obviously is a Σb

T formula. Again we will only look at the case x ⊆ y
in the induction on y.

y = ε: As above, this implies that also x = ε. Therefore obviously
1× x = 1× y.

Assume the assertion holds for pWy. To prove that x ≤ y if x ⊆ y

we make the same case distinction as above: if x = y then x ≤ y is
again obvious. Otherwise x ⊆ pWy. By induction hypothesis we have
1×x ⊆ 1×(pWy) (i). Further, 1×y = (1×pWy)∗1 = s1(1×pWy) (ii).
With part 1) we get 1× x ⊆ 1× y from (i) and (ii).

4) We prove this by induction on x. If x = ε, then ε ⊆ ε immediate
with axiom (17). Assume ε ⊆ x. With axiom (18) and induction
hypothesis, ε ⊆ six.

5) We prove A[y] ≡ lWx ⊆ lWy ∨ lWy ⊆ lWx by induction on y.

y = ε: lWε = 1 × ε = ε. Since x ∈ W also lWx ∈ W by totality of
multiplication. Thus ε ≤ x with part 4).

44

3.2. Lower Bounds

Before we prove the induction step, we need an auxiliary property,
namely y ≤ x → (∃z ⊆ x)(lWz = lWy)(i). This is equivalent to
B[y] ≡ c⊆(lWy)(lWx) = 1 ∨ (∃z ⊆ x)(lWz = lWy), which is a Σb

T

formula for any fixed x ∈ W. We prove this by induction on y. If
y = ε. Then choose z = ε and we are done with part 4). Assume
B[y] holds. If siy 6≤ x, B[siy] holds. Otherwise (i.e. siy ≤ x), we
have either lW(siy) = lWx and we choose z = x. Otherwise, we
have (∃z′ ≤ x)(lWz

′ = lWy) by transitivity and induction hypothesis.
Thus lWz

′ = lWy ⊆ pWlWx. Therefore, either we choose z = s0z
′ ⊆ x

or z = s1z
′ ⊆ x. Then lWz = s1(lWz

′) = s1(lWy) = lW(siy).

Assume A[y] holds. Since lWx, lWy ∈ W, lWx ⊆ lWy and lWy ⊆ lWx

are decidable with axiom (16). We have lWy ⊆ s1(lWy) = lW(siy). If
lWx ⊆ lWy, we immediately get x ≤ siy with transitivity. Otherwise,
i.e. lWy ⊆ lWx, we have either lWx = lWy and thus lWx ⊆ lW(siy),
or lWy ⊆ pW(lWx). With (i) we get (∃z ⊆ pWx)(lWz = lWy) and
thus lW(siy) = s1(lWy) = s1(lWz) = lW(siz). Since x ⊆ pWx, we have
s0z ⊆ x ∨ s1z ⊆ x and with part 3) we get lW(siz) ⊆ lWx. Thus,
A[siy] for i = 0, 1 and we can apply induction to get (∀y ∈W)A[y].2

Remark 3.8 The above lemma, part 2) and the definition of ≤ imme-
diately imply that also ≤ is transitive, provably in PET.

In PET, type induction can also be stated differently, in the form of
bounded type induction (T-IbW). As this notion will be more conve-
nient in the following proofs, we will prove that both formulations are
equivalent:

(T-IbW) a ∈W ∧ ε ∈ X ∧ (∀x ⊆ a)(pWx ∈ X → x ∈ X)→ a ∈ X

Lemma 3.9 We have that (T-IW) and (T-IbW) are provably equivalent
in PET without (T-IW).

Proof The fact that (T-IbW) entails (T-IW) is trivial: assume the condi-
tions for (T-IW) hold. Obviously, also the requirements for (T-IbW) are
fulfilled for any a ∈W and a ∈ X is now immediate.

45

3. Weak Axiom Systems including Types

For the converse implication, we take any type X and some a ∈ W.
Then we can build the type

Y := {x : c⊆xa = 1 ∨ x ∈ X}

Its membership condition is equivalent to x ⊆ a→ x ∈ X for x ∈W.

Now we assume that the conditions for (T-IbW) hold, i.e. we assume that
ε ∈ X and

(∀x ⊆ a)(pWx ∈ X → x ∈ X) (3.1)

Obviously, ε ∈ Y from the definition of Y . Now we have to show that if
x ∈ Y then also s0x ∈ Y ∧ s1x ∈ Y . Hence, assume x ∈ Y . If c⊆(six)a =
1, then obviously six ∈ Y . Otherwise, i.e. six ⊆ a, transitivity of the
subword relation readily entails x ⊆ a, which implies x ∈ X. We make
use of 3.1 to derive six ∈ X and thus six ∈ Y .

Now we proved the conditions for applying (common) type induction
(T-IW) and get (∀x ∈ W)(x ∈ Y). Therefore also a ∈ Y . Since a ⊆ a ≡
c⊆aa = 0, a must be in X. 2

We now want to prove that every function f of type W 7→ W can be
bounded by a monotone function in the sense of the following lemma.
We will construct this function f∗ as the function taking the maximum
of f applied to all subwords with respect to the tally length. Informally,
f∗x = max

y⊆x
fy where the result is maximised only with respect to the

tally length. The functional mapping f to f∗ is a well-known basic
feasible functional, cf. e.g. Cook and Kapron [13, 43].

Lemma 3.10 There is a closed term max such that PET proves:

1) f : W 7→W→ maxf : W 7→W,

2) f : W 7→W ∧ f∗ = maxf ∧ x ∈W ∧ y ∈W ∧ x ⊆ y → f∗x ≤ f∗y,

3) f : W 7→W ∧ f∗ = maxf ∧ x ∈W→ fx ≤ f∗x,

4) f : W 7→W ∧ f∗ = maxf ∧ x ∈W ∧ y ∈W ∧ x ⊆ y → fx ≤ f∗y.

46

3.2. Lower Bounds

Proof We first define an auxiliary function maxarg locating the subword
where f is maximised and write f̃ = maxargf :

maxargfε ' ε

maxargf(six) '

{
maxargfx if f(six) ≤ f(maxargfx)

six otherwise

We can construct this term with Lemma 2.7, λ-abstraction and defi-
nition by cases. Now we have to prove that f̃ : W 7→ W, provided
f : W 7→W.

We fix some a ∈W and define the Σb
T-formula A[x] ≡ (∃y ≤ a)(f̃x = y).

Now we will make use of (T-IbW) in order to show A[a] for an arbitrary
a ∈W:

x = ε: f̃ ε = ε ≤ a.

Assume x ⊆ a and A[pWx]: Since we know that z = f̃(pWx) ∈ W

we can decide whether fx ≤ fz or not. In the first case, by induction
hypothesis we have f̃x = f̃(pWx) ≤ a. In the latter case we have f̃x = x

which gives f̃x ≤ a with Lemma 3.7.3).

Now we define max := (λf.(λx.f(maxargfx))).

1) maxf = (λx.f(maxargfx)) by definition. For x ∈ W, maxargfx ∈ W

if f : W 7→ W as proved above. maxfx ∈ W is now immediate from
the totality of f .

2) This follows from the construction of f∗ by induction on y. We work
informally in PET and assume that f : W 7→W and x ∈W. Let

A ≡ c⊆xy = 1 ∨ c⊆(lW(f∗x))(lW(f∗y)) = 0

A is obviously a Σb
T formula. For x, y ∈ W, we have A[x, y] iff

x ⊆ y → f∗x ≤ f∗y. We will now prove this by induction on y.

If y = ε, we have either c⊆xε = 1 and thus A[x, ε] or x = ε. In this
case, f∗x = f∗y.

47

3. Weak Axiom Systems including Types

Assume A[x, y] holds. Now we have to prove A[x, siy] (i = 0, 1).
Again, if c⊆x(siy) = 1, we are obviously done. Otherwise we have
either x = siy and clearly A[x, siy] or x ⊆ y. In the latter case,
we have lW(f∗x) ⊆ lW(f∗y) by induction hypothesis. By defini-
tion f∗(siy) = f(maxargf(siy)). Then maxargf(siy) = maxargfy

if f(siy) ≤ f(maxargfy) and therefore f∗(siy) = f∗y. Otherwise,
we have f(maxargfy) < f(siy) and therefore f∗y ≤ f∗(siy). With
Lemma 3.7.2), we get f∗x ≤ f∗(siy) as desired.

3) We prove this by induction on the Σb
T formula A ≡ c⊆(fx)(f∗x) = 0.

For x = ε, f∗ε = fε by definition. We assume A[x] and aim at
showing A[six] (i = 0, 1). f∗(six) = f(maxargf(six)). As above,
if maxargf(six) = maxargfx, then f(six) ≤ f(maxargfx) = f∗(six).
Otherwise, maxargf(six) = six and obviously fx = f∗x.

4) Immediate with parts 2) and 3) and Lemma 3.7. 2

With the help of these auxiliary lemmas, we are now in the position to
state the main theorem of this section, the embedding of PT− into PET.
The desired lower bounds immediately follow from this inclusion.

Theorem 3.11 PT− is contained in PET.

Proof Clearly, we only need to prove that PET ` (Σb−
W -IW), i.e. that

induction holds for any Σb−
W -formula A[x] ≡ (∃y ≤ fx)B[f, x, y]. Let us

work informally in PET and assume, in addition,

f : W→W ∧A[ε] ∧ (∀x ∈W)(A[x]→ A[s0x] ∧A[s1x]). (3.2)

Now we fix c ∈W and aim at showing A[c]. First, we need Lemma 3.10
in order to show that for c ∈W and x ⊆ c we get

(∃y ≤ fx)B[x, y]↔ (∃y ≤ f∗c)(y ≤ fx ∧B[x, y]) (3.3)

With Lemma 3.10 we immediately get fx ≤ f∗c and then the equiv-
alence is obvious by Lemma 3.7. As f∗c ∈ W for c ∈ W and B an

48

3.3. Upper Bounds

Σb
T formula by definition of Σb−

W , we can invoke Theorem 3.5 and con-
struct a type X with the defining property

(∀x ⊆ c)(x ∈ X ↔ (∃y ≤ f∗c)(y ≤ fx ∧B[x, y])) (3.4)

By (3.2), (3.3) and (3.4) we immediately obtain

ε ∈ X ∧ (∀x ⊆ c)(pWx ∈ X → x ∈ X) (3.5)

Now we can apply (T-IbW) and derive c ∈ X and hence A[c] as desired.2

Together with Lemma 2.10 and Remark 2.13, this implies that bounded
recursion on notation can be represented as a type two functional in
PET. Hence, the following corollary is immediate.

Corollary 3.12 The polynomial time computable functions are prov-
ably total in PET.

In Section 3.4 we will propose a natural extension of PET allowing us
to embed the full theory PT.

3.3 Upper Bounds

In this section we show the conservativity of PET over PT− for LW

sentences. As the formula expressing the totality of a function on W

is an LW sentence, the desired upper bounds are then immediate such
that the provably total functions of PET coincide with the polynomial
time computable functions.

We use a model-theoretic argument to establish the desired upper bounds
for PET. To be precise, our proof strategy is to give a recipe for extend-
ing any model of PT− by an interpretation for the second order part
and then to prove that the resulting structure indeed is a model of PET.
However, we will indicate a syntactic proof of the same result later in
Section 4.5.

49

3. Weak Axiom Systems including Types

We first give a formal definition of a structure for the language L2
W. It

depends on models for PT− as introduced in Section 2.3 and extends
the definition of an LW structure given there.

Definition 3.13 (L2
W Structure)

A L2
W-structure M? is a tuple

(M, T , E ,R,w, id, un, int, dom, inv)

such that the following conditions hold:

(i) M is a LW-structure according to Definition 2.19,
(ii) T is a non-empty set of subsets of |M|,
(iii) E and R are a non-empty subsets of |M| × T , and
(iv) w, id, un, int, dom, inv are elements of |M|.
M? is called a standard structure if E is the usual element relation ∈
on |M| × T and is written (M, T ,R,w, id, dom, un, int, inv) ~

Model Construction

Now we give a scheme for creating a model M? of PET: We take any
modelM of PT− e.g. one as described in Section 2.3. First, we need to
choose selected elements w, id, dom, un, int, inv of |M| as interpretations
for the corresponding constants of L2

W. This can easily be done in such
a way that cx 6= cy and cu 6= dv for all c 6= d ∈ {w, id, dom, un, int, inv}
and all x 6= y, u, v ∈ |M|.
We build our model in stages corresponding to the type constructors of
PET. In other words, we first define interpretations for the basic types
(identity and initial segments of the binary words). Then we proceed by
creating the composed types such as union and domain from the types
already constructed at the previous level.

Formally, for the construction of T and R we introduce sets Rk ⊆ |M|
by induction on the natural number k and simultaneously we establish

50

3.3. Upper Bounds

a set ext(m) ⊆ |M| for each m ∈ Rk . Then we set

Tk := {ext(m) : m ∈ Rk},
Rk := {(m, ext(m)) : m ∈ Rk},
M?

k := (M, Tk,Rk,w, id, dom, un, int, inv).

k = 0: R0 contains names of the base types as well as their obvious
extensions, i.e.

– id ∈ R0; ext(id) := {(m,m) : m ∈ |M|}

– wa ∈ R0 if a ∈WM; ext(wa) := {m ∈ |M| :M |= m ∈W∧m ≤ a}

k > 0: Rk contains Rk−1. In addition, if a, b ∈ Rk−1 then

– un(a, b) ∈ Rk; ext(un(a, b)) := {m ∈ |M| :M?
k−1 |= m

.∈ a ∨m .∈ b}

– int(a, b) ∈ Rk; ext(int(a, b)) := {m ∈ |M| :M?
k−1 |= m

.∈ a∧m .∈ b}

– dom(a) ∈ Rk; ext(dom(a)) := {m ∈ |M| :M?
k−1 |= ∃y((m, y) .∈ a)}

– inv(f, a) ∈ Rk; ext(inv(f, a)) := {m ∈ |M| :M?
k−1 |= fm

.∈ a}

Finally, we define T :=
⋃
k∈N Tk and R :=

⋃
k∈NRk. Then our desired

L2
W structure is given by

M? := (M, T ,R,w, id, dom, un, int, inv).

Now we can state the crucial theorem of this section:

Theorem 3.14 (Model Extension) Any model M? constructed as
described from a model M of PT− satisfies the following conditions:

1) M |= A ⇐⇒ M? |= A for any LW sentence A,

2) M? |= (T-IW),

3) M? |= PET.

51

3. Weak Axiom Systems including Types

Proof

1) As the first-order part of the modelM remains untouched, the same
LW formulas are satisfied in the extended model.

2) In order to prove that M? satisfies type induction, we will show
that every type X of T is weakly Σb−

W definable. This means that
membership for this type can be expressed by a Σb−

W formula of LW

with a fixed bound, namely

X = {m ∈ |M| :M |= (∃y ≤ kbm)B[m, y]}

for some b ∈WM and some formula B which is W-free, positive and
not containing ∀. B may possibly contain parameters in |M|. We
now use the fact that types are added to T as the extension of a name
and that every name is added at a certain level. Therefore, we will
make induction on Rk to show that every name a can be weakly Σb−

W

defined by a formula A. In the process, we make use of the pairing
function 〈·, ·〉 in PTLS (c.f. Appendix C).

a ∈ R0: Then a = id or a = wb for some b ∈ WM. In the former
case, we choose A to be ∃z(x = (z, z)) which is a Σb−

W formula
without bound. In the latter case, A is set to (∃y ≤ b)(x = y).

a ∈ Rn+1 \Rn: Suppose b, c ∈ Rn. By induction hypothesis, there
are corresponding defining formulas B and C,

B[x] ≡ (∃y ≤ u)B′[x, y],

C[x] ≡ (∃z ≤ v)C ′[x, z],

with u, v ∈WM. We distinguish the following cases:

– a = un(b, c): Then we set d = 〈u, v〉 and A[x] to be

(∃y ≤ d)[(〈y〉0 ≤ u ∧B′[x, 〈y〉0]) ∨ (〈y〉1 ≤ v ∧ C ′[x, 〈y〉1])],

where we use the properties of the polynomial time pairing
function described in Appendix C.

52

3.4. Extensions for PET

– a = int(b, c): Again we take d = 〈u, v〉 and let A[x]

(∃y ≤ d)(〈y〉0 ≤ u ∧B′[x, 〈y〉0] ∧ 〈y〉1 ≤ v ∧ C ′[x, 〈y〉1]),

– a = dom(b): We can choose the formula A[x] to be

(∃y ≤ u)∃zB′[(x, z), y].

– a = inv(f, b): In this case we can choose A[x] to be B[fx].

In all these cases, we obviously have that x ∈ ext(a) iff A[x].

This concludes our argument that each type X in T can be weakly
Σb−

W defined in M. It is now immediate that M? satisfies (T-IW)
since M validates (Σb−

W -IW).

3) The remaining axioms are obvious by construction. 2

The following corollaries are now immediate by Gödel completeness and
Theorem 3.11.

