
Deciding Data Privacy for

ALC Knowledge Bases

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Phiniki Stouppa

von Zypern

Leiter der Arbeit:

Dr. T. Studer

Institut für Informatik und angewandte Mathematik

Deciding Data Privacy for

ALC Knowledge Bases

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Phiniki Stouppa

von Zypern

Leiter der Arbeit:

Dr. T. Studer

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät
angenommen.

Bern, 7. Mai 2009
Der Dekan:
Prof. U. Feller

Contents

Introduction 7
Results . 10
Outline . 11
Preliminaries . 12
Acknowledgements . 12

1 Data Privacy in Information Systems 13
1.1 Information Systems . 13
1.2 Data Privacy on Views . 15
1.3 Data Privacy on View Definitions 17
1.4 Other Work On Privacy . 18

2 The ALC Knowledge Base 25
2.1 The Language ALC . 25
2.2 The Knowledge Base . 27
2.3 System Services . 29
2.4 The Deductive System SALC 32
2.5 Some Properties of SALC . 34

3 Data Privacy in ALC Knowledge Bases 41
3.1 Deciding Privacy on Views . 41
3.2 Deciding Privacy on View Definitions 46
3.3 An Efficient Condition for Privacy 48

4 Some Immediate Results 57
4.1 Securing Actual Data . 57
4.2 Data Privacy in Modular Ontologies 59

Conclusions 65

Bibliography 67

5

Introduction

In information systems, data privacy refers to the confidentiality of certain
information that might be stored in the system. systems are often required
to share part of their data with third-parties. This can be realized, for
instance, through direct access to the systems or through reports that are
provided at a future time. Privacy concerns arise when, at the same time,
a system is also required to keep certain sensitive information confidential.
For this purpose, confidentiality verifications ought to be provided. Such
verifications would assure that all shared data preserve the privacy of the
confidential information and so, there is no leakage of it.

The problem of providing such verifications is called the data privacy
problem. This is an active topic that has appeared recently in the literature
and is of wide interest. In fact, there is not just one data privacy problem but
rather a family of problems each of which serves certain privacy concerns. For
instance, perfect privacy [MS04] is concerned with the problem of verifying
that the possibility of guessing the confidential information is not influenced
at all by the shared data. Other privacy related issues are discussed in a
separated section.

In this thesis, we examine the privacy problem of inferring accurately
the confidential information. That is to say, given the shared data, decide
whether one can be certain about the validity of the confidential informa-
tion. This notion of privacy, the so-called provable data privacy is defined
on the notion of certain answers, a notion that stem out from the study of
incomplete databases [vdM98] and is now widely used in the context of data
integration [CCGL02, Hal01] and data exchange [AL05, FKMP05]. Provable
data privacy has initially been introduced in [SS05] from the perspective of
relational database systems. There, it was shown that, when conjunctive
queries are considered, provable data privacy can be decided in PTime. In
this thesis, we present a general definition of this problem that applies to
arbitrary systems. In order to agree on terminology, the minimum require-
ments of a system are first described.

The data of a system is stored in the repository (e.g. a database) and

7

8 INTRODUCTION

there is an interface for accessing the repository via queries. A set of queries
is called a view definition DV . When the queries are issued (i.e. they are all
evaluated on the same repository) an answer to each of them is obtained. A
definite answer can be boolean (true or false) or a non-empty set of tuples
of constants. The queries together with their answers comprise a view V ,
which is an instance of DV , as they both contain the same queries.

We now turn to the problem of provable privacy. Shared data (i.e. the
data that are provided to a user) consists of a view and some general knowl-
edge about the repository, the so-called background knowledge. Such a knowl-
edge may include common-sense information or data of the repository that
are not expressible in a view and is always in consistence with the repository.
In general, it is assumed that the background knowledge remains stable over
time while the view is changeable. The way a query is evaluated is also as-
sumed to be shared. confidential information (or the secret) takes the form
of a query, the definite answers of which are intended to be unreachable. For
instance, if one wishes to hide all bunkers, the confidential query would be
the retrieval Bunker(x). Confidential queries can be only queries that are
supported by the system.

Now, when a user with limited access to the system is provided with a
view and a background knowledge (also referred to as the user’s knowledge),
s/he can try to imagine the whole repository. Every repository which is in
accordance with the user’s knowledge is considered possible. The problem
is then described as follows: given a confidential query, a view and a back-
ground knowledge, is there an answer that appears in the evaluation of the
query on every possible repository? If the answer is positive then we say that
data privacy is not preserved for that query with respect to the view and the
background knowledge. Otherwise, data privacy is preserved.

Example Consider a description logic-based repository containing topo-
graphical data of a region. It includes, for instance, information about the
location of buildings and fields in several districts. Let Butterflies be one
such district and the background knowledge Rbg that is provided to the user
be:

Rbg = {(butterflies, field210) : Includes, (field210, cellar1) : Has,

(∃Has.Cellar) v Building}

The also public view V contains the following information:

V = {〈Cellar, {cellar1}〉,
〈∀Includes.(¬Building ∨ Bunker), {butterflies}〉}

INTRODUCTION 9

Then, data privacy is not preserved for the secret query Bunker because
field210 : Bunker is true in every possible repository that respects Rbg and
V . If, however, the answer to the second query of V were the empty set, then
privacy would be preserved.

Once having this problem, we can define a more general problem as fol-
lows: instead of considering privacy with respect to a shared view, we can
consider privacy when only a shared view definition is given (i.e. only a set of
queries). Then, we can decide privacy for any view that might be an instance
of the given definition. That is to say, we decide privacy for some views that
might appear in the future. This is a continuation of the first problem and
was listed in the further work section of [SS05].

Example Consider the repository of the example above. Since data pri-
vacy is not preserved for Bunker wrt. Rbg and V , then data privacy is not
preserved for Bunker wrt. Rbg and DV ,either, with

DV = {Cellar,∀Includes.(¬Building ∨ Bunker)}.

On the other hand, privacy is preserved for the query Bunker wrt. Rbg and
D′V = {Cellar}, as no instance of the latter reveals any information about
which can be a Bunker.

This thesis is about deciding the two privacy problems discussed above for
ALC knowledge bases, the basic knowledge bases built on description logics.
Description logics are a family of decidable fragments of first order logic that
can be used in representing knowledge. The ALC language is the simplest
description logic language in which full negation on concepts is expressible.
A repository (also called a knowledge base) contains ALC-concept axioms
and ALC-concept and role assertions. Allowed queries are axioms (boolean),
concept assertions (boolean), and concepts (retrieval). Query evaluation is
based on the usual entailment of first order logic and might differ from sys-
tem to system. The expressivity of confidential information depends on the
way queries are evaluated. For this reason, we have chosen an evaluation
that allows for the privacy preservation of more information. The following
confidential information is expressible:

• C v D: “it is confidential that all C objects are also D objects”

• a : C: “it is confidential that a is a C object that appears in the
repository”

10 INTRODUCTION

• C: “for every object a that appears in the repository, it is confidential
that a is a C object”

Note that the confidential information does not need to be valid. When
it is valid, however, the information must be hidden. Saying, for instance,
that “a : C is confidential” means “if a is a C object in the repository, then
one cannot infer this”.

Also, queries are evaluated under the open world assumption. We there-
fore assume that the knowledge stored in the system is incomplete. For
instance, it might be unknown whether a is a C object or a ¬C object. Fur-
thermore, the set of individuals that appear in the repository is not shared.
One is aware only of the existence of those individuals that appear in the
view and the background knowledge. Because of this, the confidential query
a : > is meaningful and expresses that “it is confidential that a is an object
in the repository”. It is also possible to preserve the privacy of an axiom
> v C while sharing the retrieval query C.

Another remark is that, the view (resp. view definition) and the back-
ground knowledge may exhibit some information that is not expressible in
the repository. For instance, one might infer that a concept C is not empty.
This information is not expressible in an ALC knowledge base and therefore,
it cannot be hidden either. That an object a is not in the repository can also
be inferred. This might happen when the query a : > is shared through the
view (resp. view definition) and the evaluation of it returns “false”. Since
one is aware of how the entailment is computed and a : > is an allowed query,
it is assumed that the validity of a : > is known. Therefore, the evaluation
returns false only when a is not in the repository.

Results

In this thesis it is shown that, for the ALC knowledge bases considered
above, the data privacy problems are not harder to decide than the entailment
problem. We give complete decision procedures for both problems that are
ExpTime-computable. These procedures are of optimal complexity as it is
also shown that the problems are ExpTime-complete. A partial decision
procedure that is PTime-computable is also presented in the present work.
It is based on the syntactic representation of the information and provides
sufficient (but not necessary) conditions for preserving both data privacy
problems. This solution is the continuation of an idea listed in the further
work section of [SS05], the idea of identifying patterns for which privacy is
preserved. An application to ALC modular ontologies (i.e. ALC knowledge

INTRODUCTION 11

bases that consist of sub-knowledge bases) demonstrates the usefulness and
limitations of this solution.

Apart from some simple model-theoretic properties that have been ap-
plied, all results obtained are essentially proof-theoretical. In particular, we
have proven and applied properties of a deductive system that is suitable for
showing the inconsistency of an ALC knowledge base. These properties were
particularly useful in the proof of the partial solution. A second side-result
we obtained concerns an expected result on the complexity of the ALC-
concept unsatisfiability. Concept unsatisfiability was shown in [BCM+03] to
be ExpTime-hard for an arbitrary knowledge base. Here, we show that this
is also the case when the knowledge base is consistent.

