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Abstract

Belief change theory is a big area of research in theoretical computer science.
Among other things, it is related to updates in database theory. A multi-
agent system is a collection of rational agents. These can be computers in a
network, processors in a computer, or processes in an operating system. A
rational agent is the concept of some object (or person) that can do reasoning
based on its beliefs. This thesis deals with the question how to change some
rational agents’ beliefs. It is divided into two parts.

The first part of this thesis is about belief change in classical propositional
logic. That is, facts are represented by propositional formulas, and we only
deal with the beliefs of one agent. A belief state of the agent is represented
by a set of models, which are usually called possible worlds. There are many
types of belief change functions, but we concentrate on four of them. Revision
is at the centre of our considerations, and we also investigate the related belief
change types: expansion, contraction, and update. We give a survey on
traditional belief revision and update theory and we translate specifications
and some results to the notion of model sets, our way of representing belief
states. In addition, we give an answer to the question how to deal with belief
change functions in the context of consistent beliefs. Furthermore, we suggest
a way of translating a given revision function to an update function and vice
versa. Finally, we introduce new revision and update functions, which also
give rise to new contraction functions via our translations.

The second part of this thesis deals with belief expansion in several systems
of multi-agent modal logic, also called epistemic or doxastic logic. The beliefs
of the agents contain both propositional facts and agents’ beliefs. In some
systems, the beliefs have to be consistent. There are also some systems
where the beliefs have to be true; in this case we talk about knowledge
instead of belief. The beliefs can be changed by an announcement of new
information encoded by an arbitrary formula. The announcement can come
from the environment or can be made by an agent. There is the concept
of group announcements, which can be made to arbitrary groups of agents,
even to a single agent. Hereby, we distinguish two possible behaviours of
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the agents: trustful and sceptical. Trustful agents learn every announced
formula, whereas sceptical agents reject the information if it contradicts their
beliefs. A special case are public announcements, where the new information
is always given to the whole community of agents. We give a survey of the
well-known truthful public announcements, which are partial, and we provide
new syntactical proofs for many known results. We then introduce a new
semantics that allows for announcing formulas that are not necessarily true.
These announcements are called total public announcements and we use this
approach to incorporate public announcements into the logic of knowledge
and belief.
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Part I

Propositional belief change





Introduction to Part I

The first part of this thesis is about three types of belief change functions
in classical propositional logic: revision, contraction, and update. The con-
tribution of Alchourrón, Gärdenfors, and Makinson [2] can be seen as the
foundation of belief revision theory. Revision is the process of consistently
adding new information to some representation of a given belief state. There
is no problem if the new information is consistent with our beliefs. But if the
new information contradicts our beliefs, then we have to retract some of them.
There is no unique answer to the question which beliefs should be retracted.
It has often been argued that we should retract as few beliefs as possible,
which is known as the requirement of minimal change, cf. Gärdenfors [27].
We discuss the properties of revision functions and work towards a definition
of a new revision function. In some cases we are going to depart from the
idea of minimal change and we will give reasons for that. The alternative we
are proposing is called minimax change, described by the minimax revision
function.

The revision process is defined to take place in a static world. That is, the
facts have not changed, we have just got new information. So if the new in-
formation contradicts our beliefs, then we have to retract some of the original
beliefs because they are false. Contraction is another type of belief change
function that takes place in a static world. It is the process of removing
some beliefs from a given belief state representation. This can happen if we
learn that it has been wrong to add some information. Contraction is closely
related to revision, cf. [2, 27], and the problems with revision translate to the
case of contraction. That is, it is not generally clear how to perform a con-
traction. Similar to revision, the requirement of minimal change demands
that we should not retract too many beliefs by performing a contraction.
We will investigate the properties of contraction functions and explore the
relationships between revision and contraction. These relationships and the
new revision function will lead to the definition of the minimax contraction
function.

Update is another type of belief change function that is closely related to
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revision. It is also defined to be the process of consistently adding new in-
formation to a given belief state representation. The only difference from
revision is that the update process takes place in a dynamic world. That is,
the beliefs may need to be changed because of the change of some facts. Kat-
suno and Mendelzon [47] have argued that update functions should therefore
satisfy properties different from those that revision functions are supposed to
have. But they agree on the requirement of minimal change. We will analyse
the properties of update functions and provide new relationships between
revision and update. Moreover, we will define new update functions and in-
vestigate how they translate to revision according to the new relationships.
Finally, we will define the minimax update function, which corresponds to
our new revision function.

Outline

In Chapter 1 we will give the formal definitions and notions that we are going
to use in Part I. We will start with the syntax and semantics of classical
propositional logic and state some results for later use. Moreover, we will
define the two operators Mod and Th, which will be very important for the
results in Chapter 2 and Chapter 3. The operator Mod maps a set T of
formulas to a set that contains all models satisfying all formulas in T . The
operator Th maps a set S of models to the set that contains all formulas
satisfied in all models from S.

The main task of Chapter 1 is to give three different definitions of proposi-
tional databases. A propositional database is the mathematical formalisation
of a belief state. That is, it contains collected information represented by
propositional formulas. First, a database can be a set S of models, which we
will call a model set. The formulas stored in S are given by the set Th(S).
Model sets are our preferred kind of database, and we will argue for our
choice. Second, from traditional belief revision theory, a belief state can be
represented by a deductively closed set T of formulas, which is called a belief
set, cf. [27]. This set itself is the collection of all facts that we believe to
be true. Third, from traditional update theory, a database can be a formula
ϕ, which is called a belief base, cf. [39]. The formulas stored in this kind of
database are all the formulas that are logically entailed by ϕ.

We will show how we can store new information in a database. This operation
is called expansion, and we will define the expansion function for each kind
of belief state representation. Furthermore, we will show how to translate
a database of a given type to a database of another type so that they both
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contain the same information. The operators Mod and Th will be used for
the definition of these translations.

We will then present the famous AGM postulates for revision and contraction
from [2] in Chapter 2. They have been formulated in order to capture the
notion of minimal change. It has turned out that these two sets of postulates
do not lead to the definition of a unique revision and contraction function,
cf. [2]. Furthermore, there are examples of revision and contraction functions
that satisfy all of the respective postulates, yet it is commonly agreed that
these functions are not acceptable for practical use, cf. [2, 27]. The AGM
postulates have been formulated in the context of belief sets. We will give
the corresponding postulates in the context of model sets and show that they
are equivalent to the original ones. For this purpose, the operators Mod and
Th from Chapter 1 will again be very useful.

The KM postulates for update from [47] are the corresponding formalisa-
tion of minimal change for update functions. They do not uniquely define
an update function either, e.g. two different functions satisfying all of the
postulates can be found in [39]. In addition, the change performed by an
update function is in general considered to be too minimal, cf. [39]. The KM
postulates have been stated in the context of belief bases and for a finite set
of propositions. We will translate them to the notion of model sets in such
a way that we can also consider infinite sets of propositions. We will show
that our reformulation of the update postulates is equivalent to the original
one.

Although not all of the original postulates are acceptable for practical use,
we believe that most of the postulates make sense and should be required.
The main goal of our translation to model sets is to explore the relation-
ships between revision and update in Chapter 3. Another goal is to provide
alternative postulates for revision, contraction, and update in Chapter 4.

It is the aim of Chapter 3 to provide translations from belief change functions
of a given type to functions of the two other types. First, we will define
the concept of consistent databases. Consistency is the requirement that a
model set must never be empty. We will explain why it is not possible to
get consistency of model sets by using integrity constraints, cf. [38, 46, 48,
58]. We will then suggest a consistency preserving contraction function that
always results in a non empty model set. Moreover, we will modify postulates
for revision, contraction, and update in the context of consistent model sets.
We will provide translations that transform a belief change function on model
sets to a belief change function on consistent model sets and vice versa.
These translations have the following property: if a function satisfies all of
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the postulates, then its translation also does.

It has been mentioned by Levi [51] that revising with a formula α is equivalent
to first contracting with ¬α and then expanding with α. Harper [35] has
proposed that contracting with a formula α should be the same as taking the
original beliefs that remain after the revision with ¬α. It has been proved
that these translations from revision to contraction and vice versa preserve
the AGM postulates, cf. [27]. We will present the same result for the revision
and contraction postulates in the context of model sets, as well as a similar
result for the modified revision and contraction postulates in the context of
consistent model sets.

Our main contribution in Chapter 3 is the definition of translations from
revision to update and vice versa. We will prove that if a function satisfies
all revision postulates, then its translation satisfies all update postulates. On
the other hand, if a function satisfies all update postulates, then its transla-
tion satisfies all but one revision postulates. This is not a big disadvantage
since, as we will argue in Chapter 4, this revision postulate may be omitted.
Furthermore, we will prove similar results for the translations of revision and
update functions on consistent model sets. At the end of Chapter 3 we will
argue for some common behaviour for revision and update functions. We
will argue that in some cases revision and update functions should perform
the same belief change.

We will work towards a new revision function in Chapter 4. For this pur-
pose, we will first define new update functions. We will also get new revision
functions by using the translation from update to revision from Chapter 3.
The new update functions we are going to define do not satisfy all update
postulates. Instead, we will minimise the amount of change by minimising
the symmetric difference between the original and the updated model set.
One of the new update functions, the cautious standard update, performs
minimal change in many cases, but a rather substantial change in some few
cases. This function is a good example for our new notion of minimax change.
In Appendix A we will compare this new update function with the possible
models approach, an update function that satisfies all of the original KM pos-
tulates. It turns out that on average, the cautious standard update function
actually performs less change.

Finally, we will commit ourselves to new sets of postulates for revision, con-
traction, and update functions. For revision and contraction, we will just
drop two problematic postulates and add a new one. For update, we will
reject three postulates, add a new one, and modify a postulate that is too
strong. These new sets of postulates are compatible with our new idea of
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minimax change. We will then adapt the results from Chapter 3 to the new
postulates, that is we will define new translations from belief change func-
tions of a given type to functions of another type. In addition, we will give
examples of revision, contraction, and update functions that satisfy the new
sets of postulates and conform to minimax change.





Chapter 1

Basic definitions

This is a preparatory chapter in order to introduce the notions that we are
going to use in the first part of this thesis. In Section 1.1 we will define the
syntax and semantics of classical propositional logic. In addition, we will
provide some useful abbreviations as well as some first properties. We will
then define belief states and present three different belief state representa-
tions in Section 1.2. We will show how these definitions are related and give
arguments for our choice. By defining the belief expansion function for each
notion of belief state, we will illustrate how beliefs can be changed, however
they are represented. Expansion is the simplest known belief change oper-
ation and there is a common agreement among researchers how expansion
has to be implemented. One can therefore say that the definition of the
expansion function is uniquely determined and beyond controversy.

1.1 Syntax and semantics

In this thesis, we will always deal with a countable set P 6= ∅ of proposi-
tions whose existence we presuppose. Propositions stand for statements that
cannot be divided into smaller units, so we also call them atoms .

Definition 1.1.1. The language L0 of classical propositional logic is the set
of formulas that is defined by the following grammar (p ∈ P),

α ::= p | ¬α | (α ∧ α).

The propositional constants ⊥ (falsum) and ⊤ (verum) can be defined by
the use of some fixed p0 ∈ P, that is by

⊥ := (p0 ∧ ¬p0),

⊤ := ¬⊥.
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Disjunction, implication, and equivalence are defined as usual,

(α ∨ β) := ¬(¬α ∧ ¬β),

(α → β) := (¬α ∨ β),

(α ↔ β) := ((α→ β) ∧ (β → α)).

If no confusion arises, we will omit brackets with the convention that the
connectives ∧ and ∨ bind more strongly than → and ↔. As usual, a literal
is an atom or a negated atom, and a disjunction of literals is called a clause.
Given a finite totally ordered set Ak = {α1, . . . , αk}, the conjunction and
disjunction over Ak are inductively defined as follows,

∧

A0 := ⊤,
∨

A0 := ⊥,
∧

Ak+1 :=
(

∧

Ak

)

∧ αk+1,
∨

Ak+1 :=
(

∨

Ak

)

∨ αk+1.

If we deal with an arbitrary finite set of formulas, the conjunction and dis-
junction over this set can always be made determined. We only have to
define a total order on P ∪ {¬,∧, (, )}. The lexicographic order will then
induce a total order on the alphabet (P ∪ {¬,∧, (, )})∗, hence on the set L0

of all formulas. We refer to the book by Baader and Nipkow [3] for a proof.

Definition 1.1.2. We use the notation |α| for the length of a formula α ∈ L0,
which is defined by induction on the structure of α as follows,

|p| := 1,

|¬β| := |β| + 1,

|β ∧ γ| := |β| + |γ| + 1.

For a formula α ∈ L0 we will write “by induction on α” as an abbreviation
for “by induction on the length of α”. The notion of subformula is such an
inductive definition.

Definition 1.1.3. The set sub(α) of subformulas of a formula α ∈ L0 is
defined by induction on α as follows,

sub(p) := {p},

sub(¬β) := {¬β} ∪ sub(β),

sub(β ∧ γ) := {β ∧ γ} ∪ sub(β) ∪ sub(γ).

Substitution is another purely syntactical operation on formulas. It is the
process of replacing in a formula all occurrences of another formula by a
third one.
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Definition 1.1.4. Given α, ϕ, ψ ∈ L0, the substitution of ϕ for ψ in α,
denoted by α[ϕ/ψ], is defined by induction on α as follows,

p[ϕ/ψ] :=

{

ϕ, if ψ = p,

p otherwise,

(¬β)[ϕ/ψ] :=

{

ϕ if ψ = ¬β,

¬(β[ϕ/ψ]) otherwise,

(β ∧ γ)[ϕ/ψ] :=

{

ϕ if ψ = β ∧ γ,

(β[ϕ/ψ]) ∧ (γ[ϕ/ψ]) otherwise.

A model is just a set w ⊆ P of propositions. The idea is that the elements of
w are considered to be the true propositions, the other atoms are all supposed
to be false.

Definition 1.1.5. The notion of a formula α ∈ L0 being satisfied in a model
w ⊆ P, denoted by w � α, is defined by induction on α as follows,

w � p :⇔ p ∈ w,

w � ¬β :⇔ w 2 β,

w � β ∧ γ :⇔ w � β and w � γ.

If w � α, we also say that α holds in w, or that w is a model of α. A formula
α is called valid , denoted by � α, if it holds in all models. Dually, we call a
formula satisfiable, if there exists a model satisfying it. Two formulas α and
β are called equivalent , if the formula α ↔ β is valid, that is if they have
exactly the same models.

The following lemma states that classical propositional logic has the substi-
tution property .

Lemma 1.1.6. For all α, β, ϕ ∈ L0 and all p ∈ P we have

� α↔ β ⇒ � α[ϕ/p] ↔ β[ϕ/p].

Proof. Let w ⊆ P be an arbitrary model. Then we define the model w′ by

w′ :=

{

w ∪ {p} if w � ϕ,

w \ {p} otherwise.

It is now easy to prove that for all γ ∈ L0 we have w � γ[ϕ/p] if and only if
w′ � γ by induction on gamma. Therefore, we get

w � α[ϕ/p] ⇔ w′ � α ⇔ w′ � β ⇔ w � β[ϕ/p].

Since w has been arbitrarily given, we are done.



12 Chapter 1. Basic definitions

Now, we are going to define the set of atoms occurring in a formula, as well
as the set of atoms that really influence the validity of a formula. The latter
has been introduced by Herzig and Rifi [39], for instance.

Definition 1.1.7. We write atm(α) for the set of propositions occurring in
a formula α ∈ L0. It is defined by induction on α as follows,

atm(p) := {p},

atm(¬β) := atm(β),

atm(β ∧ γ) := atm(β) ∪ atm(γ).

A proposition p ∈ P is called relevant for a formula α ∈ L0, if for every
β ∈ L0 that is equivalent to α we have p ∈ atm(β). That is,

p is relevant for α :⇔ p ∈
⋂

{atm(β) : � β ↔ α}.

The set of propositions that are relevant for α is denoted by atm♯(α). A
proposition p ∈ atm(α) that is not relevant for α is called redundant in α.

As an immediate consequence of Definition 1.1.7, we get that the redundant
propositions of α are given by the set atm(α) \ atm♯(α). For instance, p and
q are both relevant for p∨ q, whereas p is redundant in both formulas p→ p
and q ∧ (p ∨ q). The following lemma has been mentioned by Herzig and
Rifi [38] in a slightly different way.

Lemma 1.1.8. For all α ∈ L0 we have

atm♯(α) = {p ∈ P : 2 α[⊤/p] ↔ α[⊥/p]}.

Proof. We will show that for all p ∈ P we have p /∈ atm♯(α) if and only if
� α[⊤/p] ↔ α[⊥/p]. For the direction from left to right, assume p /∈ atm♯(α).
Then for some β ∈ L0 we have � β ↔ α and p /∈ atm(β). We obviously get
� β[⊤/p] ↔ β[⊥/p]. Therefore, we immediately get � α[⊤/p] ↔ α[⊥/p] by
Lemma 1.1.6. For the converse direction, assume � α[⊤/p] ↔ α[⊥/p] and let
w ⊆ P be arbitrarily given. First, if w � p, then we have w � α ↔ α[⊤/p].
On the other hand, if w � ¬p, then we have w � α ↔ α[⊥/p], and we get
w � α ↔ α[⊤/p] by assumption. Since w has been arbitrarily given, we get
� α↔ α[⊤/p]. Of course, we have p /∈ atm(α[⊤/p]), and we get p /∈ atm♯(α)
by definition.

A theory is a set T ⊆ L0 of formulas. We write w � T to express that for all
α ∈ T we have w � α. A theory T is called consistent , if there is a model w
such that w � T . If S ⊆ Pow(P) is a set of models, we write S � α to say
that for every w ∈ S we have w � α.
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Definition 1.1.9. The operators Th and Mod are defined by

Th: Pow(Pow(P)) → Pow(L0), Th(S) := {α ∈ L0 : S � α},

Mod: Pow(L0) → Pow(Pow(P)), Mod(T ) := {w ⊆ P : w � T}.

Clearly, a theory T is consistent, if and only if Mod(T ) 6= ∅. Accordingly, the
non empty sets of models are called consistent , as well. Moreover, a formula
α ∈ L0 is called consistent with a set S of models, if S 2 ¬α.

We will use the abbreviation ‖α‖ for the expression Mod({α}) in the follow-
ing. In addition, we will make use of the facts that for all α, β ∈ L0 and all
S ⊆ Pow(P) we have

‖¬α‖ = Pow(P) \ ‖α‖, � α → β ⇔ ‖α‖ ⊆ ‖β‖,

‖α ∧ β‖ = ‖α‖ ∩ ‖β‖, S � α ⇔ S ⊆ ‖α‖.

As an immediate consequence of these facts, we get the following lemma.

Lemma 1.1.10. For all S ⊆ Pow(P) and all α, β ∈ L0 we have

S � α→ β ⇔ S ∩ ‖α‖ � β.

We will now prove some properties of the operators Mod and Th, which will
be important in what follows.

Lemma 1.1.11. For all I ⊆ Pow(Pow(P)) and all J ⊆ Pow(L0) we have

⋂

S ∈ I

Th(S) = Th
(

⋃

I
)

,
⋂

T ∈ J

Mod(T ) = Mod
(

⋃

J
)

,

⋃

S ∈ I

Th(S) ⊆ Th
(

⋂

I
)

,
⋃

T ∈ J

Mod(T ) ⊆ Mod
(

⋂

J
)

.

Proof. Given a formula α ∈ L0, we directly get

α ∈
⋂

S ∈ I

Th(S) ⇔ for all S ∈ I, S ⊆ ‖α‖

⇔
⋃

I ⊆ ‖α‖ ⇔ α ∈ Th
(

⋃

I
)

,

α ∈
⋃

S ∈ I

Th(S) ⇔ for some S ∈ I, S ⊆ ‖α‖

⇒
⋂

I ⊆ ‖α‖ ⇔ α ∈ Th
(

⋂

I
)

.

The assertions concerning the operator Mod can similarly be proved.
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In order to see that the two inclusions of Lemma 1.1.11 can be strict, we give
the following counterexamples.

Example 1.1.12. Let P := {p, q}. First, we define S := ‖p‖, S ′ := ‖q‖,
and α := p ∧ q. Then we immediately get α ∈ Th(S ∩ S ′) = Th(‖p ∧ q‖),
but α /∈ Th(S) ∪ Th(S ′) = Th(‖p‖) ∪ Th(‖q‖). For the second example, we
define T := {¬p, p ∧ q}, T ′ := {¬q, p ∧ q}, and w := {p, q}. Then we have
w ∈ Mod(T ∩ T ′) = ‖p ∧ q‖, but w /∈ Mod(T ) ∪ Mod(T ′) = ∅.

The following lemma states that the operators Mod and Th form a Galois
connection1. We use the same definition of Galois connections as Birkhoff
does in [14].

Lemma 1.1.13. For all S ⊆ Pow(P) and all T ⊆ L0 we have

S ⊆ Mod(T ) ⇔ T ⊆ Th(S).

Proof. For the direction from left to right, assume S ⊆ Mod(T ). Then we
have

α ∈ T ⇒ Mod(T ) � α

⇒ S � α by assumption

⇔ α ∈ Th(S).

The direction from right to left is similar.

The next lemma lists a few properties that every two operators forming a
Galois connection satisfy. This result can also be found in [14].

Lemma 1.1.14. For all S, S ′ ⊆ Pow(P) and all T, T ′ ⊆ L0 we have

S ⊆ S ′ ⇒ Th(S) ⊇ Th(S ′), T ⊆ T ′ ⇒ Mod(T ) ⊇ Mod(T ′),

S ⊆ Mod(Th(S)), T ⊆ Th(Mod(T )),

Th(S) = Th(Mod(Th(S))), Mod(T ) = Mod(Th(Mod(T ))).

Because we will often use the operators (Mod ◦Th) and (Th ◦Mod), we will
now introduce convenient abbreviations for these operators.

Definition 1.1.15. For all S ⊆ Pow(P) and all T ⊆ L0 we define

S := Mod(Th(S)), T := Th(Mod(T )).

1Like Galois theory, Galois connections are named after the French mathematician
Évariste Galois (1811-1832).
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For instance, some of the properties of Lemma 1.1.14 can be abbreviated as
follows,

S ⊆ S, T ⊆ T ,

Th(S) = Th(S) = Th(S), Mod(T ) = Mod(T ) = Mod(T ).

Of course, the abbreviations from Definition 1.1.15 have been chosen because
the operators (Mod ◦Th) and (Th ◦Mod) are both closure operators, as is
defined in the book by Davey and Priestley [16]. This actuality is directly
implied by the fact that Mod and Th form a Galois connection, see [14, 16]
for a proof. Therefore, we have the following additional properties.

Lemma 1.1.16. For all S, S ′ ⊆ Pow(P) and all T, T ′ ⊆ L0 we have

S ⊆ S ′ ⇒ S ⊆ S ′, T ⊆ T ′ ⇒ T ⊆ T ′,

S = S, T = T ,

S ⊆ S ′ ⇔ S ⊆ S ′, T ⊆ T ′ ⇔ T ⊆ T ′.

The operator (Mod ◦Th) even is a topological closure operator , as we state
in the following lemma. A proof has been given by Parikh [56].

Lemma 1.1.17. For all S, S ′ ⊆ Pow(P) we have

S = ∅ ⇒ S = ∅, S ∪ S ′ = S ∪ S ′.

It is not hard to find a theory T that is a proper subset of T . For instance,
for every finite T ⊆ L0, we have that T is infinite, hence a proper superset
of T . On the other hand, it is not obvious that there are sets S of models
such that S 6= S. We give such a set of models in the following example.

Example 1.1.18. Let the set P = {pi : i ∈ N} be infinite and define
S := ‖p0‖\{{p0}}. We will now show that S = ‖p0‖. Since we have S ⊆ ‖p0‖
and ‖p0‖ = ‖p0‖ by Lemma 1.1.14, we get S ⊆ ‖p0‖ by Lemma 1.1.16. For
the other inclusion, we only have to show that {p0} ∈ S, because we have
S = ‖p0‖ \ {{p0}} ⊆ S. By Lemma 1.1.13, it is enough to show that Th(S)
is a subset of Th({{p0}}). For this purpose, let α ∈ L0 be given and assume
α /∈ Th({{p0}}). Then we get {{p0}} 2 α, that is {p0} 2 α. Now, if we
define w := {p0} ∪ {pi : p /∈ atm(α)}, then we get w 6= {p0} and w ∈ ‖p0‖,
so we obviously get w ∈ S and w 2 α. Therefore, we have S 2 α, which is
equivalent to α /∈ Th(S), and we are done.

If a set of models contains only one model, then it is closed, as we state in
the following lemma.
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Lemma 1.1.19. For all w ⊆ P we have

{w} = {w}.

Proof. By Lemma 1.1.14, it will suffice to show {w} ⊆ {w}. So let v ∈ {w},
that is v � Th({w}). Since we have w∪ {¬p : p ∈ P \w} ⊆ Th({w}), we get
v � w ∪ {¬p : p ∈ P \ w}. But this implies v = w, and we are done.

Given a theory T and a formula α, we will sometimes write T � α to express
that α is a logical consequence of T . This means that for all models w we
have that w � T implies w � α. That is, we have T � α if and only if
Mod(T ) � α. Therefore, we can say that a theory T is consistent if and only
if T 2 ⊥, which is equivalent to T 6= L0.

Definition 1.1.20. Given T ⊆ L0, the set Cn(T ) of all logical consequences
of T is defined by

Cn(T ) := {α ∈ L0 : T � α}.

Clearly, we have Cn(T ) = {α ∈ L0 : Mod(T ) � α}. A theory T ⊆ L0 is
called closed (under consequences), if Cn(T ) = T . It is immediate that Cn
is the same operator as (Th ◦Mod), which we state in the following lemma.

Lemma 1.1.21. For all T ⊆ L0 we have

Cn(T ) = T .

Proof. We have T = Th(Mod(T )) = {α ∈ L0 : Mod(T ) � α} = Cn(T ).

Due to Lemma 1.1.21, a theory T ⊆ L0 is closed if and only if T = T .
Accordingly, a set S ⊆ Pow(P) is called closed , if S = S. If the set P is
finite and S ⊆ Pow(P) is a set of models, then we can define a formula whose
models are exactly the elements of S.

Definition 1.1.22. If P is finite, then for all S ⊆ Pow(P) we define

fml(S) :=
∨

w ∈ S

∧

(w ∪ {¬p : p ∈ P \ w}).

Although we need a total order on L0 to make the formula fml(S) uniquely
defined, it does not matter which order we take. We can prove that the
models of the formula fml(S) are the same for all S ⊆ Pow(P).

Lemma 1.1.23. If P is finite, then for all S ⊆ Pow(P) we have

‖fml(S)‖ = S.
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Proof. For all w ⊆ P we have

w ∈ ‖fml(S)‖ ⇔ w � fml(S)

⇔ for some v ∈ S, w �
∧

(v ∪ {¬p : p ∈ P \ v})

⇔ for some v ∈ S, w = v,

which is equivalent to saying that w is an element of S.

As a consequence of Lemma 1.1.14 and Lemma 1.1.23, we immediately get
the following result.

Corollary 1.1.24. If P is finite, then for all S, S ′ ⊆ Pow(P) we have

S = S, S ⊆ S ′ ⇔ Th(S) ⊇ Th(S ′).

The following lemma states two more properties of the operator fml, which
will be useful in what follows.

Lemma 1.1.25. If P is finite, then for all α ∈ L0 and all T ⊆ L0 we have

� fml(‖α‖) ↔ α, {fml(Mod(T ))} = T .

Proof. Both assertions are a direct consequence of Lemma 1.1.23.

We are now going to define the notion of a complete formula. The idea is
that a complete formula is either unsatisfiable or has exactly one model.

Definition 1.1.26. A formula α ∈ L0 is called complete, if for all β ∈ L0

we have � α→ β or � α→ ¬β.

Observe that if P is infinite, then the only complete formulas are the unsat-
isfiable ones. It is not hard to show that a formula α is complete if and only
if for all p ∈ P we have that at least one of the formulas α → p or α → ¬p
is valid.

Definition 1.1.27. Given two sets (or models) w and v, the symmetric
difference of w and v is defined by

w ∆ v := (w \ v) ∪ (v \ w).

The symmetric difference of two sets w and v is also called the distance
between w and v. It is easy to see that for all sets w and v we have

w ∆ v = v ∆ w = (w ∪ v) \ (w ∩ v).



18 Chapter 1. Basic definitions

1.2 Propositional databases

A propositional database is an object that has to satisfy at least the following
two properties. First, it must be possible to store new information in the
database. Such information is usually given by a propositional formula. Sec-
ond, there must be a way to find out whether or not a given formula holds in
the database. This means that we can check if a formula α is in the closure
T of the set T of all formulas that have been stored in the database. It is
not necessary that we can find out which formulas have been stored. But
when storing a formula, the database has to be modified in such a way that
this formula will hold afterwards. Throughout this thesis, we will follow the
open world assumption, that is to say it can happen for some formula α, that
neither α nor ¬α holds in a given database.

A propositional database can be seen as the representation of a belief state.
Since our beliefs can change with time, a belief state is a momentary descrip-
tion of our beliefs. A formula α has to hold in a given database, if and only
if we believe that the facts represented by α are true. We are now ready to
define three different types of belief state representations. All of them have
been widely discussed in literature, see Gärdenfors [27, 28] for an overview.

Definition 1.2.1. We have the following kinds of propositional databases.

1. A model set is a set of models. We say that a formula α holds in the
model set S, if S � α. A model set S is called consistent , if S 6= ∅.
M := Pow(Pow(P)) denotes the set of all model sets.

2. A belief set is a closed theory. A formula α holds in a belief set T , if
α ∈ T . A belief set T is called consistent , if T 6= L0. The set of all
belief sets is denoted by B := {T ⊆ L0 : T = T}.

3. A belief base is a formula. A formula α holds in a belief base ϕ, if the
implication ϕ→ α is valid. A belief base ϕ is called consistent , if it is
satisfiable. Clearly, L0 is the set of all belief bases.

In the context of belief change, belief states have been defined to be model
sets by Harper [35] and Grove [31], for example. The original motivation
for model sets is the possible worlds approach often used in philosophy, see
Hintikka [40]. We focus on the notion of model sets, because we will define
belief change functions in modal logic in Part II. There, the beliefs of the
agents are represented by sets of possible worlds. A possible world is a
model augmented with some additional information. Belief change functions
defined on models sets can be transferred to functions on sets of possible
worlds. There are two technical advantages of the notion on model sets.
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First, if the set P is finite, then every model set is also finite. Second, model
sets can be arbitrarily given, they need not be closed sets of models. By
Lemma 1.1.14, we immediately get that for all S ∈ M and all α ∈ L0 we
have

S � α ⇔ S � α.

Belief sets have been used in traditional belief revision theory, in particular in
one of the first contributions by Alchourrón, Gärdenfors, and Makinson [2].
They have been considered as “the simplest way of modelling a belief state”,
see Gärdenfors [28]. But note that even if the number of propositions is
finite, every non empty belief set is an infinite set.

Belief bases are used in update theory, which is still a very relevant subject
in computer science. A belief base can be seen as the conjunction over a
finite set of formulas consisting of the collected facts we believe to be true.
That is where the name belief base comes from. Hence one can distinguish
between the collected information and the derivable one. Depending on the
application, this property can be an advantage.

We are now going to show how the different notions of databases are related.
Every database of a certain type can be translated to a belief state repre-
sentation of another type, such that exactly the same formulas hold in both
databases. Given a model set S, the corresponding belief set is given by
Th(S). On the other hand, the model set Mod(T ) corresponds to any belief
set T . If ϕ is a belief base, then we have that ‖ϕ‖ and {ϕ} are the respec-
tive model set and belief set. If the set P is finite, the belief base fml(S)
corresponds to a given model set S and a given belief set T translates to the
belief base fml(Mod(T )). The next lemma shows that these translations lead
to equivalent belief state representations.

Lemma 1.2.2. Let S ∈ M, T ∈ B, and ϕ ∈ L0 be arbitrary belief state
representations. Then for all α ∈ L0 we have

S � α ⇔ α ∈ Th(S), � ϕ→ α ⇔ ‖ϕ‖ � α,

α ∈ T ⇔ Mod(T ) � α, � ϕ→ α ⇔ α ∈ {ϕ}.

Moreover, if the set P is finite, we have

S � α ⇔ � fml(S) → α,

α ∈ T ⇔ � fml(Mod(T )) → α.

Proof. We will prove three assertions. First, we have S � α ⇔ α ∈ Th(S)
directly by Definition 1.1.9. Second, we have α ∈ T implies Mod(T ) � α by
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Definition 1.1.9, as well. For the converse direction, we have that Mod(T ) � α
implies α ∈ T = T , because T ∈ B. Third, we have � ϕ → α if and only if
‖ϕ‖ ⊆ ‖α‖, which is equivalent to ‖ϕ‖ � α. The other three assertions have
similar proofs.

In Definition 1.2.1 we have only defined when a formula is supposed to hold
in a database. We have not yet given the functions that store new informa-
tion in a belief state representation. This kind of belief change function is
called expansion. Expansion is the process of adding new information to a
given belief state without checking for consistency, thus it is rather simple
to implement. For the notion of belief sets, the Gärdenfors postulates for
expansion from [27] define the behaviour of expansion functions.

Definition 1.2.3. A function +: B × L0 → Pow(L0) is an expansion func-
tion, if for all T, T ′ ∈ B and all α ∈ L0 we have

(E1B) T + α = T + α,

(E2B) α ∈ T + α,

(E3B) T ⊆ T + α,

(E4B) α ∈ T ⇒ T + α = T ,

(E5B) T ⊆ T ′ ⇒ T + α ⊆ T ′ + α,

(E6B) For all T ∈ B and all α ∈ L0, T + α is the smallest belief set that
satisfies (E1B)–(E5B).

For a discussion on these postulates, we refer to the book by Gärdenfors [27].
It has turned out that the Gärdenfors postulates for expansion determine a
unique expansion function. A proof of the following theorem can be found
in [27].

Theorem 1.2.4. A function +: B×L0 → Pow(L0) is an expansion function,
if and only if for all T ∈ B and all α ∈ L0 we have

T + α = T ∪ {α}.

From now on, we will exclusively use the symbol + to denote the uniquely
defined expansion function from Theorem 1.2.4.

Before we are going to define the expansion function for the notion of model
sets, we will mention an important property that belief change functions on
model sets should satisfy. Given a belief change function ⊛ : M×L0 → M,
we require that for all S ∈ M and all α ∈ L0 we have

Th(S ⊛ α) = Th(S ⊛ α). (1.1)
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This ensures that given two model sets S, S ′ with Th(S) = Th(S ′), we get
Th(S ⊛ α) = Th(S ′ ⊛ α). Throughout this thesis, we will require prop-
erty (1.1) for all belief change functions. If we deal with a given belief change
function ⋆ : L0 × L0 → L0, then we want that � (ϕ ⋆ α) ↔ (ψ ⋆ α) whenever
� ϕ ↔ ψ for the same reason. Finally, if ∗ : B × L0 → Pow(L0) is our belief
change function, then we require another important property, because differ-
ent belief sets always contain different formulas. But we have to ensure that
T ∗ α = T ∗ α, which is the same as to specify T ∗ α ∈ B.

Since there exists a unique expansion function on belief sets, we do not
translate the expansion postulates to the notion of model sets. We just give
the appropriate definition and show that it corresponds to the function +.

Definition 1.2.5. The expansion function ⊕ : M×L0 → M is defined by

S ⊕ α := S ∩ ‖α‖.

First of all, we are going to show that the expansion function ⊕ indeed
satisfies property (1.1).

Lemma 1.2.6. For all S ∈ M and all α ∈ L0 we have

Th(S ⊕ α) = Th(S ⊕ α).

Proof. For all β ∈ L0 we have β ∈ Th(S ⊕ α) if and only if α → β ∈ Th(S)
by Lemma 1.1.10. Since Th(S) = Th(S), we get the desired result by again
applying Lemma 1.1.10.

Belief bases can be expanded by the conjunction ∧ : (ϕ, α) 7→ ϕ ∧ α. It is
not hard to see that the functions ⊕ and ∧ are the adequate reformulations
of + in the context of model sets and belief bases respectively.

Lemma 1.2.7. Let S ∈ M, T ∈ B, and ϕ ∈ L0 be arbitrary belief state
representations. Then for all α, β ∈ L0 we have

S ⊕ α � β ⇔ β ∈ Th(S) + α,

β ∈ T + α ⇔ Mod(T ) ⊕ α � β,

� ϕ ∧ α→ β ⇔ ‖ϕ‖ ⊕ α � β,

� ϕ ∧ α→ β ⇔ β ∈ {ϕ} + α.

Furthermore, if the set P is finite, we have

S ⊕ α � β ⇔ � fml(S) ∧ α → β,

β ∈ T + α ⇔ � fml(Mod(T )) ∧ α → β.
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Proof. We show how to prove the first three assertions. First, we have

Th(S ⊕ α) = Th(S ⊕ α) by Lemma 1.2.6

= Th(S ∩ ‖α‖)

= Th(S) ∪ {α} by Lemma 1.1.11

= Th(S) + α.

For the second assertion, we have

T + α = T ∪ {α}

= Th(Mod(T ) ∩ ‖α‖) by Lemma 1.1.11

= Th(Mod(T ) ⊕ α).

The third assertion can be proved as follows. We have � ϕ ∧ α → β if and
only if ‖ϕ ∧ α‖ ⊆ ‖β‖, which is equivalent to ‖ϕ‖ ⊕ α � β. The other three
equivalences can similarly be proved.

We have now seen that the same belief state can be represented in three
different ways. Accordingly, we have also defined three expansion functions,
one for each type of belief state representation. These expansion functions
have exactly the same impact on each kind of database. The expansion
function is just adding new information without retracting any beliefs. There
is no problem as long as the incoming information is consistent with our belief
state. Otherwise, the expanded database is inconsistent and our collected
information is lost.

Lemma 1.2.8. For all S ∈ M and all α ∈ L0 we have

S � ¬α ⇔ S ⊕ α = ∅.

Proof. We have S � ¬α ⇔ S ⊆ ‖¬α‖ ⇔ S ⊕ α = S ∩ ‖α‖ = ∅.

In the following chapter, we will introduce more sophisticated belief change
functions in order to avoid such unsatisfactory situations.
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Belief change functions

It is the aim of this chapter to introduce the concepts of traditional belief re-
vision and update theory. The types of belief change functions of our interest
are expansion, revision, contraction, and update. We have already defined
expansion in Section 1.2. Revision stands in the middle of our considerations,
whereas contraction and update are closely related to it. There are several
other kinds of belief change: merging, consolidation, deletion/erasure, and
so on. But they are not directly related to revision and are therefore beyond
the scope of this thesis. Section 2.1, Section 2.2, and Section 2.3 deal with
the principles of revision, contraction, and update functions respectively. We
will show how these principles translate into the notion of model sets, our
preferred representation of belief states.

2.1 Revision

Revision is the process of adding new information to a belief state while
attending to consistency. Moreover, the revision process is defined to take
place in a static world . This means that the original belief state and the new
information both refer to the same situation. An inconsistency between the
beliefs and the incoming information is explained by the possibility of having
false beliefs. Thus the incoming information is always regarded as the most
credible one and a revision function

⊗ : M×L0 → M

modifies a model set S in a way that a new information α holds in the revised
model set S ⊗ α.

It has been argued by many authors that it is not possible to define a revision
function that can be used for all situations, see Alchourrón, Gärdenfors, and
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Makinson [2], Gärdenfors [28], as well as Friedman and Halpern [26]. The
following example should illustrate this statement.

Example 2.1.1. Let P = {p, q} and S = {{p}}, so we believe that p is true
and q is false. Assume we learn that q holds. Then we have the following
possibilities to revise our beliefs.

1. If p means “lions are mammals” and q means “lions are carnivores”,
we might want to get S⊗ q = {{p, q}}, because we consider p and q to
be independent.

2. If p means “lions are herbivores” and q means “lions eat zebra”, we
might want to get S⊗q = {{q}}, because we believe that q implies ¬p.

3. If p means “lions eat plants” and q means “lions eat zebra”, we might
want to get S ⊗ q = {{q}, {p, q}}, because we are not sure about p
being true anymore.

There are several proposals in literature how to deal with the above men-
tioned problem, all of them adding some properties to the logic. We confine
ourselves to mentioning two different approaches.

Epistemic entrenchment is a relation ≤ on the formulas and leads to a degree
of how much a formula is epistemically entrenched. The meaning of α ≤ β
is that we have to retract α as soon as we give up β, see Gärdenfors [28].

Another similar approach is the definition of—possibly infinitely many—
degrees of belief . A preference relation on the models leads to the different
degrees of belief, see van Ditmarsch [20]. A special feature of this solution
is, that a revision operation also changes the degrees of belief, including
the preference relation, whereas an epistemic entrenchment is defined to be
constant.

However, the use of an epistemic entrenchment relation or a preference rela-
tion both lead to a unique revision function, but there exist infinitely many
entrenchment and preference relations. That is, the problem is only shifted
to another level, but is not really solved.

As a consequence of all these difficulties, researchers have started to discuss
several properties that have to be satisfied by revision functions. One point
that almost everybody agrees with is the term of minimal change. That is,
revising a belief state should change it as little as possible. Since it is not clear
how the amount of change can be measured, researchers have been stating
several properties a revision function has to satisfy. The pioneering work by
Alchourrón, Gärdenfors, and Makinson [2] provides the famous AGM postu-
lates for revision, which are supposed to describe rational revision functions.
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The following version of the postulates by Gärdenfors [27] has been most
commonly used in contributions to belief revision.

Definition 2.1.2. A function ∔ : B × L0 → Pow(L0) is an AGM revision
(on belief sets), if for all T ∈ B and all α, β ∈ L0 we have

(R1B) T ∔ α = T ∔ α,

(R2B) α ∈ T ∔ α,

(R3B) T ∔ α ⊆ T + α,

(R4B) ¬α /∈ T ⇒ T + α ⊆ T ∔ α,

(R5B) T ∔ α = L0 ⇔ � ¬α,

(R6B) � α ↔ β ⇒ T ∔ α = T ∔ β,

(R7B) T ∔ (α ∧ β) ⊆ (T ∔ α) + β,

(R8B) ¬β /∈ T ∔ α ⇒ (T ∔ α) + β ⊆ T ∔ (α ∧ β).

Observe that we could drop (R1B) by specifying ∔ : B × L0 → B. But we
state the postulates in the original way for historical reasons. We want to
mention that the other postulates are formulated in such a way that they
only make sense if (R1B) holds.

(R2B) requires that the new information has to hold in the revised belief set.
The postulates (R3B) and (R4B) are stating that revision should have the
same effect as expansion, whenever the new information is consistent with
the original beliefs. (R5B) is directly implied by the general definition of the
revision process. It makes sure that the revised belief set is consistent as long
as the new information is satisfiable. (R6B) specifies that the revision process
has to be syntax independent . The postulates (R1B)–(R6B) are also called the
basic AGM postulates for revision. The postulates (R7B) and (R8B) describe
the behaviour of iterated revision, see Katsuno and Mendelzon [46, 48] or
Halpern [33] for a detailed discussion.

Remark 2.1.3. The AGM postulates have also been reformulated in order
to fit the notion of belief bases, see Katsuno and Mendelzon [46, 48]. In this
context, a revision function maps from L0 × L0 to L0.

It has been mentioned by Gärdenfors [28] that the AGM postulates for revi-
sion do not uniquely determine a revision function. He believes “it would be
a mistake to expect that only logical properties are sufficient to characterise
the revision process”. However, in the context of classical propositional logic,
we think that it should be possible to define one or two revision functions
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that one can use for most applications. In Chapter 4 we will suggest two
potential candidates and explore their properties.

We will now give an example that illustrates that not every revision function
satisfying (R1B)–(R8B) behaves as we would expect. The presented function
has been introduced by Alchourrón, Gärdenfors, and Makinson [2].

Example 2.1.4. The full meet revision function ∔fm : B×L0 → Pow(L0) is
defined by

T ∔fm α :=

{

T + α if ¬α /∈ T,

{α} otherwise.

The function ∔fm is an AGM revision on belief sets, a proof can easily be
derived from the results in [2]. This function has often been mentioned in
literature, cf. Nebel [53, 54]. Alchourrón, Gärdenfors, and Makinson argue
in [2] that in the case ¬α ∈ T , the belief set {α} “is far too small in general
to represent the result of an intuitive process of revision of T so as to bring
in α”. The case ¬α /∈ T is beyond controversy.

We are now going to give the appropriate translation of the AGM postulates
for revision to the notion of model sets. Since model sets need not be closed
sets of models, we do not require a revised model set to be closed either. So
our first postulate is property (1.1) instead. The other seven postulates are
an exact reformulation of (R2B)–(R8B).

Definition 2.1.5. A function ⊗ : M × L0 → M is an AGM revision (on
model sets), if for all S ∈ M and all α, β ∈ L0 we have

(R1M) Th(S ⊗ α) = Th(S ⊗ α),

(R2M) S ⊗ α � α,

(R3M) Th(S ⊗ α) ⊆ Th(S ⊕ α),

(R4M) S 2 ¬α ⇒ Th(S ⊕ α) ⊆ Th(S ⊗ α),

(R5M) S ⊗ α = ∅ ⇔ � ¬α,

(R6M) � α ↔ β ⇒ Th(S ⊗ α) = Th(S ⊗ β),

(R7M) Th(S ⊗ (α ∧ β)) ⊆ Th((S ⊗ α) ⊕ β),

(R8M) S ⊗ α 2 ¬β ⇒ Th((S ⊗ α) ⊕ β) ⊆ Th(S ⊗ (α ∧ β)).

According to the definition of the full meet revision function ∔fm, we define
a similar revision function on model sets, which satisfies all of the translated
postulates for revision.
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Example 2.1.6. The function ⊗fm : M×L0 → M defined by

S ⊗fm α :=

{

S ⊕ α if S 2 ¬α,

‖α‖ otherwise,

is an AGM revision on model sets. We show that ⊗fm satisfies (R7M). Let
S ∈ M and α, β ∈ L0 be given. If S 2 ¬(α ∧ β), then we also have S 2 ¬α
and thus, we get Th(S⊗fm(α∧β)) = Th(S∩‖α∧β‖) = Th((S∩‖α‖)∩‖β‖) =
Th((S ⊗fm α) ⊕ β). If S � ¬(α ∧ β), we distinguish the following two cases.
If S � ¬α, then we get Th(S⊗fm (α∧β)) = Th(‖α∧β‖) = Th(‖α‖∩‖β‖) =
Th((S ⊗fm α) ⊕ β). If S 2 ¬α, then we have

Th(S ⊗fm (α ∧ β)) = Th(‖α ∧ β‖) = Th(‖α‖ ∩ ‖β‖)

⊆ Th((S ∩ ‖α‖) ∩ ‖β‖) = Th((S ⊗fm α) ⊕ β).

It is immediate how to translate a function defined on belief sets into a
function operating on models sets and vice versa. We use the translations
from belief sets to model sets and backwards.

Definition 2.1.7. Given a function ∔ : B × L0 → Pow(L0), the function

⊗∔ : M×L0 → M, (S, α) 7→ Mod(Th(S) ∔ α),

is the corresponding function on models sets. On the other hand, given a
function ⊗ : M×L0 → M, the function

∔⊗ : B × L0 → Pow(L0), (T, α) 7→ Th(Mod(T ) ⊗ α),

is the corresponding function on belief sets.

Definition 2.1.7 makes sure that the functions ⊗∔ and ∔⊗ satisfy (R1M) and
(R1B) respectively. Moreover, we can prove that the postulates (R2M)–(R8M)
are equivalent to (R2B)–(R8B) with respect to the above defined translations.

Lemma 2.1.8. We have the following correspondences between the two sets
of revision postulates.

1. Let ∔ : B × L0 → Pow(L0) be given. Then the function ⊗∔ satisfies
(R1M). If ∔ satisfes (R1B), then we have that ∔ satisfies (R2B)–(R8B)
if and only if ⊗∔ satisfies (R2M)–(R8M).

2. Let ⊗ : M×L0 → M be given. Then the function ∔⊗ satisfies (R1B).
If ⊗ satisfes (R1M), then we have that ⊗ satisfies (R2M)–(R8M) if
and only if ∔⊗ satisfies (R2B)–(R8B).
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Proof. It is obvious that the functions ⊗∔ and ∔⊗ both satisfy the first
postulate. We will show the equivalence of one postulate for both assertions.

1. We prove that (R4B) and (R4M) are equivalent. For the direction from
left to right, let S ∈ M and α ∈ L0 be given. From S 2 ¬α we can
directly conclude ¬α /∈ Th(S). Then we have

Th(S ⊕ α) = Th(S) + α by Lemma 1.2.7

⊆ Th(S) ∔ α by (R4B)

= Th(S) ∔ α by (R1B)

= Th(S ⊗∔ α).

For the direction from right to left, let T ∈ B and α ∈ L0 be given and
assume ¬α /∈ T . Since T = T , we immediately get that Mod(T ) 2 ¬α
and we have

T + α = Th(Mod(T ) ⊕ α) by Lemma 1.2.7

⊆ Th(Mod(T ) ⊗∔ α) by (R4M)

= T ∔ α

= T ∔ α

= T ∔ α by (R1B).

2. We give the proof for the equivalence of the postulates (R3M) and
(R3B). For the direction from left to right, let T ∈ B and α ∈ L0 be
given. Then we have

T ∔⊗ α = Th(Mod(T ) ⊗ α)

⊆ Th(Mod(T ) ⊕ α) by (R3M)

= T + α by Lemma 1.2.7.

For the other direction, let S ∈ M and α ∈ L0 be given. Then we have

Th(S ⊗ α) = Th(S ⊗ α) by (R1M)

= Th(S) ∔⊗ α

⊆ Th(S) + α by (R3B)

= Th(S ⊕ α) by Lemma 1.2.7.

The equivalence of the other postulates can be proved the same way.

The proof of Lemma 2.1.8 shows that the postulates (R1B) and (R1M) are
important. They are also a necessary condition for the following result.
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Lemma 2.1.9. Composing ⊗∔ and ∔⊗ from Definition 2.1.7 results in
equivalent belief state representations.

1. If a function ⊗ : M ×L0 → M satisfies (R1M), then for all S ∈ M
and all α ∈ L0 we have Th(S ⊗(∔⊗) α) = Th(S ⊗ α).

2. If a function ∔ : B×L0 → Pow(L0) satisfies (R1B), then for all T ∈ B
and all α ∈ L0 we have T ∔(⊗∔ ) α = T ∔ α.

Proof. For the first assertion, we have Th(S⊗(∔⊗)α) = Th(Mod(Th(S⊗α)))
by definition, which is the same as Th(S ⊗ α) by Lemma 1.1.14 and (R1M).
For the second assertion, we have T∔(⊗∔ )α = Th(Mod(T∔α)) by definition,

which equals T ∔ α by (R1B) and the fact that T = T .

In the next section we will introduce contraction, which is closely related to
revision, and we will establish similar results for contraction functions.

2.2 Contraction

Contraction is the process of removing some information from a belief state
without adding any new beliefs. Like revision, contraction is an action that
takes place in a static world . The request to remove some belief from a given
belief state can occur, if we learn that it has been wrong to add it. The new
awareness that one has to remove some belief is always regarded as the most
reliable information. Thus, a contraction function

⊖ : M×L0 → M

modifies a set of possible worlds S in a way that the retracted belief α does
not hold in the contracted model set S⊖α, except in case α is valid. Clearly,
this task is different from (consistently) adding ¬α. Nevertheless, contraction
is closely related to revision, as we will see in Section 3.2.

We will now give an example to illustrate why it is difficult to agree on how a
contraction function should behave. Observe that we will have to add models
to a given model set S, if we want to reduce the set of beliefs holding in S.

Example 2.2.1. Let P = {p, q} and S = {{p}, {p, q}} be given and assume
we learn that it was wrong to add p, that is we do not have any reason to
believe wether p is true or not. Then the contracted belief state can be one
of the following model sets.

1. If p means “lions eat plants” and q means “lions are herbivores”, we
might want to get S ⊖ p = {{p}, {p, q}, ∅}, because we believe that q
implies p.
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2. If p means “lions eat plants” and q means “lions eat meat”, we might
want to get S ⊖ p = {{p}, {p, q}, {q}}, because we believe that p ∨ q is
true.

3. If p means “lions eat plants” and q means “lions are mammals”, we
might want to get S ⊖ p = {{p}, {p, q}, ∅, {q}}, because we consider p
and q to be independent.

One could argue that there are several other model sets that have to be
considered as a possible contracted belief state. But if we took away one of
the models in S, then we would automatically add some new beliefs1. This
is something we cannot accept because of the definition of the contraction
process.

Similar to revision, there have been a lot of discussions whether or not it is
possible to define one contraction function with the most rational behaviour.
Again, the only agreement has turned out to be the notion of minimal change.
The eight AGM postulates for contraction were presented by Alchourrón,
Gärdenfors, and Makinson [2] for the first time, we present the version by
Gärdenfors from [27].

Definition 2.2.2. A function .− : B×L0 → Pow(L0) is an AGM contraction
(on belief sets), if for all T ∈ B and all α, β ∈ L0 we have

(C1B) T .− α = T .− α,

(C2B) T .− α ⊆ T ,

(C3B) α /∈ T ⇒ T .− α = T ,

(C4B) 2 α ⇒ α /∈ T .− α,

(C5B) α ∈ T ⇒ T ⊆ (T .− α) + α,

(C6B) � α↔ β ⇒ T .− α = T .− β,

(C7B) (T .− α) ∩ (T .− β) ⊆ T .− (α ∧ β),

(C8B) α /∈ T .− (α ∧ β) ⇒ T .− (α ∧ β) ⊆ T .− α.

Again, all of the postulates are formulated in such a way that they only
make sense if (C1B) holds. Similar to revision, the postulates (C1B)–(C6B)
are called the basic AGM postulates for contraction.

(C2B) makes sure that no new beliefs can occur in a contracted belief base.
(C3B) states that if the formula we are supposed to contract with is not part
of our beliefs, then we must not retract any belief. (C4B) is an immediate

1If P was infinite, then this would not necessarily be the case.
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consequence of the definition of the contraction process. It requires that the
formula we contract with does not hold in the contracted belief set, whenever
the formula is not valid. (C5B) states that we must be able to recover the old
beliefs by expanding the contracted belief state with the same formula. (C6B)
is the specification of syntax independence. Finally, the postulates (C7B) and
(C8B) are the technical counterparts to the revision postulates (R7B) and
(R8B). For a detailed discussion on the postulates for both revision and
contraction, we refer to Chapter 3 of the book by Gärdenfors [27].

In the following example we will present an AGM contraction.

Example 2.2.3. The full meet contraction function defined by

T .−fm α :=

{

T ∩ {¬α} if α ∈ T,

T otherwise,

is an AGM contraction on belief sets. A proof and some further discussion
can be found in [2]. It has been argued in [2] that in the case α ∈ T , the set
T ∩ {¬α} “is in general far too small”.

The following postulates are the adequate translation of the AGM postulates
for contraction to the notion of model sets. Again, we have replaced the first
postulate by property (1.1).

Definition 2.2.4. A function ⊖ : M×L0 → M is an AGM contraction (on
model sets), if for all S ∈ M and all α, β ∈ L0 we have

(C1M) Th(S ⊖ α) = Th(S ⊖ α),

(C2M) Th(S ⊖ α) ⊆ Th(S),

(C3M) S 2 α ⇒ Th(S ⊖ α) = Th(S),

(C4M) 2 α ⇒ S ⊖ α 2 α,

(C5M) S � α ⇒ Th(S) ⊆ Th((S ⊖ α) ⊕ α),

(C6M) � α↔ β ⇒ Th(S ⊖ α) = Th(S ⊖ β),

(C7M) Th(S ⊖ α) ∩ Th(S ⊖ β) ⊆ Th(S ⊖ (α ∧ β)),

(C8M) S ⊖ (α ∧ β) 2 α ⇒ Th(S ⊖ (α ∧ β)) ⊆ Th(S ⊖ α).

Inspired by the full meet contraction function, we will now give an example
of an AGM contraction on model sets.

Example 2.2.5. The function ⊖fm : M×L0 → M defined by

S ⊖fm α :=

{

S ∪ ‖¬α‖ if S � α,

S otherwise,
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is an AGM contraction on model sets. We show how to prove that ⊖fm

satisfies (C5M). Let S ∈ M and α ∈ L0 be given and assume that S � α.
Then we have

Th(S) ⊆ Th(S ∩ ‖α‖) = Th((S ∪ ‖¬α‖) ∩ ‖α‖) = Th((S ⊖fm α) ⊕ α).

Of course, we can also use the translations from Definition 2.1.7 for contrac-
tion functions. Given a function .− : B × L0 → Pow(L0), the function

⊖ .− : M×L0 → M, (S, α) 7→ Mod(Th(S) .− α),

is the adequate translation that operates on models sets. If the function
⊖ : M×L0 → M is given, then the function

.−⊖ : B × L0 → Pow(L0), (T, α) 7→ Th(Mod(T ) ⊖ α),

is the corresponding function on belief sets. Again, the functions ⊖ .− and .−⊖

obviously satisfy (C1M) and (C1B) respectively. In addition, the reformula-
tion of the AGM postulates for contraction ensures that (C2M)–(C8M) are
equivalent to (C2B)–(C8B) with respect to the above defined translations.

Lemma 2.2.6. We have the following correspondences between the two sets
of contraction postulates.

1. Let .− : B × L0 → Pow(L0) be given. Then the function ⊖ .− satisfies
(C1M). If .− satisfies (C1B), then we have that .− satisfies (C2B)–(C8B)
if and only if ⊖ .− satisfies (C2M)–(C8M).

2. Let ⊖ : M×L0 → M be given. Then the function .−⊖ satisfies (C1B).
If ⊖ satisfies (C1M), then we have that ⊖ satisfies (C2M)–(C8M) if
and only if .−⊖ satisfies (C2B)–(C8B).

Proof. It is easy to see that the functions ⊖ .− and .−⊖ both satisfy the first
postulate. For both assertions, we show the equivalence of one postulate.

1. We prove that (C4B) and (C4M) are equivalent. For the direction from
left to right, let S ∈ M and α ∈ L0 be given, and assume that α is not
valid. Then, by (C1B) and (C4B), we have that α /∈ Th(S) .− α, and we
immediately get

S ⊖ .− α = Mod(Th(S) .− α) * ‖α‖.