Corollary 3.15 PET is a conservative extension of PT− with respect
to LW formulas.

Corollary 3.16 The provably total functions of PET coincide with the
functions computable in polynomial time.

Strahm [54] showed that the provably total type two functionals of PT

coincide with the basic feasible functionals of type two. An analysis
of this arguments yields that already (Σb−

W -IW) suffices for the desired
result. Therefore, the provably total type two functionals of PET are
also the basic feasible functionals.

3.4 Extensions for PET

In this section we discuss some natural extensions of PET which mostly
rely on Cantini [6]. He studies –among other things– various extensions

53

3. Weak Axiom Systems including Types

of the first-order theory PT by means of axioms for self-referential truth,
a uniformity principle and an axiom of positive choice, see Section 2.5.
We make use of those principles to study interesting extensions of PET

without increasing the proof-theoretic strength.

3.4.1 Uniformity and Universal Quantification

Cantini [6] adds a uniformity principle for positive LW formulas to PT

and proves that this yields a theory whose provably total functions are
still those computable in polynomial time. Cantini formulates the uni-
formity principle for a truth predicate defined for positive formulas. In
our context, we can state Cantini’s principle as follows. For each positive
LW formula A[x, y]:

(UP) ∀x(∃y ∈W)A[x, y]→ (∃y ∈W)(∀x)A[x, y]

We exploit the fact that (∃y ≤ t)A[x] ≡ (∃y ∈ W)(y ≤ t ∧ A[x]) which
is obviously a positive formula. Therefore, we can specify the following
form of bounded uniformity for positive LW formulas A[x, y] which is
readily entailed by (UP):

(UP’) ∀x(∃y ≤ t)A[x, y]→ (∃y ≤ t)(∀x)A[x, y]

The principle (UP’) leads to a very natural extension of PET by adding
a type existence axiom for universal quantification. This axiom is the
natural dual analogue of the domain type present in PET. We first add
an additional constant all to L2

W and spell out the axiom:

(all) <(a)→ <(all(a)) ∧ ∀x(x .∈ all(a)↔ ∀y((x, y) .∈ a))

The presence of the axiom (all) makes the type existence axioms more
symmetric, i.e. the types are generated from base types (initial seg-
ments of W and the identity type) by closing under inverse images,
unions, intersections, existential quantification (domain) and universal
quantification.

54

3.4. Extensions for PET

In order to see that (all) does not increase the proof-theoretic strength
of PET, we extend the arguments for the upper bounds given in the
previous section. Instead of a model of PT, we now take any model
M of PT+(UP’). We can extend M to a model M? of PET+(all) in
the obvious way by adding a clause for universal quantification in the
construction of Section 3.3. To be precise, we add the following case for
k > 0:

– all(a) ∈ Rk and ext(all(a)) := {m ∈ |M| :M?
k−1 |= ∀y((m, y) .∈ a)}

The crucial step in Theorem 3.14 is to show that M? satisfies type
induction. Towards this aim, we follow the strategy in the proof of the
above mentioned theorem and show that each type inM? is weakly Σb

W

definable in M. Because of (UP’), we can drop the restriction to Σb−
W

formulas and allow the appearance of ∀. The only new case occurs for
a = all(b) where we already know by induction hypothesis that b has a
weak Σb

W definition, say B[u] = (∃v ≤ s)B′[u, v]. Then we have that
M? satisfies

∀u(u .∈ b ↔ (∃v ≤ s)B′[u, v])

Thus, by construction of our model M? we obtain that

∀x[x .∈ a ↔ ∀yB[(x, y)] ↔ ∀y(∃v ≤ s)B′[(x, y), v]]

Now we are in a position to invoke (UP’) in order to get the equivalence

∀y(∃v ≤ s)B′[(x, y), v] ↔ (∃v ≤ s)∀yB′[(x, y), v].

The formula (∃v ≤ s)∀yB′[〈x, y〉, v] is clearly a weak Σb
W formula and,

hence, a = all(b) is weakly Σb
W definable. This shows that type induction

holds in our model M?.

To summarise, we proved that PET+(all) is conservative over PT+(UP)
for LW formulas. As Cantini [6] established the upper bounds for the
latter theory, we have that the provably total functions of PET+(all)
coincide with the functions computable in polynomial time.

55

3. Weak Axiom Systems including Types

Furthermore, the full theory PT is contained in PET + (all): In the
presence of the additional principles, we can establish the comprehen-
sion scheme for an enlarged formula class which is also closed under
universal quantification. Therefore, we have to extend Definition 3.2 by
the following clause:

5) If A is the formula ∀xB with B ∈ Σb
T and x /∈ FVW(B), then A is

a Σb
T formula and FVW(A) := FVW(B).

We have to add a further case to Definition 3.4:

ρAx.(∀xC) := all(ρAx.(C[(x)0/x, (x)1/y]))

Theorem 3.5 holds for this extended class of formulas in the presence
of (all). With these preparations, we can obviously expand the proof of
Theorem 3.11 to induction for Σb

W-formulas as the auxiliary lemmas do
not depend on the absence of universal quantification.

3.4.2 Axiom of Choice

In addition to the uniformity principle discussed above, Cantini [6] also
considers a form of positive choice in the context of PT with a partial
truth predicate and shows that this principle does not increase the proof-
theoretic strength. Positive choice in the language LW includes for each
positive LW formula A[x, y] the statement

(AC) (∀x ∈W)(∃y ∈W)A[x, y]→ (∃f : W 7→W)(∀x ∈W)A[x, fx]

If we extend this schema to the language L2
W then, in addition, A is

allowed to contain positive occurrences of subformulas of the form t ∈ X.
In other words, choice is available for positive elementary formulas A of
L2

W. We will call this principle (AC) as well as it will always be clear
from the context whether we refer to the first-order or second order form
of the choice axiom.

56

3.5. Further Complexity Classes

If we start from a model of PT + (AC) in the model construction of
Section 3.3, we can obviously extend this to a model of PET which
satisfies choice (AC) in the extended language L2

W as described above.
With the same argument, the provably total functions of PET+(AC) are
still the polynomial time computable ones.

3.4.3 Totality and Extensionality

The upper bound computations in Strahm [53] for PT and Cantini [6]
for its various extensions actually validate stronger applicative axioms
as those spelled out in PT. In particular, our theories can be augmented
by totality of application and extensionality of operations without in-
creasing the proof-theoretic strength.

As already mentioned in Section 2.1.3, the addition of the totality ax-
iom (Tot) reduces partial combinatory logic to total combinatory logic.
Therefore the logic of partial terms can be replaced by ordinary predi-
cate logic with equality. If, in addition, extensionality of operations is
assumed, then the applicative basis is equivalent to ordinary untyped
extensional lambda calculus λη. We are now in a position to summarise
the results of this section in the following theorem.

Theorem 3.17 The provably total functions of PET augmented by any
combination of the principles (all), (AC), (Tot), and (Ext) coincide with
the polynomial time computable functions.

3.5 Further Complexity Classes

Beside PT, Strahm [53] studies three more weak complexity classes,
namely simultaneously polynomial time and linear space, polynomial
space, and linear space. As recapitulated in Section 2.1.4, they mainly
differ in the presence of the axioms about multiplication of binary words
and in the induction scheme. We employ the same concept to generate
second order theories corresponding to those classes.

57

3. Weak Axiom Systems including Types

Contrary to previous sections, we use the full axiomatisation B as given
in Section 2.1.4. We abandon minimality of the single theories for the
sake of uniformity in axiomatisation, which saves us the trouble of prov-
ing e.g. Lemma 3.7.

First, we introduce the scheme of lexicographic type induction and define
the theories. Then we establish their proof-theoretic strength in the
respective subsections. The proofs are mostly similar to the one carried
out in detail in the previous sections and are thus mainly sketched.

The axiom of lexicographic induction on types, (T-I`), is spelled out as
follows:

(T-I`) ε ∈ X ∧ (∀x ∈W)(x ∈ X → s`x ∈ X)→ (∀x ∈W)(x ∈ X)

To improve readability, we define base theories including types:

Definition 3.18 (Base Theories)
Theories BT, BT(∗) and BT(∗,×) are defined as the corresponding ap-
plicative theory B (see Section 2.1.4) augmented by the ontological ax-
ioms (group I., p. 38) and the axioms about type construction (group
II., p. 39) ~

We are now ready to introduce theories with types corresponding to the
theories PT, PTLS, LS, and PS, respectively. PET is already discussed in
detail above, but is repeated for completeness. The axiomatisation here
is based on the full theory B(∗,×) instead of BOW as before. Those for-
mulations are equivalent as the (relevant) omitted axioms are derivable
in this setting.

Definition 3.19
We define the following for theories:

PET ≡ BT(∗,×) + (T-IW) PLSET ≡ BT(∗) + (T-IW)

PSET ≡ BT(∗,×) + (T-I`) LSET ≡ BT(∗) + (T-I`)

~

58

3.5. Further Complexity Classes

Since all theories share the same type existence axioms and the proof
of Theorem 3.5 does depend on neither multiplication nor induction,
comprehension is available for the same class of restricted elementary
formulas, Σb

T, as introduced in Section 3.1.2.

3.5.1 Polynomial Time and Simultaneously Linear Space

In order to show that the provably total functions are those computable
in polynomial time and linear space, we follow the same course of action
as we did for PET. We start by proving parts of Lemma 3.7 in our
current setting. As transitivity of the subword relation is stated as an
axiom, we can omit this part.

Lemma 3.20 The following statements are provable in PLSET:

1) x ∈W ∧ z ∈W ∧ x ⊆ pWz → x ⊆ z,

2) x ∈W ∧ y ∈W ∧ x ⊆ y → x ≤ y.

Proof

1) Immediate from the axioms.

2) We can write this property as c⊆xy = 1 ∨ c⊆(lWx)(lWy) = 0 which
obviously is a Σb

T formula. We will concentrate on the case x ⊆ y in
the induction on y.

y = ε: This implies that also x = ε by axiom (17). Therefore obvi-
ously lWx = lWy.

Assume the assertion holds for pWy. To prove that x ≤ y if x ⊆ y we
make a case distinction according to axiom (18): if x = y then x ≤ y
is again obvious. Otherwise x ⊆ pWy. By induction hypothesis we
have lWx ⊆ lW(pWy) (i). Further, lWy = s1(lWpWy) (ii) with axiom
(21). With the first part, we get lWx ⊆ lWy from (i) and (ii). 2

Since the rest of the proof of the lower bounds remains the same as
before, we have established the following lower bounds:

59

3. Weak Axiom Systems including Types

Theorem 3.21 PTLS− is contained in PLSET.

Proof Lemma 3.9 also holds for PLSET. The proof that (T-IW) entails
(T-IbW) does not refer to multiplication and therefore does not need ad-
justment. Multiplication is not used in the construction of the functional
max, either and thus, PET can be replaced by PLSET in Lemma 3.10.

The final step in the proof of the lower bounds of PET was proving
(Σb−

W -IW). Since we have already seen that the auxiliary lemmas still
apply, the same proof also works for PLSET. 2

We can now state the upper bounds for PLSET which are again proved
with a model theoretic argument.

Theorem 3.22 PLSET is a conservative extension of PTLS− with re-
spect to LW formulas

Proof We employ the model construction as described for PET on page
50, but starting off from a model of PTLS− instead of PT−. We replace
PT− and PET by PTLS− and PLSET in Theorem 3.14 and the same
proof still runs through. 2

From the previous two theorems we immediately derive that the prov-
ably total functions of PLSET are the functions computable simultane-
ously in polynomial time and linear space.

3.5.2 Polynomial Space and Linear Space

In order to establish the proof-theoretic strength of PSET and LSET,
we follow the same procedure again, though adapting the lemmas and
theorems for lexicographic induction instead of induction on notation.
As we have seen above, the proofs are not altered depending on the
presence of the axioms about multiplication. Therefore, we treat both
theories in parallel.

We first turn to the lower bounds and hence prove the following auxiliary
lemma.

60

3.5. Further Complexity Classes

Lemma 3.23 The following statement is provable in BT(∗) + (T-I`):

x ∈W ∧ y ∈W ∧ x ≤ y → p`x ≤ y

Proof Because of axioms (22) and (23), either lWx = lW(p`x) or lWx =
s1(lW(p`x)). The statement now follows with axiom (24). 2

We give an equivalent reformulation of lexicographic type induction in
the form of a bounded induction scheme. For induction on notation,
we have to consider all subwords of the bound in the bounded induc-
tion scheme, whereas the induction condition runs over all words which
are shorter or have the same length as the bound when dealing with
lexicographic induction.

Lemma 3.24 Over BT(∗), (T-Ib`) and (T-I`) are provably equivalent
where bounded lexicographic type induction is defined as follows:

(T-Ib`) a ∈W ∧ ε ∈ X ∧ (∀x ≤ a)(p`x ∈ X → x ∈ X)→ a ∈ X

Proof The fact that (T-Ib`) entails (T-I`) is trivial: Assume ε ∈ X (i)
and (∀x ∈ W)(p`x ∈ X → x ∈ X) (ii). Now take any s ∈ W. From (ii)
we immediately get (∀x ≤ s)(p`x ∈ X → x ∈ X) and with (i) we are
now able to apply (T-Ib`) to get s ∈ X.

It remains to prove that BT + (T-I`) ` (T-I`)b: We assume that the
premises of (T-Ib`) hold, i.e.

s ∈W (3.6)

ε ∈ X (3.7)

(∀x ≤ s)(p`x ∈ X → x ∈ X) (3.8)

Now we want to prove that s ∈ X. Because of comprehension, we can
construct a type

Y = {x : c⊆(lWx)(lWs) = 1 ∨ x ∈ X}

61

3. Weak Axiom Systems including Types

For binary words w, this membership condition is equivalent to w ≤
s→ w ∈ X.

We aim at showing (∀x ∈W)(x ∈ Y):

ε ∈ Y as ε ∈ X by assumption (3.7).

Now we assume that p`x ∈ Y . Either x 6≤ s ≡ c⊆(lWx)(lWs) = 1 and
therefore x ∈ Y . Otherwise (i.e. x ≤ s), x ∈ X because of (3.8) and
Lemma 3.23. This enables us now to apply (T-I`) to get the desired
result.

Due to (3.6), also s ∈ Y . Since s ≤ s ≡ c⊆(lWs)(lWs) = 0, s ∈ X is
immediate from the construction of Y . 2

Analogous to the functional max utilised for PET, we construct a func-
tional max` such that, informally, max` fx = maxy≤x fy. Again ⊆ is
now replaced by ≤, and thus the maximum functional now runs over all
words that are shorter of have the same length, while max only considers
subwords. However, the result is again only maximised with regard to
the tally length.

Lemma 3.25 There is a closed term max` such that BT(∗) + (T-I`)
proves the following:

1) f : W 7→W→ max` f : W 7→W

2) f : W 7→W ∧ f∗ = max` f ∧ x ∈W ∧ y ∈W ∧ x ≤ y → f∗x ≤ f∗y

3) f : W 7→W ∧ f∗ = max` f ∧ x ∈W→ fx ≤ f∗x

4) f : W 7→W ∧ f∗ = max` f ∧ x ∈W ∧ y ∈W ∧ x ≤ y → fx ≤ f∗y

Proof Before we can define the functional max`, we need to define a
functional maxarg

` finding the argument maximising the function up to
the given argument:

maxarg
` fε ' ε

maxarg
` f(s`x) '

{
maxarg

` fx iff(s`x) ≤ f(maxarg
` fx)

s`x otherwise

62

3.5. Further Complexity Classes

Formally, maxarg
` = (λf.fixtf) where

t = (λhx.dWε[dW(hp`x)x(c⊆(lWfx)(lWf(h(p`x))))0]xε)

From this construction, we can prove that maxarg
` f : W 7→ W pro-

vided f : W 7→ W. Actually, we will show that for any fixed a ∈ W,
we have (∃y ≤ a)(maxarg

` fa = y) by making use of (T-Ib`), which im-
mediately implies the claimed totality of maxarg

` f . Now we fix some
a ∈ W. maxarg

` fε = ε ≤ a is obvious. Assume maxarg
` f(p`x) ≤ a and

x ≤ a. Then f(maxarg
` f(p`x)) ∈ W and definition by cases can there-

fore be decided. The result is either x and x ≤ a by assumption; or
maxargfx = maxarg

` f(p`x) ≤ a by induction hypothesis. We can now
apply (T-Ib`) to get (maxarg

` fa ≤ a).

We can now define the maximising functional max` = (λfx.f(maxarg
` fx)).

The following proofs are similar to those of Lemma 3.10 and hence omit-
ted.

1) Immediate from the totality of maxarg
` .

2) Proof by induction on y from the construction of maxarg
` f .

3) Proof by induction on x by construction of f∗

4) Immediate from (2) and (3) by transitivity of ≤. 2

After this preparatory work, we can now prove the lower bounds:

Theorem 3.26

1) PS− is contained in PSET.