We have already published earlier versions of the results presented here.
In [SS07], the problem of provable privacy on views was defined on an infor-
mation system that is general enough and applies to both data and knowledge
bases. The results of data privacy on views for ALC knowledge bases were
also presented there. In [SS09] the problem of privacy on view definitions
was addressed, demonstrated and decided for ALC knowledge bases. Both
the complete and the partial solution were presented there.

Outline

After this introduction, we continue in Chapter 1 with the problems of prov-
able data privacy, that are defined formally for an arbitrary system. Brief
overviews on information systems and other privacy issues are also included.
We continue in Chapter 2 with an introduction to the ALC knowledge bases.
Then, a generalized version of the deductive system is presented. The prop-
erties of the system that are going to be applied to the main results are
also provided there. The complete and partial solutions to the data privacy
problems are shown in Chapter 3. Their complexity is also analyzed there.
Chapter 4 includes a couple of direct applications of the privacy solutions,
the main one of which is the application to modular ontologies. Finally, we
conclude with an overview of the results and further work.

Although the thesis is supposed to be read in the given order, some sec-
tions can be omitted or read in a different order. Section 1.4 is independent
from the rest. For those who are familiar with ALC-knowledge bases, Sec-
tions 2.1, 2.2 and 2.3 can be omitted. All technical results are presented in
Section 2.5 and Chapters 3 and 4, the main ones of which are in Chapter 3.
Sections 2.5 and 3.1 are independent and both apply to Sections 3.2 and 3.3.
Section 4.1 requires all previous results and 4.2 requires 4.1 and 3.3.

12 INTRODUCTION

Preliminaries

This work is addressed to everybody with interest in logical and proof-
theoretical applications to computer science. It requires only some elemen-
tary knowledge in logic and complexity. All preliminaries are briefly de-
scribed and demonstrated, except for the complexity issues that are assumed
to be known.

Acknowledgements

This thesis has been mainly supported by the Swiss National Science Foun-
dation to whom I am very grateful for this. I would also like to thank Prof.
Jäger and Thomas Studer for finding ways to enhance my financial situation
and, of course, for all the academic assistance and supervision they provided
me with during my thesis. This thesis also owes a lot to the group semi-
nars as well as to the joint meetings of ABM and Münchenwiler, in where
preliminary versions of it have been presented.

I am also thankful to the (former and actual) members of the TIL group
for the many inspired discussions and environment. Finally, I would like to
thank some friends for supporting me their way: Joël for the open accom-
modation, Alessio for the music, Leonard for the exotic cooking, and Maja
and Natassa for all the assistance, encouragement, and daily support.

Chapter 1

Data Privacy in Information
Systems

1.1 Information Systems

An information system is a system designed for storing and manipulating
information. In general, it consists of a repository (or a number of repos-
itories), an interface for accessing the repository, and a number of services
that can be obtained through the interface. A repository R might be, for
instance, a data or knowledge base, together with its constraints. It can be
also seen as a set of sentences of first order logic. Through out the paper we
assume that only consistent repositories are accessible.

Example 1.1.1 We continue on the example from the introduction but now
in a system of first order sentences. Consider a repository R with the follow-
ing data:

District(butterflies) (1.1)

District(redroses) (1.2)

Includes(butterflies, field210) (1.3)

Includes(butterflies, field211) (1.4)

Includes(butterflies, field212) (1.5)

Includes(redroses, field315) (1.6)

A set of constraints shapes these data: every district includes at least one
field,

∀x (District(x)⇒ (∃y Includes(x, y) ∧ Field(y))) (1.7)

13

14 CHAPTER 1. DATA PRIVACY IN INFORMATION SYSTEMS

every building is also a field

∀x (Building(x)⇒ Field(x)) (1.8)

and districts and fields are disjoint.

∀x ((District(x) ∧ Field(x))⇒⊥) (1.9)

In every district that includes buildings there is at least one bunker.

∀x ((District(x) ∧ ∃y Includes(x, y) ∧ Building(y)) (1.10)

⇒ (∃z Includes(x, z) ∧ Bunker(z)))

A bunker has always a cellar

∀x (Bunker(x)⇒ (∃y Has(x, y) ∧ Cellar(y))) (1.11)

and every field with a cellar is a building.

∀x ((∃y Has(x, y) ∧ Cellar(y))⇒ Building(x)) (1.12)

The services obtained from R are all the queries q the user is allowed to
issue. When issued, the queries are evaluated on the current data of the
repository. We write ans(q, R) for the evaluation of the query on R. This
is a well-defined, non-random procedure. The answers to a query and how
these are actually evaluated differ from system to system. In general possible
answers are “yes”,“no” and “don’t know”, when the query is boolean. When
it is retrieval the answers are tuples of constants from the domain of R.

Example 1.1.2 Consider the repository R from Example 1.1.1. Boolean
queries are first order sentences and retrieval queries are first order formulae
with n > 0 free variables. Their evaluation ans() can be defined on the
entailment as follows: for q a sentence, ans(q, R) returns “yes” when R |= q,
“no” when R |= ¬q and “don’t know” when neither R |= q nor R |= ¬q holds.
For q a formula, ans(q, R) returns the set of n-ary tuples ~t of constants from
the domain of R for which R |= q(~t) holds.

The set of queries a user can issue is called a view definition DV . When a
view definition is issued (i.e. all queries of the view definition are issued) we
get a view V . A view is a set of tuples 〈q, r〉 with r being an evaluation of q.
A view is an instance of a view definition if it contains precisely the queries
of the view definition. Note that every view is the instance of exactly one
view definition. We write R
 V to say that the view V results from issuing
DV on the consistent R, i.e. for every 〈q, r〉 ∈ V , r = ans(q, R).

1.2. DATA PRIVACY ON VIEWS 15

Example 1.1.3 Consider the repository R from Example 1.1.1 and the view
definitions

DV1 = {Field(x), Cellar(x), ∀x (Bunker(x)⇒ Building(x))} and

DV2 = {¬Building(x), ∀y (Includes(x, y)⇒ (¬Building(y) ∨ Bunker(y)))}.

Then, R
 V1 and R
 V2 for

V1 = {〈Field(x), ∅〉,
〈Cellar(x), ∅〉,
〈∀x (Bunker(x)⇒ Building(x)), “yes”〉} and

V2 = {〈¬Building(x), {butterflies, redroses}〉,
〈∀y (Includes(x, y)⇒ (¬Building(y) ∨ Bunker(y))), ∅〉}

instances of DV1 and DV2, respectively.

1.2 Data Privacy on Views

The notion of provable data privacy has initially been introduced in [SS05]
from the perspective of relational database systems. Here, we give a general
definition of this notion that applies to arbitrary systems. The problem of
data privacy is to decide whether some sensitive information is kept secret
or not from an unauthorized user. In general, it is assumed that the user
is granted access to a specific view V and to some general (background)
knowledge of the system. We also assume that the user is aware of how ans()
is implemented. The background knowledge can be seen as a part of the
repository, called Rbg.

A secret is formalized as a query the answers of which should not be
provided to the user. That is to say, a query is secret when the answer to it
is “don’t know” or ∅, depending on whether it is boolean or retrieval. For
the sake of simplicity, an empty set is returned when the answer is “don’t
know”, too. Secret queries are restricted to those queries that are allowed to
be issued (i.e. ans(q, R) is given).

Given the user’s knowledge and a query that is intended to be unaccessible
to the user, the data privacy problem is to decide whether answers to the
secret query are provided or not to the user.

Example 1.2.1 Consider the repository R from Example 1.1.1 and the view
definitions and views DV1, DV2 and V2 from Example 1.1.3. If

Rbg = R ∪ {Has(field210, cellar1)} and V = V ′1 ∪ V ′2

16 CHAPTER 1. DATA PRIVACY IN INFORMATION SYSTEMS

with

V ′1 = {〈Field(x), {field210, field212}〉,
〈Cellar(x), {cellar1}〉,
〈∀x (Bunker(x)⇒ Building(x)), “yes”〉} and

V ′2 = V2

is the user’s knowledge, then the query Bunker(x) remains secret as we cannot
conclude from Rbg and V whether a specific constant is a Bunker. If we
instead consider

V ′2 = {〈¬Building(x), {butterflies, redroses, field212}〉,
〈∀y (Includes(x, y)⇒ (¬Building(y) ∨ Bunker(y))), {butterflies}〉}

we can conclude that the constant field210 must be a Bunker. This is be-
cause field210 has a Cellar (see Rbg and V ′1) and therefore it is a Building
(see (1.12)). Since it is also included in butterflies, then V ′2 implies that it is
a Bunker.

We say that data privacy is preserved for a query q with respect to a tuple
〈Rbg, V 〉 if there are no answers (other than the empty set) to q that follow
with certainty from the information of V and Rbg. This can be made precise
by the notion of certain answers [vdM98]. The function certain(q, 〈Rbg, V 〉)
returns the answers to q that hold in every repository that - according to the
user’s knowledge - could be the current one (a so-called possible repository).

Definition 1.2.2 A repository R is possible with respect to a tuple 〈Rbg, V 〉
if 1 Rbg ⊆ R, and R
 V . By Poss〈Rbg ,V 〉, we denote the set of all possible
repositories with respect to the tuple 〈Rbg, V 〉.

Definition 1.2.3 The certain answers to a query q with respect to a tuple
〈Rbg, V 〉 are defined by

certain(q, 〈Rbg, V 〉) :=
⋂

R∈Poss〈Rbg,V 〉

ans(q, R).

Since the view granted to the user is the one obtained from the current
repository, we can restrict ourselves to tuples 〈Rbg, V 〉 for which there is at
least one possible repository (namely, the current one). In other words, we
consider only views V with Poss〈Rbg ,V 〉 6= ∅. Tuples that satisfy this property
are called valid.

1if Rbg is not a part of R then the premise changes to R ∪ Rbg is consistent and
R ∪Rbg
 V .