For the other direction, let T ∈ B and α ∈ L0 be given and assume
that α is not valid. By (C4M) we have that Mod(T ) ⊖ .− α * ‖α‖, and
we can directly conclude

α /∈ Th(Mod(T ) ⊖ .− α) = T .− α,

and therefore, α /∈ T .− α.
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2. We give the proof for the equivalence of the postulates (C8M) and
(C8B). For the direction from left to right, let T ∈ B and α ∈ L0 be
given and assume α /∈ T .−⊖ (α ∧ β) = Th(Mod(T ) ⊖ (α ∧ β)). Then
we immediately get Mod(T ) ⊖ (α ∧ β) 2 α, thus we have

T .−⊖ (α ∧ β) = Th(Mod(T ) ⊖ (α ∧ β))

⊆ Th(Mod(T ) ⊖ α) by (C8M)

= T .−⊖ α.

For the direction from right to left, let S ∈ M and α ∈ L0 be given
and assume S ⊖ (α∧ β) 2 α. Then we get α /∈ Th(S ⊖ (α∧ β)), which
is equivalent to α /∈ Th(S) .−⊖ (α ∧ β) by (C1M), and we get

Th(S ⊖ (α ∧ β)) = Th(S ⊖ (α ∧ β)) by (C1M)

= Th(S) .−⊖ (α ∧ β)

⊆ Th(S) .−⊖ α by (C8B)

= Th(S ⊖ α)

= Th(S ⊖ α) by (C1M).

The equivalence of the other postulates can similarly be shown.

As we can see in the proof of Lemma 2.2.6, the respective first contraction
postulate is important for both kinds of database. The postulates (C1B) and
(C1M) are also necessary for the following result.

Lemma 2.2.7. Composing ⊖ .− and .−⊖ from Definition 2.1.7 results in
equivalent belief state representations.

1. If a function ⊖ : M×L0 → M satisfies (C1M), then for all S ∈ M
and all α ∈ L0 we have Th(S ⊖( .−⊖) α) = Th(S ⊖ α).

2. If a function .− : B×L0 → Pow(L0) satisfies (C1B), then for all T ∈ B
and all α ∈ L0 we have T .−(⊖ .−) α = T .− α.

Proof. The proof is identical to the proof of Lemma 2.1.9 for the following
reasons. First, ⊖ .− and .−⊖ are the same functions as ⊗∔ and ∔⊗ respectively.
Second, the postulates (C1M) and (C1B) are identical to (R1M) and (R1B)
respectively.

In the next section we will introduce update, which is also related to revision,
and we will establish similar results concerning update functions.
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2.3 Update

Update is the process of incorporating new information into a knowledge
base with regard to consistency. Unlike revision, update has to be performed
because of some real change in a dynamic world . The general assumption is
that our beliefs are true. Thus, only a change in the real world can bring
us to change the database. An inconsistency between the beliefs and the
incoming information is explained by the change that has taken place. The
incoming information is always regarded as the most current one and an
update function

⊙ : M×L0 → M

modifies a model set S in a such way that a new information α holds in the
updated model set S ⊙ α.

Similar to revision, it is in general not clear how to update a database, see
Herzig and Rifi [39] for a discussion on many different update functions. The
following example shows that it can depend on the situation how the updated
knowledge base has to be defined.

Example 2.3.1. Let P = {p, q} and S = {∅} be given, that is we believe
that p and q are both false. Assume we learn that p ∨ q is true. Then the
updated belief state can be one of the following model sets.

1. If p means “the road is wet” and q means “it is raining”, we might want
to get S ⊙ (p ∨ q) = {{p}, {p, q}}, because we believe that q implies p.

2. If p means “Switzerland has won the championship” and q means “All
Swiss people are sad”, we might want to get S ⊙ (p ∨ q) = {{p}, {q}},
because we believe that p and q cannot both be true at the same time.

3. If p means “Switzerland has won the championship” and q means “it is
raining”, we might want to get S⊙ (p∨q) = {{p}, {q}, {p, q}}, because
we consider p and q to be independent.

Herzig has illustrated in [37] how we can formalise interrelations between
formulas using dependence functions . A dependence function maps a propo-
sition p to a set dep(p) of propositions, which means that the propositions
in dep(p) are dependent from p. For a formula α, dep(α) is defined to be the
union of dep(p) over all p ∈ atm(α). Dependence functions are an additional
tool to improve the behaviour of update functions. However, they do not
prevent us from carefully defining reasonable update functions.

The following postulates have been presented by Katsuno and Mendelzon
[47]. They can be seen as an answer to the AGM postulates for revision.
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Katsuno and Mendelzon argue that the update process is different from re-
vision and that it therefore needs a different set of postulates. They have
presented eight postulates, where the first five KM postulates for update are
the counterpart of the first seven AGM postulates for revision. We have to
mention here that we have split the fourth KM postulate from the original
version into (U0L0) and (U4L0), because (U0L0) is the exact reformulation of
property (1.1).

Definition 2.3.2. A function ⋄ : L0 × L0 → L0 is a KM update (on belief
bases), if for all (belief bases) ϕ, ψ ∈ L0 and all (formulas) α, β ∈ L0 we have

(U0L0) � ϕ↔ ψ ⇒ � (ϕ ⋄ α) ↔ (ψ ⋄ α),

(U1L0) � (ϕ ⋄ α) → α,

(U2L0) � ϕ→ α ⇒ � (ϕ ⋄ α) ↔ ϕ,

(U3L0) 2 ¬ϕ and 2 ¬α ⇒ 2 ¬(ϕ ⋄ α),

(U4L0) � α ↔ β ⇒ � (ϕ ⋄ α) ↔ (ϕ ⋄ β),

(U5L0) � (ϕ ⋄ α) ∧ β → (ϕ ⋄ (α ∧ β)),

(U6L0) � (ϕ ⋄ α) → β and � (ϕ ⋄ β) → α ⇒ � (ϕ ⋄ α) ↔ (ϕ ⋄ β),

(U7L0) ϕ is complete ⇒ � (ϕ ⋄ α) ∧ (ϕ ⋄ β) → (ϕ ⋄ (α ∨ β)),

(U8L0) � ((ϕ ∨ ψ) ⋄ α) ↔ (ϕ ⋄ α) ∨ (ψ ⋄ α).

The postulates (U0L0) and (U4L0) are the requirement for syntax indepen-
dence. (U0L0) states that equivalent belief bases must be updated the same
way, whereas (U4L0) states that two updates with equivalent formulas must
result in the same belief base. (U1L0) requires that the new information
always holds in the updated belief base. (U2L0) states that if the new infor-
mation holds in the original belief base, then the update must not change
it. (U3L0) makes sure that the updated belief base is consistent whenever
the original belief base is consistent and the new information is satisfiable.
(U5L0) is the translation of (R7M) to the notion of belief base. (U6L0) states
that if two formulas are equivalent under a given belief base, then they have
the same effect on this belief base. (U7L0) is stated for complete belief bases,
exclusively. Remember that a complete belief base is a formula that is either
unsatisfiable or has exactly one model. While the former case is not that
interesting, the latter can only happen if the set P is finite. With model sets
we do not need this restriction. A complete model set is just a singleton or
the empty set. Since we learn from (U8L0) that every model of the belief
base can be updated separately, we interpret (U7L0) in the following way.
It defines how the update of every single model has to be performed with
disjunctive input.
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We are now giving an example for a KM update. The following function has
been used to present the KM postulates in [47], where we can also find a
proof that it satisfies (U0L0)–(U8L0).

Example 2.3.3. Let P be finite. Then the function ⋄pma : L0 × L0 → L0

called possible models approach is defined as follows,

‖ϕ ⋄pma α‖ :=
⋃

w ∈ ‖ϕ‖

{v ∈ ‖α‖ : for all u ∈ ‖α‖, w ∆ u 6⊂ w ∆ v}.

As usual, the resulting belief base is defined by its models, cf. [39]. The func-
tion ⋄pma has been introduced by Winslett [64] and follows the idea that only
the “closest models” (with respect to the symmetric distance) are possible
models for the updated belief base. Herzig and Rifi [39] have shown that
the function ⋄pma is in general too restrictive in the following sense. Given a
belief base ϕ ∈ L0 and propositions p, q ∈ P satisfying � (ϕ⋄pma p) → ¬q and
� (ϕ ⋄pma q) → ¬p, we get that the formula (p ∧ ¬q) ∨ (¬p ∧ q) always holds
in the updated belief base ϕ ⋄pma (p∨ q). This behaviour is known under the
term “the problem of disjunctive input” and should be avoided, see [39] for
a detailed discussion.

The following update postulates are an exact translation of the KM postu-
lates to the notion of model sets. Observe that postulate (U0L0) translates
to property (1.1).

Definition 2.3.4. A function ⊙ : M×L0 → M is a KM update (on model
sets), if for all S, S ′ ∈ M and all α, β ∈ L0, we have

(U0M) Th(S ⊙ α) = Th(S ⊙ α),

(U1M) S ⊙ α � α,

(U2M) S � α ⇒ Th(S ⊙ α) = Th(S),

(U3M) S 6= ∅ and 2 ¬α ⇒ S ⊙ α 6= ∅,

(U4M) � α↔ β ⇒ Th(S ⊙ α) = Th(S ⊙ β),

(U5M) Th(S ⊙ (α ∧ β)) ⊆ Th((S ⊙ α) ⊕ β),

(U6M) S ⊙ α � β and S ⊙ β � α ⇒ Th(S ⊙ α) = Th(S ⊙ β),

(U7M) Card(S) ≤ 1 ⇒ Th(S ⊙ (α ∨ β)) ⊆ Th((S ⊙ α) ∩ (S ⊙ β)),

(U8M) Th((S ∪ S ′) ⊙ α) = Th((S ⊙ α) ∪ (S ′ ⊙ α)).

The original KM postulates for update have been stated for finite sets P of
propositions. The postulates (U0M)–(U8M) are formulated in such a way
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that they also make sense if P is infinite. One could ask why we have not
formulated the eighth update postulate as follows,

Th
((

⋃

I
)

⊙ α
)

= Th
(

⋃

S ∈ I

(S ⊙ α)
)

for every set I of model sets. However, this version would have been much
stronger and there would not have been any advantage for our purposes.

Inspired by the possible models approach ⋄pma on belief sets, we are now
going to define a KM update on model sets. Since the definition of ⋄pma

works with models instead of formulas, it is not very hard to define the
corresponding function on model sets. Nevertheless, there is a technical
detail that is necessary to make (U0M) being satisfied. The reason is that
the set P does not need to be finite.

Example 2.3.5. The function ⊙pma : M×L0 → M defined by

S ⊙pma α :=
⋃

w ∈ S

{v ∈ ‖α‖ : for all u ∈ ‖α‖, w ∆ u 6⊂ w ∆ v}

is a KM update. By taking the union over all w ∈ S, we make sure that ⊙pma

satisfies (U0M). Observe that Lemma 1.1.17 directly implies that (U8M) is
satisfied. The other postulates can be proved the same way as the respective
postulates for the function ⋄pma.

Due to the existence of the function fml, we are able to translate functions
on belief bases to functions on model sets and vice versa. Observe that both
translations make use of fml, hence P must be finite.

Definition 2.3.6. Let P be finite. Given a function ⋄ : L0 ×L0 → L0, then
the function

⊙⋄ : M×L0 → M, (S, α) 7→ ‖fml(S) ⋄ α‖,

is the respective function defined on model sets. On the other hand, given a
function ⊙ : M×L0 → M, the function

⋄⊙ : L0 × L0 → L0, (ϕ, α) 7→ fml(‖ϕ‖ ⊙ α),

is the corresponding function operating on belief bases.

If P is finite, we can apply Lemma 1.1.23 and Corollary 1.1.24, and we get
that for all S ∈ M and all α ∈ L0 we have

S ⊙(⋄pma) α =
⋃

w ∈ S

{v ∈ ‖α‖ : for all u ∈ ‖α‖, w ∆ u 6⊂ w ∆ v} = S ⊙pma α.
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It is easy to see that the function ⊙⋄ satisfies (U0M) because the set P is
finite, and the function ⋄⊙ satisfies (U0L0) by definition. Furthermore, we
can prove that the postulates (U1M)–(U8M) are an exact translation of the
postulates (U1L0)–(U8L0).

Lemma 2.3.7. Let P be finite. Then we have the following correspondences
between the two sets of update postulates.

1. Let ⋄ : L0 × L0 → L0 be given. Then the function ⊙⋄ satisfies (U0M).
If ⋄ satisfies (U0L0), then we have that ⋄ satisfies (U1L0)–(U8L0) if and
only if ⊙⋄ satisfies (U1M)–(U8M).

2. Let ⊙ : M×L0 → M be given. Then the function ⋄⊙ satisfies (U0L0).
In addition, we have that ⊙ satisfies (U1M)–(U8M) if and only if ⋄⊙
satisfies (U1L0)–(U8L0).

Proof. It is obvious that ⊙⋄ and ⋄⊙ satisfy (U0M) and (U0L0) respectively.
We will prove the equivalence of one postulate for each assertion.

1. We show that (U8L0) and (U8M) are equivalent. For the direction from
left to right, let S, S ′ ∈ M and α ∈ L0 be given. We have

(S ∪ S ′) ⊙⋄ α = ‖fml(S ∪ S ′) ⋄ α‖

= ‖(fml(S) ∨ fml(S ′)) ⋄ α‖ by (U0L0) and

Lemma 1.1.23

= ‖(fml(S) ⋄ α) ∨ (fml(S ′) ⋄ α)‖ by (U8L0)

= ‖fml(S) ⋄ α‖ ∪ ‖fml(S ′) ⋄ α‖

= (S ⊙⋄ α) ∪ (S ′ ⊙⋄ α).

For the converse direction, let (the belief bases) ϕ, ψ ∈ L0 and (the
formula) α ∈ L0 be given. We get

‖(ϕ ∨ ψ) ⋄ α‖ = ‖fml(‖ϕ ∨ ψ‖) ⋄ α‖ by (U0L0) and

Lemma 1.1.25

= ‖ϕ ∨ ψ‖ ⊙⋄ α

= (‖ϕ‖ ∪ ‖ψ‖) ⊙⋄ α

= (‖ϕ‖ ⊙⋄ α) ∪ (‖ψ‖ ⊙⋄ α) by (U8M)

= ‖fml(‖ϕ‖) ⋄ α‖ ∪ ‖fml(‖ψ‖) ⋄ α‖

= ‖(fml(‖ϕ‖) ⋄ α) ∨ (fml(‖ψ‖) ⋄ α)‖

= ‖(ϕ ⋄ α) ∨ (ψ ⋄ α)‖ by (U0L0).
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2. Now, we show the equivalence of the postulates (U5M) and (U5L0).
First, let (the belief base) ϕ ∈ L0 as well as (the formulas) α, β ∈ L0

be given. Then we have

‖(ϕ ⋄⊙ α) ∧ β‖ = ‖fml(‖ϕ‖ ⊙ α) ∧ β‖

= ‖fml(‖ϕ‖ ⊙ α)‖ ∩ ‖β‖

= (‖ϕ‖ ⊙ α) ∩ ‖β‖ by Lemma 1.1.23

= (‖ϕ‖ ⊙ α) ⊕ β

⊆ ‖ϕ‖ ⊙ (α ∧ β) by (U5M) and

Corollary 1.1.24

= ‖fml(‖ϕ‖ ⊙ (α ∧ β))‖

= ‖ϕ ⋄⊙ (α ∧ β)‖.

For the direction from right to left, let S ∈ M and α, β ∈ L0 be given.
We get

(S ⊙ α) ⊕ β = (S ⊙ α) ∩ ‖β‖

= ‖fml(‖fml(S)‖ ⊙ α)‖ ∩ ‖β‖ by Lemma 1.1.23

= ‖fml(S) ⋄⊙ α‖ ∩ ‖β‖

= ‖(fml(S) ⋄⊙ α) ∧ β‖

⊆ ‖fml(S) ⋄⊙ (α ∧ β)‖ by (U5L0)

= ‖fml(‖fml(S)‖ ⊙ (α ∧ β))‖

= S ⊙ (α ∧ β) by Lemma 1.1.23.

The proof of the other equivalences is similar.

Note that (U0L0) is important for the proof of Lemma 2.3.7. By Corol-
lary 1.1.24, we have that (U0M) is always satisfied if P is finite, hence it is
not an assumption in Lemma 2.3.7. (U0L0) is also essential for the following
result.

Lemma 2.3.8. Let P be finite. Then we have that composing ⊙⋄ and ⋄⊙
from Definition 2.3.6 results in equivalent belief state representations.

1. Let ⊙ : M×L0 → M be given. Then for all S ∈ M and all α ∈ L0

we have S ⊙(⋄⊙) α = S ⊙ α.

2. If a function ⋄ : L0×L0 → L0 satisfies (U0L0), then for all (belief bases)
ϕ ∈ L0 and all (formulas) α ∈ L0 we have � (ϕ ⋄(⊙⋄) α) ↔ (ϕ ⋄ α).
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Proof. For the first assertion, we have S ⊙(⋄⊙) α = ‖fml(‖fml(S)‖ ⊙ α)‖ by
definition, which is the same as ‖fml(S)‖ ⊙ α by Lemma 1.1.23. Applying
the same lemma again results in S ⊙ α. For the second assertion, we have
that ϕ ⋄(⊙⋄) α = fml(‖fml(‖ϕ‖) ⋄ α‖) by definition, which is equivalent to
fml(‖ϕ‖) ⋄ α by Lemma 1.1.25. This is equivalent to ϕ ⋄ α by (U0L0) and
again Lemma 1.1.25.

We conclude this section by defining the standard update function, which
will be relevant in the following. There is a syntax dependent version by
Winslett [65], who has called this function the standard update function.
Additionally, there are three syntax independent definitions by Doherty et
al. [24], Hegner [36], and Herzig et al. [38, 39], which have all turned out to
be equivalent, see [39] for a proof. We present a slightly modified version
of the syntax independent standard update function that fits the notion of
model sets. We call this function ⊙su for historical reasons.

Definition 2.3.9. The standard update function ⊙su : M × L0 → M is
defined by

S ⊙su α :=
⋃

w ∈ S

{v ∈ ‖α‖ : w ∆ v ⊆ atm♯(α)}.

The standard update function is not the best representation of minimal
change for the following reason. If a model set S satisfies a formula α, then
it can happen that the updated model set S ⊙su α is a proper superset of S,
as we can see in the proof of the next lemma. However, if S satisfies ¬α,
then the updated model set is suitable, as we will argue in Section 3.3 and
Section 4.2. The following lemma states that the function ⊙su only satisfies
five out of nine postulates. Although this result is not new (cf. Herzig and
Rifi [39]), we will illustrate how to prove it in the context of model sets.

Lemma 2.3.10. The standard update function ⊙su only satisfies (U0M),
(U1M), (U3M), (U4M), and (U8M).

Proof. Let S, S ′ ∈ M and α, β ∈ L0 be given. (U0M) is obviously satisfied

because we have S = S by Lemma 1.1.16. (U1M) trivially holds by definition.
We get that (U4M) is satisfied because � α ↔ β implies ‖α‖ = ‖β‖ and
atm♯(α) = atm♯(β) by Lemma 1.1.6 and Lemma 1.1.8. By Lemma 1.1.17
we have S ∪ S = S ∪ S ′, hence (U8M) is also satisfied. Now, we will show
that (U3M) holds. Suppose that S 6= ∅ and ‖α‖ 6= ∅, and take an arbitrary
w ∈ S. If for any v ∈ ‖α‖ we have w ∆ v ⊆ atm♯(α), then v ∈ S ⊙su α,
and we are done. If w ∆ v * atm♯(α), then we construct a model v′ by
changing in v the values of the propositions in (w∆ v) \ atm♯(α). Obviously,
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we have w ∆ v′ ⊆ atm♯(α) and v′ � α, thus v′ ∈ S ⊙su α. In both cases we
have S ⊙su α 6= ∅. We conclude this proof by giving counterexamples for the
remaining postulates.

• Let P = {p, q}, S = {{p}}, and α = p ∨ q. Then we have S � α and
we get S ⊙su α = {{p}, {q}, {p, q}}. (U2M) is not satisfied because we
have p ∈ Th(S) but p /∈ Th(S ⊙su α).

• Let P = {p, q}, S = {∅}, α = p ∨ q, and β = p. Then we have
atm♯(α ∧ β) = {p} and we immediately get S ⊙su (α ∧ β) = {{p}} and
(S ⊙su α) ⊕ β = {{p}, {p, q}}. (U5M) is not satisfied because we have
¬q ∈ Th(S ⊙su (α ∧ β)) but ¬q /∈ Th((S ⊙su α) ⊕ β).

• Let P = {p, q, r}, S = {{q}}, α = p, and β = p ∧ (q ∨ r). Then we
get S ⊙su α = {{p, q}} � β and S ⊙su β = {{p, q}, {p, r}, {p, q, r}} � α.
Postulate (U6M) is not satisfied because we have ¬r ∈ Th(S⊙suα) but
¬r /∈ Th(S ⊙su β).

• Let P = {p, q, r}, S = {∅}, α = p ∧ (q ∨ r), and β = p ∧ (¬q ∨ r).
Then we have Card(S) = 1 and we get S ⊙su (α ∨ β) = {{p}} and
(S⊙suα)∩(S⊙suβ) = {{p, r}, {p, q, r}}. (U7M) is not satisfied because
we have ¬q ∈ Th(S ⊙su (α ∨ β)) but ¬q /∈ Th((S ⊙su α) ∩ (S ⊙su β)).

These counterexamples will also be used in Section 4.1.

As we will argue in Section 4.1, we think that it is a big disadvantage of
the standard update function not satisfying (U2M). At least, we can show
that the worlds already satisfying the new information do not get lost by
performing the standard update.

Lemma 2.3.11. For all S ∈ M and all α ∈ L0 we have

S ⊕ α ⊆ S ⊙su α.

Proof. Let w ∈ S ⊕ α. Then we obviously have w ∈ S, w ∈ ‖α‖, and
w ∆ w = ∅ ⊆ atm♯(α). Hence, we get w ∈ S ⊙su α.

By Lemma 1.1.14, we can therefore say that the standard update function
⊙su satisfies the revision postulate (R3M). The following result is a direct
consequence of the fact that S ⊕ α = (S ⊕ α) ⊕ α and Lemma 2.3.11.

Corollary 2.3.12. For all S ∈ M and all α ∈ L0 we have

S ⊕ α ⊆ (S ⊕ α) ⊙su α.

In the following chapter we will consider belief change functions in the con-
text of consistent model sets, and we will examine the relationships of belief
revision to the contraction and update processes.





Chapter 3

Relationships

In this chapter we will show how given belief change functions can be trans-
formed into other functions. From now on, we will focus on belief change
functions operating on model sets. In Section 3.1 we will investigate how the
different belief change functions can be modified in order to fit the frame-
work of consistent databases. Section 3.2 deals with the well-known identities
by Levi [51] and Harper [35]. The Levi identity allows to define a revision
function from a given contraction function, the Harper identity translates a
given revision function to its corresponding contraction function. We will
show that these identities can both be translated to the notion of model sets,
where they satisfy the same properties as before. In addition, we will formu-
late similar identities for revision and contraction functions in the context
of consistent model sets. Finally, we will introduce new identities between
revision and update functions in Section 3.3. We cannot get such strong
results as with revision and contraction, because the postulates for updates
have been stated from a different perspective. We will end the section by
postulating some common behaviour for revision and update functions.

3.1 Consistent databases

We have seen in Chapter 2 that there can be situations where we do not
know how to revise, contract, or update a database. Example 2.1.1, Exam-
ple 2.2.1, and Example 2.3.1 illustrate that we can have a clear picture of how
we expect the changed belief state to look like. But if these common beliefs
are not represented in a given model set, they will not influence the result of
the belief change functions. For this purpose, the use of integrity constraints
has been proposed by many authors. In the context of revision, contraction,
and update functions, we recommend to consult the work of Katsuno and
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Mendelzon [48], Katsuno and Mendelzon [46], and Herzig and Rifi [38] re-
spectively. Further discussions on integrity constraints can be found in the
contribution of Reiter [58]. Given a finite set I = {µ1, . . . , µk} ⊆ L0 of con-
straints, we define the integrity constraint ι :=

∧

I, so we can always deal
with one formula. Usually, given a function ⊛ : M×L0 → M and a set I of
constraints with its corresponding formula ι, the belief change function ⊛ is
modified in the following way. For all S ∈ M and all α ∈ L0 we set

S ⊛r
I α := S ⊛ (ι ∧ α),

S ⊛c
I α := S ⊛ (ι → α),

S ⊛u
I α := (S ⊛ α) ∩ ‖ι‖,

depending on whether ⊛ is a revision, contraction, or update function re-
spectively. Integrity constraints are a powerful tool, but using an integrity
constraint like I = {¬⊥} does not help in ensuring consistency of model sets,
because we have

S ⊛r
I α = S ⊛c

I α = S ⊛u
I α = S ⊛ α

whenever the function ⊛ is syntax independent. Therefore, in order to get ev-
ery changed model set being consistent, we have to define a new requirement
for arbitrary belief change functions.

Definition 3.1.1. We write Mc := M \ {∅} for the set of all consistent
model sets. For all functions ⊛ : Mc × L0 → M, all S ∈ Mc, and all
α ∈ L0, the consistency requirement is given by

S ⊛ α 6= ∅. (3.1)

We will now define an expansion function in the context of consistent model
sets. Since we have a unique expansion function ⊕, we define one concrete
function ⊕c : Mc × L0 → M that satisfies property (3.1). Our proposal is
to reject the new information, whenever it is inconsistent with the original
beliefs. This approach will be applied in a modal logic setting in Section 6.2.

Definition 3.1.2. The consistent expansion function ⊕c : Mc ×L0 → M is
defined by

S ⊕c α :=

{

S ⊕ α if S 2 ¬α,

S otherwise.

The following theorem states that the new expansion function ⊕c satisfies
the properties (1.1) and (3.1), three of the properties that are related to some
of the Gärdenfors postulates for expansion (cf. Definition 1.2.3), as well as
syntax independence.
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Theorem 3.1.3. For all S ∈ Mc and all α, β ∈ L0 we have

1. Th(S ⊕c α) = Th(S ⊕c α),

2. S ⊕c α 6= ∅,

3. S 2 ¬α ⇒ S ⊕c α � α,

4. Th(S) ⊆ Th(S ⊕c α),

5. S � α ⇒ Th(S ⊕c α) = Th(S),

6. � α↔ β ⇒ Th(S ⊕c α) = Th(S ⊕c β).

Proof. We show how to prove the first assertion and distinguish two cases.
First, if S 2 ¬α, then we have S 2 ¬α by Lemma 1.1.14, and we get

Th(S ⊕c α) = Th(S ⊕ α)

= Th(S ⊕ α) by Lemma 1.2.6

= Th(S ⊕c α).

Second, if S � ¬α, then we have S � ¬α by again Lemma 1.1.14, and we get

Th(S ⊕c α) = Th(S)

= Th(S) by Lemma 1.1.14

= Th(S ⊕c α).

The proofs of the other assertions are similar.

In order to adapt the requirement of minimal change to the context of con-
sistent model sets, we will now reformulate some of the AGM postulates for
revision. We are going to change as few as possible, such that the new set of
postulates is compatible with the consistency requirement (3.1).

Definition 3.1.4. A function ⊗ : Mc ×L0 → M is a consistent AGM revi-
sion, if it satisfies the revision postulates (R1M), (R3M), (R4M), (R6M), and
(R7M), as well as the following modified postulates,

(R2Mc) 2 ¬α ⇒ S ⊗ α � α,

(R5Mc) S ⊗ α 6= ∅,

(R8Mc) 2 ¬α and S ⊗ α 2 ¬β ⇒ Th((S ⊗ α) ⊕ β) ⊆ Th(S ⊗ (α ∧ β)).

We want to mention that the expansion function ⊕ has not been replaced by
the consistent expansion function ⊕c in (R3M), (R4M), (R7M), and (R8Mc)
for technical reasons.
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We are now going to define the translation of a revision function on model
sets to a revision function on consistent model sets and the other way round.
Note that the term “revision function” and the symbol ⊗ say nothing about
the properties of the function, they are just an indication that the mentioned
function is supposed to revise belief states.

Definition 3.1.5. Given a function ⊗ : M×L0 → M, the function

⊗cr : Mc ×L0 → M, (S, α) 7→

{

S ⊗ α if 2 ¬α,

S otherwise

is the corresponding consistency preserving revision function. On the other
hand, if the function ⊗ : Mc × L0 → M is given, then the function

⊗ir : M×L0 → M, (S, α) 7→

{

S ⊗ α if 2 ¬α and S 6= ∅,

‖α‖ otherwise

is the adequate revision function on possibly inconsistent model sets.

The functions from Definition 3.1.5 are supposed to translate an AGM re-
vision into a consistent AGM revision and vice versa. The following lemma
shows that our translations fulfil this requirement.

Lemma 3.1.6. We have the following correspondences between the two sets
of revision postulates.

1. If a function ⊗ : M×L0 → M is an AGM revision, then the function
⊗cr is a consistent AGM revision.

2. If a function ⊗ : Mc × L0 → M is a consistent AGM revision, then
the function ⊗ir is an AGM revision.

Proof. First, we want to mention that ⊗cr satisfies property (3.1), whenever
⊗ satisfies (R5M). Now, we will prove one postulate for each assertion.

1. We show that the function ⊗cr satisfies (R8Mc). Let S ∈ Mc and
α, β ∈ L0 be given and assume that α is satisfiable and S ⊗cr α 2 ¬β.
Then we have Th((S ⊗cr α) ⊕ β) = Th((S ⊗ α) ⊕ β) and S ⊗ α 2 ¬β.
Now, suppose that α ∧ β is not satisfiable. Then, we get S ⊗ α � ¬β,
because S ⊗α � α by (R2M), and we have a contradiction. Hence, the
formula α∧β must be satisfiable. Therefore, Th(S⊗cr (α∧β)) is equal
to Th(S ⊗ (α∧ β)), and the claim follows from the assumption that ⊗
satisfies (R8M).
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2. We show that the function ⊗ir satisfies (R7M). Let S ∈ M and the
formulas α, β ∈ L0 be given. If S = ∅, then we have

Th(S ⊗ir (α ∧ β)) = Th(‖α ∧ β‖)

= Th(‖α‖ ∩ ‖β‖)

= Th((S ⊗ir α) ∩ ‖β‖)

= Th((S ⊗ir α) ⊕ β).

If S 6= ∅, then we distinguish three cases. First, if α ∧ β is satisfiable,
then so also is α and we get Th(S ⊗ir (α ∧ β)) = Th(S ⊗ (α ∧ β))
and Th(S ⊗ir α) = Th(S ⊗ α). So the claim directly follows from the
assumption that ⊗ satisfies (R7M). Second, if α ∧ β and α are both
unsatisfiable, then we have Th(S⊗ir (α∧β)) = Th((S⊗ir α)⊕β) = L0,
so the postulate trivially holds. In the last case, if α∧β is unsatisfiable
and α is satisfiable, we get S⊗ir α = S⊗α � ¬β, because S⊗α � α by
(R2Mc). Thus, we have Th((S ⊗ir α) ⊕ β) = Th(S ⊗ir (α ∧ β)) = L0.

The proofs for the other postulates are similar.

For some later results, we want to mention that Lemma 3.1.6 also holds for
certain subsets of the postulates. This fact is an immediate consequence of
the proof of Lemma 3.1.6.

Lemma 3.1.7. We have the following special cases of Lemma 3.1.6.

1. If a function ⊗ : M×L0 → M satisfies (R1M)–(R6M), then the func-
tion ⊗cr satisfies (R1M), (R2Mc), (R3M), (R4M), (R5Mc), and (R6M).
If ⊗ additionally satisfies (R7M), then so also does the function ⊗cr .

2. If a function ⊗ : Mc ×L0 → M satisfies (R2Mc), (R3M), and (R6M),
then the function ⊗ir satisfies (R2M), (R3M), and (R6M). Moreover, if
⊗ additionally satisfies (R1M), (R4M), and (R5Mc), then the function
⊗ir also satisfies (R1M), (R4M), and (R5M).

We are now going to define two new postulates, which will be useful for some
further results.

Definition 3.1.8. A function ⊗ : M ×L0 → M satisfies the following ad-
ditional revision postulate if for all S ∈ M and all α ∈ L0 we have

(R9M) S = ∅ ⇒ Th(S ⊗ α) = Th(‖α‖),

and for ⊗ : Mc ×L0 → M, S ∈ Mc, and α ∈ L0 we require

(R9Mc) � ¬α ⇒ Th(S ⊗ α) = Th(S).
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For instance, the full meet revision function ⊗fm from Example 2.1.6 satisfies
(R9M). The motivation for (R9M) is the following. If S = ∅, then every
formula holds in the model set S. That is, we are in an inconsistent state,
which is even worse than having no information at all. So instead of revising
the inconsistent state with α, we revise the belief state that contains all
models. This results in ‖α‖ by (R2M)–(R4M), that is what we require with
(R9M). (R9Mc) specifies that we must not modify our belief state if it is not
possible to consistently integrate the new information. So (R9Mc) carries on
the idea of minimal change. Due to these new postulates, we are able to
state the following lemma.

Lemma 3.1.9. We have the following interchangeability results.

1. If a function ⊗ : M×L0 → M satisfies (R9M) and at least one of the
postulates (R2M) and (R5M), then for all S ∈ M and all α ∈ L0 we
have Th(S (⊗cr)ir α) = Th(S ⊗ α).

2. If a function ⊗ : Mc ×L0 → M satisfies (R9Mc), then for all S ∈ Mc

and all α ∈ L0 we have Th(S (⊗ir)cr α) = Th(S ⊗ α).

Proof. We show how to prove the first assertion. Let S ∈ M and α ∈ L0 be
given. First, if 2 ¬α and S 6= ∅, then we have S (⊗cr )ir α = S⊗cr α = S⊗α
by definition, and the claim directly follows. Second, if S = ∅, then we have
Th(S (⊗cr )ir α) = Th(‖α‖), which is the same as Th(S ⊗ α) by (R9M). In
the last case, if � ¬α, then we get S (⊗cr)ir α = ‖α‖ = ∅, which is equal to
S ⊗ α by (R2M) or (R5M). The proof of the second assertion is similar.

The definition of the notion of a consistent AGM contraction does not need
any modified contraction postulates, because the contraction of a consis-
tent model set always results in a non empty model set, provided that
(C2M) holds. That is, the second contraction postulate directly implies prop-
erty (3.1) in the context of consistent model sets.

Definition 3.1.10. A function ⊖ : Mc × L0 → M is a consistent AGM
contraction, if it satisfies (C1M)–(C8M), that is, if it the restriction of an
AGM contraction to consistent model sets.

As a consequence of Definition 3.1.10, the translation of an AGM contraction
to a consistent AGM contraction will just be its restriction to consistent
model set. The definition of the translation of a consistent AGM contraction
to an AGM contraction is a bit more elaborate.

Definition 3.1.11. Given a function ⊖ : M×L0 → M, the function

⊖cc : Mc × L0 → M, (S, α) 7→ S ⊖ α
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is the appropriate consistency preserving contraction function. In addition,
for all functions ⊖ : Mc × L0 → M, the function

⊖ic : M×L0 → M, (S, α) 7→

{

S ⊖ α if S 6= ∅,

‖¬α‖ otherwise

is the corresponding contraction function on possibly inconsistent model sets.

We can prove that the translations from Definition 3.1.11 preserve the AGM
postulates for contraction.

Lemma 3.1.12. We have the following correspondences between the AGM
contractions and consistent AGM contractions.

1. If a function ⊖ : M × L0 → M is an AGM contraction, then the
function ⊖cc is a consistent AGM contraction.

2. If a function ⊖ : Mc ×L0 → M is a consistent AGM contraction, then
the function ⊖ic is an AGM contraction.

Proof. The first assertion is trivial, since the function ⊖cc is the restriction of
⊖ to Mc × L0. For the second assertion, we content ourselves with proving
that ⊖ic satisfies (C7M). Let S ∈ M and α, β ∈ L0 be given. If S 6= ∅, then
the claim follows from the assumption that ⊖ satisfies (C7M). If S = ∅, then
we have

Th(S ⊖ic α) ∩ Th(S ⊖ic β) = Th(‖¬α‖) ∩ Th(‖¬β‖)

= Th(‖¬α‖ ∪ ‖¬β‖)

= Th(‖¬α ∨ ¬β‖)

= Th(‖¬(α ∧ β)‖)

= Th(S ⊖ic (α ∧ β)).

The proofs of the other postulates are similar.

Similar to revision, Lemma 3.1.12 also holds if we only take the basic con-
traction postulates. The proof of Lemma 3.1.12 shows that this is indeed the
case.

Lemma 3.1.13. We have the following special cases of Lemma 3.1.12.

1. If a function ⊖ : M × L0 → M satisfies (C1M)–(C6M), then so also
does the function ⊖cc.

2. If a function ⊖ : Mc × L0 → M satisfies (C2M), (C3M), (C5M) and
(C6M), then so also does the function ⊖ic. Furthermore, if ⊖ addi-
tionally satisfies (C1M) and (C4M), then so also does the function ⊖ic.
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In order to get some further results, we will now introduce a new postulate
for contraction functions.

Definition 3.1.14. A function ⊖ : M × L0 → M satisfies the following
additional contraction postulate if for all S ∈ M and all α ∈ L0 we have

(C9M) S = ∅ ⇒ Th(S ⊖ α) = Th(‖¬α‖).

Observe that (C9M) is satisfied by the full meet contraction function ⊖fm from
Example 2.2.5. We believe that (C9M) has been intended by the authors of
the AGM postulates [2]. Although one could argue that requiring

S = ∅ ⇒ Th(S ⊖ α) = Th(S) (3.2)

would be closer to the idea of minimal change, we think that it is better to
quit an inconsistent belief state as soon as possible. We want to mention
here that with property (3.2) instead of (C9M), we would have defined the
function ⊖ic differently, and all the results with (C9M) replaced by (3.2)
would still have been provable. The following lemma is a first application of
the definition of (C9M).

Lemma 3.1.15. We have the following interchangeability results.

1. If a function ⊖ : M ×L0 → M satisfies (C9M), then for all S ∈ M
and all α ∈ L0 we have Th(S (⊖cc)ic α) = Th(S ⊖ α).

2. Let ⊖ : Mc ×L0 → M be given. Then for all S ∈ Mc and all α ∈ L0

we have Th(S (⊖ic)cc α) = Th(S ⊖ α).

Proof. We show how to prove the first assertion, so let S ∈ M and α ∈ L0

be given. First, if S 6= ∅, then we have S (⊖cc)ic α = S ⊖cc α = S ⊖ α
by definition, and the claim easily follows. Second, if S = ∅, then we have
Th(S (⊖cc)ic α) = Th(‖¬α‖) by definition, which is the same as Th(S ⊖ α)
by (C9M). The proof of the second assertion is trivial.

The requirements for update functions on consistent model sets are similar to
the ones for revision functions. Of course, they are slightly different because
they are associated with the KM postulates.

Definition 3.1.16. A function ⊙ : Mc×L0 → M is a consistent KM update,
if it satisfies (U0M), (U2M), and (U4M)–(U8M), as well as the following
modified update postulates,

(U1Mc) 2 ¬α ⇒ S ⊙ α � α,

(U3Mc) S ⊙ α 6= ∅.
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We will now define the translation of an update function operating on model
sets to an update function defined on consistent model sets, and the other
way round. Observe that if S = ∅, then for all α ∈ L0 we need S ⊙iu α := ∅,
because this is directly implied by (U2M).

Definition 3.1.17. Given a function ⊙ : M×L0 → M, the function

⊙cu : Mc × L0 → M, (S, α) 7→

{

S ⊙ α if 2 ¬α,

S otherwise

is the appropriate consistency preserving update function. On the other
hand, if the function ⊙ : Mc ×L0 → M is given, then the function

⊙iu : M×L0 → M, (S, α) 7→

{

S ⊙ α if 2 ¬α and S 6= ∅,

∅ otherwise

is the adequate update function on possibly inconsistent model sets.

Clearly, we have a close relationship between KM updates and consistent
KM updates, as we are going to prove.

Lemma 3.1.18. We have the following correspondences between the two sets
of update postulates.

1. If a function ⊙ : M×L0 → M is a KM update, then the function ⊙cu

is a consistent KM update.

2. If a function ⊙ : Mc × L0 → M is a consistent KM update, then the
function ⊙iu is a KM update.

Proof. We first want to mention that ⊙cu satisfies property (3.1), whenever
⊙ satisfies (U3M). Now, we will prove the validity of one postulate for each
assertion.

1. We show that (U7M) holds for ⊙cu . Let S ∈ Mc and α, β be given and
assume Card(S) ≤ 1, that is Card(S) = 1 because S 6= ∅. If α and β
are both satisfiable, then so also is α∨β and we have S⊙cu α = S⊙α,
S⊙cu β = S⊙β, and S⊙cu (α∨β) = S⊙(α∨β), and the claim directly
follows from (U7M) for ⊙. If α and β are both unsatisfiable, then so
also is α∨β and we have S⊙cu α = S⊙cu β = S⊙cu (α∨β) = S, hence
the postulate trivially holds. If exactly one of the formulas α and β is
satisfiable, then we proceed as follows. Without loss of generality, we
assume that α is satisfiable and β is not. Thus, α∨ β is satisfiable and
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we get S⊙cu α = S⊙α, S⊙cu β = S, and S⊙cu (α∨β) = S⊙ (α∨β).
If (S ⊙ α) ∩ S = ∅, then the claim trivially holds. If (S ⊙ α) ∩ S 6= ∅,
then we know that (S ⊙ α) ∩ S = S because Card(S) = 1, and we get
S � α because S ⊙ α � α by (U1M). So we also have S � α ∨ β and
therefore, we have Th(S ⊙ (α ∨ β)) = Th(S) by (U2M).

2. We show that (U8M) holds for ⊙iu . Let S, S ′ ∈ M and α ∈ L0 be given.
If α is not satisfiable, then S ⊙iu α = S ′ ⊙iu α = (S ∪ S ′) ⊙iu α = ∅,
and the postulate is obviously satisfied. If α is satisfiable, then we
distinguish three cases. If S = S ′ = ∅, then we have the same updated
model sets as in the previous case. If S and S ′ are both non empty,
then we immediately have S ⊙iu α = S ⊙ α, S ′ ⊙iu α = S ′ ⊙ α, and
(S ∪S ′)⊙iu α = (S ∪S ′)⊙α, and the claim follows from (U8M) for ⊙.
In the last case, if exactly one model set of S and S ′ is non empty, we
proceed as follows. Without loss of generality, we assume S 6= ∅ and
S ′ = ∅, and we get (S ∪ S ′)⊙iu α = S ⊙iu α = S ⊙ α and S ′ ⊙iu α = ∅,
hence the proof is finished.

The other postulates can similarly be proved.

The following lemma will be needed for some further results. Its proof directly
follows from the proof of Lemma 3.1.18.

Lemma 3.1.19. If a function ⊙ : Mc ×L0 → M satisfies (U0M), (U1Mc),
(U3Mc), and (U4M), then the function ⊙iu satisfies (U0M), (U1M), (U3M),
and (U4M). Moreover, if ⊙ additionally satisfies (U2M), then so also does
the function ⊙iu .

There is another postulate for update functions operating on consistent model
sets, that we have to define for the purpose of some further results.

Definition 3.1.20. A function ⊙ : Mc × L0 → M satisfies the following
additional update postulate if for all S ∈ Mc and all α ∈ L0 we have

(U9Mc) � ¬α ⇒ Th(S ⊙ α) = Th(S).

(U9Mc) is exactly the same as (R9Mc) for consistency preserving revision
functions. Following the idea of minimal change, we require to keep the
current belief state, if it is impossible to consistently learn some information.

Similar to revision, we think that updating the inconsistent model set ∅ with
a formula α should result in the the model set ‖α‖. We cannot require this
by a ninth update postulate, because we have Th(∅ ⊙ α) = L0 by (U2M).
Due to this fact and (U9Mc), we are able to prove the following result.
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Lemma 3.1.21. We have the following interchangeability results.

1. If a function ⊙ : M×L0 → M satisfies (U1M) and (U2M), then for
all S ∈ M and all α ∈ L0 we have Th(S (⊙cu)iu α) = Th(S ⊙ α).

2. If a function ⊙ : Mc ×L0 → M satisfies (U9Mc), then for all S ∈ Mc

and all α ∈ L0 we have Th(S (⊙iu)cu α) = Th(S ⊙ α).

Proof. We give a proof of the first assertion. Let S ∈ M and α ∈ L0 be
given. First, if 2 ¬α and S 6= ∅, then we have S (⊙cu)iu α = S⊙cu α = S⊙α
by definition, and the claim easily follows. Second, if � ¬α or S = ∅, then
we have Th(S (⊙cu)iu α) = Th(∅) = L0 by definition, which is the same
as Th(S ⊙ α) by (U1M) and (U2M). The second assertion is even easier to
prove.

The results of this section will be useful in the following sections of this
chapter, where we are going to explore the relationship between revision and
contraction functions, as well as between revision and update functions.

3.2 Revision and contraction

The revision and contraction processes are related to each other because
they both formalise belief change in a static world . The former process
consistently adds some information, whereas the latter removes some data.
This relatedness has been the reason why people have defined translations
from contraction to revision function functions and vice versa. Levi [51]
has claimed that revising with a formula α should result in the same belief
state as contracting with ¬α and then adding α with the (unique) expansion
function. This intuitive definition of revision has been called the Levi iden-
tity . Accordingly, Harper [35] has claimed that contracting with a formula α
should have the same effect as taking those of the original beliefs that remain
if we revise with ¬α. This description of the contraction process has been
called the Harper identity . We will now give the formal definitions of the
translations that follow from the above mentioned identities.

Definition 3.2.1. Given a function .− : B × L0 → Pow(L0), its Levi trans-
lation is defined as follows,

∔ .− : B × L0 → Pow(L0), (T, α) 7→ (T .− ¬α) + α.

The Harper translation of a function ∔ : B × L0 → Pow(L0) is defined by

.−∔ : B × L0 → Pow(L0), (T, α) 7→ T ∩ (T ∔ ¬α).



54 Chapter 3. Relationships

For instance, the full meet revision function ∔fm from Example 2.1.4 and the
full meet contraction function .−fm from Example 2.2.3 correspond to each
other through the above defined identities.

Example 3.2.2. For all T ∈ B and all α ∈ L0 we have

T ∔( .−fm) α = T ∔fm α, T .−(∔fm) α = T .−fm α.

Originally, the full meet contraction function .−fm has been defined as an
example of a function satisfying all AGM postulates for contraction, see [2].
The full meet revision function ∔fm has then been defined from .−fm by use of
the Levi identity in order to illustrate that the AGM postulates are preserved
by this translation.

The following theorem shows that these identities conform to the AGM postu-
lates and that they are strongly interchangeable. A proof has been presented
by Gärdenfors in [27].

Theorem 3.2.3. The identities by Levi and Harper preserve the AGM pos-
tulates and, given the first six postulates, they are inverse to each other.

1. If a function .− : B × L0 → Pow(L0) satisfies (C1B)–(C6B), then the
function ∔ .− satisfies (R1B)–(R6B) and for all T ∈ B and all α ∈ L0

we have T .−(∔ .−) α = T .−α. If .− also satisfies (C7B) and (C8B), then
∔ .− satisfies (R7B) and (R8B), as well.

2. If a function ∔ : B × L0 → Pow(L0) satisfies (R1B)–(R6B), then the
function .−∔ satisfies (C1B)–(C6B) and for all T ∈ B and all α ∈ L0

we have T ∔( .−∔) α = T ∔ α. If ∔ additionally satisfies (R7B) and
(R8B), then .−∔ also satisfies (C7B) and (C8B).

We have almost the same results in the context of model sets. In a first
step, we are going to translate the Levi and Harper identities to the notion
of model sets. The only difference occurs in the definition of the Harper
identity, because the intersection of two belief sets corresponds to the union
of the corresponding model sets.

Definition 3.2.4. Given a function ⊖ : M×L0 → M, its Levi translation
is defined as follows,

⊗c
⊖ : M×L0 → M, (S, α) 7→ (S ⊖ ¬α) ⊕ α.

The Harper translation of a function ⊗ : M×L0 → M is defined by

⊖r
⊗ : M×L0 → M, (S, α) 7→ S ∪ (S ⊗¬α).
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We are now working towards the equivalent of Theorem 3.2.3 in the context
of model sets. For technical reasons, we will prove it step by step in three
separate parts.

Lemma 3.2.5. The basic revision and contraction postulates are preserved
by the Levi and Harper identities.

1. If a function ⊖ : M×L0 → M satisfies (C1M)–(C6M), then the func-
tion ⊗c

⊖ satisfies (R1M)–(R6M).

2. If a function ⊗ : M×L0 → M satisfies (R1M)–(R6M), then the func-
tion ⊖r

⊗ satisfies (C1M)–(C6M).

Proof. For both assertions, we will show how to prove one postulate.

1. We show that the function ⊗c
⊖ satisfies (R3M). For all S ∈ M and all

α ∈ L0 we have

Th(S ⊗c
⊖ α) = Th((S ⊖ ¬α) ⊕ α)

= Th(S ⊖ ¬α⊕ α) by Lemma 1.2.6

= Th(S ⊖ ¬α ∩ ‖α‖)

⊆ Th(S ∩ ‖α‖) by (C2M)

and Lemma 1.1.14

= Th(S ⊕ α)

= Th(S ⊕ α) by Lemma 1.2.6.

2. Now, we show that the function ⊖r
⊗ satisfies (C5M). Let S ∈ M and

α ∈ L0 be given and assume S � α. Then we have

Th(S) = Th(S ∩ ‖α‖) by assumption

= Th((S ∩ ‖α‖) ∪ ∅)

= Th((S ∩ ‖α‖) ∪ ((S ⊗ ¬α) ∩ ‖α‖)) by (R2M)

= Th((S ∪ (S ⊗ ¬α)) ∩ ‖α‖)

= Th((S ∪ (S ⊗ ¬α)) ⊕ α)

= Th((S ⊖r
⊗ α) ⊕ α).

The proof of the other postulates is similar.

Lemma 3.2.5 also holds for the whole sets of revision and contraction postu-
lates, as we state in the following theorem. Although we could directly prove
it, we will give a more elegant proof by using Theorem 3.2.3 as well as the
translation lemmas from Section 2.1 and Section 2.2.
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Theorem 3.2.6. We have the following relationships between revision and
contraction functions due to the Levi and Harper identities.

1. If a function ⊖ : M × L0 → M is an AGM contraction, then the
function ⊗c

⊖ is an AGM revision.

2. If a function ⊗ : M×L0 → M is an AGM revision, then the function
⊖r

⊗ is an AGM contraction.

Proof. We show how to prove the first assertion. If ⊖ is an AGM contraction
on model sets, then the function .−⊖ is an AGM contraction on belief sets by
Lemma 2.2.6. Now, by Theorem 3.2.3, we get that ∔( .−⊖) is an AGM revision
on belief sets. Therefore, we get that the function

⊗(∔( .−⊖)) : M×L0 → M, (S, α) 7→ S ⊖ ¬α⊕ α

is an AGM revision on model sets by Lemma 2.1.8. Observe that we have
Th(S ⊖ ¬α ⊕ α) = Th((S ⊖ ¬α) ⊕ α) by Lemma 1.2.6, hence we get that
the function ⊗c

⊖ is an AGM revision on model sets, as well. The proof of the
second assertion is analogous.

The following result slightly differs from the corresponding result in the con-
text of belief sets. This is because the model sets need not be closed sets of
models.

Lemma 3.2.7. The Levi identity is the inverse of the Harper identity modulo
Th and vice versa.

1. If a function ⊗ : M×L0 → M satisfies the revision postulates (R2M),
(R3M), and (R6M), then for all S ∈ M and all α ∈ L0 we have
Th(S ⊗c

(⊖r

⊗) α) = Th(S ⊗ α).

2. If a function ⊖ : M × L0 → M satisfies the contraction postulates
(C2M), (C3M), (C5M), and (C6M), then for all S ∈ M and all α ∈ L0

we have Th(S ⊖r
(⊗c

⊖) α) = Th(S ⊖ α).

Proof. Let S ∈ M and α ∈ L0 be given. Then the first assertion can be
proved as follows,

Th(S ⊗c
(⊖r

⊗) α) = Th((S ⊖r
⊗ ¬α) ⊕ α)

= Th((S ∪ (S ⊗¬¬α)) ⊕ α)

= Th((S ∪ (S ⊗¬¬α)) ∩ ‖α‖)

= Th((S ∩ ‖α‖) ∪ ((S ⊗¬¬α) ∩ ‖α‖))

= Th((S ⊕ α) ∪ ((S ⊗ ¬¬α) ∩ ‖α‖))
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= Th(S ⊕ α) ∩ Th((S ⊗ ¬¬α) ∩ ‖α‖) by Lemma 1.1.11

= Th(S ⊕ α) ∩ Th(S ⊗ ¬¬α) by (R2M)

= Th(S ⊕ α) ∩ Th(S ⊗ α) by (R6M)

= Th(S ⊗ α) by (R3M).

For the second assertion, we first observe that

Th(S ⊖r
(⊗c

⊖) α) = Th(S ∪ (S ⊗c
⊖ ¬α))

= Th(S ∪ ((S ⊖ ¬¬α) ⊕ ¬α))

= Th(S) ∩ Th((S ⊖¬¬α) ⊕¬α) by Lemma 1.1.11

= Th(S) ∩ Th(S ⊖¬¬α ⊕ ¬α) by Lemma 1.2.6

= Th(S) ∩ Th(S ⊖¬¬α ∩ ‖¬α‖)

= Th(S) ∩ Th(S ⊖ α ∩ ‖¬α‖) by (C6M) and

Lemma 1.1.14

= Th(S) ∩ Th(S ⊖ α⊕ ¬α)

= Th(S) ∩ Th((S ⊖ α) ⊕ ¬α) by Lemma 1.2.6

= Th(S) ∩ Th((S ⊖ α) ∩ ‖¬α‖).

Now, we distinguish two cases. In the first case, if S � α, then we have
Th(S) = Th(S ∩ ‖α‖) = Th((S ⊖ α) ∩ ‖α‖) by (C2M) and (C5M), and we
can continue the proof with

. . . = Th(S) ∩ Th((S ⊖ α) ∩ ‖¬α‖)

= Th((S ⊖ α) ∩ ‖α‖) ∩ Th((S ⊖ α) ∩ ‖¬α‖)

= Th(((S ⊖ α) ∩ ‖α‖) ∪ ((S ⊖ α) ∩ ‖¬α‖)) by Lemma 1.1.11

= Th(S ⊖ α).

Second, if S 2 α, then we can finish the proof with

. . . = Th(S) ∩ Th((S ⊖ α) ∩ ‖¬α‖)

= Th(S ⊖ α) ∩ Th((S ⊖ α) ∩ ‖¬α‖) by (C3M)

= Th((S ⊖ α) ∪ ((S ⊖ α) ∩ ‖¬α‖)) by Lemma 1.1.11

= Th(S ⊖ α).

We have now proved both assertions.

As we have seen in Section 3.1, we have slightly different postulates for
revision functions defined on consistent model sets. The definitions of the
Levi and Harper identities, however, are very similar in this setting.
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Definition 3.2.8. Given a function ⊖ : Mc ×L0 → M, its Levi translation
is defined as follows,

⊗cc
⊖ : Mc × L0 → M, (S, α) 7→

{

(S ⊖ ¬α) ⊕ α if 2 ¬α,

S otherwise.

The Harper translation of a function ⊗ : Mc × L0 → M is defined by

⊖cr
⊗ : Mc × L0 → M, (S, α) 7→

{

S ∪ (S ⊗¬α) if 2 α,

S otherwise.

We want to mention that if a function ⊖ satisfies (C4M), then for all S ∈ Mc

and all α ∈ L0 we have S⊗cc
⊖ α 6= ∅. On the other hand, it is immediate that

the function ⊖cr
⊗ satisfies property (3.1) for all functions ⊗. The translations

from Definition 3.2.8 are compositions of some previous translations, as we
state in the following lemma.

Lemma 3.2.9. Let the function ⊛ : Mc × L0 → M be given. Then for all
S ∈ Mc and all α ∈ L0 we have

S ⊗cc
⊛ α = S (⊗c

(⊛ic))
cr α, S ⊖cr

⊛ α = S (⊖r
(⊛ir ))

cc α.

Proof. Both equalities directly follow from Definition 3.1.5, Definition 3.1.11,
and Definition 3.2.4.

The following result is the same as Lemma 3.2.5, but in the context of con-
sistent model sets. The proof is rather short because it is based on certain
previous results.

Lemma 3.2.10. The translations from Definition 3.2.8 preserve the basic
postulates in the context of consistent model sets.

1. If a function ⊖ : Mc × L0 → M satisfies (C1M)–(C6M), then the
function ⊗cc

⊖ satisfies (R1M), (R2Mc), (R3M), (R4M), (R5Mc), and
(R6M).

2. If a function ⊗ : Mc × L0 → M satisfies (R1M), (R2Mc), (R3M),
(R4M), (R5Mc), and (R6M), then the function ⊖cr

⊗ satisfies the postu-
lates (C1M)–(C6M).

Proof. For the first assertion, we can apply Lemma 3.1.13, Lemma 3.2.5, and
Lemma 3.1.7 in order to show that the function (⊗c

(⊖ic))
cr satisfies (R1M),

(R2Mc), (R3M), (R4M), (R5Mc), and (R6M). By Lemma 3.2.9, we know
that this function is equal to ⊗cc

⊖ . For the second assertion, we can use the
same lemmas to get that the function (⊖r

(⊗ir ))
cc satisfies (C1M)–(C6M). By

Lemma 3.2.9, we get that this is the same function as ⊖cr
⊗ .
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We are now going to state the analogue of Theorem 3.2.6, but in the context
of consistent model sets. The proof of the following theorem is also based on
some previous results.

Theorem 3.2.11. We have the following relationships between consistent
AGM revisions and consistent AGM contractions.

1. If a function ⊖ : Mc ×L0 → M is a consistent AGM contraction, then
the function ⊗cc

⊖ is a consistent AGM revision.

2. If a function ⊗ : Mc × L0 → M is a consistent AGM revision, the
function ⊖cr

⊗ is a consistent AGM contraction.