2) LS− is contained in LSET.

Proof It remains to be shown that PSET and LSET prove (Σb−
W -I`).

Since this proof does not employ ×, it remains the same for both theo-
ries.

63

3. Weak Axiom Systems including Types

We take any Σb−
W -formula A[x] = (∃y ≤ fx)B[f, x, y] and assume

f : W 7→W ∧A[ε] ∧ (∀x ∈W)(A[p`x]→ A[x]) (3.9)

With Lemma 3.25, we get for any c ∈W and x ≤ c

(∃y ≤ fx)B[f, x, y]↔ (∃y ≤ max` fc)(y ≤ fx ∧B[f, x, y]) (3.10)

For any binary word c, comprehension lets us construct a type Xc such
that

x ∈ Xc ↔ (∃y ≤ max` fc)(y ≤ fx ∧B[f, x, y]) (3.11)

By assumption (3.9) ε ∈ Xc and (∀x ≤ c)(p`x ∈ Xc → x ∈ Xc). We can
now apply (T-Ib`) to get c ∈ Xc. With (3.10) and (3.11) we get A[c]. 2

As a consequence, bounded recursion on lexicographic notation is avail-
able in PSET and LSET. The polynomial space (linear space) com-
putable functions are therefore provably total in PSET (LSET).

As usual, lexicographic induction implies induction on notation and
therefore we also have bounded recursion on notation for these theories.
This property is crucial for the upper bounds since we depend on the
provably total pairing and projection functions defined in Appendix C
for PLSET.

Lemma 3.27 (T-I`) entails (T-IW) over BT.

Proof The recursion operator r` is available in our setting as a conse-
quence of the previous theorem. Therefore, the reasoning follows the
proof of the analogous property for induction on Σb

W formulas as orig-
inally used by Buss e.g. in [3] and adapted for this setting in Strahm
[53]:

Thus, we have functions msp, |·| and .− behaving according the following
descriptions. The most significant part function msp : W2 7→ W fulfils
for all a, b ∈W, b 6= ε

mspaε = a, mspab = pW(mspa(p`b)), mspab ≤ a

64

3.5. Further Complexity Classes

In other words, it cuts off b bits from the back of a where b is seen as the
representation of a natural number. The cut off function .− : W2 7→ W

works along the lexicographic successors for both arguments:

a .− ε = a, a .− b = p`(a .− (p`b)), a .− b ≤ a

Furthermore, the length function | · | : W 7→W measures the length of a
word in the sense of the lexicographic ordering as follows:

|ε| = ε, |a| =

{
|p`a| lW(p`a) = lWa

s`(|p`a|) p`a < a
, |a| ≤ a

We now assume

ε ∈ X ∧ (∀x ∈W)(pWx ∈ X → x ∈ X) (3.12)

Now we take some a ∈W and aim at proving a ∈ X. Therefor, we first
generate the type

Y := {x : mspa(|a| .− x) .∈ X}

Y can obviously be constructed with axiom (inv) and we have

<(inv((λx.mspa(|a| .− x)), X), Y)

ε ∈ Y as mspa(|a| .− ε) = mspa(|a|) = ε and ε ∈ X by (3.12).

Now we assume x ∈ Y and aim at showing s`x ∈ Y which is equivalent
to mspa(|a| .− s`x) ∈ X. We have mspa(|a| .− s`x) = mspa(p`(|a| .− x)).
Furthermore, mspa(|a| .−x) = pW(mspa(p`(|a| .−x))). Thus, by assump-
tion (3.12) and induction hypothesis mspa(p`(|a| .− x)) ∈ X. We can
now apply (T-I`) to get (∀x ∈ W)(x ∈ Y). From a ∈ Y we immediately
get a ∈ X as mspa(|a| .− a) = mspaε = a. 2

We are now ready to prove the upper bounds.

65

3. Weak Axiom Systems including Types

Theorem 3.28

1) PSET is a conservative extension of PS− for LW formulas.

2) LSET is a conservative extension of LS− for LW formulas.

Proof We again employ the same model theoretic argument and con-
struct a model for PSET (LSET) from a model of PS− (LS−) using the
recipe described in Section 3.3. Since we proved before for PET that
types are weakly Σb−

W definable and since (Σb−
W -I`) holds in the original

model, (T-I`) obviously holds in the thus constructed model. 2

It immediately follows that the provably total functions of PSET coincide
with the functions computable in polynomial space, whereas those of
LSET coincide with the functions computable in linear space as desired.

66

Chapter 4

Disjoint Union And

Realisability

This chapter mainly consists of a detailed discussion of the principle of
disjoint union of types. The so-called Join Axioms add a type generator
which constructs a type from a given type a and a function f mapping
every element of the given type to a name. The join type consists of
pairs (x, y) such that x .∈ a and y

.∈ fx. As already mentioned in Sec-
tion 2.4, join has been studied over several theories, see e.g. Krähenbühl
[44], Studer [58]. As summarised in Section 2.4, the addition of join
does not increase the proof-theoretic strength of some theories, whereas
others become stronger or even get inconsistent.

Our aim is to prove that the addition of join does not increase the proof-
theoretic strength of PET. The weak theories we are studying in this
thesis are more delicate than stronger systems and therefore the investi-
gation of additional principles is more complicated. Techniques used to
prove stronger theories proof-theoretically equivalent or tell them apart
can not be easily applied in our case. Especially the model-theoretic
argument employed in Section 3.3 to obtain the desired upper bounds
for PET is not applicable in the presence of join. Thus, we will give
a syntactic proof for the upper bounds by means of a realisability re-

67

4. Disjoint Union And Realisability

lation for positive formulas. This argument is an extension of the one
employed by Strahm in [53] for establishing the upper bounds for PT.
A similar realisability relation was already used by Cantini in [5].

As already mentioned, the first systems of Explicit Mathematics were
formulated in intuitionistic logic. We go back to the roots and formulate
the theory PET+J based on intuitionistic logic in Section 4.1. Further-
more, we spell out a translation of PET+J in sequent calculus style.
In Section 4.2 we construct in detail a model for PET+J based on the
term model M(λη) introduced in Section 2.3. Then we are ready to
introduce a realisability relation for positive formulas in Section 4.3 and
prove the realisability theorem stating that provable (positive) sequents
are realisable by polynomial time computable functions in the sense of
Theorem 4.15. Moreover, we are able to extend the realisability to treat
also some of the extensions studied in Section 3.4, namely the unifor-
mity principle and the type constructor for universal quantification from
Section 3.4.1. Finally, in Section 4.5, we discuss problems arising from
adding join to the classical version as well as the extent to which the
methods used in this chapter also apply to the classical version of PET.

4.1 The Theory PET+Ji

In this section, we introduce a type constructor for disjoint union, the
so-called join principle. As already mentioned, we change to intuition-
istic logic. The exact reasons are given later in Section 4.5. To avoid
confusion, theories based on intuitionistic logic will be denoted by a
superscript Ti.

The theory introduced in this chapter is formulated in a language slightly
different from before since this will simplify the realisability used later.
To be precise, PET+J is formulated as a first-order axiom system where
we only have a collection of names instead of types. We will proof that
the original formulation can be translated into this version as we aim at
giving a proof-theoretic analysis of the second-order variant of PET+Ji.

68

4.1. The Theory PET+Ji

In the second part of this section, we reformulate our theory PET+Ji in
sequent calculus style in order to state the realisability theorem later in
this chapter.

4.1.1 Axiomatisation of PET+Ji

We now introduce the theory PET+Ji which is a first-order system. In
this context, we only have names representing types instead of (second-
order) types. Therefore, < is in this context a unary relation symbol
denoting the collection of names. The element relation is defined be-
tween two individuals where one of them is expected to be a name.
Furthermore, the axioms about extensionality are dropped. This refor-
mulation does not change the proof-theoretic strength as we will prove
later.

PET+J is formulated in the language LTW which extends LW by a unary
relation symbol <, binary relation symbol .∈ and the (individual) con-
stants w, id, dom, un, int, inv, and j (disjoint union). The relation .∈
connects a name with the elements of its extension. In contrast to the
previous chapters, it is not an abbreviation, but a relation symbol of the
language. Of course, the semantics of this relation shall match those of
the abbreviation, as we will see in the translation below.

The theory PET+J consists of the axioms of BOW plus the following:

I. Type Existence Axioms

(wa) a ∈W→ <(w(a)) ∧ ∀x(x .∈ w(a)↔Wa(x))

(id) <(id) ∧ ∀x(x .∈ id↔ ∃y(x = (y, y)))

(un) <(a)∧<(b)→ <(un(a, b))∧∀x(x .∈ un(a, b)↔ (x .∈ a∨x .∈ b))

(int) <(a)∧<(b)→ <(int(a, b))∧∀x(x .∈ int(a, b)↔ (x .∈ a∧x .∈ b))

(dom) <(a)→ <(dom(a)) ∧ ∀x(x .∈ dom(a)↔ ∃y((x, y) .∈ a))

(inv) <(a)→ <(inv(f, a)) ∧ ∀x(x .∈ inv(f, a)↔ fx
.∈ a)

(J.1) <(a) ∧ (∀x .∈ a)<(fx)→ <(j(a, f))

69

4. Disjoint Union And Realisability

(J.2) <(a) ∧ (∀x .∈ a)<(fx)→ ∀x(x .∈ j(a, f)↔
∃y∃z(x = (y, z) ∧ y .∈ a ∧ z .∈ fy)

II. Type Induction on W

(T-IW)<(a)∧ε .∈ a∧(∀x ∈W)(pWx
.∈ a→ x

.∈ a)→ (∀x ∈W)(x .∈ a)

Let PET+Ji stand for the theory PET+J based on intuitionistic logic
instead of classical logic.

In our present setting, we only have names and therefore loose the exten-
sionality of types. Thus, we introduce a new abbreviation .= for stating
that two names are extensionally equal:

a
.= b := ∀x(x .∈ a↔ x

.∈ b)

Since our main target is the proof-theoretic strength of the join axioms
added to (the original formulation of) PET, we first have to translate
formulas from the original version into first-order ones preserving prov-
ability. In the following, L2

W is assumed to include also the constant j.

Definition 4.1 (Translation from L2
W to LT

W)
·? translates any L2

W formula A into a formula A? of LTW. First, we need
to add for every type variable X a new (individual) variable aX . The
translation is now defined by induction on the construction of A:

A atomic:

A ≡ s = t | s↓ |W(s) =⇒ A? ≡ A
A ≡ X = Y =⇒ A? ≡ aX

.= aY

A ≡ <(s,X) =⇒ A? ≡ <(s) ∧ s .= aX

A ≡ s ∈ X =⇒ A? ≡ s .∈ aX

A composite formula:

A ≡ B ∧ C =⇒ A? ≡ B? ∧ C?

A ≡ B ∨ C =⇒ A? ≡ B? ∨ C?

70

4.1. The Theory PET+Ji

A ≡ B → C =⇒ A? ≡ B? → C?

A ≡ ¬B =⇒ A? ≡ ¬B?

A ≡ ∀xB =⇒ A? ≡ ∀xB?

A ≡ ∃xB =⇒ A? ≡ ∃xB?

A ≡ ∀XB =⇒ A? ≡ ∀x(<(x)→ B?[x/aX])

A ≡ ∃XB =⇒ A? ≡ ∃x(<(x) ∧B?[x/aX]) ~

Let PET+J2 stand for the theory PET augmented by the join axioms
formulated in the original setting of L2

W.

We are ready to state the equivalence of the two theories:

Theorem 4.2 For any L2
W formula A[

#”

X] where
#”

X is a conclusive enu-
meration of FVT (A) we have:

PET+J2 ` A =⇒ PET+J ` <(#”aX)→ A?

Proof Before we start the actual proof, we will prove two properties
of the translation to improve readability. Thereafter, the actual proof
will be by induction on the proof length. First, we will prove that the
shortcut s .∈ t can be directly translated by <(t) ∧ s .∈ t: s

.∈ t ≡
∃X(<(t,X) ∧ s ∈ X) in L2

W is translated into ∃x(<(t) ∧ x .= t ∧ s .∈ x).
With the definition of .=, we immediately get ∃x(<(t) ∧ x .= t ∧ s .∈ t)
which is provably equivalent to <(t) ∧ s .∈ t.

Second, we will prove that the second shortcut of PET+J2, <(t), can
be translated as <(t) in PET+J. <(t) ≡ ∃X<(t,X) is translated to
∃x(<(t) ∧ x .= t). Again, PET+J ` ∃x(<(t) ∧ x .= t) iff PET+J ` <(t).

After these two preparatory remarks, we can now start the actual proof.
The theorem is proved by induction on the proof length. We start with
showing that the translation of every axiom of PET+J2 is provable in
PET+J. Therein, the crucial part is the translation of the ontological
axioms. The translations of the remaining axioms result more or less
in the corresponding axioms of PET+J. As the first order part remains

71

4. Disjoint Union And Realisability

untouched, the axioms of BOW stay the same and thus need not be
considered.

Assume PET+J2 ` A with proof length 0, that is A is one of the axioms:

Axiom of BOW A? ≡ A as the first order part remains untouched.
These axioms are identical in both theories.

(O.1) A? ≡ ∃x(<(x)∧x .= aX). PET+J ` <(aX)→ ∃x(<(x)∧x .= aX)
obvious.

(O.2) A? ≡ <(a)∧a .= aX∧<(a)∧a .= aY → aX
.= aY . We directly get

PET+J ` <(aX)∧<(aY)→ (<(a)∧ a = aX ∧ a = aY → aX
.= aY)

from the definition of .=

(O.3) A? ≡ aX
.= aY ↔ ∀x(x .∈ aX ↔ x

.∈ aY) This is obviously
provable in PET+J, given the definition of .=.

(wa) A? ≡ W(a) → <(w(a)) ∧ ∀x(<(w(a)) ∧ x .∈ w(a) ↔ x ≤ a).
Immediate with the corresponding axiom of PET+J.

(id), (un), (int), (dom), (inv) analogous.

(J.1) A? ≡ <(a) ∧ ∀x(x .∈ a→ <(fx))→ <(j(a, f)). Obvious.

(J.2) A? ≡ <(a) ∧ (∀x .∈ a)<(fx) → ∀x(<(j(a, f)) ∧ x .∈ j(a, f) ↔
∃y, z(x = (y, z) ∧ (<(a) ∧ y .∈ a) ∧ (<(fy) ∧ z .∈ fy)). Immediate.

(T-IW) A? ≡ ε
.∈ aX ∧ (∀x ∈ W)(pWx

.∈ aX → x
.∈ aX)→ (∀x ∈ W)(x .∈

aX). PET+J ` <(aX)→ A? obvious.

Now we consider Modus Ponens as an example of a rule. Assume we have
PET+J2 ` B[

#”

Y] with length n+1 by Modus Ponens from PET+J2 ` A[
#”

X]
and PET+J2 ` A[

#”

X] → B[
#”

Y], both with length ≤ n. By induction
hypothesis we have

PET+J `<(#”aX)→ A[#”aX] (4.1)

PET+J `<(#”aX) ∧ <(#”aY)→ (A[#”aX]→ B[#”aY]) (4.2)

72

4.1. The Theory PET+Ji

From (4.1) we immediately get

PET+J `<(#”aX) ∧ <(#”aY)→ A[#”aX] (4.3)

From (4.2) and (4.3) we can derive

PET+J `<(#”aX) ∧ <(#”aY)→ (B[#”aY]) (4.4)

The variables #”aX in (4.4) are either contained in #”aY and therefore
<(aX) need not be iterated, or they do not appear B[#”aY] and therefore
we get

PET+J `∃ #”x<(#”x) ∧ <(#”aY)→ (B[#”aY]) (4.5)

This is equivalent to

PET+J `∃ #”x<(#”x)→ <(#”aY)→ (B[#”aY]) (4.6)

With e.g. (id) we have ∃x<(x) and can now apply Modus Ponens to
(4.6) to get

PET+J `<(#”aY)→ (B[#”aY]) (4.7)

The other rules can be treated similarly. 2

As we will spell out some formal proofs in detail, we will employ some
auxiliary rules to improve readability.

Remark 4.3 (Auxiliary Rules) The following “Auxiliary Rules” are
admissible:

1. Transitivity of implication is provable: If A→ B and B → C were
derived by a Hilbert proof, then A→ C is derivable:

1. A→ B By Assumption

2. B → C By Assumption

3. (B → C)→ (A→ (B → C)) Axiom

4. A→ (B → C) MP on 2 + 3

5. (A→ (B → C))
→ ((A→ B)→ (A→ C))

Axiom

73

4. Disjoint Union And Realisability

6. (A→ B)→ (A→ C) MP on 4 + 5

7. A→ C MP on 1 + 7

2. If ` A→ B and ` A→ C, then ` A→ (B ∧ C).

3. ` A ∧B → C ⇐⇒ ` A→ (B → C).