1.3. DATA PRIVACY ON VIEW DEFINITIONS 17

Definition 1.2.4 Data privacy is preserved for q with respect to a valid
tuple 〈Rbg, V 〉 if

certain(q, 〈Rbg, V 〉) = ∅.

The above definition does not provide us, however, with a decision pro-
cedure for data privacy, as the computation of the function certain() might
require an infinite number of possible repositories. In [SS05] a solution to
the problem is provided for relational databases with conjunctive queries. In
this thesis a solution for ALC knowledge bases with boolean and (concept)
retrieval queries is presented.

1.3 Data Privacy on View Definitions

The problem of data privacy on views can be easily extended to cover a
family of views. One such generalization can be made by considering all the
views that are instances of a specific view definition. In this way one can
preordain data privacy on views that will be given to the user at a future
time.

Example 1.3.1 Consider Example 1.2.1. Data privacy is preserved for the
query Bunker when an instance of DV1 and the background knowledge Rbg are
provided. This is because, the Cellars and Fields that might be exhibited in
any possible instance of it, do not say anything about which is a Bunker. On
the other hand, data privacy is not preserved for Bunker when an instance of
DV1 ∪DV2 and Rbg are provided. As we have seen, there are instances of it
(take V = V ′1 ∪ V ′2 from Example 1.2.1) that might exhibit some Bunkers.

The problem of data privacy on view definitions can be formally stated
as follows:

Definition 1.3.2 A view V is relevant wrt. a tuple 〈Rbg, DV 〉 if it satisfies
the following: (i) V is an instance of DV and (ii) 〈Rbg, V 〉 is valid.

Definition 1.3.3 Data privacy is preserved for q wrt. a tuple 〈Rbg, DV 〉 if
for every relevant view V wrt. 〈Rbg, DV 〉, data privacy is preserved for q wrt.
〈Rbg, V 〉. The data privacy problem on view definitions is to decide whether
data privacy is preserved for q wrt. 〈Rbg, DV 〉.

18 CHAPTER 1. DATA PRIVACY IN INFORMATION SYSTEMS

1.4 Other Work On Privacy

An increased interest on data privacy issues has appeared in the literature
over the last decade. Names like confidentiality, information disclosure and
data security have all been used to describe the same phenomenon: the
secrecy of data from unauthorized users at a logical level.

Research on data privacy is concerned with the following problems:

1. what does data privacy mean?

2. how to detect whether data privacy is violated in a system?

3. how to enforce privacy when this is violated?

Complete and partial answers to these questions are listed below in the order
addressed. Note, however, that this presentation is not meant to be complete.

Notions of privacy

As it has already been mentioned in the introduction, data privacy might
apply to different levels, depending on the kind of privacy one wishes to
obtain. A variety of privacy guarantees has been developed for this purpose.

The problem of inferring precisely the secret information from a given
view has first been addressed in statistical databases [HM70, DD79] and
other complete systems [SDJVdR83]. As we will see later on, provable pri-
vacy in ALC knowledge bases is equivalent to this problem. Provable data
privacy has also been considered in [BB04, BW08] for the study of a variety
of enforcement methods on relational databases over boolean queries.

The notion of k-anonymity has been introduced in [SS98] and provides a
flexible privacy guarantee that allows for both certain and probable inference:
given a number k > 1, the secrecy of a query q satisfies k-anonymity if the
user cannot distinguish among at least k-many tuples that might belong to
the evaluation of q. In other words, if we take one answer (= tuple) out of
each evaluation of q on a possible repository, then we find at least k different
answers. The case when k = 2 captures precisely the notion of provable
privacy: when 2-anonymity is satisfied then there is not a single answer that
appears in every evaluation. And when it is not satisfied then there is at
least one answer that appears in every evaluation of q.

The guarantee that an answer to a query cannot be guessed with a cer-
tain amount of probability (given as a threshold) is the notion described, for
instance, in [AA01, ESAG02]. This notion is defined in terms of probability

1.4. OTHER WORK ON PRIVACY 19

measures. In [MKGV07] the notion of l-diversity is introduced that takes
into consideration the knowledge the user can obtain from external sources,
the so-called a-priori knowledge. External sources comprise what the user
might know about the secret even when no system data (e.g. background
knowledge or views) are provided. L-diversity computes the probabilities
based on the random worlds - a restricted form of possible repositories - and
it is claimed to extend k-anonymity. An instantiation of l-diversity that is
also equipped with a more expressive a-priori knowledge has been presented
in [MKMG07].

The strictest form of privacy is a relative privacy guarantee, the so-called
perfect privacy. Perfect privacy has been introduced in [MS04] and guaran-
tees that the only information provided through the system about the secret
is what the user could anyway know a-priori. This notion is also defined
in terms of probability measures. Whenever the probability of guessing the
secret is modified, while, in addition to the external sources, data from the
system are provided to the user, then perfect privacy is violated. Therefore,
this notion is concerned not only with hiding the answers to the secret query,
but also with hiding the number of answers to it or, even, the existence of
an answer.

A relaxation on perfect privacy that is more appropriate for practical
applications has been presented in [DMS05]. There, slight (limit) diversions
on the measures are considered safe. This relaxation has been obtained by
applying an alternative probabilistic model that uses asymptotic conditional
probabilities. A number of other privacy guarantees including perfect privacy
and provable privacy (i.e. certain answers) are shown to be expressible by
these means.

Two relative privacy guarantees that concern safe updates of the back-
ground knowledge are provided in [ND07]. The first one assumes that the
user has no information about the possible repositories from external sources.
When this is the case, an update is considered safe (i.e. it does not further
expose the secret) when it does not change the set of evaluations of the secret
on the possible repositories (although the set of possible repositories might
be affected by the update). Otherwise, it is required that the set of possible
repositories remains exactly as it was. The latter guarantee is claimed to
correspond to perfect privacy.

A minimal privacy that guarantees the secrecy of the complete answer
to the secret query has also been introduced in [ND07]. A secret query is
considered safe when there are at least two different evaluations of it on the
possible repositories. Therefore, the user cannot know whether a specific an-
swer is actually the complete answer to the secret query (although s/he might
infer the answer). This notion of privacy is similar to the notion of provable

20 CHAPTER 1. DATA PRIVACY IN INFORMATION SYSTEMS

privacy but weaker: consider the case when the secret is a retrieval query q
with a single variable. If every evaluation of q with respect to the possible
repositories contains the constant a but there are two different evaluations
of it, say, {a} and {a, b}, then the minimal privacy is satisfied.

In [RMSR04] the leakage of any additional information with respect to
what is already given to the user is considered to violate privacy. It is there-
fore assumed that public data describe precisely what the user is allowed to
know and no mistakes have occurred. So, the question here is whether, in
addition to the public data, the user is allowed to issue a query. Given that
the user has access only to an authorization view, any query that is evaluated
differently on the whole database than on the authorization view, under any
database instance, leaks information. Therefore, issuing such queries may
reveal some answers that could not be inferred solely from the authorization
view and so, these are not allowed as they may increase the user’s knowledge.
When the user knows that all allowed queries satisfy this property (called
conditional validity), then this notion of privacy is similar to the minimal
one: when a query is allowed then the user knows that the answer he gets is
the complete answer to the query and so the minimal privacy is not satisfied.
When a query is not allowed then s/he knows that this happens precisely
because the view might not include the complete answer to the query and so,
minimal privacy is satisfied2. This privacy guarantee can also be described as
a relative one: the privacy of any additional information is preserved when
updating the user’s knowledge with the answers to a query, if those answers
were already known to the user.

Note that other privacy guarantees might be also desirable, although they
might still lack formalization. Consider, for instance, a notion of probable
guarantee that takes into account the number of possible repositories that
entail the secret.

Detecting Privacy

The privacy guarantees presented above have mainly been applied to the
frame of relational databases, though applications to data mining and XML-
documents have also been considered. Here, we present some of the most
recent results. A survey on privacy issues that also includes older studies can
be found in [FJ02].

As we already mentioned in the introduction, provable privacy has been
studied in [SS05] on relational database systems over conjunctive queries.

2The relation between those guarantees is only a claim and is not based on results
found in the literature.

1.4. OTHER WORK ON PRIVACY 21

There, it was shown that the problem of provable privacy on views can be
decided in PTime.

The precise inference problem has been studied on relational databases,
for instance, in [BFJ00]. There, the problem is shown to be decidable on
views and view definitions for a restricted form of selection-projection queries.

In [YWJ05] the notion of k-anonymity has been studied on relational
databases on which the views are restricted to include only projections and se-
lections on a single private table. In the absence of constraints, k-anonymity
has been shown to be decidable in PTime. The addition of constraints (in the
form of functional dependencies) leads to Σp

2-hardness. Certain subcases of
the latter that can be decided in PTime are also considered. The notion of k-
anonymity has also been studied in XML-documents [KMMZ06] for the case
the secret is a relationship and the view definition is given in terms of a query.
The 2-anonymity problem is shown to be decidable on a view (i.e. when the
view definition is evaluated on a specific document), as there are finite many
documents that need to be checked. When queries are restricted syntacti-
cally (for details refer to [KMMZ05]), then the problem becomes PTime on
both views and view definitions (i.e. when only a document schema is given).

Privacy guarantees defined on probabilities have been studied in the field
of relational databases and data mining. In [MKGV07, MKMG07] algo-
rithms for constructing views that preserve l -diversity are provided. Those
algorithms apply to relational databases and allow for a-priori knowledge that
is expressible in the form of logical implications. In data mining, the privacy
problem is whether there is a leakage of confidential information when the
user can access the results of a data mining. Data mining is a technique that
applies to large data sets and reveals implicit, non-obvious information. A
probabilistic guarantee that takes into consideration the a-priori probabilistic
distribution can be found in [EGS03]. There, a partial decision to the prob-
lem is provided by showing that, when the randomization operator satisfies a
condition then privacy is preserved. Randomization is a privacy enforcement
method in data mining that does not provide complete probabilistic based
privacy. This condition is called amplification and does not require knowing
the prior distribution.