Proof. For the first assertion, we can apply Lemma 3.1.12, Theorem 3.2.6,
and Lemma 3.1.6 in order to get that the function (⊗c

(⊖ic))
cr is a consistent

AGM revision. But this function is the same as ⊗cc
⊖ by Lemma 3.2.9. For the

second assertion, we can use the same lemmas and theorem to prove that the
function (⊖r

(⊗ir ))
cc is a consistent AGM contraction. Applying Lemma 3.2.9

again, we get that this is the same function as ⊖cr
⊗ .

We conclude this section by proving that the Levi and Harper identities are
inverse to each other in the context of consistent model sets, provided that
the underlying belief change functions satisfy the right postulates.

Lemma 3.2.12. In the context of consistent model sets, the Levi identity is
the inverse of the Harper identity modulo Th and vice versa.

1. If a function ⊗ : Mc×L0 → M satisfies the postulates (R2Mc), (R3M),
(R6M), and (R9Mc), then for all S ∈ Mc and all α ∈ L0 we have
Th(S ⊗cc

(⊖cr

⊗ ) α) = Th(S ⊗ α).

2. If a function ⊖ : Mc ×L0 → M satisfies the postulates (C2M), (C3M),
(C5M), and (C6M), then for all S ∈ Mc and all α ∈ L0 we have
Th(S ⊖cr

(⊗cc

⊖ ) α) = Th(S ⊖ α).

Proof. Let S ∈ Mc and α ∈ L0 be given. For the first assertion, we distin-
guish two cases as follows. First, if 2 ¬α, then we get that the function ⊗ir

satisfies (R2M), (R3M), and (R6M) by Lemma 3.1.7, and we have

Th(S ⊗cc
(⊖cr

⊗ ) α) = Th((S ⊖cr
⊗ ¬α) ⊕ α)

= Th((S ∪ (S ⊗¬¬α)) ⊕ α)

= Th((S ∪ (S ⊗ir ¬¬α)) ⊕ α) by assumption

= Th((S ⊖r
(⊗ir ) ¬α) ⊕ α)
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= Th(S ⊗c
(⊖r

(⊗ir )
) α)

= Th(S ⊗ir α) by Lemma 3.2.7

= Th(S ⊗ α) by assumption.

Second, if � ¬α, then we have Th(S⊗cc
(⊖cr

⊗ ) α) = Th(S), which is the same as

Th(S⊗α) by (R9Mc). For the second assertion, we distinguish the following
two cases. First, if 2 α, then we get that the function ⊖ic satisfies (C2M),
(C3M), (C5M), and (C6M) by Lemma 3.1.13, and we have

Th(S ⊖cr
(⊗cc

⊖ ) α) = Th(S ∪ (S ⊗cc
⊖ ¬α))

= Th(S ∪ ((S ⊖ ¬¬α) ⊕¬α))

= Th(S ∪ ((S ⊖ic ¬¬α) ⊕ ¬α)) by assumption

= Th(S ∪ (S ⊗c
(⊖ic) ¬α))

= Th(S ⊖r
(⊗c

(⊖ic )
) α)

= Th(S ⊖ic α) by Lemma 3.2.7

= Th(S ⊖ α) by assumption.

Second, if � α, then we have Th(S ⊖cr
(⊗cc

⊖ ) α) = Th(S). Since S � α, this is

equal to Th(S ⊖ α) by (C2M) and (C5M).

3.3 Revision and update

The revision and update processes are related to each other, because they
both describe how to consistently integrate new information into a given
belief state representation. The only difference in the definitions of these
processes is that the former is applied in a static world , whereas the latter
is used in a dynamic world . For this reason, we have tried to find two
identities that allow for the same results as the Levi and Harper identities
do in Section 3.2. So our goal is to define a revision function from a given
update function and vice versa. In the following definition, we will present
such identities between revision and update functions. As we will see later
in this section, they nearly fulfil our requirements.

Definition 3.3.1. Given a function ⊙ : M×L0 → M, its translation from
update to revision is defined as follows,

⊗u
⊙ : M×L0 → M, (S, α) 7→











‖α‖ if S = ∅,

S ⊕ α if S 2 ¬α,

S ⊙ α otherwise.
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The translation of a function ⊗ : M×L0 → M from revision to update is
defined by

⊙r
⊗ : M×L0 → M, (S, α) 7→

⋃

w ∈ S

({w} ⊗ α).

The case S = ∅ in the definition of ⊗u
⊙ corresponds to (R9M), which we have

already motivated in Section 3.2. The case S 2 ¬α has to be defined this way
due to (R3M) and (R4M). So the only challenging part in the definition of ⊗u

⊙

is the case S � ¬α and S 6= ∅. We claim that in this case a revision must have
the same impact on a belief state as an update, because the new information
is believed to be false. We think that it makes no difference whether the
original beliefs have been false or the original beliefs have become false due
to some change.

The definition of the translation ⊙r
⊗ follows the general approach of defining

update functions model by model. For further explanations, we refer to
the work of Winslett [64, 65], Katsuno and Mendelzon [46, 47, 48], as well as
Herzig and Rifi [38, 39]. It has turned out that translating revision to update
like that is the right way with respect to the KM postulates. However, there
is also a disadvantage of this definition. If for some S ∈ M and some α ∈ L0

we have S � ¬α and S 6= ∅, it can happen that Th(S ⊙r
⊗ α) 6= Th(S ⊗ α).

We think that this should not be possible, because of our claim that in this
case update and revision should be the same. Therefore, we will redefine this
translation in Section 4.2 for our purposes.

The translations from Definition 3.3.1 preserve almost every postulate. Given
an AGM revision ⊗, its translation ⊙r

⊗ is always a KM update. On the other
hand, the translation ⊗u

⊙ of a KM update ⊙ always satisfies the revision
postulates (R1M)–(R7M), but will not necessarily satisfy (R8M). The reason
for this lacking is that (R8M) has no corresponding update postulate. We
think that this is not a big disadvantage, because (R7M) and (R8M) imply
that the change is too minimal in some cases. We will discuss this point later
in Section 4.2.

Theorem 3.3.2. We have the following relationships between AGM revisions
and KM updates due to the translations of Definition 3.3.1.

1. If a function ⊙ : M×L0 → M is a KM update, then the function ⊗u
⊙

satisfies (R1M)–(R7M).

2. If a function ⊗ : M×L0 → M is an AGM revision, then the function
⊙r

⊗ is a KM update.
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Proof. For the first assertion, we show how to prove that ⊗u
⊙ satisfies (R7M).

Let S ∈ M and α, β ∈ L0 be given. If S = ∅, then the proof is easy
because we have S ⊗u

⊙ (α ∧ β) = ‖α ∧ β‖ = ‖α‖ ∩ ‖β‖ = (S ⊗u
⊙ α) ⊕ β.

If S 6= ∅, then we distinguish three cases. First, if S 2 ¬(α ∧ β), then
we also have S 2 ¬α. So the proof is straightforward because we have
S ⊗u

⊙ (α ∧ β) = S ⊕ (α ∧ β) = (S ⊕ α) ⊕ β = (S ⊗u
⊙ α) ⊕ β. Second, if

S � ¬(α ∧ β) and S 2 ¬α, then we have S � α → ¬β and therefore we get
S ⊗u

⊙ α = S ⊕ α � α ∧ ¬β. Hence, we have Th((S ⊗u
⊙ α) ⊕ β) = L0, and we

are done. In the last case, if S � ¬(α ∧ β) and S � ¬α, then we have

Th(S ⊗u
⊙ (α ∧ β)) = Th(S ⊙ (α ∧ β))

⊆ Th((S ⊙ α) ⊕ β) by (U5M)

= Th((S ⊗u
⊙ α) ⊕ β).

For the second assertion, we first show that ⊙r
⊗ satisfies (U6M). Let S ∈ M

and α, β ∈ L0 be given and suppose that S ⊙r
⊗ α � β and S ⊙r

⊗ β � α. Then
for all w ∈ S we have {w} ⊗ α ⊆ ‖β‖ and {w} ⊗ β ⊆ ‖α‖, and we get

Th(S ⊙r
⊗ α) = Th

(

⋃

w ∈ S

({w} ⊗ α)
)

=
⋂

w ∈ S

Th({w} ⊗ α) by Lemma 1.1.11

=
⋂

w ∈ S

Th(({w} ⊗ α) ∩ ‖β‖) by assumption

=
⋂

w ∈ S

Th({w} ⊗ (α ∧ β)) by (R7M) and (R8M)

=
⋂

w ∈ S

Th({w} ⊗ (β ∧ α)) by (R6M)

=
⋂

w ∈ S

Th(({w} ⊗ β) ∩ ‖α‖) by (R7M) and (R8M)

=
⋂

w ∈ S

Th({w} ⊗ β) by assumption

= Th
(

⋃

w ∈ S

({w} ⊗ β)
)

by Lemma 1.1.11

= Th(S ⊙r
⊗ β).

Now, we show that the function ⊙r
⊗ satisfies (U7M). Assume Card(S) ≤ 1,

that is we either have S = ∅ or S = {w} for some w ∈ Pow(P). If S = ∅,
then we have S = ∅ by Lemma 1.1.17. Hence, we get S ⊙r

⊗ (α ∨ β) = ∅
and (S ⊙r

⊗ α) ∩ (S ⊙r
⊗ β) = ∅, and the claim easily follows. If S = {w}

for some model w, then we have S = {w} by Lemma 1.1.19. Therefore, by
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the definition of the translation ⊙r
⊗, we get S ⊙r

⊗ (α ∨ β) = {w} ⊗ (α ∨ β)
and (S ⊙r

⊗ α) ∩ (S ⊙r
⊗ β) = ({w} ⊗ α) ∩ ({w} ⊗ β). We need to show

that Th({w} ⊗ (α ∨ β)) ⊆ Th(({w} ⊗ α) ∩ ({w} ⊗ β)). By (R2M), we
have {w} ⊗ (α ∨ β) � α ∨ β, and we either get {w} ⊗ (α ∨ β) 2 ¬α or
{w} ⊗ (α ∨ β) 2 ¬β. Without loss of generality, let {w} ⊗ (α ∨ β) 2 ¬α.
Then we have

Th({w} ⊗ (α ∨ β)) ⊆ Th(({w} ⊗ (α ∨ β)) ∩ ‖α‖) by Lemma 1.1.14

= Th(({w} ⊗ (α ∨ β)) ⊕ α)

⊆ Th({w} ⊗ ((α ∨ β) ∧ α)) by (R8M)

= Th({w} ⊗ α) by (R6M)

⊆ Th(({w} ⊗ α) ∩ ({w} ⊗ β)) by Lemma 1.1.14.

We want to mention that the proof of the first assertion only makes use
of (U0M), (U1M), and (U3M)–(U5M), where (U5M) is exclusively used for
proving (R7M). Furthermore, (R1M) is not used in order to prove the second
assertion due to the definition of ⊙r

⊗ and Lemma 1.1.19.

Even if a function ⊙ satisfies (U0M)–(U8M), it can happen that its trans-
lation ⊗u

⊙ from update to revision does not satisfy (R8M). The following
example illustrates this fact by making use of the possible models approach
by Winslett [64].

Example 3.3.3. The update function ⊙pma : M×L0 → M defined by

S ⊙pma α :=
⋃

w ∈ S

{v ∈ ‖α‖ : for all u ∈ ‖α‖, w ∆ u 6⊂ w ∆ v}

satisfies (U0M)–(U8M), see Example 2.3.5. Let P = {p, q, r}, S = {{q}, {r}},
α = p, and β = q. Then we have S 6= ∅, S � ¬α, and S � ¬(α ∧ β), as well
as S = S by Corollary 1.1.24. Therefore, we get

S ⊗u
(⊙pma) α = S ⊙pma α = {{p, q}, {p, r}} 2 ¬β,

S ⊗u
(⊙pma) (α ∧ β) = S ⊙pma (α ∧ β) = {{p, q}, {p, q, r}}.

Thus, we have (S ⊗u
(⊙pma)

α) ⊕ β = {{p, q}} + S ⊗u
(⊙pma)

(α ∧ β), and we

get Th((S ⊗u
(⊙pma)

α) ⊕ β) * Th(S ⊗u
(⊙pma)

(α ∧ β)) by Corollary 1.1.24. For

instance, we have ¬r ∈ Th((S⊗u
(⊙pma)

α)⊕β) but ¬r /∈ Th(S⊗u
(⊙pma)

(α∧β)).

For some later result, the following lemma will be useful. Its proof is directly
implied by the proof of Theorem 3.3.2.
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Lemma 3.3.4. If a function ⊙ : M × L0 → M satisfies (U0M), (U1M),
(U3M), and (U4M), then the function ⊗u

⊙ satisfies (R1M)–(R6M).

In order to get that the functions ⊗ and ⊗u
(⊙r

⊗) as well as the functions ⊙

and ⊙r
(⊗u

⊙) are the same (modulo Th), we need some additional properties,

which are quite strong. One reason for this need is the fact that some of the
original KM postulates for updates have no corresponding revision postulate
and vice versa. Another reason is the following. If the set P is finite, then
(U8M) implies that a model set S can be updated by separately updating
every model in S, and then taking the union. On the other hand, if P is
infinite, we do not have this identity. Therefore, in order to obtain the desired
result, we define the missing properties as follows,

Th(S ⊙ α) = Th
(

⋃

w ∈ S

({w} ⊙ α)
)

, (3.3)

∅ 6= S ⊆ ‖¬α‖ ⇒ Th(S ⊗ α) = Th
(

⋃

w ∈ S

({w} ⊗ α)
)

. (3.4)

From our point of view, the properties (3.3) and (3.4) are not directly related
to the definition of the update and revision process respectively. We have just
defined them in order to get the desired interchangeability results. However,
in Section 4.2 we will replace the translation ⊙r

⊗ by a new one, and we will
get similar results without making use of (3.3) or (3.4).

Lemma 3.3.5. We have the following interchangeability results.

1. If a function ⊗ : M×L0 → M satisfies the revision postulates (R3M),
(R4M), and (R9M) as well as property (3.4), then for all S ∈ M and
all α ∈ L0 we have Th(S ⊗u

(⊙r

⊗) α) = Th(S ⊗ α).

2. If a function ⊙ : M × L0 → M satisfies the update postulate (U2M)
as well as property (3.3), then for all S ∈ M and all α ∈ L0 we have
Th(S ⊙r

(⊗u

⊙) α) = Th(S ⊙ α).

Proof. Let S ∈ M and α ∈ L0 be given. The first assertion can be proved
as follows. If S = ∅, then we have Th(S ⊗u

(⊙r

⊗) α) = Th(‖α‖) by definition,

which is equal to Th(S ⊗ α) by postulate (R9M). If S 2 ¬α, then we have
Th(S ⊗u

(⊙r

⊗) α) = Th(S ⊕ α) by definition, which is the same as Th(S ⊗ α)

by (R3M) and (R4M). In the last case, if S 6= ∅ and S � ¬α, then we have

Th(S ⊗u
(⊙r

⊗) α) = Th(S ⊙r
⊗ α) = Th

(

⋃

w ∈ S

({w} ⊗ α)
)
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by definition, which is equal to Th(S ⊗α) by property (3.4). For the second
assertion, we have

Th(S ⊙r
(⊗u

⊙) α) = Th
(

⋃

w ∈ S

({w} ⊗u
⊙ α)

)

= Th
((

⋃

w ∈ S ∩ ‖α‖

({w} ⊗u
⊙ α)

)

∪
(

⋃

w ∈ S \ ‖α‖

({w} ⊗u
⊙ α)

))

= Th
((

⋃

w ∈ S ∩ ‖α‖

({w} ⊕ α)
)

∪
(

⋃

w ∈ S \ ‖α‖

({w} ⊙ α)
))

= Th
((

⋃

w ∈ S ∩ ‖α‖

{w}
)

∪
(

⋃

w ∈ S \ ‖α‖

({w} ⊙ α)
))

by definition. Applying Lemma 1.1.11 and (U2M), we get

=
(

⋂

w ∈ S ∩ ‖α‖

(

Th({w})
))

∩
(

⋂

w ∈ S \ ‖α‖

(

Th({w} ⊙ α)
))

=
(

⋂

w ∈ S ∩ ‖α‖

(

Th({w} ⊙ α)
))

∩
(

⋂

w ∈ S \ ‖α‖

(

Th({w} ⊙ α)
))

= Th
((

⋃

w ∈ S ∩ ‖α‖

({w} ⊙ α)
)

∪
(

⋃

w ∈ S \ ‖α‖

({w} ⊙ α)
))

= Th
(

⋃

w ∈ S

({w} ⊙ α)
)

,

which is the same as Th(S ⊙ α) by property (3.3).

If the set P is finite, then we have that property (3.3) is equivalent to (U8M),
as we state in the following lemma.

Lemma 3.3.6. Let P be finite and the function ⊙ : M×L0 → M be given.
Then we have that ⊙ satisfies (3.3) if and only if ⊙ satisfies (U8M).

Proof. The fact that property (3.3) implies (U8M) is an immediate conse-
quence of Lemma 1.1.17 and even holds for infinite P. We show how to prove
the converse direction. Let S ∈ M and α ∈ L0 be given. Since P is finite,
we also get that S ⊆ Pow(P) is finite. In addition, we have that S = S by
Corollary 1.1.24. Therefore, it will be enough to prove

Th(S ⊙ α) = Th
(

⋃

w ∈ S

({w} ⊙ α)
)

.

This can be done by induction on Card(S), where (U8M) is only used in the
induction step.
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The following result is directly implied by Lemma 3.3.5 and Lemma 3.3.6.
There is no similar result for revision functions.

Corollary 3.3.7. Let P be finite. If a function ⊙ : M×L0 → M satisfies
(U2M) and (U8M), then for all S ∈ M and all α ∈ L0 we have

Th(S ⊙r
(⊗u

⊙) α) = Th(S ⊙ α).

The functions ⊗fm and ⊙pma from Example 2.1.6 and Example 2.3.5 respec-
tively satisfy all of the conditions we need to apply Lemma 3.3.5.

Example 3.3.8. The revision function ⊗fm satisfies property (3.4) as well
as (R9M) by definition. In addition, we have seen in Example 2.1.6 that ⊗fm

satisfies (R1M)–(R8M). Therefore, we can apply Lemma 3.3.5 and for all
S ∈ M and all α ∈ L0 we have

Th(S ⊗u
(⊙r

(⊗fm)
) α) = Th(S ⊗fm α).

The update function ⊙pma satisfies property (3.3) by definition. Moreover,
from Example 2.3.5 we know that ⊙pma satisfies (U0M)–(U8M). Now, by
Lemma 3.3.5, we get that for all S ∈ M and all α ∈ L0 we have

Th(S ⊙r
(⊗u

(⊙pma)
) α) = Th(S ⊙pma α).

We are now going to explore the relationship between revision and update
in the context of consistent model sets.

Definition 3.3.9. Given a function ⊙ : Mc ×L0 → M, its translation from
update to revision is defined as follows,

⊗cu
⊙ : Mc × L0 → M, (S, α) 7→











S if � ¬α,

S ⊕ α if S 2 ¬α,

S ⊙ α otherwise.

The translation of a function ⊗ : Mc × L0 → M from revision to update is
defined by

⊙cr
⊗ : Mc × L0 → M, (S, α) 7→







S if � ¬α,
⋃

w ∈ S

({w} ⊗ α) otherwise.
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Observe that if a function ⊙ satisfies (U3Mc), then the function ⊗cu
⊙ obviously

satisfies property (3.1). This is also the case for the function ⊙cr
⊗ , whenever a

given function ⊗ satisfies (R5Mc). Like in Lemma 3.2.9, the translations from
Definition 3.3.9 are just compositions of some earlier defined translations. In
order to see this, we state the following lemma.

Lemma 3.3.10. Let the function ⊛ : Mc ×L0 → M be given. Then for all
S ∈ Mc and all α ∈ L0 we have

S ⊗cu
⊛ α = S (⊗u

(⊛iu ))
cr α, S ⊙cr

⊛ α = S (⊙r
(⊛ir ))

cu α.

Proof. Both equalities directly follow from Definition 3.1.5, Definition 3.1.17,
and Definition 3.3.1.

The following result is the same as Theorem 3.3.2, but in the context of
consistent model sets. Again, the function ⊗cu

⊙ is not necessarily a consistent
AGM revision, if a given function ⊙ is a consistent KM update. But (R8Mc)
is the only postulate that does not always hold.

Theorem 3.3.11. We have the following relationships between consistent
AGM revisions and consistent KM updates due to the translations of Defini-
tion 3.3.9.

1. If a function ⊙ : Mc × L0 → M is a consistent KM update, then the
function ⊗cu

⊙ satisfies (R1M), (R2Mc), (R3M), (R4M), (R5Mc), (R6M),
and (R7M).

2. If a function ⊗ : Mc × L0 → M is a consistent AGM revision, then
the function ⊙cr

⊗ is a consistent KM update.

Proof. For the first assertion, we can apply Lemma 3.1.18 and Theorem 3.3.2
in order to show that the function ⊗u

⊙iu satisfies (R1M)–(R7M). Now, by
Lemma 3.1.7, we get that the function (⊗u

(⊙iu ))
cr satisfies (R1M), (R2Mc),

(R3M), (R4M), (R5Mc), (R6M), and (R7M). By Lemma 3.3.10, we get
that this is the same function as ⊗cu

⊙ . For the second assertion, we can
use Lemma 3.1.6, Theorem 3.3.2, and Lemma 3.1.18 to prove that the func-
tion (⊙r

(⊗ir ))
cu is a consistent KM update. Due to Lemma 3.3.10, we know

that this function is the same as ⊙cr
⊗ .

We will now give an example for a consistent KM update ⊙, such that its
translation ⊗cu

⊙ does not satisfy (R8Mc). The following example is based on
Example 3.3.3.
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Example 3.3.12. The update function ⊙pma : M×L0 → M satisfies all of
the update postulates, see Example 2.3.5. Therefore, the translated function
(⊙pma)

cu : Mc × L0 → M, which is given by

S (⊙pma)
cu α :=

{

S ⊙pma α if 2 ¬α,

S otherwise,

is a consistent KM update by Lemma 3.1.18. Again, we take P = {p, q, r},
S = {{q}, {r}}, α = p, and β = q, like in Example 3.3.3. Then we have
2 ¬α, 2 ¬(α ∧ β), S � ¬α, as well as S � ¬(α ∧ β), and we get

S ⊗cu
(⊙pma)cu α = S (⊙pma)

cu α = S ⊙pma α,

S ⊗cu
(⊙pma)cu (α ∧ β) = S (⊙pma)

cu (α ∧ β) = S ⊙pma (α ∧ β).

Therefore, we now have Th((S ⊗cu
(⊙pma

cu ) α)⊕ β) * Th(S ⊗cu
(⊙pma)cu

(α∧ β)) by

Example 3.3.3, hence (R8Mc) is not satisfied.

The following lemma will be useful for some further results. It is the restric-
tion of the first assertion in Theorem 3.3.11 to a subset of postulates.

Lemma 3.3.13. If a function ⊙ : Mc ×L0 → M satisfies (U0M), (U1Mc),
(U3Mc), and (U4M), then the function ⊗cu

⊙ satisfies (R1M), (R2Mc), (R3M),
(R4M), (R5Mc), and (R6M).

Proof. By applying Lemma 3.1.19, Lemma 3.3.4, and Lemma 3.1.7, we get
that the function (⊗u

(⊙iu ))
cr satisfies (R1M), (R2Mc), (R3M), (R4M), (R5Mc),

and (R6M). But this is the same function as ⊗cu
⊙ by Lemma 3.3.10.

Like Lemma 3.3.5, the following result is a consequence of the properties (3.3)
and (3.4).

Lemma 3.3.14. We have the following interchangeability results.

1. If a function ⊗ : Mc×L0 → M satisfies the postulates (R3M), (R4M),
and (R9Mc) as well as property (3.4), then for all S ∈ Mc and all
α ∈ L0 we have Th(S ⊗cu

(⊙cr

⊗ ) α) = Th(S ⊗ α).

2. If a function ⊙ : Mc × L0 → M satisfies the postulates (U2M) and
(U9Mc) as well as property (3.3), then for all S ∈ Mc and all α ∈ L0

we have Th(S ⊙cr
(⊗cu

⊙ ) α) = Th(S ⊙ α).

Proof. Let S ∈ Mc and α ∈ L0 be given. For both assertions we have exactly
the same proof as of Lemma 3.3.5, except for the case � ¬α. In this case, we
first have Th(S⊗cu

(⊙cr

⊗ ) α) = Th(S) by definition, which is equal to Th(S⊗α)

by (R9Mc). Second, we have Th(S ⊙cr
(⊗cu

⊙ ) α) = Th(S) by definition, and this

is the same as Th(S ⊙ α) by (U9Mc).
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The following result follows from Lemma 3.3.14 and Lemma 3.3.6. We have
no similar result for revision functions on consistent model sets.

Corollary 3.3.15. Let P be finite. If a function ⊙ : Mc×L0 → M satisfies
(U2M), (U8M), and (U9Mc), then for all S ∈ M and all α ∈ L0 we have

Th(S ⊙cr
(⊗cu

⊙ ) α) = Th(S ⊙ α).

We conclude this section by discussing some common properties for revision
and update functions. From our point of view, there are differences in the
revision and update postulates that should not occur. For instance, given
the inconsistent model set S = ∅ and a satisfiable formula α, we have

S ⊗ α 6= ∅ by (R5M),

S ⊙ α = ∅ by (U2M).

Why should the inconsistent belief state be differently revised than updated?
We have not found any plausible explanation for this difference in the liter-
ature. Like (R9M) for revision, we think that an update of the inconsistent
belief state with a formula α should result in the model set ‖α‖,

S = ∅ ⇒ Th(S ⊗ α) = Th(S ⊙ α) = Th(‖α‖). (3.5)

As a consequence of requirement (3.5), we come to the conclusion that the
condition to end up in an inconsistent state has to be the same in both
revision and update theory,

� ¬α ⇔ S ⊗ α = ∅ ⇔ S ⊙ α = ∅. (3.6)

The following common behaviour of revision and update functions is a con-
sequence of (R3M), (R4M), and (U2M),

S � α and S 6= ∅ ⇒ Th(S ⊗ α) = Th(S ⊙ α) = Th(S), (3.7)

and we believe that this is a suitable interpretation of minimal change. Last
but not least, if the new information contradicts our beliefs, there is no
connection between revision and update functions according to the original
sets of postulates. In this case, we propose that the resulting belief state
should again be the same,

S � ¬α ⇒ Th(S ⊗ α) = Th(S ⊙ α). (3.8)

So the only difference between revision and update functions occurs if S 2 α
and S 2 ¬α. Then we have Th(S⊗α) = Th(S⊕α) by (R3M) and (R4M), and
Th(S⊙α) = Th((S⊕α)∪((S\‖α‖)⊙α)) by (U2M) and (U8M). In Section 4.2
we will change some of the update postulates so that the properties (3.5),
(3.6), (3.7), and (3.8) are all satisfied.





Chapter 4

New functions

This chapter provides new belief change functions that correspond to our un-
derstanding of minimal change. In Section 4.1 we will define three variants
of the standard update function and we will investigate which update postu-
lates they satisfy. In addition, we will define the notion of strength of a belief
change function and show that the new functions are all stronger than the
standard update function. We will compare their strength to the strength of
other update functions like the possible models approach, as well. Finally,
we will translate the new update functions into revision functions and verify
which revision postulates they satisfy. In Section 4.2 we will commit ourselves
to new sets of postulates for revision, contraction, and update functions. The
new correspondences between these sets of postulates will then be presented.
They do not differ very much from the relationships between the original sets
of postulates. Moreover, we will give examples for revision, contraction, and
update functions that satisfy the new sets of postulates. Instead of “minimal
change” we will introduce the notion of “minimax change”, and we will argue
that it leads to more reasonable belief change functions.

4.1 New update functions

From our point of view, the syntax independent standard update function ⊙su

from Definition 2.3.9 does the right thing if the new information contradicts
our beliefs. The main reason for this preference is the fact that there is no
problem with disjunctive input, see [39] for a detailed discussion. But if the
new information is consistent with our beliefs, we think that the amount of
change performed by the function ⊙su is far too big. Especially, if we already
believe that the new information is true, why should we change our beliefs?
We believe that the only problem is given by the fact that ⊙su does not satisfy
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(U2M), which we have proved in Lemma 2.3.10. In order to fix this lacking,
we propose three variants of the standard update function, which all satisfy
(U2M). The selective standard update function ⊙ssu solves the problem by
performing a simple case distinction. The partial standard update function
⊙psu only operates on one part of a given model set. The cautious standard
update function ⊙csu only considers models that are “compatible” with the
original beliefs. We want to mention that we use our personal understanding
of compatibility in this definition.

Definition 4.1.1. The new functions ⊙ssu,⊙psu,⊙csu : M × L0 → M are
defined as follows,

S ⊙ssu α :=

{

S if S � α,

S ⊙su α otherwise,

S ⊙psu α := (S ⊕ α) ∪ ((S \ ‖α‖) ⊙su α),

S ⊙csu α :=











(S ⊕ α) ∪ {w ∈ (S \ ‖α‖) ⊙su α : for some

v ∈ S ⊕ α, w ∩ atm♯(α) = v ∩ atm♯(α)} if S 2 ¬α,

S ⊙su α otherwise.

Observe that the case S 2 ¬α in the definition of the function ⊙csu encodes
our intuition about a model of the formula α being compatible with the
model set S.

Lemma 4.1.2. The functions ⊙ssu and ⊙csu only satisfy (U0M)–(U4M),
whereas the function ⊙psu additionally satisfies (U8M).

Proof. We prove that ⊙psu satisfies (U0M). For all S ∈ M and all α ∈ L0

we have

Th(S ⊙psu α) = Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙su α))

= Th(S ⊕ α) ∩ Th((S \ ‖α‖) ⊙su α) by Lemma 1.1.11

= Th(S ⊕ α) ∩ Th(S \ ‖α‖ ⊙su α) by Lemma 2.3.10

= Th(S ⊕ α) ∩ Th(S ⊕ ¬α⊙su α)

= Th(S ⊕ α) ∩ Th(S ⊕ ¬α⊙su α) by Lemma 1.2.6

= Th(S ⊕ α) ∩ Th(S \ ‖α‖ ⊙su α)

= Th(S ⊕ α) ∩ Th((S \ ‖α‖) ⊙su α) by Lemma 2.3.10

= Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙su α)) by Lemma 1.1.11

= Th(S ⊙psu α).
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The proofs of the other postulates and for the other functions are similar or
a direct consequence of Lemma 2.3.10. In order to see that the functions
⊙ssu, ⊙psu, and ⊙csu all do not satisfy (U5M), (U6M), and (U7M), we can
use exactly the same counterexamples as for the function ⊙su in the proof of
Lemma 2.3.10. We conclude this proof by showing that the functions ⊙ssu and
⊙csu both do not satisfy (U8M). Let P = {p, q, r}, S = {{p}}, S ′ = {{r}},
and α = p ∨ q. Then we obviously have S � α, S ′ 2 α, and S ∪ S ′ 2 α, and
we immediately get (S ⊙ssu α) ∪ (S ′ ⊙ssu α) = {{p}, {p, r}, {q, r}, {p, q, r}}
and (S ∪ S ′) ⊙ssu α = {{p}, {q}, {p, q}, {p, r}, {q, r}, {p, q, r}}. We get that
(U8M) is violated because we have q → r ∈ Th((S ⊙ssu α) ∪ (S ′ ⊙ssu α)) but
q → r /∈ Th((S∪S ′)⊙ssuα). On the other hand, we have S 2 ¬α, S ′ � ¬α, and
(S∪S ′) 2 ¬α, hence (S⊙csuα)∪(S ′⊙csuα) = {{p}, {p, r}, {q, r}, {p, q, r}} and
(S∪S ′)⊙csuα = {{p}, {p, r}}. We can see that (U8M) is not satisfied because
we have ¬q ∈ Th((S ∪ S ′) ⊙csu α) but ¬q /∈ Th((S ⊙csu α) ∪ (S ′ ⊙csu α)).

There is a property that all update and revision functions have in common:
for all S ∈ M and all α ∈ L0 the models in S ∩ ‖¬α‖ are dropped. This is a
direct consequence of (U1M) and (R2M) respectively. The only action that
gives rise to different update and revision functions is the adding of some
new models of α. Therefore, the update and revision functions can easily be
ordered by set inclusion, see Herzig and Rifi [39] for the comparative strength
of update functions on belief bases. Our way of ordering the functions is
slightly different because of the notion of model sets.

Definition 4.1.3. Let the functions ⊛,⊛′ : M×L0 → M be given. Then
we say that the function ⊛ is at least as strong as ⊛′, denoted by ⊛ . ⊛′, if
for all S ∈ M and all α ∈ L0 we have

Th(S ⊛ α) ⊇ Th(S ⊛′ α).

We write ⊛ ≈ ⊛′ to express that the two functions have the same strength,
and ⊛ < ⊛′ to denote that the function ⊛ is stronger than ⊛′. These notions
are defined by

⊛ ≈ ⊛′ :⇔ ⊛ . ⊛′ and ⊛′ . ⊛,

⊛ < ⊛′ :⇔ ⊛ . ⊛′ and ⊛ 6≈ ⊛′.

We have chosen the symbol < (“less than”) in order to indicate that a
stronger function performs less change. That is, the stronger update or
revision is adding less models to a model set. The next lemma states that
the relation . is a preorder (reflexive and transitive), ≈ is an equivalence
relation (reflexive and Euclidean), and < is a strict partial order (irreflexive
and transitive).
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Lemma 4.1.4. For all functions ⊛,⊛′,⊛′′ : M×L0 → M we have

⊛ . ⊛, ⊛ . ⊛′ and ⊛′ . ⊛′′ ⇒ ⊛ . ⊛′′,

⊛ ≈ ⊛, ⊛ ≈ ⊛′ and ⊛ ≈ ⊛′′ ⇒ ⊛′ ≈ ⊛′′,

⊛ ≮ ⊛, ⊛ < ⊛′ and ⊛′ < ⊛′′ ⇒ ⊛ < ⊛′′.

Proof. Since the relation ⊇ is reflexive and transitive, we easily get the same
properties for the relation .. The properties of the relations ≈ and < now
directly follow from the reflexivity and transitivity of ..

Note that if for some S ∈ M and some α ∈ L0 we have S � α, then we get

S ⊙csu α = S ⊙psu α = S ⊙ssu α = S

by Definition 4.1.1. Moreover, it is easy to see that if S � ¬α, then we have

S ⊙csu α = S ⊙psu α = S ⊙ssu α = S ⊙su α.

So the new functions can only perform a different update if S 2 α and
S 2 ¬α. Indeed, we can show that the update functions we have met so
far all have different strength, including ⊙pma. In addition, all but two are
comparable with respect to ., as we show in the following theorem.

Theorem 4.1.5. We have the following comparability results,

1. ⊙csu < ⊙psu < ⊙ssu < ⊙su,

2. ⊙pma < ⊙psu,

3. ⊙pma 6. ⊙csu and ⊙csu 6. ⊙pma.

Proof. Let S ∈ M and α ∈ L0 be given. For the first assertion, we will
show how to prove ⊙psu . ⊙ssu. Due to Lemma 1.1.14, it will do to prove
S ⊙psu α ⊆ S ⊙ssu α. We distinguish two cases. First, if S � α, then we have

S ⊙psu α = S ⊕ α = S = S ⊙ssu α ⊆ S ⊙ssu α

by Lemma 1.1.14. Second, if S 2 α, then we get

S ⊙psu α = (S ⊕ α) ∪ ((S \ ‖α‖) ⊙su α)

⊆ ((S ⊕ α) ⊙su α) ∪ ((S \ ‖α‖) ⊙su α) by Corollary 2.3.12

⊆ ((S ⊕ α) ⊙su α) ∪ ((S \ ‖α‖) ⊙su α) by Lemma 1.1.14

= ((S ⊕ α) ∪ (S \ ‖α‖)) ⊙su α by Lemma 2.3.10

= S ⊙su α,

and this is equal to S ⊙ssu α by definition. The proofs of ⊙csu . ⊙psu and
⊙ssu . ⊙su are similar, so we have ⊙csu . ⊙psu . ⊙ssu . ⊙su. The following
examples imply that these four functions all have different strength.
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• Let P = {p, q}, S = {∅, {p}}, and α = p ∨ q. Then we can easily get
S⊙csu α = {{p}} and S⊙psu α = {{p}, {q}, {p, q}}. Therefore, we have
¬q ∈ Th(S ⊙csu α) but ¬q /∈ Th(S ⊙psu α).

• Let P = {p, q, r}, S = {{p}, {r}}, and α = p∨q. Then we immediately
get S⊙psu α = {{p}, {p, r}, {q, r}, {p, q, r}}. On the other hand, we get
S ⊙ssu α = {{p}, {q}, {p, q}, {p, r}, {q, r}, {p, q, r}} and we can easily
see that q → r ∈ Th(S ⊙psu α) but q → r /∈ Th(S ⊙ssu α).

• Let P = {p, q}, S = {{p}}, and α = p ∨ q. Then we directly get
S⊙ssuα = {{p}} and S⊙suα = {{p}, {q}, {p, q}}. We can now observe
that ¬q ∈ Th(S ⊙ssu α) but ¬q /∈ Th(S ⊙su α).

We have now also shown ⊙csu 6≈ ⊙psu, ⊙psu 6≈ ⊙ssu, and ⊙ssu 6≈ ⊙su. For the
second assertion, we will now prove ⊙pma . ⊙psu. It will be sufficient to show
S ⊙pma α ⊆ S ⊙psu α. We take any v ∈ S ⊙pma α and distinguish two cases.
First, if v ∈ S, then we have v ∈ S ⊕ α by Lemma 1.2.6 and because ⊙pma

satisfies (U1M). Applying the fact that S ⊕ α ⊆ S ⊙psu α, we also get that
v ∈ S ⊙psu α by Lemma 1.1.16. Second, if v /∈ S, then for some w ∈ S and for
all u ∈ ‖α‖ we have w∆u 6⊂ w∆v by the definition of ⊙pma in Example 2.3.5.
Let us suppose that w ∆ v * atm♯(α). We construct a model v′ by changing
in v the value of the propositions in w ∆ v \ atm♯(α). Obviously, we get
v′ ∈ ‖α‖ and w ∆ v′ ⊂ w ∆ v, which is a contradiction. Therefore, we have
w∆ v ⊆ atm♯(α), that is v ∈ S ⊙psu α, hence v ∈ S ⊙psu α by Lemma 1.1.14.
In order to prove ⊙pma 6≈ ⊙psu, let P = {p, q}, S = {∅}, and α = p∨ q. Then
we have S ⊙pma α = {{p}, {q}} and S ⊙psu α = {{p}, {q}, {p, q}}. It is now
easy to see that ¬(p ∧ q) ∈ Th(S ⊙pma α) but ¬(p ∧ q) /∈ Th(S ⊙psu α). For
the examples that prove the third assertion, we refer to the table of update
results in Appendix A.

Now, we have two ways of measuring the amount of change that belief change
functions perform: the update postulates and the relation .. Lemma 4.1.2
and Theorem 4.1.5 show that these two measures are not compatible. Ac-
cording to the KM postulates for updates, the function ⊙psu is closer to the
notion of minimal change than the functions ⊙csu and ⊙ssu, because it satis-
fies one more postulate. On the other hand, with respect to ., the function
⊙csu performs less change than ⊙psu and ⊙ssu.

Remark 4.1.6. According to the KM postulates, the possible models ap-
proach ⊙pma satisfies the conditions for minimal change, whereas the cau-
tious standard update ⊙csu only satisfies four of the eight original postulates
(remember that (U0M) and (U4M) have originally been stated in one pos-
tulate). Due to Theorem 4.1.5, we have that the functions ⊙csu and ⊙pma
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are not comparable with respect to the relation .. However, we believe that
“in average”, the amount of change performed by ⊙csu is less than the one
performed by ⊙pma. Since it is not clear how the “average amount of change”
can be defined, we will discuss some empirical results in Appendix A.

We can show that with respect to ., the function ⊙psu is maximal in the
following sense. All functions that are stronger than ⊙su and satisfy (U2M)
and (U8M) are at least as strong as ⊙psu.

Lemma 4.1.7. If a function ⊙ : M×L0 → M satisfies (U2M) and (U8M),
then we have

⊙ . ⊙su ⇒ ⊙ . ⊙psu.

Proof. Let S ∈ M and α ∈ L0 be given. Then we have

Th(S ⊙ α) = Th((S ∩ ‖α‖) ∪ (S \ ‖α‖) ⊙ α)

= Th(((S ∩ ‖α‖) ⊙ α) ∪ ((S \ ‖α‖) ⊙ α)) by (U8M)

= Th((S ∩ ‖α‖) ⊙ α) ∩ Th((S \ ‖α‖) ⊙ α) by Lemma 1.1.11

= Th(S ∩ ‖α‖) ∩ Th((S \ ‖α‖) ⊙ α) by (U2M)

⊇ Th(S ∩ ‖α‖) ∩ Th((S \ ‖α‖) ⊙su α) by assumption

= Th((S ∩ ‖α‖) ∪ ((S \ ‖α‖) ⊙su α)) by Lemma 1.1.11

= Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙su α)),

which is the same as Th(S ⊙psu α).

Lemma 4.1.7 is helpful for the comparison of ⊙psu and ⊙ssu with other update
functions from literature, as the following example illustrates.

Example 4.1.8. The function ⋄mce : L0 × L0 → L0 by Zhang and Foo [66]
and the function ⋄mcd∗ : L0 ×L0 → L0 by Herzig and Rifi [38] are defined by

‖ϕ ⋄mce α‖ :=
⋃

w ∈ ‖ϕ‖

w ·mce α, ‖ϕ ⋄mcd∗ α‖ :=
⋃

w ∈ ‖ϕ‖

w ·mcd∗ α,

for some functions ·mce, ·mcd∗ : Pow(P) × L0 → M. We can now define the
corresponding functions ⊙mce,⊙mcd∗ : M×L0 → M on model sets by

S ⊙mce α :=
⋃

w ∈ S

w ·mce α, S ⊙mcd∗ α :=
⋃

w ∈ S

w ·mcd∗ α.

Due to the results and examples by Herzig and Rifi [39], we immediately get
⊙mce < ⊙su and ⊙mcd∗ < ⊙su. Lemma 4.1.7 directly implies ⊙mce . ⊙psu

and ⊙mcd∗ . ⊙psu, and the examples from [39] can also be used to show
⊙mce 6≈ ⊙psu and ⊙mcd∗ 6≈ ⊙psu.
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We end this section by analysing the functions that we get by translating
the update functions we have met so far to revision. We already know from
Theorem 3.3.2 and Example 3.3.3 that the function

⊗u
(⊙pma) : M×L0 → M, (S, α) 7→











‖α‖ if S = ∅,

S ⊕ α if S 2 ¬α,

S ⊙pma α otherwise,

satisfies the postulates (R1M)–(R7M) but not (R8M). It also satisfies the
new postulate (R9M) by definition. However, in the case S 6= ∅ and S � ¬α,
we have that ⊗u

(⊙pma)
is too restrictive because of the problem of disjunctive

input, cf. [39]. Therefore, the function ⊗u
(⊙pma)

is not a possible candidate for
a revision function that satisfies our requirements. So we will concentrate on
the translations of the variants of the standard update function to revision.
It turns out that they all translate to the same function.

Lemma 4.1.9. For all S ∈ M and all α ∈ L0 we have

S ⊗u
(⊙csu) α = S ⊗u

(⊙psu) α = S ⊗u
(⊙ssu) α = S ⊗u

(⊙su) α.

Proof. Every equality is an immediate consequence of Definition 3.3.1 and
Definition 4.1.1.

Due to Lemma 2.3.10 and Lemma 3.3.4 we get that the function ⊗u
(⊙su)

sat-

isfies the postulates (R1M)–(R6M). Clearly, ⊗u
(⊙su)

also satisfies (R9M) by

definition. In the following example we show that (R7M) and (R8M) are not
satisfied.

Example 4.1.10. First, let P = {p, q}, S = {∅}, α = p ∨ q, and β = p.
Then we have S � ¬α and S � ¬(α ∧ β), hence we get

S ⊗u
(⊙su) (α ∧ β) = S ⊙su (α ∧ β) = {{p}},

(S ⊗u
(⊙su) α) ⊕ β = (S ⊙su α) ⊕ β = {{p}, {p, q}}.

It is now easy to see that (R7M) is violated because ¬p ∈ Th(S⊗u
(⊙su)

(α∧β))

but ¬p /∈ Th((S ⊗u
(⊙su)

α) ⊕ β). Second, let P = {p, q, r}, S = {{q}}, α = p,

and β = q ∨ r. Then we have S � ¬α and S � ¬(α ∧ β), thus we get

(S ⊗u
(⊙su) α) ⊕ β = (S ⊙su α) ⊕ β = {{p, q}} ∩ ‖β‖ = {{p, q}},

S ⊗u
(⊙su) (α ∧ β) = S ⊙su (α ∧ β) = {{p, q}, {p, r}, {p, q, r}}.

We can now easily see that ⊗u
(⊙su)

does not satisfy (R8M), because we have

(S ⊗u
(⊙su)

α) 2 ¬β, ¬r ∈ Th((S ⊗u
(⊙su)

α)⊕ β), and ¬r /∈ Th(S ⊗u
(⊙su)

(α∧ β)).

In the next section we will formulate new requirements for revision, contrac-
tion, and update functions. Moreover, we will investigate the relationships
between functions that satisfy the new conditions.
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4.2 Minimal change reconsidered

We have already mentioned that the AGM postulates for revision and con-
traction as well as the KM postulates for update are too restrictive, cf. [26,
39]. That is, the functions that satisfy all of the respective postulates cannot
be used in applications. So we will only accept the postulates that correspond
to our intuition of the revision, contraction, and update process respectively.
In the following, we will present our minimal sets of postulates that we think
every revision, contraction, and update function should satisfy.

We have seen in Chapter 2 that the revision postulate (R7M) and the update
postulate (U5M) are identical. Moreover, it has been shown in [39] that
(U5M) causes the problem of disjunctive input, which should be avoided.
This problem also appears if the new information contradicts our beliefs. In
this case we have claimed with (3.8) that update and revision should do the
same. Therefore, in addition to (U5M), we also reject (R7M).

The situation is similar with the revision postulate (R8M), which we reject
for the following reason. We have already argued that if the new informa-
tion contradicts our beliefs, then revision and update should be the same.
Furthermore, we have argued that in this case the standard update func-
tion seems to be the most reasonable function. Now, as we have seen in
Example 4.1.10, such a revision function does not satisfy (R8M).

Definition 4.2.1. We commit ourselves to the following sets of revision
postulates.

1. A function ⊗ : M×L0 → M is a revision candidate, if it satisfies the
revision postulates (R1M)–(R6M) and (R9M).

2. A function ⊗ : Mc × L0 → M is a consistent revision candidate, if it
satisfies the revision postulates (R1M), (R2Mc), (R3M), (R4M), (R5Mc),
(R6M), and (R9Mc).

The translations from Definition 3.1.5 transform a revision candidate into a
consistent revision candidate and vice versa.

Theorem 4.2.2. We have the following relationships between revision can-
didates and consistent revision candidates.

1. If a function ⊗ : M×L0 → M is a revision candidate, then the function
⊗cr is a consistent revision candidate and for all S ∈ M and all α ∈ L0

we have Th(S (⊗cr )ir α) = Th(S ⊗ α).

2. If a function ⊗ : Mc × L0 → M is a consistent revision candidate,
then the function ⊗ir is a revision candidate and for all S ∈ Mc and
all α ∈ L0 we have Th(S (⊗ir )cr α) = Th(S ⊗ α).
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Proof. We show how to prove the first assertion. If ⊗ is a revision candi-
date, then it satisfies (R1M)–(R6M) and the function ⊗cr satisfies (R1M),
(R2Mc), (R3M), (R4M), (R5Mc), and (R6M) by Lemma 3.1.7. In addition,
the function ⊗cr satisfies (R9Mc) by Definition 3.1.5, hence it is a consis-
tent revision candidate. Moreover, for all S ∈ M all α ∈ L0 we have
Th(S (⊗cr)ir α) = Th(S ⊗ α) by Lemma 3.1.9 because ⊗ satisfies (R2M)
and (R9M). The second assertion can similarly be proved using the same
two lemmas.

In addition to the postulates for revision candidates, we think that a revision
function ⊗ : M → M should satisfy the following property in order to avoid
the problem of disjunctive input. For all S ∈ M and all α ∈ L0 we require

S � ¬α and S 6= ∅ ⇒ Th(S ⊗ α) ⊆ Th(S ⊙su α). (4.1)

A revision candidate that satisfies property (4.1) corresponds to our idea of
minimax change: if the new information contradicts our beliefs, the amount
of change should be at least as big as the one performed by the standard up-
date function, in all other cases the model set should be minimally changed.
In the context of consistent model sets, the corresponding requirement for
minimax change is given as follows (S ∈ Mc, α ∈ L0),

S � ¬α and 2 ¬α ⇒ Th(S ⊗ α) ⊆ Th(S ⊙su α). (4.2)

In the following example we are going to present a revision candidate and
a consistent revision candidate that perform minimax change according to
property (4.1) and property (4.2) respectively.

Example 4.2.3. The minimax revision function ⊗mm : M × L0 → M is
defined by

S ⊗mm α := S ⊗u
(⊙su) α =











‖α‖ if S = ∅,

S ⊕ α if S 2 ¬α,

S ⊙su α otherwise.

Due to Lemma 2.3.10 and Lemma 3.3.4 we get that the function ⊗mm sat-
isfies the postulates (R1M)–(R6M). Postulate (R9M) and property (4.1) are
obviously satisfied, as well. The function (⊗mm)cr : Mc × L0 → M defined
by

S (⊗mm)cr α =











S if � ¬α,

S ⊕ α if S 2 ¬α,

S ⊙su α otherwise
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is a consistent revision candidate by Theorem 4.2.2. Moreover, it is immedi-
ate that (⊗mm)cr also satisfies property (4.2).

We have mentioned in Section 2.2 that the contraction postulates (C7M) and
(C8M) are just the technical counterpart to (R7M) and (R8M) respectively.
We reject (C7M) and (C8M) for the following reason. We accept the basic
contraction postulates (C1M)–(C6M). If a contraction function additionally
satisfies (C7M) and (C8M), then its Levi translation satisfies (R7M) and
(R8M) by Theorem 3.2.6. But we have already argued against these two
revision postulates.

Definition 4.2.4. We commit ourselves to the following sets of contraction
postulates.

1. A function ⊖ : M×L0 → M is a contraction candidate, if it satisfies
(C1M)–(C6M) and (C9M).

2. A function ⊖ : Mc ×L0 → M is a consistent contraction candidate, if
it satisfies (C1M)–(C6M).

The functions from Definition 3.1.11 translate a contraction candidate into
a consistent contraction candidate and vice versa.

Theorem 4.2.5. We have the following relationships between contraction
candidates and consistent contraction candidates.

1. If a function ⊖ : M × L0 → M is a contraction candidate, then the
function ⊖cc is a consistent contraction candidate and for all S ∈ M
and all α ∈ L0 we have Th(S (⊖cc)ic α) = Th(S ⊖ α).

2. If a function ⊖ : Mc ×L0 → M is a consistent contraction candidate,
then the function ⊖ic is a contraction candidate and for all S ∈ Mc

and all α ∈ L0 we have Th(S (⊖ic)cc α) = Th(S ⊖ α).

Proof. We show how to prove the second assertion. If ⊖ is a consistent
contraction candidate, then it satisfies (C1M)–(C6M) and the function ⊖ic

so also does by Lemma 3.1.13. By Definition 3.1.11, ⊖ic also satisfies (C9M),
so it is a contraction candidate. Furthermore, for all S ∈ M and all α ∈ L0

we have Th(S (⊖ic)cc α) = Th(S ⊖ α) by Lemma 3.1.15. The proof of the
first assertion is similar and uses the same two lemmas.

The Levi and Harper identities from Definition 3.2.4 are suitable to translate
a revision candidate into a contraction candidate and vice versa.

Theorem 4.2.6. We have the following relationships between revision and
contraction candidates.
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1. If a function ⊗ : M×L0 → M is a revision candidate, then the function
⊖r

⊗ is a contraction candidate and for all S ∈ M and all α ∈ L0 we
have Th(S ⊗c

(⊖r

⊗) α) = Th(S ⊗ α).

2. If a function ⊖ : M × L0 → M is a contraction candidate, then the
function ⊗c

⊖ is a revision candidate and for all S ∈ M and all α ∈ L0

we have Th(S ⊖r
(⊗c

⊖) α) = Th(S ⊖ α).

Proof. We show how to prove the first assertion. If ⊗ is a revision candidate,
then it satisfies (R1M)–(R6M) and the function ⊖r

⊗ satisfies (C1M)–(C6M) by
Lemma 3.2.5. Because ⊗ also satisfies (R9M) by assumption, the function ⊖r

⊗

satisfies (C9M), so it is a contraction candidate. In addition, for all S ∈ M
all α ∈ L0 we have

Th(S ⊗c
(⊖r

⊗) α) = Th(S ⊗ α)

by Lemma 3.2.7, because ⊗ satisfies (R2M), (R3M), and (R6M). The second
assertion similarly follows from the same two lemmas.

Due to the Levi and Harper identities we get that our notion of minimax
change can also be stated for contraction functions. Property (4.1) translates
to the following requirement (S ∈ M, α ∈ L0),

S � α and S 6= ∅ ⇒ Th(S ⊖ α) ⊆ Th(S ∪ (S ⊙su ¬α)). (4.3)

Accordingly, the notion of minimax change for consistent contraction func-
tions that corresponds to property (4.2) can be formulated as follows. For
all S ∈ Mc and all α ∈ L0 we require

S � α ⇒ Th(S ⊖ α) ⊆ Th(S ∪ (S ⊙su ¬α)). (4.4)

If we apply the Harper translation from Definition 3.2.4 to the minimax
revision function ⊗mm from Example 4.2.3, we get the corresponding minimax
contraction function.

Example 4.2.7. The minimax contraction function ⊖mm : M×L0 → M is
defined as follows,

S ⊖mm α := S ⊖r
(⊗mm) α =











‖¬α‖ if S = ∅,

S if S 2 α,

S ∪ (S ⊙su ¬α) otherwise.
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By Theorem 4.2.6, we get that the function ⊖mm is a contraction candidate.
Clearly, we also get that the function (⊖mm)cc : Mc × L0 → M defined by

S (⊖mm)cc α =

{

S if S 2 α,

S ∪ (S ⊙su ¬α) otherwise.

is a consistent contraction candidate by Theorem 4.2.5.

The translations from Definition 3.2.8 transform a consistent revision candi-
date into a consistent contraction candidate and vice versa.

Theorem 4.2.8. We have the following relationships between consistent re-
vision and consistent contraction candidates.

1. If a function ⊗ : Mc × L0 → M is a consistent revision candidate,
then the function ⊖cr

⊗ is a consistent contraction candidate and for all
S ∈ Mc and all α ∈ L0 we have Th(S ⊗cc

(⊖cr

⊗ ) α) = Th(S ⊗ α).

2. If a function ⊖ : Mc ×L0 → M is a consistent contraction candidate,
then the function ⊗cc

⊖ is a consistent revision candidate and for all
S ∈ Mc and all α ∈ L0 we have Th(S ⊖cr

(⊗cc

⊖ ) α) = Th(S ⊖ α).

Proof. We show how to prove the second assertion. If ⊖ is a consistent con-
traction candidate, then it satisfies (C1M)–(C6M) and the function ⊗cc

⊖ sat-
isfies (R1M), (R2Mc), (R3M), (R4M), (R5Mc), and (R6M) by Lemma 3.2.10.
By Definition 3.2.8, ⊗cc

⊖ also satisfies (R9Mc), thus it is a consistent revision
candidate. Moreover, for all S ∈ M and all α ∈ L0 we have

Th(S ⊖cr
(⊗cc

⊖ ) α) = Th(S ⊖ α)

by Lemma 3.2.12, because ⊖ satisfies (C2M), (C3M), (C5M), and (C6M).
The first assertion can similarly be proved using the same two lemmas.

We are now going to define new update postulates. According to requirement
(3.5), we want the revision postulate (R9M) to hold for update functions, as
well. Therefore, we define the following additional update postulate,

(U9M) S = ∅ ⇒ Th(S ⊙ α) = Th(‖α‖).

As a consequence of (U9M), we have to slightly weaken the update postulate
(U2M). The following modified postulate corresponds to requirement (3.7),

(U2
⋆
M) S � α and S 6= ∅ ⇒ Th(S ⊙ α) = Th(S).
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Furthermore, we believe that (U8M) has not much to do with minimal change.
Remember that according to this postulate, an update has to be performed
model by model. By Theorem 4.1.5, we now that the variants of the standard
update function can be ordered as follows,

⊙csu < ⊙psu < ⊙ssu < ⊙su.

By Lemma 2.3.10 and Lemma 4.1.2, we get that only ⊙su and ⊙psu satisfy
(U8M). We therefore suggest a weaker version of this postulate,

(U8
⋆
M) S 2 α ⇒ Th(S ⊙ α) = Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙ α)).

Observe that the premise S 2 α of the modified postulate (U8
⋆
M) is necessary

because of property (3.5). We think that (U8
⋆
M) corresponds to the idea of

minimal change because it requires that only one partition of the original
model set is updated.

We have now added one additional update postulate and modified two of
the original KM postulates for update. Moreover, we reject (U5M), (U6M),
and (U7M) for the following reason. If the new information contradicts our
beliefs, we think that the standard update function ⊙su from Definition 2.3.9
performs an adequate change because we have no problem with disjunctive
input, cf. [39]. The counterexamples in the proof of Lemma 2.3.10 show
that in this case the function ⊙su violates the postulates (U5M), (U6M), and
(U7M).

Definition 4.2.9. We commit ourselves to the following sets of update pos-
tulates.

1. A function ⊙ : M × L0 → M is an update candidate, if it satisfies
(U0M), (U1M), (U2

⋆
M), (U3M), (U4M), (U8

⋆
M), and (U9M).

2. A function ⊙ : Mc × L0 → M is a consistent update candidate, if it
satisfies (U0M), (U1Mc), (U2M), (U3Mc), (U4M), (U8

⋆
M), and (U9Mc).

Note that we do not need to replace (U2M) by (U2
⋆
M) in the context of

consistent model sets because a consistent model set is always non empty.
We can now show that revision and update candidates satisfy most of our
requirements from the end of Section 3.3.