4.1.2 Sequent Calculus Reformulation

As previously announced, we reformulate the theory in sequent calculus
style as the realisability relation works in this setting. We are working in
the same language LTW as before and make use of the same abbreviations.

The theory PET+JiG is the reformulation of the theory PET+Ji in Gentzen
style based on intuitionistic sequent calculus G2i where ¬A := A→ ⊥.
The axioms of the first order part are adopted from [53] and only pre-
sented partially. In the following, we will write Γ and ∆ for a (fixed)
listing of formulas A0, . . . , An.

PET+JiG consists of the following parts axioms and rules:

I. Logical Axioms

P,Γ⇒ P (P atomic) ⊥,Γ⇒ C

II. Logical Rules

Γ, A,B ⇒ C
L∧ Γ, A ∧B ⇒ C

Γ⇒ A Γ⇒ B
R∧ Γ⇒ A ∧B

Γ, A⇒ C Γ, B ⇒ C
L∨ Γ, A ∨B ⇒ C

Γ⇒ Ai
R∨ Γ⇒ A0 ∨A1

Γ⇒ A Γ, B ⇒ C
L→ Γ, A→ B ⇒ C

Γ, A⇒ B
R→ Γ⇒ A→ B

74

4.1. The Theory PET+Ji

Γ, A[t]⇒ C
L∀

Γ,∀xA[x]⇒ C

Γ⇒ A[y]
R∀ *

Γ⇒ ∀xA[x]

Γ, A[y]⇒ C
L∃ *

Γ,∃xA[x]⇒ C

Γ⇒ A[t]
R∃

Γ⇒ ∃xA[x]

Γ⇒ A Γ, A⇒ C
Cut Γ⇒ C

*: y not free in Γ, C

III. Structural Rules

Γ, A,B,Γ′ ⇒ C
ex

Γ, B,A,Γ′ ⇒ C

Γ, A,A⇒ C
contr

Γ, A⇒ C

IV. BOWS We will only spell out some examples, the rest is analogous:

(4) Γ,W(t0),W(t1), t0 = t1 ⇒ dWr0r1t0t1 = r0

(5) Γ,W(t0),W(t1)⇒ t0 = t1 ∨ dWr0r1t0t1 = r1

(6.1) Γ⇒W(ε)

(6.2) Γ,W(t)⇒W(s0t) ∧W(s1t)

(Eq) Γ,<(t), t = s⇒ <(s)

V. Type existence axioms

(wa.1) Γ,W(s)⇒ <(w(s))

(wa.2) Γ,W(s),W (t), t ≤ s⇒ t
.∈ w(s)

(wa.3) Γ,W(s), t .∈ w(s)⇒W(t) ∧ t ≤ s
(id.1) Γ⇒ <(id)

(id.2) Γ,∃u(t = (u, u))⇒ t
.∈ id

(id.3) Γ, t .∈ id⇒ ∃u(t = (u, u))

(inv.1) Γ,<(s)⇒ <(inv(r, s))

(inv.2) Γ,<(s), rt .∈ s⇒ t
.∈ inv(r, s)

75

4. Disjoint Union And Realisability

(inv.3) Γ,<(s), t .∈ inv(r, s)⇒ rt
.∈ s

(dom.1) Γ,<(s)⇒ <(dom(s))

(dom.2) Γ,<(s), ∃y((t, y) .∈ s)⇒ t
.∈ dom(s)

(dom.3) Γ,<(s), t .∈ dom(s)⇒ ∃y((t, y) .∈ s)

(un.1) Γ,<(s0),<(s1)⇒ <(un(s0, s1))

(un.2) Γ,<(s0),<(s1), t .∈ s0 ⇒ t
.∈ un(s0, s1)

(un.3) Γ,<(s0),<(s1), t .∈ s1 ⇒ t
.∈ un(s0, s1)

(un.4) Γ,<(s0),<(s1), t .∈ un(s0, s1)⇒ t
.∈ s0 ∨ t

.∈ s1

(int.1) Γ,<(s0),<(s1)⇒ <(int(s0, s1))

(int.2) Γ,<(s0),<(s1), t .∈ s0, t
.∈ s1 ⇒ t

.∈ int(s0, s1)

(int.3) Γ,<(s0),<(s1), t .∈ int(s0, s1)⇒ t
.∈ s0

(int.4) Γ,<(s0),<(s1), t .∈ int(s0, s1)⇒ t
.∈ s1

VI. Join Rules

Γ, x .∈ s⇒ <(rx) Γ⇒ <(s)
(J.1) *

Γ⇒ <(j(s, r))

Γ, x .∈ s⇒ <(rx) Γ⇒ <(s)
(J.2) *

Γ, t .∈ j(s, r)⇒ t = (t0, t1) ∧ t0
.∈ s ∧ t1

.∈ rt0)

Γ, x .∈ s⇒ <(rx) Γ⇒ <(s)
(J.3) *

Γ, t = (t0, t1), t0
.∈ s, t1

.∈ rt0 ⇒ t
.∈ j(s, r)

VII. Type Induction

Γ⇒ <(s) Γ⇒ ε
.∈ s Γ,W(x), x .∈ s⇒ six

.∈ s
(T-IW) i=0,1 *

Γ,W(t)⇒ t
.∈ s

*: x not free in Γ

In the following, we let
∧

Γ abbreviate A0 ∧ · · · ∧An for Γ = A0, . . . An.

We now prove that this reformulation is indeed adequate:

76

4.1. The Theory PET+Ji

Theorem 4.4 (Equivalence of PET+Ji and PET+JiG) For all for-
mulas C and all sequents Γ⇒ C we have

1) PET+Ji ` C =⇒ PET+JiG ` ⇒ C

2) PET+JiG ` Γ⇒ C =⇒ PET+Ji `
∧

Γ→ C

Proof Both statements are proved by induction on proof height. The
logical axioms and rules will be omitted as this part proceeds as usual.

1. Assume PET+Ji ` C with a proof of height n.

n = 0 If C is an axiom of BOW, the proof was already done in [53].
In case C is one of the axioms (wa), (id), (inv), (un), or (dom),
⇒ C can obviously be derived from the axioms of group V.

In the following formal proofs, structural rules are omitted.
Shortcuts are translated back on the fly when needed, indicated
by * on the rule name.

If C is an instance of (J.1), the proof is given in Fig. 4.1.

Γ, y .∈ a→ <(fy), y .∈ a⇒ y
.∈ a Γ,<(fy), y .∈ a⇒ <(fy)

L→
Γ︷ ︸︸ ︷

<(a), (∀x .∈ a)<(fx), y .∈ a→ <(fy), y .∈ a⇒ <(fy)
L∀∗

<(a), (∀x .∈ a)<(fx), y .∈ a⇒ <(fy) <(a), (∀x .∈ a)<(fx)⇒ <(a)
(J.1)

<(a), (∀x .∈ a)<(fx)⇒ <(j(a, f))
L∧
<(a) ∧ (∀x .∈ a)<(fx)⇒ <(j(a, f))

R→
⇒ <(a) ∧ (∀x .∈ a)<(fx)→ <(j(a, f))

Figure 4.1: Proof of PET+JiG `⇒ (J.1)

If C is an instance of (J.2), the proof is given in Fig. 4.2.

If C is an instance of (T-IW), the proof is given in Fig. 4.3.

n > 0 In this case, C was derived by a logical rule and the proof is
as usual.

77

A
na

lo
go

us
(J

.1
)

<
(a

),
(∀
x

. ∈
a
)<

(f
x

),
w

. ∈
a
⇒
<

(f
w

)
<

(a
),

(∀
x

. ∈
a
)<

(f
x

)
⇒
<

(a
)

(J
.3

)
<

(a
),

(∀
x

. ∈
a
)<

(f
x

),
v

=
(y
,z

),
y

. ∈
a
,z

. ∈
f
y
⇒
v

. ∈
j(
a
,f

)
2
×
L
∧
<

(a
),

(∀
x

. ∈
a
)<

(f
x

),
v

=
(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
⇒
v

. ∈
j(
a
,f

)
2
×
L
∃
<

(a
),

(∀
x

. ∈
a
)<

(f
x

),
∃y
∃z

(v
=

(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
)
⇒
v

. ∈
j(
a
,f

)
R
→
<

(a
),

(∀
x

. ∈
a
)<

(f
x

)
⇒
∃y
∃z

(v
=

(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
)
→
v

. ∈
j(
a
,f

)
co

nt
in

ue
d

be
lo

w

A
na

lo
go

us
(J

.1
)

<
(a

),
(∀
x

. ∈
a
)<

(f
x

),
y

. ∈
a
⇒
<

(f
y
)

<
(a

),
(∀
x

. ∈
a
)<

(f
x

)
⇒
<

(a
)

(J
.2

)
<

(a
),

(∀
x

. ∈
a
)<

(f
x

),
v

. ∈
j(
a
,f

)
⇒
∃y
∃z

(v
=

(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
)

R
→
<

(a
),

(∀
x

. ∈
a
)<

(f
x

)
⇒
v

. ∈
j(
a
,f

)
→
∃y
∃z

(v
=

(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
)

se
e

ab
ov

e
R
∧
∗

<
(a

),
(∀
x

. ∈
a
)<

(f
x

)
⇒
v

. ∈
j(
a
,f

)
↔
∃y
∃z

(v
=

(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
)

R
∀
<

(a
),

(∀
x

. ∈
a
)<

(f
x

)
⇒
∀x

(x
. ∈

j(
a
,f

)
↔
∃y
∃z

(x
=

(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
))

R
→
,L
∧
⇒
<

(a
)
∧

(∀
x

. ∈
a
)<

(f
x

)
→
∀x

(x
. ∈

j(
a
,f

)
↔
∃y
∃z

(x
=

(y
,z

)
∧
y

. ∈
a
∧
z

. ∈
f
y
))

F
ig

ur
e

4.
2:

P
ro

of
of

P
E

T
+

Ji
G
`⇒

(J
.2

)

78

Γ
,y
∈

W
,y

. ∈
a
⇒
y
∈

W

Γ
,y
∈

W
,y

. ∈
a
⇒
y

. ∈
a

Γ
,s

0
y

. ∈
a
,s

1
y

. ∈
a
,y
∈

W
,y

. ∈
a
⇒

s i
y

. ∈
a

L
∧

Γ
,s

0
y

. ∈
a
∧

s 1
y

. ∈
a
,y
∈

W
,y

. ∈
a
⇒

s i
y

. ∈
a

L
→

Γ
,y

. ∈
a
→

s 0
y

. ∈
a
∧

s 1
y

. ∈
a
,y
∈

W
,y

. ∈
a
⇒

s i
y

. ∈
a

L
→

Γ
,y
∈

W
→

(y
. ∈
a
→

s 0
y

. ∈
a
∧

s 1
y

. ∈
a
),
y
∈

W
,y

. ∈
a
⇒

s i
y

. ∈
a

L
∀∗

Γ
︷

︸︸
︷

<
(a

),
ε

. ∈
a
,(
∀x
∈

W
)(
x

. ∈
a
→

s 0
x

. ∈
a
∧

s 1
x

. ∈
a
),
y
∈

W
,y

. ∈
a
⇒

s i
y

. ∈
a

co
nt

in
ue

d
be

lo
w

<
(a

),
ε

. ∈
a
,(
∀x
∈

W
)(
..
.)
⇒
<

(a
)
<

(a
),
ε

. ∈
a
,(
∀x
∈

W
)(
..
.)
⇒
ε

. ∈
a

Se
e

ab
ov

e
(T

-I
W

)
<

(a
),
ε

. ∈
a
,(
∀x
∈

W
)(
x

. ∈
a
→

s 0
x

. ∈
a
∧

s 1
x

. ∈
a
),
y
∈

W
⇒
y

. ∈
a
)

R
→
<

(a
),
ε

. ∈
a
,(
∀x
∈

W
)(
x

. ∈
a
→

s 0
x

. ∈
a
∧

s 1
x

. ∈
a
)
⇒
y
∈

W
→
y

. ∈
a
)

R
∀∗
<

(a
),
ε

. ∈
a
,(
∀x
∈

W
)(
x

. ∈
a
→

s 0
x

. ∈
a
∧

s 1
x

. ∈
a
)
⇒

(∀
x
∈

W
)(
x

. ∈
a
)

2
×
L
∧
<

(a
)
∧
ε

. ∈
a
∧

(∀
x
∈

W
)(
x

. ∈
a
→

s 0
x

. ∈
a
∧

s 1
x

. ∈
a
)
⇒

(∀
x
∈

W
)(
x

. ∈
a
)

R
→
⇒
<

(a
)
∧
ε

. ∈
a
∧

(∀
x
∈

W
)(
x

. ∈
a
→

s 0
x

. ∈
a
∧

s 1
x

. ∈
a
)
→

(∀
x
∈

W
)(
x

. ∈
a
)

F
ig

ur
e

4.
3:

P
ro

of
of

P
E

T
+

Ji
G
`⇒

(T
-I

W
)

79

4. Disjoint Union And Realisability

2. Assume PET+JiG ` Γ ⇒ C with a proof of height n. For n = 0,
Γ ⇒ C is an axiom. Axioms of group V. can obviously be proved
from their corresponding axioms in PET+Ji. If n > 0, we need to
consider only the rules from groups VI. and VII., since the proof for
the logic rules proceeds as usual.

Assume Γ⇒ <(j(a, f)) was derived by (J.1). By induction hypothe-
sis, there are proofs in PET+Ji for the premises of the rule:

1. <(t) ∧ (∀x .∈ t)<(fx)→ <(j(t, f)) Axiom (J.1)

2.
∧

Γ ∧ x .∈ t→ <(fx) Induction Hypothesis

3.
∧

Γ→ <(t) Induction Hypothesis

4.
∧

Γ→ (x .∈ t→ <(fx)) Remark 4.3.3 on 2

5.
∧

Γ→ ∀x(x .∈ t→ <(fx)) ∀-GEN

6.
∧

Γ→ <(t) ∧ ∀x(x .∈ t→ <(fx)) Remark 4.3.2 on 3, 5

7.
∧

Γ→ <(j(t, f)) Remark 4.3.1 on 6, 1

The proofs for the rules (J.2+3) are similar and therefore left out.

We now have to consider the rule (T-IW). Assume Γ, u ∈ W ⇒ u
.∈ t

was derived by an application of (T-IW):

1.
∧

Γ→ <(t) Induction Hypothesis

2.
∧

Γ→ ε
.∈ t Induction Hypothesis

3.
∧

Γ ∧ u ∈W ∧ u .∈ t→ s0u
.∈ t Induction Hypothesis

4.
∧

Γ ∧ u ∈W ∧ u .∈ t→ s1u
.∈ t Induction Hypothesis

5.
∧

Γ ∧ u ∈W ∧ u .∈ t
→ (s0u

.∈ t ∧ s1u
.∈ t)

Remark 4.3.2 on 3, 4

6.
∧

Γ ∧ u ∈W

→ (u .∈ t→ (s0u
.∈ t ∧ s1u

.∈ t))
Remark 4.3.3 on 5

7.
∧

Γ→ (u ∈W→ (u .∈ t
→ (s0u

.∈ t ∧ s1u
.∈ t)))

Remark 4.3.3 on 6

8.
∧

Γ→ ∀x(x ∈W→ (x .∈ t
→ (s0x

.∈ t ∧ s1x
.∈ t)))

∀-GEN on 7

9.
∧

Γ→ <(t) ∧ ε .∈ t ∧ ∀x(x ∈W

→ (x .∈ t→ (s0x
.∈ t∧ s1x

.∈ t)))
Remark 4.3.2 on 1, 2, 8

80

4.1. The Theory PET+Ji

10. (T-IW) Axiom

11.
∧

Γ→ ∀x(x ∈W→ x
.∈ t) Remark 4.3.1 on 9, 10

12. ∀x(x ∈W→ x
.∈ t)

→ (u ∈W→ u
.∈ t)

Axiom

13.
∧

Γ→ (u ∈W→ u
.∈ t) Remark 4.3.1 on 11, 12

14.
∧

Γ ∧ u ∈W→ u
.∈ t Remark 4.3.3 on 13

This ends our proof. 2

For the realisability, we depend on partial cut elimination, i.e. only cuts
with positive formulas are allowed in our proofs. Therefore, we first
need to define the cut rank of a formula. It is defined such that positive
formulas have cut rank 0 and non-positive formulas have usual cut rank.

Definition 4.5
The cut rank rk(A) of a formula A is defined by a case distinction:

rk(A) =

{
0 A positive

rk′(A) otherwise

where rk′(A) is defined as follows:

1) A ≡ B ∧ C or B ∨ C: rk′(A) = max(rk(B), rk(C)) + 1

2) A ≡ ∀xB or ∃xB: rk′(A) = rk(B) + 1

3) A ≡ B → C: rk′(A) = max(rk(B), rk(C)) + 1 ~

The proof height of a proof is defined as usual: the height is 0 if the
proof is an axiom and max(n0, . . . , ni)+1 for a proof where the last rule
has i premises and premise j has proof height nj , except for structural
rules.
Definition 4.6
PET+JiG |nr Γ⇒ C is defined by induction on the proof structure:

1) 0 ≤ n, r and Γ⇒ C is an axiom.