Perfect privacy has been studied on exchanged database views over con-
junctive queries with inequalities. In [MS04] it is shown that the problem
on view definitions is Πp

2-complete when the answers to the queries are in-
dependent events. Although perfect privacy assumes a given domain and
probability distribution, the results obtained are mostly independent of both.
In [DP05] it is shown that it is actually enough to compare the possible repos-
itories before and after the exhibition of system data. There, the results on
perfect privacy have been extended, covering also the case when there are

22 CHAPTER 1. DATA PRIVACY IN INFORMATION SYSTEMS

correlations between answers. As it is shown, the generalized problem on
views is Πp

2-complete and it is undecidable on view definitions. A relaxation
on the user’s knowledge about the domain allows for decidability in PSpace
on a specific view, while the problem remains undecidable when consider-
ing view definitions. In [MG06] subclasses of conjunctive queries for which
perfect privacy (as it is defined in [MS04]) can be decided in PTime are iden-
tifying. These results have been established through a connection of perfect
privacy to the problem of checking query containment.

Both relative and minimal guarantees proposed in [ND07] have been de-
fined and studied (in the same paper) on database integrations over unions
of conjunctive queries with equalities. In such a scenario a user has access
only to a public schema (i.e. view definition) and a set of constraints that
relate data from a (private) source to data that are allowed to appear in the
public view. Query answering is performed using certain answers, which is
the equivalent of reasoning under the open world assumption. Algorithms for
deciding all guarantees are provided that give upper bounds to the problems:
the minimal guarantee can be decided in NP while the relative guarantees
can be decided in Πp

2. These results assume a given (non-public) source and
correspond to the privacy problem on views. A practical integration setting
on which the same problems are all decidable in PTime is also provided there.
Once considering arbitrary sources the problems become undecidable. Arbi-
trary sources imply that the problem must be decided on every view of the
given view definition and therefore, these problems correspond to the privacy
problem on view definitions.

In the frame of fine-grained access control using authorization views, con-
ditional validity (which is similar to minimal privacy, see discussion above)
has been decided partially in [RMSR04] for relational databases. There, in-
ference rules that are sufficient for constructing validity preserving queries
are provided, as well as algorithms for deciding validity.

Note that apart from the privacy application in data integration and the
results on provable privacy, all other studies are concerned with the privacy
implications on complete databases.

Privacy Enforcement

Another research direction is that of enforcing privacy of the sensitive infor-
mation via modifications of the public data. Whenever privacy is violated,
the view is “reduced” to ensure privacy. An obvious reduction of the view is
to provide answers only to a proper subset of its queries. This idea has been
realized, for instance, in [SDJVdR83, BB04, BW08, RMSR04] by refusing
to return the answer to some queries. In [BB04, BW08] alternative modifi-

1.4. OTHER WORK ON PRIVACY 23

cations on the answers returned to the user - the so-called controlled query
evaluations - have also been discussed. Such modifications include returning
incorrect answers to some queries or returning a combination of refused and
incorrect answers. A uniform formulation for studying controlled query eval-
uation that takes into consideration a number of privacy policies, as well as
brief summaries of other approaches on the same field are provided in [BB04].
There, the evaluation policies have been studied and compared for complete
databases over boolean queries. A result obtained is that, when the user
is not aware of the reasons an answer is not provided to him, then refusal
is preferable over other methods. It has also been argued that a combina-
tion of refusal and lying overcomes some deficiencies of the other methods.
These results have recently been extended in incomplete information sys-
tems [BW08]. Studies in providing incorrect answers from the perspective of
relational databases can be found, for instance, in [WSQ94, BKS95].

Other enforcement methods include application-driven controls. For ex-
ample, in data mining a privacy enforcement is obtained by randomizing the
values in individual records [AA01, ESAG02]. This approach restricts pri-
vacy only in a limited way. An improvement to this method is described
in [EGS03] where the randomization operator is also required to satisfy the
amplification condition (mentioned earlier). Additional application-driven
controls can be found in [FJ02].

Chapter 2

The ALC Knowledge Base

This chapter consists implicitly of two parts. In the first part, theALC knowl-
edge bases [SSS91, BCM+03] are defined. Knowledge bases are repositories
suitable for modeling knowledge. One way to formalize knowledge bases is
to use description logics, a family of decidable fragments of first order logic.
In such repositories the information is formalized in logical sentences. A pre-
sentation of the ALC language (attributive language with complements), the
simplest language with full negation on concepts used in description logics is
first given. The syntax and semantics of ALC knowledge bases follows and
finally, in the system services, the allowed queries and their evaluation are
defined. Basic properties of ALC knowledge bases are also shown.

In the second part, a deductive system is presented, which serves as a
consistency prover for ALC knowledge bases. This system is more general
than the one usually applied in the sense that, now, the entities of its sequents
are coloured. Colouring is a technique that helps classifying the entities
according to their origins. Some properties of the proofs of this system
conclude the chapter.

2.1 The Language ALC
The ALC language consists of a countable set of individuals Ind, a countable
set of atomic concepts AConc, a countable set of roles Rol and the concepts
built on AConc and Rol as follows:

C,D := A | ¬A | C uD | C tD | ∀R.C | ∃R.C

where A ∈ AConc, R ∈ Rol, the operators u and t stand for conjunction
and disjunction, respectively, and ∀R and ∃R are called R-universal and R-
existential restrictions, respectively. We use a, b, c, . . . to denote individuals,

25

26 CHAPTER 2. THE ALC KNOWLEDGE BASE

A,A1, A2, . . . to denote atomic concepts, R,R1, R2, . . . to denote roles and
C,C1, C2, . . . , D,D1, D2, . . . to denote arbitrary concepts.

Note that the language includes only concepts in negation normal form.
The complement of a concept ¬(C) is inductively defined, as usual, by using
the law of double negation, de Morgan’s laws and the dualities for quantifiers:

¬(A) := ¬A ¬(¬A) := A

¬(C uD) := (¬(C) t ¬(D)) ¬(C tD) := (¬(C) u ¬(D))

¬(∀R.C) := ∃R.¬(C) ¬(∃R.C) := ∀R.¬(C)

When the scope of the negation is unambiguous, we also write ¬C instead
of ¬(C). Moreover, the constants > and ⊥ abbreviate A t ¬A and A u ¬A,
respectively, for some A ∈ AConc. Individuals, concepts and roles are inter-
preted in the following way:

Definition 2.1.1 An interpretation I consists of a non-empty domain ∆I

and a mapping ()I that assigns

• to each individual a ∈ Ind an element (a)I ∈ ∆I

• to each atomic concept A ∈ AConc a set (A)I ⊆ ∆I

• to each role R ∈ Rol a relation (R)I ⊆ ∆I ×∆I

The elements of a domain are denoted by d, d1, d2, The interpretation I
extends then on concepts as follows:

(¬A)I = ∆I \ (A)I

(C uD)I = (C)I ∩ (D)I

(C tD)I = (C)I ∪ (D)I

(∀R.C)I = {d1 ∈ ∆I | ∀d2 ((d1, d2) ∈ (R)I ⇒ d2 ∈ (C)I)}
(∃R.C)I = {d1 ∈ ∆I | ∃d2 ((d1, d2) ∈ (R)I & d2 ∈ (C)I)}

A concept C is satisfiable if there is an interpretation I for which CI 6= ∅.
The problem of deciding whether a concept is satisfiable or not is PSpace-
complete [SSS91, Sch91].

Example 2.1.2 Let I be the interpretation with domain ∆I = {d1, d2, d3}
and the following mapping ()I:

• (d)I = d1, for all individuals d.

• (A1)
I = {d1, d3} and (A2)

I = {d2, d3}, for the atomic concepts A1 and
A2. (A)I = ∅, for all other concepts A.

2.2. THE KNOWLEDGE BASE 27

• (R)I = {(d1, d2)}, for all roles R.

Then, (A1 u ¬A2)
I = (A1)

I ∩ (∆I \ (A2)
I) = {d1, d3} ∩ {d1} = {d1} and

therefore, the concept A1 u¬A2 is satisfiable. The concept ∃R.(A1 u¬A1) is
unsatisfiable since, by definition, (A1 u ¬A1)

I′ = (A1)
I′ ∩ (∆I

′ \ (A1)
I′) = ∅

for an arbitrary interpretation I ′.

2.2 The Knowledge Base

We are now ready to define the ALC knowledge bases with general concept
inclusion axioms (GCIs). An ALC-knowledge base O is the union of

1. a finite terminological set (TBox) of inclusion axioms > v C1, where
C is an ALC concept called inclusion concept, and

2. a finite assertional set (ABox) of assertions a : C (concept assertion)
or (a, b) : R (role assertion) where, R ∈ Rol is an assertional role and
C is an ALC concept called assertional concept.

The set of individuals that appear in O are denoted by Ind(O). An interpre-
tation I is a model of

• an inclusion axiom > v C (I |= > v C) if (C)I = ∆I ,

• a concept assertion a : C (I |= a : C) if (a)I ∈ (C)I ,

• a role assertion (a, b) : R (I |= (a, b) : R) if ((a)I , (b)I) ∈ (R)I .

An interpretation I is a model of an ALC-knowledge base O if I |= φ, for
every φ ∈ O. A knowledge base O that has a model is a consistent knowledge
base. Moreover, a concept is satisfiable wrt. a knowledge base O if there is
a model I of O for which (C)I 6= ∅.