Lemma 4.2.10. If a function ⊗ : M×L0 → M is a revision candidate and
a function ⊙ : M×L0 → M is an update candidate, then the two functions
satisfy the properties (3.5), (3.6), and (3.7).
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Proof. Property (3.5) is directly implied by (R9M) and (U9M), property (3.7)
is satisfied due to (R3M), (R4M), and (U2

⋆
M). We show that property (3.6) is

also satisfied. Let S ∈ M and α ∈ L0 be given. By (R5M), we immediately
get � ¬α ⇔ S ⊗ α. For the update candidate, we proceed as follows. If
� ¬α, then we get S ⊙ α � α by (U1M), hence S ⊙ α = ∅. For the converse
direction, if S ⊙ α = ∅, then we have either S = ∅ or � ¬α by (U3M). But
S = ∅ implies Th(‖α‖) = Th(S ⊙ α) by (U9M). Hence, we have � ¬α in
both cases, and the proof is finished.

Due to the significant changes in the sets of update postulates, we have to
introduce a new translation from update functions operating on consistent
model sets to functions on possibly inconsistent model sets.

Definition 4.2.11. Given a function ⊙ : Mc × L0 → M, its translation
⊙iu⋆ : M×L0 → M is defined by

S ⊙iu⋆ α :=

{

S ⊙ α if 2 ¬α and S 6= ∅,

‖α‖ otherwise.

We can now show that the translations ⊙cu from Definition 3.1.17 and ⊙iu⋆

are in the same relationship as ⊗cr and ⊗ir .

Theorem 4.2.12. We have the following relationships between update can-
didates and consistent update candidates.

1. If a function ⊙ : M×L0 → M is an update candidate, then the function
⊙cu is a consistent update candidate and for all S ∈ M and all α ∈ L0

we have Th(S (⊙cu)iu⋆ α) = Th(S ⊙ α).

2. If a function ⊙ : Mc ×L0 → M is a consistent update candidate, then
the function ⊙iu⋆ is an update candidate and for all S ∈ Mc and all
α ∈ L0 we have Th(S (⊙iu⋆)cu α) = Th(S ⊙ α).

Proof. For the first assertion, let ⊙ be an update candidate. We show how
to prove that ⊙cu satisfies (U8

⋆
M). Let S ∈ Mc and α ∈ L0 be given and

suppose that S 2 α. Now, we distinguish two cases. In the first case, if � ¬α,
then we have Th(S ⊙cu α) = Th(S) by Definition 3.1.17. This is the same
as Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙cu α)), because S ⊕ α = ∅ and S \ ‖α‖ = S. In
the other case, if 2 ¬α, then we have

Th(S ⊙cu α) = Th(S ⊙ α) by Definition 3.1.17

= Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙ α)) by (U8
⋆
M) for ⊙

= Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙cu α)) by Definition 3.1.17,
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because S \ ‖α‖ 6= ∅. The proof of the other postulates is similar and we
get that the function ⊙cu is a consistent update candidate. Now, let S ∈
M and α ∈ L0 be given. We distinguish three cases. First, if 2 ¬α and
S 6= ∅, then we have Th(S (⊙cu)iu⋆ α) = Th(S ⊙cu α). This is equal to
Th(S⊙α) by Definition 3.1.17, because 2 ¬α. Second, if � ¬α, then we have
Th(S (⊙cu)iu⋆ α = Th(‖α‖) = Th(∅), which is the same as Th(S ⊙ α) by
(U1M). In the last case, if S = ∅, then we have Th(S (⊙cu)iu⋆ α) = Th(‖α‖).
By (U9M), we get that this equals Th(S⊙α) and the first assertion is proved.

For the second assertion, let ⊙ be a consistent update candidate. We show
how to prove that ⊙iu⋆ satisfies (U2

⋆
M). Let S ∈ M and α ∈ L0 be given

and suppose that S � α and S 6= ∅. Then we immediately get 2 ¬α, hence
we have Th(S⊙iu⋆ α) = Th(S⊙α). But this is the same as Th(S) by (U2M)
for ⊙. The other postulates can similarly be proved and we get that the
function ⊙iu⋆ is an update candidate. Now, let S ∈ Mc and α ∈ L0 be given.
We distinguish two cases. First, if 2 ¬α, then we have Th(S (⊙iu⋆)cu α) =
Th(S ⊙iu⋆ α) by Definition 3.1.17. Since S 6= ∅, this is equal to Th(S ⊙ α).
Second, if � ¬α, then we have Th(S (⊙iu⋆)cu α) = Th(S), which equals
Th(S ⊙ α) by (U9Mc), and we are done.

We will now redefine the translation from revision to update in order to get
the intended correspondences between revision and update candidates.

Definition 4.2.13. Given a function ⊗ : M × L0 → M, its translation
⊙r⋆

⊗ : M×L0 → M from revision to update is defined as follows,

S ⊙r⋆
⊗ α :=











‖α‖ if S = ∅,

S if S 6= ∅ and S � α,

(S ⊕ α) ∪ ((S \ ‖α‖) ⊗ α) otherwise.

If a revision and contraction candidate are related by one of the translations
from Definition 4.2.13 or Definition 3.3.1, then the two functions satisfy prop-
erty (3.8).

Lemma 4.2.14. We have the following relationships between revision and
update candidates.

1. If a function ⊗ : M×L0 → M is a revision candidate, then the func-
tions ⊗ and ⊙r⋆

⊗ satisfy property (3.8).

2. If a function ⊙ : M×L0 → M is an update candidate, then the func-
tions ⊙ and ⊗u

⊙ satisfy property (3.8).

Proof. Both assertions directly follow from the definition of the translations
as well as the postulates (R9M) and (U9M).
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Due to Definition 4.2.13 and Definition 3.3.1, we can translate a revision
candidate into an update candidate and vice versa.

Theorem 4.2.15. We have the following relationships between revision and
update candidates.

1. If a function ⊗ : M×L0 → M is a revision candidate, then the function
⊙r⋆

⊗ is an update candidate and for all S ∈ M and all α ∈ L0 we have
Th(S ⊗u

(⊙r⋆
⊗ ) α) = Th(S ⊗ α).

2. If a function ⊙ : M×L0 → M is an update candidate, then the function
⊗u

⊙ is a revision candidate and for all S ∈ M and all α ∈ L0 we have
Th(S ⊙r⋆

(⊗u

⊙) α) = Th(S ⊙ α).

Proof. For the first assertion, let ⊗ be a revision candidate and let S ∈ M
and α ∈ L0 be given. We show how to prove that ⊙r⋆

⊗ satisfies (U3M).
Assume S 6= ∅ and 2 ¬α. We distinguish two cases. First, if S � α, then
we have S ⊙r⋆

⊗ α = S, which is non empty by assumption. Second, if S 2 α,
then we have S ⊙r⋆

⊗ α = (S ⊕ α) ∪ ((S \ ‖α‖) ⊗ α). Since S \ ‖α‖ 6= ∅ by
assumption, we get that (S \ ‖α‖)⊗α 6= ∅ by (R5M), hence we immediately
get S ⊙r⋆

⊗ α 6= ∅. The proofs of the other postulates are similar and we
get that the function ⊙r⋆

⊗ is an update candidate. For the second claim of
the first assertion, we distinguish three cases. First, if S = ∅, then we have
Th(S⊗u

(⊙r⋆
⊗ )α) = Th(‖α‖), which is the same as Th(S⊗α) by (R9M). Second,

if S 2 ¬α, then we have Th(S ⊗u
(⊙r⋆

⊗ ) α) = Th(S), and this equals Th(S ⊗α)

by (R3M) and (R4M). In the last case, if S 6= ∅ and S � ¬α, then we have
Th(S ⊗u

(⊙r⋆
⊗ ) α) = Th(S ⊙r⋆

⊗ α) = Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊗ α)), because we

have S 2 α by assumption. This is equal to Th(S ⊗ α), because S ⊕ α = ∅
and S \ ‖α‖ = S by assumption.

For the second assertion, let ⊙ be an update candidate. Then we have that
⊙ satisfies (U0M), (U1M), (U3M), and (U4M). Therefore, by Lemma 3.3.4,
we get that the function ⊗u

⊙ satisfies (R1M)–(R6M). Since ⊗u
⊙ also satis-

fies (R9M) by Definition 3.3.1, we have that the function ⊗u
⊙ is a revision

candidate. For the second claim of the second assertion, let S ∈ M and
α ∈ L0 be given. We distinguish three cases. First, if S = ∅, then we
have Th(S ⊙r⋆

(⊗u

⊙) α) = Th(‖α‖), which is equal to Th(S ⊙ α) by (U9M).

Second, if ∅ 6= S ⊆ ‖α‖, then we have Th(S ⊙r⋆
(⊗u

⊙) α) = Th(S), which

is the same as Th(S ⊙ α) by (U2
⋆
M). In the last case, if S 2 α, then

we have Th(S ⊙r⋆
(⊗u

⊙) α) = Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊗u
⊙ α)), which is the

same as Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙ α)) by Definition 3.3.1, because we have
∅ 6= S\‖α‖ ⊆ ‖¬α‖ by assumption. And since we have S 2 α by assumption,
this equals Th(S ⊙ α) by (U8

⋆
M), hence the proof is now complete.
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Applying the translation ⊙r⋆
⊗ to the minimax revision function ⊗mm from

Example 4.2.3, we get the corresponding minimax update function. Note that
the requirements of minimax change for update candidates and consistent
update candidates are given by (4.1) and (4.2).

Example 4.2.16. The minimax update function ⊙mm : M × L0 → M is
defined by S ⊙mm α := S ⊙r⋆

(⊗mm) α, that is by

S ⊙mm α :=











‖α‖ if S = ∅,

S if S 6= ∅ and S � α,

(S ⊕ α) ∪ ((S \ ‖α‖) ⊙su α) otherwise.

By Theorem 4.2.15, we get that the function ⊙mm is an update candidate.
Moreover, ⊙mm obviously satisfies property (4.1). Consequently, we get that
the function (⊙mm)cu : Mc × L0 → M, defined by

S (⊙mm)cu α :=

{

S if � ¬α or S � α,

(S ⊕ α) ∪ ((S \ ‖α‖) ⊙su α) otherwise

is a consistent update candidate by Theorem 4.2.12. Clearly, the function
(⊙mm)cu satisfies property (4.2).

We will now also redefine the translation from revision to update in the
context of consistent model sets.

Definition 4.2.17. Given a function ⊗ : Mc × L0 → M, its translation
⊙cr⋆

⊗ : Mc ×L0 → M from revision to update is defined by

S ⊙cr⋆
⊗ α :=

{

S if S � α,

(S ⊕ α) ∪ ((S \ ‖α‖) ⊗ α) otherwise.

Due to Definition 4.2.17 and Definition 3.3.9, we can translate a consistent
revision candidate into a consistent update candidate and vice versa.

Theorem 4.2.18. We have the following relationships between consistent
revision and consistent update candidates.

1. If a function ⊗ : Mc×L0 → M is a consistent revision candidate, then
the function ⊙cr⋆

⊗ is a consistent update candidate and for all S ∈ Mc

and all α ∈ L0 we have Th(S ⊗cu
(⊙cr⋆

⊗ ) α) = Th(S ⊗ α).

2. If a function ⊙ : Mc ×L0 → M is a consistent update candidate, then
the function ⊗cu

⊙ is a consistent revision candidate and for all S ∈ Mc

and all α ∈ L0 we have Th(S ⊙cr⋆
(⊗cu

⊙ ) α) = Th(S ⊙ α).
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Proof. For the first assertion, let ⊗ be a consistent revision candidate and
let S ∈ Mc and α ∈ L0 be given. We show how to prove that ⊙cr⋆

⊗ satisfies
(U8

⋆
M) and assume S 2 α. Then we have Th(S ⊙cr⋆

⊗ α) = Th((S ⊕ α) ∪
((S \ ‖α‖) ⊗ α)). As an immediate consequence of Definition 4.2.17 we
get that (S \ ‖α‖) ⊗ α = (S \ ‖α‖) ⊙cr⋆

⊗ α and (U8
⋆
M) holds. The proofs

of the other postulates are similar and we get that the function ⊙cr⋆
⊗ is a

consistent update candidate. For the second claim of the first assertion,
we distinguish three cases. First, if � ¬α, then we have Th(S ⊗cu

(⊙cr⋆
⊗ ) α) =

Th(S), which equals Th(S ⊗ α) by (R9Mc). Second, if S 2 ¬α, then we
have Th(S ⊗cu

(⊙cr⋆
⊗ ) α) = Th(S ⊕ α), and this is the same as Th(S ⊗ α) by

(R3M) and (R4M). In the last case, if 2 ¬α and S � ¬α, then we have
Th(S⊗cu

(⊙cr⋆
⊗ ) α) = Th(S⊙cr⋆

⊗ α) = Th((S⊕α)∪ ((S \ ‖α‖)⊗α)), because we

have S 2 α by assumption. This is equal to Th(S ⊗ α), because S ⊕ α = ∅
and S \ ‖α‖ = S by assumption.

For the second assertion, let ⊙ be a consistent update candidate. Then
we have that ⊙ satisfies (U0M), (U1Mc), (U3Mc), and (U4M). Therefore,
by Lemma 3.3.13, we get that the function ⊗cu

⊙ satisfies (R1M), (R2Mc),
(R3M), (R4M), (R5Mc), and (R6M). Since ⊗cu

⊙ also satisfies (R9Mc) by Defi-
nition 3.3.9, we have that the function ⊗cu

⊙ is a consistent revision candidate.
For the second claim of the second assertion, let S ∈ Mc and α ∈ L0 be given.
We distinguish three cases. First, if S � α, then we have Th(S ⊙cr⋆

(⊗cu

⊙ ) α) =

Th(S), which is the same as Th(S⊙α) by (U2M). Second, if S 2 α and � ¬α,
then we have Th(S⊙cr⋆

(⊗cu

⊙ )α) = Th((S⊕α)∪((S\‖α‖)⊗cu
⊙ α)) = Th(S⊗cu

⊙ α),

because we have S ⊕ α = ∅ and S \ ‖α‖ = S by assumption. By Defi-
nition 3.3.9, we get Th(S) because we have � ¬α by assumption, and this
equals Th(S ⊙ α) by (U9Mc). In the last case, if S 2 α and 2 ¬α, then we
have Th(S ⊙cr⋆

(⊗cu

⊙ ) α) = Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊗cu
⊙ α)), which is equal

to Th((S ⊕ α) ∪ ((S \ ‖α‖) ⊙ α)) by Definition 3.3.9, because we have
∅ 6= S \ ‖α‖ ⊆ ‖¬α‖ by assumption. And since we have S 2 α by as-
sumption, this is the same as Th(S ⊙ α) by (U8

⋆
M) and we are done.

We end this chapter by translating the update functions from Section 4.1
into update candidates.

Definition 4.2.19. Given a function ⊙ : M×L0 → M, the possible update
candidate ⊙cand : M×L0 → M is defined to be the function ⊙r⋆

(⊗u

⊙), that is

S ⊙cand α :=











‖α‖ if S = ∅,

S if S 6= ∅ and S � α,

(S ⊕ α) ∪ ((S \ ‖α‖) ⊙ α) otherwise.
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Given a function ⊙ : Mc×L0 → M, the possible consistent update candidate
⊙ccand : Mc × L0 → M is defined to be the function ⊙cr⋆

(⊗cu

⊙ ), that is

S ⊙ccand α :=

{

S if � ¬α or S � α,

(S ⊕ α) ∪ ((S \ ‖α‖) ⊙ α) otherwise.

In order to get an update candidate and a consistent update candidate by
using the translations from Definition 4.2.19, there are minimal conditions
that the original update functions have to satisfy.

Theorem 4.2.20. We have the following conditions for the translation to
update candidates.

1. If a function ⊙ : M×L0 → M satisfies (U0M), (U1M), (U3M), and
(U4M), then the function ⊙cand is an update candidate.

2. If a function ⊙ : Mc×L0 → M satisfies (U0M), (U1Mc), (U3Mc), and
(U4M), then the function ⊙ccand is a consistent update candidate.

Proof. We show how to prove the first assertion. If ⊙ satisfies (U0M),
(U1M), (U3M), and (U4M), then the function ⊗u

⊙ satisfies (R1M)–(R6M)
by Lemma 3.3.4 and (R9M) by Definition 3.3.1. Hence, ⊗u

⊙ is a revision
candidate. By Theorem 4.2.15, we get that the function ⊙r⋆

(⊗u

⊙) is an update

candidate, which is defined to be the function ⊙cand . The proof of the sec-
ond assertion works exactly the same way by first using Lemma 3.3.13 and
Definition 3.3.9, and then applying Theorem 4.2.18.

As an immediate consequence of Theorem 4.2.20 we get that the possible
models approach ⊙pma and the variants of the standard update function ⊙su

can be translated into update candidates.

Corollary 4.2.21. We have that all the functions (⊙pma)
cand , (⊙csu)cand ,

(⊙psu)cand , (⊙ssu)cand , and (⊙su)cand are update candidates.

The translations ⊙cand and ⊙ccand do not have an inverse function, because
two belief change functions of different strength can result in the same can-
didate.

Lemma 4.2.22. For all S ∈ M and all α ∈ L0 we have

S ⊙mm α = S (⊙mm)cand α = S (⊙su)cand α =

S (⊙ssu)cand α = S (⊙psu)cand α = S (⊙csu)cand α.
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Proof. All equalities are directly implied by the definition of the respective
functions.

It has turned out that the relations . and ≈ from Definition 4.1.3 are pre-
served by the translation ⊙cand .

Lemma 4.2.23. For all functions ⊙,⊙′ : M×L0 → M we have

⊙ . ⊙′ ⇒ ⊙cand . (⊙′)cand ,

⊙ ≈ ⊙′ ⇒ ⊙cand ≈ (⊙′)cand .

Proof. Both assertions immediately follow from Definition 4.1.3 and Defini-
tion 4.2.19.

We have seen in Lemma 4.2.22 that most of the update functions we have
defined so far translate to the same update candidate ⊙mm. This is not sur-
prising, because they all perform the standard update if the new formula
contradicts the actual beliefs. However, we can show that the update can-
didate (⊙pma)

cand that we get from the possible models approach is stronger
than the function ⊙mm.

Theorem 4.2.24. We have the following comparability result,

(⊙pma)
cand < ⊙mm.

Proof. We know from Theorem 4.1.5 that ⊙pma . ⊙su, hence we directly get
(⊙pma)

cand . (⊙su)cand by Lemma 4.2.23. Lemma 4.2.22 now immediately
implies (⊙pma)

cand . ⊙mm. The following example shows that the functions
(⊙pma)

cand and ⊙mm have different strength. Let P = {p, q}, S = {∅},
and α = p ∨ q. Then we have S (⊙pma)

cand α = S ⊙pma α = {{p}, {q}}
and S ⊙mm α = S ⊙su α = {{p}, {q}, {p, q}}. We can now easily see that
¬(p ∧ q) ∈ Th(S (⊙pma)

cand α) but ¬(p ∧ q) /∈ Th(S ⊙mm α), and we get
(⊙pma)

cand 6≈ ⊙mm by Definition 4.1.3.
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Belief change in modal logic





Introduction to Part II

In the second part of this thesis we are going to present different approaches to
expansion for multi-agent modal logic. We set a number n of rational agents,
whose beliefs we want to reason about. For a short survey of the reasoning
power of such agents, we refer to the book of Fagin et al. [25]. In addition
to the language of classical propositional logic from Chapter 1, the formal
language of epistemic (doxastic) logic contains modal operators K1, . . . , Kn

for each agent. A formula of the form Kiα is read as “agent i knows (believes)
α”. For the semantics, the agents’ beliefs are encoded in Kripke structures
that contain a set of possible worlds. These worlds are models of classical
propositional logic augmented with some additional information. Therefore,
belief change functions on model sets can be adapted to functions on Kripke
structures. The resulting functions are called model transformations. In the
following chapters we will define different model transformations in order to
formalise different belief change functions in modal logic.

In multi-agent modal logic we can reason about the formulas that an agent
believes to be true. This reasoning takes place in a static world. By use of a
model transformation, we can simulate a dynamic world and observe how the
agents’ beliefs change. An example of this process has been given in [25] with
the well-known Muddy Children Puzzle. But belief change in modal logic
encompasses more: we also want to be able to reason about the process of
learning. That is, we want to enrich the logical language with new operators
in order to express sentences like “after the agents learnt a formula α, the
formula β holds”. So, unlike in Part I, the act of learning should be contained
in the formal language. For this purpose we will introduce languages that
extend the language of modal logic with dynamic style operators.

A modal logic that contains operators for formalising the act of learning has
been originally presented by Plaza [57]. The publication of this work can be
seen as the foundation of dynamic epistemic logic. Plaza has extended the
language of modal logic by public announcement operators. The new for-
mulas of the form [α!]β are read as “β holds after the public announcement
of α”. Of course, other readings are possible, for instance, “β holds after
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the agents have observed α”. The notion of an announcement formula [α!]β
being satisfied is defined via a model transformation: the formula [α!]β holds
at some possible world, if the formula β holds at some world in the trans-
formed Kripke structure. The transformed Kripke structure is constructed
from the original one and, in general, depends on α. Since communication
is not always public, Gerbrandy and Groeneveld have introduced group an-
nouncement operators in [30]. For all non empty groups G of agents we have
formulas of the form [α!G]β. They are read as “β holds after the announce-
ment of α to the group G”. We will provide model transformations for the
semantical definition of both public and group announcement operators. In
addition, we will give axiomatisations for each announcement logic and prove
soundness and completeness.

Outline

It is the aim of Chapter 5 to introduce the syntax and semantics of multi-
agent modal logics that we are going to use in Part II. First, we will define
the formal language that extends the language of classical propositional logic
with knowledge operators Ki for each agent (1 ≤ i ≤ n). We will then
give the definition of Kripke semantics. We are interested in four properties
of knowledge: consistency of knowledge, truth, positive introspection, and
negative introspection. Each of these properties can be formalised by an
axiom. Nine different subsets of such axioms lead to the Hilbert systems of
our interest, and we will present the well-known soundness and completeness
results for these nine deductive systems.

Common knowledge is an important concept in epistemic logic. For all non
empty groups G of agents we will add a modal operator CG to the language
of modal logic. The formulas of the form CGα are read as “α is common
knowledge among the agents in G”. This sentence can be seen as an abbre-
viation for the following infinite statement, “everybody in G knows α and
everybody in G knows that everybody in G knows α and . . . ”. The extended
possible worlds semantics corresponds to this interpretation of the common
knowledge formulas. The nine deductive systems can be extended with an
axiom and an inference rule for common knowledge. Again, we will state the
soundness and completeness results for the Hilbert systems.

As a generalisation of common knowledge, we will also introduce relativised
common knowledge operators. That is, for all non empty groups G of agents
we will add the binary modal operator RCG to the language of modal logic.
The interpretation of the formulas of the form RCG(α, β) is related to the in-
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terpretation of the until operator from temporal logic. Furthermore, common
knowledge can be defined by use of relativised common knowledge operators.
Our main contribution in Chapter 5 is the definition of a new axiomatisation
for the logic of relativised common knowledge. We will give a soundness and
completeness proof for the new Hilbert systems.

Another extension of epistemic logic is the logic of knowledge and belief.
That is, we will add the modal operators B1, . . . , Bn to the basic language
of modal logic. A formula of the form Biα is read as “agent i believes
α”. There are several properties that describe the interrelation between
knowledge and belief. We will choose three sets of such properties and will
define the corresponding Hilbert systems. Each of these systems will also be
extended with axioms and rules for common knowledge and common belief.
We will then present the soundness and completeness results for our six
bimodal deductive systems.

In the end of Chapter 5 we will define the languages that extend the language
of epistemic logic by public announcement and group announcement opera-
tors respectively. These announcement operators are related to the operators
from dynamic logic. We will introduce the semantics of the logic of public
communications by Plaza [57] as an introductory example. The semantics
of an announcement operator is given by a belief change function on Kripke
structures, also called model transformation. We will define five important
properties of announcements, and test each type of announcement for them.
For instance, one such property is called fact preservation and requires that
propositional facts be unaffected by any announcements. Finally, we will
introduce the concept of announcement resistant formulas. As the name
suggests, a true announcement resistant formula always remains true after
any announcement.

In Chapter 6 we will define two different semantics for group announcement
operators. First, we will define a model transformation that is related to
the expansion function on model sets from Chapter 1. That is, the agents
will always accept the announced formula, which can lead to inconsistent
belief. We will show that the beliefs of an agent remain unchanged if this
agent does not belong to the group that the new information is announced
to. We will provide three different Hilbert systems that extend three of
our nine deductive systems of modal logic. For these three systems we will
prove soundness and completeness. We have the same deductive systems
as Gerbrandy and Groeneveld have in [30]. Therefore, it follows that our
interpretation of group announcements is equivalent to their non well-founded
semantics, cf. [30].
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Our second model transformation for the semantics of group announcement
operators is related to the consistent expansion function from Chapter 3.
Therefore, the agents reject an announcement if the new information contra-
dicts their beliefs. Again, we will show that an agent does not learn anything,
if this agent is not in the group that receives the announcement. In addition
to our previous work [61] where we have defined one deductive system for the
new semantics, we will now define four Hilbert systems. We will prove sound-
ness and completeness for these four systems and investigate the properties
of the new interpretation of group announcements.

We will end Chapter 6 with a thorough analysis of the logic of common
knowledge and group announcements. To this end, we will use our first
semantics of group announcements, where the agents always accept the new
information. The system of Baltag, Moss, and Solecki [7] is an axiomatisation
of a similar semantics, but within a much stronger language. We will provide
a similar axiomatisation and prove soundness. Completeness remains an
open problem.

Chapter 7 is about public announcement logics. First, we will introduce
the well-known semantics of truthful public announcements, cf. [22]. These
public announcements are partial, because the syntax is defined by a partial
model transformation. Since only true formulas can be truthfully announced,
an announcement with a false formula leads to an inconsistent epistemic
state. We will then present six axiomatisations extending six of our nine
Hilbert systems for modal logic. In addition, we will give the corresponding
axiomatisations for the logic of common knowledge and relativised common
knowledge respectively augmented with public announcement operators. The
results for all these logics are not new, but we will provide new proofs similar
to the ones in Chapter 6. That is, most of our proofs are syntactic.

We will then define a new public announcement semantics by using the total
model transformation. This total public announcement semantics works as
follows. If the announced formula is true, then the model transformation is
the same as for truthful public announcements. If the announced formula
is false, then the model transformation has no effect on the Kripke struc-
ture, and the knowledge of the agent remains unchanged. Compared to our
previous contribution in [62], where we have given one axiomatisation, we
will now provide six Hilbert systems for total public announcements. Again,
we will prove soundness and completeness for these six systems. Moreover,
we will thoroughly investigate the properties of total public announcements.
We will be able to formally prove that a total public announcement with a
true announcement-free formula has the same effect on announcement-free
formulas as the truthful public announcement with the same formula does.
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In a next step we will study total public announcements in the presence of
common knowledge and relativised common knowledge respectively. Again,
we will define six deductive systems for both logics. The completeness proofs
are different. With relativised common knowledge we can define a translation
to the announcement-free fragment of the language so that the translation of
a formula is provably equivalent to the formula itself. Then completeness fol-
lows from the completeness of the announcement-free fragment. This implies
that total public announcements do not add expressive strength to the logic
of relativised common knowledge. The situation is different with common
knowledge, because there is no such translation. Therefore, the completeness
proof has to be worked out like for the logic of common knowledge, cf. [25].
However, the proof is similar to the one for the logic of common knowledge
and truthful public announcements, cf. [22].

Finally, we will present an application of total public announcements in Chap-
ter 8. We will define a model transformation for the logic of knowledge, belief,
and public announcements. The agents’ beliefs are affected by every public
announcement, whereas only true facts will be learnt on the knowledge level.
We will prove soundness and completeness for a Hilbert system that extends
one of our three systems for the logic of knowledge and belief.





Chapter 5

Multi-agent modal logics

This is an introductory chapter where we will introduce the standard no-
tions and results on normal modal logics as well as the basic concepts of
announcement logics. In Section 5.1, we will define the epistemic logics of
our interest. We will give the standard semantics and state the well-known
soundness and completeness results. We will define the notion of common
knowledge and relativised common knowledge in Section 5.2. While the first
has been thoroughly investigated, the latter is quite new, and we will give
a new axiomatisation. Section 5.3 deals with deductive systems for the bi-
modal logics of knowledge and belief. There are several axioms that describe
the interaction between knowledge and belief. We will have to make a choice
of such axioms, because some combinations of these axioms lead to triviality
results. The chapter ends with a short introduction to announcement logics
in Section 5.4. We will define both private and public announcement opera-
tors and discuss some important properties of announcement logics. We will
conclude the section with defining distinguished sets of formulas.

5.1 Epistemic logics

In this part of the thesis, we are dealing with a number n ≥ 1 of rational
agents . We do not fix the exact application area and capabilities of our fictive
agents; they can be seen as subsystems in a general system, e. g. computers
in a network, processors in a computer, processes in an operating system, or
simply players in a game. For a more precise description of rational agents, we
refer to the introduction of the book of Fagin, Halpern, Moses, and Vardi [25].

In conjunction with rational agents, it is useful to work with the concept
of knowledge that such agents can have, see [25]. This is where the name
epistemic logic comes from. For this purpose, we are going to define the
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language of multi-agent modal logic with n agents. From now on, we will
use the set A := {1, . . . , n} to denote the group of all agents. The language
contains a modal operator Ki for every agent i ∈ A. The countable set P 6= ∅
is still our collection of propositions.

Definition 5.1.1. The language Ln of epistemic logic for n agents is the set
of formulas that is defined by the following grammar (p ∈ P, i ∈ A),

α ::= p | ¬α | (α ∧ α) | Kiα.

The propositional constants ⊤ and ⊥, as well as the binary connectives ∨,
→, and ↔, are defined like in Definition 1.1.1. The formula Kiα stands for
“agent i knows α”. We will now define the notion of length, subformula, and
substitution for the language Ln.

Definition 5.1.2. The following defining clauses extend Definition 1.1.2,
Definition 1.1.3, and Definition 1.1.4 respectively,

|Kiβ| := |β| + 1,

sub(Kiβ) := {Kiβ} ∪ sub(β),

(Kiβ)[ϕ/ψ] :=

{

ϕ if ψ = Kiβ,

Ki(β[ϕ/ψ]) otherwise.

Remember that we will write “induction on α” if we do an induction on the
length of a formula α.

The commonly used semantics for multi-agent modal logics is called possible
worlds semantics. A brief overview on the history of this semantics can be
found in the book of Fagin et al. [25] or in the book of Blackburn, de Rijke,
and Venema [15]. The semantical objects are directed labelled graphs where
the vertices (possible worlds or information states) are models of classical
propositional logic and for every agent we have a different type of edges
(accessibility relations). At any possible world, the accessibility relation of
an agent points to a (possibly empty) set of worlds that this agent considers
possible.

Definition 5.1.3. A Kripke structure (for n agents) is defined to be a tuple
K = (S,R1, . . . , Rn, V ), where S 6= ∅ is a set of possible worlds, Ri ⊆ S2 is
a binary relation for each agent i ∈ A, and V : P → Pow(S) is a valuation
function. A Kripke structure K = (S,R1, . . . , Rn, V ) can be seen as a rela-
tional structure1 over S, so we call S the universe of K, denoted by |K|. A
pointed structure is a pair K, s where K is a Kripke structure and s ∈ |K|.

1Every Kripke structure K = (S, R1, . . . , Rn, V ) can be described by the relational
structure (S, R1, . . . , Rn, V (p0), V (p1), . . . ), see [15].
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We will use the infix notation sRit for the expression (s, t) ∈ Ri, which means
that at world s, agent i considers the world t possible. Sometimes, we will
use the set

Ri(s) := {t ∈ S : sRit}

to denote the worlds that agent i considers possible at world s.

As a usual question in mathematical theories, we want to know when two
Kripke structures are the same, that is, when do two pointed structures rep-
resent the same information states of the agents. It has turned out that the
suitable answer to this question is the notion of bisimulation. An overview
on different kinds of bisimulation relations can be found in Gerbrandy’s the-
sis [29].

Definition 5.1.4. Let K = (S,R1, . . . , Rn, V ) and K′ = (S ′, R′
1, . . . , R

′
n, V

′)
be two given Kripke structures. Then a binary relation B ⊆ S × S ′ is called
a bisimulation between K and K

′, if for all s ∈ S and all s′ ∈ S ′ we have that
sBs′ implies

1. for all p ∈ P we have s ∈ V (p) if and only if s′ ∈ V ′(p),

2. for all i ∈ A and all t ∈ Ri(s) there is a t′ ∈ R′
i(s

′) such that tBt′,

3. for all i ∈ A and all t′ ∈ R′
i(s

′) there is a t ∈ Ri(s) such that tBt′.

Two pointed structures K, s and K′, s′ are bisimilar , denoted by K, s ≃ K′, s′,
if there is a bisimulation B between K and K′ such that sBs′. Sometimes we
will write K, s ≃B K′, s′ to express that B is a bisimulation between K and
K′ that connects s and s′, that is sBs′.

Satisfaction of formulas is locally evaluated within Kripke structures: at each
world in a given Kripke Structure, a formula either holds or does not hold.
The corresponding satisfaction definition is the following.

Definition 5.1.5. Let the Kripke structure K = (S,R1, . . . , Rn, V ) be given
and let s ∈ S. Then the notion of an Ln formula being satisfied in the
pointed structure K, s is inductively defined as follows,

K, s � p :⇔ s ∈ V (p),

K, s � ¬α :⇔ K, s 2 α,

K, s � α ∧ β :⇔ K, s � α and K, s � β,

K, s � Kiα :⇔ for all t ∈ Ri(s), K, t � α.
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If a formula α is satisfied at a world u, we sometimes use the terms α holds
at u, or α is true at world u. We say that a formula α is valid in a Kripke
structure K (K � α), if for all s ∈ |K| we have K, s � α. Accordingly, a
formula α is valid with respect to a class X of Kripke structures (X � α), if
for all K ∈ X we have K � α. Sometimes, it is useful to have an expression
for the subset of |K| where a formula α is satisfied. Hence, we define the
extension ‖α‖K of a formula α in a Kripke structure K by

‖α‖K := {s ∈ |K| : K, s � α}.

Throughout this thesis, the deductive systems for modal logics are given by
a so-called Hilbert calculus. The usual way of stating a Hilbert system for
modal logics is to focus on the non propositional part of the language, that
is the propositional tautologies do not need to be derived.

Definition 5.1.6. The system Kn consists of the tautology axiom and the
distribution axiom,

(PT) Every instance of a propositional tautology,

(K) Ki(α→ β) → (Kiα→ Kiβ),

as well as the modus ponens rule and the necessitation rule,

(MP)
α α→ β

β
, (NEC)

α

Kiα
.

A proof of a formula α in a Hilbert system X is a finite sequence α1, . . . , αm

of formulas, such that αm = α, and every αi is either an instance of an axiom
of X or the conclusion of an inference rule of X with the premisses being
elements of the sequence α1, . . . , αi−1. We say that a formula α is provable
in a Hilbert system X (X ⊢ α), if there is a proof of α in X. Furthermore, a
system X is called sound with respect to a class X of Kripke structures, if
for all formulas α we have

X ⊢ α ⇒ X � α.

On the other hand, X is called complete with respect to X , if we have

X � α ⇒ X ⊢ α

for all formulas α. A Hilbert system X is called consistent , if there is no
proof of ⊥ in X, that is if X 0 ⊥. Clearly, if X is sound with respect to
some class X of Kripke structures, then it is also consistent. On the other
hand, if a Hilbert system X is consistent, it is not immediate how to find its
corresponding class of Kripke structures. In Remark 6.2.8 we will point to
such a consistent system. For every Hilbert system X, there is the notion of
maximal X-consistent sets, which we will use in some completeness proofs.
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Definition 5.1.7. Let X be a Hilbert system for a language L extending Ln.
Then we call a set Z ⊆ L of formulas X-consistent , if for every finite subset
{α1, . . . , αm} ⊆ Z of Z we have

X 0 ¬(α1 ∧ . . . ∧ αm).

An L formula α is called X-consistent, if the set {α} is X-consistent. Z ⊆ L is
called a maximal X-consistent set, if Z is X-consistent and for every α ∈ L\Z
we have that Z ∪ {α} is not X-consistent.

Throughout this thesis, every language is closed under the propositional con-
nectives ¬ and ∧. In addition, every Hilbert calculus in this thesis is consis-
tent and contains the axiom (PT) and the inference rule (MP). For all these
reasons the following lemma holds, a proof can be found in [25].

Lemma 5.1.8. Let L be a language extending Ln and X be a Hilbert system
containing Kn. Then every X-consistent set of L formulas can be extended
to a maximal X-consistent set. In addition, every maximal X-consistent set
Z ⊆ L satisfies the following conditions for all α, β ∈ L,

1. α ∈ Z ⇔ ¬α /∈ Z,

2. α ∧ β ∈ Z ⇔ α ∈ Z and β ∈ Z,

3. α ∈ Z and α→ β ∈ Z ⇒ β ∈ Z,

4. X ⊢ α ⇒ α ∈ Z.

Observe that the first assertion of Lemma 5.1.8 is equivalent to saying that
exactly one of the formulas α and ¬α is an element of Z.

There have been many discussions about what properties rational agents
should have in what situations, see Blackburn et al. [15] as well as Fagin et
al. [25] for an overview. It is not surprising that the only consensus is that the
properties and capabilities of the agents always depend on the application.
For our purposes, we will choose from the following options,

(D) Ki¬α → ¬Kiα (consistency),

(T) Kiα → α (truth/knowledge),

(4) Kiα → KiKiα (positive introspection),

(5) ¬Kiα→ Ki¬Kiα (negative introspection),

where we choose (5) only if we choose (4). Clearly, we will always choose the
same properties (axioms) for all agents. The names of the different axioms
and systems are given by traditional habits and are commonly known in the
community, cf. [15, 25].
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Definition 5.1.9. The system Kn as well as the following extensions of Kn

are the deductive systems in our focus,

K4n := Kn + (4), K45n := K4n + (5),

KDn := Kn + (D), KD4n := KDn + (4), KD45n := KD4n + (5),

Tn := Kn + (T), S4n := Tn + (4), S5n := S4n + (5).

Observe that (4) is included in S5n for traditional reasons, it can easily be
proved in the system Tn + (5).

Although we use the terms knowledge and epistemic logic, we want to men-
tion here that the systems without the truth axiom (T) are often called
systems of belief. In this terminology, the expression doxastic logic would be
more appropriate. For simplicity reasons, we do not make this distinction.

It has turned out that each of the above mentioned axioms can be satisfied by
restricting the accessibility relations Ri correspondingly. Therefore, each of
our deductive systems has its characterising class of Kripke structures. The
restrictions of the accessibility relations are called frame conditions, because
the semantics of modal logics is often defined via frames, that is a Kripke
structure without the valuation, see e. g. Blackburn et al. [15]. For our de-
ductive systems it is sufficient to take the right combinations of the following
frame conditions,

s: for all u ∈ |K|, Ri(u) 6= ∅ (seriality),

r: for all u ∈ |K|, u ∈ Ri(u) (reflexivity),

t: for all u, v, w ∈ |K|, uRiv and vRiw ⇒ uRiw (transitivity),

u: for all u, v, w ∈ |K|, uRiv and uRiw ⇒ vRiw (Euclideanity).

Clearly, we always take the same frame conditions for all agents. We will
write Kn for the class of all Kripke structures. Furthermore, for a subclass
X of Kripke structures we will write K~x

n, where ~x consists of the one-letter
names of the frame conditions that define X . For instance, Kst

n denotes the
class of Kripke structures that have accessibility relations that are both serial
and transitive.

We are now ready to state the soundness and completeness theorems for all
of our deductive systems. Soundness is proved by induction on the length of
the proof, see [34]. A Completeness proof for Kn, Tn, S4n, S5n, and KD45n

can be found in [34], the proof for the other systems requires only slight
modifications.

Theorem 5.1.10. For all α ∈ Ln we have

Kn ⊢ α ⇔ Kn � α, K4n ⊢ α ⇔ Kt
n � α,
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K45n ⊢ α ⇔ Ktu
n � α, KDn ⊢ α ⇔ Ks

n � α,

KD4n ⊢ α ⇔ Kst
n � α, KD45n ⊢ α ⇔ Kstu

n � α,

Tn ⊢ α ⇔ Kr
n � α, S4n ⊢ α ⇔ Krt

n � α,

S5n ⊢ α ⇔ Krtu
n � α.

Observe that the letter t for transitivity in the superscript of Krtu
n would not

be required, because every reflexive and Euclidean relation is also transitive.
But we want to write all the properties that correspond to an axiom.

5.2 Logics of common knowledge

It is the aim of this section to introduce the concepts of common knowl-
edge and relativised common knowledge. Relativised common knowledge is
a generalisation of common knowledge, and we will show completeness of
our axiomatisation of relativised common knowledge from [62]. We start
with extending the language Ln with common knowledge operators.

Definition 5.2.1. The language LC
n of epistemic logic for n agents with

common knowledge is the set of formulas that is defined by the following
grammar (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | CGα.

The formula CGα is read as “α is common knowledge among the members
in G”. The following defining clauses extend Definition 5.1.2,

|CGβ| := |β| + 1,

sub(CGβ) := {CGβ} ∪ sub(β),

(CGβ)[ϕ/ψ] :=

{

ϕ if ψ = CGβ,

CG(β[ϕ/ψ]) otherwise.

It will be useful to define the notion of mutual knowledge for an arbitrary
group G ⊆ A of agents, which is the following abbreviation,

EGα :=
∧

i ∈ G

Kiα.

The formula EGα is read as “everybody in G knows α”. Observe, that the
operator EG is also defined for G = ∅, in that case it is defined to be ⊤.
Iterated mutual knowledge is inductively defined by

E0
Gα := α, Ek+1

G := EGE
k
Gα.
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The intended semantics of common knowledge is the following. A formula α
is common knowledge, if and only if everybody knows α (EGα), everybody
knows that everybody knows α (E2

Gα), and so on. This means that a formula
CGα is satisfied in a pointed structure K, s if and only if, informally speaking,
the infinite expression

EG(α ∧ EG(α ∧ EG(α ∧ . . . )))

is supposed to hold in K, s. It has turned out that a formula α is common
knowledge at world u, if and only if α holds at every world v reachable from u
by a G-path, see Fagin et al. [25] for a proof. These G-paths can be described
by first defining the union RG of the accessibility relations from the agents
belonging to G,

RG :=
⋃

i ∈ G

Ri,

and then taking the transitive closure R+
G of RG. In order to define the

transitive closure of a binary relation, we introduce the product

RQ := {(x, z) : there is a y, xRy and yQz}

of any two binary relations R and Q on the same set. The transitive closure
R+ of a binary relation R can now be obtained by taking the union of all the
powers of R,

R1 := R, Rk+1 := RRk, R+ :=
⋃

k ≥ 1

Rk.

The expressions sRGt and RG(s) as well as sR+
Gt and R+

G(s) are defined like
sRit and Ri(s) respectively. We are now ready to add the defining clause for
common knowledge formulas to Definition 5.1.5.

Definition 5.2.2. The definition of an LC
n formula CGα being satisfied in a

pointed structure K, s is the following,

K, s � CGα :⇔ for all t ∈ R+
G(s), K, t � α.

The deductive systems for the logic of common knowledge can be obtained by
adding the co-closure axiom (C) and the induction rule (CI) to the systems
of epistemic logic from Section 5.1.

Definition 5.2.3. If X is one of the systems Kn, K4n, K45n, KDn, KD4n,
KD45n, Tn, S4n, or S5n, then the system XC is defined to be X augmented
with the co-closure axiom for common knowledge,
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(C) CGα→ EG(α ∧ CGα),

as well as the induction rule for common knowledge,

(CI)
α→ EG(α ∧ β)

α→ CGβ
.

We have soundness and completeness results for these systems like in Sec-
tion 5.1. For the systems KC

n , TC
n , S4

C
n , S5

C
n , and KD45

C
n we refer to Fagin et

al. [25]. For the other systems the proof requires only slight modifications.

Theorem 5.2.4. For all LC
n formulas α we have

KC
n ⊢ α ⇔ Kn � α, K4

C
n ⊢ α ⇔ Kt

n � α,

K45
C
n ⊢ α ⇔ Ktu

n � α, KD
C
n ⊢ α ⇔ Ks

n � α,

KD4
C
n ⊢ α ⇔ Kst

n � α, KD45
C
n ⊢ α ⇔ Kstu

n � α,

TC
n ⊢ α ⇔ Kr

n � α, S4
C
n ⊢ α ⇔ Krt

n � α,

S5
C
n ⊢ α ⇔ Krtu

n � α.

In the context of dynamic epistemic logics (see Section 5.4), the notion of
relativised common knowledge has been introduced in order to compare the
expressive strength of various logics, cf. van Benthem et al. [12] and Kooi [49].
It has turned out that relativised common knowledge is more expressive than
common knowledge, see [12] for a proof.

Definition 5.2.5. The language LRC
n of epistemic logic for n agents and

relativised common knowledge is the set of formulas that is defined by the
following grammar (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | RCG(α, α).

The following defining clauses extend Definition 5.1.2,

|RCG(β, γ)| := |β| + |γ| + 1,

sub(RCG(β, γ)) := {RCG(β, γ)} ∪ sub(β) ∪ sub(γ),

RCG(β, γ)[ϕ/ψ] :=

{

ϕ if ψ = RCG(β, γ),

RCG(β[ϕ/ψ], γ[ϕ/ψ]) otherwise.

The semantics for relativised common knowledge results from relativising the
semantics of common knowledge. That is, a formula RCG(α, β) holds at a
world u, if β holds at all worlds v accessible from u by a G-path such that α
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holds at every world of this path (but not necessarily at u). We call such a
path a G-path relativised to α. From this informal definition, it is immediate
how to define common knowledge from relativised common knowledge. The
following definition has been given by van Benthem et al. [11, 12],

CGα := RCG(⊤, α).

We will now add the formal defining clause for relativised common knowledge
formulas to Definition 5.1.5.

Definition 5.2.6. The definition of an LRC
n formula RCG(α, β) being satis-

fied in a pointed structure K, s is the following,

K, s � RCG(α, β) :⇔ for all t ∈ (RG ∩ (|K| × ‖α‖K))+(s), K, t � β.

It has often been mentioned that relativised common knowledge is related
to the until operator from temporal logic, cf. [12]. We will now state some
concrete properties of this relationship.

Remark 5.2.7. First, we will show how the until operator can be defined in
the logic of relativised common knowledge. The expression “α until β” from
linear time temporal logics corresponds to the formula

β ∨ (α ∧RC(¬β, α) ∧ ¬RC(⊤,¬β)),

where we have omitted the group subscript (A = {1}). On the other hand,
the formula RC(α, β) can be expressed in temporal logics by

“next(β until ¬α) ∨ next(always(α ∧ β))”.

For a precise definition of the syntax and semantics of propositional temporal
logics, we refer to the article of Lichtenstein and Pnueli [52].

The deductive systems for the logic of relativised common knowledge can be
obtained by adding the co-closure axiom (RC) and the induction rule (RCI)
to the systems of epistemic logic from Section 5.1.

Definition 5.2.8. If X is one of the systems Kn, K4n, K45n, KDn, KD4n,
KD45n, Tn, S4n, or S5n, then the system XRC is defined to be X augmented
with the co-closure axiom for relativised common knowledge,

(RC) RCG(α, β) → EG(α→ β ∧ RCG(α, β)),

as well as the induction rule for relativised common knowledge,

(RCI)
α → EG(β → α ∧ γ)

α → RCG(β, γ)
.
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We will now prove soundness and completeness for these systems. For this
purpose, we will show that our system KRC

n is equivalent to the system of
van Benthem et al. from [12]. The direct proof is not hard but tedious, we
did it for S5

RC
n in [62].

Theorem 5.2.9. For all LRC
n formulas α we have

KRC
n ⊢ α ⇔ Kn � α, K4

RC
n ⊢ α ⇔ Kt

n � α,

K45
RC
n ⊢ α ⇔ Ktu

n � α, KD
RC
n ⊢ α ⇔ Ks

n � α,

KD4
RC
n ⊢ α ⇔ Kst

n � α, KD45
RC
n ⊢ α ⇔ Kstu

n � α,

TRC
n ⊢ α ⇔ Kr

n � α, S4
RC
n ⊢ α ⇔ Krt

n � α,

S5
RC
n ⊢ α ⇔ Krtu

n � α.

Proof. The system EL-RC from van Benthem et al. [12] is defined to be Kn

augmented with the following relativised common knowledge axioms,

(RC-Dist) RCG(α, β → γ) → (RCG(α, β) → RCG(α, γ)),

(RC-Mix) RCG(α, β) ↔ EG(α→ β ∧ RCG(α, β)),

(RC-Ind) (EG(α→ β) ∧ RCG(α, β → EG(α → β))) → RCG(α, β),

and the necessitation rule for relativised common knowledge,

(RC-Nec)
α

RCG(β, α)
.

We know from [12] that EL-RC is sound and complete with respect to Kn.

For the soundness proof of KRC
n , we show that the axiom (RC) is derivable

and the rule (RCI) is admissible in EL-RC. Since (RC) is contained in this
system, we only have to show the admissibility of (RCI). Suppose, that we
have a proof of the formula

α→ EG(β → α ∧ γ)

for some formulas α, β, and γ. Then we can easily derive

α ∧ γ → EG(β → α ∧ γ),

and with (RC-Nec) we get

RCG(β, α ∧ γ → EG(β → α ∧ γ)).

This immediately yields

α → RCG(β, α ∧ γ → EG(β → α ∧ γ)),
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and together with α → EG(β → α ∧ γ) from the assumption, (RC-Ind) and
some tautological derivations, we get

α → RCG(β, α ∧ γ).

By use of (RC-Nec) and (RC-Dist) we finally get α→ RCG(β, γ), and sound-
ness of KRC

n is proved.

In order to prove completeness of KRC
n , we need to show that the axioms

(RC-Dist), (RC-Mix), and (RC-Ind) are derivable and the rule (RC-Nec) is
admissible in KRC

n . For the derivation of (RC-Dist), we take some arbitrary
LRC

n formulas α, β, and γ, and we start with the following instances of (RC),

RCG(α, β → γ) → EG(α → (β → γ) ∧RCG(α, β → γ)),

RCG(α, β) → EG(α → β ∧RCG(α, β)).

From those we can derive the formula

RCG(α, β → γ) ∧RCG(α, β) →

EG(α→ RCG(α, β → γ) ∧ RCG(α, β) ∧ γ).

Now, we can apply the rule (RCI) to get the formula

RCG(α, β → γ) ∧RCG(α, β) → RCG(α, γ),

which is equivalent to (RC-Dist) by tautological reasoning.

In order to derive (RC-Mix), we can see that one direction of the equivalence
is exactly the axiom (RC). For the other direction, we start with (RC),

RCG(α, β) → EG(α→ β ∧ RCG(α, β)),

from which we derive the formula

EG(α→ β ∧ RCG(α, β)) → EG(α→ EG(α→ β ∧ RCG(α, β)) ∧ β).

Applying the rule (RCI) now does the job.

For the derivation of (RC-Ind), we start again with an instance of (RC),

RCG(α, β → EG(α→ β)) →

EG(α→ (β → EG(α → β)) ∧RCG(α, β → EG(α → β))).

Doing some derivations using (PT), (K), and (NEC), we get the formula
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EG(α → β) ∧RCG(α, β → EG(α→ β)) →

EG(α → EG(α → β) ∧RCG(α, β → EG(α → β)) ∧ β),

and we finish again with an application of (RCI).

For the admissibility of the rule (RC-Nec), we start with a provable formula
α, derive the formula

⊤ → EG(β → ⊤∧ α),

and after applying (RCI) we end with ⊤ → RCG(β, α), which is equivalent
to the formula RCG(β, α). Hence, we have shown completeness of KRC

n .

For the soundness and completeness proofs of the other systems, one can
add the corresponding axioms to EL-RC and make slight modifications in the
soundness and completeness proof for EL-RC. Then, the above derivations
are still valid and we are done.

We will need soundness and completeness of the systems KRC
n , K4

RC
n , K45

RC
n ,

TRC
n , S4

RC
n , and S5

RC
n in conjunction with public announcement operators in

Section 7.3.

5.3 Combining knowledge and belief

We have already mentioned in Section 5.1 that it is common to talk about
knowledge in the presence of the truth axiom (T), the other systems are
rather describing belief. This habit already indicates that belief can be seen
as sort of weak knowledge. Like in natural language, there are applications
where we want to talk about knowledge and belief in the same context, see
Hintikka [40] for a detailed discussion. The sentence “I believe that she is
on holiday, but I do not know it for sure” is a typical example. Moreover,
there are sentences where knowledge and belief are combined, e. g. “If I know
some fact, then I also believe it” or “I believe that she knows that dolphins
are mammals”. The first system for the modal logic of knowledge and belief
was presented and proved complete by Kraus and Lehmann [50]. Van der
Hoek has then shown completeness for all possible systems one can build
by combining certain properties of knowledge and belief, see [41]. For our
purposes, we will only choose three systems.

First, we will define the language for the logic of knowledge and belief, as
well as the logic of common knowledge and common belief.
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Definition 5.3.1. The language LB
n of the logic of knowledge and belief is

the set of formulas that is defined by the following grammar (p ∈ P, i ∈ A),

α ::= p | ¬α | (α ∧ α) | Kiα | Biα,

and the language LBCD
n of the logic of common knowledge and common belief

is defined as follows (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | Biα | CGα | DGα.

We define the notion of length, subformula, and substitution for the new
operators as follows,

|Biβ| := |β| + 1,

|DGβ| := |β| + 1,

sub(Biβ) := {Biβ} ∪ sub(β),

sub(DGβ) := {DGβ} ∪ sub(β),

(Biβ)[ϕ/ψ] :=

{

ϕ if ψ = Biβ,

Bi(β[ϕ/ψ]) otherwise,

(DGβ)[ϕ/ψ] :=

{

ϕ if ψ = DGβ,

DG(β[ϕ/ψ]) otherwise.

The operators DG are used for common belief, which is exactly the same
concept as common knowledge. Like in Section 5.2, we have the abbreviation
EGα to express that everybody in G knows α. Accordingly, we define the
notion of mutual belief for every group G ⊆ A of agents by

FGα :=
∧

i ∈ G

Biα.

The semantics is given by Kripke structures with two accessibility relations
for each agent. Agent i’s accessibility relations for knowledge and belief are
usually named Ri and Qi respectively.

Definition 5.3.2. Let K = (S,R1, . . . , Rn, Q1, . . . , Qn, V ) and s ∈ S be
given. As expected, the notion of an LB

n formula being satisfied in the pointed
structure K, s is inductively defined by

K, s � p :⇔ s ∈ V (p),

K, s � ¬α :⇔ K, s 2 α,
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K, s � α ∧ β :⇔ K, s � α and K, s � β,

K, s � Kiα :⇔ for all t ∈ Ri(s), K, t � α,

K, s � Biα :⇔ for all t ∈ Qi(s), K, t � α.

In addition, we have the following defining clauses for the notion of an LBCD
n

formula of the form CGα and DGα being satisfied in K, s,

K, s � CGα :⇔ for all t ∈ R+
G(s), K, t � α,

K, s � DGα :⇔ for all t ∈ Q+
G(s), K, t � α.

The basic systems KKn and KK
CD
n for the languages LB

n and LBCD
n are just

the union of Kn and KC
n with the basic systems for belief and common belief

respectively.

Definition 5.3.3. The system KKn consists of the tautology axiom and the
two distribution axioms,

(PT) Every instance of a propositional tautology,

(K) Ki(α→ β) → (Kiα → Kiβ),

(K′) Bi(α → β) → (Biα→ Biβ),

as well as the moduls ponens rule and the two necessitation rules,

(MP)
α α → β

β
, (NEC)

α

Kiα
, (NEC

′)
α

Biα
.

We obtain the system KK
CD
n by adding to KKn the following co-closure ax-

ioms ,

(C) CGα→ EG(α ∧ CGα),

(C′) DGα → FG(α ∧DGα),

and the following induction rules,

(CI)
α→ EG(α ∧ β)

α → CGβ
, (CI

′)
α → FG(α ∧ β)

α→ DGβ
.

Like in the previous sections of this chapter, we will sometimes add a com-
bination of the axioms (T), (4), and (5) to the basic systems. Furthermore,
we will add some of the following axioms,

(D′) Bi¬α → ¬Biα (consistency),

(4′) Biα → BiBiα (positive introspection),

(5′) ¬Biα→ Bi¬Biα (negative introspection),
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that we obtain by replacing Ki by Bi in (D), (4), and (5) respectively. For
the names of the resulting systems we just write the name of the system for
knowledge succeeded by the name of the system for belief. The following
example definitions illustrate how we name the different combinations of
axioms,

S4K4n := KKn + (T) + (4) + (4′),

S5KD4
CD
n := KK

CD
n + (T) + (4) + (5) + (D′) + (4′).

In addition, the following axioms describing the interrelation between knowl-
edge and belief are under consideration,

(I) Kiα→ Biα (entailment),

(A) Biα→ KiBiα (positive consciousness),

(A−) ¬Biα → Ki¬Biα (negative consciousness),

(G) Biα→ BiKiα (positive certainty),

(G−) ¬Biα → Bi¬Kiα (negative certainty).

The labelling of these axioms is different in almost every contribution to the
logic of knowledge and belief. Our choice of labels ensures that no conflicts
arise. The letter I stands for Inclusion, A for Awareness, and G for the
German word Gewissheit , which is the translation of certainty.

We want to mention here that some of the axioms for knowledge, belief and
some of the interrelation axioms are dependent.

Lemma 5.3.4. We have the following dependencies,

KKn + (I) + (A) ⊢ (4′), KKn + (I) + (G) ⊢ (4′),

KKn + (I) + (A−) ⊢ (5′), KKD45n + (A) ⊢ (A−),

KKn + (5) + (I) ⊢ (G−), KKn + (5′) + (I) ⊢ (G−).

Proof. The only nontrivial part is the proof of (A−) in KKD45n + (A). First,
we take the instance Bi¬Biα → ¬BiBiα of (D′) and the contraposition
¬BiBiα→ ¬Biα of (4) to derive

KiBi¬Biα→ Ki¬Biα. (5.1)

The following chain of instances of (5′), (A), and (5.1),

¬Biα→ Bi¬Biα→ KiBi¬Biα→ Ki¬Biα,

finishes the proof.
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There are systems of knowledge and belief that are too strong in the sense
that they prove undesired interrelation properties. One of these properties is
BiKiα → α, which has been mentioned by Nguyen [55]. Another undesired
property is Biα ↔ Kiα, which has already been discussed by Kraus and
Lehmann [50].