81

4. Disjoint Union And Realisability

2) Γ⇒ C was derived by a structural rule from Γ1 ⇒ C and PET+JiG |nr
Γ1 ⇒ C

3) PET+JiG |nr Γ ⇒ C if the last rule was the cut rule and rk(A) =
rA and PET+JiG |n0

r0
Γ ⇒ A and PET+JiG |n1

r1
Γ, A ⇒ C where

n0, n1 < n and r ≥ max(rA + 1, r0, r1)

4) PET+JiG |nr Γ⇒ C if the last rule was one of the other rules with k
premises and PET+JiG |niri Γi ⇒ Ci (i = 0, . . . , k) and r ≥ max(ri)
and n > max(ni)

n is called the proof height and r the cut rank of the proof.

Furthermore, we write PET+JiG |r Γ ⇒ C if there exists a n such that
PET+JiG |nr Γ⇒ C ~

Lemma 4.7 (Admissibility of Weakening)
Weakening is height-preserving admissible in PET+JiG:

PET+JiG |nr Γ⇒ C =⇒ PET+JiG |nr Γ,Γ′ ⇒ C

After this preparatory work, we are now ready to establish partial cut
elimination:

Theorem 4.8 (Partial Cut Elimination)
If PET+JiG |r Γ⇒ C, then also PET+JiG |1 Γ⇒ C

This theorem follows immediately from the following lemma:

Lemma 4.9 (Partial Cut Reduction) If PET+JiG |r Γ ⇒ A and
PET+JiG |r Γ′, A⇒ C with rk(A) = r > 0, then PET+JiG |r Γ,Γ′ ⇒ C

Proof As the main formulas of all non-logical axioms and rules are
positive, the proof is analogous to the usual proof as spelled out in
detail for example in [60]. 2

82

4.2. A Model for PET+Ji

4.2 A Model for PET+Ji

In this section, we elaborately describe a model for PET+Ji based on
the term model M(λη) introduced in Section 2.3. The construction
is similar to the one presented in Section 3.3, but the stages for the
construction of the interpretation of the names run over all ordinals and
not just over the natural numbers as before. This expansion is necessary
because of the join constructor which allows references to uniformly
generated names.

First, we give a definition of a LTW-structure. In contrast to models of
PET, we only need interpretations for names and elementship.

Definition 4.10 (LT
W-Structure)

A LTW-structure M? is a tuple

(M,R, E ,w, id, un, int, dom, inv, j)

with the following conditions:

(i) M is a LW-structure,
(ii) R is a non-empty subset of |M|,
(iii) E is a binary relation on |M| ×R, and
(iv) w, id, un, int, dom, inv, j are elements of |M|. ~

For the construction we take the model M(λη) of PT as introduced in
Section 2.3. Recall that we have usual βη-reduction adapted to fit our
axioms and |M| = {t : t term} and the constants are interpreted by
themselves. We write t red==⇒ s for regular reduction of terms and define
the abbreviation βη= as t1

βη= t2 :⇐⇒ t1
red==⇒ s and t2

red==⇒ s for some
term s.

Now we generate the model M? of PET+J by adding interpretations R
and E for < and .∈ respectively. For the construction of R we intro-
duce sets Rα ⊆ |M?| by induction on the ordinal α and simultaneously

83

4. Disjoint Union And Realisability

establish a set Eα ⊆ |M| ×Rα. Then we set

M?
α := (M(λη),Rα, Eα,w, id, un, int, dom, inv, j).

For every ordinal number α, Rα and Eα are constructed as follows where
r, s, t ∈ |M(λη)|.

α = 0: R0 contains the names of the base types, i.e. formally s ∈ R0 iff

– s
βη= id and (t, s) ∈ E0 iff t

βη= (m,m) for some m ∈ |M(λη)|.
– s

βη= wa with a ∈WM
?

and (t, s) ∈ E0 iff M? |= t ∈W ∧ t ≤ a.

α′ = α+ 1: Rα′ contains Rα. In addition, for s0, s1 ∈ Rα, s ∈ Rα′ iff

– s
βη= un(s0, s1) and (t, s) ∈ Eα′ iff (t, s0) ∈ Eα or (t, s1) ∈ Eα.

– s
βη= int(s0, s1) and (t, s) ∈ Eα′ iff (t, s0) ∈ Eα and (t, s1) ∈ Eα.

– s
βη= dom(s0) and (t, s) ∈ Eα′ iff there is a m ∈ |M?| such that

((t,m), s0) ∈ Eα.

– s
βη= inv(r, s0) and (t, s) ∈ Eα′ iff (rt, s0) ∈ Eα

– s
βη= j(s0, r) and rt ∈ Rα for all t such that (t, s0) ∈ Eα. Fur-

thermore, (t, s) ∈ Eα′ iff t
βη= (m,n) such that (m, s0) ∈ Eα and

(n, rm) ∈ Eα.

α = limit ordinal: Rα =
⋃
β<αRβ and Eα =

⋃
β<α Eβ.

Finally, we define R :=
⋃
α∈ΩRα and E :=

⋃
α∈Ω Eα where Ω stands for

the ordinals. Then our desired LTW structure is given by

M? := (M(λη),R, E ,w, id, un, int, dom, inv, j).

For any s ∈ Rα, we define ext(s) := {t ∈ |M?| : (t, s) ∈ Eα}. In the
following, we use the abbreviation t εα s := (t, s) ∈ Eα.

It immediately follows from Theorem 3.14 that M? indeed is a model
for PET+Ji. When referencingM? from now on, we always relate to the
specific model of PET+Ji as constructed here, unless explicitly stated
otherwise.

84

4.3. Realisability for Positive Formulas

4.3 Realisability for Positive Formulas

In this section we define the notion of realisability of positive formu-
las. Realisers are binary words and shall contain some computational
content. They can be seen as witnesses for the statement of the for-
mula. The definition in this thesis is an extension of the one introduced
in Strahm [53]. The notion of realisers of LW formulas is taken from
there. In the spirit of the mentioned paper, we are mainly interested in
statements concerning the predicate W, as the realisability is a means
to prove that the provably total functions are the ones computable in
polynomial time. This is reflected in the definition of the realisers of
a formula: realisers of W contain more detailed information about the
individuals considered than realisers of other formulas. Theorem 4.15
proves that the conclusion of every provable sequent can be realised by a
polynomial time function from the realisers of the premise. The desired
upper bounds immediately follow from this fact.

For realising provable sequents, we work in the theory PET+JiG aug-
mented by the axioms for totality (Tot) and extensionality (Ext) as in-
troduced in Section 2.1.3. In this context, the relation symbol ↓ becomes
superfluous and can therefore be neglected.

Furthermore, the definition of the realisability depends heavily on the
model M? presented in the previous section as we only want to realise
formulas which are modelled. Therefore, we first define the notion of
realisability for formulas of the form t

.∈ s. We remind the reader that
〈·, ·〉 is the polynomial time pairing function introduced in Appendix C.

Definition 4.11 (Realisability: ρ ř t .
∈ s)

For any s ∈ R and ρ ∈W, ρ řα t
.∈ s is defined by induction on the level

α when s was added to R.

α = 0:

ρ ř0 t
.∈ id ⇐⇒ ρ = ε and M? |= t = (t0, t0) for some term t0

ρ ř0 t
.∈ w(s) ⇐⇒ M? |= t = ρ ∧ ρ ≤ s

85

4. Disjoint Union And Realisability

α′ = α+ 1 successor ordinal where s, s0, s1 ∈ Rα
ρ řα′ t

.∈ s ⇐⇒ s ∈ Rα and ρ řα t
.∈ s

ρ řα′ t
.∈ dom(s) ⇐⇒ ρ řα (t, t0) .∈ s for a term t0

ρ řα′ t
.∈ un(s0, s1) ⇐⇒ ρ = 〈i, ρ0〉 and either

i = 0 and ρ0 řα t
.∈ s0 or

i = 1 and ρ0 řα t
.∈ s1

ρ řα′ t
.∈ int(s0, s1) ⇐⇒ ρ = 〈ρ0, ρ1〉 and ρ0 řα t

.∈ s0 and ρ1 řα t
.∈ s1

ρ řα′ t
.∈ inv(r, s) ⇐⇒ ρ řα rt

.∈ s

ρ řα′ t
.∈ j(s, r) ⇐⇒ ρ = 〈ρ0, ρ1〉 and

ρ0 řα (t)0
.∈ s and ρ1 řα (t)1

.∈ r(t)1

α limit ordinal

ρ řα t
.∈ s ⇐⇒ ρ řβ t

.∈ s for some β < α

In this definition, the name s is a placeholder for all terms t such that
t
βη= s to improve readability. ~

We will also write ρ ř t .∈ s for ρ řα t
.∈ s for some ordinal α. We can

now define the actual realisability for positive formulas.

Definition 4.12 (Realisability: ρ r© A)
The realisability relation r© ⊆ W × Pos for positive formulas is defined
by induction on the construction of the formula:

Atomic formulas:

ρ r© W(t) ⇐⇒ M? |= ρ = t

ρ r© t0 = t1 ⇐⇒ ρ = ε and M? |= t0 = t1

ρ r© t
.∈ s ⇐⇒ s ∈ R and ρ řα t

.∈ s for some α

ρ r© <(s) ⇐⇒ s ∈ R and ∀σ, t : σ r© t
.∈ s =⇒ σ ≤ ρ

86

4.3. Realisability for Positive Formulas

Composite formulas:

ρ r© A0 ∧A1 ⇐⇒ ρ = 〈ρ0, ρ1〉 and ρ0
r© A0 and ρ1

r© A1

ρ r© A0 ∨A1 ⇐⇒ ρ = 〈i, ρ0〉 (i ∈ {0, 1}) and ρ0
r© Ai

ρ r© ∀xA[x] ⇐⇒ ρ r© A[u] for a fresh variable u

ρ r© ∃xA[x] ⇐⇒ ρ r© A[t] for some term t

~ρ r© Γ for a sequence Γ = A0, . . . , An:

~ρ r© Γ ⇐⇒ ~ρ = ρ0, . . . , ρn and ρi r© Ai ~

Before we can prove the main theorem of this section, we first need to
state two important properties of the defined realisability. First, the
realiser of a formula shall not be able to distinguish between two terms
having a common reduct. Furthermore, whenever we have a realiser for
a formula containing free variables, it realises all substitution instances.

Lemma 4.13 For positive formulas A and terms t, s, we have

1) If ρ r© A[t] and t βη= s, then ρ r© A[s]

2) If ρ r© A[u], then ρ r© A[t].

Proof This is obvious from the definition of realisability. 2

Second, we also require that we have realisers for all statement of the
form t

.∈ s modelled by M?.

Lemma 4.14 For all terms t, s

M? |= t
.∈ s =⇒ there is a ρ ∈W such that ρ ř t .∈ s

Proof Assume that M? |= t
.∈ s. This implies that s ∈ <M?

and
t ∈ ext(s) ≡ (t, s) ∈ E . s ∈ <M?

iff s ∈ Rα for some α. Therefore
we will prove the existence of a realiser ρ by induction on α such that
s ∈ Rα but s 6∈ Rβ for β < α.

87

4. Disjoint Union And Realisability

α = 0 We have either s βη= id or s βη= wa for some a ∈ WM
?
. In the first

case t ε0 s iff t
βη= (m,m) for some m ∈ |M?| which is equivalent

to writing M? |= t = (m,m). Set ρ = ε.

In the latter case we have t ε0 s iff M? |= W(t) ∧ t ≤ a. Choose ρ
such that ρ βη= t which exists since t ∈WM

?
.

α′ = α+ 1 s must be equivalent to one of inv(r, s0), dom(s0), un(s0, s1),
int(s0, s1), or j(s0, r) where s0, s1 ∈ Rα.

If s βη= int(s0, s1), then t εα′ s iff t εα s0 and t εα s1. By induction
hypothesis there are ρ0, ρ1 such that ρi řα t

.∈ si(i = 0, 1). Take
ρ = 〈ρ0, ρ1〉.

Realisers for inv, dom, and un are constructed analogously.

In the case, s βη= j(s0, r), we know that rm ∈ Rα for all m ∈ ext(s0)
by the construction of the model. s εα′ j(r, s0) iff s

βη= (m,n) for
some m,n ∈ |M?| such that m εα s0 and n εα rm. By induc-
tion hypothesis there are ρ0 and ρ1 such that ρ0 řα m

.∈ s0 and
ρ1 řα n

.∈ rm. Choose ρ = 〈ρ0, ρ1〉. 2

We are now ready to state the realisability theorem. It claims that
whenever we can prove a (positive) sequent Γ ⇒ C in PET+JiG, there
is a polynomial time computable function F constructing a realiser for
C given realisers for Γ. F may depend on the proof of the sequent
and therefore the same sequent can have various realising functions con-
structed from different deductions.

Theorem 4.15 (Realisability) For every positive sequent Γ[~x]⇒ C[~x]
(with Γ = A0[~x], . . . , An[~x]) provable in PET+JiG, where ~x is a conclu-
sive enumeration of the free variables, there is a function F ∈ FPtime

such that for all terms ~t

~ρ r© Γ[~t] =⇒ F (~ρ) r© C[~t]

Proof This proof is by induction on the derivation of Γ ⇒ C (where
Γ ≡ A0, . . . , An).

88

4.3. Realisability for Positive Formulas

Derivation length 0, i.e. Γ ⇒ C is an axiom. The proof for the
axioms of BOW is already spelled out by Strahm in [53] and therefore
omitted here.

(wa.1) Assume ρn r© W(s), that is s βη= ρn. We now set F to be (λ~x.xn).
Obviously, F (~ρ) ∈W and w(s) ∈ R by model construction. Thus,
only the last condition remains to be shown:
As σ r© t

.∈ w(s) ⇐⇒ M? |= σ = t ∧ σ ≤ s, we know that σ ≤ s

if σ r© t
.∈ w(s) for any t and therefore σ ≤ ρn = F (~ρ).

(wa.2) Assume (i) ρn−2
r© W(s), (ii) ρn−1

r© W(t) and (iii) ρn r© t ≤ s

where t ≤ s ≡ c⊆(lWt)(lWs) = 0. Choose F = (λ~x.xn−1). Then
F (~ρ) = ρn−1 and ρn−1

r© t
.∈ w(s) since M? |= t = ρn−1 with (ii)

and M? |= ρn−1 ≤ s because of (iii).

(wa.3) Set F = (λ~x.〈xn−1, ε〉). F (~ρ) r© W(t) ∧ t ≤ s: ρn−1
r© W(t) as

ρn−1
r© t

.∈ w(s) and ε r© ρn−1 ≤ s by assumption.

(id.1) F = (λ~x.ε). By definition, we know that ρ r© t
.∈ id =⇒ ρ = ε.

As ε ≤ ε, the last part of the condition is fulfilled. Obviously,
ε ∈W and id ∈ R.

(id.2) Assume that ρn r© ∃u(t = (u, u)), i.e. ρn r© t = (s, s) for some
term s. By definition, this means ρn = ε and M? |= t = (s, s) for
some term s. Thus we can choose F = (λ~x.ε) which satisfies the
condition for a realiser of t .∈ id.

(id.3) Assume ρn r© t
.∈ id which by definition means that ρn = ε and

M? |= t = (s, s) for some s. We can choose the same F as in the
previous case.

(un.1) Let F = (λ~x.〈1, xn ∗ xn−1〉). We need to show that indeed
F (~ρ) r© <(un(s0, s1)) if ρn−1

r© <(s0) (i) and ρn r© <(s1) (ii).
From the construction of M?, un(s0, s1) ∈ R is immediate. Now
assume σ r© t

.∈ un(s0, s1). By definition, it follows that either
σ = 〈0, σ′〉 and σ′ r© s

.∈ s0 and therefore σ′ ≤ ρn−1 with (i). Or

89

4. Disjoint Union And Realisability

σ = 〈1, σ′〉 and σ′ r© t
.∈ s1 and therefore σ′ ≤ ρn with (ii). This

implies σ′ ≤ ρn ∗ ρn−1 and thus σ ≤ 〈1, ρn ∗ ρn−1〉.

(un.2) F = (λ~x.〈0, xn〉). Obvious.

(un.3) F = (λ~x.〈1, xn〉). Obvious.

(un.4) F = (λ~x.xn). Obvious.

(int.1) F = (λ~x.〈xn−1, xn〉). For any σ r© t
.∈ int(s0, s1), σ = 〈σ0, σ1〉

with σ0 ≤ ρ0 and σ1 ≤ ρ1 and therefore σ ≤ 〈ρn−1, ρn〉.

(int.2) F = (λ~x.〈xn−1, xn〉). Obvious.