Example 2.2.1 Let O be the knowledge base with the following TBox T and
ABox A:

T = { > v A1 t ∀R.A2 ,

> v ∃R.¬A1 }
A = { a : A1 ,

b : A2 ,

(b, c) : R }

Consider the interpretation I with domain ∆I = {d1, d2, d3} and the follow-
ing mapping ()I:

1In general, inclusion axioms are given in the form C1 v C2. This, however, can be
linearly transformed to its equivalent > v ¬C1 t C2 which is more appropriate for our
purpose.

28 CHAPTER 2. THE ALC KNOWLEDGE BASE

• (a)I = d1 , (b)I = d2 and (c)I = d3, for the individuals a, b and c.
(d)I = d3, for all other individuals d.

• (A1)
I = {d1, d3} and (A2)

I = {d2, d3}, for the atomic concepts A1 and
A2. (A)I = ∅, for all other concepts A.

• (R)I = {(d1, d2), (d2, d2), (d2, d3), (d3, d2)}, for the role R.

(R′)I = ∅, for all other roles R′.

Then, I is a model of O. Therefore O is a consistent knowledge base. More-
over, since the domain and the mappings of I on atomic concepts match
those of the interpretation of Example 2.1.2, we also conclude that the concept
(A1u¬A2) is satisfiable wrt. O. The concept ∀R.A1 is, however, unsatisfiable
wrt. O since every model I ′ of O models the inclusion axiom > v ∃R.¬A1

and therefore, (¬(∀R.A1))
I′ = (∃R.¬A1)

I′ = ∆I
′
.

Deciding the consistency of a knowledge base is an ExpTime-complete prob-
lem [Don03, Sch91]2. The problem of concept satisfiability wrt. a knowledge
base is also ExpTime-complete, as the consistency problem reduces to it and
vice-versa. Recall that the satisfiability problem becomes PSpace-complete
when the knowledge base is empty.

Theorem 2.2.2 Given a knowledge base O, an ALC concept C and an in-
dividual new 6∈ Ind(O) the following hold:

1. O is consistent iff > is satisfiable wrt. O.

2. C is satisfiable wrt. O iff O ∪ {new : C} is consistent.

Proof . 1. It is enough to observe that for an arbitrary interpretation I,
(>)I = (A t ¬A)I = (A)I ∪ (∆I\(A)I) = ∆I 6= ∅.

2. (⇒) Let I be the model ofO for which (C)I 6= ∅ and let d ∈ (C)I . Take
I ′ be the interpretation which is identical to I except in that (new)I

′
= d. In

the case (new)I = d then take I ′ = I. The individual new does not appear in
O and so its mapping in I ′ does not affect any of the inclusion axioms and
assertions of O. Therefore, I ′ is also a model of O and I ′ |= new : C.
(⇐) Trivial. �

The logical consequences of a knowledge base are defined in the usual way:
for ψ an inclusion axiom or an assertion, we say that O |= ψ (in words, O
entails ψ) if for every model I of O, I |= ψ.

2More details are available from the DL complexity navigator at
http://www.cs.man.ac.uk/∼ezolin/dl/.

2.3. SYSTEM SERVICES 29

Example 2.2.3 Let O be the knowledge base from Example 2.2.1. Since
> v ∃R.¬A1 ∈ O, every individual is forced to be R-related to some other
individual and therefore, O |= b : ∃R.> holds. A less obvious consequence
is O |= > v ∃R.∀R.A2. However, O 6|= c : A2. To see this, consider
the interpretation I ′ with domain ∆I

′
= {d1, d2, d3, d4} and the following

mapping ()I
′
:

• (a)I
′

= d1 , (b)I
′

= d2 and (c)I
′

= d3, for the individuals a, b and c.
(d)I

′
= d4, for all other individuals d.

• (A1)
I = {d1, d2, d3} and (A2)

I = {d2, d4}, for the atomic concepts A1

and A2. (A)I = ∅, for all other concepts A.

• (R)I = {(d1, d4), (d2, d3), (d2, d4), (d3, d4), (d4, d4)}, for the role R.
(R′)I = ∅, for all other roles R′.

Then, I ′ is a model of O but I ′ 6|= c : A2. Note that O 6|= c : ¬A2, either.
Take, for instance, the model I from Example 2.2.1.

The last remark on the above example demonstrates the (admitted) incom-
pleteness of O, i.e. we make use of the open world assumption. Another
characteristic of description logics is their monotonicity: it is easy to check
that a knowledge base entails all consequences of its sub-knowledge bases.

Finally, knowledge bases can be compared to each other with respect to
their consequences: two knowledge bases O1 and O2 are logically equivalent
when they have the same models or, equivalently, the same logical conse-
quences. A knowledge base O1 is at least as strong as a second knowledge
base O2 when every consequence of O2 is also a consequence of O1. To show
this, it suffices to consider only the exact inclusion axioms and assertions of
O2 instead of every single consequence of it.

Definition 2.2.4 Given two knowledge bases O1 and O2, O1 is at least as
strong as O2 iff for all inclusion axioms and assertions ψ of O2, O1 |= ψ.

Finally, O1 is stronger than O2 if it is at least as strong as O2 and there is a
consequence of O1 that is not entailed by O2.

2.3 System Services

In knowledge bases that are based on description logics the following system
services are generally available [BCM+03, Are00]:

• concept satisfiability : is C satisfiable wrt. the (current) knowledge base?

30 CHAPTER 2. THE ALC KNOWLEDGE BASE

• subsumption: is > v C entailed by the knowledge base?

• consistency check : is the knowledge base consistent?

• concept assertion: is a : C entailed by the knowledge base?

• individual/concept retrieval queries : given a concept C, for which in-
dividuals a, a : C is entailed by the knowledge base? And given an
individual a, for which atomic concepts A, a : A is entailed by the
knowledge base?

As a consequence of Theorem 2.2.2, both concept satisfiability and consis-
tency check can be reduced to subsumption: a concept C is satisfiable wrt.
O iff O 6|= > v ¬C. And O is consistent iff O 6|= > v ⊥.

The reasoning tasks on an ALC-knowledge base are formulated below as
queries . For the time being we do not consider concept retrieval queries.
The evaluation of the queries ranges over Ans = {tt} ∪ P(Ind) where tt is
a special constant denoting “true” (or “yes”) and P(Ind) is the powerset of
Ind.

Definition 2.3.1 An ALC query q is an inclusion axiom or a concept asser-
tion (called boolean query) or an ALC concept (called retrieval query). When
a query q is issued on a knowledge base O we obtained the evaluation of q
with respect to O (ans(q,O)) which ranges over Ans and is determined as
follows:

ans(> v C,O) := {tt} , if O |= > v C,

ans(> v C,O) := ∅ , if O 6|= > v C,

ans(a : C,O) := {tt} , if O |= a : C and a ∈ Ind(O),

ans(a : C,O) := ∅ , if O 6|= a : C or a 6∈ Ind(O),

ans(C,O) := {a ∈ Ind(O) | O |= a : C} .

Query answering is therefore obtained by a number of entailments. These
entailments are reducible to the consistency problem as follows:

Theorem 2.3.2 Let O be a knowledge base and new ∈ Ind \ Ind(O). Then,

1. O |= > v C iff O ∪ {new : ¬C} is inconsistent and

2. O |= a : C iff O ∪ {a : ¬C} is inconsistent.

2.3. SYSTEM SERVICES 31

Proof . 1. O |= > v C iff for every model I of O, (C)I = ∆I iff (¬C)I = ∅
iff (Theorem 2.2.2) O ∪ {new : ¬C} is inconsistent.

2. We show O 6|= a : C iff O ∪ {a : ¬C} is consistent.
(⇒) By the assumption there is a model I of O such that I 6|= a : C and
therefore aI ∈ (¬C)I . But then I is a model of O ∪ {a : ¬C}.
(⇐) By the assumption there exists a model I of O such that I |= a : ¬C
and so aI 6∈ (C)I . Therefore I is a model of O and I 6|= a : C. �

As a consequence of Theorem 2.3.2 we get that a query can be answered
in ExpTime. Moreover, the inconsistency problem is reducible to query an-
swering and so, query answering is an ExpTime-complete problem, too. As
described already in Chapter 1, queries and their answers are presented to
the users through views. Formally this is defined as follows:

Definition 2.3.3 An ALC view definition DV is a finite set of ALC queries.
An ALC view V is a set of tuples 〈qi, ri〉 that satisfies the following condi-
tions:

1. ri ⊆ Ind and finite if qi is a retrieval query,

2. ri ⊆ {tt} if qi is a boolean query, and

3. {〈q, r〉, 〈q, r′〉} ⊆ V implies r = r′.

A view V is an instance of a view definition DV when

DV = {q | there exists some r such that 〈q, r〉 ∈ V }

Issuing the queries in DV on a consistent knowledge base O results to the
instance V (of DV) for which, for every 〈q, r〉 ∈ V , r = ans(q,O) (in symbols
O
 V).

Example 2.3.4 Given the knowledge base O from Example 2.2.1 and the
view definition

DV = { > v ∃R.∀R.A2, > v A1 t A2, > v ∃R.(¬A1 u A2),

b : ¬A2, ∃R.>, A1 u ¬A2, A1 t A2 } ,

32 CHAPTER 2. THE ALC KNOWLEDGE BASE

the instance V of DV for which O
 V holds is:

V = { 〈 > v ∃R.∀R.A2 , {tt} 〉,
〈 > v A1 t A2 , ∅ 〉,
〈 > v ∃R.(¬A1 u A2) , ∅ 〉,
〈 b : ¬A2 , ∅ 〉,
〈 ∃R.> , {a, b, c} 〉,
〈 A1 u ¬A2 , ∅ 〉,
〈 A1 t A2 , {a, b} 〉 }

2.4 The Deductive System SALC

The consistency of an ALC-knowledge base can be decided with the help of
tableaux systems [BCM+03, BS01, DM00]. The labelled deductive system
SALC presented below corresponds to the usual labelled tableaux system for
ALC-knowledge bases. It derives sequents of the form Γ ; T̂ where Γ is a
multiset of assertions and T̂ is an optional concept. Generally speaking, Γ
corresponds to the information of an ABox while T̂ represents the information
of a TBox. If such a sequent is provable in SALC, then the corresponding
knowledge base is inconsistent.