Lemma 5.3.5. For all LB
n formulas α we have

KKn + (T) + (5) + (D′) + (I) ⊢ BiKiα → α,

KKn + (5) + (D′) + (I) + (G) ⊢ Biα↔ Kiα.

Proof. The following chain of instances of the contraposition of (D′), (I), and
(5), followed by an instance of (T) proves the first assertion,

BiKiα → ¬Bi¬Kiα→ ¬Ki¬Kiα→ Kiα→ α.

An instance of (G), followed by a sequence of instances of the contraposition
of (D′), (I), and (5),

Biα→ BiKiα→ ¬Bi¬Kiα→ ¬Ki¬Kiα→ Kiα,

shows how we can prove the direction from left to right in the second asser-
tion. The direction from right to left is just an instance of (I).

In order to avoid these undesired properties, Halpern has suggested the axiom
of objective entailment in [32], which allows Kiα → Biα only if α is an
objective formula, that is if α ∈ L0. He proves completeness with respect
to a non standard semantics, and we will therefore not take this axiom into
account.

We will now define the three systems of our interest. They are maximal
in the sense that they do not prove the two undesirable properties from
Lemma 5.3.5, but they have as many axioms as possible. The only exception
is that we omit the axiom (G), which would cause problems in conjunction
with public announcements.Observe, that we add even the provable axioms,
because we want to have transparency over the valid properties.

Definition 5.3.6. We define the following systems of knowledge and belief,

KBDIn := S4KD4n + (I) + (A) + (G−),

KB5In := S5K45n + (I) + (A) + (A−) + (G−),

KB5Dn := S5KD45n + (A) + (A−) + (G−).

The systems KBDI
CD
n , KB5I

CD
n , and KB5D

CD
n are accordingly defined.
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Van der Hoek has shown in [41], that not only the axioms of knowledge and
belief, but also the interrelation axioms can be characterised via restrictions
on the accessibility relations. In order to define the new classes of Kripke
structures, we introduce the following properties,

e: Qi ⊆ Ri (inclusion),

c: for all u, v, w ∈ |K|, uRiv and vQiw ⇒ uQiw (transitivity2),

d: for all u, v, w ∈ |K|, uRiv and uQiw ⇒ vQiw (Euclideanity3),

g: for all u, v, w ∈ |K|, uQiv and vRiw ⇒ uQiw (transitivity4),

h: for all u, v, w ∈ |K|, uQiv and uQiw ⇒ vRiw (Euclideanity5).

We will write K2n for the class of all Kripke structures with two accessibility
relations for each of the n agents. Furthermore, for a subclass X of this kind
of Kripke structures, we will write K~x,~y,~z

2n , where ~x consists of the one-letter
names of the frame conditions for knowledge, ~y characterises the properties of
belief, and ~z denotes the interrelation properties in X . For instance, Krt ,st ,e

2n

denotes the class of Kripke structures that have accessibility relations with
the following properties: the accessibility relations for knowledge are both
reflexive and transitive, the accessibility relations for belief are both serial
and transitive, and the accessibility relations for belief are subsets of the
corresponding accessibility relations for knowledge.

The following theorem states soundness and completeness of the systems in
our focus. It is an immediate consequence of van der Hoek’s results in [41].

Theorem 5.3.7. For all LB
n formulas α and all LBCD

n formulas β we have

KBDIn ⊢ α ⇔ Krt ,st ,ech
2n � α, KBDI

CD
n ⊢ β ⇔ Krt ,st ,ech

2n � β,

KB5In ⊢ α ⇔ Krtu,tu,ecdh
2n � α, KB5I

CD
n ⊢ β ⇔ Krtu,tu,ecdh

2n � β,

KB5Dn ⊢ α ⇔ Krtu,stu,cdh
2n � α, KB5D

CD
n ⊢ β ⇔ Krtu,stu,cdh

2n � β.

Observe that we again write all the properties that correspond to an axiom,
even if they are redundant.

5.4 Announcement logics

At the end of the eighties, Plaza published his famous article about logics
of public communications [57]. In this work, Plaza adds new operators to

2transitivity of Qi over (Ri, Qi)
3Euclideanity of Qi over (Ri, Qi)
4transitivity of Qi over (Qi, Ri)
5Euclideanity of Ri over (Qi, Qi)
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modal logic in order to formalise the communication of true formulas to the
agents. Inspired by this idea, many authors further developed the theory
of belief and knowledge change caused by incoming information in a modal
logic setting. At the beginning of Chapter 6 and Chapter 7 we will give a
short survey of the particular literature. Usually, announcement operators
similar to action operators from dynamic logic are added to a language of
multi-agent modal logics. Therefore, the term dynamic epistemic logic is
commonly used for such constructs, see the book from van Ditmarsch et
al. [22] of the same title. It has turned out that information can be privately
told to arbitrary groups of agents within the typical systems of belief (Ger-
brandy and Groeneveld [30]), whereas in deductive systems containing the
truth axiom (T) announcements can exclusively be broadcasted to all of the
agents (van Ditmarsch [17]). The former kind of announcements is called
private announcements or group announcements, the latter kind is called
public announcements . For both types of announcements, we will provide
languages for epistemic logic extended with announcement operators of this
type.

Definition 5.4.1. The language LPA
n for epistemic logic with public an-

nouncement operators is the set of formulas that is defined by the following
grammar (p ∈ P, i ∈ A),

α ::= p | ¬α | (α ∧ α) | Kiα | [α!]α.

The languages LBPA
n , LCPA

n , LRCPA
n , and LBCDPA

n are the corresponding ex-
tensions of LB

n , LC
n , LRC

n , and LBCD
n respectively with public announcement

operators.

The language LGA
n for epistemic logic with group announcements is defined

as follows (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | [α!G]α.

The definition of the language LCGA
n is more elaborate: it additionally con-

tains operators for finite sequences of group announcements. For this pur-
pose, we simultaneously define the formulas and announcements of LCGA

n by
the following grammar (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | CGα | [π]α,

π ::= α!G | (π ; α!G).

The formula [α!G]β stands for “β holds after the private announcement of α
to the group G”, the formula [α!]β means “β holds after the public announce-
ment of α”. We define the notion of length, subformula, and substitution for
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the announcement operators as follows,

|[β!]γ| := |β| + |γ| + 2,

|[β!G]γ| := |β| + |γ| + 2,

sub([β!]γ) := {[β!]γ} ∪ sub(β) ∪ sub(γ),

sub([β!G]γ) := {[β!G]γ} ∪ sub(β) ∪ sub(γ),

([β!]γ)[ϕ/ψ] :=

{

ϕ if ψ = [β!]γ,

[(β[ϕ/ψ])!](γ[ϕ/ψ]) otherwise,

([β!G]γ)[ϕ/ψ] :=

{

ϕ if ψ = [β!G]γ,

[(β[ϕ/ψ])!G](γ[ϕ/ψ]) otherwise.

The definition of length, subformula, and substitution for the language LCGA
n

is more complex, and will be introduced in Section 6.3.

We are now able to give an overview of the languages defined in this thesis.
Figure 5.1 shows the hierarchy of our languages, where the arrows stand for
set inclusion. In the following, we will simply write π or ρ for an arbitrary

L0

Ln

LRC
n LPA

n LB
n LC

n LGA
n

LRCPA
n LBPA

n LCPA
n LBCD

n LCGA
n

LBCDPA
n

Figure 5.1: The languages in this thesis

announcement, if we do not care about the announcement being private or
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public. Iterated announcements are inductively defined by

[π]0β := β, [π]k+1β := [π][π]kβ,

for all announcements π. The semantics of an announcement formula [π]α
is usually defined via model transformations. In order to illustrate this pro-
cedure, we will give the semantics of the logics of public communications
from Plaza [57]. For this purpose, we add the defining clause for public
announcement formulas to Definition 5.1.5.

Definition 5.4.2. Let K = (S,R1, . . . , Rn, V ) and s ∈ S be given. Then the
notion of an LPA

n formula [α!]β being satisfied in the pointed structure K, s
is defined by

K, s � [α!]β :⇔ K, s � α and K
α, s � β,

where Kα := (Sα, Rα
1 , . . . , R

α
n, V

α) is the structure K restricted to the worlds
where α holds. This relativised structure is given by defining

Sα := ‖α‖K,

Rα
i := Ri ∩ ‖α‖2

K
,

V α(p) := V (p) ∩ ‖α‖K,

for every agent i ∈ A and all propositions p ∈ P.

We want to mention here that Definition 5.4.2 is a bit problematic: the
structure Kα is only defined if there exists an s ∈ |K| such that K, s � α, that
is if ‖α‖K 6= ∅. Therefore, we suggest to give this definition via the extension
of a public announcement formula [α!]β by

‖[α!]β‖K :=

{

∅ if ‖α‖K = ∅,

‖β‖Kα otherwise.

During our studies of announcement logics we found many interesting prop-
erties that characterise the different approaches.

Definition 5.4.3. An announcement logic satisfies one of the following prop-
erties with respect to a class X of Kripke structures, if the property holds
for all announcements π of this logic.

Fact preservation: For all β ∈ L0, X � β → [π]β.
This property is very important for information change in a static
world . Only knowledge and belief can be changed by incoming in-
formation, but not propositional facts.



120 Chapter 5. Multi-agent modal logics

Adequacy: X � [π]⊤.
In every modal logic like alethic6, epistemic, temporal, or dynamic logic
there is an adequate modal operator.

Totality: X � ¬[π]⊥.
Totality is a term from dynamic logic. It means that an announcement
can always be executed at any state. If we interpret announcements
as communication acts between agents, we think that totality is a nice
property. But there are also interpretations of announcements where we
agree that they must be partial, for instance truthful announcements,
see Section 7.1.

Self-duality: For all formulas α, X � ¬[π]α ↔ [π]¬α.
This property is an additional requirement for total announcements. It
characterises the fact that there is always exactly one way of executing
an announcement.

Normality: For all formulas α, β, X � [π](α → β) → ([π]α → [π]β) and
X � α ⇒ X � [π]α.
Normal modal logics are the modal logics having a Kripke semantics
and they all have the normality property. Although the announcement
semantics is not an original Kripke semantics, we call an announcement
logic normal whenever it satisfies these two properties.

We are now going to discuss the above defined properties for Plaza’s public
announcement logic with respect to Krtu

n , because in Plaza’s original work
the accessibility relations were defined to be equivalence relations.

Lemma 5.4.4. Plaza’s public announcements are total with respect to Krtu
n .

The other properties from Definition 5.4.3 are all violated.

Proof. We have totality because the formula [α!]⊥ is not satisfiable for all
α, which immediately follows from Definition 5.4.2. Fact preservation is
violated, because the formula [¬p!]p is not satisfied whenever p is true. Ad-
equacy fails because the formula [⊥!]⊤ is not even satisfiable and thus not
valid with respect to any X . Self-duality does not hold, because the formula
¬[p!]⊥ ∧ ¬[p!]¬⊥ is satisfied whenever p is false. We do not have normality,
because we have Krtu

n � ⊤ but Krtu
n 2 [⊥!]⊤.

In Section 7.1 we will introduce the dual of Plaza’s public announcements as
truthful public announcements. As we will see, more properties hold for this
widely discussed logic.

6For example, the necessity operator is called an alethic modality.
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We end this section with a short note about the crucial benefit of announce-
ment operators. In real life, we communicate in order to learn new informa-
tion, therefore we expect that the knowledge or the belief of an agent will
change after having performed an announcement. For instance, in Plaza’s
logic we have

Kr
n � α→ [α!]Kiα (5.2)

for all α ∈ L0 and all i ∈ A. Thus, we have that a true propositional fact will
always be learnt by the agents after one public announcement of this fact.
However, the above mentioned implication does not hold for all formulas, but
it holds for a bigger set than L0. For instance, for all formulas of the form
Kip and for all formulas valid in Kr

n. It is a nontrivial task to find out which
set of formulas is defined by a property like (5.2)

It has turned out that there is one property that gives rise to an interesting
set of formulas in every announcement logic we are going to use in this
thesis. It is the notion of announcement resistant7 formulas, which we have
introduced in [61, 62]. For instance, the announcement resistant formulas all
satisfy property 5.2 in all announcement logics we will define in the following
chapters.

Definition 5.4.5. Let X be an arbitrary class of Kripke structures and L
be a language containing public announcement operators. A formula α ∈ L
is called announcement resistant in X , if for all β ∈ L we have

X � α→ [β!]α.

Now, let L be a language containing group announcement operators and G ⊆
A be a non empty group of agents. A formula α ∈ L is called announcement
resistant for G in X , if for all β ∈ L we have

X � α→ [β!G]α.

In many contributions to public announcement logics, there is the notion of
successful formulas, which has been thoroughly studied by van Ditmarsch [17,
18, 19] and van Ditmarsch et al. [21, 22, 23]. We will define this property in
Section 7.1 because this property defines an interesting set of formulas only
in the logic of truthful public announcements.

7Sometimes the term preserved formulas is used, see van Benthem [10] as well as van
Ditmarsch and Kooi [23]. But this means “preserved under submodels” and is not only
used in the context of announcement logics.





Chapter 6

Belief expansion

In this chapter, we will explore two different belief expansion functions in
group announcement logics. We will show that these functions are not ex-
pansion functions for arbitrary beliefs, but there is a big set of formulas that
will always be learnt by the group they are announced to. In Section 6.1 we
will give a straightforward semantics for the expansion of trustful agents’ be-
liefs. This means that the agents believe every incoming information without
any constraints. We will prove soundness and completeness for the system
of Gerbrandy and Groeneveld from [30]. This allows us to conclude that our
semantics is equivalent to their non well-founded approach. We will then
present our work from [61] about a new way of expanding the belief of ratio-
nal agents in Section 6.2. The agents’ beliefs will always remain consistent,
even after performing an announcement that contradicts their beliefs. In this
case, the agents do not accept the announced formula, but they learn that
other agents have received the same information. Due to this behaviour,
we call them sceptical agents. They act the same way as we have already
proposed with the consistent expansion function, see Definition 3.1.2. Sec-
tion 6.3 deals with the challenge of axiomatising group announcement logics
augmented with common belief operators. Although there exist systems for
extensions of these logics (cf. [7]), we are working towards an axiomatisation
within a simpler language.

6.1 Trustful agents

First of all, we repeat the definition of the language LGA
n of group announce-

ment logic from Definition 5.4.1. The formulas of this language are defined
by the following grammar (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | [α!G]α.
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Since we only consider systems without the truth axiom (T) in this chapter,
we will read a formula Kiα as “agent i believes α”. Now, we want to extend
the standard Kripke semantics to the language LGA

n . Similar constructions
can be found in Hommersom et al. [44, 45], Roorda et al. [43], and van
Linder et al. [42]. They have all defined some model transformations which
makes the agents belief the announced formula. However, they either work
within a richer language [43, 42], or have some constraints on the incoming
information [44, 45].

Definition 6.1.1. We extend Definition 5.1.5 by the following clause,

K, s � [α!G]β :⇔ K
α,G, s1 � β,

where the Kripke structure Kα,G = (S ′, Rα,G
1 , . . . , Rα,G

n , V ′) is defined by

S ′ := S × {0, 1},

Rα,G
i :=

{

{(s0, t0) : sRit} ∪ {(s1, t1) : sRit and K, t � α} if i ∈ G,

{(s0, t0) : sRit} ∪ {(s1, t0) : sRit} if i /∈ G,

V ′(p) := V (p) × {0, 1}

for all i ∈ A and all p ∈ P. The expressions s0 and s1 are abbreviations for
the worlds (s, 0) and (s, 1) respectively.

The essential feature of the above definition is the following. The agents not
in G keep their original beliefs, while the beliefs of the agents belonging to G
are affected by the announced formula. We call such agents trustful agents,
because they always believe the announced formula. We will now give an
example in order to illustrate how this model transformation works.

Example 6.1.2. Alice, Bob, and Charlie meet in a pub, we will also call them
agents 1, 2, and 3. Bob and Charlie wonder whether Alice has got a sister or
not. She actually does and, of course, she believes this fact. The situation
can be illustrated with a simple Kripke structure K = ({u, v}, R1, R2, R3, V ),
see Figure 6.1 (the actual world u is underlined). At world u Alice has
got a sister, while she does not at world v. For this purpose, we choose a
proposition p with the meaning “Alice has got a sister”. Therefore, we have
V (p) = {u}.

While Charlie is going to get some drinks, Alice tells Bob that she has got
a sister. We have α = p, G = {1, 2}, and Bob has learnt p at world u1

from the transformed Kripke structure Kp,{1,2}, see Figure 6.2. As we can
see, Alice has learnt that Bob has learnt p, since she belongs to the group
G. Moreover, Charlie’s beliefs remain unchanged, hence Alice’s and Bob’s
beliefs about Charlie’s beliefs remain unchanged, as well.
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u v2,3

1,2,3 1,2,3

Figure 6.1: Alice has got a sister

u1 v1

u0 v0

2

3 33 3

1,2

2,3

1,2,3 1,2,3

Figure 6.2: Bob has learnt that Alice has got a sister

It seems to be obvious that the beliefs of the agents that do not hear an
announcement remain unchanged. In order to prove this fact, the following
lemma is useful.

Lemma 6.1.3. Let the two Kripke structures K = (S,R1, . . . , Rn, V ) and
K′ = (S ′, R′

1, . . . , R
′
n, V

′) as well as the worlds s ∈ S and s′ ∈ S ′ be given. If
K, s ≃ K′, s′, then for all α ∈ LGA

n we have

K, s � α ⇔ K
′, s′ � α.

Proof. By induction on α. We will show how to prove the last case of the
induction step, where α is of the form [β!G]γ. Let B be the bisimulation
relation that connects s and s′. Then we define a new binary relation by

B+ := {(u0, u
′
0) : uBu′} ∪ {(u1, u

′
1) : uBu′}.
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Note that we have B+ ⊆ (S × {0, 1}) × (S ′ × {0, 1}). It is not hard to show
that B+ is a bisimulation between Kβ,G and (K′)β,G that connects s1 and s′1
using the induction hypothesis for β. By induction hypothesis for γ, we get
Kβ,G, s1 � γ if and only if (K′)β,G, s′1 � γ, and we are done.

We will now prove that the model transformation retains transitivity and
Euclideanity of the accessibility relations. It follows from Example 6.1.2
that this is not the case for seriality or reflexivity.

Lemma 6.1.4. Let X be one of the classes Kt
n or Ktu

n . Then for all Kripke
structures K, all α ∈ LGA

n , and all non empty G ⊆ A we have

K ∈ X ⇒ K
α,G ∈ X .

Proof. We will show how to prove that transitivity is preserved. So let Ri

be transitive. Further, let i ∈ G, u1R
α,G
i v1, and v1R

α,G
i w1. This implies

uRiw and K, w � α, hence we get u1R
α,G
i w1. The other cases are similar and

transitivity preservation is proved, no matter if Ri is Euclidean or not. The
proof for Euclideanity preservation is similar.

We are now able to state three deductive systems for our group announce-
ments extending Kn, K4n, and K45n. Lemma 6.1.4 will be crucial in order to
prove soundness of these systems.

Definition 6.1.5. The deductive systems KGA
n , K4

GA
n , and K45

GA
n are the

systems Kn, K4n, and K45n respectively augmented with the following group
announcement axioms,

(GA1) [α!G]p↔ p,

(GA2) [α!G](β → γ) → ([α!G]β → [α!G]γ),

(GA3) [α!G]¬β ↔ ¬[α!G]β,

(GA4) [α!G]Kiβ ↔ Kiβ (i /∈ G),

(GA5) [α!G]Kiβ ↔ Ki(α → [α!G]β) (i ∈ G).

as well as the group announcement necessitation rule,

(GAN)
α

[β!G]α
.

We will first prove soundness of the three Hilbert systems, which allows us
to formally prove properties of our model transformation.
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Lemma 6.1.6. For all α ∈ LGA
n we have

KGA
n ⊢ α ⇒ Kn � α,

K4
GA
n ⊢ α ⇒ Kt

n � α,

K45
GA
n ⊢ α ⇒ Ktu

n � α.

Proof. By induction on the length of the proof. In the base case, we first
show that axiom (GA4) is valid in Kn. Let K ∈ Kn, s ∈ |K|, α, β ∈ LGA

n ,
∅ 6= G ⊆ A, and i ∈ A \G, be given. Then we define a binary relation by

B := {(u, u0) : u ∈ |K|}.

It is now easy to show that B is a bisimulation between K and Kα,G. By
Lemma 6.1.3, we get

K, s � [α!G]Kiβ ⇔ K
α,G, s1 � Kiβ

⇔ for all t0 ∈ Rα,G
i (s1), K

α,G, t0 � β

⇔ for all t ∈ Ri(s), K
α,G, t0 � β

⇔ for all t ∈ Ri(s), K, t � β

⇔ K, s � Kiβ.

Second, we show that axiom (GA5) is valid in Kn. For all K ∈ Kn, all s ∈ K,
all α, β ∈ LGA

n , all non empty G ⊆ A, and all i ∈ G we have

K, s � [α!G]Kiβ ⇔ K
α,G, s1 � Kiβ

⇔ for all t1 ∈ Rα,G
i (s1), K

α,G, t1 � β

⇔ for all t ∈ Ri(s), K, t � α implies K, t � [α!G]β

⇔ K, s � Ki(α → [α!G]β).

In the induction step, soundness of the rule (GAN) is proved as follows. Let
X be one of the classes Kn, Kt

n, or Ktu
n . For all α, β ∈ LGA

n and all non empty
G ⊆ A, we have to show that X � α implies X � [β!G]α. For given K ∈ X
and s ∈ |K|, we have Kβ,G ∈ X by Lemma 6.1.4, thus we get Kβ,G, s1 � α by
assumption. This yields K, s � [β!G]α, and we are done.

The following lemma states a so-called reduction axiom, which is provable in
our three systems.

Lemma 6.1.7. Let X be one of the deductive systems KGA
n , K4

GA
n , or K45

GA
n .

Then for all α, β, γ ∈ LGA
n and all non empty G ⊆ A we have that X proves

[α!G](β ∧ γ) ↔ [α!G]β ∧ [α!G]γ.
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Proof. The proof is like in normal modal logic for the Ki modality, that is
we only need (GA2) and (GAN) in addition to the corresponding systems of
belief.

As an immediate consequence of axiom (GA3), we could replace axiom (GA2)
by the reduction axiom from Lemma 6.1.7 to get equivalent deductive sys-
tems. In addition, the converse direction of (GA2) is also provable by use of
axiom (GA3) and Lemma 6.1.7.

Since we have soundness, we can formally prove that every property from
Definition 5.4.3 is satisfied by our group announcement semantics.

Lemma 6.1.8. Let X be one of the classes Kn, Kt
n, or Ktu

n . Then the
group announcements for trustful agents are fact preserving, adequate, total,
self-dual, and normal with respect to X .

Proof. Let XGA be the deductive system that corresponds to X . In order
to prove fact preservation, we can show for all α ∈ L0 and all β ∈ LGA

n

that XGA proves α ↔ [β!G]α. This can be done by induction on α using the
axioms (GA1) and (GA3) as well as Lemma 6.1.7. Due to the prove of fact
preservation, we easily get adequacy and totality, the latter can be proved
using axiom (GA3). Self-duality and normality are part of our systems. All
of the properties now follow from soundness.

For the completeness proof, we are going to define a translation from LGA
n to

Ln. This translation will be established in two stages. In the first stage, we
define an auxiliary function h, which exclusively operates on announcement
formulas.

Definition 6.1.9. We inductively define the auxiliary function h that maps
from {[α!G]β : α, β ∈ LGA

n , ∅ 6= G ⊆ A} to LGA
n as follows,

h([α!G]p) := p,

h([α!G]¬β) := ¬h([α!G]β),

h([α!G](β ∧ γ) := h([α!G]β) ∧ h([α!G]γ),

h([α!G]Kiβ) :=

{

Ki(α→ h([α!G]β)) if i ∈ G,

Kiβ if i /∈ G,

h([α!G][β!H ]γ) := [α!G][β!H ]γ.

It is an easy induction on β to show that for all α, β ∈ Ln and all non empty
G ⊆ A we have h([α!G]β) ∈ Ln. Moreover, the function h is equivalence
preserving in the following sense.
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Lemma 6.1.10. Let X be one of the deductive systems KGA
n , K4

GA
n , or

K45
GA
n . Then for all α, β ∈ LGA

n and all non empty G ⊆ A we have

X ⊢ h([α!G]β) ↔ [α!G]β.

Proof. By induction on β. In the base case, if β = p for some p ∈ P, we
have that X proves p ↔ [α!G]p by axiom (GA1). In the induction step, we
show how to prove the case β = Kiγ for i ∈ G. We start with a proof
of h([α!G]γ) ↔ [α!G]γ by induction hypothesis. By standard modal logic
reasoning, we can now prove Ki(α → h([α!G]γ)) ↔ Ki(α → [α!G]γ). Since
the left expression is the formula h([α!G]Kiγ) by definition, and the right
expression is provably equivalent to [α!G]Kiγ by (GA5), we are done.

In order to prove completeness, the following lemma will be very useful.

Lemma 6.1.11. Let X be one of the deductive systems KGA
n , K4

GA
n , or

K45
GA
n . Then for all α, β ∈ LGA

n , all ϕ ∈ Ln, and all non empty G ⊆ A we
have

X ⊢ α ↔ β ⇒ X ⊢ [α!G]ϕ↔ [β!G]ϕ.

Proof. By induction on ϕ. Again, the only interesting case is in the induction
step, if ϕ = Kiψ and i ∈ G. We have X ⊢ α ↔ β by assumption, and
X ⊢ [α!G]ψ ↔ [β!G]ψ by induction hypothesis. This immediately yields
a proof of Ki(α → [α!G]ψ) ↔ Ki(β → [β!G]ψ) by standard modal logic
reasoning. Two applications of axiom (GA5) end the proof.

Using the auxiliary function h, we are now able to define the translation f
from LGA

n to Ln.

Definition 6.1.12. The function f : LGA
n → LGA

n is inductively defined by

f(p) := p,

f(¬α) := ¬f(α),

f(α ∧ β) := f(α) ∧ f(β),

f(Kiα) := Kif(α),

f([α!G]β) := h([f(α)!G]f(β)).

Again, it is not hard to show that f(α) ∈ Ln for all α ∈ LGA
n by induction

on α. Furthermore, we can show that f is equivalence preserving like the
function h.
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Lemma 6.1.13. Let X be one of the deductive systems KGA
n , K4

GA
n , or

K45
GA
n . Then for all α ∈ LGA

n we have

X ⊢ f(α) ↔ α.

Proof. By induction on α. We show how to prove the case α = [β!G]γ in
the induction step. By induction hypothesis, we have that X proves both
formulas f(β) ↔ β and f(γ) ↔ γ. Therefore, the formula α is provably
equivalent to [β!G]f(γ) by (GAN) and (GA2), which is provably equivalent to
[f(β)!G]f(γ) by Lemma 6.1.11. But now, by Lemma 6.1.10, this formula is
provably equivalent to h([f(β)!G]f(γ)), which is defined to be f(α).

Due to Lemma 6.1.13 and Lemma 6.1.11, we can prove that group announce-
ments for trustful agents are syntax independent.

Lemma 6.1.14. Let X be one of the deductive systems KGA
n , K4

GA
n , or

K45
GA
n . Then for all α, β, γ ∈ LGA

n and all non empty G ⊆ A we have

X ⊢ α↔ β ⇒ X ⊢ [α!G]γ ↔ [β!G]γ.

Proof. Let X ⊢ α ↔ β. We have that X proves the equivalence of [α!G]γ
and [α!G]f(γ) by Lemma 6.1.13, axiom (GA2), and the rule (GAN). By
assumption and Lemma 6.1.11, the latter formula is provably equivalent to
[β!G]f(γ), which is provably equivalent to [β!G]γ by again Lemma 6.1.13,
axiom (GA2), and the rule (GAN).

Due to Lemma 6.1.14, we can now prove the Replacement Theorem for our
three Hilbert systems.

Theorem 6.1.15 (Replacement). Let X be one of the deductive systems
KGA

n , K4
GA
n , or K45

GA
n . Then for all α, β, γ ∈ LGA

n we have

X ⊢ α↔ β ⇒ X ⊢ γ ↔ γ[α/β].

Proof. By induction on γ. In the base case, if γ = p for some p ∈ P, we
distinguish two cases. First, if β 6= p, then we immediately get γ[α/β] = γ
and the claim easily follows. Second, if β = p = γ, then we immediately get
γ[α/β] = α and the claim follows by assumption. In the induction step, we
show how to prove the case γ = [δ!G]ϕ. By axiom (GA2), the rule (GAN),
and the induction hypothesis for ϕ, we get X ⊢ [δ!G]ϕ ↔ [δ!G](ϕ[α/β]). In
addition, we have that the formulas [δ!G](ϕ[α/β]) and [(δ[α/β])!G](ϕ[α/β])
are provably equivalent by Lemma 6.1.14 and the induction hypothesis for
δ. The latter formula is defined to be ([δ!G]ϕ)[α/β], and we are done.
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Another consequence of Lemma 6.1.13 is that the logic of group announce-
ments has the same expressive strength as epistemic logic. This fact gives
rise to a short and elegant completeness proof, as we show in the proof of
the following theorem. We will see in Section 6.3 that this is not the case in
the presence of common knowledge operators.

Theorem 6.1.16. For all α ∈ LGA
n we have

KGA
n ⊢ α ⇔ Kn � α,

K4
GA
n ⊢ α ⇔ Kt

n � α,

K45
GA
n ⊢ α ⇔ Ktu

n � α.

Proof. Let X be one of the systems Kn, K4n, or K45n and X be the class
of Kripke structures that corresponds to X. The direction from left to right
has already been proved. For completeness of XGA, we assume X � α. By
soundness and Lemma 6.1.13, we have X � f(α). By completeness of X and
the fact that f(α) ∈ Ln, we get X ⊢ f(α). Since the system XGA extends X,
we immediately get XGA ⊢ f(α). Finally, again by Lemma 6.1.13, we have
that XGA proves α, which concludes the proof.

We want to mention that we have soundness and completeness for exactly
the same deductive system presented by Gerbrandy and Groeneveld [30] and
Gerbrandy [29]. Their semantics is completely different because the models
are non well-founded sets. In fact, their semantics is similar to the non well-
founded semantics introduced by Barwise and Moss [9]. They need the Anti
Foundation Axiom and the Solution Lemma for their results, see Aczel [1]
for further details. So we have given a semantics with exactly the same valid
formulas without claiming the existence of non well-founded sets. Since the
fully introspective models of Gerbrandy and Groeneveld have the same valid
formulas as Veltman’s update semantics [63], we get the same result for Ktu

n

as Proposition 3.9 in [30].

The announcement resistant formulas are a suitable tool for the purpose of
investigating how announcements affect the agent’s beliefs. There is a big
set of announcement resistant formulas for every non empty G ⊆ A in all
three classes of Kripke structures.

Lemma 6.1.17. Let G ⊆ A be a non empty set of agents and X be one of
the classes Kn, K

t
n, or Ktu

n . Then we have the following sufficient conditions
for a formula α ∈ LGA

n to be announcement resistant for G in X ,

1. α ∈ L0,

2. X � α or X � ¬α,
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3. α = Kiβ or α = ¬Kiβ for some i ∈ A \G and some β ∈ LGA
n ,

4. α = β ∧ γ or α = β ∨ γ for some β, γ announcement resistant for G
in X ,

5. α = Kiβ for some i ∈ G and some β announcement resistant for G in
X .

Proof. The first assertion is a direct consequence of Lemma 6.1.8 (fact pres-
ervation). The two claims in the second assertion follow from soundness of
the rule (GAN) and tautological reasoning respectively. The third assertion
is directly implied by soundness of the axioms (GA3) and (GA4). The fourth
assertion is a consequence of Lemma 6.1.7, axiom (GA3), and soundness.
Now, we show how to prove the fifth assertion. Let XGA be the deductive
system that corresponds to X , β ∈ LGA

n be announcement resistant for G
in X , and γ ∈ LGA

n be arbitrarily given. By completeness, we have a proof
of β → [γ!G]β in XGA. By tautological reasoning, we get that XGA proves
β → (γ → [γ!G]β), which leads to a proof of Kiβ → Ki(γ → [γ!G]β) in
XGA by normal modal logic reasoning. Applying axiom (GA5), we finally get
XGA ⊢ Kiβ → [γ!G]Kiβ. Due to soundness, we are done.

We conclude this section by stating that the announcement resistant formulas
get common belief after one single announcement.

Theorem 6.1.18. Let G ⊆ A be a non empty set of agents and X be one of
the classes Kn, K

t
n, or Ktu

n . Further, let α ∈ LGA
n be announcement resistant

for G in X . Then for all l ≥ 1 and all i1, . . . , il ∈ G we have

X � [α!G]Kil . . .Ki1α.

Proof. Let XGA be the deductive system that corresponds to X . We will
show by induction on l that the formula [α!G]Kil . . .Ki1α is provable in XGA.
In the base case, we have that XGA proves α → [α!G]α by assumption and
completeness. Applying the rule (NEC) and axiom (GA5), we get a proof of
[α!G]Ki1α in XGA. For the induction step, we have XGA ⊢ [α!G]Kil . . .Ki1α by
induction hypothesis. We can now get XGA ⊢ Kil+1

(α → [α!G]Kil . . .Ki1α)
by standard modal logic reasoning. The final step is an application of ax-
iom (GA5), which results in a proof of [α!G]Kil+1

Kil . . .Ki1α in XGA. By
soundness, we get the desired result.

Observe that if i ∈ G, we have X � [α!G]Kiα for all unsatisfiable formulas
α ∈ LGA

n . This problem cannot be fixed by adding the axiom (D), because
the systems would become inconsistent. In order to see this, we start with the
fact that the formula [⊥!G]Ki⊥ is provable for all groups G ⊆ A satisfying
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i ∈ G. On the other hand, (D) allows us to prove ¬Ki⊥, applying (GAN)
and axiom (GA3) results in ¬[⊥!G]Ki⊥. In the next section we will provide
a more sophisticated announcement semantics, which allows us to avoid this
problem.

6.2 Sceptical agents

It is the aim of this section to present our semantics for the logic of group
announcements from [61]. The language LGA

n from the Section 6.1 is still
our set of formulas. We will implement belief expansion in modal logic as
proposed in Section 3.1. That is, the agents will only accept new information
that is consistent with their beliefs, cf. Definition 3.1.2. Due to our definition
of the new model transformation, we will be able to provide deductive systems
containing the consistency axiom

(D) Ki¬α → ¬Kiα,

without giving up the other nice properties from Section 6.1. In addition, we
have that for all α ∈ LGA

n and all non empty G ⊆ A the formula ¬[α!G]Ki⊥,
which is equivalent to [α!G]¬Ki⊥, will be provable in the new deductive sys-
tems that contain axiom (D). The consistency of beliefs is a widely accepted
requirement for rational agents, who are always aware of all the consequences
of their beliefs. Therefore, we regard it as very natural to require that prop-
erty to hold after any announcement.

For the new semantics, we are going to slightly modify the definition of the
transformed Kripke structure Kα,G from Section 6.1.

Definition 6.2.1. We extend Definition 5.1.5 by the following clause,

K, s � [α!G]β :⇔ K
α,G, s1 � β,

where the Kripke structure Kα,G = (S ′, Rα,G
1 , . . . , Rα,G

n , V ′) is defined by

S ′ := S × {0, 1},

Rα,G
i :=











{(s0, t0) : sRit} ∪ {(s1, t1) : sRit and K, t � α} ∪

{(s1, t1) : sRit and K, s � Ki¬α} if i ∈ G,

{(s0, t0) : sRit} ∪ {(s1, t0) : sRit} if i /∈ G.

V ′(p) := V (p) × {0, 1}

for all i ∈ A and all p ∈ P. The expressions s0 and s1 are abbreviations for
the worlds (s, 0) and (s, 1) respectively.
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In the model transformation of Section 6.1, all the worlds that do not satisfy
α become inaccessible by performing an announcement. With the new model
transformation, such worlds stay accessible for the agents if there is no ac-
cessible world where α holds. This is the reason why there is always at least
one accessible world, hence the beliefs of all agents remain consistent. From
the agents’ perspective, this means that an agent rejects the incoming infor-
mation if he believes in its negation. We call such agents sceptical agents,
because they stick to their beliefs if they consider the new information to
be false. But it is not the case that these agents do not learn anything by
rejecting an announcement. They learn that the other agents belonging to G
have learnt or rejected the announced formula. We think that this strategy
is quite good if the source of the information is not known to be reliable.

In order to get a system retaining the consistency of beliefs, there have also
been different proposals in literature, cf. Hommersom et al. [44, 45] and Ro-
orda et al. [43]. Our approach is completely different and works for announce-
ments with arbitrary formulas, not only for propositional information. The
following example is from [61] and illustrates how the new semantics works.

Example 6.2.2. Imagine a game with the players 1, 2, and 3, as well as
three cards, one Ace and two indistinguishable Queens. The players know
which cards are in play and one card is dealt to each player in such a way that
he can only see his own card. Then the only player who knows the deal is the
player with the Ace and the situation is represented by the Kripke structure
K as is illustrated in Figure 6.3. For each player i we take a proposition pi,

QQA

AQQ QAQ

2 1

3

1,2,3

1,2,3 1,2,3

Figure 6.3: Every possible hand

which is defined to be true if and only if player i has got the Ace. Thus, the
valuation function V is given by

V (p1) = {AQQ}, V (p2) = {QAQ}, V (p3) = {QQA} .
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Now, player 1 secretly tells player 2 that he does not have the Ace. No matter
in which state we are, we can perform this announcement as described in
Definition 6.2.1. This means that α = ¬p1, G = {1, 2}, hence K¬p1,{1,2} is
the resulting structure from Figure 6.4. Observe that, no matter in which

QQA1

AQQ1 QAQ1

QQA0

AQQ0 QAQ0

2 1

3 33 33

1,2

1 1,2

2 1

3

1,2,3

1,2,3 1,2,3

Figure 6.4: Does player 1 have the Ace?

state we are before the announcement, player 2 accepts the announcement
and believes ¬p1 afterwards. In the state QQA, player 2 learns a true fact
and believes that player 3 has got the Ace, which is also true. Player 2
learns nothing new in the state QAQ, because she has already believed that
player 1 does not have the Ace. On the other hand, in the state AQQ, player 2
believes a lie, and player 1 rejects his own announcement, because he believes
its negation p1. In addition, player 1 learns that player 2 believes his lie. This
fact illustrates the essential difference of the new procedure to the approach
from Definition 6.1.1.

Like in Section 6.1, it is not immediate that the beliefs of the agents that
do not hear an announcement remain unchanged. For this purpose, we will
again prove that two bisimilar pointed structures satisfy the same formulas.
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Lemma 6.2.3. Let the two Kripke structures K = (S,R1, . . . , Rn, V ) and
K′ = (S ′, R′

1, . . . , R
′
n, V

′) as well as the worlds s ∈ S and s′ ∈ S ′ be given. If
K, s ≃ K′, s′, then for all α ∈ LGA

n we have

K, s � α ⇔ K
′, s′ � α.

Proof. By induction on α. We will again show how to prove the last case of
the induction step, where α is of the form [β!G]γ. Let B be the bisimulation
relation that connects s and s′. Then we define a new binary relation by

B+ := {(u0, u
′
0) : uBu′} ∪ {(u1, u

′
1) : uBu′}.

Again, we have B+ ⊆ (S × {0, 1}) × (S ′ × {0, 1}). We can show that B+ is
a bisimulation between Kβ,G and (K′)β,G that connects s1 and s′1 using the
induction hypothesis for both β and Ki¬β. By induction hypothesis for γ,
we get Kβ,G, s1 � γ if and only if (K′)β,G, s′1 � γ, and we are done.

In Example 6.2.2, the initial Kripke structure belongs to Krtu
n , that is every

accessibility relation is an equivalence relation. But the resulting structure
is an element of Kstu

n , so reflexivity of the accessibility relation is in gen-
eral not preserved. We have already argued why seriality must be retained.
Unfortunately, transitivity is preserved only if the accessibility relations are
also Euclidean. This means that we will not be able to define a deductive
system for the classes of Kripke structures with transitive but not Euclidean
accessibility relations.

Lemma 6.2.4. Let X be one of the classes Ktu
n , Ks

n, or Kstu
n . Then for all

Kripke structures K, all α ∈ LGA
n , and all non empty G ⊆ A we have

K ∈ X ⇒ K
α,G ∈ X .

Proof. First, we will show that seriality is preserved. So let Ri be serial and
assume i ∈ G. Then for all u ∈ |K| we have Ri(u) 6= ∅. Of course, we have
Rα,G

i (u0) = {v0 : v ∈ Ri(u0)} 6= ∅. We have to show that Rα,G
i (u1) is also

non empty. If K, u 2 Ki¬α, then we have K, v � α for some v ∈ Ri(u),
and we get u1R

α,G
i v1. Otherwise, if K, u � Ki¬α, then we immediately get

Rα,G
i (u1) = {v1 : v ∈ Ri(u)} 6= ∅. The case i /∈ G is trivial and seriality

preservation is proved. Second, we will show that transitivity is preserved
in the presence of Euclideanity. So let Ri be transitive and Euclidean and
assume i ∈ G. Clearly, u0R

α,G
i v0, and v0R

α,G
i w0 directly imply u0R

α,G
i w0.

So let u1R
α,G
i v1 and v1R

α,G
i w1. This implies uRiw and either K, w � α or

K, v � Ki¬α. If K, w � α, then we immediately have u1R
α,G
i w1, and we are

done. If K, v � Ki¬α, then we have K, u � ¬Ki¬Ki¬α because uRiv. By
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Euclideanity of Ri, we now get K, u � Ki¬α, hence we have u1R
α,G
i w1. The

case i /∈ G is trivial, and transitivity preservation is proved. The proof for
Euclideanity preservation in the presence of transitivity is similar.

The following example shows that transitivity is not necessarily preserved, if
the accessibility relations are not Euclidean.

Example 6.2.5. Let p ∈ P and K = ({s, t, u}, R1, . . . , Rn, V ) be defined by

R1 = {(s, t), (t, u), (s, u), (u, u)} V : q 7→ {t},

such that the accessibility relations R2, . . . Rn are serial and transitive. Then
we have K ∈ Kst

n , hence K ∈ Kt
n. If p is announced to agent 1, we get

R
p,{1}
i = {(s0, t0), (t0, u0), (s0, u0), (u0, u0), (s1, t1), (t1, u1), (u1, u1)}.

That is, we have Kp,{1} /∈ Kt
n, thus Kp,{1} /∈ Kst

n .

We are now able to define four deductive systems for the logic of group
announcements for sceptical agents.

Definition 6.2.6. The Hilbert systems KGAc

n , K45
GAc

n , KD
GAc

n , and KD45
GAc

n

are the systems Kn, K45n, KDn, and KD45n respectively augmented with the
following group announcement axioms,

(GA1) [α!G]p↔ p,

(GA2) [α!G](β → γ) → ([α!G]β → [α!G]γ),

(GA3) [α!G]¬β ↔ ¬[α!G]β,

(GA4) [α!G]Kiβ ↔ Kiβ (i /∈ G),

(GA5c) ¬Ki¬α → ([α!G]Kiβ ↔ Ki(α→ [α!G]β)) (i ∈ G),

(GA6c) Ki¬α→ ([α!G]Kiβ ↔ Ki[α!G]β) (i ∈ G),

as well as the group announcement necessitation rule,

(GAN)
α

[β!G]α
.

Again, the above defined systems are sound with respect to the correspond-
ing classes of Kripke structures. The proof makes use of Lemma 6.2.4 and
therefore, it would not work for the respective extensions of K4n and KD4n.

Lemma 6.2.7. For all α ∈ LGA
n we have

KGAc

n ⊢ α ⇒ Kn � α, K45
GAc

n ⊢ α ⇒ Ktu
n � α,

KD
GAc

n ⊢ α ⇒ Ks
n � α, KD45

GAc

n ⊢ α ⇒ Kstu
n � α.
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Proof. Let X be one of the classes Kn, Ktu
n , Ks

n, or Kstu
n and XGAc be the

deductive system that corresponds to X . The proof is by induction on the
length of the derivation. In the base case, we first want to mention that axiom
(GA4) is valid in X due to Lemma 6.2.3. The proof works exactly the same
way as for trustful agents, where we replace Lemma 6.1.3 by Lemma 6.2.3
in the proof of Lemma 6.1.6. The proof of the validity of axiom (GA5c) is
similar to the proof for axiom (GA5) in the context of trustful agents, see
again the proof of Lemma 6.1.6. Now, we show how to prove the correctness
of (GA6c). Let i ∈ G, K ∈ X , and s ∈ |K|, and assume that K, s � Ki¬α.
Then we have

K, s � [α!G]Kiβ ⇔ K
α,G, s1 � Kiβ

⇔ for all t1 ∈ Rα,G
i (s1), K

α,G, t1 � β

⇔ for all t ∈ Ri(s), K, t � [α!G]β

⇔ K, s � Ki[α!G]β.

In the induction step, soundness of the rule (GAN) is proved the same way
as in Lemma 6.1.6, but it uses Lemma 6.2.4 instead of Lemma 6.1.4.

We have mentioned in Section 5.1 that if a Hilbert system X is consistent, it
is not immediate how to find its corresponding class of Kripke structures. In
this section, we have all the tools we need to illustrate this fact.

Remark 6.2.8. Let K4
GAc

n and KD4
GAc

n be the systems K4n and KD4n respec-
tively extended by the group announcement axioms and the group announce-
ment necessitation rule from Definition 6.2.6. Then we know that K4

GAc

n and
KD4

GAc

n are consistent because they are both contained in the consistent sys-
tem KD45

GAc

n . But, since transitivity is not retained without Euclideanity,
cf. Example 6.2.5, we have that K4

GAc

n and KD4
GAc

n are not sound with respect
to Kt

n and Kst
n respectively. In order to see this, let p ∈ P be arbitrarily given.

Then we have that the formula [p!{1}](K1p → K1K1p) is obviously provable
in K4

GAc

n and KD4
GAc

n , but not valid in Kt
n and Kst

n . For instance, it is not
satisfied at world s from the Kripke structure K = ({s, t, u}, R1, . . . , Rn, V ),
where

R1 = {(s, t), (t, u), (s, u), (u, u)}, V : q 7→ {t},

and the accessibility relations R2, . . . , Rn are arbitrary serial and transitive
relations. Clearly, we have K ∈ Kst

n , hence K ∈ Kt
n.

In order to define the new translation from LGA
n to Ln, it will be useful to

have the following reduction axioms, which are both provable in our four
systems.
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Lemma 6.2.9. Let X be one of the deductive systems KGAc

n , K45
GAc

n , KD
GAc

n ,
or KD45

GAc

n . Then for all α, β, γ ∈ LGA
n , all non empty G ⊆ A, and all i ∈ G

we have that X proves

[α!G](β ∧ γ) ↔ [α!G]β ∧ [α!G]γ,

[α!G]Kiβ ↔ Ki[α!G]β ∨ (¬Ki¬α ∧Ki(α → [α!G]β)).

Proof. The proof of the first assertion works exactly the same way as the
proof of Lemma 6.1.7. We show how to prove the second assertion. By the
axioms (GA5c) and (GA6c) as well as tautological reasoning, we get that the
formula [α!G]Kiβ is provably equivalent to

(Ki¬α ∧Ki[α!G]β) ∨ (¬Ki¬α ∧Ki(α→ [α!G]β)) (6.1)

in X. Using the fact that X proves Ki[α!G]β → Ki(α → [α!G]β) and again
propositional reasoning, we get that formula (6.1) is now provably equivalent
to Ki[α!G]β ∨ (¬Ki¬α ∧Ki(α → [α!G]β)) in X, hence we are done.

The group announcements for sceptical agents also satisfy all the properties
from Definition 5.4.3.

Lemma 6.2.10. Let X be one of the classes Kn, K
tu
n , Ks

n, or Kstu
n . Then

the group announcements for sceptical agents are fact preserving, adequate,
total, self-dual, and normal with respect to X .

Proof. These assertions can all be formally proved in the deductive system
that corresponds to X . The proof is identical to the proof of Lemma 6.1.8.

In addition to the properties of Lemma 6.2.10, we have that the group an-
nouncements for sceptical agents are consistency preserving. That is, the
consistency of beliefs is preserved after any announcement, as we show in the
following lemma.

Lemma 6.2.11. Let X be one of the Hilbert systems KGAc

n , K45
GAc

n , KD
GAc

n ,
or KD45

GAc

n . Then for all α ∈ LGA
n , all non empty G ⊆ A, and all i ∈ A

we have that X proves

¬Ki⊥ → [α!G]¬Ki⊥.

Proof. For i ∈ A \ G, the proof is trivial. We show how to prove the claim
for i ∈ G. By axiom (GA3) and the second assertion of Lemma 6.2.9, we get

X ⊢ [α!G]¬Ki⊥ ↔ ¬(Ki[α!G]⊥ ∨ (¬Ki¬α ∧Ki(α→ [α!G]⊥))).
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From the proof of Lemma 6.2.10 (fact preservation), we know that [α!G]⊥ is
provably equivalent to ⊥ in X, hence we get

X ⊢ [α!G]¬Ki⊥ ↔ ¬(Ki⊥ ∨ (¬Ki¬α ∧Ki(α→ ⊥)))

by normal modal logic reasoning. Again by standard modal logic reasoning,
it is easy to see that X ⊢ ¬Ki⊥ → ¬(Ki⊥ ∨ (¬Ki¬α ∧Ki(α → ⊥))), hence
we are done.

We have seen in Example 6.1.2 that Lemma 6.2.11 does not hold in the
context of trustful agents. In the presence of axiom (D), we can even stat a
stronger statement as Lemma 6.2.11. As an immediate consequence of axiom
(D) and the rule (GAN), we get that for all α ∈ LGA

n , all non empty G ⊆ A,
and all i ∈ A we have

KD
GAc

n ⊢ [α!G]¬Ki⊥, KD45
GAc

n ⊢ [α!G]¬Ki⊥.

Although the consistency preserving announcements have a more sophisti-
cated semantics, we can still establish an equivalence preserving translation
to epistemic logic. The only difference is in the definition of the auxiliary
function h, which makes use of both assertions from Lemma 6.2.9.

Definition 6.2.12. We inductively define the auxiliary function h that maps
from {[α!G]β : α, β ∈ LGA

n , ∅ 6= G ⊆ A} to LGA
n as follows,

h([α!G]p) := p,

h([α!G]¬β) := ¬h([α!G]β),

h([α!G](β ∧ γ) := h([α!G]β) ∧ h([α!G]γ),

h([α!G]Kiβ) :=











Kih([α!G]β) ∨

(¬Ki¬α ∧Ki(α→ h([α!G]β))) if i ∈ G,

Kiβ if i /∈ G,

h([α!G][β!H ]γ) := [α!G][β!H ]γ.

It is again easy to see that for all α, β ∈ Ln and all non empty G ⊆ A we
have h([α!G]β) ∈ Ln. Moreover, the new function h is equivalence preserving
like in Section 6.1.

Lemma 6.2.13. Let X be one of the Hilbert systems KGAc

n , K45
GAc

n , KD
GAc

n ,
or KD45

GAc

n . Then for all α, β ∈ LGA
n and all non empty G ⊆ A we have

X ⊢ h([α!G]β) ↔ [α!G]β.
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Proof. By induction on β. The only difference to the proof of Lemma 6.1.10
is the case β = Kiγ for i ∈ G in the induction step. We start with a
proof of h([α!G]γ) ↔ [α!G]γ by induction hypothesis. By normal modal logic
reasoning, we get that Kih([α!G]γ) ∨ (¬Ki¬α ∧ Ki(α → h([α!G]γ))) and
Ki[α!G]γ ∨ (¬Ki¬α ∧ Ki(α → [α!G]γ)) are provably equivalent in X. Since
the former formula is defined to be h([α!G]Kiγ), and the latter formula is
provably equivalent to [α!G]Kiγ by the second assertion of Lemma 6.2.9, we
are done.

Like in Section 6.1, we will now prove a restricted version of syntax indepen-
dence for the consistency preserving group announcements.

Lemma 6.2.14. Let X be one of the Hilbert systems KGAc

n , K45
GAc

n , KD
GAc

n ,
or KD45

GAc

n . Then for all α, β ∈ LGA
n , all ϕ ∈ Ln, and all non empty G ⊆ A

we have

X ⊢ α ↔ β ⇒ X ⊢ [α!G]ϕ↔ [β!G]ϕ.

Proof. By induction on ϕ. We show how to prove the case ϕ = Kiψ for i ∈ G
in the induction step. By assumption and the induction hypothesis, we have
X ⊢ α ↔ β and X ⊢ [α!G]ψ ↔ [β!G]ψ. By normal modal logic reasoning,
we get that Ki[α!G]ψ ∨ (¬Ki¬α ∧ Ki(α → [α!G]ψ)) is provably equivalent
to Ki[β!G]ψ ∨ (¬Ki¬β ∧Ki(β → [β!G]ψ)) in X. By two applications of the
second assertion of Lemma 6.2.9, we are done.

The translation f from LGA
n to Ln is defined as in Section 6.1, but now it

uses the redefined auxiliary function h.

Definition 6.2.15. The function f : LGA
n → LGA

n is inductively defined by

f(p) := p,

f(¬α) := ¬f(α),

f(α ∧ β) := f(α) ∧ f(β),

f(Kiα) := Kif(α),

f([α!G]β) := h([f(α)!G]f(β)).

Clearly, we again have that for all α ∈ LGA
n we have f(α) ∈ Ln. Like in

Section 6.1, the function f is equivalence preserving.

Lemma 6.2.16. Let X be one of the Hilbert systems KGAc

n , K45
GAc

n , KD
GAc

n ,
or KD45

GAc

n . Then for all α ∈ LGA
n we have

X ⊢ f(α) ↔ α.
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Proof. The proof is the complete analogue to the proof of Lemma 6.1.13,
but it uses Lemma 6.2.13 and Lemma 6.2.14 instead of Lemma 6.1.10 and
Lemma 6.1.11 respectively.

As an immediate consequence of Lemma 6.2.16, we get that the logic of group
announcements for sceptical agents also has the same expressive strength as
normal modal logic. And we can now prove syntax independence for the
consistency preserving group announcements.

Lemma 6.2.17. Let X be one of the Hilbert systems KGAc

n , K45
GAc

n , KD
GAc

n ,
or KD45

GAc

n . Then for all α, β, γ ∈ LGA
n and all non empty G ⊆ A we have

X ⊢ α↔ β ⇒ X ⊢ [α!G]γ ↔ [β!G]γ.

Proof. The proof is identical to the proof of Lemma 6.1.14, but it uses
Lemma 6.2.14 and Lemma 6.2.16 instead of Lemma 6.1.11 and Lemma 6.1.13
respectively.

We are now able to state the Replacement Theorem for the logic of group
announcements for sceptical agents.

Theorem 6.2.18 (Replacement). Let X be one of the deductive systems
KGAc

n , K45
GAc

n , KD
GAc

n , or KD45
GAc

n . Then for all α, β, γ ∈ LGA
n we have

X ⊢ α↔ β ⇒ X ⊢ γ ↔ γ[α/β].

Proof. By induction on γ. The proof works exactly the same way as the
proof of Theorem 6.1.15. In the last case of the induction step, we use
Lemma 6.2.17 instead of Lemma 6.1.14.

Due to Lemma 6.2.16, we have a short completeness proof for the logic of
consistency preserving group announcements.

Theorem 6.2.19. For all α ∈ LGA
n we have

KGAc

n ⊢ α ⇔ Kn � α, K45
GAc

n ⊢ α ⇔ Ktu
n � α,

KD
GAc

n ⊢ α ⇔ Ks
n � α, KD45

GAc

n ⊢ α ⇔ Kstu
n � α.

Proof. Let X be one of the systems Kn, K45n, KDn, or KD45n and X be the
class of Kripke structures that corresponds to X. Soundness has already been
proved. For the direction from right to left, we assume X � α. By soundness
and Lemma 6.2.16, we have X � f(α). By completeness of X and the fact
that f(α) ∈ Ln, we get X ⊢ f(α). Since the system XGAc extends X, we
immediately get XGAc ⊢ f(α). Finally, again by Lemma 6.2.16, we have that
XGAc proves α, which concludes the proof.
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Due to Lemma 6.2.11, we have that the formulas of the form ¬Ki⊥ are
announcement resistant in the logic of group announcements for sceptical
agents. We have seen in Example 6.1.2, that this is not the case with trustful
agents, so we can say that we have more announcement resistant formulas
for any G in Kn and Ktu

n with the consistency preserving announcements.
The following lemma states that we have more conditions for a formula to
be announcement resistant than in Section 6.1.

Lemma 6.2.20. Let G ⊆ A be a non empty group of agents and X be one
of the classes Kn, Ktu

n , Ks
n, or Kstu

n . Then we have the following sufficient
conditions for a formula α ∈ LGA

n to be announcement resistant for G in X ,

1. α ∈ L0,

2. X � α or X � ¬α,

3. α = Kiβ or α = ¬Kiβ for some i ∈ A \G and some β ∈ LGA
n ,

4. α = β ∧ γ or α = β ∨ γ for some β, γ announcement resistant for G
in X ,

5. α = Kiβ for some i ∈ G and some β announcement resistant for G in
X .

6. α = ¬Kiβ for some i ∈ G and some β ∈ LGA
n satisfying X � ¬β.

Proof. The first four assertions can be proved exactly the same way as in
Lemma 6.1.17. The last assertion is a consequence of Lemma 6.2.11 and the
fact that ¬Ki⊥ is equivalent to ¬Kiβ whenever β is not satisfiable in X .
We show how to prove the fifth assertion. Let XGAc be the deductive system
that corresponds to X . Furthermore, let β be announcement resistant for G
in X , i ∈ G and γ ∈ LGA

n be arbitrarily given. By completeness, we have
XGAc ⊢ β → [γ!G]β. Hence, we easily get that XGAc proves Kiβ → Ki[γ!G]β
by normal modal logic reasoning. By the second assertion of Lemma 6.2.9,
we can derive XGAc ⊢ Ki[γ!G]β → [γ!G]Kiβ. We finally get that XGAc proves
Kiβ → [γ!G]Kiβ by tautological reasoning. By soundness, we get the desired
result.