(int.3) F = (λ~x.〈xn〉0). Obvious

(int.4) F = (λ~x.〈xn〉1). Obvious

(dom.1) Assume ρn r© <(s) which means by definition that s ∈ R
and σ r© t

.∈ s =⇒ σ ≤ ρn (i). If we choose F = (λ~x.xn),
then F (~ρ) = ρn. From the construction of M?, dom(s) ∈ R if
s ∈ R. Now assume σ r© t

.∈ dom(s) which by definition means
σ r© (t, r) .∈ s (ii). From (i) and (ii) obviously σ ≤ ρn and therefore
ρn r© <(dom(s)).

(dom.2) For F = (λ~x.xn), obviously F (~ρ) r© t
.∈ dom(s).

(dom.3) Same as above.

(inv.1) Let F = (λ~x.xn). Obvious

(inv.2) F = (λ~x.xn). Obvious

(inv.3) F = (λ~x.xn). Obvious

90

4.3. Realisability for Positive Formulas

Induction step:

(T-IW) Assume there are derivations for Γ ⇒ <(s), Γ ⇒ ε
.∈ s and

Γ,W(u), u .∈ s⇒ siu
.∈ s (i = 0, 1). By induction hypotheses there

are functions E,F,G0, G1 ∈ FPtime such that for all terms t, s
and i = 0, 1

~ρ r© Γ =⇒ E(~ρ) r© <(s) (4.8)

~ρ r© Γ =⇒ F (~ρ) r© ε
.∈ s (4.9)

~ρ r© Γ;σ r© W(t); τ r© t
.∈ s =⇒ Gi(~ρ, σ, τ) r© sit

.∈ s (4.10)

The required function H is now defined by recursion on notation:

H(~ρ, ε) = F (~ρ)

H(~ρ, siσ) = Gi(~ρ, σ,H(~ρ, σ))

Now we need to show that H(~ρ, σ) r© t
.∈ s. We prove this infor-

mally by induction on σ. If σ = ε, F will construct a realiser for
ε

.∈ s. Assuming that H(~ρ, σ) is a realiser for σ .∈ s, Gi(~ρ,H(~ρ, σ)
will construct a realiser for siσ

.∈ s.

To prove that H is a polynomial time function, a bound is needed
as H is constructed from functions in FPtime. This bound is pro-
vided by E. By induction hypothesis, E(~ρ) r© <(s). Thus s ∈ <M?

and σ ≤ E(~ρ) if σ r© t
.∈ s for some t by Definition 4.12. Therefore,

F (~ρ) ≤ E(~ρ) since F (~ρ) r© ε
.∈ s, and Gi(~ρ, σ) ≤ E(~ρ) if σ is a

realiser for t .∈ s for some t. This allows us to apply the schema of
bounded recursion on notation to get H = BRN(F,G0, G1, E).

(J.1) Assume we have derivations for Γ, x .∈ s⇒ <(rx) and Γ⇒ <(s).
By induction hypothesis, there are functions F,G ∈ FPtime such
that

~ρ, σ r© Γ, t .∈ s =⇒ F (~ρ, σ) r© <(rt) (4.11)

~ρ r© Γ =⇒ G(~ρ) r© <(s) (4.12)

91

4. Disjoint Union And Realisability

We now define the requested function H as

H(~ρ) = 〈G(~ρ), F ′(~ρ,G(~ρ))〉

where F ′ is a monotone polynomial function majorising F (the
polynomial limiting the growth of F).

In general, we know that if σ r© <(s) and σ < σ′, then σ′ r© <(s) by
Definition 4.12. Thus, F ′(~ρ, σ) r© <(rx) since F (~ρ, σ) ≤ F ′(~ρ, σ).

Now we need to show that H(~ρ) r© <(j(s, r)), assuming ~ρ r© Γ. To
obtain this, we have to prove that j(s, r) ∈ R and that τ ≤ H(~ρ)
if τ r© t

.∈ j(s, r) for some t.

We know that F (~ρ, σ) r© <(rx) provided σ r© x
.∈ s. This just

guarantees only for realisable elements x that rx indeed is a name.
But because of Lemma 4.14, every x ∈ s has a realiser for every
x ∈ ext(s) as (4.12) ensures that s ∈ R. Thus F constructs a
realiser for <(rx) for every x ∈ ext(s). Therefore j(s, r) ∈ R by
construction of M?.

It remains to be proved that realisers of elements of j(s, r) actually
are smaller or equal to the candidate realiser produced by H. As-
sume τ r© t

.∈ (j(s, r)). Then τ = 〈τ0, τ1〉 such that τ0
r© t0

.∈ s and
τ1

r© t1
.∈ rt0 by Definition 4.12. Therefore, τ0 ≤ G(~ρ) by (4.12).

For any σ with σ r© t
.∈ s, we have σ ≤ G(~ρ) because of (4.12).

Thus τ1 ≤ F (~ρ, σ) ≤ F ′(~ρ,G(~ρ)) since F ′ is monotone. Because
of the monotonicity of the pairing function (see Theorem C.3),
τ ≤ H(~ρ) as required.

(J.2) We have the same assumptions as in the above case. We now
define H to be

H(~ρ, τ) = 〈ε, τ〉

By Definition 4.12 and the above arguments.

(J.3) We have the same assumptions as in the case for (J.1). We now

92

4.4. Realising Some Extensions

define H to be
H(~ρ, ε, τ0, τ1) = 〈τ0, τ1〉

Logical Rules are treated in [53]. Although Strahm’s theory was based
on classical logic, the proof still works with little alteration. Our
functions need not choose which formula to realise in the absence of
side formulas on the right side. Hence the adjustment is straight
forward and the functions become simpler as we can omit most
case distinctions. 2

The desired upper bounds for PET+Ji immediately follow from the
previous theorem. Assume that we have a provably total function
G : Wn →W, i.e. for some suitable term tG

PET+Ji ` tG : Wn 7→W (4.13)

PET+Ji ` tGw1 · · ·wn = G(w1 · · ·wn) (4.14)

Hence, PET+JiG ` ⇒ tG : Wn 7→ W with Theorem 4.4. Unfolding ab-
breviations gives PET+JiG `⇒ (∀x1, . . . , xn ∈ W)(tGx1 · · ·xn ∈ W).
We get PET+JiG ` W(r1), . . . ,W(rn) ⇒ W(tGr1 · · · rn) by applying
logical rules. With the realisability theorem, we know that there is
a function F ∈ FPtime such that F (σ1, . . . , σn) r© W(tGr1 · · · rn) if
σi r© W(ri)(i = 1, . . . , n). By Definition 4.12, F (~σ) r© W(tGr1 · · · rn) iff
F (~σ) βη= tGr1 · · · rn. Furthermore, σi r© W(ri) iff σi

βη= ri. With (4.14)
and equality we get F (~σ) = G(~σ).

Theorem 4.16 The provably total functions of PET+Ji coincide with
the functions computable in polynomial time.

4.4 Realising Some Extensions

When we studied the theory PET in the previous chapter, we also consid-
ered several extensions not increasing the proof-theoretic strength. Of

93

4. Disjoint Union And Realisability

particular interest were Cantini’s uniformity principle together with the
type constructor for universal quantification discussed in Section 3.4.1.
We claim that we can also add those two principles to PET+Ji and keep
the upper bounds. To establish this result, we extend the theorems
proved so far in this chapter to include the uniformity principle and the
all constructor. We will mainly spell out the extensions of the important
proofs and skip the obvious expansions of definitions.

Definition 4.17
The theory PET+J+∀iG is defined as the theory PET+JiG plus the fol-
lowing axioms:

(all.1) Γ,<(s)⇒ <(all(s))

(all.2) Γ,<(s),∀y((t, y) .∈ s)⇒ t
.∈ all(s)

(all.3) Γ,<(s), t .∈ all(s)⇒ ∀y((t, y) .∈ s) ~

and the following rule for positive elementary formulas A:

Γ⇒ ∀x(∃y ∈W)A[x, y]
(UP)

Γ⇒ (∃y ∈W)∀xA[x, y]

It is easy to see that we can extend the proof of Theorem 4.4 to include
the additional axioms. Thus, the axioms and the rule as stated above
are adequate reformulations of the axioms of Section 3.4.1.

Before we can adjust the definition of the realisability, we add the fol-
lowing case to the construction of the model M? at successor stages:

– s
βη= all(s0) and (s, t) ∈ Eα′ iff ((t, y), s0) ∈ Eα for all y ∈ |M?|

Consequently, we also expand Definition 4.11 by the following case for
α′ = α+ 1:

ρ řα′ t
.∈ all(s) ⇐⇒ ρ řα (t, t0) .∈ s for all terms t0

The properties stated in Lemma 4.13 and Lemma 4.14 can easily be
checked for the extended definitions. Thus, we can repeat Theorem 4.15
for PET+J+∀iG:

94

4.5. Classical Version

Theorem 4.18 For every positive sequent Γ[~x] ⇒ C[~x] provable in
PET+J+∀iG, there is a function F∈FPtime such that for all terms ~t

~ρ r© Γ[~t] =⇒ F (~ρ) r© C[~t]

Proof Again, the proof is by induction on the length of the derivation.
We only need to consider the axioms (all.1-3) for the base case and the
rule (UP) in the induction step:

(all.1) Assume ρn r© <(s) and define F = (λ~x.xn). Then F (~ρ) = ρn.
By definition, σ r© t

.∈ all(s) ⇐⇒ σ r© (t, t0) .∈ s for all t0. By
assumption, σ ≤ ρn and therefore F (~ρ) r© <(all(s)).

(all.2) F = (λ~x.xn). By definition of realisability.

(all.3) F = (λ~x.xn). By definition of realisability.

(UP) By induction hypothesis, there is a function G such that
G(~ρ) r© ∀x(∃y ∈ W)A[x, y] if ~ρ r© Γ. By Definition 4.12, we
know that G(~ρ) = 〈ρ0, ρ1〉 such that ρ0

r© t0 ∈ W for some t0 and
ρ1

r© A[t1, t0] for all t1. Therefore 〈ρ0, ρ1〉 r© t0 ∈ W ∧ ∀xA[x, t0]
for some t0, which means 〈ρ0, ρ1〉 r© (∃y ∈ W)∀xA[x, y]. Hence,
we define F (~ρ) = G(~ρ). 2

Again, the desired upper bounds are immediately derived from this the-
orem.

4.5 Classical Version

As already mentioned before, treating the constructor for disjoint union
based on weak theories is more delicate than for stronger theories. We
are not able to prove the upper bounds of PET+J (based on classical
logic) employing the same schema as for the intuitionistic variant: the
induction step fails for (J.1) in the proof of Theorem 4.15. Since we

95

4. Disjoint Union And Realisability

have side formulas on the right side for the classical sequent calculus
reformulation, we can not guarantee that F always generates a realiser
for <(rx), it could also sometimes realise one of the side formulas, de-
pending on σ. Therefore it is impossible to decide whether to realise
one of the side formulas or the main formula.

However, the proof concept can be applied to (classical) PET without
join. The proof for the upper bounds presented in Section 3.3 employs
a model theoretic argument. Adapting the concept of realisability gives
a nice syntactical proof. First, the reformulation in sequent calculus,
PETG, has to be adjusted to sequents having side formulas on the right.
We can take the classical Gentzen calculus G3 as underlying structure
and add side formulas to every non-logical axiom and rule. The proof
of the equivalence of the reformulation (Theorem 4.4) does not depend
on the logic being intuitionistic and thus needs only little alteration.

The model construction from Section 4.2 is adopted unaltered, except
for omitting join and thus ω many steps suffice as explained above. Also
Definition 4.12 for realisability remains the same. As we have a sequence
of formulas on the right side now, our realising function has to specify
which formula to realise. Therefore for Γ ≡ A0, . . . , An we specify

ρ r©
∨

Γ ⇐⇒ ρ = 〈i, ρ0〉 with 0 ≤ i ≤ n and ρ0
r© Ai

Then we can modulate the realisability theorem:

Theorem 4.19 (Realisability) For every positive sequent Γ[~x]⇒ ∆[~x]
provable in PETG, there is a function F ∈ FPtime such that for all
terms ~t

~ρ r© Γ[~t] =⇒ F (~ρ) r©
∨

∆[~t]

The proof follows the same procedure as in the intuitionistic case. The
only difference is that we have to choose an i, i.e. we have to decide which
formula to realise. For the axioms we always create realisers for the main
formula. In the induction step, consisting only of (T-IW), we make a case
distinction whether the functions given by induction hypotheses realise

96

4.5. Classical Version

the main formula or one of the side formulas. Otherwise, the realiser
functions remain untouched.

97

4. Disjoint Union And Realisability

98

Chapter 5

Epilogue

In the introduction, we described our motivation for the research pre-
sented in this thesis. In this chapter, we summarise the accomplished
results and quickly outline some open problems for further investigation.

First, we presented the theory PET that corresponds to the complexity
class of polynomial time computable functions. To establish the proof-
theoretic bounds, we started off from Strahm’s theory PT−, a slightly
weakened version of PT, but proof-theoretically equivalent to it. We
proved that PT− can be embedded in PET, thus confirming the lower
bounds. The upper bounds were established by means of a model theo-
retic argument by proving that PET is a conservative extension of PT−

with respect to formulas in the language of PT.

Cantini [6] showed that several extensions can be added to PT without
increasing the proof-theoretic strength, among them notably the Uni-
formity Principle (UP). We presented a nice application of this principle
in the form of a supplemental type constructor (all) for universal quan-
tification. In the presence of this type generator, we are able to embed
the full theory PT into PET+(all).

Strahm [53] introduced modular Applicative Theories that correspond to
the four complexity classes of functions computable in polynomial time,

99

5. Epilogue

simultaneously in polynomial time and linear space, in polynomial space
and in linear space by using their function algebra characterisations. We
were able to illustrate that full systems of Explicit Mathematics of the
desired strength can be constructed from the same modular building
blocks. To be precise, the requested theories vary in the inclusion or ex-
clusion of word multiplication as a basic operation and in the induction
scheme that operates on the binary words either in lexicographic order
or along the binary successor operations.

We also studied the addition of the join principle to PET. We changed
to intuitionistic logic and established that the provably total functions
of PET+Ji are the functions computable in polynomial time. For this
proof, we reformulated PET+Ji in sequent calculus style and defined a
realisability relation for positive formulas. We were able to show that
each provable (positive) sequent can be realised by a polynomial time
function. The desired upper bounds immediately follow from this result.

We also sketched how this proof can be adapted for the classical version
of PET (without Join), thus giving a syntactical proof for the upper
bounds of PET.

Even though this proof via the realisability relation works for classical
PET and intuitionistic PET+Ji, it is not clear whether this can somehow
be adapted to classical PET+J. Although we strongly conjecture that
join does not increase the proof-theoretic strength in the classical setting,
either, it would be interesting to investigate this relationship further
since the treatment of join is delicate in weak theories.

In Section 4.2, we described a model construction for PET+J in detail.
However, it is not clear to us where the construction of names and types
actually stops. It is an interesting open question whether transfinite
induction over all ordinal numbers is indeed necessary. Since join is
an (expressively) powerful principle, this might also lead to a better
understanding of its interaction with weak theories.

A further interesting research topic is the study of weak theories of
partial truth. Cantini [6] introduced a weak Applicative Theory with a

100

partial truth predicate. However, the truth predicate is not allowed in
induction formulas. It would be interesting to investigate the smalles
ordinal number at which the model construction stops. Furthermore, the
exact relationship between weak type theories and weak partial truth
theories remains an open question.

In Explicit Mathematics, several more extensions were studied over var-
ious systems. It could be exciting to study them in the context of PET.
Especially, it would be interesting to investigate weak Power Types, i.e.
the type of all subtypes of a given type.

101

5. Epilogue

102

Appendices

103

Appendix A

Logic of Partial Terms

The systems of Explicit Mathematics presented in this thesis are based
on the Logic of Partial Terms (LPT) originated by Beeson and Feferman.
To make this thesis self-contained, the formal definitions are summarised
here. Detailed information is presented e.g. in Beeson [1], Feferman [23].

Definition A.1 (Languages for LPT)
A language L for the Logic of Partial Terms comprises the following
symbols:

1) Countably many variables v0, v1, . . . , vi, . . . (i ∈ N).

2) The logical symbols ¬ (negation), ∨ (or), ∧ (and), → (implica-
tion), ∃ (exists), and ∀ (for all).

3) The unary symbol ↓ (definedness) and the binary symbol =
(equality).

4) For any n ∈ N, we have a (possibly empty) set of n-ary function
symbols. The 0-ary function symbols are called the constants of
L.

5) For any n ∈ N, we have a (possibly empty) set of n-ary relation
symbols.

105

A. Logic of Partial Terms

6) Auxiliary symbols like brackets (,), ~

For every language L we define the terms and formulae as usual.

Definition A.2 (L Terms)
The terms of L are inductively defined as follows:

1) Every variable and every constant of L is an L term.