The system SALC consists of the following left-hand sided rules where the
schematic letters x, y stand for individuals, A for an atomic concept, C and
D for arbitrary concepts, and R for a role.

(ax)
x : A, x : ¬A, Γ ; T̂

,

x : T̂ , Γ ; T̂
(GCI)

Γ ; T̂
where x appears in Γ and x : T̂ 6∈ Γ,

x : C, x : D, x : C uD, Γ ; T̂
(u)

x : C uD, Γ ; T̂
where {x : C, x : D} * Γ,

x : C, x : C tD, Γ ; T̂ x : D, x : C tD, Γ ; T̂
(t)

x : C tD, Γ ; T̂

where {x : C, x : D} ∩ Γ = ∅,

2.4. THE DEDUCTIVE SYSTEM SALC 33

y : C, (x, y) : R, x : ∃R.C, Γ ; T̂
(∃)

x : ∃R.C, Γ ; T̂

where {(x, z) : R, z : C} * Γ for any z and y is fresh,

y : C, x : ∀R.C, (x, y) : R, Γ ; T̂
(∀)

x : ∀R.C, (x, y) : R, Γ ; T̂
where y : C 6∈ Γ.

If a : C (or (a, b) : R) is an assertion of a sequent S then C (or R) is called
entity of S and a (or (a, b)) is its label . The single concept T̂ is also an entity
of S. The entities that are explicitly stated in a rule are called active entities .
The entity T̂ is active only in (GCI).

We colour every entity of a sequent by exactly one colour.3 This is an
information that is useful in view of the privacy setting and will be used
later on to distinguish public information from private one. If all entities of
a sequent are coloured the same, then the colour is omitted. Also, a coloured
Γ denotes that all entities of Γ are coloured the same.

It is convenient to colour also rule applications according to the colours
of their active concepts. Rule applications can be then single-coloured or
mixed. A rule application is well-coloured if every entity that appears in the
conclusion has the same colour as its duplication in the premise, and the
entity that is underlined in the conclusion (as shown in the rules above) has
the same colour as all underlined entities in the premise. Also, note that the
side conditions of the rules apply independently of the colour of their entities.

A coloured derivation ∆ is a tree of well-coloured rule applications. The
sequent that appears at the root of ∆ is its conclusion whereas the sequents
on its leaves are its premises . Finally, a coloured SALC proof of a sequent
S is a coloured derivation in SALC with conclusion S and all of its premises
being empty.

Definition 2.4.1 Let O be a knowledge base with a non-empty ABox A and
a TBox T = {> v Ci | 0 ≤ i ≤ n}. Then, O is SALC-provable if there is an
SALC proof of the sequent A ; T̂ where

T̂ =
l

0≤i≤n

Ci .

3For the printed version, instead of colouring, entities are prefixed with a symbol, e.g.
?C or !C.

34 CHAPTER 2. THE ALC KNOWLEDGE BASE

The following theorem restates the well-known decision procedure result
for the consistency of an ALC-ABox with respect to an ALC-TBox.

Theorem 2.4.2 (see for instance [BCM+03]) An ALC-knowledge base
with a non-empty ABox is inconsistent iff it is SALC-provable.

Example 2.4.3 Let O be the knowledge base from Example 2.2.1. Since
O |= a : ∃R.∀R.A2, the knowledge base O ∪ {a : ∀R.∃R.¬A2} is inconsistent
and SALC-provable. In its bi-coloured proof presented below,

!T̂ (= (A1 t ∀R.A2) u ∃R.¬A1)

is omitted. Assertions that are not relevant to the rule applications are also
omitted. Mixed rule applications are presented uncoloured.

(!ax)
. . . , d : !A1, d : !¬A1, . . .

(ax)
. . . , e : !A2, e : ?¬A2, (d, e) : ?R, . . .

(∀)
. . . , d : !∀R.A2, e : ?¬A2, (d, e) : ?R, . . .

(!t)
. . . , d : !A1 t ∀R.A2, d : !¬A1, e : ?¬A2, (d, e) : ?R, . . .

(!u)
. . . , d : !(A1 t ∀R.A2) u ∃R.¬A1, d : !¬A1, e : ?¬A2, (d, e) : ?R, . . .

(!GCI)
. . . , d : !¬A1, e : ?¬A2, (d, e) : ?R, . . .

(?∃)
. . . , d : !¬A1, d : ?∃R.¬A2, . . .

(∀)
. . . , (a, d) : !R, d : !¬A1, a : ?∀R.∃R.¬A2, . . .

(!∃)
. . . , a : !A1 t ∀R.A2, a : !∃R.¬A1, a : ?∀R.∃R.¬A2, . . .

(!u)
a : !(A1 t ∀R.A2) u ∃R.¬A1, a : ?∀R.∃R.¬A2, . . .

(!GCI)
a : ?∀R.∃R.¬A2, a : !A1, b : !A2, (b, c) : !R

2.5 Some Properties of SALC

We now present some properties of SALC proofs that will be used in the next
chapter.

Lemma 2.5.1 Let S be a sequent of the form Γx, Γ ; T̂ , where Γx is the
least multiset of assertions in S satisfying the following conditions:

• If x is a label in S, then x appears in Γx.

• Γx has no labels in common with Γ.

2.5. SOME PROPERTIES OF SALC 35

If S is SALC-provable then the sequent Γx ; T̂ or Γ ; T̂ is also SALC-
provable.

Proof. Let Π be a proof of S. We prove the theorem by induction on the
length l of Π.

Base case: l = 1. Then S = y : A, y : ¬A, ∆ ; T̂ . If y : A ∈ Γx then
also y : ¬A ∈ Γx and so, Γx ; T̂ is provable. Otherwise, if y : A ∈ Γ, then
also y : ¬A ∈ Γ. But then, Γ ; T̂ is provable.

Induction step. We assume that the theorem holds for proofs of length n.
By a case analysis on the rule application r of Π that concludes S, we show
that the theorem also holds for proofs of length n+ 1:

• r = GCI. Then the premise of r is S ′ = y : T̂ , Γx, Γ ; T̂ , where y
appears in S and y : T̂ /∈ S. By the definition of S, y appears in exactly
one of Γx and Γ. Adding the new assertion to the multiset y appears in,
gives a sequent that matches the preconditions of the theorem, and S ′

takes precisely that form. Therefore, the induction hypothesis applies
to S ′. Again, we distinguish between the possible locations of y:

– If y appears in Γx, then the induction hypothesis on S ′ results a
proof of y : T̂ , Γx ; T̂ or a proof of Γ ; T̂ . Applying GCI to
the first sequent results a proof of Γx ; T̂ . Therefore, in both
cases the theorem has been shown.

– If y appears in Γ, then the induction hypothesis on S ′ results a
proof of Γx ; T̂ or a proof of y : T̂ , Γ ; T̂ . Applying GCI to the
latter results a proof of Γx ; T̂ or a proof of Γ ; T̂ , as required.

• r = u. Then S = y : C1 u C2, ∆ ; T̂ and {y : C1, y : C2} * ∆.

The premise of r is S ′ = y : C1, y : C2, y : C1 u C2, ∆ ; T̂ . As
in the previous case, the induction hypothesis applies to S ′ when the
new assertions are added to the multiset that contains y : C1 uC2. We
distinguish between the possible locations of these assertions:

– If y : C1 u C2 ∈ Γx, then the induction hypothesis on S ′ yields a
proof of y : C1, y : C2, Γx ; T̂ or a proof of Γ ; T̂ . Applying
the (u)-rule to the first sequent yields a proof of Γx ; T̂ and
completes the required results.

– If y : C1 u C2 ∈ Γ, then the induction hypothesis on S ′ yields a
proof of y : C1, y : C2, Γ ; T̂ or a proof of Γx ; T̂ . Applying the
(u)-rule to the first sequent yields a proof of Γ ; T̂ , as required.

36 CHAPTER 2. THE ALC KNOWLEDGE BASE

• r = t. Then S = y : C1 t C2, ∆ ; T̂ and {y : C1, y : C2} ∩∆ = ∅.
The premises of r are the S1 = y : C1, y : C1 t C2, ∆ ; T̂ and the
S2 = y : C2, y : C1tC2, ∆ ; T̂ . As in the previous case, the induction
hypothesis applies to both S1 and S2 when, in each of the cases, the
new assertion is added to the multiset that contains y : C1 t C2. We
distinguish between the possible locations of these assertions:

– If y : C1 t C2 ∈ Γx, then the induction hypothesis on S1 yields a
proof of y : C1, Γx ; T̂ or a proof of Γ ; T̂ . And the induction
hypothesis on S2 yields a proof of y : C2, Γx ; T̂ or a proof
of Γ ; T̂ . Thus, there is either a proof of Γ ; T̂ or there are
the proofs of y : C1, Γx ; T̂ and y : C2, Γx ; T̂ . Applying
the (t)-rule to these sequents yields a proof of Γx ; T̂ which
completes the required results.

– If y : C1 t C2 ∈ Γ, then the proof is similar to the previous case.