Lemma 6.2.20 implies that an announcement resistant formula can never be
forgotten by the agents. This is because if α is announcement resistant for
G in X , then for all β ∈ LGA

n and all i ∈ A we have X � Kiα → [β!G]Kiα.
That is, the agents will never revise the belief in announcement resistant
formulas by accepting an announcement. Since the objective formulas are
announcement resistant, we have belief expansion for factual belief.

With sceptical agents, it is not always the case that an announcement resis-
tant formula gets common belief after it has been announced. It can happen
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that an agent does not learn a true announcement resistant formula that has
been announced, because he believes that the new information is false. The
following example illustrates this fact.

Example 6.2.21. Let p ∈ P and K = ({s, t}, R1, . . . , Rn, V ) be defined by

R1 = {(s, t), (t, t)}, V : q 7→ {s},

such that the accessibility relations R2, . . . , Rn are serial, transitive, and Eu-
clidean. Then we have K, s � p ∧ ¬[p!{1}]K1p. Since K ∈ Kstu

n , we have that
the formulas of the form q → [q!G]Kiq are not provable in any of our four
deductive systems.

For a big set of formulas, namely all negations of an announcement resistant
formula, we have the following phenomenon. If an agent i believes that
another agent j will reject an announcement, then agent i will believe after
the announcement that agent j still believes the announced formula to be
false.

Lemma 6.2.22. Let G ⊆ A be a non empty group of agents and X be one
of the classes Kn, K

tu
n , Ks

n, or Kstu
n . If ¬α is announcement resistant for G

in X , then for all i, j ∈ A we have

X � KiKj¬α → [α!G]KiKj¬α.

Proof. If ¬α is announcement resistant for G in X , then so also is the formula
KiKj¬α by Lemma 6.2.20.

Although an immediate consequence of Lemma 6.2.20, Lemma 6.2.22 implies
that many announcement resistant formulas will not necessarily be learnt by
the agents, because many of them are closed under negation. The following
theorem states the best we can get with announcement resistant formulas for
sceptical agents.

Theorem 6.2.23. Let G ⊆ A be a non empty set of agents and X be one
of the classes Kn, K

tu
n , Ks

n, or Kstu
n . Further, let α ∈ LGA

n be announcement
resistant for G in X . Then for all l ≥ 1 and all i1, . . . , il ∈ G we have

X � Kil . . .Ki2¬Ki1¬α → [α!G]Kil . . . Ki2Ki1α.

Proof. Let XGAc be the deductive system that corresponds to X . We will
show that XGAc proves the Kil . . .Ki2¬Ki1¬α → [α!G]Kil . . .Ki2Ki1α by
induction on l. In the base case, we have a proof of α → [α!G]α by as-
sumption and completeness, and we get XGAc ⊢ Ki1(α → [α!G]α) by an
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application of the rule (NEC). As a consequence of (GA5c), we have that
XGAc proves Ki1(α → [α!G]α) → (¬Ki1¬α → [α!G]Ki1α), and we directly
get XGAc ⊢ ¬Ki1¬α → [α!G]Ki1α. In the induction step, we have a proof of
Kil . . .Ki2¬Ki1¬α → [α!G]Kil . . .Ki2Ki1α by induction hypothesis, thus we
get XGAc ⊢ Kil+1

Kil . . .Ki2¬Ki1¬α → Kil+1
[α!G]Kil . . .Ki2Ki1α by normal

modal logic reasoning. Since the second assertion of Lemma 6.2.9 implies
XGAc ⊢ Kil+1

[α!G]Kil . . .Ki2Ki1α→ [α!G]Kil+1
Kil . . .Ki2Ki1α, the claim now

easily follows. Due to soundness, we get the desired result.

In presence of axiom (4), we get that an agent will know that he has learnt
an announcement resistant formula. Moreover, the other agents know this
fact if they have known that this agent will accept the announced formula.

Corollary 6.2.24. Let G ⊆ A be a non empty set of agents and X be one
of the classes Ktu

n or Kstu
n . Further, let α ∈ LGA

n be announcement resistant
for G in X . Then for all k, l ≥ 1 and all i1, . . . , il ∈ G we have

X � Kil . . .Ki2¬Ki1¬α→ [α!G]Kil . . .Ki2K
k
i1
α.

Proof. Let XGAc be one of the deductive systems K45
GAc

n or KD45
GAc

n . Then
we have XGAc ⊢ Kil . . .Ki2¬Ki1¬α → [α!G]Kil . . . Ki2Ki1α by Theorem 6.2.23
and completeness. It is easy to see that for all m ≥ 1 we have that XGAc

proves [α!G]Kil . . .Ki2K
m
i1
α→ [α!G]Kil . . . Ki2K

m+1
i1

α by the axioms (K), (4),
and (GA2) as well as the rules (NEC) and (PAN). Hence, we can prove
[α!G]Kil . . .Ki2Ki1α → [α!G]Kil . . .Ki2K

l
i1
α in XGAc by induction on l. Fi-

nally, we get that XGAc proves ¬Kil . . .Ki2Ki1¬α → [α!G]Kil . . .Ki2K
l
i1
α by

tautological reasoning. Due to soundness, we are done.

As another consequence of Theorem 6.2.23, we get that an announcement
resistant formula will always remain in the beliefs of the agents, if this formula
is repeatedly told to the same group.

Corollary 6.2.25. Let G ⊆ A be a non empty set of agents and X be one
of the classes Kn, K

tu
n , Ks

n, or Kstu
n . Further, let α ∈ LGA

n be announcement
resistant for G in X . Then for all k, l ≥ 1 and all i1, . . . , il ∈ G we have

X � Kil . . .Ki2¬Ki1¬α → [α!G]kKil . . .Ki2Ki1α.

Proof. Let XGAc be the deductive system that corresponds to X . Then we
have that the formula Kil . . .Ki2Ki1α is announcement resistant for G in
X by Lemma 6.2.20. Therefore, by completeness, we get that the formula
Kil . . .Ki2Ki1α → [α!G]Kil . . .Ki2Ki1α is provable in XGAc . Thus, we can
prove XGAc ⊢ [α!G]Kil . . .Ki2Ki1α → [α!G]kKil . . .Ki2Ki1α by induction on
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k, using axiom (PA2) and the rule (PAN). By Theorem 6.2.23, we get that
XGAc proves Kil . . .Ki2¬Ki1¬α→ [α!G]kKil . . .Ki2Ki1 , and by soundness, we
get the desired result.

6.3 Adding common belief

In this section, we are working towards an axiomatisation for the logic of
common knowledge and group announcements. For this purpose, we also
add action composition to the language. The reason for this technical detail
is that we were not able to find an axiom like

[α!G][β!H ]γ ↔ [δ!I ]γ,

even without the presence of common knowledge operators. There is an ax-
iomatisation of a much more powerful logic where group announcements and
common knowledge are included by Baltag, Moss, and Solecki [7]. However,
an announcement is represented by a Kripke structure and can hardly be
written in a one line formula. We consider it to be an interesting and im-
portant task to come up with an axiomatisation within a simpler language.
First, we repeat the language LCGA

n of the logic of common belief and group
announcements from Definition 5.4.2. The formulas and actions are simulta-
neously defined by the following grammar (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | CGα | [π]α,

π ::= α!G | (π ; α!G).

Observe that an action is just a sequence of group announcements. We are
now going to introduce the notion of length, subformula and substitution for
the language LCGA

n .

Definition 6.3.1. The length |π| of an action π is just the number of an-
nouncements it contains and is defined by induction on π as follows,

|α!G| := 1, |ρ ; α!G| := |ρ| + 1.

On the other hand, the length of formulas of the form [π]β is defined to be
the sum of the lengths of the formulas occurring in π plus |β| + 2,

|[α!G]β| := |α| + |β| + 2, |[ρ ; α!G]β| := |[ρ]β| + |α|.

The length of a formula [π]β is defined by induction on the length of the
action π, which we will also call induction on π. The set af(π) of announced
formulas of π is defined by induction on π by

af(α!G) := {α}, af(ρ ; α!G) := af(ρ) ∪ {α}.
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Due to the definition of af(π), we are now able to define the set of subformulas
occurring in a formula of the form [π]β,

sub([π]β) := {[π]β} ∪ sub(β) ∪ {sub(γ) : γ ∈ af(π)}.

Clearly, the number of subformulas of a formula α is bound by the length of α,
like in the simpler languages. Although we have a limited action composition,
the composition of two arbitrary actions can easily be defined.

Definition 6.3.2. For all actions π, ρ we define the composed action π ;ρ by
induction on ρ,

π ; α!G is already defined,

π ; (σ ; α!G) := (π ; σ) ; α!G.

Note that we overload the action composition operator ; because the resulting
action will always be a sequence of announcements and no confusion can arise.
In this section, we will work with the semantics for trustful agents like in
Section 6.1. Yet, the definition of the notion of satisfaction for announcement
formulas is a bit improved. The following defining clauses are added to
Definition 5.1.5.

Definition 6.3.3. Given a Kripke structure K = (S,R1, . . . , Rn, V ) and a
world s ∈ S, the notion of common knowledge formulas and announcement
formulas of LCGA

n being satisfied in the pointed structure K, s is defined by

K, s � CGα :⇔ for all t ∈ S, sR+
Gt ⇒ K, t � α,

K, s � [π]α :⇔ (K, s)π � α,

where the transformed pointed structure (K, s)π is simultaneously defined by
induction on π,

(K, s)α!G := K
α,G, s1, (K, s)ρ;α!G := ((K, s)ρ)α!G ,

and Kα,G = (S ′, Rα,G
1 , . . . , Rα,G

n , V ′) is exactly the same structure as in Defi-
nition 6.1.1. We repeat this definition here,

S ′ := S × {0, 1},

Rα,G
i :=

{

{(s0, t0) : sRit} ∪ {(s1, t1) : sRit and K, t � α} if i ∈ G,

{(s0, t0) : sRit} ∪ {(s1, t0) : sRit} if i /∈ G,

V ′(p) := V (p) × {0, 1}.

for all i ∈ A and all p ∈ P. Again, we define s0 := (s, 0) and s1 := (s, 1) for
all s ∈ S.
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If K is a Kripke structure and π is an action, then we will also define the
notion of the transformed structure Kπ.

Definition 6.3.4. Let the Kripke structure K = (S,R1, . . . , Rn, V ) and the
action π be given. Then we define the transformed Kripke structure Kπ by
induction on π as follows,

K
α!G := K

α,G,

K
π;α!G := (Kπ)α,G.

The universe, the accessibility relations, and the valuation function in the
structure Kπ are denoted by Sπ, Rπ

i , and V π respectively. In order to denote
the worlds in Kπ, we are going to use binary words of length |π|. If π is of
the form α!G and s ∈ |K|, then the worlds sw = (s, w) denote the elements of
|Kα!G | for the binary word w ∈ {0, 1}. If π is a composed action ρ ; α!G and
w is a binary word of length |ρ|, then we will use the following denotations,

sw⋆0 := (sw, 0), sw⋆1 := (sw, 1),

where ⋆ is the concatenation of binary words. Hence, we can now write the
pointed structure (K, s)π as Kπ, s~1.

Since the length of a binary word is equal to the length of the action, it will
always be clear from the context what the length of a binary word w in an
expression sw is. Due to the above defined notions, we can now express that
K, s � [π]CGα holds if and only if

for all t ∈ S and all w with length |π|, s~1(R
π
G)+tw ⇒ K

π, tw � α.

The relation Rπ
G is defined to be the union of {Rπ

i : i ∈ G}, as we would
expect. Like in Section 6.1, we have that transitivity and Euclideanity are
preserved by the above defined model transformations.

Lemma 6.3.5. For all Kripke structures K and all actions π we have

K ∈ Kt
n ⇒ K

π ∈ Kt
n, K ∈ Ktu

n ⇒ K
π ∈ Ktu

n .

Proof. By induction on π. The base case (π = α!G) and the induction step
(π = ρ ; α!G) both have exactly the same proof as Lemma 6.1.4.

For every action π, all possible worlds sv, tw ∈ Sπ, and all i ∈ A, it is
not immediate whether or not svR

π
i tw can possibly hold. In the following

definitions, we are going to prepare a characterisation lemma.
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Definition 6.3.6. Let the action π and i ∈ A be given. Then for all binary
words v, w of length |π| we define the relation v

π
−→i w by induction on π by

v
α!G−−→i w :⇔

{

v = w if i ∈ G,

w = 0 if i /∈ G,

v ⋆ k
ρ;α!G−−−→i w ⋆ l :⇔

{

v
ρ
−→i w and k = l if i ∈ G

v
ρ
−→i w and l = 0 if i /∈ G.

Observe that we have defined this relation without semantical objects like
possible worlds, accessibility relations, or valuation functions. Clearly, the
relation

π
−→i is not enough to characterise the relation Rπ

i . The following def-
inition of the characteristic formula will be very useful for the whole section.

Definition 6.3.7. Given an action π and a binary word w of length |π|, the
characteristic formula χπ

w and the restriction πw of π to w are simultaneously
defined by induction on π,

χα!G
w :=

{

α if w = 1,

⊤ if w = 0,
χρ;α!G

w⋆k :=

{

χρ
w ∧ [πw]α if k = 1,

χρ
w if k = 0,

(α!G)w :=

{

α!G if w = 1,

⊤!A if w = 0,
(ρ ; α!G)w⋆k :=

{

ρw ; α!G if k = 1,

ρw if k = 0.

Again, we have defined formulas and actions without using semantical terms.
The following lemma is important for the understanding of the complex se-
mantics.

Lemma 6.3.8. Let K = (S,R1, . . . , Rn, V ) and s, t ∈ S be given. Then for
all actions π, all binary words v, w of length |π|, and all i ∈ A we have

svR
π
i tw ⇔ sRit and v

π
−→i w and K, t � χπ

w.

Moreover, for all α ∈ LCGA
n we have

K
π, sw � α ⇔ K, s � [πw]α.

Proof. Both assertions can be proved by induction on π.

He have seen that the formulas χπ
w and actions πw are very useful for semanti-

cal considerations. However, for syntactical purposes, it is easier to deal with
similar formulas and actions that are defined without the notion of binary
words.
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Definition 6.3.9. Given an action π and an agent i ∈ A, the characteristic
formula χπ

i and the restriction πi of π to i are simultaneously defined by
induction on π,

χα!G
i :=

{

α if i ∈ G,

⊤ if i /∈ G,
χρ;α!G

i :=

{

χρ
i ∧ [πi]α if i ∈ G,

χρ
i if i /∈ G,

(α!G)i :=

{

α!G if i ∈ G,

⊤!A if i /∈ G,
(ρ ; α!G)i :=

{

ρi ; α!G if i ∈ G,

ρi if i /∈ G.

The following lemma shows how we can use the formulas χπ
i and actions πi.

Lemma 6.3.10. For all actions π, all i ∈ A, and all formulas α we have

Kn � [π]Kiα↔ Ki(χ
π
i → [πi]α).

Proof. By induction on π. In the base case, we use the trivial fact that
Kn � [⊤!A]β ↔ β for all formulas β.

Observe that πi is the sequence of announcements from π that affect agent i.
Therefore, we obviously have (πi)i = πi and χπi

i = χπ
i . The following lemma

shows how χπ
i and πi are related to χπ

w and πw respectively.

Lemma 6.3.11. Let the action π and the agent i ∈ A be given. Then for
all binary words v, w of length |π| we have

v
π
−→i w ⇒ χπv

i = χπ
w and (πv)i = πw.

Proof. By induction on π.

With the fact that π~1 = π for all actions π we immediately get the following
corollary.

Corollary 6.3.12. For all actions π, all agents i ∈ A, and all binary words
w of length |π| we have

~1
π
−→i w ⇒ χπ

i = χπ
w and πi = πw.

Before we can give the Hilbert system, we have to define a normal form for
all formulas of the form χπ

w → [πw]α and χπ
i → [πi]α, where the artificial

announcements ⊤!A do not occur.
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Definition 6.3.13. Given an action π and a binary word w of length |π|, the
formula ηπ

w and the function fπ
w : LCGA

n → LCGA
n are simultaneously defined

by induction on π,

ηα!G
w :=

{

α if w = 1,

⊤ if w = 0,
ηρ;α!G

w⋆k :=

{

ηρ
w ∧ f ρ

w(α) if k = 1,

ηρ
w if k = 0,

fα!G
w (β) :=

{

[α!G]β if w = 1,

β if w = 0,
f ρ;α!G

w⋆k (β) :=

{

f ρ
w([α!G]β) if k = 1,

f ρ
w(β) if k = 0.

Accordingly, for a given agent i ∈ A the formula ηπ
i and the function

fπ
i : LCGA

n → LCGA
n are simultaneously defined by induction on π,

ηα!G
i :=

{

α if i ∈ G,

⊤ if i /∈ G,
ηρ;α!G

i :=

{

ηρ
i ∧ f

ρ
i (α) if i ∈ G,

ηρ
i if i /∈ G,

fα!G
i (β) :=

{

[α!G]β if i ∈ G,

β if i /∈ G,
f ρ;α!G

i (β) :=

{

f ρ
i ([α!G]β) if i ∈ G,

f ρ
i (β) if i /∈ G.

Clearly the above defined notions are equivalent to these normal forms in the
following sense.

Lemma 6.3.14. For all actions π, all agents i ∈ A, all binary words w of
length |π|, and all formulas α we have

Kn � χπ
w ↔ ηπ

w, Kn � [πw]α↔ fπ
w(α),

Kn � χπ
i ↔ ηπ

i , Kn � [πi]α↔ fπ
i (α).

Proof. All of the assertions are an immediate consequence of the fact that
we have Kn � [⊤!A]β ↔ β and Kn � [ρ ; γ!G]β ↔ [ρ][γ!G]β for all actions
ρ, γ!G and all formulas β.

We are now ready to define the Hilbert systems for the logic of common
knowledge and group announcements. They contain an inference rule with
a variable number of premises, which is not very nice.

Definition 6.3.15. The deductive systems KCGA
n , K4

CGA
n , and K45

CGA
n are

the systems KC
n , K4

C
n , and K45

C
n respectively augmented with the following

group announcement axioms,

(GA1) [α!G]p↔ p,
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(GA2) [α!G](β → γ) → ([α!G]β → [α!G]γ),

(GA3) [α!G]¬β ↔ ¬[α!G]β,

(GA4) [α!G]Kiβ ↔ Kiβ (i /∈ G),

(GA5) [α!G]Kiβ ↔ Ki(α → [α!G]β) (i ∈ G),

(GA7) [π][α!G]β ↔ [π ; α!G]β,

as well as the group announcement necessitation rule and the group an-
nouncement induction rule,

(GAN)
α

[β!G]α
,

(GAI)
α → EG(ηπ

w → α ∧ fπ
w(β)) for all w satisfying ~1(

π
−→G)+w

α → [π]CGβ
.

Clearly, the relation
π
−→G is the union of {

π
−→i : i ∈ G}, as we would expect.

We have now made all the preparations we need in order to prove soundness
of our three Hilbert systems.

Lemma 6.3.16. For all α ∈ LCGA
n we have

KCGA
n ⊢ α ⇒ Kn � α,

K4
CGA
n ⊢ α ⇒ Kt

n � α,

K45
CGA
n ⊢ α ⇒ Ktu

n � α.

Proof. By induction on the length of the proof. In the base case, the only
new case is axiom (GA7). For all pointed structures K, s we have

K, s � [π][α!G]β ⇔ (K, s)π � [α!G]β

⇔ ((K, s)π)α!G � β

⇔ (K, s)π;α!G � β

⇔ K, s � [π ; α!G]β.

In the induction step, the rule (GAN) is sound with respect to Kt
n and Ktu

n

due to Lemma 6.3.5. We will now prove soundness of the rule (GAI). Suppose
the premise of the rule is valid in one of the three classes of Kripke structures,
that is

for all w with length |π| and all i ∈ G,

~1(
π
−→G)+w ⇒ Kn � α → Ki(η

π
w → α ∧ fπ

w(β)),
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and suppose that K, s � α. In order to show that K, s � [π]CGβ, we will show
by induction on k that

for all k ≥ 1, all t ∈ |K|, and all w of length |π|,

s~1(R
π
G)ktw ⇒ K

π, tw � β and K, t � α.

In the base case (k = 1), we have s~1R
π
Gtw implies sRit, ~1

π
−→i w, and K, t � χπ

w

for some i ∈ G by Lemma 6.3.8. By Lemma 6.3.14, we get K, t � ηπ
w, and

the premise yields K, t � α ∧ fπ
w(β). Again by Lemma 6.3.14, we now get

K, t � [πw]β, which is equivalent to Kπ, tw � β by Lemma 6.3.8. In the
induction step (k 7→ k+ 1), we have s~1(R

π
G)k+1tw implies s~1(R

π
G)kuvR

π
i tw for

some uv ∈ |Kπ| and some i ∈ G. We get uRit, ~1(
π
−→G)+v

π
−→i w, and K, t � χπ

w

by Lemma 6.3.8. Thus, we have K, t � ηπ
w by Lemma 6.3.14. By induction

hypothesis, we have K, u � α, thus the valid premise yields K, t � α ∧ fπ
w(β).

Like in the base case, we now get Kπ, tw � β, and we are done.

We will now derive some axioms and rules that contain arbitrary announce-
ments.

Lemma 6.3.17. In KCGA
n , K4

CGA
n , and K45

CGA
n we can prove the following

action axioms,

(A1) [π]p↔ p,

(A2) [π](α ∧ β) ↔ [π]α ∧ [π]β,

(A3) [π]¬α ↔ ¬[π]α,

(A4) [π]Kiα↔ Ki(η
π
i → fπ

i (α))

(A6) [π][ρ]α ↔ [π ; ρ]α,

(A7) [π]EGα ↔
∧

i∈GKi(η
π
i → fπ

i (α)),

(A8) [π]CGα↔
∧

i∈GKi(η
π
i → fπ

i (α ∧ CGα)),

as well as the following action necessitation rule,

(AN)
α

[π]α
.

Proof. All of these properties can be proved by induction on π. (A7) and
(A8) are an immediate consequence of (A4).

Although our deductive systems are similar to the more complex system
in [7], we do not know whether or not our systems are complete. For instance,
we have not managed to syntactically prove [⊤!A]α↔ α.





Chapter 7

Knowledge expansion

The first logic with operators for public communication has been presented by
Plaza [57]. We have introduced this logic in Section 5.4, where we have shown
some of its properties. Inspired by this idea, many authors further developed
the theory of belief and knowledge change caused by incoming information in
a modal logic setting. We confine ourselves to mentioning just a few typical
articles by Baltag, van Benthem, van Ditmarsch, van Eijck, van der Hoek,
Kooi, Moss, Renne, and Solecki [5, 6, 7, 8, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22,
23, 59, 60]. In this chapter we will present two different public announcement
semantics where announcements can expand the knowledge of the agents.
Some announcements can also retract knowledge, but not knowledge about
propositional formulas. In Section 7.1 we will present the well-known logic
of truthful public announcements. These announcements are partial, which
is very natural because a truthful announcement can only be made if the
new information is true. However, for some applications like expansion of
knowledge and belief, we need a logic with total announcements. This is
what we have in Section 7.2, where we will present our results from [62] in all
details. In Section 7.3, we will enrich the language of public announcements
with operators for relativised common knowledge and common knowledge
respectively, like we already do at the end of Section 7.1. We will give
axiomatisations for the public announcement logics augmented with these
operators and prove soundness and completeness.

7.1 Truthful public announcements

In this section we will give an introduction to the logic of truthful public
announcements, which has the dual announcement semantics of Plaza’s logic
from [57]. Most of the results in this section are not new, but we sometimes
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give a proof in order to point to the differences with other announcement
logics. We will quickly repeat the language LPA

n from Section 5.4, which will
be relevant for the whole chapter. The language LPA

n of epistemic logic and
public announcements is defined by the following grammar (p ∈ P, i ∈ A),

α ::= p | ¬α | (α ∧ α) | Kiα | [α!]α.

For the semantics, we can just add the defining clause for public announce-
ment formulas [α!]β to Definition 5.1.5.

Definition 7.1.1. Let the Kripke structure K = (S,R1, . . . , Rn, V ) be given
and s ∈ S. Then the notion of an LPA

n formula of the form [α!]β being
satisfied in the pointed structure K, s is defined as follows,

K, s � [α!]β :⇔ K, s � α implies K
α, s � β.

The relativised Kripke structure Kα = (Sα, Rα
1 , . . . , R

α
n, V

α) is exactly defined
the same way as in Definition 5.4.2,

Sα := ‖α‖K,

Rα
i := Ri ∩ ‖α‖2

K
,

V α(p) := V (p) ∩ ‖α‖K,

for all agents i ∈ A and all propositions p ∈ P. Definition 7.1.1 is a bit
problematic for the following reasons. First, the structure Kα is not defined
if ‖α‖K = ∅. Second, if K, s 2 α then we have s /∈ |Kα|. Therefore, we suggest
to give this definition by specifying the worlds in |K| that satisfy [α!]β,

‖[α!]β‖K :=

{

S if ‖α‖K = ∅,

(S \ ‖α‖K) ∪ ‖β‖Kα otherwise,

That is, we have K, s � [α!]β if and only if s ∈ ‖[α!]β‖K. As an immedi-
ate consequence of this definition, we get that the dual operator ¬[ · !]¬ is
equivalent to Plaza’s announcement operator, cf. Definition 5.4.2.

Seriality of the accessibility relations is in general not preserved by the above
defined model transformation. We will now give a counterexample in order
to illustrate this fact.

Example 7.1.2. Let K = ({s, t}, R1, . . . , Rn, V ) be defined by

R1 = {(s, t), (t, t)}, V : p 7→ {s},

such that the accessibility relations R2, . . . , Rn are serial, transitive, and Eu-
clidean. Then we have K ∈ Kstu

n , hence K ∈ Kst
n and K ∈ Ks

n. Since for
all p ∈ P we have Sp = {s} and Rp

1 = ∅, we get that Kp /∈ Ks
n, therefore

Kp /∈ Kst
n and Kp /∈ Kstu

n .
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Due to Example 7.1.2, we cannot consider the classes Ks
n, Kst

n , and Kstu
n , be-

cause the axiom (D) would not be satisfied after every public announcement.
The following lemma shows that we do not have this problem with the other
classes of Kripke structures.

Lemma 7.1.3. Let X be one of the classes Kt
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n . Then
for all Kripke structures K and all α ∈ LPA

n we have

‖α‖K 6= ∅ and K ∈ X ⇒ K
α ∈ X .

Proof. We show that Euclideanity is preserved. Let sRα
i t and sRα

i u. Then we
have sRit and sRiu, hence we get tRiu by Euclideanity of Ri. By assumption,
we have that t, u ∈ |Kα|, thus we get tRα

i u. The proofs of reflexivity and
transitivity preservation are similar.

We have chosen the following axioms and rules of the Hilbert systems for
truthful public announcement logics.

Definition 7.1.4. The deductive systems KPA
n , K4

PA
n , K45

PA
n , TPA

n , S4
PA
n , and

S5
PA
n are the systems Kn, K4n, K45n, Tn, S4n, and S5n respectively augmented

with the following public announcement axioms,

(PA1) [α!]p↔ (α → p),

(PA2) [α!](β → γ) → ([α!]β → [α!]γ),

(PA3) [α!]¬β ↔ (α→ ¬[α!]β),

(PA4) [α!]Kiβ ↔ (α → Ki[α!]β)),

as well as the public announcement necessitation rule,

(PAN)
α

[β!]α
.

Axiom (PA2) is usually not part of the Hilbert systems for truthful public an-
nouncements, see e. g. van Benthem et al. [12]. There is a so-called reduction
axiom instead, which is provable in all of our systems.

Lemma 7.1.5. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β, γ ∈ LPA

n we have

X ⊢ [α!](β ∧ γ) ↔ [α!]β ∧ [α!]γ.

Proof. Since we have distribution (PA2) and necessitation (PAN) for public
announcement operators, we get exactly the same proof as for the formula
Ki(β ∧ γ) ↔ Kiβ ∧Kiγ in normal modal logic.
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Each of our six systems is sound with respect to its corresponding class of
Kripke structures.

Lemma 7.1.6. For all α ∈ LPA
n we have

KPA
n ⊢ α ⇒ Kn � α, K4

PA
n ⊢ α ⇒ Kt

n � α,

K45
PA
n ⊢ α ⇒ Ktu

n � α, TPA
n ⊢ α ⇒ Kr

n � α,

S4
PA
n ⊢ α ⇒ Krt

n � α, S5
PA
n ⊢ α ⇒ Krtu

n � α.

Proof. We show some cases of the induction on the length on the proof. In the
base case, we first prove that axiom (PA2) is valid. Let the pointed structure
K, s be given and assume K, s � [α!](β → γ) ∧ [α!]β. If K, s 2 α, then we
immediately have K, s � [α!]γ. If K, s � α, then we have Kα, s � (β → γ)∧β,
thus we have K

α, s � γ. Therefore, we get K, s � [α!]γ. Now, we prove
the correctness of axiom (PA4). Let the pointed structure K, s be given and
assume K, s � α. Then we have

K, s � [α!]Kiβ ⇔ K
α, s � Kiβ

⇔ for all t ∈ Rα
i (s), K

α, t � β

⇔ for all t ∈ (Ri ∩ ‖α‖2
K
)(s), K

α, t � β

⇔ for all t ∈ Ri(s) ∩ ‖α‖K, K
α, t � β

⇔ for all t ∈ Ri(s), K, t � α implies K
α, t � β

⇔ for all t ∈ Ri(s), K, t � [α!]β

⇔ K, s � Ki[α!]β.

We have now proved that Kn � α → ([α!]Kiβ ↔ Ki[α!]β). Together with
the fact that Kn � ¬α→ [α!]Kiβ, we get the desired axiom by propositional
reasoning. In the induction step, the only interesting case is the rule (PAN).
This is the only case where we have to distinguish the six classes of Kripke
structures, and the correctness of this rule follows from Lemma 7.1.3.

The following result is about the impact of truthful public announcements
on propositional formulas.

Lemma 7.1.7. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α ∈ LPA

n and all β ∈ L0 we have

X ⊢ [α!]β ↔ (α→ β).

Proof. By induction on β. The base case is directly implied by axiom (PA1).
The two cases in the induction step easily follow from axiom (PA3) and
Lemma 7.1.5 respectively.
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We are now going to state which properties from Definition 5.4.3 are satisfied
by the truthful public announcement semantics.

Lemma 7.1.8. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then the truthful public announcements are

1. fact preserving with respect to X ,

2. adequate with respect to X ,

3. not total with respect to X ,

4. not self-dual with respect to X ,

5. normal with respect to X .

Proof. Let XPA be the deductive system that corresponds to X . In order to
show fact preservation, we can prove that for all α ∈ L0 and all β ∈ LPA

n we
have XPA ⊢ α → [β!]α by induction on α. The most interesting case is in
the induction step, where α is of the form ¬γ. We have that the following
formulas are all provable in XPA,

γ → [β!]γ by induction hypothesis,

[β!]¬γ ↔ (β → ¬[β!]γ) by (PA3),

[β!]γ ↔ (β → γ) by Lemma 7.1.7,

[β!]¬γ ↔ (β → ¬γ) by Lemma 7.1.7.

By propositional reasoning, we get that XPA proves ¬γ → [β!]¬γ and fact
preservation follows by soundness of XPA. Adequacy is an immediate con-
sequence of fact preservation. In order to show that totality does not hold,
we can prove XPA ⊢ [⊥!]⊥ as a consequence Lemma 7.1.7. By soundness,
we get X � [⊥!]⊥, hence we have X 2 ¬[⊥!]⊥. For the fourth assertion,
we can prove X ⊢ [⊥!]¬⊥ again by Lemma 7.1.7 and we get X � [⊥!]¬⊥ by
soundness. Since we know X � [⊥!]⊥ from the proof of the third assertion,
we immediately get X � ¬(¬[⊥!]⊥ ↔ [⊥!]¬⊥). Therefore, we have shown
X 2 ¬[⊥!]⊥ ↔ [⊥!]¬⊥. Normality directly follows from the soundness of
axiom (PA2) and the rule (PAN), which are both part of XPA.

Since we do not have totality, the truthful public announcements are called
partial , see also van Ditmarsch et al. [22], Proposition 4.11.

As a preparatory step for the completeness proof, we are going to state the
following lemma.

Lemma 7.1.9. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β ∈ LPA

n and all ϕ ∈ Ln we have

X ⊢ ¬α → [α!]ϕ, X ⊢ α↔ β ⇒ X ⊢ [α!]ϕ↔ [β!]ϕ.
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Proof. Both assertions can be proved by induction on ϕ, using axiom (PA1),
axiom (PA3), Lemma 7.1.5, and axiom (PA4).

By Lemma 7.1.5, we can already get completeness of S5
PA
n by using the

completeness result of van Benthem et al. [12]. In order to prove completeness
for all of our six systems, we will now define a translation from LPA

n to Ln,
which will also be useful for additional results. Again, this translation is
defined in two steps.

Definition 7.1.10. The two functions h : {[α!]β : α, β ∈ LPA
n } → LPA

n and
f : LPA

n → LPA
n are inductively defined by

h([α!]p) := α→ p, f(p) := p,

h([α!]¬β) := α→ ¬h([α!]β), f(¬α) := ¬f(α),

h([α!](β ∧ γ) := h([α!]β) ∧ h([α!]γ), f(α ∧ β) := f(α) ∧ f(β),

h([α!]Kiβ) := α→ Kih([α!]β), f(Kiα) := Kif(α),

h([α!][β!]γ) := [α!][β!]γ, f([α!]β) := h([f(α)!]f(β)).

It is easy to see that for all α, β ∈ Ln we have h([α!]β) ∈ Ln and therefore,
for all γ ∈ LPA

n we have f(γ) ∈ Ln. In addition, we can now show that
the translations h and f are strongly equivalence preserving in the following
sense.

Lemma 7.1.11. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β ∈ LPA

n we have

X ⊢ h([α!]β) ↔ [α!]β, X ⊢ f(β) ↔ β.

Proof. Both assertions can be proved by induction on β. The only interesting
part of the proof is the last case of the induction step in the second assertion:
if β = [γ!]δ for some γ, δ ∈ LPA

n , then we have f([γ!]δ) = h([f(γ)!]f(δ)) by
definition, which is provably equivalent to [f(γ)!]f(δ) by an application of
the first assertion. Since f(δ) ∈ Ln, we can apply Lemma 7.1.9 and the
induction hypothesis, and we get that X proves the equivalence of [f(γ)!]f(δ)
and [γ!]f(δ). But this can be proved equivalent to [γ!]δ by again making use
of the induction hypothesis as well as (PA2) and (PAN).

Due to Lemma 7.1.11, we can now generalise Lemma 7.1.9 to arbitrary LPA
n

formulas.

Lemma 7.1.12. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β, γ ∈ LPA

n we have

X ⊢ ¬α → [α!]β, X ⊢ α ↔ β ⇒ X ⊢ [α!]γ ↔ [β!]γ.
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Proof. We show how to prove the second assertion. Let α, β ∈ LPA
n be given

and X ⊢ α ↔ β. Since f(γ) ∈ Ln, we have X ⊢ [α!]f(γ) ↔ [β!]f(γ) by
Lemma 7.1.9. In addition, we get that X proves both [α!]γ ↔ [α!]f(γ) and
[β!]γ ↔ [β!]f(γ) by Lemma 7.1.11, axiom (PA2), and the rule (PAN). By
propositional reasoning, we get the desired result.

Due to Lemma 7.1.12, we are now able to proof the so-called Replacement
Theorem.

Theorem 7.1.13 (Replacement). Let X be one of the deductive systems KPA
n ,

K4
PA
n , K45

PA
n , TPA

n , S4
PA
n , or S5

PA
n . Then for all α, β, γ ∈ LPA

n we have

X ⊢ α ↔ β ⇒ X ⊢ γ ↔ γ[α/β].

Proof. By induction on γ. For the base case, let γ = p for some p ∈ P. If
β 6= p, then we immediately get γ[α/β] = γ and the claim easily follows.
On the other hand, if β = p = γ, then we have γ[α/β] = α and the claim
follows by assumption. In the induction step, the only nontrivial case is if γ
is of the form [δ!]ϕ. The claim can then be proved using axiom (PA2), the
rule (PAN), and Lemma 7.1.12 as well as the induction hypothesis for both
formulas δ and ϕ.

Lemma 7.1.12 also allows us to formulate equivalent formulas for formulas of
the form [α!]β and ¬[α!]β.

Lemma 7.1.14. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β ∈ LPA

n we have

X ⊢ [α!]β ↔ (α→ [α!]β), X ⊢ ¬[α!]β ↔ α ∧ [α!]¬β.

Proof. The first assertion is tautologically implied by the first assertion of
Lemma 7.1.12. For the second assertion, we have that ¬[α!]β can be proved
equivalent to ¬[α!]¬¬β by axiom (PA2) and the rule (PAN). By axiom (PA3),
we now get that this is provably equivalent to α ∧ [α!]¬β.

Like in Section 6.1 and Section 6.2, we have an elegant completeness proof
for our six systems due to Lemma 7.1.12.

Theorem 7.1.15. For all α ∈ LPA
n we have

K
PA
n ⊢ α ⇔ Kn � α, K4

PA
n ⊢ α ⇔ Kt

n � α,

K45
PA
n ⊢ α ⇔ Ktu

n � α, TPA
n ⊢ α ⇔ Kr

n � α,

S4
PA
n ⊢ α ⇔ Krt

n � α, S5
PA
n ⊢ α ⇔ Krtu

n � α.
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Proof. Soundness has already been proved. We show the direction from right
to left. Let X be one of the systems Kn, K4n, K45n, Tn, S4n, or S5n, and X be
its corresponding class of Kripke structures. For a given formula α ∈ LPA

n ,
we assume that X � α. Then we have that X � f(α) by Lemma 7.1.11
and soundness. By completeness of X, we get that X ⊢ f(α) and, obviously,
XPA ⊢ f(α). Again by Lemma 7.1.11, we get XPA ⊢ α, and we are done.

Unlike group announcement logic, it is possible in public announcement logic
to encode every sequence of public announcements by one single announce-
ment. For this purpose, the following lemma is very useful.

Lemma 7.1.16. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β, γ ∈ LPA

n we have

X ⊢ ([α!]β → [α!]γ) → [α!](β → γ), X ⊢ [α!](β ∨ γ) ↔ [α!]β ∨ [α!]γ.

Proof. The first property can be proved by making use of axiom (PA3),
Lemma 7.1.5 and propositional reasoning, since the formula α → β is de-
fined to be ¬(¬¬α ∧ ¬β). We show how to prove the second one. First, the
formula [α!](β ∨ γ) is provably equivalent to (α → [α!]β) ∨ (α → [α!]γ) due
to axiom (PA3), Lemma 7.1.5, and propositional reasoning. But now, we can
apply the first assertion of Lemma 7.1.14, hence we are done.

We are now ready to prove that compositional public announcements can be
replaced by a single one.

Lemma 7.1.17. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β, γ ∈ LPA

n we have

X ⊢ [α!][β!]γ ↔ [(α ∧ [α!]β)!]γ.

Proof. This result can be established in two steps. First, we can prove a
restricted version where γ has to be an element of Ln. This can be done by
induction on γ. In the induction step, if γ is of the form ¬δ, we proceed
as follows. By (PA3), (PA2), and (PAN), we have that [α!][β!]¬δ is provably
equivalent to [α!](β → ¬[β!]δ), which is provably equivalent to the formula
[α!]β → [α!]¬[β!]δ by (PA2) and Lemma 7.1.16. This formula can now be
proved equivalent to [α!]β → (α → ¬[α!][β!]δ) by (PA3), and this is prov-
ably equivalent to α ∧ [α!]β → ¬[(α ∧ [α!]β)!]δ by induction hypothesis and
propositional reasoning. Finally, we get that this is provably equivalent to
[(α ∧ [α!]β)!]¬δ by (PA3). The restricted result can then be used to prove
the general result for arbitrary formulas γ ∈ LPA

n using Lemma 7.1.11, axiom
(PA2), and the rule (PAN).
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As a preparation for the next step, we will give a reduction axiom for formulas
of the form [α!]EGβ. Observe that mutual knowledge can be defined within
the language Ln, cf. Section 5.2.

Lemma 7.1.18. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all α, β ∈ LPA

n we have

X ⊢ [α!]EGβ ↔ (α → EG[α!]β).

Proof. The claim follows from Lemma 7.1.5, axiom (PA4), and tautological
reasoning.

In a next step, we are going to provide some results concerning announcement
resistant formulas. In the context of truthful public announcements, there is
also the set of successful formulas, cf. [22, 23], that we will now define.

Definition 7.1.19. Let X be an arbitrary class of Kripke structures and L
be a language containing public announcement operators. A formula α ∈ L
is called successful in X , if we have

X � [α!]α.

First, we want to mention that every announcement resistant formula is also
successful.

Lemma 7.1.20. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n

and α ∈ LPA
n be given. If α is announcement resistant in X , then α is also

successful in X .

Proof. Let XPA be the deductive system that corresponds to X . By assump-
tion and completeness, we have XPA ⊢ α → [β!]α for all β ∈ LPA

n . Thus, we
obviously have XPA ⊢ α → [α!]α, and we get XPA ⊢ [α!]α by Lemma 7.1.14.
Due to soundness, we get the desired result.

In general, the converse direction of Lemma 7.1.20 does not hold. The fol-
lowing result has partly been proved by van Ditmarsch and Kooi in [23].

Lemma 7.1.21. Let p ∈ P and i ∈ A be given. Then we have that the
formula ¬Kip is successful in Ktu

n , Kr
n, K

rt
n , and Krtu

n , but not announcement
resistant in Kn, K

t
n, K

tu
n , Kr

n, K
rt
n , and Krtu

n .

Proof. For the successfulness of ¬Kip, we can get K45
PA
n ⊢ [¬Kip!]¬Kip and

TPA
n ⊢ [¬Kip!]¬Kip by showing that the formula f([¬Kip!]¬Kip) is provable

in both K45n and Tn. It is not hard to see that K45n and Tn both prove
the formula ¬Kip → ¬(¬Kip → Ki(¬Kip → p)), which is the translation of
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[¬Kip!]¬Kip. Observe that axiom (4) is not used in the proof in K45n. In
order to see that the formula ¬Kip is not announcement resistant in any of
the six classes of Kripke structures, it is enough to get a proof of the formula
p ∧ ¬Kip → ¬[p!]¬Kip in KPA

n by showing that Kn proves its translation
f(p ∧ ¬Kip → ¬[p!]¬Kip). It is not hard to see that this translation given
by p ∧Kip→ ¬(p→ ¬(p→ Ki(p→ p))) is provable in Kn.

So there are more successful formulas than announcement resistant ones in
Ktu

n , Kr
n, Krt

n , and Krtu
n . We do not know whether this is also the case for

the other two classes of Kripke structures, because the formulas of the form
¬Kip are not successful in Kn and Kt

n, as we show in the following example.

Example 7.1.22. Let p ∈ P and i ∈ A be given and let the Kripke structure
K = ({s, t, u}, R1, . . . , Rn, V ) be defined by

R1 = {(s, t), (t, u), (s, u)}, V : q 7→ {w},

such that the accessibility relations R2, . . . , Rn are transitive. Then we have
K ∈ Kt

n and K, s � ¬[¬Kip!]¬Kip, because K, s � ¬Kip∧ [¬Kip!]Kip. There-
fore, we get Kt

n 2 [¬Kip!]¬Kip and, obviously, Kn 2 [¬Kip!]¬Kip.

For every class X , there is a huge set of formulas that are announcement
resistant in X . The following lemma illustrates this fact.

Lemma 7.1.23. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then we have the following sufficient conditions for a formula α ∈ LPA

n to
be announcement resistant in X ,

1. α ∈ L0,

2. X � α or X � ¬α,

3. α = β ∧ γ or α = β ∨ γ for some β, γ announcement resistant in X ,

4. α = Kiβ for some i ∈ A and some β announcement resistant in X .

Proof. The first assertion directly follows from fact preservation, which we
have proved in Lemma 7.1.8. We show how to prove the fourth assertion.
Let XPA be the deductive system that corresponds to X . Further, let β be
announcement resistant in X and γ ∈ LPA

n be arbitrarily given. Then we
have XPA ⊢ β → [γ!]β by completeness, and we get XPA ⊢ Kiβ → Ki[γ!]β
by normal modal logic reasoning. Therefore, since we have that XPA proves
Ki[γ!]β → [γ!]Kiβ as a consequence of (PA4), we get XPA ⊢ Kiβ → [γ!]Kiβ
by tautological reasoning. Due to soundness, we get the desired result.
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We want to mention here that van Ditmarsch and Kooi have proved in [23]
that if α and β are both preserved under submodels, then so also is the
formula [¬α!]β. We believe that this closure condition also holds for an-
nouncement resistance, but we have not yet found a syntactical proof.

The successful formulas do not in general satisfy the closure conditions from
Lemma 7.1.23. The following result has partly been proved in [23].

Lemma 7.1.24. Let p ∈ P, i ∈ A, and X be one of the classes Ktu
n , Kr

n,
Krt

n , or Krtu
n . Then we have that the formulas p and ¬Kip are both successful

in X , but the formula p ∧ ¬Kip is not successful in Kn, K
t
n, and X .

Proof. The formula ¬Kip is successful in X by Lemma 7.1.21 and so also is
p by the first assertion of Lemma 7.1.23. In order to see that p∧¬Kip is not
successful in any of the six classes of Kripke structures, we can show that KPA

n

proves p ∧ ¬Kip → ¬[(p ∧ ¬Kip)!](p ∧ ¬Kip). This can be done by showing
that Kn proves the translation f(p∧¬Kip→ ¬[(p∧¬Kip)!](p∧¬Kip)), which
is given by the formula

p ∧ ¬Kip→

¬((p ∧ ¬Kip→ p) ∧ (p ∧ ¬Kip→ ¬(p ∧Kip→ Ki(p ∧ ¬Kip→ p)))).

By soundness, we get Kn � p ∧ ¬Kip → ¬[(p ∧ ¬Kip)!](p ∧ ¬Kip). Since
we have that the formula p ∧ ¬Kip is satisfiable in every of our six classes
of Kripke structures, we get that the formula [(p ∧ ¬Kip)!](p ∧ ¬Kip) is not
valid in any of the six classes of Kripke structures.

Due to Lemma 7.1.24, we can now easily show that the logic of truthful
public announcements does not have the substitution property .

Corollary 7.1.25. Let X be one of the deductive systems KPA
n , K4

PA
n , K45

PA
n ,

TPA
n , S4

PA
n , or S5

PA
n . Then for all p ∈ P we have

X ⊢ [p!]p, X 0 [(p ∧ ¬Kip)!](p ∧ ¬Kip).

Similar to group announcement logics with trustful agents, we have that
the announcement resistant formulas get common knowledge after one single
public announcement. We can even state this result for the set of successful
formulas, which contains the announcement resistant formulas.

Theorem 7.1.26. Let X be one of the classes Kn, Kt
n, Ktu

n , Kr
n, Krt

n , or
Krtu

n and α ∈ LPA
n be given. If α is successful in X , then for all l ≥ 1 and

all i1, . . . , il ∈ A we have

X � [α!]Kil . . .Ki1α.
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Proof. Let XPA be the deductive system that corresponds to X . Due to
soundness, it is enough to show XPA ⊢ [α!]Kil . . .Ki1α. The proof is by
induction on l. In the base case, we have a proof of [α!]α by assumption
and completeness, and we get a proof of Ki1 [α!]α by (NEC). Applying axiom
(PA4) now results in a proof of [α!]Ki1α. In the induction step, we start with
a proof of [α!]Kil . . .Ki1α by induction hypothesis. By (NEC) we get a proof
of Kil+1

[α!]Kil . . .Ki1α, which implies [α!]Kil+1
Kil . . .Ki1α by (PA4).

It has been mentioned in [22] that the converse direction of Theorem 7.1.26
also holds. That is, the successful formulas are exactly those that get com-
mon knowledge after being announced once. We cannot prove this because
we define common knowledge via the transitive closure of the accessibility
relations, not via the reflexive transitive closure. However, we have the same
result for the three classes of Kripke structures where the accessibility rela-
tions are all reflexive.

Lemma 7.1.27. Let X be one of the classes Kr
n, K

rt
n , or Krtu

n and α ∈ LPA
n

be given. If for some i ∈ A we have X � [α!]Kiα, then α is successful in X .

Proof. Let XPA be the deductive system that corresponds to X . By assump-
tion and completeness, we have XPA ⊢ [α!]Kiα. We can now show that XPA

proves [α!]α by an easy application of the axioms (T) and (PA2) as well as
the rule (PAN). By soundness, we are done.

We have not yet found formulas that are not successful in Kn, Kt
n, and Ktu

n ,
but get common knowledge after being announced once.

We are now going to show that truthful public announcements and group
announcements for trustful agents are closely related, if the group announce-
ments are told to all agents. We can prove that a public announcement with
a true announcement free formula has the same impact on announcement
free formulas in both approaches.

Theorem 7.1.28. Let h : {[α!]β : α, β ∈ LPA
n } → LPA

n be the translation
from Definition 7.1.10, and h′ : {[α!G]β : α, β ∈ LGA

n , ∅ 6= G ⊆ A} → LGA
n

denote the corresponding function defined in Definition 6.1.9. Further, let X

be one of the systems Kn, K4n, K45n, Tn, S4n, or S5n. Then for all α, β ∈ Ln

we have

X ⊢ α→ (h([α!]β) ↔ h′([α!A]β)).

Proof. By induction on β. We show how to prove the last case of the induc-
tion step, where β is of the form Kiγ. By induction hypothesis, we have that
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X proves α→ (h([α!]γ) ↔ h′([α!A]γ)). By normal modal logic reasoning, we
immediately get that X proves

α→ ((α → Ki(α→ h([α!]γ))) ↔ Ki(α→ h′([α!A]γ))).

Now, we only have to show that the formula α → Ki(α → h([α!]γ)) is
provably equivalent to α → Ki(h([α!]γ)). For this purpose, one can easily
prove that for all ϕ, ψ ∈ Ln we have X ⊢ h([ϕ!]ψ) ↔ (ϕ → h([ϕ!]ψ)) by
induction on ψ.

Observe that Theorem 7.1.28 only holds if the announced formula is true,
we have no similar relationship between the two approaches otherwise. If
the group announcements are not told to every agent, there is no such result
either.

We will now state some results about truthful public announcement logic
augmented with common knowledge operators. First, we are going to extend
the language LPA

n with operators for relativised common knowledge. We
recall the grammar of the language LRCPA

n from Definition 5.4.1, which is
given as follows (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | RCG(α, α) | [α!]α.

For the semantics of relativised common knowledge formulas we extend Def-
inition 7.1.1 with the following clause,

K, s � RCG(α, β) :⇔ for all t ∈ (RG ∩ (|K| × ‖α‖K))+(s), K, t � β,

which we have already given in Definition 5.2.6. We get the Hilbert systems
by combining the systems for truthful public announcements with the sys-
tems for relativised common knowledge and adding one axiom concerning
relativised common knowledge after a public announcement. The following
version of the reduction axiom (PA5) has been presented in [22].

Definition 7.1.29. The systems KRCPA
n , K4

RCPA
n , K45

RCPA
n , TRCPA

n , S4
RCPA
n ,

and S5
RCPA
n are the Hilbert systems KPA

n , K4
PA
n , K45

PA
n , TPA

n , S4
PA
n , and S5

PA
n

respectively augmented with the co-closure axiom and the public announce-
ment axiom for relativised common knowledge,

(RC) RCG(α, β) → EG(α→ β ∧ RCG(α, β)),

(PA5) [α!]RCG(β, γ) ↔ (α→ RCG(α ∧ [α!]β, [α!]γ)),

as well as the induction rule for relativised common knowledge,

(RCI)
α→ EG(β → α ∧ γ)

α→ RCG(β, γ)
.
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Observe that Lemma 7.1.3 and Lemma 7.1.5 obviously hold in the extended
setting. The soundness proof of the extended Hilbert systems is a straight-
forward extension of the proof of Lemma 7.1.6, cf. [22] for a detailed proof
of the validity of (PA5). Of course, the proofs of Lemma 7.1.7, Lemma 7.1.8,
and Lemma 7.1.18 are still proofs in the extended systems. Moreover, it is
not hard to extend Lemma 7.1.9 to relativised common knowledge operators.

In order to prove completeness, we can extend the functions h and f from
Definition 7.1.10 to formulas of the form RCG(β, γ) as follows,

h([α!]RCG(β, γ)) := α→ RCG(α ∧ h([α!]β), h([α!]γ)),

f(RCG(β, γ)) := RCG(f(β), f(γ)).

This is because axiom (PA5) is a reduction axiom and shows that adding
public announcements to the logic of relativised common knowledge does
not increase its expressive strength. This fact has already been mentioned
by van Benthem, van Eijck, and Kooi [11, 12]. Clearly, the extended func-
tions h and f are still equivalence preserving in the sense of Lemma 7.1.11.
Therefore, the results from Lemma 7.1.12, Theorem 7.1.13, Lemma 7.1.14,
and Lemma 7.1.16 also hold in the extended framework. So we have an
elegant completeness proof almost identical to the proof of Theorem 7.1.15.

Theorem 7.1.30. For all α ∈ LRCPA
n we have

K
RCPA
n ⊢ α ⇔ Kn � α, K4

RCPA
n ⊢ α ⇔ Kt

n � α,

K45
RCPA
n ⊢ α ⇔ Ktu

n � α, TRCPA
n ⊢ α ⇔ Kr

n � α,

S4
RCPA
n ⊢ α ⇔ Krt

n � α, S5
RCPA
n ⊢ α ⇔ Krtu

n � α.

Due to the new translation f from LRCPA
n to LRC

n , we have that Lemma 7.1.17
still holds. Furthermore, it is still true that every announcement resistant
formula is successful, as we have shown in Lemma 7.1.20. For announcement
resistant formulas, we have an additional closure condition in addition to the
ones in Lemma 7.1.23.

Lemma 7.1.31. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then we have the same sufficient conditions for a formula α ∈ LRCPA

n to be
announcement resistant in X as in Lemma 7.1.23 plus the following one,

5. α = RCG(¬β, γ) for some non empty G ⊆ A and some β, γ announce-
ment resistant in X .

Proof. It is easy to see that the conditions from Lemma 7.1.23 also hold for
LRCPA

n formulas. For the fifth assertion, let XRCPA be the deductive system
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that corresponds to X , β, γ be announcement resistant in X , and δ ∈ LRCPA
n

be arbitrarily given. By completeness, we get that the formulas β → [δ!]β
and γ → [δ!]γ are both provable in XRCPA. Therefore, we get that XRCPA

proves

(¬β → γ ∧ RCG(¬β, γ)) → (δ ∧ [δ!]¬β → [δ!]γ ∧RCG(¬β, γ))

by Lemma 7.1.14 and propositional reasoning. By normal modal reasoning
and the following instance of (RC),

RCG(¬β, γ) → EG(¬β → γ ∧ RCG(¬β, γ)),

we immediately get that the formula

(¬β → γ ∧ RCG(¬β, γ)) → (δ ∧ [δ!]¬β → [δ!]γ ∧RCG(¬β, γ))

is provable in XRCPA. Therefore, again by normal modal logic reasoning, we
get that XRCPA proves

RCG(¬β, γ) → EG(δ ∧ [δ!]¬β → [δ!]γ ∧ RCG(¬β, γ)).

Applying the rule (RCI) now results in a proof of the formula

RCG(¬β, γ) → RCG(δ ∧ [δ!]¬β, [δ!]γ),

and we get XRCPA ⊢ RCG(¬β, γ) → [δ!]RCG(¬β, γ) by an application of the
axiom (PA5). By soundness, we get the desired result.

As we have seen in Theorem 7.1.26, an announced successful formula gets
common knowledge among all agents after one public announcement. With
relativised common knowledge, we are able to express this fact within the
logical language. Remember that the formula RCG(⊤, α) means “α is com-
mon knowledge among G”, as we have already mentioned in Section 5.2. The
following theorem even states a stronger result.

Theorem 7.1.32. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n

and α ∈ LRCPA
n be given. If α is successful in X , then for all non empty

G ⊆ A and all β ∈ LRCPA
n we have

X � [α!]RCG(β, α).

Proof. Let XRCPA be the Hilbert system that corresponds to X and β ∈
LRCPA

n be arbitrarily given. We will show that XRCPA ⊢ [α!]RCG(β, α). By
assumption and completeness, we have XRCPA ⊢ [α!]α. Since we know from
the proof of Theorem 5.2.9 that the inference rule (RC-Nec) is admissible in
XRCPA, we easily get a proof of RCG(α ∧ [α!]β, [α!]α). But this formula now
implies [α!]RCG(β, α) by (PA5). Due to soundness, we are done.
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Similar to Lemma 7.1.27, if the accessibility relations are all reflexive, then
we also have the converse direction of Theorem 7.1.32.

Lemma 7.1.33. Let X be one of the classes Kr
n, K

rt
n , or Krtu

n and α ∈ LRCPA
n

be given. If for some non empty G ⊆ A we have X � [α!]RCG(⊤, α), then
α is successful in X .

Proof. Let XRCPA be the deductive system that corresponds to X . By as-
sumption and completeness, we have XRCPA ⊢ [α!]RCG(⊤, α). We can now
show that XRCPA proves [α!]α by an easy application of the axioms (T),
(RC), and (PA2) as well as the rule (PAN). By soundness, we get the desired
result.

Now, we will state similar results with common knowledge instead of rela-
tivised common knowledge. For this purpose, we repeat the grammar of the
language LCPA

n from Definition 5.4.1 (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | CGα | [α!]α.

Moreover, we recall the semantics for common knowledge formulas from Def-
inition 5.2.2. From now on, the following clause extends Definition 7.1.1,

K, s � CGα :⇔ for all t ∈ R+
G(s), K, t � α.

Baltag, Moss, and Solecki have shown in [8] that the logic of common knowl-
edge and truthful public announcements has more expressive strength than
the logic of common knowledge. Therefore, the Hilbert systems cannot only
have reduction axioms. Baltag and Moss have introduced a deductive sys-
tem in [6], which contains the public announcement composition axiom from
Lemma 7.1.17,

[α!][β!]γ ↔ [(α ∧ [α!]β)!]γ,

as well as the following announcement rule,

α→ [β!]γ α ∧ β → EGα

α → [β!]CGγ
.