2) If s1, . . . , sn are L terms and f is a n-ary function symbol of L
(n ≥ 1), then f(s1, . . . , sn) is a L term. ~

Definition A.3 (Atomic Formulas and Formulas of L)
The atomic formulas of L are the expressions s↓, s1 = s2 andR(s1, . . . , sn)
if s, s1, . . . , sn are L terms and R is a n-ary relation symbol.

The formulas are inductively defined by the following:

1) Every atomic formula of L is a L formula.

2) If A is a L formula, then so is ¬A.

3) If A,B are L formulas, then so are (A∧B), (A∨B), and A→ B.

4) If A is a L formula and x a variable, then ∃xA and ∀xA are L
formulas. ~

We usually omit the reference to L when the language is either obvi-
ous from the context or insignificant. Furthermore, we drop brackets
whenever possible without causing ambiguity.

As a convention, we use lowercase letters a, b, c, f, g, h, x, y, z for vari-
ables and r, s, t for terms; capital letters A,B,C, . . . typically denote
formulas. We also use vector notation ~a and ~s to abbreviate finite se-
quences of variables a1, . . . , an and terms s1, . . . , sm where the length is
clear from the context.

Definition A.4 (Substitution)
For every term t and all variables ~x = x1, . . . , xn and all terms ~s =
s1, . . . , sn, the term t[~s/~x] is inductively defined as follows:

106

1) If t ≡ xi with 1 ≤ i ≤ n, then t[~s/~x] ≡ si.

2) If t is a constant or a variable different from ~x, then t[~s/~x] ≡ t.

3) If f is a m-ary relation symbol (m ≥ 1) and t ≡ f(t1, . . . , tm),
then t[~s/~x] ≡ f(t1[~s/~x], . . . , tm[~s/~x]).

For every formula A, the formula A[~s/~x] is inductively defined by the
following:

1) If A ≡ t↓, then A[~s/~x] ≡ t[~s/~x]↓.

2) If A ≡ t = s, then A[~s/~x] ≡ t[~s/~x] = s[~s/~x].

3) If A ≡ R(~t) for some m-ary relation symbol R with m ≥ 1, then
A[~s/~x] ≡ R(t1[~s/~x], . . . , tm[~s/~x]).

4) If A ≡ ¬B, then A[~s/~x] ≡ ¬B[~s/~x]

5) If A ≡ B � C, then A[~s/~x] ≡ B[~s/~x] � C[~s/~x] (� being one of
∧,∨,→)

6) If A ≡ QxB (Q being ∃ or ∀) and xi1 , . . . , xik the sequence of vari-
ables ~x without x, then A[~s/~x] ≡ QyB[si1 , . . . , sik , y/xi1 , . . . xik , x]
where y a variable not occurring in B, si1 , . . . , sik . ~

We often write A[~x] to indicate that the variables ~x may appear free in
A and act as parameters in the current context. In this case, we usually
write A[~s] instead of A[~s/~x].

Furthermore, we have the following abbreviations:

t ' s := t↓ ∨ s↓ → t = s

t 6= s := ¬(t = s) ∧ s↓ ∧ t↓

We will now state the axioms and rules of LPT. They are formulated as
a classical Hilbert calculus with equality.

I. Logical Axioms and Rules: We have the usual axioms and rules
for classical Hilbert calculus, except that the quantifier axioms are

107

A. Logic of Partial Terms

replaced by the following:

A[s/x] ∧ s↓→ ∃xA and ∀xA ∧ s↓→ A[s/x]

II. Definedness (Strictness). For any n-ary function symbol f and
relation symbol R and all terms t, t1, . . . , tn:

(D1) t↓ if t is a variable or a constant.

(D2) f(t1, . . . , tn)↓→ t1↓ ∧ · · · ∧ tn↓.
(D3) t1 = t2 → t1↓ ∧ t2↓.
(D4) R(t1, . . . , tn)→ t1↓ ∧ · · · ∧ tn↓.

III. Equality. For any n-ary function symbol f and relation symbol R
and all terms t, t1, . . . , tn, s1, . . . , sn:

(E1) t = t if t is a variable or a constant.

(E2) t1 = t2 → t2 = t1.

(E3) t1 = t2 ∧ t2 = t3 → t1 = t3.

(E4) R(t1, . . . , tn) ∧ (t1 = s1) ∧ · · · ∧ (tn = sn)→ R(s1, . . . , sn).

(E5) (t1 = s1) ∧ · · · ∧ (tn = sn)→ f(t1, . . . , tn) ' f(s1, . . . , sn).

Provability of a formula in LPT is defined as usual and therefore not
spelled out here. Also the semantics of LPT is the common one and
thus omitted. Specific models needed for this thesis are introduced in
the respective sections.

108

Appendix B

Function Algebra

Characterisations of Weak

Complexity Classes

A comprehensive introduction to complexity theory would go beyond
the scope of this thesis. Thus, we only summarise the function algebra
characterisation of the complexity classes playing a major role in this
thesis. We assume familiarity with the basics of complexity theory,
especially the general concept of function classes and Turing machine
computability. The notations and results in this chapter are taken from
Clote’s survey [11] and we refer to this article for more details.

In the context of this thesis, the main focus is on systems characterising
weak complexity classes. Thereby, we work with the set of binary words
W = {0, 1}∗. We are interested in the functions over W which are
computable by a Turing machine in polynomial time, simultaneously in
polynomial time and linear space, in polynomial space, and in linear
space. In this thesis, we write FPtime, FPtimeLinspace, FPspace,
and FLinspace for the corresponding function classes.

We use the notation of Clote [11] for representing function algebras.

109

B. Function Algebras for Complexity Classes

Hence, we let operators denote mappings (functionals) from functions
on W to functions on W. Let F a set of functions and OP a set of
operators. Then [F ;OP] is called a function algebra and stands for
the smallest set of functions that contains F and is closed under the
operators in OP. We now introduce the functions and operators used
to characterise the complexity classes of interest.

In the following, we write ε for the 0-ary constant function resulting in
the empty word. Furthermore, we let I denote the usual collection of
projection functions. To construct binary words, we first need several
successor functions on W. Therefore, we let s0 and s1 denote the common
functions appending 0 and 1 to a given binary word. We also use a
lexicographic successor function s` which creates the successor of the
given word according the well-ordering that orders words by length and
then lexicographically. Formally, for any w ∈ W, s` behaves congruent
with the following:

s`(ε) = 0

s`(s0w) = s1w

s`(s1w) = s0(s`w)

The lexicographical successor can also be seen as correspondence to the
successor on the natural numbers if we look at the binary words as
binary representations of natural numbers.

Furthermore, we have two binary functions on W representing concate-
nation and multiplication of words, ∗ and ×. Concatenation appends
the second word to the first one and multiplication x× y results in the
length of y times concatenation of x to itself.

After spelling out the basic functions, we now turn to the operators.
We start with the composition operator COMP which stands for the
usual composition of F with G1, . . . , Gn. In other words, given function
F,G1, . . . , Gn, COMP maps them to the function applying F to the
result of G1, . . . , Gn.

Finally, we now introduce two schemas for bounded recursion. We there-

110

fore take functions G,H,H0, H1, and B on W of matching arities and
let x ≤ y stand for “the length of x is smaller or equal to the length of
y”. The function F is defined by bounded recursion on notation (BRN)
from G,H0, H1, B if we have for all ~x, y ∈W

F (~x, ε) = G(~x)

F (~x, siy) = Hi(~x, y, F (~x, y)) (i = 0, 1)

F (~x, y) ≤ B(~x, y)

Furthermore, we say that F is constructed by bounded lexicographic
recursion (BRL) from G,H,B if

F (~x, ε) = G(~x)

F (~x, s`y) = H(~x, y, F (~x, y))

F (~x, y) ≤ B(~x, y)

We are now ready to replicate the theorem establishing the recursion-
theoretic characterisations of the four complexity classes used in this
thesis.

Theorem B.1 We have the following characterisations:

1) FPtime = [ε, I, s0, s1, ∗,×; COMP,BRN] (Cobham [12])

2) FPtimeLinspace = [ε, I, s0, s1, ∗; COMP,BRN] (Thompson [59])

3) FPspace = [ε, I, s0, s1, ∗,×; COMP,BRL] (Thompson [59])

4) FLinspace = [ε, I, s0, s1, ∗; COMP,BRL] (Ritchie [50])

For detailed information refer to Clote [11].

111

B. Function Algebras for Complexity Classes

112

Appendix C

A Pairing Function in PTLS

In the theory B introduced in Section 2.1.4, pairing is available as a
built-in function on the universe where we can only prove (λx.p0pxy) :
W 7→ W and (λx.p1pyx) : W 7→ W. However, for some applications we
need pairing and projection functions mapping binary words on binary
words. In other words, we want a pairing function 〈·, ·〉 : W2 7→ W and
corresponding projection functions. Furthermore, the pairing function
should be monotone, i.e. if u ≤ x and v ≤ y, then we request that
〈u, v〉 ≤ 〈x, y〉.
The most natural way to build such a pair as a binary word is by in-
troducing a delimiter symbol and then concatenating the first word, the
delimiter and the second word. Therefore, we first need to define some
auxiliary functions for the coding mechanism. Some of these functions
will be characteristic functions (“Boolean functions”). In this case, true
is represented by 0 and false by 1. Furthermore, we can change the
recursion operator rW from Lemma 2.10 such that all arities are reduced
by 1, i.e. f is a constant binary word, g : W2 7→ W, b : W 7→ W and
rWfgb : W 7→W.

First, we define a function determining whether the length of a binary
word is even:

113

C. A Pairing Function in PTLS

Lemma C.1 There is a closed LW-term teven such that PTLS proves

1) x ∈W→ (tevenx = 0 ∨ tevenx = 1)

2) x ∈W ∧ x 6= ε→ (tevenε = 0 ∧ (tevenx = 0↔ teven(pWx) = 1)

Proof Choose teven := (λx.rWfgbx) where

f := 0 ε is even.

g := (λxz.dW10z0) switch between 0 and 1

b := (λx.lWx) bound: length of x

The totality of g and b is obvious and therefore Lemma 2.10 can be
applied.

1) Immediate by definition of dW.

2) We work informally in PTLS. Let A[x] be the Σb−
W formula

(x = ε ∧ tevenx = 0) ∨
(tevenx = 0 ∧ teven(pWx) = 1) ∨ (tevenx = 1 ∧ teven(pWx) = 0)

With part 1), for any binary word x

A[x]↔ x 6= ε→ (tevenε = 0 ∧ (tevenx = 0↔ teven(pWx) = 1)

A[ε] obviously holds. Now we assume A[x] and aim at showing A[six]
(i = 0, 1). teven(six) = g(six)(tevenx). With part 1) we know that ei-
ther tevenx = 0 or tevenx = 1. In the former case, tevensix = g(six)0 =
dW1000 = 1. In the latter case, g(six)1 = dW1010 = 0 as desired.
We can now apply (Σb−

W -IW) to get (∀x ∈W)A[x]. 2

The next step is the definition of an encoding function mapping a binary
word on a word where 0 is replaced by 00 and 1 by 11. This will enable
us to choose a distinguishable delimiter for the pairing function later.

114

Lemma C.2 There are closed terms tenc and tdec such that

1) tenc : W 7→W ∧ tdec : W 7→W

2) tencε = ε ∧ tdecε = ε

3) (∀x ∈W)(tdectencx = x)

4) x ∈W ∧ y ∈W ∧ x ≤ y → tencx ≤ tency

Proof Informally, the encoding function shall map 0 onto 00(= s0s0ε)
and 1 onto 11(= s1s1ε). Therefore, we define tenc := (λx.rWafbx) where

a := ε

f := (λxz.z ∗ dW(00)(11)(s0pWy)y)

≡ (λxz.dW(s0s0z)(s1s1z)(s0pWy)y)

b := (λx.lWx ∗ lWx)

and set tdec := (λx.rWcgd) where

c := ε

g := (λxz.dW(hxz)z(tevenx)0)

h := (λxz.(dW(z ∗ 0)[dW(z ∗ 1)ε(s1s1pWpWx)x](s0s0pWpWx)x))

d := (λx.lWx)

1) PTLS ` f : W2 7→ W and PTLS ` b : W 7→ W obvious. Furthermore,
it is easy to see that also g : W2 7→ W and d : W 7→ W. The claim
now follows with Lemma 2.10

2) tencε = rWafbε = a = ε. Analogous for tdecε.

3) Take A[x] ≡ tdectencx = x. A[ε] obviously holds with part 2). We
assume A[x] and aim at showing A[six]. We have tencs0x = tencx ∗ 00
and tdec(tencx ∗ 00) = (tdectencx) ∗ 0 = x ∗ 0 = s0x. Analogous for
tdectencs1x and therefore (Σb

W-IW) gives (∀x ∈W)A[x]

115

C. A Pairing Function in PTLS

4) Let A[y] ≡ c⊆(lWx)(lWy) = 1 ∨ c⊆(lW(tencx))(lW(tency)) = 0 which is
equivalent to monotonicity for x, y ∈W. We prove this by induction
on y. If y = ε, either x 6≤ y or x = ε and in both cases we have A[ε].

Assume A[y]. In the induction step, we only consider the case
x ≤ siy. We have lW(tenc(siy)) = lW(sisi(tency)) = s1s1(lW(tency)). As
we assume x ≤ siy ≡ lWx ⊆ lW(siy), we have either lWx = lWsiy or
lWx ⊆ pW(lWsiy) = lWy. In the first case, x 6= ε and thus x = s0pWx

or x = s1pWx. This gives lWtencx = s1s1(lWtenc(pWx)).
If lWx = lWsiy, we get lW(pWx) = lWy from the axioms about lW.
Therefore we can apply the induction hypothesis and get lWtencpWx ⊆
lWtency. Hence obviously s1s1(lWtencpWx) ⊆ s1s1(lWtency) as de-
sired. In the latter case (lWx ⊆ lWy), we can immediately apply
induction hypothesis to get lWtencx ⊆ lWtency. As above, lWtency ⊆
s1s1(lWtency) and with transitivity, we get the desired result.

Thus we have (∀y ∈W)A[y] if x ∈W. 2

After preparing the auxiliary functions, the actual pairing and projection
functions can be constructed:

Theorem C.3 There are closed LW terms tp, tp0, tp1 such that PTLS

proves

1) tp : W2 7→W

2) tp0 : W 7→W ∧ tp1 : W 7→W

3) x ∈W ∧ y ∈W→ (tp0tpxy = x ∧ tp1tpxy = y)

4) u ∈W ∧ v ∈W ∧ x ∈W ∧ y ∈W ∧ u ≤ x ∧ v ≤ y → tpuv ≤ tpxy

Proof Define tp := (λxy.tencx∗10∗tency) and let tpi := (λx.tdectfindix)(i =
0, 1) such that the actual work is delegated to the function finding the

116

part left or right of the delimiter. We define tfind0 = (λy.rWafby) where

a := ε

f := (λxz.dW[dW(pWpWx)z(s1s0pWpWx)x]z(tevenx)0)

b := (λx.lWx)

We choose tfind1 = (λy.rWcgd) such that

c := ε

g := (λxz.dW[dWε[hxz](s1s0pWpWx)x][hxz](tevenx)0)

h := (λxz.dW[s1z][s0z](s1x)x)

d := (λx.lWx)

The properties of the functions are now immediate:

1) Obvious from totality of tenc.

2) Obvious from totality of auxiliary functions.

3) Proof by induction analogous to Lemma C.2.

4) Immediate with monotonicity of tenc. 2

In this thesis, we write 〈x, y〉 for tpxy and 〈x〉i (i = 0, 1) for tpix.

117

C. A Pairing Function in PTLS

118

Bibliography

[1] Michael J. Beeson. Foundations of Constructive Mathematics:
Metamathematical Studies. Springer, Berlin, 1985.

[2] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic
characterization of the poly-time functions. Computational Com-
plexity, 2:97–110, 1992.

[3] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[4] Andrea Cantini. Feasible operations and applicative theories based
on λη. Mathematical Logic Quarterly, 46(3):291–312, 2000.

[5] Andrea Cantini. Polytime, combinatory logic and positive safe in-
duction. Archive for Mathematical Logic, 41(2):169–189, 2002.

[6] Andrea Cantini. Choice and uniformity in weak applicative the-
ories. In M. Baaz, Sy Friedman, and J. Kraj́ıček, editors, Logic
colloquium ’01, volume 20 of Lecture Notes in Logic, pages 108–
138. Association for Symbolic Logic, 2005.

[7] Andrea Cantini. Logical frameworks for truth and abstraction.
North-Holland, Amsterdam, 1996.

[8] Andrea Cantini. Proof-theoretic aspects of self-referential truth.
In Maria Luisa Dalla Chiara et. al., editor, Tenth international
congress of logic, methodology and philosophy of science, florence,
august 1995, volume 1, pages 7–27. Kluwer, September 1997.