• r = ∃. Then S = y : ∃R.C, ∆ ; T̂ and the premise of r is
S ′ = z : C, (y, z) : R, y : ∃R.C, ∆ ; T̂ , where z is fresh. Since
z does not appear in ∆, adding the new assertions to the multiset that
contains y : ∃R.C yields a sequent that satisfies the preconditions of
the theorem, and therefore the induction hypothesis applies to S ′. The
case distinction is similar to that of the previous rules.

• r = ∀. Then S = y : ∀R.C, (y, z) : R, ∆ ; T̂ and the premise of r
is S ′ = z : C, y : ∀R.C, (y, z) : R, ∆ ; T̂ . By the definition of S,
(y, z) : R is in the same multiset y : ∀R.C is in, and z does not appear
in the other multiset. This implies that S ′ satisfies the preconditions
and so the induction hypothesis applies to it. The case distinction is
similar to that of the previous rules. �

Lemma 2.5.2 Let Γ and Γ′ be two sequents that contain the same asser-
tions, but have different number of occurrences. If Γ ; T̂ is SALC-provable
then Γ′ ; T̂ is also SALC-provable.

Proof. Observing the rules of SALC, it is easy to see that the number of
occurrences of each of the assertions in a sequent does not influence their
applicability. Therefore, given a proof of Γ ; T̂ we can construct, bottom-
up, a proof of Γ′ ; T̂ by applying the same rules in the same order and
with the same active entities. �

2.5. SOME PROPERTIES OF SALC 37

Lemma 2.5.3 If Γ ; T̂ is SALC-provable then so is Γ[x/y] ; T̂ , where
Γ[x/y] is the multiset obtained by replacing all occurrences of the label x in
Γ with the label y.

Proof. By induction on the length l of Π. Base step: l = 1. Then
Π consists of an (ax)-rule application and {z : A, z : ¬A} ⊆ Γ, for some
z. Thus, either {z : A, z : ¬A} ⊆ Γ[x/y] or {y : A, y : ¬A} ⊆ Γ[x/y].
Therefore, Γ[x/y] ; T̂ is also provable.

Induction step: let Π be a proof of length l + 1 and (r) be the last rule
application that concludes Γ ; T̂ . If (r) has premise Γ′ ; T̂ (resp. premises
Γ1 ; T̂ and Γ2 ; T̂), then by induction hypothesis we have that there is
a proof of Γ′[x/y] ; T̂ (resp. Γ1[x/y] ; T̂ and Γ2[x/y] ; T̂). If r = ∃
and the fresh label in Γ′ is y, we apply the induction hypothesis twice so that
y is at first replaced with a fresh label z 6= y and only then x is replaced
with y. This will give a proof of Γ′[y/z][x/y] and the fresh label in Γ′ will
remain fresh after the replacement in Γ′[y/z][x/y]. Since all occurrences of x
are replaced by y, there are two cases:

• (r) still applies to Γ′[x/y] ; T̂ (resp. Γ1[x/y] ; T̂ and Γ2[x/y] ; T̂)
resulting Γ[x/y] ; T̂ . In the case r = ∃ and the premise is Γ′[y/z][x/y],
y does not occur in Γ and so the conclusion is Γ[y/z][x/y] = Γ[x/y], as
required.

• (r) is not applicable because one of its side conditions is not fulfilled.
This means that when r 6= ∃, the entities (resp. some of the entities)
that would be eliminated in case the rule were applicable, are already in
Γ′[x/y] (resp. Γ1[x/y] or Γ2[x/y]) and this is possible only if they are in
Γ[x/y], too. Thus, the two sequents Γ′[x/y] (resp. Γ1[x/y] or Γ2[x/y])
and Γ[x/y] contain the same assertions but have different number of
occurrences and so, as stated in 2.5.2, Γ[x/y] ; T̂ is also provable.
For the case r = ∃, the entities posed by the side condition might not
be identical to the entities that would be eliminated. These, however,
become identical once we apply the induction hypothesis on Γ′[x/y] or
Γ′[y/z][x/y] with an appropriate replacement.

�

Lemma 2.5.4 Let Γ 6= ∅ and Π be a bi-coloured SALC-proof of the sequent

!Γ, ?∆ ; !T̂

that has only single-coloured rule applications !r (resp. ?r). Then, !Γ ; !T̂
(resp. ?∆ ;) is SALC-provable.

38 CHAPTER 2. THE ALC KNOWLEDGE BASE

Proof. By induction on the length l of Π.
Base step: l = 1. Then Π consists of a (!ax)-rule application (resp. (?ax)-

rule application) and thus, {x : A, x : ¬A} ⊆ !Γ (resp. {x : A, x : ¬A} ⊆ ?∆)
which implies that !Γ ; !T̂ (resp. ?∆ ;) is provable.

Induction step: Let Π be a proof of length l + 1 and (r) be the last rule
application that concludes !Γ, ?∆ ; !T̂ :

1. r ∈ {u,∃,∀}. We show how to obtain the proofs when r = !r. The

last rule application is then of the form:
!Γ′, ?∆ ; !T̂

(!r)
!Γ, ?∆ ; !T̂

and all

active entities are in Γ and Γ′.

The proof of !Γ′, ?∆ ; !T̂ has length l and therefore, by induction
hypothesis there is a proof of !Γ′ ; !T̂ . The rule !r is still applicable
to the first sequent and this results a proof of !Γ ; !T̂ . Therefore, the
claim holds. The case when r = ?r is shown similarly.

2. r = t. Again, we show only the case where r = !t:

!Γ1, ?∆ ; !T̂ !Γ2, ?∆ ; !T̂
(!t)

!Γ, ?∆ ; !T̂

Applying the induction hypothesis to the premises results proofs of the
sequents !Γ1 ; !T̂ and !Γ2 ; !T̂ . A !t rule is still applicable on those
sequents resulting to a proof of !Γ ; !T̂ , as required. The case when
r = ?t is shown similarly.

3. r = GCI. Then the rule application is of the form:

a : !T̂ , !Γ, ?∆ ; !T̂
(!GCI)

!Γ, ?∆ ; !T̂
,

where a appears in Γ ∪ ∆. By induction hypothesis there is a proof
of the sequent a : !T̂ , !Γ ; !T̂ . We distinguish between the possible
locations of a:

• a appears in Γ. We apply !GCI to the first sequent which results
the required !Γ ; !T̂ .

• a does not appear in Γ. Since Γ 6= ∅, there is a label b occurring in
Γ. Applying Lemma 2.5.3 to a : !T̂ , !Γ ; !T̂ with the substitution
[a/b] we get a proof of b : !T̂ , !Γ ; !T̂ . An application of the
!GCI to the latter results to a proof of !Γ ; !T̂ , as required. �

2.5. SOME PROPERTIES OF SALC 39

Lemma 2.5.5 Let O be a consistent knowledge base and O∪{a : C} (resp.
O∪{(a, b) : R}) be an inconsistent one. If Π is an SALC proof of the sequent
that corresponds to the latter, then a : C (resp. (a, b) : R) is an active entity
in the conclusion of a rule application of Π.

Proof. Assume that a : C (resp. (a, b) : R) is not an active entity in
the conclusion of a rule of Π. Then, every rule applied to a sequent S of
Π applies also to the sequent obtained by removing a : C (resp. (a, b) : R)
from S. Therefore, we can construct a proof of a sequent that corresponds
to O by simply removing a : C (resp. (a, b) : R) from the sequents of Π and
therefore, O is inconsistent - a contradiction. �

Chapter 3

Data Privacy in ALC
Knowledge Bases

This chapter includes the main results of the thesis, namely, the ExpTime
decidability of the privacy problems in ALC knowledge bases, as well as the
PTime procedure that identifies only some of the data preserving cases. The
definitions of data privacy presented in Chapter 1 apply here unchanged. A
repository is now a knowledge base and, therefore, R is denoted instead by
O and Rbg by Obg. Note that, in this setting Obg is not reducible to V since
role assertions are not expressible in views.

We first show that data privacy on views reduces to a finite number of
entailments. More precisely, it reduces to the evaluation of the confidential
query on a consistent knowledge base. The ExpTime completeness of this
problem is then demonstrated. After that, we show that data privacy on
view definitions can be decided by considering only a finite number of views.
In particular, these views are all the valid instances that have at most one
fresh individual. The ExpTime completeness of this problem is then easily
shown. We conclude with the syntactic criterion on concepts and roles that
is sufficient (but not necessary) for data privacy preservation. The results on
view definitions are obtained with the help of system SALC.

3.1 Deciding Privacy on Views

When applied to ALC knowledge bases, the problem of data privacy on views
reduces to query answering on the canonical knowledge base. This knowledge
base expresses precisely the information contained in Obg and V .

41

42 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

Definition 3.1.1 Given a knowledge base Obg and a view V , the canonical
knowledge base C〈Obg ,V 〉 is defined as

C〈Obg ,V 〉 := Obg ∪
{> v C | 〈> v C, {tt}〉 ∈ V } ∪
{a : C | 〈a : C, {tt}〉 ∈ V } ∪
{a : C | there is a set In with 〈C, In〉 ∈ V and a ∈ In}.

Note that whenever 〈Obg, V 〉 is valid, C〈Obg ,V 〉 is a consistent knowledge base.

Theorem 3.1.2 Given a valid tuple 〈Obg, V 〉, data privacy is preserved for
a query q wrt. 〈Obg, V 〉 if and only if ans(q, C〈Obg ,V 〉) = ∅.

We first prove a proposition that we will use in the proof of Theorem 3.1.2.

Proposition 3.1.3 For a valid tuple 〈Obg, V 〉 the following hold:

1. every O ∈ Poss〈Obg ,V 〉 is at least as strong as C〈Obg ,V 〉.