A detailed completeness proof can be found in the book of van Ditmarsch,
van der Hoek, and Kooi [22]. In our setting, we have to slightly change
the announcement rule, because we have defined common knowledge via the
transitive closure of the accessibility relations. Due to the announcement
composition axiom and the new inference rule, we are able to prove all of the
other results about truthful public announcements where we have used the
translation f from LPA

n to Ln, as we will show later. We will now define the
new Hilbert systems.
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Definition 7.1.34. The deductive systems KCPA
n , K4

CPA
n , K45

CPA
n , TCPA

n ,
S4

CPA
n , and S5

CPA
n are the systems KPA

n , K4
PA
n , K45

PA
n , TPA

n , S4
PA
n , and S5

PA
n

respectively augmented with the co-closure axiom for common knowledge
and the public announcement composition axiom,

(C) CGα→ EG(α ∧ CGα),

(PA6) [α!][β!]γ ↔ [(α ∧ [α!]β)!]γ,

as well as the induction rules for common knowledge and public announce-
ments,

(CI)
α→ EG(α ∧ β)

α → CGβ
, (PAI)

α→ [β!]EGγ α ∧ β → EGα

α → [β!]CGγ
.

Clearly, Lemma 7.1.3 and Lemma 7.1.5 still hold in the extended framework
and soundness can be proved as usual. For the correctness of the rule (PAI),
one can make slight modifications in the proof from [22]. Again, we can prove
Lemma 7.1.7, Lemma 7.1.8, and Lemma 7.1.18 in the extended systems.

Completeness of the above defined systems follows from the results in [6, 22].
We do not give the completeness proof here, because in Section 7.2 we will
give a detailed proof for total public announcements and common knowledge,
which is similar.

Theorem 7.1.35. For all α ∈ LCPA
n we have

KCPA
n ⊢ α ⇔ Kn � α, K4

CPA
n ⊢ α ⇔ Kt

n � α,

K45
CPA
n ⊢ α ⇔ Ktu

n � α, TCPA
n ⊢ α ⇔ Kr

n � α,

S4
CPA
n ⊢ α ⇔ Krt

n � α, S5
CPA
n ⊢ α ⇔ Krtu

n � α.

We are now going to state a few properties of the logic of truthful public
announcements and common knowledge. The following results concerning
common knowledge after a public announcement are useful for our syntactical
proofs.

Lemma 7.1.36. Let X be one of the Hilbert systems KCPA
n , K4

CPA
n , K45

CPA
n ,

TCPA
n , S4

CPA
n , or S5

CPA
n . Then for all non empty G ⊆ A and all α, β ∈ LCPA

n

we have that the following formulas are provable in X,

[α!]CGβ ↔ [α!]EG(β ∧ CGβ), CG[α!]β → [α!]CGβ.

Proof. The first assertion is a consequence of the axioms (C) and (PA2), as
well as the rules (PAN) and (CI). For the second assertion, we have that X

proves CG[α!]β → [α!]EGβ by axiom (C) and Lemma 7.1.18, and X proves
CG[α!]β ∧ α → EGCG[α!]β by axiom (C) and tautological reasoning. An
application of the rule (PAI) now finishes the proof.
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Although we do not have a translation from LCPA
n to Ln, we can still prove

Lemma 7.1.12 in the extended systems.

Lemma 7.1.37. Let X be one of the Hilbert systems KCPA
n , K4

CPA
n , K45

CPA
n ,

TCPA
n , S4

CPA
n , or S5

CPA
n . Then for all α, β, γ ∈ LCPA

n we have

X ⊢ ¬α → [α!]β, X ⊢ α ↔ β ⇒ X ⊢ [α!]γ ↔ [β!]γ.

Proof. We show how to prove the second assertion by induction on γ, so
assume X ⊢ α ↔ β. The base case as well as the cases γ = ¬δ, γ = δ ∧ ϕ,
and γ = Kiδ in the induction step are identical to the proof of Lemma 7.1.9.
First, let γ be of the form CGδ. We will only show X ⊢ [α!]CGδ → [β!]CGδ, the
other direction is analogous. We have the following chain of provable impli-
cations by the first assertion of Lemma 7.1.36, Lemma 7.1.18, the induction
hypothesis, and the assumption,

[α!]CGδ → [α!]EGδ → (α→ EG[α!]δ) → (β → EG[β!]δ) → [β!]EGδ.

Therefore, we have that X proves [α!]CGδ → [β!]EGδ by tautological reason-
ing. On the other hand, we have the following chain of provable implications
by the first assertion of Lemma 7.1.36, Lemma 7.1.18, and the assumption,

[α!]CGδ ∧ β → [α!]EGCGδ ∧ β → (α→ EG[α!]CGδ) ∧ α.

Hence, we have X ⊢ [α!]CGδ ∧ β → EG[α!]CGδ by tautological reasoning. An
application of the rule (PAI) now finishes this part of the proof. In the last
case of the induction step, if γ = [δ!]ϕ, we proceed as follows. We have that X

proves α∧ [α!]δ ↔ β∧ [β!]δ by induction hypothesis and assumption. Hence,
we get X ⊢ [(α ∧ [α!]δ)!]ϕ ↔ [(β ∧ [β!]δ)!]ϕ by again applying the induction
hypothesis. By (PA6), we get the desired equivalence.

The proof of Lemma 7.1.37 illustrates how axiom (PA6) and the rule (PAI)
can deal with the non existence of a translation from LCPA

n to LC
n . As an

immediate consequence of Lemma 7.1.37, we also get that Theorem 7.1.13,
Lemma 7.1.14, and Lemma 7.1.16 still hold in the extended setting. Thus, we
again get that every announcement resistant formula is successful, which can
be proved like Lemma 7.1.20. Similar to Lemma 7.1.31, there is an additional
condition for an LCPA

n formula to be announcement resistant.

Lemma 7.1.38. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then we have the same sufficient conditions for a formula α ∈ LCPA

n to be
announcement resistant in X as in Lemma 7.1.23 plus the following one,

5. α = CGβ for some non empty G ⊆ A and some β announcement
resistant in X .
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Proof. It is not hard to show that the conditions from Lemma 7.1.23 also hold
for LCPA

n formulas. For the fifth assertion, let XCPA be the deductive system
that corresponds to X , β ∈ LCPA

n be announcement resistant in X , and γ
be arbitrarily given. By assumption and completeness, we have that XCPA

proves β → [γ!]β, and we get XCPA ⊢ EGβ → EG[γ!]β by normal modal logic
reasoning. Together with CGβ → EGβ, which is easily derivable from (C),
we get that XCPA proves CGβ → EG[γ!]β by tautological reasoning. Since
we have that the formula EG[γ!]β → [γ!]EGβ is provable as an immediate
consequence of Lemma 7.1.18, we now get a proof of CGβ → [γ!]EGβ, again
by tautological reasoning. On the other hand, it is easy to get a proof of
CGβ ∧ γ → EGCGβ from (C). Now, we can apply the rule (PAI) in order to
get a proof of CGβ → [γ!]CGβ. By soundness, we get the desired result.

In the logic of common knowledge and truthful public announcements it is
also the case that every successful formula is commonly known by the agents
after being announced once. The following theorem is the natural extension
of Theorem 7.1.26 to common knowledge operators.

Theorem 7.1.39. Let X be one of the classes Kn, Kt
n, Ktu

n , Kr
n, Krt

n , or
Krtu

n and α ∈ LCPA
n be given. If α is successful in X , then for all non empty

G ⊆ A we have

X � [α!]CGα.

Proof. Let XCPA be the deductive system that corresponds to X . By as-
sumption and completeness, we have that the formula [α!]α is provable in
XCPA, and we can easily derive the formula EG[α!]α by normal modal logic
reasoning. Since we have that the formula EG[α!]α → [α!]EGα is provable by
Lemma 7.1.18, we get a proof of [α!]EGα, hence we have that XCPA proves
⊤ → [α!]EGα. Together with the formula ⊤ ∧ α → EG⊤, which is ob-
viously provable in XCPA, we can apply the rule (PAI) and get a proof of
⊤ → [α!]CGα in XCPA. But this formula is provably equivalent to [α!]CGα,
and due to soundness, we are done.

Similar to Lemma 7.1.27, if the accessibility relations are all reflexive, then
we also have the converse direction of Theorem 7.1.39.

Lemma 7.1.40. Let X be one of the classes Kr
n, K

rt
n , or Krtu

n and α ∈ LCPA
n

be given. If for some non empty G ⊆ A we have X � [α!]CGα, then α is
successful in X .

Proof. Let XCPA be the deductive system that corresponds to X . By assump-
tion and completeness, we have that XCPA ⊢ [α!]CGα. We can now show that
XCPA proves [α!]α by an easy application of the axioms (T), (C), and (PA2)
as well as the rule (PAN). By soundness, we get the desired result.
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It has been proved in [22] that all LCPA
n formulas of the form CAα are success-

ful formulas. But for some non empty G ⊂ A and some formulas α ∈ LCPA
n

we have that the formula CGα is not successful in Kn. The following example
illustrates this fact.

Example 7.1.41. Let n ≥ 2 and p ∈ P be given. Furthermore, let the
Kripke structure K = ({s, t}, R1, . . . , Rn, V ) be defined by

R1 = {(s, s), (t, t)}, R2 = {(s, t), (t, s)}, V : q 7→ {s},

the accessibility relations R3, . . . , Rn can be arbitrarily defined. Then we
have K, s � C{1}¬K2p and K, t 2 C{1}¬K2p, hence we get |KC{1}¬K2p| = {s}.
Now, it is not hard to see that K, s � [C{1}¬K2p!]¬C{1}¬K2p, which implies
K, s � ¬[C{1}¬K2p!]C{1}¬K2p by the second assertion of Lemma 7.1.14 and
soundness. Therefore, we have Kn 2 [C{1}¬K2p!]C{1}¬K2p.

We do not know the conditions for a formula of the form CGα to be successful
in a class X of Kripke structures. We believe that there are two possible
solutions, either X ⊆ Kr

n or G = A.

7.2 Total public announcements

In this section, we present a system in which public announcements are
total , that is new information can always be announced. Therefore, public
announcements need not be truthful—they can be true or false. As usual,
a true announcement will lead to the update of an agent’s epistemic state.
However, a false announcement will not lead to an inconsistent epistemic
state like in Section 7.1, it will automatically be ignored by the agents. That
is, after a false announcement, every agent will have the same epistemic state
as before the announcement.

Throughout this section, we are working within the language LPA
n from Def-

inition 5.4.1. First, we introduce the semantics of the logic of total public
announcements by adding the defining clause for the formulas of the form
[α!]β to Definition 5.1.5. As usual, the model transformation is simultane-
ously defined.

Definition 7.2.1. Let K = (S,R1, . . . , Rn, V ) be an arbitrary Kripke struc-
ture and s ∈ S be given. The notion of a public announcement formula [α!]β
being satisfied in the pointed structure K, s is defined as follows,

K, s � [α!]β :⇔ K
α,s, s � β,
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where the Kripke structure K
α,s := (Sα,s, Rα,s

1 , . . . , Rα,s
n , V α,s) is simultane-

ously defined by

K
α,s :=

{

Kα if K, s � α,

K otherwise.

The Kripke structure K
α = (Sα, Rα

1 , . . . , R
α
n, V

α) has already been defined in
Definition 5.4.2.

We want to mention that the semantics from Definition 7.2.1 is slightly dif-
ferent from the one we have given in [62]. However, as we will see, the two
notions give rise to the same axiomatisations. The following example illus-
trates how the new semantics of total public announcements works. It is
related to the muddy children puzzle, cf. [25].

Example 7.2.2. Alice, Bob, and Charlie (agents 1–3) each wear a hat and
cannot see its colour. But they can see, of course, the colour of the others’
hats. There are three blue hats but only two red hats, and it is common
knowledge that this is the case. We have A = {1, 2, 3} and we take some
propositions bi ∈ P with the meaning “agent i wears a blue hat”. If agent i
wears a red hat, proposition bi is false. A state is named c1c2c3 where ci is
the colour (b or r) of agent i’s hat. Suppose Alice wears a red hat, while Bob
and Charlie both wear blue hats. Figure 7.1 shows the Kripke structure K

that represents this situation, where the actual world is underlined (all of the
accessibility relations are reflexive, but the loops are omitted in the figure).
Observe that we have rbb /∈ V (b1), whereas rbb ∈ V (b2) ∩ V (b3). Now, Alice

bbb

bbr brb rbb

brr rbr rrb

3

2 1

2

3

1

3

1

2

Figure 7.1: The initial Kripke structure

publicly announces that she does not know the colour of her hat, which is
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true. This information can be expressed by the formula ¬K1b1 ∧ ¬K1¬b1.
After that, Bob announces that he still does not know the colour of his hat,
again a true announcement. We use the formula ¬K2b2 ∧¬K2¬b2 to encode
this fact. After these two announcements, we get the Kripke structure

(K¬K1b1∧¬K1¬b1,rbb)¬K2b2∧¬K2¬b2,rbb ,

which is illustrated in Figure 7.2 (all of the accessibility relations are still
reflexive). Now, Charlie knows that he is wearing a blue hat. Observe that a

bbb

brb rbb

rrb

2 1

1

2

Figure 7.2: The situation after two announcements

false announcement at any time would have no effect. For instance, imagine
that after the announcement of Alice, Charlie announced that he knows that
he wears a red hat. This is represented by the formula K3¬b3, which is false
at state rbb, and the situation would be the same as before,

((K¬K1b1∧¬K1¬b1,rbb)K3¬b3,rbb)¬K2b2∧¬K2¬b2,rbb =

(K¬K1b1∧¬K1¬b1,rbb)¬K2b2∧¬K2¬b2,rbb.

We have proved in Lemma 7.1.3 that the model transformation from Defini-
tion 5.4.2 preserves reflexivity, transitivity, and Euclideanity of the accessi-
bility relations. Therefore, we have the same result also for the new model
transformation.

Lemma 7.2.3. Let X be one of the classes Kt
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n . Then
for all Kripke structures K, all s ∈ |K|, and all α ∈ LPA

n we have

K ∈ X ⇒ K
α,s ∈ X .
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Proof. If K, s � ¬α, then we have K
α,s = K and the lemma trivially holds.

On the other hand, if K, s � α, then we have Kα,s = Kα and the claim directly
follows from Lemma 7.1.3.

We want to mention that seriality of the accessibility relations is in general
not preserved by the new model transformation. In order to see this, one can
take the same Kripke structure and the same formula as in Example 7.1.2.
Therefore, we cannot get axiomatisations for the classes Ks

n, Kst
n , and Kstu

n .

The following deductive systems for total public announcements are closer
related to the systems for group announcements than to the systems for
truthful public announcements, which was one of the original motivations to
develop the new semantics.

Definition 7.2.4. The Hilbert systems KPAt

n , K4
PAt

n , K45
PAt

n , TPAt

n , S4
PAt

n ,
and S5

PAt

n are the systems Kn, K4n, K45n Tn, S4n, and S5n respectively
augmented with the following total public announcement axioms,

(TPA) ¬α → ([α!]β ↔ β),

(PA1t) [α!]p↔ p,

(PA2) [α!](β → γ) → ([α!]β → [α!]γ),

(PA3t) [α!]¬β ↔ ¬[α!]β,

(PA4t) α → ([α!]Kiβ ↔ Ki(α→ [α!]β)),

and the public announcement necessitation rule,

(PAN)
α

[β!]α
.

Observe that the instances of axiom (TPA) of the form

¬α → ([α!]Kiβ ↔ Kiβ) (7.1)

show that the announcement with a false formula can never affect the knowl-
edge of the agents. This makes sure that the agents never learn false formulas,
and they will never be in an inconsistent state. Note that we could formulate
all of the four systems with (7.1) instead of (TPA). Then (TPA) would be
provable in the resulting systems. However, later we will consider extensions
of these systems by common knowledge operators. There, things get much
simpler if (TPA) is already included as an axiom.

Due to Lemma 7.2.3, our systems are sound with respect to the corresponding
classes of Kripke structures.
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Lemma 7.2.5. For all α ∈ LPA
n we have

KPAt

n ⊢ α ⇒ Kn � α, K4
PAt

n ⊢ α ⇒ Kt
n � α,

K45
PAt

n ⊢ α ⇒ Ktu
n � α, TPAt

n ⊢ α ⇒ Kr
n � α,

S4
PAt

n ⊢ α ⇒ Krt
n � α, S5

PAt

n ⊢ α ⇒ Krtu
n � α.

Proof. By induction on the length of the proof. In the base case, we show how
to prove that axiom (PA4t) is valid. Let K be an arbitrary Kripke structure,
s ∈ |K|, and i ∈ A be given and assume that K, s � α. Then we have

K, s � [α!]Kiβ ⇔ K
α,s, s � Kiβ

⇔ K
α, s � Kiβ

⇔ for all t ∈ Rα
i (s), K

α, t � β

⇔ for all t ∈ Ri(s), K, t � α implies K
α, t � β

⇔ for all t ∈ Ri(s), K, t � α implies K
α,t, t � β

⇔ for all t ∈ Ri(s), K, t � α implies K, t � [α!]β

⇔ for all t ∈ Ri(s), K, t � α → [α!]β

⇔ K, s � Ki(α→ [α!]β).

In the induction step, soundness of the rule (PAN) immediately follows from
Lemma 7.2.3.

We will now present the reduction axioms that will be helpful for the defini-
tion of a new translation from LPA

n to Ln.

Lemma 7.2.6. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β, γ ∈ LPA
n we have

X ⊢ [α!](β ∧ γ) ↔ ([α!]β ∧ [α!]γ),

X ⊢ [α!]Kiβ ↔ (¬α ∧Kiβ) ∨ (α ∧Ki(α→ [α!]β)).

Proof. The first assertion can be proved the same way like Lemma 7.1.5 using
axiom (PA2) and the rule (PAN). The second one is tautologically implied
by axiom (PA4t) and the instance (7.1) of axiom (TPA).

Due to Lemma 7.2.6, we can directly prove the analogue of Lemma 7.1.16.

Lemma 7.2.7. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β, γ ∈ LPA
n we have

X ⊢ ([α!]β → [α!]γ) → [α!](β → γ), X ⊢ [α!](β ∨ γ) ↔ ([α!]β ∨ [α!]γ).
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Proof. Both assertions are an immediate consequence of axiom (PA3t) and
the first assertion of Lemma 7.2.6.

Lemma 7.2.6 is also useful for the proof that total public announcements do
not affect propositional facts, as we state in the following lemma.

Lemma 7.2.8. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α ∈ LPA
n and all β ∈ L0 we have

X ⊢ [α!]β ↔ β.

Proof. By induction on β using the axioms (PA1t) and (PA3t), as well as the
first assertion of Lemma 7.2.6.

Due to Lemma 7.2.8, we have that total public announcements perform
knowledge change in a static world . That is, propositional facts will never
change after having announced new information. Observe that Lemma 7.2.8
obviously implies fact preservation of total public announcements. Moreover,
we can show that all of the properties from Definition 5.4.3 are satisfied.

Lemma 7.2.9. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then the total public announcements are fact preserving, adequate, total,
self-dual, and normal with respect to X .

Proof. Let XPAt be the deductive system that corresponds to X . Fact pres-
ervation is an immediate consequence of Lemma 7.2.8 and soundness. Ade-
quacy trivially follows from fact preservation, because ⊤ ∈ L0. For totality,
we can show that for all α ∈ LPA

n we have XPAt ⊢ [α!]¬⊥ by Lemma 7.2.8 and
propositional reasoning. By an application of axiom (PA3t) and soundness,
we get X � ¬[α!]⊥, and totality is proved. Self-duality is given by axiom
(PA3t) and soundness. Due to axiom (PA2), the rule (PAN), and soundness
we directly get normality.

The fact that total public announcements are self-dual also shows a differ-
ence to truthful public announcements, namely in the way an announcement
formula is read. That is [α!]β means “β holds after the public announcement
of α”. In the context of truthful public announcements, it is read as “β holds
after every truthful public announcement of α”, and its dual has the meaning
“β holds after some truthful public announcement of α”, see [22].

Like truthful public announcements, we have that total public announce-
ments are syntax independent. Again, we will first state a restricted version
of this fact.



180 Chapter 7. Knowledge expansion

Lemma 7.2.10. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β ∈ LPA
n and all γ ∈ Ln we have

X ⊢ α ↔ β ⇒ X ⊢ [α!]γ ↔ [β!]γ.

Proof. We can prove this lemma by induction on γ, using the axioms (PA1t)
and (PA3t), as well as both assertions of Lemma 7.2.6.

In order to show completeness of the six systems for total public announce-
ments, we will again define a two step translation from LPA

n to Ln.

Definition 7.2.11. The function h : {[α!]β : α, β ∈ LPA
n } → LPA

n is induc-
tively defined by

h([α!]p) := p,

h([α!]¬β) := ¬h([α!]β),

h([α!](β ∧ γ)) := h([α!]β) ∧ h([α!]γ),

h([α!]Kiβ) := (¬α ∧Kiβ) ∨ (α ∧Ki(α→ h([α!]β))),

h([α!][β!]γ) := [α!][β!]γ.

Again, it is easy to see that for all α, β ∈ Ln we have h([α!]β) ∈ Ln, and the
function h is equivalence preserving in the following sense.

Lemma 7.2.12. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β ∈ LPA
n we have

X ⊢ h([α!]β) ↔ [α!]β.

Proof. This lemma can be proved by induction on β using the axioms (PA1t)
and (PA3t), as well as both assertions of Lemma 7.2.6.

The translation that eliminates the announcement operator in every LPA
n for-

mula is defined the same way as in the previous sections about announcement
logics.

Definition 7.2.13. The function f : LPA
n → LPA

n is inductively defined by

f(p) := p,

f(¬α) := ¬f(α),

f(α ∧ β) := f(α) ∧ f(β),

f(Kiα) := Kif(α),

f([α!]β) := h([f(α)!]f(β)).
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It is obvious that for all α ∈ LPA
n we have that f(α) ∈ Ln. In addition, we

can prove the equivalence of α and f(α) in all of our six systems.

Lemma 7.2.14. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α ∈ LPA
n we have

X ⊢ f(α) ↔ α.

Proof. By induction on α. The only nontrivial case is in the induction step,
where α is of the form [β!]γ. In this case, the claim can be proved using
Lemma 7.2.12 and Lemma 7.2.10. It works exactly the same way as the
proof of Lemma 7.1.11.

Lemma 7.2.14 is very helpful not only for the completeness proof, but also
for generalising results on Ln formulas to LPA

n formulas. Making use of it
and of Lemma 7.2.10, we can now easily prove the general version of syntax
independence for total public announcements.

Lemma 7.2.15. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β, γ ∈ LPA
n we have

X ⊢ α ↔ β ⇒ X ⊢ [α!]γ ↔ [β!]γ.

Proof. First, we have that X proves the equivalence of [α!]γ and [α!]f(γ) by
Lemma 7.2.14 using axiom (PA2) and the rule (PAN). Now, using the fact
that f(γ) ∈ Ln and X ⊢ α ↔ β, we get that [α!]f(γ) is provably equivalent
to [β!]f(γ) by Lemma 7.2.10. Again, we can apply Lemma 7.2.14 and get
that X ⊢ [β!]f(γ) ↔ [β!]γ, hence we are done.

Due to Lemma 7.2.15, we can now prove the Replacement Theorem for the
logic of total public announcements.

Theorem 7.2.16 (Replacement). Let X be one of the deductive systems
KPAt

n , K4
PAt

n , K45
PAt

n , TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β, γ ∈ LPA
n we

have

X ⊢ α ↔ β ⇒ X ⊢ γ ↔ γ[α/β].

Proof. The proof is by induction on γ and is identical to the proof of The-
orem 7.1.13. In the induction step, we can apply Lemma 7.2.15 instead of
Lemma 7.1.12.

As another consequence of Lemma 7.2.14 we get the following equivalence
concerning consecutive announcement operators.
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Lemma 7.2.17. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β, γ ∈ LPA
n we have

X ⊢ α ∧ [α!]β → ([α!][β!]γ ↔ [(α ∧ [α!]β)!]γ).

Proof. This result can be established in two steps. First, we can prove a
restricted version where γ has to be an Ln formula. This can be done by
induction on γ. We show how to prove the last case of the induction step,
where γ is of the form Kiδ. By Lemma 7.2.6 and Lemma 7.2.7, the axioms
(PA2) and (PA3t), as well as the rule (PAN), we get that [α!][β!]Kiδ is provably
equivalent to the following formula,

(¬[α!]β ∧ [α!]Kiδ) ∨

([α!]β ∧ ((¬α ∧Ki(β → [β!]δ)) ∨ (α ∧Ki(α ∧ [α!]β → [α!][β!]δ)))).

Therefore, we immediately get that X proves

α ∧ [α!]β → ([α!][β!]Kiδ ↔ Ki(α ∧ [α!]β → [α!][β!]δ)) (7.2)

by tautological reasoning. On the other hand, we have the following instance
of axiom (PA4t),

α ∧ [α!]β → ([(α ∧ [α!]β)!]Kiδ ↔ Ki(α ∧ [α!]β → [(α ∧ [α!]β)!]δ)). (7.3)

Using the induction hypothesis, which states that the formula

α ∧ [α!]β → ([α!][β!]δ ↔ [(α ∧ [α!]β)!]δ)

is provable in X, we can derive

Ki(α ∧ [α!]β → [α!][β!]δ) ↔ Ki(α ∧ [α!]β → [(α ∧ [α!]β)!]δ) (7.4)

by normal modal logic reasoning. Now, by the provability of the formulas
(7.2), (7.3), and (7.4), as well as tautological reasoning, we get

X ⊢ α ∧ [α!]β → ([α!][β!]Kiδ ↔ [(α ∧ [α!]β)!]Kiδ).

We have now proved that the assertion holds for all γ ∈ Ln. In order to
prove it for arbitrary γ ∈ LPA

n , we can make use of the restricted result and
Lemma 7.2.14.

Like in Section 7.1, we get an elegant completeness proof for our six deductive
systems due to Lemma 7.2.14.
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Theorem 7.2.18. For all α ∈ LPA
n we have

KPAt

n ⊢ α ⇔ Kn � α, K4
PAt

n ⊢ α ⇔ Kt
n � α,

K45
PAt

n ⊢ α ⇔ Ktu
n � α, TPAt

n ⊢ α ⇔ Kr
n � α,

S4
PAt

n ⊢ α ⇔ Krt
n � α, S5

PAt

n ⊢ α ⇔ Krtu
n � α.

Proof. Soundness has already been proved. We show the direction from right
to left. Let X be one of the systems Kn, K4n, K45n, Tn, S4n, or S5n, and X be
its corresponding class of Kripke structures. For a given formula α ∈ LPA

n ,
we assume that X � α. Then we have that X � f(α) by Lemma 7.2.14
and soundness. By completeness of X, we get that X ⊢ f(α) and, obviously,
XPAt ⊢ f(α). Again by Lemma 7.2.14, we get XPAt ⊢ α, and we are done.

As a preparation for Section 7.3, we will now prove a reduction axiom for the
notion of mutual knowledge.

Lemma 7.2.19. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all α, β ∈ LPA
n we have

X ⊢ α→ ([α!]EGβ ↔ EG(α→ [α!]β)).

Proof. By a simple application of axiom (PA4t) and Lemma 7.2.6.

In a next step, we are going to present some results about the announcement
resistant formulas in total public announcement logic. Compared to truthful
public announcements, it does not make sense to consider the successful
formulas, because in this setting not even propositions would be successful.
On the other hand, Lemma 7.2.8 directly implies that all L0 formulas are
announcement resistant. We will now show that we have the same sufficient
conditions for a formula to be announcement resistant as with truthful public
announcements.

Lemma 7.2.20. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then we have the following sufficient conditions for a formula α ∈ LPA

n to
be announcement resistant in X ,

1. α ∈ L0,

2. X � α or X � ¬α,

3. α = β ∧ γ or α = β ∨ γ for some β, γ announcement resistant in X ,

4. α = Kiβ for some i ∈ A and some β announcement resistant in X .
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Proof. We show how to prove the fourth assertion. Let X be given and XPAt

be its corresponding system. Further, let β be announcement resistant in X
and γ ∈ LPA

n be arbitrarily given. By completeness, we have that XPAt proves
β → [γ!]β, and we get XPAt ⊢ Kiβ → Ki(γ → [γ!]β) by normal modal logic
reasoning. Now, by tautological reasoning, we easily get

XPAt ⊢ Kiβ → (¬γ ∧Kiβ) ∨ (γ ∧Ki(γ → [γ!]β)).

By the second assertion of Lemma 7.2.6, we immediately get that X proves
Kiβ → [γ!]Kiβ. By soundness, we are done.

As an immediate consequence of Lemma 7.2.20, we get that for all α ∈ L0, the
formula Kiα is announcement resistant. That is, knowledge of propositional
facts can never be retracted by public announcements. We can therefore
say that the logic of total public announcements formalises expansion for
propositional knowledge. As we have seen in Example 7.2.2, agents can
really expand their knowledge due to some announcements.

Now, we will prove that the logic of total public announcements does not
have the substitution property . The proof uses the fact that the formulas of
the form p ∧ ¬Kip are not announcement resistant and is similar to the one
for truthful public announcements.

Lemma 7.2.21. Let X be one of the deductive systems KPAt

n , K4
PAt

n , K45
PAt

n ,
TPAt

n , S4
PAt

n , or S5
PAt

n . Then for all p ∈ P we have

X ⊢ p→ [p!]p, X 0 p ∧ ¬Kip→ [(p ∧ ¬Kip)!](p ∧ ¬Kip).

Proof. The first assertion trivially follows from axiom (PA1t). We show how
to prove the second assertion. By Lemma 7.2.14, we have that the formula
p ∧¬Kip→ [(p ∧ ¬Kip)!](p ∧ ¬Kip) is provably equivalent to its translation
f(p ∧ ¬Kip→ [(p ∧ ¬Kip)!](p ∧ ¬Kip)), that is to

p ∧ ¬Kip→ p ∧ ¬Ki(p ∧ ¬Kip→ p).

But this formula is provably equivalent to p → Kip by normal modal logic
reasoning, which is obviously not provable in X.

The following theorem states that true announcement resistant formulas get
common knowledge after being announced once.

Theorem 7.2.22. Let X be one of the classes Kn, Kt
n, Ktu

n , Kr
n, Krt

n , or
Krtu

n and α ∈ LPA
n be given. If α is announcement resistant in X , then for

all l ≥ 1 and all i1, . . . , il ∈ A we have

X � α → [α!]Kil . . .Ki1α.
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Proof. Let XPAt be the system that corresponds to X . We will prove by
induction on l that XPAt proves α → [α!]Kil . . .Ki1α. In the base case, we
have a proof of α → [α!]α by assumption, and an application of the rule
(NEC) results in a proof of Ki1(α → [α!]α). Applying axiom (PA4t) and
some tautology now results in a proof of α → [α!]Ki1α. In the induction
step, we start with a proof of α → [α!]Kil . . .Ki1α by induction hypothesis,
and we get that XPAt proves Kil+1

(α→ [α!]Kil . . .Ki1α) by applying the rule
(NEC). Finally, we get XPAt ⊢ α → [α!]Kil+1

Kil . . .Ki1α by axiom (PA4t)
and tautological reasoning. Due to soundness, we get the desired result.

We have now seen that we have a big set of announcement resistant formu-
las in the logic of total public announcements, like in the logic of truthful
public announcements. Moreover, a true announcement resistant formula
gets common knowledge after being announced once, similar to the results in
Section 7.1. From a semantical point of view, it is immediate that the trans-
formed Kripke structure is the same in both approaches, if the announced
formula is true. But there are formulas, of course, that are true in one seman-
tics, and false in the other, and vice versa. We end this section by proving
that an announcement with a true announcement free formula has the same
impact on announcement free formulas in both approaches.

Theorem 7.2.23. Let h : {[α!]β : α, β ∈ LPA
n } → LPA

n be the translation
from Definition 7.2.11, and h′ : {[α!]β : α, β ∈ LPA

n } → LPA
n denote the

corresponding function defined in Definition 7.1.10. Further, let X be one of
the systems Kn, K4n, K45n, Tn, S4n, or S5n. Then for all α, β ∈ Ln we have

X ⊢ α → (h([α!]β) ↔ h′([α!]β)).

Proof. By induction on β. The only nontrivial case is where β is of the form
Kiγ in the induction step. By induction hypothesis, we can assume that we
have a proof of α → (h([α!]γ) ↔ h′([α!]γ)) in X. By normal modal logic
reasoning, we immediately get that X proves

α→ ((¬α ∧Kiγ) ∨ (α ∧Ki(α → h([α!]γ))) ↔ (α→ Ki(α → h′([α!]γ)))).

We only need to show now that the formula α → Ki(α → h′([α!]γ)) is
provably equivalent to α → Ki(h

′([α!]γ)). For this purpose, one can show
that for all ϕ, ψ ∈ Ln we have X ⊢ h′([ϕ!]ψ) ↔ (ϕ → h′([ϕ!]ψ)) by a simple
induction on ψ, like in the proof of Theorem 7.1.28.

So the crucial difference between total public announcement and truthful
public announcement semantics is the following. If an announced formula
is false, we have no impact on the agent’s knowledge in the former, and an
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inconsistent epistemic state in the latter case. This fact could be useful for
defining public announcements in systems of knowledge and belief.

Due to Theorem 7.1.28 and Theorem 7.2.23, we easily get that the total
public announcements are in the same relationship to group announcements
for trustful agents like the truthful public announcements.

Theorem 7.2.24. Let h : {[α!]β : α, β ∈ LPA
n } → LPA

n be the translation
from Definition 7.2.11, and h′ : {[α!G]β : α, β ∈ LGA

n , ∅ 6= G ⊆ A} → LGA
n

denote the corresponding function defined in Definition 6.1.9. Further, let X

be one of the systems Kn, K4n, K45n, Tn, S4n, or S5n. Then for all α, β ∈ Ln

we have

X ⊢ α→ (h([α!]β) ↔ h′([α!A]β)).

7.3 Adding common knowledge operators

In this section, we will provide deductive systems for the logic of total pub-
lic announcements augmented with common knowledge operators. First, we
will add relativised common knowledge and show completeness via reduc-
tion axioms. That is, we will extend the equivalence preserving translation
from Section 7.2 to a function mapping from LRCPA

n to LRC
n . Moreover, we

will extend the results about announcement resistant formulas. In a second
step, we will add common knowledge and give a completeness proof in full
detail. Since truthful public announcement logic augmented with common
knowledge operators is more expressive than the logic of common knowledge
(cf. Section 7.1), and total public announcements have the same effect in
case the announced formula is true (cf. Theorem 7.2.23), we can conclude
that there is no translation from LCPA

n to LC
n that is equivalence preserving.

Therefore, the deductive systems contain more than just reduction axioms,
cf. [62], where we have presented such a system based on S5

C
n . Again, we

will do some discussion on announcement resistant formulas, and we will
generalise some of the previous results such as Theorem 7.2.22.

In the first part of this section, we are dealing with the language LRCPA
n ,

which we have defined in Definition 5.4.1 (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | RCG(α, α) | [α!]α.

For public announcement operators, we will use the semantics of total public
announcements from Section 7.2. We recall the semantics for the operators
extending the language Ln of modal logic,

K, s � RCG(α, β) :⇔ for all t ∈ (RG ∩ (|K| × ‖α‖K))+(s), K, t � β,
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K, s � [α!]β :⇔ K
α,s, s � β,

where the transformed Kripke structure Kα,s = (Sα,s, Rα,s
1 , . . . , Rα,s

n , V α,s) is
defined as in Definition 7.2.1.

Since we have the same model transformation as in Section 7.2, we have
that Lemma 7.2.3 still holds in the extended framework, that is the model
transformation preserves reflexivity, transitivity, and Euclideanity of the ac-
cessibility relations.

Lemma 7.3.1. Let X be one of the classes Kt
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n . Then
for all Kripke structures K, all s ∈ |K|, and all α ∈ LRCPA

n we have

K ∈ X ⇒ K
α,s ∈ X .

The new deductive systems can be obtained by combining the systems for
total public announcements with the systems for relativised common knowl-
edge. In addition, there is a new reduction axiom for relativised common
knowledge after a public announcement.

Definition 7.3.2. The Hilbert systems KRCPAt

n , K4
RCPAt

n , K45
RCPAt

n , TRCPAt

n ,
S4

RCPAt

n , and S5
RCPAt

n are the systems KPAt

n , K4
PAt

n , K45
PAt

n , TPAt

n , S4
PAt

n ,
and S5

PAt

n respectively augmented with the co-closure axiom and the public
announcement axiom for relativised common knowledge,

(RC) RCG(α, β) → EG(α → β ∧RCG(α, β)),

(PA5t) α → ([α!]RCG(β, γ) ↔ RCG(α ∧ [α!]β, [α!]γ)),

as well as the induction rule for relativised common knowledge,

(RCI)
α→ EG(β → α ∧ γ)

α→ RCG(β, γ)
.

Like in Section 7.2, Lemma 7.3.1 is essential for proving soundness of our six
deductive systems.

Lemma 7.3.3. For all α ∈ LRCPA
n we have

KRCPAt

n ⊢ α ⇒ Kn � α, K4
RCPAt

n ⊢ α ⇒ Kt
n � α,

K45
RCPAt

n ⊢ α ⇒ Ktu
n � α, TRCPAt

n ⊢ α ⇒ Kr
n � α,

S4
RCPAt

n ⊢ α ⇒ Krt
n � α, S5

RCPAt

n ⊢ α ⇒ Krtu
n � α.

Proof. By induction on the length of the proof. The only new case is in the
base case, and we show that axiom (PA5t) is valid in all Kripke structures.
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Let K ∈ Kn, s ∈ |K|, ∅ 6= G ⊆ A, and α, β, γ ∈ LRCPA
n be given and assume

K, s � α. Then we have Kα,s = Kα, and we get

K, s � [α!]RCG(β, γ)

⇔ K
α,s, s � RCG(β, γ)

⇔ K
α, s � RCG(β, γ)

⇔ for all t ∈ (Rα
G ∩ (|Kα| × ‖β‖Kα))+(s), K

α, t � γ

⇔ for all t ∈ ((RG ∩ ‖α‖2
K
)) ∩ (‖α‖K × ‖α ∧ [α!]β‖K))+(s), K

α, t � γ

⇔ for all t ∈ (RG ∩ (‖α‖K × ‖α ∧ [α!]β‖K))+(s), K
α, t � γ

⇔ for all t ∈ (RG ∩ (|K| × ‖α ∧ [α!]β‖K))+(s), K
α,t, t � γ

⇔ for all t ∈ (RG ∩ (|K| × ‖α ∧ [α!]β‖K))+(s), K, t � [α!]γ,

which is equivalent to K, s � RCG(α ∧ [α!]β, [α!]γ).

Since the deductive systems XRCPAt are an extension of the systems XPAt , we
immediately get that Lemma 7.2.6, Lemma 7.2.7, Lemma 7.2.8, Lemma 7.2.9,
and Lemma 7.2.19 all still hold for the language LRCPA

n instead of LPA
n . More-

over, we can prove an additional reduction axiom in the extended systems.

Lemma 7.3.4. Let X be one of the deductive systems KRCPAt

n , K4
RCPAt

n ,
K45

RCPAt

n , TRCPAt

n , S4
RCPAt

n , or S5
RCPAt

n . Then for all α, β, γ ∈ LRCPA
n we

have that X proves

[α!]RCG(β, γ) ↔ (¬α ∧ RCG(β, γ)) ∨ (α ∧ RCG(α ∧ [α!]β, [α!]γ)).

Proof. The claim directly follows from the axioms (TPA) and (PA5t) by tau-
tological reasoning.

Due to Lemma 7.3.4, we have that Lemma 7.2.10 still holds in the extended
setting:

Lemma 7.3.5. Let X be one of the deductive systems KRCPAt

n , K4
RCPAt

n ,
K45

RCPAt

n , TRCPAt

n , S4
RCPAt

n , or S5
RCPAt

n . Then for all α, β ∈ LRCPA
n and all

ϕ ∈ LRC
n we have

X ⊢ α ↔ β ⇒ X ⊢ [α!]ϕ↔ [β!]ϕ.

Proof. We can prove this lemma by induction on ϕ like Lemma 7.2.10. In
the new case of the induction step, we can apply the new reduction axiom
from Lemma 7.3.4.
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As another consequence of Lemma 7.3.4, we know how to extend the trans-
lation h from Definition 7.2.11 to a function mapping from {[α!]β : α, β ∈
LRCPA

n } to LRCPA
n . For this purpose, we add the following clause to Defini-

tion 7.2.11,

h([α!]RCG(β, γ)) :=

(¬α ∧ RCG(β, γ)) ∨ (α ∧RCG(α ∧ h([α!]β), h([α!]γ))).

Again, it is obvious that for all α, β ∈ LRC
n we have that the formula h([α!]β)

is an element of LRC
n . Moreover, we have that the function h is still equiva-

lence preserving in the following sense.

Lemma 7.3.6. Let X be one of the deductive systems KRCPAt

n , K4
RCPAt

n ,
K45

RCPAt

n , TRCPAt

n , S4
RCPAt

n , or S5
RCPAt

n . Then for all α, β ∈ LRCPA
n we have

X ⊢ h([α!]β) ↔ [α!]β.

Proof. The claim can be proved by induction on β and is similar to the proof
of Lemma 7.2.12. The only new case in the induction step can be proved
using Lemma 7.3.4.

Now, we will also extend the function f from Definition 7.2.13 to a function
mapping from LRCPA

n to LRCPA
n . This can be done by adding the following

clause to Definition 7.2.13,

f(RCG(α, β)) := RCG(f(α), f(β)).

It is easy to see that for all α ∈ LRCPA
n we have that the formula f(α) is an

element of LRC
n . Furthermore, the translation f is equivalence preserving in

the sense of Lemma 7.2.14:

Lemma 7.3.7. Let X be one of the deductive systems KRCPAt

n , K4
RCPAt

n ,
K45

RCPAt

n , TRCPAt

n , S4
RCPAt

n , or S5
RCPAt

n . Then for all α ∈ LRCPA
n we have

X ⊢ f(α) ↔ α.

Proof. By induction on α. In the last case of the induction step, where α is
of the form [β!]γ, the proof is identical to the proof of Lemma 7.2.14. That
is, we can apply Lemma 7.3.5 and Lemma 7.3.6 instead of Lemma 7.2.10 and
Lemma 7.2.12 respectively.

As a direct consequence of the semantics we have that total public announce-
ments are syntax independent. Due to the previous lemmas, we have a syn-
tactical proof of this fact.
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Lemma 7.3.8. Let X be one of the deductive systems KRCPAt

n , K4
RCPAt

n ,
K45

RCPAt

n , TRCPAt

n , S4
RCPAt

n , or S5
RCPAt

n . Then for all α, β, γ ∈ LRCPA
n we

have

X ⊢ α ↔ β ⇒ X ⊢ [α!]γ ↔ [β!]γ.

Proof. The proof of this assertion works exactly the same way as the proof
of Lemma 7.2.15. The only difference is that we apply Lemma 7.3.5 and
Lemma 7.3.7 instead of Lemma 7.2.10 and Lemma 7.2.14 respectively.

Due to Lemma 7.3.8, we get that the Replacement Theorem still holds, as we
have proved in Theorem 7.2.16. We are now going to show that Lemma 7.2.17
also holds in the extended framework.

Lemma 7.3.9. Let X be one of the deductive systems KRCPAt

n , K4
RCPAt

n ,
K45

RCPAt

n , TRCPAt

n , S4
RCPAt

n , or S5
RCPAt

n . Then for all α, β, γ ∈ LRCPA
n we

have

X ⊢ α ∧ [α!]β → ([α!][β!]γ ↔ [(α ∧ [α!]β)!]γ).

Proof. Like Lemma 7.2.17, this result can be established in two steps. First,
we can prove a restricted version where γ has to be an LRC

n formula. This
can be done by induction on γ. We show how to prove the last case of
the induction step, where γ is of the form RCG(δ, ϕ). By Lemma 7.2.6,
Lemma 7.2.7, and Lemma 7.3.4, the axioms (PA2) and (PA3t), as well as the
rule (PAN), we get that [α!][β!]RCG(δ, ϕ) is provably equivalent to

(¬[α!]β ∧ [α!]RCG(δ, ϕ)) ∨ ([α!]β ∧ ((¬α ∧ RCG(β ∧ [β!]δ, [β!]ϕ)) ∨

(α ∧RCG(α ∧ [α!]β ∧ [α!][β!]δ, [α!][β!]ϕ)))).

Therefore, we immediately get that X proves

α ∧ [α!]β → ([α!][β!]RCG(δ, ϕ) ↔

RCG(α ∧ [α!]β ∧ [α!][β!]δ, [α!][β!]ϕ)) (7.5)

by tautological reasoning. On the other hand, as an instance of (PA5t), we
have that X proves

α ∧ [α!]β → ([(α ∧ [α!]β)!]RCG(δ, ϕ) ↔

RCG(α ∧ [α!]β ∧ [(α ∧ [α!]β)!]δ, [(α ∧ [α!]β)!]ϕ)). (7.6)

Using the induction hypothesis, which states that the formula

α ∧ [α!]β → ([α!][β!]δ ↔ [(α ∧ [α!]β)!]δ) ∧ ([α!][β!]ϕ↔ [(α ∧ [α!]β)!]ϕ)
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is provable in X, we can derive the formula

EG(α ∧ [α!]β ∧ [α!][β!]δ → ψ ∧ [α!][β!]ϕ) →

EG(α ∧ [α!]β ∧ [(α ∧ [α!]β)!]δ → ψ ∧ [(α ∧ [α!]β)!]ϕ)

for every formula ψ ∈ LRCPA
n by normal modal logic reasoning. If we let ψ

be the formula RCG(α ∧ [α!]β ∧ [α!][β!]δ, [α!][β!]ϕ), we can now apply axiom
(RC) in order to get a proof of

RCG(α ∧ [α!]β ∧ [α!][β!]δ, [α!][β!]ϕ) → EG(α ∧ [α!]β ∧ [(α ∧ [α!]β)!]δ →

RCG(α ∧ [α!]β ∧ [α!][β!]δ, [α!][β!]ϕ) ∧ [(α ∧ [α!]β)!]ϕ).

Finally, by an application of the rule (RCI), we get that X proves

RCG(α ∧ [α!]β ∧ [α!][β!]δ, [α!][β!]ϕ) →

RCG(α ∧ [α!]β ∧ [(α ∧ [α!]β)!]δ, [(α ∧ [α!]β)!]ϕ).

The converse direction can similarly be proved, hence we get a proof of

RCG(α ∧ [α!]β ∧ [α!][β!]δ, [α!][β!]ϕ) ↔

RCG(α ∧ [α!]β ∧ [(α ∧ [α!]β)!]δ, [(α ∧ [α!]β)!]ϕ) (7.7)

in X. Now, by the provability of the formulas (7.5), (7.6), and (7.7), as well
as tautological reasoning, we get

X ⊢ α ∧ [α!]β → ([α!][β!]RCG(δ, ϕ) ↔ [(α ∧ [α!]β)!]RCG(δ, ϕ)).

We have now proved that the assertion holds for all γ ∈ LRC
n . In order to

prove it for arbitrary γ ∈ LRCPA
n , we can make use of the restricted result

and Lemma 7.3.7.

Due to Lemma 7.3.7, we also get an elegant completeness proof for our six
Hilbert systems like in Section 7.1 and Section 7.2.

Theorem 7.3.10. For all α ∈ LRCPA
n we have

KRCPAt

n ⊢ α ⇔ Kn � α, K4
RCPAt

n ⊢ α ⇔ Kt
n � α,

K45
RCPAt

n ⊢ α ⇔ Ktu
n � α, TRCPAt

n ⊢ α ⇔ Kr
n � α,

S4
RCPAt

n ⊢ α ⇔ Krt
n � α, S5

RCPAt

n ⊢ α ⇔ Krtu
n � α.

Proof. Soundness has already been proved. For the direction from right to
left, we can proceed exactly the same way like in the proof of Theorem 7.2.18
using Lemma 7.3.7 instead of Lemma 7.2.14.
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It is not surprising that we have the same conditions for a formula to be
announcement resistant like in the logic of truthful public announcements
and relativised common knowledge. That is, Lemma 7.1.31 also holds for
total public announcements and relativised common knowledge.

Lemma 7.3.11. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then we have the same sufficient conditions for a formula α ∈ LRCPA

n to be
announcement resistant in X as in Lemma 7.1.31.

Proof. The first four conditions have the same proof as Lemma 7.2.20. We
show how to prove the fifth one, that is

5. α = RCG(¬β, γ) for some non empty G ⊆ A and some β, γ announce-
ment resistant in X .

Let XRCPAt be the Hilbert system that corresponds to X and δ ∈ LRCPA
n

be arbitrarily given. By assumption and completeness, we have that the
formulas β → [δ!]β and γ → [δ!]γ are both provable in XRCPAt . By normal
modal logic reasoning, we easily get a proof of

EG(¬β → RCG(¬β, γ) ∧ γ) → EG(δ ∧ ¬[δ!]β → RCG(¬β, γ) ∧ [δ!]γ)

in XRCPAt . Applying the axioms (PA3t) and (RC), we get that XRCPAt proves

RCG(¬β, γ) → EG(δ ∧ [δ!]¬β → RCG(¬β, γ) ∧ [δ!]γ).

An application of the rule (RCI) now results in a proof of

RCG(¬β, γ) → RCG(δ ∧ [δ!]¬β, [δ!]γ),

and we get that XRCPAt proves

RCG(¬β, γ) → (¬δ ∧ RCG(¬β, γ)) ∨ (δ ∧ RCG(δ ∧ [δ!]¬β, [δ!]γ))

by tautological reasoning. An application of Lemma 7.3.4 implies

XRCPAt ⊢ RCG(¬β, γ) → [δ!]RCG(¬β, γ),

and by soundness, we get the desired result.

As we have proved in Theorem 7.2.22, a true announcement resistant formula
gets common knowledge among any group of agents after being announced
once. Like in Theorem 7.1.32, we can express this fact within the extended
language, and we are able to prove a slightly stronger result.
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Theorem 7.3.12. Let X be one of the classes Kn, Kt
n, Ktu

n , Kr
n, Krt

n , or
Krtu

n and α ∈ LRCPA
n be given. If α is announcement resistant in X , then

for all non empty G ⊆ A and all β ∈ LRCPA
n we have

X � α→ [α!]RCG(β, α).

Proof. Let XRCPAt be the Hilbert system that corresponds to X and β ∈
LRCPA

n be arbitrarily given. By assumption and completeness, we get that
XRCPAt proves α → [α!]α. By normal modal logic reasoning, we easily get a
proof of α → EG(α ∧ [α!]β → α ∧ [α!]α) in XRCPAt . An application of the
rule (RCI) now results in a proof of α → RCG(α ∧ [α!]β, [α!]α). Finally, we
get that XRCPAt proves α→ [α!]RCG(β, α) by axiom (PA5t) and tautological
reasoning. Due to soundness, we are done.

Now, we are going to add common knowledge instead of relativised com-
mon knowledge operators to the logic of total public announcements. As we
will see, we do not have reduction axioms that eliminate the announcement
operators, like in the logic of truthful public announcements and common
knowledge. Therefore, the completeness proof is not that easy, and we will
prove it in full detail.

First, we will recall the language LCPA
n from Definition 5.4.1, which is given

by the following grammar (p ∈ P, i ∈ A, ∅ 6= G ⊆ A),

α ::= p | ¬α | (α ∧ α) | Kiα | CGα | [α!]α.

The semantics is given by adding the following clause to Definition 7.2.1,

K, s � CGα :⇔ for all t ∈ R+
G(s), K, t � α,

where the relation R+
G is the transitive closure of

⋃

i∈GRi. Since we have
the same model transformation as in Definition 7.2.1, it is not surprising
that seriality, transitivity, and Euclideanity are still preserved within the
extended setting, cf. Lemma 7.2.3 and Lemma 7.3.1.

Lemma 7.3.13. Let X be one of the classes Kt
n, Ktu

n , Kr
n, Krt

n , or Krtu
n .

Then for all Kripke structures K, all s ∈ |K|, and all α ∈ LCPA
n we have

K ∈ X ⇒ K
α,s ∈ X .

We get the Hilbert systems for the extended logic by combining the systems
for total public announcements and for common knowledge. In addition, we
have an axiom for announcement composition as well as an inference rule for
common knowledge after a public announcement.
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Definition 7.3.14. The deductive systems KCPAt

n , K4
CPAt

n , K45
CPAt

n , TCPAt

n ,
S4

CPAt

n , and S5
CPAt

n are the systems KPAt

n , K4
PAt

n , K45
PAt

n , TPAt

n , S4
PAt

n , and
S5

PAt

n respectively augmented with the co-closure axiom for common knowl-
edge and the public announcement composition axiom,

(C) CGα→ EG(α ∧ CGα),

(PA6t) α ∧ [α!]β → ([α!][β!]γ ↔ [(α ∧ [α!]β)!]γ),

as well as the following induction rules,

(CI)
α → EG(α ∧ β)

α→ CGβ
, (PAIt)

α → [β!]EGγ α ∧ β → EG(β → α)

α ∧ β → [β!]CGγ
.

Observe that the rule (PAIt) is slightly different from our rule in [62], be-
cause we also have systems without the knowledge axiom (T). Axiom (PA6t)
is provable in the systems without common knowledge and the systems with
relativised common knowledge, see Lemma 7.2.17 and Lemma 7.3.9. How-
ever, this is not the case for the systems with common knowledge, because
there is no translation available that eliminates the announcement operators.

As in the previous sections, soundness can be proved due to Lemma 7.3.13.

Lemma 7.3.15. For all α ∈ LCPA
n we have

KCPAt

n ⊢ α ⇒ Kn � α, K4
CPAt

n ⊢ α ⇒ Kt
n � α,

K45
CPAt

n ⊢ α ⇒ Ktu
n � α, TCPAt

n ⊢ α ⇒ Kr
n � α,

S4
CPAt

n ⊢ α ⇒ Krt
n � α, S5

CPAt

n ⊢ α ⇒ Krtu
n � α.

Proof. By induction on the length of the proof. Let X be one of the classes
Kn, Kt

n, Ktu
n , Kr

n, Krt
n , or Krtu

n and XCPAt be the deductive system that corre-
sponds to X . Further, let K ∈ X , s ∈ K, and α, β, γ ∈ LCPA

n be given. First,
for the base case, we first show how to prove that axiom (PA6t) is valid in
X . Assume K, s � α ∧ [α!]β. Then we have

K, s � [α!][β!]γ ⇔ K
α,s, s � [β!]γ

⇔ (Kα,s)β,s, s � γ

⇔ (Kα)β , s � γ

⇔ K
α∧[α!]β, s � γ

⇔ K
α∧[α!]β,s, s � γ

⇔ K, s � [(α ∧ [α!]β)!]γ.
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Now, we show how to prove soundness of the rule (PAIt) in the induction
step. Suppose the formula α∧ β → [β!]CGγ has been derived in XCPAt by an
application of the rule (PAIt). Then, by induction hypothesis, we have

X � α→ [β!]EGγ, X � α ∧ β → EG(β → α).

Given K, s � α ∧ β, we now have to show that K, s � [β!]CGγ. By side
induction on k, it is not hard to prove

for all k ≥ 1, for all t ∈ (Rβ,s
G )k(s), K

β,s, t � γ and K, t � α ∧ β.

The base case and the induction step can be proved exactly the same way
using both implications from the induction hypothesis. Observe that we have
Rβ,s

G = Rβ
G and Kβ,s = Kβ because K, s � β. Soundness of the rule (PAN)

follows from Lemma 7.3.13.

Again, we have that the Hilbert systems XCPAt are an extension of the systems
XPAt , and therefore, we immediately get that Lemma 7.2.6, Lemma 7.2.7,
Lemma 7.2.8, Lemma 7.2.9, and Lemma 7.2.19 all still hold for the language
LCPA

n instead of LPA
n . Analogous to Lemma 7.1.36, the following result is

useful for further syntactical proofs.

Lemma 7.3.16. Let X be one of the deductive systems KCPAt

n , K4
CPAt

n ,
K45

CPAt

n , TCPAt

n , S4
CPAt

n , or S5
CPAt

n . Then for all non empty G ⊆ A and
all α, β, γ ∈ LCPA

n we have that X proves

[α!]CGβ ↔ [α!]EG(β ∧ CGβ), α ∧ CG(α → [α!]β) → [α!]CGβ.

Proof. The proof of the first assertion is identical to the proof of the first
assertion of Lemma 7.1.36. For the second assertion, we have that X proves
α∧CG(α→ [α!]β) → [α!]EGβ by axiom (C) and Lemma 7.2.19, and X proves
α ∧ CG(α → [α!]β) ∧ α → EG(α → α ∧ CG(α → [α!]β)) by axiom (C) and
normal modal logic reasoning. By an application of the rule (PAIt) we get
X ⊢ α ∧ CG(α → [α!]β) ∧ α → [α!]CGβ, and we get the desired result by
tautological reasoning.

The second assertion of Lemma 7.3.16 can be seen as one half of a reduction
axiom. The missing part of the full reduction axiom, which is given by the
formula α ∧ [α!]CGβ → CG(α → [α!]β), is in general not valid and therefore
not provable. The following example illustrates this fact.

Example 7.3.17. Let p, q ∈ P be given. Furthermore, let the Kripke struc-
ture K = ({s, t, u}, R1, . . . , Rn, V ) be defined by

R1 = {s, t, u}2, V (p) = {s, u} V (q) = {s},
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the accessibility relations R2, . . . , Rn can be arbitrary equivalence relations,
and the propositions in P \ {p, q} can have an arbitrary valuation. Then we
have K, s � p ∧ [p!]C{1}q but K, s � ¬C{1}(p → [p!]q), because u is accessible
from s for {1} and K, u � p∧¬[p!]q. Since K ∈ Krtu

n , we have that the formula
p∧ [p!]C{1}q → C{1}(p→ [p!]q) is not valid in any of the six classes of Kripke
structures.

Due to axiom (PA6t), we can show that two consecutive announcements can
always be reduced to a boolean combination of single announcements.

Lemma 7.3.18. Let X be one of the deductive systems KCPAt

n , K4
CPAt

n ,
K45

CPAt

n , TCPAt

n , S4
CPAt

n , or S5
CPAt

n . Then for all α, β, γ ∈ LCPA
n we have

that X proves

[α!][β!]γ ↔ (¬α ∧ [β!]γ) ∨ (¬[α!]β ∧ [α!]γ) ∨ (α ∧ [α!]β ∧ [(α ∧ [α!]β)!]γ).