119

BIBLIOGRAPHY

[9] Andrea Cantini. Characterizing poly-time with an intuitionistic
theory based on combinatory logic and safe induction. Preprint,
Firenze, 1999. 14 pages.

[10] Andrea Cantini and Pierluigi Minari. Uniform inseparability in
explicit mathematics. Journal of Symbolic Logic, 64(1):313–326,
1999.

[11] Peter Clote. Computation models and function algebras. In E. Grif-
for, editor, Handbook of computability theory, pages 589–681. Else-
vier, 1999.

[12] Alan Cobham. The intrinsic computational difficulty of functions.
In Logic, methodology and philosophy of science II, pages 24–30.
North Holland, Amsterdam, 1965.

[13] Stephen A. Cook and Bruce M. Kapron. Characterizations of
the basic feasible functionals of finite type. In S. R. Buss and
P. J. Scott, editors, Feasible mathematics, pages 71–95. Birkhäuser,
Basel, 1990.

[14] Stephen A. Cook and Alasdair Urquhart. Functional interpreta-
tions of feasibly constructive arithmetic. Annals of Pure and Ap-
plied Logic, 63(2):103–200, 1993.

[15] Solomon Feferman. Notes on Operational Set Theory I. http://

math.stanford.edu/~feferman/papers/OperationalST-I.pdf,
2001.

[16] Solomon Feferman. A language and axioms for explicit mathemat-
ics. In J.N. Crossley, editor, Algebra and logic, volume 450 of Lecture
Notes in Mathematics, pages 87–139. Springer, Berlin, 1975.

[17] Solomon Feferman. Recursion theory and set theory: a marriage
of convenience. In J. E. Fenstad, R. O. Gandy, and G. E. Sacks,
editors, Generalized recursion theory II, Oslo 1977, volume 94 of

120

http://math.stanford.edu/~feferman/papers/OperationalST-I.pdf
http://math.stanford.edu/~feferman/papers/OperationalST-I.pdf

BIBLIOGRAPHY

Stud. Logic Found. Math, pages 55–98. North Holland, Amsterdam,
1978.

[18] Solomon Feferman. Constructive theories of functions and classes.
In M. Boffa, D. van Dalen, and K. McAloon, editors, Logic collo-
quium ’78, pages 159–224. North Holland, Amsterdam, 1979.

[19] Solomon Feferman. Iterated inductive fixed-point theories: appli-
cation to Hancock’s conjecture. In G. Metakides, editor, The patras
symposion, pages 171–196. North Holland, Amsterdam, 1982.

[20] Solomon Feferman. Polymorphic typed lambda-calculi in a type-
free axiomatic framework. In W. Sieg, editor, Logic and compu-
tation, volume 106 of Contemporary Mathematics, pages 101–136.
American Mathematical Society, Providence, Rhode Island, 1990.

[21] Solomon Feferman. Logics for termination and correctness of func-
tional programs. In Y. N. Moschovakis, editor, Logic from computer
science, volume 21 of MSRI Publications, pages 95–127. Springer,
Berlin, 1991.

[22] Solomon Feferman. Logics for termination and correctness of func-
tional programs II: logics of strength PRA. In P. Aczel, H. Sim-
mons, and S. S. Wainer, editors, Proof theory, pages 195–225. Cam-
bridge University Press, Cambridge, 1992.

[23] Solomon Feferman. Definedness. Erkenntnis, 43:295–320, 1995.

[24] Solomon Feferman and Gerhard Jäger. Systems of explicit mathe-
matics with non-constructive µ-operator. Part II. Annals of Pure
and Applied Logic, 79(1):37–52, 1996.

[25] Solomon Feferman and Gerhard Jäger. Systems of explicit math-
ematics with non-constructive µ-operator. Part I. Annals of Pure
and Applied Logic, 65(3):243–263, 1993.

121

BIBLIOGRAPHY

[26] Fernando Ferreira. Polynomial time computable arithmetic and con-
servative extensions. PhD thesis, Pennsylvania State University,
1988.

[27] Fernando Ferreira. Polynomial time computable arithmetic. In Wil-
fried Sieg, editor, Logic and computation, proceedings of a workshop
held at carnegie mellon university, 1987, volume 106 of Contempo-
rary Mathematics, pages 137–156. American Mathematical Society,
Providence, Rhode Island, 1990.

[28] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arith-
metic. Perspectives in Mathematical Logic. Springer, 1993.

[29] Susumu Hayashi and Hiroshi Nakano. Px: a computational logic.
MIT Press, Cambridge, MA, 1988.

[30] J. Roger Hindley and Jonathan P. Seldin. Introduction to combi-
nators and λ-calculus. Cambridge University Press, 1986.

[31] Gerhard Jäger. Induction in the elementary theory of types and
names. In E. Börger, H. Kleine Büning, and M.M. Richter, edi-
tors, Computer Science Logic ’87, volume 329 of Lecture Notes in
Computer Science, pages 118–128. Springer, Berlin, 1988.

[32] Gerhard Jäger. Power types in explicit mathematics? Journal of
Symbolic Logic, 62(4):1142–1146, 1997.

[33] Gerhard Jäger. On Feferman’s operational set theory. Annals of
Pure and Applied Logic, 150(1-3):19 – 39, 2007. ISSN 0168-0072.

[34] Gerhard Jäger. Applikative Theorien und Explizite Mathematik.
Lecture Notes iam-97-001, Institut für Informatik und angewandte
Mathematik, Universität Bern, 1997. http://www.iam.unibe.ch/
publikationen/techreports/1997/iam-97-001.

[35] Gerhard Jäger and Thomas Strahm. Totality in applicative theo-
ries. Annals of Pure and Applied Logic, 74(2):105–120, 1995.

122

http://www.iam.unibe.ch/publikationen/techreports/1997/iam-97-001
http://www.iam.unibe.ch/publikationen/techreports/1997/iam-97-001

BIBLIOGRAPHY

[36] Gerhard Jäger and Thomas Studer. Extending the system T0 of
explicit mathematics: the limit and Mahlo axioms. Annals of Pure
and Applied Logic, 114(1–3):79–101, 2002.

[37] Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applica-
tive theories. In A. Cantini, E. Casari, and P. Minari, editors, Logic
and foundations of mathematics, pages 83–92. Kluwer, 1999.

[38] Gerhard Jäger, Reinhard Kahle, and Thomas Studer. Universes in
explicit mathematics. Annals of Pure and Applied Logic, 109(3):
141–162, 2001.

[39] David Jansen. Ontologische Aspekte Expliziter Mathematik. Mas-
ter’s thesis, Institut für Informatik und angewandte Mathematik,
1997.

[40] Reinhard Kahle. The Applicative Realm. Habilitation Thesis,
Tübingen, 2007. Appeared in Textos de Mathemática 40, Depar-
tamento de Mathemática da Universidade de Coimbra, Portugal,
2007.

[41] Reinhard Kahle. Frege structures for partial applicative theories.
Technical Report IAM-96-013, Institut für Informatik und ange-
wandte Mathemati, Universität Bern, September 1996.

[42] Reinhard Kahle. Applikative Theorien und Frege-Strukturen. PhD
thesis, Institut für Informatik und angewandte Mathematik, Uni-
versität Bern, 1997.

[43] Bruce Kapron and Stephen Cook. A new characterization of type
2 feasibility. SIAM Journal on Computing, 25:117–132, 1996.

[44] Jürg Krähenbühl. Explicit mathematics with positive existential
comprehension and join. Master’s thesis, Institut für Informatik
und angewandte Mathematik, Universität Bern, 2006. Available at
http://www.iam.unibe.ch/til/publications.

123

http://www.iam.unibe.ch/til/publications

BIBLIOGRAPHY

[45] J. Kraj́ıček. Bounded arithmetic, propositional logic, and complex-
ity theory, volume 60 of Encyclopedia of Mathematics and its Ap-
plications. Cambridge University Press, 1995.

[46] Daniel Leivant. A foundational delineation of poly-time. Informa-
tion and Computation, 110:391–420, 1994.

[47] Kurt Melhorn. Polynomial and abstract subrecursive classes. Jour-
nal of Computer and System Science, 12:147–178, 1976.

[48] Geoffrey Ostrin and Stan S. Wainer. Elementary Arithmetic. An-
nals of Pure and Applied Logic, 133:275–292, 2005.

[49] Dieter Probst. Pseudo-Hierarchies in Admissible Set Theory with-
out Foundation and Explicit Mathematics. PhD thesis, Universität
Bern, Institut für Informatik und angewandte Mathematik, 2005.

[50] Robert W. Ritchie. Classes of predictably computable functions.
Transactions of the American Mathematical Society, 106:139–173,
1963.

[51] Daria Spescha and Thomas Strahm. Elementary explicit types and
polynomial time operations. Mathematical Logic Quarterly, 55(3):
245–258, 2009.

[52] Thomas Strahm. Proof-theoretic Contributions to Explicit Mathe-
matics. Habilitationsschrift, University of Bern, 2001.

[53] Thomas Strahm. Theories with self-application and computational
complexity. Information and Computation, 185:263–297, 2003.

[54] Thomas Strahm. A proof-theoretic characterization of the basic
feasible functionals. Theoretical Computer Science, 329:159–176,
2004.

[55] Thomas Strahm. Partial applicative theories and explicit substitu-
tions. Journal of Logic and Computation, 6(1):55–77, 1996.

124

BIBLIOGRAPHY

[56] Thomas Strahm. On the proof theory of applicative theories. PhD
thesis, Institut für Informatik und angewandte Mathematik, Uni-
versität Bern, 1996.

[57] Thomas Strahm. Polynomial time operations in explicit mathemat-
ics. Journal of Symbolic Logic, 62(2):575–594, 1997.

[58] Thomas Studer. Object-oriented programming in explicit mathe-
matics: towards the mathematics of objects. PhD thesis, Univer-
sität Bern, Institut für Informatik und angewandte Mathematik,
2001.

[59] David B. Thompson. Subrecursiveness: machine independet no-
tions of computability in restricted time and storage. Mathematical
Systems Theory, 6:3–15, 1972.

[60] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof The-
ory. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, Cambridge, UK, first edition, 1996.

125

BIBLIOGRAPHY

126

Keyword Index

A
Applicative Theories.8

B
Binary Predecessor 17
Binary Successors 17
Bounded Recursion

Lexicographic 21, 111
on Notation 20, 111

C
Comprehension

Elementary 24
Positive Existential28
Restricted Elementary . . 41

D
Disjoint Union 32, 67

E
Explicit Representation . . 24, 38
Extensionality 24, 38

for Operations 14

F
Finite Axiomatisation 25
Formula Classes

Elementary 23
Σb

T . 40
Σb

W/Σ
b−
W 19

Σ+E . 27
Stratified.23

Function Algebra.110

I
Induction

Formula Induction 13
Set Induction 13
Σb

W Induction 19
Type Induction 39, 58

Initial Subword Relation 17

L
L2

W-structure 50
λ Abstraction 12, 18
Lexicographic Predecessor . . . 17
Lexicographic Successor 17
Logic Of Partial Terms 105

M
Model Construction 50

O
Open Term Model31

127

KEYWORD INDEX

P
Partial Combinatory Algebra11,

16
Positive Choice 56
Provably Total Function.20

S
Strictness.10, 108

T
Tally Length 17
Totality Axiom. 14

U
Uniformity Principle 54

W
Weakly Σb−

W Definable 52

128

Symbol Index

↓ . 105
· (application) 10, 15
∗ . 15
× . 15
ε . 15
⊆ . 16
≤ . 16
.∈ . 24, 69
.= . 70
·? . 70
red==⇒ . 83
βη= . 83
řα . 85
r© . 86
〈·, ·〉 . 113

all . 54

B . 16
B(∗)/B(∗,×) 18
BON . 11
BOW .19
BRL .111
BRN . 111

ce . 23

c⊆ . 15

dom 25, 36, 69
dV . 14
dW . 15

EET . 24
EETf .25

FLinspace 109
FPspace 109
FPtime.109
FPtimeLinspace 109
FVW(A) . 40

id .36, 69
int . 37, 69
inv . 37, 69

j . 69

k . 10, 15

LN . 10
LW .15
L2

N . 23
L2f

N . 25

129

SYMBOL INDEX

L2
W .36
LTW .69
lW .15
LPT . 105
LS . 19
LSET . 58

max . 46
maxarg . 47
max` . 62
M(λη) . 31

< . 23, 36, 69

p . 15
p0, p1 . 15
PET . 38, 58
PET+J . 69
PET+J+∀iG94
PET+J2 .71
PET+Ji .70
PET+JiG . 74
p` . 15
PLSET . 58
PS . 19
PSET .58
PT . 19
PTLS . 19
PT− . 20
pW . 15

r` . 21
rW . 20

s . 10, 15

s0, s1 . 15
SetN . 13
Σb

T (formula class) 40
Σb

W/Σ
b−
W (formula classes) . . . 19

Σ+ET . 27
Σ+E (formula class) 27
s` . 15

(T-IbW) . 45

un . 36, 69

W . 15
W .109
w . 36, 69
w (“worderal”) 20
Wa(x) 16, 38

130

Axiom Index

(AC) .56
(all) . 54

(dom) . 39
(dV) . 14

(Ext) . 14

(id) . 39
(int) .39
(inv) . 39

(J) . 32
(J.1) . 69
(J.2) . 70

(S-IN) . 13
(Σb

W-IW). .19
(Σb

W-I`). .19

(Tot) . 14
(T-IW) 39, 70
(T-IbW) . 45
(T-I`) . 58
(T-Ib`) . 61
(T-IN) . 25

(un) . 39

(UP) . 54
(UP’) . 54

(wa). .39

131

AXIOM INDEX

132

List of Definitions and

Theorems

Theorem 2.1 λ Abstraction . 12

Lemma 2.6 λ Abstraction . 18

Lemma 2.7 Recursion / Fixed point operator 18

Definition 2.8 Formula classes Σb
W and Σb−

W 19

Definition 2.9 Provably total function 20

Lemma 2.10 Bounded recursion on notation 20

Lemma 2.11 Bounded lexicographic recursion 21

Definition 2.14 Stratified and elementary formulas 23

Definition 2.17 Positive Existential Elementary Formulas 27

Definition 2.19 LN and LW structure 28

Definition 2.20 L2
N structure . 30

Definition 3.1 Free Variables FVI(A) and FVT (A) 37

Definition 3.2 Σb
T Formulas . 40

Definition 3.4 Naming Term ρAx.B 41

Theorem 3.5 Restricted elementary comprehension in PET . . . 41

Definition 3.13 L2
W Structure . 50

Theorem 3.14 Model Extension 51

133

List of Definitions and Theorems

Definition 3.18 Base Theories . 58

Definition 4.1 Translation from L2
W to LTW 70

Theorem 4.4 Equivalence of PET+Ji and PET+JiG 77

Lemma 4.7 Admissibility of Weakening 82

Theorem 4.8 Partial Cut Elimination 82

Lemma 4.9 Partial Cut Reduction 82

Definition 4.10 LTW-Structure . 83

Definition 4.11 Realisability: ρ ř t .∈ s 85

Definition 4.12 Realisability: ρ r© A 86

Theorem 4.15 Realisability . 88

Theorem 4.19 Realisability . 96

Definition A.1 Languages for LPT 105

Definition A.2 L Terms . 106

Definition A.3 Atomic Formulas and Formulas of L 106

Definition A.4 Substitution . 106

134

	1 Prologue
	2 Introduction to Explicit Mathematics
	2.1 Applicative Theories
	2.1.1 The Basic Theory of Operations and Numbers BON
	2.1.2 Induction Schemes over BON
	2.1.3 Extensions of BON
	2.1.4 Weak Applicative Theories

	2.2 Types
	2.2.1 Elementary Explicit Types
	2.2.2 Finite Axiomatisation of EET
	2.2.3 Weaker Theories with Types

	2.3 Semantics of Explicit Mathematics
	2.4 Extensions
	2.5 Related Work

	3 Weak Axiom Systems including Types
	3.1 The Theory PET
	3.1.1 Axioms of PET
	3.1.2 Restricted Elementary Ccomprehension

	3.2 Lower Bounds
	3.3 Upper Bounds
	3.4 Extensions for PET
	3.4.1 Uniformity and Universal Quantification
	3.4.2 Axiom of Choice
	3.4.3 Totality and Extensionality

	3.5 Further Complexity Classes
	3.5.1 Polynomial Time and Simultaneously Linear Space
	3.5.2 Polynomial Space and Linear Space

	4 Disjoint Union And Realisability
	4.1 The Theory PETJi
	4.1.1 Axiomatisation of PETJi
	4.1.2 Sequent Calculus Reformulation

	4.2 A Model for PETJi
	4.3 Realisability for Positive Formulas
	4.4 Realising Some Extensions
	4.5 Classical Version

	5 Epilogue
	A Logic of Partial Terms
	B Function Algebras for Complexity Classes
	C A Pairing Function in PTLS
	Bibliography
	Keyword Index
	Symbol Index
	Axiom Index
	List of Definitions and Theorems