Proof. We start our proof with the formula ¬β → ([β!]γ ↔ γ), which is an
instance of (TPA). By the axioms (PA2) and (PA3t), the rule (PAN), as well
as tautological reasoning, we get that X proves

¬[α!]β → ([α!][β!]γ ↔ [α!]γ).

Together with the following instances of (TPA) and (PA6t) respectively,

¬α→ ([α!][β!]γ ↔ [β!]γ),

α ∧ [α!]β → ([α!][β!]γ ↔ [(α ∧ [α!]β)!]γ),

we get the desired result by propositional reasoning.

Although we do not have an equivalence preserving translation from LCPA
n

to LC
n , we can prove Lemma 7.2.15 in the presence of common knowledge

operators:

Lemma 7.3.19. Let X be one of the deductive systems KCPAt

n , K4
CPAt

n ,
K45

CPAt

n , TCPAt

n , S4
CPAt

n , or S5
CPAt

n . Then for all α, β, γ ∈ LCPA
n we have

X ⊢ α ↔ β ⇒ X ⊢ [α!]γ ↔ [β!]γ.

Proof. By induction on γ. The base case and the cases γ = ¬δ, γ = δ∧ϕ, and
γ = Kiδ in the induction step have exactly the same proof as Lemma 7.2.10.
We show how to prove the two new cases in the induction step. First, let γ
be of the form CGδ. By Lemma 7.3.16, Lemma 7.2.19 and axiom (TPA), as
well as the induction hypothesis and the assumption, we have the following
sequence of provable implications,
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[α!]CGδ → [α!]EGδ → (¬α ∧ EGδ) ∨ (α ∧EG(α → [α!]δ)) →

(¬β ∧EGδ) ∨ (β ∧EG(β → [β!]δ)) → [β!]EGδ,

so we immediately get X ⊢ [α!]CGδ → [β!]EGδ by tautological reasoning.
On the other hand, we have the following chain of provable implications by
Lemma 7.3.16, Lemma 7.2.19, and the assumption,

[α!]CGδ → [α!]EGCGδ →
(

α→ EG(α→ [α!]CGδ)
)

→
(

β → EG(β → [α!]CGδ)
)

,

and we get X ⊢ [α!]CGδ ∧ β → EG(β → [α!]CGδ) by propositional reasoning.
We can now apply the rule (PAIt) and get a proof of [α!]CGδ∧β → [β!]CGδ in
X. Due to the assumption and axiom (TPA), we can also prove the formula
[α!]CGδ ∧ ¬β → [β!]CGδ in X. Therefore, by tautological reasoning, we get
X ⊢ [α!]CGδ → [β!]CGδ. The converse direction is similar and the equivalence
is proved. Second, let γ be of the form [δ!]ϕ. Then, by Lemma 7.3.18, we
get that the formula [α!][δ!]ϕ is provably equivalent to

(¬α ∧ [δ!]ϕ) ∨ (¬[α!]δ ∧ [α!]ϕ) ∨ (α ∧ [α!]δ ∧ [(α ∧ [α!]δ)!]ϕ).

By assumption, the induction hypothesis for both δ and ϕ, and tautological
reasoning, this formula is provably equivalent to

(¬β ∧ [δ!]ϕ) ∨ (¬[β!]δ ∧ [β!]ϕ) ∨ (β ∧ [β!]δ ∧ [(β ∧ [β!]δ)!]ϕ),

which is provably equivalent to [β!][δ!]ϕ by Lemma 7.3.18.

As an immediate consequence of Lemma 7.3.19, we get that the Replacement
Theorem is still true in the logic of total public announcements and common
knowledge, cf. Theorem 7.2.16.

In a next step, we are going to prepare the completeness proof for our six
Hilbert systems. The used method is the same as for the logic of common
knowledge, where one has to define the canonical structure via maximal
consistent sets, cf. [25]. Similar to the logic of common knowledge, we will
first define the closure of a formula using an extended notion of subformulas.

Definition 7.3.20. For all α ∈ LCPA
n , the set sub+(α) is defined to be the

smallest set satisfying the following conditions,

1. β ∈ sub+(α) and γ ∈ sub(β) ⇒ γ ∈ sub+(α),

2. CGβ ∈ sub+(α) ⇒ EGβ ∈ sub+(α) and EGCGβ ∈ sub+(α),
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3. [β!]¬γ ∈ sub+(α) ⇒ ¬[β!]γ ∈ sub+(α),

4. [β!](γ ∧ δ) ∈ sub+(α) ⇒ [β!]γ ∧ [β!]δ ∈ sub+(α),

5. [β!]Kiγ ∈ sub+(α) ⇒ (¬β ∧Kiγ) ∨ (β ∧Ki(β → [β!]γ)) ∈ sub+(α),

6. [β!]CGγ ∈ sub+(α) ⇒ [β!]EGγ ∈ sub+(α), EG(β → [β!]γ) ∈ sub+(α),
and EG(β → [β!]CGγ) ∈ sub+(α),

7. [β!][γ!]δ ∈ sub+(α) ⇒
(¬β ∧ [γ!]δ) ∨ (¬[β!]γ ∧ [β!]δ) ∨ (β ∧ [β!]γ ∧ [(β ∧ [β!]γ)!]δ) ∈ sub+(α),

where p ∈ P, i ∈ A, ∅ 6= G ⊆ A, and β, γ, δ ∈ LCPA
n . For all α ∈ LCPA

n , the
closure of α is now defined by

cl(α) := sub+(α) ∪ {¬β : β ∈ sub+(α)}.

Note that the closure of a formula α is not closed under complements. But
for all β ∈ cl(α), there is a formula ∼β ∈ cl(α) that is equivalent to ¬β. This
formula is defined by

∼β :=

{

¬β if β is not a negation,

γ if β = ¬γ for some γ ∈ LCPA
n .

The definition of the rank of a formula is useful for the inductive proof of
the so-called Truth Lemma. We have proved this lemma in [62] without the
notion of rank, but we needed a side induction and the proof was more com-
plicated. The Truth Lemma for truthful public announcements and common
knowledge has been proved by use of such a rank function in [22].

Definition 7.3.21. The rank of a formula is inductively defined by

rk(p) := 1,

rk(¬α) := rk(α) + 1,

rk(α ∧ β) := max{rk(α), rk(β)} + 1,

rk(Kiα) := rk(α) + 1,

rk(CGα) := rk(α) + n + 1,

rk([α!]β) := (rk(α) + 8) · rk(β).

We want to mention that the rank of disjunctions, implications, and mutual
knowledge formulas is evaluated as follows,

rk(α ∨ β) = max{rk(α), rk(β)} + 3,

rk(α→ β) = max{rk(α + 1), rk(β)} + 3,
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rk(EGα) = rk(α) + Card(G).

Due to Definition 7.3.21, we have the following properties of our rank func-
tion, which are useful for proving the Truth Lemma.

Lemma 7.3.22. For all α, β, γ ∈ LCPA
n we have

1. β ∈ sub(α) \ {α} ⇒ rk(α) > rk(β),

2. rk([α!]¬β) > rk(¬[α!]β),

3. rk([α!](β ∧ γ)) > rk([α!]β ∧ [α!]γ),

4. rk([α!]Kiβ) > rk((¬α ∧Kiβ) ∨ (α ∧Ki(α→ [α!]β))),

5. rk([α!]CGβ) > max{rk([α!]EGβ), rk(EG(α→ [α!]β))},

6. rk([α!][β!]γ) > rk((¬α ∧ [β!]γ) ∨ (¬[α!]β ∧ [α!]γ) ∨
(α ∧ [α!]β ∧ [(α ∧ [α!]β)!]γ)).

Proof. The first assertion can be proved by induction on α. We will show how
to prove the fourth and the fifth one. For the fourth assertion, we proceed
as follows. By Definition 7.3.21 as well as the definition of the connectives ∨
and →, we get

rk([α!]Kiβ) = rk(α) · rk(β) + 8 · rk(β) + 8 + rk(α)

> rk(α) · rk(β) + 8 · rk(β) + 8

= rk((¬α ∧Kiβ) ∨ (α ∧Ki(α→ [α!]β))).

For the fifth assertion, we have to prove two inequalities. First, by Defini-
tion 7.3.21, we directly get

rk([α!]CGβ) = rk(α) · rk(β) + 8 · rk(β) + 8 · n+ 8 + (n+ 1) · rk(α)

> rk(α) · rk(β) + 8 · rk(β) + 8 · n

≥ rk([α!]EGβ).

Second, by Definition 7.3.21 as well as the definition of the connective →, we
get

rk([α!]CGβ) = rk(α) · rk(β) + 8 · rk(β) + 8 · n+ 8 + (n+ 1) · rk(α)

> rk(α) · rk(β) + 8 · rk(β) + n+ 3

≥ rk(EG(α → [α!]β)),

and the proof is finished.
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In the completeness proof we will use the fact that the closure of a formula
is always finite, which we will now prove.

Lemma 7.3.23. For all α ∈ LCPA
n , the set cl(α) is finite.

Proof. We prove by induction on the rank of α that the set sub+(α) is finite.
We show the case where α is of the form [β!]CGγ in the induction step. It is
not hard to see that we have

sub+([β!]CGγ) = sub+(CGγ) ∪ sub+([β!]EGγ) ∪

sub+(EG(β → [β!]γ)) ∪ sub(EG(β → [β!]CGγ)).

Due to Lemma 7.3.22, we can apply the induction hypothesis. Moreover, the
set of subformulas is always finite, and we are done.

The canonical structure of a formula α will be very important for the com-
pleteness proof. The worlds of this structure are given by all maximal con-
sistent subsets of cl(α).

Definition 7.3.24. Let X be one of the deductive systems KCPAt

n , K4
CPAt

n ,
K45

CPAt

n , TCPAt

n , S4
CPAt

n , or S5
CPAt

n and α ∈ LCPA
n be given. Then the canon-

ical structure C := (S,R1, . . . ,Rn,V) of α with respect to X is defined by

S := {U ∩ cl(α) : U is a maximal X-consistent set},

Ri :=







































{(X, Y ) ∈ S2 : X/Ki ⊆ Y } if X = KCPAt

n ,

{(X, Y ) ∈ S2 : X/Ki ⊆ Y ∩ Y/Ki} if X = K4
CPAt

n ,

{(X, Y ) ∈ S2 : Y/Ki = X/Ki ⊆ Y } if X = K45
CPAt

n ,

{(X, Y ) ∈ S2 : X/Ki ⊆ Y } if X = TCPAt

n ,

{(X, Y ) ∈ S2 : X/Ki ⊆ Y/Ki} if X = S4
CPAt

n ,

{(X, Y ) ∈ S2 : X/Ki = Y/Ki} if X = S5
CPAt

n ,

V(p) := {X ∈ S : p ∈ X},

for all i ∈ A and all p ∈ P, where the set X/Ki is defined by

X/Ki := {β : Kiβ ∈ X}

for all X ∈ S and all i ∈ A.

Definition 7.3.24 is the same as the definition of the canonical structures
for the logic of common knowledge without public announcement operators,
cf. [25]. The following lemma states that the accessibility relations of the
canonical structures have the intended properties.
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Lemma 7.3.25. Let X be one of the deductive systems KCPAt

n , K4
CPAt

n ,
K45

CPAt

n , TCPAt

n , S4
CPAt

n , or S5
CPAt

n and X be the class of Kripke structures
that corresponds to X. Then for all α ∈ LCPA

n we have that the canonical
structure C of α with respect to X is an element of X .

Proof. We will show how to prove C ∈ Kr
n for X = TCPAt

n , the other assertions
are directly implied by the definition of the accessibility relations of the
canonical structure. Let X ∈ |C| and β ∈ X/Ki be given, that is we have
Kiβ ∈ X by definition. Now, let U be a maximal TCPAt

n -consistent superset
of X. By the fourth assertion of Lemma 5.1.8, we have Kiβ → β ∈ U , hence
we get β ∈ U by the third assertion of Lemma 5.1.8. Since we have β ∈ cl(α),
we get β ∈ X and we are done.

We are now ready to prove the Truth Lemma. It states that every world
from the canonical structure of a formula α satisfies exactly those formulas
from cl(α) that are an element of that world.

Lemma 7.3.26 (Truth). Let X be one of the deductive systems KCPAt

n ,
K4

CPAt

n , K45
CPAt

n , TCPAt

n , S4
CPAt

n , or S5
CPAt

n and α ∈ LCPA
n be given. In

addition, let C = (S,R1, . . . ,Rn,V) be the canonical structure of α with re-
spect to X. Then for all β ∈ cl(α) and all X ∈ S we have

β ∈ X ⇔ C, X � β.

Proof. We show how to prove the claim for X = KCPAt

n , and we make an
induction on the rank of β. In the base case, if β is a proposition p, then we
have

p ∈ X ⇔ X ∈ V(p) ⇔ C, X � β

by Definition 7.3.24. In the induction step, we proceed as follows. The cases
where β does not begin with an announcement operator are worked out in
full detail for the logic of common knowledge in [25]. We will show two
cases where β begins with an announcement operator. First, let β be of the
form [γ!]Kiδ. Then, by Lemma 5.1.8, Lemma 7.2.6, and Definition 7.3.20,
Lemma 7.3.22 and the induction hypothesis, as well as again Lemma 7.2.6
and soundness, we have

[γ!]Kiδ ∈ X ⇔ (¬γ ∧Kiδ) ∨ (γ ∧Ki(γ → [γ!]δ)) ∈ X

⇔ C, X � (¬γ ∧Kiδ) ∨ (γ ∧Ki(γ → [γ!]δ))

⇔ C, X � [γ!]Kiδ.
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Now, we let β be of the form [γ!]CGδ. We distinguish two cases. If γ /∈ X,
then we have C, X � ¬γ by induction hypothesis, and we get

[γ!]CGδ ∈ X ⇔ CGδ ∈ X ⇔ C, X � CGδ ⇔ C, X � [γ!]CGδ

by Lemma 5.1.8, axiom (TPA), the induction hypothesis, and soundness. On
the other hand, if γ ∈ X, then we get C, X � γ by induction hypothesis, and
we give a separate proof for each direction of the claim. For the direction
from left to right, let [γ!]CGδ ∈ X. Since we have γ ∈ X by assumption,
we get EG(γ → [γ!]δ) ∈ X and EG(γ → [γ!]CGδ) ∈ X by Lemma 5.1.8,
Lemma 7.2.19, and Lemma 7.3.16. Therefore, we can prove

for all k ≥ 1, for all Y ∈ (Rγ
G)k(X), [γ!]δ ∈ Y and [γ!]CGδ ∈ Y

by side induction on k, only using the induction hypothesis for γ. By induc-
tion hypothesis for [γ!]δ, we now immediately get

for all Y ∈ (Rγ
G)+(X), C, Y � [γ!]δ.

But this is equivalent to C, X � [γ!]CGδ by the definition of the semantics.
For the direction from right to left, let C, X � [γ!]CGδ. Remember that we
have γ ∈ X by assumption and C, X � γ by induction hypothesis. As a
preparatory step, we define the following abbreviations,

ψY :=
∧

ξ ∈ Y

ξ, χB :=
∨

Y ∈ B

ψY , χB :=
∨

Y ∈ B

ψY ,

for all Y ∈ S, the set B := {Z ∈ S : C, Z � [γ!]CGδ}, and the set B := S \B.
Our aim is to show that the following formulas are provable in X,

1. χB → [γ!]EGδ,

2. χB ∧ γ → EG(γ → χB).

Once we have proved these two formulas, we can apply the rule (PAIt), and we
get that X proves χB ∧γ → [γ!]CGδ. Since X ∈ B and γ ∈ X by assumption,
we get that X proves ψX → [γ!]CGδ. Therefore, we get [γ!]CGδ ∈ X because
the set X is X-consistent. So let us prove the above mentioned formulas.

1. Let Y ∈ B. Then we have C, Y � [γ!]CGδ, and we get C, Y � [γ!]EGδ
by Lemma 7.3.16 and soundness. By Lemma 7.3.22, we can apply
the induction hypothesis, and we get [γ!]EGδ ∈ Y , which immediately
implies X ⊢ ψY → [γ!]EGδ. Because this holds for all Y ∈ B, we get
X ⊢ χB → [γ!]EGδ.
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2. Let Y ∈ B. If γ /∈ Y , then we easily get X ⊢ ψY ∧ γ → EG(γ → χB).
So assume γ ∈ Y , which implies C, Y � γ by induction hypothesis.
Together with the fact that C, Y � [γ!]CGδ, it is now easy to show
that C, Y � EG(γ → [γ!]CGδ) by Lemma 7.2.19, Lemma 7.3.16, and
soundness. Now, let Z ∈ B. We distinguish two cases. First, if YRGZ,
then we have C, Z � γ → [γ!]CGδ by the definition of the semantics,
and we get C, Z 2 γ because we have C, Z 2 [γ!]CGδ. By induction
hypothesis, we get γ /∈ Z, which implies X ⊢ γ → ¬ψZ . Hence, we get
X ⊢ ψY → EG(γ → ¬ψZ) by normal modal logic reasoning. Second,
if not YRGZ, then for all i ∈ G we have Y/Ki * Z. That is, for
all i ∈ G there is some ξ ∈ cl(α) satisfying Kiξ ∈ Y and ξ /∈ Z.
Therefore, we get X ⊢ ξ → ¬ψZ , which implies X ⊢ Kiξ → Ki¬ψZ .
Thus, we have X ⊢ ψY → Ki¬ψZ for all i ∈ G, and we get that X

proves ψY → EG(γ → ¬ψZ) by normal modal logic reasoning. Because
this holds for all Z ∈ B, we have X ⊢ ψY → EG(γ → ¬χB). Similar
to the completeness proof for the logic of common knowledge in [25],
we can show X ⊢ χB ∨ χB, hence we get X ⊢ ψY ∧ γ → EG(γ → χB)
by normal modal logic reasoning. Because this holds for all Y ∈ B, we
finally get X ⊢ χB ∧ γ → EG(γ → χB).

We want to mention that for X 6= KCPAt

n , the only changes in the proof are in
the cases β = Kiγ, β = CGγ, and β = [γ!]CGδ. Some of the changes for the
first two cases can be found in [25]. The changes for the last case are similar
to the ones in the case β = CGγ.

Observe that Lemma 7.3.26 implies the finite model property and that the
satisfiability problem is decidable. In addition, we get that every consistent
formula is satisfiable, which implies completeness.

Theorem 7.3.27. For all α ∈ LCPA
n we have

K
CPAt

n ⊢ α ⇔ Kn � α, K4
CPAt

n ⊢ α ⇔ Kt
n � α,

K45
CPAt

n ⊢ α ⇔ Ktu
n � α, TCPAt

n ⊢ α ⇔ Kr
n � α,

S4
CPAt

n ⊢ α ⇔ Krt
n � α, S5

CPAt

n ⊢ α ⇔ Krtu
n � α.

Proof. Soundness has already been proved in Lemma 7.3.15. For the direc-
tion from right to left, let XCPAt be one of our six Hilbert systems and X
be the class of Kripke structures that corresponds to XCPAt . We prove the
contraposition, so assume XCPAt 0 α. Then we obviously have XCPAt 0 ¬¬α,
that is ¬α is XCPAt -consistent. By Lemma 5.1.8, we get that ¬α is an element
of some maximal XCPAt -consistent set. Since we have ¬α ∈ cl(α), we have
¬α ∈ X for some world X from the canonical structure C of α with respect
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to X. By Lemma 7.3.26, we get C, X � ¬α, thus ¬α is satisfiable in X by
Lemma 7.3.25. This yields X 2 α, and we are done.

We end this section by stating some results about announcement resistant
formulas. First, we will prove that we have the same conditions for a formula
to be announcement resistant as in the logic of truthful public announcements
and common knowledge, cf. Lemma 7.1.38.

Lemma 7.3.28. Let X be one of the classes Kn, K
t
n, K

tu
n , Kr

n, K
rt
n , or Krtu

n .
Then we have the same sufficient conditions for a formula α ∈ LCPA

n to be
announcement resistant in X as in Lemma 7.2.20 plus the following one,

5. α = CGβ for some non empty G ⊆ A and some β announcement
resistant in X .

Proof. Clearly, the four conditions from Lemma 7.2.20 also hold for LCPA
n

formulas. For the fifth assertion, let XCPAt be the deductive system that
corresponds to X , β ∈ LCPA

n be announcement resistant in X , and γ be
arbitrarily given. By the fourth assertion, we get that for all i ∈ G the
formula Kiβ is announcement resistant in X , and by completeness, we get
XCPAt ⊢ Kiβ → [γ!]Kiβ for all i ∈ G. Therefore, we get that XCPAt proves
EGβ → [γ!]EGβ by Lemma 7.2.6 and tautological reasoning. Together with
the formula CGβ → EGβ, which easily follows from axiom (C), we get that
XCPAt proves CGβ → [γ!]EGβ by tautological reasoning. On the other hand,
it is easy to get a proof of CGβ ∧ γ → EG(γ → CGβ) by axiom (C) and
normal modal logic reasoning. Now, we can apply the rule (PAIt) in order
to get a proof of CGβ ∧ γ → [γ!]CGβ in XCPAt . Together with the formula
CGβ ∧¬γ → [γ!]CGβ, which is directly implied by axiom (TPA), we get that
XCPAt proves CGβ → [γ!]CGβ. By soundness, we get the desired result.

Again, we will prove that every true announcement resistant formula is com-
monly known by the agents after one public announcement. The follow-
ing theorem is an equivalent reformulation of Theorem 7.2.22 with common
knowledge operators.

Theorem 7.3.29. Let X be one of the classes Kn, Kt
n, Ktu

n , Kr
n, Krt

n , or
Krtu

n and α ∈ LCPA
n be given. If α is announcement resistant in X , then for

all non empty G ⊆ A we have

X � α → [α!]CGα.

Proof. Let XCPAt be the deductive system that corresponds to X . By as-
sumption and completeness, we have that the formula α → [α!]α is provable
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in XCPAt , and we get that XCPAt proves α→ EG(α→ [α!]α) by normal modal
logic reasoning. By Lemma 7.2.19 and tautological reasoning, we now get
XCPAt ⊢ α → [α!]EGα. Together with the formula α ∧ α → EG(α → α),
which is easily provable in XCPAt , we can apply the rule (PAIt) and get that
XCPAt proves α ∧ α → [α!]CGα. But this formula is provably equivalent to
α→ [α!]CGα, and due to soundness, we are done.





Chapter 8

Expansion in bimodal systems

We end this thesis with a short chapter that illustrates how the model trans-
formation for total public announcements from Section 7.2 can be used for
public announcements in the logic of knowledge and belief. The idea is that
true announced formulas will be learnt by the agents on the level of both
knowledge and belief, whereas an announcement with a false formula will
only affect the beliefs of the agents. In Section 8.1 we will introduce a new
model transformation that operates on Kripke structures with accessibility
relations for both knowledge and belief. We will provide a Hilbert system
extending KB5In, which we have introduced in Section 5.3. That is, we
will combine the approach for the logic of group announcements for trustful
agents from Section 6.1 with the one for the logic of total public announce-
ments from Section 7.2.

We will not provide deductive systems extending KBDIn and KB5Dn for the
following reasons. First, in the Kripke structures corresponding to the sys-
tem KBDIn, the accessibility relations for belief are serial and transitive, but
not necessarily Euclidean. We do not have a model transformation which
preserves this kind of structures. Second, we think that the total public an-
nouncements from Section 7.2 and the announcements for sceptical agents
from Section 6.2 are incompatible. It could happen that the announcement
with a true formula affects the agents’ knowledge but not their belief. Al-
though this would be technically possible in a system extending KB5Dn, we
believe that such a behaviour is too unnatural.

8.1 Trustful behaviour

In this section, we will provide a system for public announcements in the
logic of knowledge and belief. Like in Section 6.1 and Section 7.2, the public
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announcements we are going to define will be total. On the level of belief, the
public announcements will have the same effect as the group announcements
for trustful agents from Section 6.1. The only difference is that the formulas
will always be announced to every agent. On the knowledge level, the public
announcements will directly influence the agents’ knowledge only if the new
information is true. In this case, it has the same effect as the total public
announcements from Section 7.2.

First, we are going to recall the language LBPA
n for the logic of knowledge,

belief, and public announcements from Definition 5.4.1, which is defined by
the following grammar (p ∈ P, i ∈ A),

α ::= p | ¬α | (α ∧ α) | Kiα | Biα | [α!]α.

For the semantics, we just add the defining clause for public announcement
formulas to Definition 5.3.2.

Definition 8.1.1. Let K = (S,R1, . . . , Rn, Q1, . . . , Qn, V ) and s ∈ S be
given. The notion of an LBPA

n formula of the form [α!]β being satisfied in the
pointed structure K, s is defined by

K, s � [α!]β :⇔ K
α,s � β,

where the Kripke structure K
α,s = (Sα,s, Rα,s

1 , . . . , Rα,s
n , Qα,s

1 , . . . , Qα,s
n , V α,s)

is simultaneously defined as follows,

K
α,s :=

{

Kα if K, s � α,

Kα,A otherwise.

The corresponding structures Kα = (Sα, Rα
1 , . . . , R

α
n, Q

α
1 , . . . , Q

α
n, V

α) and
Kα,A = (S,R1, . . . , Rn, Q

α,A
1 , . . . , Qα,A

n , V ) are defined by

Sα := S ∩ ‖α‖K,

Rα
i := Ri ∩ ‖α‖2

K
,

Qα
i := Qi ∩ ‖α‖2

K
, Qα,A

i := Qi ∩ (|K| × ‖α‖K),

V α(p) := V (p) ∩ ‖α‖K.

for all i ∈ A and all p ∈ P.

Observe that the model transformations Kα and Kα,A from Definition 8.1.1
are the canonical extensions of the transformations from Definition 5.4.2 and
Definition 6.1.1 respectively.

We want to mention that a false announcement does not directly affect the
agents’ knowledge, but it can change the knowledge about knowledge or
belief. The following example illustrates how this can happen.
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Example 8.1.2. Let K = ({s, t}, R1, . . . , Rn, Q1, . . . , Qn, V ) be defined by

R1 = {s, t}2, Q1 = {s, t}2, V : p 7→ {t},

the other accessibility relations can be arbitrarily defined. For all p ∈ P
we have K, s � ¬K1p ∧ ¬B1p and K, s � ¬K1B1p ∧ ¬K1K1B1p. Since p
is false at world s, agent 1 cannot learn p on the knowledge level. We get
K, s � [p!](¬K1p ∧B1p) and K, s � [p!](K1B1p ∧K1K1B1p).

It turns out that the model transformation from Definition 8.1.1 preserves
most of the properties of the accessibility relations that we have introduced
in Section 5.1 and Section 5.3.

Lemma 8.1.3. Let K = (S,R1, . . . , Rn, Q1, . . . , Qn, V ) be an arbitrarily de-
fined Kripke structure. Then for all s ∈ S and all α ∈ LBPA

n we have

K ∈ Krtu,tu,ecdh
2n ⇒ K

α,s ∈ Krtu,tu,ecdh
2n .

Proof. The nine properties are all independently preserved and the proof is
straightforward. We show how to prove that property c, that is transitivity
of Qi over (Ri, Qi) is preserved. Let u, v, w ∈ Sα,s, uRα,s

i v, and vQα,s
i w. Then

we have uRiv and vQiw by definition, and we get uQiw by assumption. Now,
if K, s � α, then we have u, v, w ∈ ‖α‖K and we immediately get uQα

i w. On
the other hand, if K, s � ¬α, then we have K, w � α and we directly get
uQα,A

i w. So in both cases we have uQα,s
i w, and we are done.

The following example shows that seriality of Qi and transitivity of Qi over
(Qi, Ri) are in general not preserved by the new model transformation. This
is the reason why we have defined the system KB5In without the positive
certainty axiom (G) in Definition 5.3.6.

Example 8.1.4. Let K = ({s, t}, R1, . . . Rn, Q1, . . . , Qn, V ) be defined by

Ri = {s, t}2, Qi = {s, t}2, V : p 7→ {t}

for all i ∈ A. Then we obviously have K ∈ Krtu,stu,ecdgh
2n . For all p ∈ P and

all i ∈ A we have Rp,s
i = Ri and Qp,s

i = {(s, t), (t, t)}. Hence, Qp,s
i is not

transitive over (Qp,s
i , Rp,s

i ), because we have sQp,s
i tRp,s

i s but not sQp,s
i s. On

the other hand, if we change the valuation V in K to V : p 7→ ∅, then we have
Qp,s

i = ∅ and we lose seriality of Qi.

In order to give an axiomatisation, it is useful to define an abbreviation for
announcements that only affect the belief of the agents.
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Definition 8.1.5. For all α, β ∈ LBPA
n , the formula [[α!]]β is defined by

induction on β as follows,

[[α!]]p := p,

[[α!]]¬γ := ¬[[α!]]γ,

[[α!]](γ ∧ δ) := [[α!]]γ ∧ [[α!]]δ,

[[α!]]Kiγ := Ki[[α!]]γ,

[[α!]]Biγ := Bi(α → [[α!]]γ),

[[α!]][γ!]δ := [α!][γ!]δ.

It is not hard to show that for all α, β ∈ LB
n we have [[α!]]β ∈ LB

n , which can
be proved by induction on β. Moreover, we can show that Definition 8.1.5
fulfills our requirements about the abbreviation [[α!]]β. The following lemma
will be useful for proving soundness of the system we are going to define.

Lemma 8.1.6. Let K = (S,R1, . . . , Rn, Q1, . . . , Qn, V ) and s ∈ S be given.
Then for all α ∈ LBPA

n and all ϕ ∈ LB
n we have

K, s � [[α!]]ϕ ⇔ K
α,A, s � ϕ.

Proof. By induction on ϕ. We show how to prove two cases in the induction
step. First, if ϕ is of the form Kiψ, then we have

K, s � [[α!]]Kiψ ⇔ K, s � Ki[[α!]]ψ

⇔ for all t ∈ Ri(s), K, t � [[α!]]ψ

⇔ for all t ∈ Ri(s), K
α,A, t � ψ

by induction hypothesis, which is equivalent to K
α,A, s � Kiψ. Second, if ϕ

is of the form Biψ, then we have

K, s � [[α!]]Biψ ⇔ K, s � Bi(α→ [[α!]]ψ)

⇔ for all t ∈ Qi(s), K, t � α→ [[α!]]ψ

⇔ for all t ∈ Qi(s), K, t � α implies K, t � [[α!]]ψ

⇔ for all t ∈ Qα,A
i (s), K, t � [[α!]]ψ

⇔ for all t ∈ Qα,A
i (s), K

α,A, t � ψ

by induction hypothesis, which is equivalent to Kα,A, s � Biψ.

We will now define our Hilbert system for the logic of public announcements,
knowledge, and belief, which extends KB5In.
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Definition 8.1.7. The deductive system KB5I
PAt

n is the system KB5In aug-
mented with the following public announcement axioms,

(TPA
′) ¬α→ ([α!]ϕ↔ [[α!]]ϕ) (ϕ ∈ LB

n ),

(PA1t) [α!]p↔ p,

(PA2) [α!](β → γ) → ([α!]β → [α!]γ),

(PA3t) [α!]¬β ↔ ¬[α!]β,

(PA4t) α→ ([α!]Kiβ ↔ Ki(α→ [α!]β)),

(PA7t) α→ ([α!]Biβ ↔ Bi(α → [α!]β)),

as well as the public announcement necessitation rule,

(PAN)
α

[β!]α
.

Due to Lemma 8.1.3 and Lemma 8.1.6, it is now easy to prove soundness of
the system KB5I

PAt

n .

Lemma 8.1.8. For all α ∈ LBPA
n we have

KB5I
PAt

n ⊢ α ⇒ Krtu,tu,ecdh
2n � α.

Proof. By induction on the length of the proof. For the base case, let the
Kripke structure K = (S,R1, . . . , Rn, Q1, . . . , Qn, V ) and the world s ∈ S be
given. Furthermore, let α, β ∈ LBPA

n and ϕ ∈ LB
n . First, we show that axiom

(TPA
′) is valid, so assume K, s � ¬α. Then we have

K, s � [α!]ϕ ⇔ K
α,s, s � ϕ ⇔ K

α,A, s � ϕ ⇔ K, s � [[α!]]ϕ

by Lemma 8.1.6. Second, we prove that axiom (PA7t) is valid, so assume
K, s � α. Then we have

K, s � [α!]Biβ ⇔ K
α,s, s � Biβ

⇔ K
α, s � Biβ

⇔ for all t ∈ Qα
i (s), K

α, t � β

⇔ for all t ∈ Qi(s), K, t � α implies K
α, t � β

⇔ for all t ∈ Qi(s), K, t � α implies K
α,t, t � β

⇔ for all t ∈ Qi(s), K, t � α implies K, t � [α!]β

⇔ for all t ∈ Qi(s), K, t � α→ [α!]β

⇔ K, s � Bi(α→ [α!]β).

In the induction step, soundness of the rule (PAN) can be proved using
Lemma 8.1.3.
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Like in Section 6.1 and Section 7.2, the public announcements do not add
expressive strength to the logic of knowledge and belief. But some of the
reduction axioms are restricted to LB

n formulas.

Lemma 8.1.9. For all α ∈ LBPA
n , all ϕ ∈ LB

n , and all i ∈ A we have

KB5I
PAt

n ⊢ [α!]Kiϕ↔ (¬α ∧ [[α!]]Kiϕ) ∨ (α ∧Ki(α → [α!]ϕ)),

KB5I
PAt

n ⊢ [α!]Biϕ↔ (¬α ∧ [[α!]]Biϕ) ∨ (α ∧Bi(α→ [α!]ϕ)).

Proof. Both assertions can be proved by axiom (TPA
′), tautological reason-

ing, as well as axiom (PA4t) and (PA7t) respectively.

Observe that the reduction axioms from Lemma 8.1.9 show how an an-
nounced formula affects the knowledge and belief of the agents. The only
difference occurs if the announced formula is false, because of the difference
between [[α!]]Kiβ and [[α!]]Biβ in Definition 8.1.5. The following reduction
axiom holds for all formulas.

Lemma 8.1.10. For all α, β, γ ∈ LBPA
n we have

KB5I
PAt

n ⊢ [α!](β ∧ γ) ↔ [α!]β ∧ [α!]γ.

Proof. This assertion can be proved by axiom (PA2) and the rule (PAN)
exactly the same way as in the other systems for announcement logics.

The following result is an immediate consequence of Lemma 8.1.10 and axiom
(PA3t).

Corollary 8.1.11. For all α, β, γ ∈ LBPA
n we have

KB5I
PAt

n ⊢ [α!](β ∨ γ) ↔ [α!]β ∨ [α!]γ,

KB5I
PAt

n ⊢ ([α!]β → [α!]γ) → [α!](β → γ).

As we have already mentioned, a false announcement will never change the
agents’ knowledge about propositional facts.

Lemma 8.1.12. For all α ∈ LBPA
n , all β ∈ L0, and all i ∈ A we have

KB5I
PAt

n ⊢ ¬α → ([α!]Kiβ ↔ Kiβ).

Proof. It is not hard to prove by induction on β that [[α!]]β = β. Therefore,
we directly get [[α!]]Kiβ = Ki[[α!]]β = Kiβ. This implies that the formula
¬α→ ([α!]Kiβ ↔ Kiβ) is an instance of (TPA

′), and we are done.
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Again, we have that the public announcements do not affect the truth value
of propositional facts. That is, we have change of knowledge and belief in a
static world .

Lemma 8.1.13. For all α ∈ LBPA
n and all β ∈ L0 we have

KB5I
PAt

n ⊢ [α!]β ↔ β.

Proof. By induction on β using the axioms (PA1t) and (PA3t), as well as
Lemma 8.1.10.

Due to Lemma 8.1.8 and Lemma 8.1.13, it is now easy to prove that the
public announcements in the logic of knowledge and belief satisfy all of the
properties from Definition 5.4.3.

Lemma 8.1.14. The total public announcements are fact preserving, ade-
quate, total, self-dual, and normal with respect to Krtu,tu,ecdh

2n .

Proof. Fact preservation follows from Lemma 8.1.13 and soundness. Ade-
quacy and totality are an immediate consequence of fact preservation. Self-
duality is given by axiom (PA3t) and soundness. Due to axiom (PA2), the
rule (PAN), and soundness, we immediately get normality.

In order to define a translation from LBPA
n to LB

n , we need a restricted version
of syntax independence for public announcements.

Lemma 8.1.15. For all α, β ∈ LBPA
n and all ϕ ∈ LB

n we have

KB5I
PAt

n ⊢ α ↔ β ⇒ KB5I
PAt

n ⊢ [[α!]]ϕ↔ [[β!]]ϕ,

KB5I
PAt

n ⊢ α ↔ β ⇒ KB5I
PAt

n ⊢ [α!]ϕ↔ [β!]ϕ.

Proof. Both assertions can be proved by induction on ϕ. The proof of the
first assertion is straightforward. For the second assertion, we show how to
prove the case ϕ = Biψ in the induction step. By Lemma 8.1.9, we have that
the formula [α!]Biψ is provably equivalent to

(¬α ∧ [[α!]]Biψ) ∨ (α ∧ Bi(α→ [α!]ψ)). (8.1)

By the first assertion, we have KB5I
PAt

n ⊢ [[α!]]Biψ ↔ [[β!]]Biψ, and we
have KB5I

PAt

n ⊢ [α!]ψ ↔ [β!]ψ by induction hypothesis. Therefore, the for-
mula (8.1) is provably equivalent to (¬β ∧ [[β!]]Biψ)∨ (β ∧Bi(β → [β!]ψ)) by
normal modal logic reasoning. But this is provably equivalent to [β!]Biψ by
again applying Lemma 8.1.9.
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We are going to define the translation from LBPA
n to LB

n in two stages. Due to
Lemma 8.1.9 and Lemma 8.1.10, it is immediate how to define the auxiliary
function h, which is the first stage of the translation.

Definition 8.1.16. The function h : {[α!]β : α, β ∈ LBPA
n } → LBPA

n is induc-
tively defined by

h([α!]p) := p,

h([α!]¬β) := ¬h([α!]β),

h([α!](β ∧ γ)) := h([α!]β) ∧ h([α!]γ),

h([α!]Kiβ) := (¬α ∧ [[α!]]Kiβ) ∨ (α ∧Ki(α→ h([α!]β))),

h([α!]Biβ) := (¬α ∧ [[α!]]Biβ) ∨ (α ∧Bi(α → h([α!]β))),

h([α!][β!]γ) := [α!][β!]γ.

Remember that for all α, β ∈ LB
n we have [[α!]]β ∈ LB

n . Therefore, we get
h([α!]β) ∈ LB

n , whenever α, β ∈ LB
n . This can be proved by induction on β.

We can show that the function h is equivalence preserving on a subset of its
domain.

Lemma 8.1.17. For all α ∈ LBPA
n and all ϕ ∈ LB

n we have

KB5I
PAt

n ⊢ h([α!]ϕ) ↔ [α!]ϕ.

Proof. By induction on ϕ. We show how to prove the case ϕ = Biψ in
the induction step. By induction hypothesis, we have that KB5I

PAt

n proves
h([α!]ψ) ↔ [α!]ψ. By normal modal logic reasoning, we immediately get that
the formula (¬α ∧ [[α!]]Biψ) ∨ (α ∧ Bi(α→ h([α!]ψ))) is provably equivalent
to (¬α∧ [[α!]]Biψ)∨ (α∧Bi(α→ [α!]ψ)). The former formula is defined to be
h([α!]Biψ), the latter is provably equivalent to [α!]Biψ by Lemma 8.1.9.

For the translation that eliminates the announcement operator, we follow the
ideas from Definition 6.1.12 and Definition 7.2.13.

Definition 8.1.18. The function f : LBPA
n → LBPA

n is inductively defined by

f(p) := p,

f(¬α) := ¬f(α),

f(α ∧ β) := f(α) ∧ f(β),

f(Kiα) := Kif(α),

f(Biα) := Bif(α),

f([α!]β) := h([f(α)!]f(β)).
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Again, it is not hard to see that for all α ∈ LBPA
n we have that the for-

mula f(α) is an element of LB
n . Moreover, the translation f is equivalence

preserving in the following sense.

Lemma 8.1.19. For all α ∈ LBPA
n we have

KB5I
PAt

n ⊢ f(α) ↔ α.

Proof. By induction on α. We show how to prove the case α = [β!]γ in
the induction step. The formula f([β!]γ) is defined to be the h([f(β)!]f(γ)),
which is provably equivalent to [f(β)!]f(γ) by Lemma 8.1.17 because f(γ) is
an element of LB

n . By Lemma 8.1.15 and the induction hypothesis for β, this
formula is now provably equivalent to [β!]f(γ), again because f(γ) ∈ LB

n .
Finally, this formula is provably equivalent to [β!]γ by axiom (PA2), the rule
(PAN), as well as the induction hypothesis for γ.

We can now prove syntax independence for the public announcement opera-
tor due to Lemma 8.1.19.

Lemma 8.1.20. For all α, β, γ ∈ LBPA
n we have

KB5I
PAt

n ⊢ α ↔ β ⇒ KB5I
PAt

n ⊢ [α!]γ ↔ [β!]γ.

Proof. The proof is identical to the proof of Lemma 7.2.15, but we apply
Lemma 8.1.15 and Lemma 8.1.19 instead of Lemma 7.2.10 and Lemma 7.2.14
respectively.

Lemma 8.1.20 now implies the Replacement Theorem for the logic of knowl-
edge, belief, and public announcements.

Theorem 8.1.21 (Replacement). For all α, β, γ ∈ LBPA
n we have

KB5I
PAt

n ⊢ α ↔ β ⇒ KB5I
PAt

n ⊢ γ ↔ γ[α/β].

Proof. The proof is by induction on γ and is similar to the proof of The-
orem 7.1.13. In the induction step, we can apply Lemma 8.1.20 instead of
Lemma 7.1.12.

Due to Lemma 8.1.19, we can prove the same result concerning consecutive
announcements as in Section 7.2.

Lemma 8.1.22. For all α, β, γ ∈ LBPA
n we have

KB5I
PAt

n ⊢ α ∧ [α!]β → ([α!][β!]γ ↔ [(α ∧ [α!]β)!]γ).
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Proof. Like in the proof of Lemma 7.2.17, we will first prove a restricted
version where γ is a formula in LB

n . This can be done by induction on γ,
and we show the case in the induction step where γ is of the form Biψ. By
induction hypothesis, we have that KB5I

PAt

n proves

α ∧ [α!]β → ([α!][β!]ψ ↔ [(α ∧ [α!]β)!]ψ),

and we get a proof of

Bi(α ∧ [α!]β → [α!][β!]ψ) ↔ Bi(α ∧ [α!]β → [(α ∧ [α!]β)!]ψ) (8.2)

by normal modal logic reasoning. Furthermore, by the axioms (PA2) and
(PA7t), as well as the rule (PAN), we get that KB5I

PAt

n proves

[α!]β → ([α!][β!]Biψ ↔ [α!]Bi(β → [β!]ψ)),

α→ ([α!]Bi(β → [β!]ψ) ↔ Bi(α→ [α!](β → [β!]ψ))),

and we get a proof of

α ∧ [α!]β → ([α!][β!]Biψ ↔ Bi(α ∧ [α!]β → [α!][β!]ψ)) (8.3)

by Corollary 8.1.11 and normal modal logic reasoning. On the other hand,
we have the following instance of (PA7t),

α ∧ [α!]β → ([(α ∧ [α!]β)!]Biψ ↔ Bi(α ∧ [α!]β → [(α ∧ [α!]β)!]ψ)). (8.4)

Finally, by the provability of the formulas (8.2), (8.3), and (8.4), we get that
KB5I

PAt

n proves

α ∧ [α!]β → ([α!][β!]Biψ ↔ [(α ∧ [α!]β)!]Biψ)

by tautological reasoning. We can now prove the assertion for arbitrary
γ ∈ LBPA

n by using the restricted result and Lemma 8.1.19.

As another consequence of Lemma 8.1.19, we get a short completeness proof
via the completeness of KB5In.

Theorem 8.1.23. For all α ∈ LBPA
n we have

KB5I
PAt

n ⊢ α ⇔ Krtu,tu,ecdh
2n � α.

Proof. Soundness has already been proved in Lemma 8.1.8. For the direction
from right to left, we assume Krtu,tu,ecdh

2n � α. By Lemma 8.1.19 and sound-
ness, we get Krtu,tu,ecdh

2n � f(α). Since f(α) ∈ LB
n , we get KB5In ⊢ f(α) by

completeness of KB5In. Of course, KB5In is contained in KB5I
PAt

n , and we
easily get KB5I

PAt

n ⊢ f(α). Finally, we get KB5I
PAt

n ⊢ α by again applying
Lemma 8.1.19.



Concluding remarks

It is the aim of this last chapter to briefly summarise the main issues of this
thesis as well as to point to some open questions and to some possible future
work.

Concerning Part I

We have presented the basic notions and concepts of classical propositional
logic in Chapter 1. Furthermore, we have introduced three different ways of
representing a belief state in propositional logic: model sets, belief sets, and
belief bases. Our preferred kind of belief state representation is the concept
of model sets for the following reasons. First, if the set of propositions is
infinite, then we can represent more belief states with model sets than with
belief bases. Second, if the set of propositions is finite, then a belief state is
always represented by a finite model set, whereas every belief set is an infinite
set. The third reason for our preference on model sets is the connection
between Part I and Part II of this thesis: belief change functions operating
on model sets can be translated into belief change functions in modal logic.
For instance, the expansion functions ⊕ and ⊕c are implemented in a multi-
agent setting in Definition 6.1.1 and Definition 6.2.1 respectively.

Compared to Chapter 1, where we have only given the definition of the ex-
pansion function for each type of belief state representation, we have shown
how to translate an arbitrary belief change function from one notion to an-
other in Chapter 2. We have proved that these translations are invertible,
that is going forth and back results in an equivalent belief change function.
Moreover, we have introduced three kinds of belief change functions: revision,
contraction, and update. For each kind there are eight original postulates
that specify the requirement of minimal change. For both revision and con-
traction, the postulates are stated in the context of belief sets, whereas the
update postulates are formulated by means of belief bases. Due to our pref-
erence on the different kinds of belief state representations, we have given
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translations of the three sets of postulates in the context of model sets. We
have then shown that the translated postulates are equivalent to the original
ones.

Chapter 3 deals with the translation of belief change functions of some type
into functions of another type. First, we have proposed the definition of
an expansion function ⊕c operating on consistent model sets. This defini-
tion implements the idea of sceptical agents, who reject new information if
they believe that it is false. We have also shown how to restrict revision,
contraction, and update functions to consistent model sets. This cannot be
done by the use of integrity constraints, so we have defined the correspond-
ing translation operators. It was not hard to define the respective operators
mapping functions on consistent model sets to functions on possibly incon-
sistent model sets. Again, we have shown that going forth and back results
in a function equivalent to the original one. For this purpose, it has been
useful to define a ninth postulate. Furthermore, we have modified our three
sets of postulates to fit the context of consistent model sets.

Additional achievements of Chapter 3 are the translations of revision func-
tions to contraction and update functions respectively. The translation from
revision to contraction and vice versa has already been given by the Levi
and Harper identities, cf. [51, 35]. We have adapted these translations to
the notions of both model sets and consistent model sets. From revision to
update, we have defined new translations with the following property. If a
function satisfies all revision postulates, then its translation to update sat-
isfies all update postulates. For the converse direction, we have only found
a translation such that the resulting function satisfies all but one revision
postulate. At the end of the chapter, we have postulated some common be-
haviour of revision and update functions. Due to these new requirements,
we have modified some of the update postulates in Chapter 4.

At the beginning of Chapter 4, we have defined three variants of the standard
update function that all satisfy postulate (U2M). Like the standard update
function, these three variants do not have the problem of disjunctive input.
We have defined a preorder relation on belief change functions, hence we
have got a strict partial order, which allows for talking about the comparative
strength. We have shown that our three new update functions are all stronger
than the standard update function. The cautious standard update function
is the strongest one. Since we have proved that it is not comparable to
the possible models approach, we have compared the two update functions
by statistical means in Appendix A. We believe that the cautious standard
update is a promising function that deserves a deeper analysis in the future,
primarily on the examples from [39].
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The second part of Chapter 4 is about the new concept of revision candidates,
contraction candidates, and update candidates. We have modified the three
sets of postulates in such a way that they are not too strong anymore. There
are additional modifications on some update postulates because of our new
requirements from the end of Chapter 3. It has turned out that most of the
translations from Chapter 3 are still adequate. We have only had to mod-
ify three translations, for instance the translation from update to revision.
Moreover, we have introduced the new concept of minimax change. Using
the example of revision functions, we have required minimal change except
for the case that the new information is inconsistent with our beliefs. In
this case we have suggested to use the standard update function, which can
be seen as performing maximal change. Finally, we have presented concrete
functions that comply with the requirement of minimax change: minimax re-
vision, minimax contraction, and minimax update. Of course, we have also
given the restrictions of these minimax belief change functions to consistent
model sets.

It would be interesting to know the computational complexity of the decision
problem for our new belief change functions. If ⊛ : M × L0 → M is an
arbitrary belief change function, the decision problem is to find out whether
S⊛α � β for any given S ∈ M and α, β ∈ L0. We know that this problem is
coNP-complete for the standard update function, cf. [39]. Since our functions
are all related to it, we think that the variants of the standard update function
as well as the minimax belief change functions all have similar complexity of
the decision problem.

Concerning Part II

We have started with introducing the syntax and semantics of normal modal
logic in Chapter 5, and we have presented nine different Hilbert systems that
correspond to nine different properties of knowledge/belief. In addition, we
have extended this logic with common knowledge operators as well as opera-
tors for relativised common knowledge. Since the latter is a generalisation of
the former logic, we have formulated the Hilbert systems for relativised com-
mon knowledge in such a way that the relationship to common knowledge is
obvious. Furthermore, we have introduced the bimodal logic of knowledge
and belief, where we have defined three maximal deductive systems that can
possibly be extended with announcement operators. As we have argued in
Chapter 8, we think that only one out of these three systems is suitable for
this purpose. Finally, we have given the languages of announcement logics
with either private or public announcement operators. We have introduced
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the idea of announcement resistant formulas, which is a slight modification
of the successful formulas. Due to this modification, we can use the same
concept for every announcement logic. Moreover, we have defined five prop-
erties that the new announcement logics defined in this thesis all have: fact
preservation, adequacy, totality, self-duality, and normality.

In Chapter 6, we have introduced two different semantics for the logic of
group announcements. As the name indicates, it is typically the case that
some agents do not hear an announcement, which makes them believe that
the beliefs of all agents remain unchanged. Mostly, this is a false belief, hence
group announcements lead to Hilbert systems that are inconsistent with the
knowledge axiom. We call this process belief expansion because the beliefs
in propositional facts are never retracted after an announcement. The first
approach is for trustful agents: they always accept new information, even
if they end in an inconsistent epistemic state. The second semantics is for
sceptical agents: they only accept new information if it is consistent with
their beliefs, otherwise they refuse to learn the announced formula. We have
presented three deductive systems for the expansion of trustful agents’ beliefs,
whereas we have been able to give four axiomatisations of the semantics for
sceptical agents. These Hilbert systems are all systems of normal modal logic
augmented with group announcement axioms and the group announcement
necessitation rule. It has turned out that one of the Hilbert systems for
trustful agents is identical to the one by Gerbrandy and Groeneveld [30]. We
consider it as an advantage of our semantics that we do not need Aczel’s
anti-foundation axiom, cf. [1].

The last section of Chapter 6 is about the logic of group announcements
and common belief. We have added announcement composition to the lan-
guage such that not only formulas, but also sequences of formulas can be
announced. These extra announcement operators are very convenient be-
cause the interpretation of consecutive group announcements is quite com-
plicated, especially if the groups of agents are both differing and intersecting.
We have also extended the semantics for trustful agents by the semantics of
both announcement composition and common belief. Furthermore, we have
developped purely syntactical notions that describe the semantical interpre-
tation of announcement composition. These notions have given rise to a
group announcement induction rule, which is part of our suggested Hilbert
systems. We have proved soundness, but we have not succeeded in proving
completeness for the presented deductive systems. Although there exists a
complete axiomatisation that extends one of our systems, cf. [7], we do not
know whether or not they are complete. This open problem certainly is a
task for future work.
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Chapter 7 deals with public announcement logic, where an announcement
is always told to every agent. We call this process knowledge expansion
because the deductive systems are consistent with the knowledge axiom and
known propositional facts are still known after every announcement. Unlike
group announcements, it is easy to express two consecutive announcements
by a single one. Due to this difference, it is not that hard to prove the
completeness of Hilbert systems for the logic of public announcements and
common knowledge.

In the first section of Chapter 7, we have given a short survey about the
well-known truthful public announcements. We have presented six Hilbert
systems that we have proved sound and complete. Although these axiomati-
sations are not new, we have shown that our methods from group announce-
ment logic can be applied. Furthermore, we have given new syntactical proofs
for many known results. There remain some open problems concerning the
successful formulas, mainly in systems without the knowledge axiom. These
questions would not arise if the successful formulas were defined this way: a
formula α is successful in X if and only if for all i ∈ A we have X � [α!]Kiα.
We think that the concept of knowable formulas by Balbiani et al. [4] is
another answer to the above-mentioned lacking of the successful formulas.
We have not had similar problems with the announcement resistant formu-
las. Finally, we have studied the logic of truthful public announcements
and relativised common knowledge, as well as the logic of truthful public
announcements and common knowledge. We have managed to prove the
majority of the results by extending the proofs for the language without any
common knowledge operators.

In the remaining part of Chapter 7, we have thoroughly studied our total pub-
lic announcements from [62]. In the definition of the semantics for formulas
of the form [α!]β we have distinguished two cases: if the announced formula
α is true at the actual world, we perform the same model transformation as
with truthful public announcements. In case α is false, the public announce-
ment has no effect on the interpretation of the succeeding formula β. This
little difference to the truthful public announcement semantics indeed results
in totality: all formulas of the form [α!]⊥ are not satisfiable anymore. We
have given six Hilbert systems for total public announcements, for which we
have proved soundness and completeness. It has turned out that the public
announcement axioms are closely related to the group announcement axioms
from Chapter 6. Therefore, it is not surprising that most of the results as
well as their proofs are similar to the ones for group announcements. Again,
we have investigated the logic of total public announcements and relativised
common knowledge, as well as the logic of truthful public announcements and
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common knowledge. For the latter, we have given the completeness proof in
every detail using a rank function similar to the one from [22].

Finally, we have applied the idea from total public announcements to define
a semantics for the logic of knowledge, belief, and public announcements in
Chapter 8. On the knowledge level, an announcement is interpreted like
in the logic of total public announcements: the announcement of a false
formula does not directly affect the agents’ knowledge. On the level of belief,
a public announcement has the same effect as a public announcement to
trustful agents. We have provided a Hilbert system for this logic, and we have
again given a soundness and completeness proof. Some of the proofs are a bit
more elaborate than in the previous chapters because of the differing impacts
of an announcement on the agent’s knowledge and their beliefs. Due to this
phenomenon, we have not yet succeeded in proving that a true announcement
resistant formula α is always known and believed by the agents after one
public announcement of α.

Similar to belief expansion, where we have defined two announcement se-
mantics based on the expansion functions ⊕ and ⊕c , we think that we could
define new group announcement semantics for belief revision. These defi-
nitions would be based on the minimax revision function ⊗mm and its re-
striction (⊗mm)cr to consistent model sets, cf. Example 4.2.3. Furthermore,
we could define a new public announcement semantics for knowledge update
analogous to the total public announcement semantics. This new definition
would be based on the restriction (⊙mm)cu of the minimax update function
to consistent model sets, cf. Example 4.2.16.



Appendix A

Comparing ⊙csu with ⊙pma

In this appendix we will compare the cautious standard update function ⊙csu

from Definition 4.1.1 with the possible models approach ⊙pma from Exam-
ple 2.3.5. First, we will present some statistical results that indicate that
the function ⊙pma does not perform less change than ⊙csu. Second, we will
provide a table that contains S ⊙csu (p ∨ q) and S ⊙pma (p ∨ q) for all model
sets S ⊆ Pow({p, q, r}). This table illustrates how the function ⊙csu deals
with disjunctive input and how it differs from ⊙pma.

Some empirical data

The table on the next page presents a comparison of the amount of change
performed by the two update functions ⊙csu and ⊙pma. First, we are going
to explain how the reader has to interpret the content of this table. We have
defined P = {p, q, r, s}, thus we have M = Pow(Pow({p, q, r, s})). For all
S ⊆ Pow(P) and for every formula α in the first column we have calculated
S ⊙csu α and S ⊙pma α. That is, we have performed 2 · 23 · 65536 updates
because we have 2 functions, 23 formulas, and 216 model sets. Given a line
in the table and the formula α from the first column of this line, we have
that the next five columns contain the following information.

1. Σ ⊙csu: the sum over all S ∈ M of Card(S ∆ (S ⊙csu α)),

2. Σ ⊙pma: the sum over all S ∈ M of Card(S ∆ (S ⊙pma α)),

3. ⊙csu > ⊙pma: the number of model sets S ∈ M that satisfy
Card(S ∆ (S ⊙csu α)) > Card(S ∆ (S ⊙pma α)),

4. ⊙csu < ⊙pma: the number of model sets S ∈ M that satisfy
Card(S ∆ (S ⊙csu α)) < Card(S ∆ (S ⊙pma α)),
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5. ⊙csu = ⊙pma: the number of model sets S ∈ M that satisfy
Card(S ∆ (S ⊙csu α)) = Card(S ∆ (S ⊙pma α)).

It can be shown that for all S ∈ M and all conjunctions α of literals we
have S ⊙csu α = S ⊙pma α. Therefore, we have chosen formulas that are not
conjunctions of literals. We want to mention that the set P and the number
of formulas are both too small for a thorough statistical analysis. However,
we think that this table indicates that ⊙csu does not perform more change
than the function ⊙pma.
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Table with update results

We set P = {p, q, r}, thus we have M = Pow(Pow({p, q, r})), which contains
256 different model sets. For each S ∈ M we will list the updated model sets
S ⊙csu (p ∨ q) and S ⊙pma (p ∨ q) in the following table. With this example
we have that the total amount of change performed by ⊙csu is a bit less than
the one performed by ⊙pma,

∑

S ∈ M

Card(S ∆ (S ⊙csu (p ∨ q))) = 460,

∑

S ∈ M

Card(S ∆ (S ⊙pma (p ∨ q))) = 512.

In 39 (69) cases the change performed by ⊙csu is bigger (smaller) than the
one performed by ⊙pma. That is, in 148 cases out of 256 the two functions
perform the same amount of change.
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