2. for every O ∈ Poss〈Obg ,V 〉, Ind(C〈Obg ,V 〉) ⊆ Ind(O).

3. C〈Obg ,V 〉 ∈ Poss〈Obg ,V 〉.

Proof . 1. and 2. Since O
 V and Obg ⊆ C〈Obg ,V 〉, every φ ∈ C〈Obg ,V 〉 is
entailed by an arbitrary O ∈ Poss〈Obg ,V 〉 and every a ∈ Ind(C〈Obg ,V 〉) is also
in O. 3. The consistency of C〈Obg ,V 〉 follows from that 〈Obg, V 〉 is a valid
tuple. It is also easy to see that Obg ⊆ C〈Obg ,V 〉. It remains to show that
C〈Obg ,V 〉
 V . We distinguish between the possible tuples in V :

• For every 〈> v C, {tt}〉 ∈ V , C〈Obg ,V 〉 |= > v C by the definition of
C〈Obg ,V 〉.

• For every 〈> v C, ∅〉 ∈ V we have O 6|= > v C, for O ∈ Poss〈Obg ,V 〉.
Because of (1), this implies C〈Obg ,V 〉 6|= > v C.

• For every 〈a : C, {tt}〉 ∈ V , C〈Obg ,V 〉 |= a : C by the definition of C〈Obg ,V 〉.

• For every 〈a : C, ∅〉 ∈ V we have O 6|= a : C or a 6∈ Ind(O), for
O ∈ Poss〈Obg ,V 〉. By (1) and (2) this implies C〈Obg ,V 〉 6|= a : C or
a 6∈ Ind(C〈Obg ,V 〉).

3.1. DECIDING PRIVACY ON VIEWS 43

• For every 〈C, In〉 ∈ V we have C〈Obg ,V 〉 |= a : C, for every a ∈ In. For
every b 6∈ In there are two cases: b ∈ Ind(C〈Obg ,V 〉) or b 6∈ Ind(C〈Obg ,V 〉).
We show that in both cases b 6∈ ans(C, C〈Obg ,V 〉).

(i) If b ∈ Ind(C〈Obg ,V 〉) then because of (2) b ∈ Ind(O) too, for every
O ∈ Poss〈Obg ,V 〉. Since in addition b 6∈ In, we have O 6|= b : C. By (1)
this implies C〈Obg ,V 〉 6|= b : C, too. Therefore, b 6∈ ans(C, C〈Obg ,V 〉).

(ii) If b 6∈ Ind(C〈Obg ,V 〉), then by the definition of ans() we also have
b 6∈ ans(C, C〈Obg ,V 〉).

Therefore, In = ans(C, C〈Obg ,V 〉). �

Proof of theorem. We show that

certain(q, 〈Obg, V 〉) = ∅ iff ans(q, C〈Obg ,V 〉) = ∅

(⇒) We distinguish between the possible queries.

(i) If q = > v C then certain(q, 〈Obg, V 〉) = ∅ implies that there is an
O ∈ Poss〈Obg ,V 〉 with O 6|= > v C. By Proposition 3.1.3 (1) this
implies that C〈Obg ,V 〉 6|= > v C. Therefore, ans(q, C〈Obg ,V 〉) = ∅.

(ii) If q = a : C then certain(q, 〈Obg, V 〉) = ∅ implies that there is an
O ∈ Poss〈Obg ,V 〉 with O 6|= a : C or a 6∈ Ind(O). By Proposition 3.1.3 (1)
and (2) we have C〈Obg ,V 〉 6|= > v C or a 6∈ Ind(C〈Obg ,V 〉). Therefore,
ans(q, C〈Obg ,V 〉) = ∅.

(iii) If q = C then certain(q, 〈Obg, V 〉) = ∅ implies that for every a ∈ Ind
there is an O ∈ Poss〈Obg ,V 〉 with O 6|= a : C. By Proposition 3.1.3 (1),
C〈Obg ,V 〉 6|= a : C, for every a ∈ Ind. Thus, ans(q, C〈Obg ,V 〉) = ∅.

(⇐) Since by Proposition 3.1.3 (3) C〈Obg ,V 〉 is a possible knowledge base,
ans(q, C〈Obg ,V 〉) = ∅ implies that certain(q, 〈Obg, V 〉) = ∅. �

The complexity of data privacy on views

According to Definition 2.3.1, ans(q, C〈Obg ,V 〉) can be computed by a number
of entailments which is polynomial to the size of C〈Obg ,V 〉. As it has already
been stated, the entailment problem is reducible to the consistency problem
which is solvable in ExpTime. Moreover, C〈Obg ,V 〉 grows polynomially wrt.
Obg and V which implies that deciding ans(q, C〈Obg ,V 〉) = ∅ is not harder than
deciding the entailment problem on a consistent knowledge base. Therefore,

44 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

Theorem 3.1.2 provides an ExpTime decision procedure to the problem of
data privacy on views.

The problem is also ExpTime-hard as the problem of concept unsatisfi-
ability wrt. a consistent TBox (see below) is polynomially reducible to the
problem of data privacy.

Proposition 3.1.4 A concept C is unsatisfiable wrt. a consistent TBox T
iff data privacy for > v ¬C wrt. T and the empty view is not preserved.

Proof. A concept C is unsatisfiable wrt. T iff for every model I of T ,
(¬C)I = ∆I iff T |= > v ¬C iff ans(> v ¬C, C〈T ,∅〉) = {tt} iff data
privacy for > v ¬C wrt. T and the empty view is not preserved. �

Concept unsatisfiability wrt. an arbitrary TBox is proved to be ExpTime-
hard for instance in [BCM+03] and [Hof05]. In [BCM+03] this has been
shown by reducing a known ExpTime-hard problem from the area of graph
theory to the unsatisfiability problem. The problem used can be stated as
follows: given an AND-OR graph in the form of a circuit and some source
nodes, decide whether a target node (of the graph) is reachable (from some
sources). The reduction in question is obtained via an appropriate TBox
construction. However, the TBox is not explicitly restricted to be consistent.

In [Hof05] the subsumption problem wrt. a TBox in a logic weaker than
ALC is shown to be ExpTime-hard. This has been obtained via a reduction
to a game theoretical problem. The TBox constructed there is consistent
and a model of it is explicitly given.

In the following we show that a slight variation of the TBox presented
in [BCM+03] is also consistent. We begin with a presentation of the original
TBox which represents the circuit. If the graph has n nodes and each of them
has at most d predecessors, then the circuit has log n inputs and 1 + d log n
outputs. The inputs of the circuit are denoted by the concepts A1, . . . , Alog n

and are the binary encoding of a node. Therefore, each of the Ai s stands
for those nodes that have their i-th digit 1 and so, every node is represented
uniquely with a conjunction over positive and negative Ai s. For example, the
node n2 corresponds to the concept ¬A1u. . .u¬A(log n)−2uA(log n)−1u¬Alog n.
We denote this by Conc(n2). The outputs of the circuit are denoted by the
concepts B1

1 , . . . , B
1
log n, . . . , B

d
1 , . . . , B

d
log n and are the binary encodings of the

(at most) d predecessors of the input node. If a node has d′ < d predecessors,
then the first d′ sequences of Bi

j s represent its predecessors and the remaining
are set to zero.

There is one additional output denoted by the concept And which returns
1 when the input node is an AND node and 0 when it is an OR node. Note

3.1. DECIDING PRIVACY ON VIEWS 45

that, since only nodes with a predecessor belong to a type, the value of this
output is omitted when it is not relevant. We additionally use concepts
W1, . . . ,Wk to code the k internal gates of the circuit and the concepts AND
and OR for the type of the input node.

Let Xj and Xk be two schematic concepts that stand for input concepts
or gate concepts. The TBox TC is then constructed as follows1:

Conc(ni) v ⊥ for every source node ni ,

Wi = Xj uXk for every ∧ - gate i with inputs Xj and Xk ,

Wi = Xj tXk for every ∨ - gate i with inputs Xj and Xk ,

Wi = ¬Xj for every ¬ - gate i with input Xj ,

Bi
j = Xk for every output Bi

j ,

AND = And u (B1
1 t . . . tB1

log n) ,

OR = ¬And u (B1
1 t . . . tB1

log n) ,

AND v ∃R1.> t . . . t ∃Rd.> ,

OR v ∃R1.> u . . . u ∃Rd.> and,

Bi
j v ∀Ri.Aj and ¬Bi

j v ∀Ri.¬Aj for every output Bi
j .

The TBox TC describes correctly the behaviour of the unreachable nodes
of the graph. Instead of showing the consistency of TC , we show the consis-
tency of a slight variation of it in which the zero node is explicitly excluded
from the AND and OR concepts. The inclusion axioms for AND and OR
are modified as follows:

AND = And u (B1
1 t . . . tB1

log n) u (A1 t . . . t Alog n)

OR = ¬And u (B1
1 t . . . tB1

log n) u (A1 t . . . t Alog n)

This modification does not affect the proof and the resulted TBox, say T ′C ,
represents correctly the circuit. A simple model I of T ′C can be then con-
structed as follows:

• ∆I = {n0},

• all atomic concepts and roles are mapped to the empty set, except for

• the concepts W1, . . . ,Wk and all output concepts Bi
j which are mapped

either to the empty set or to ∆I - according to the output (0 or 1) of
their corresponding gates and outputs, when all inputs are set to 0.

1As part of the TBox in [BCM+03] is only informally described, some of the axioms
might not be the original ones. This is, however, the TBox that best fits to the description.

46 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

It is easy to check that this interpretation is indeed a model of T ′C .

Corollary 3.1.5 The problem of ALC data privacy for a query wrt. a view
and a knowledge base is ExpTime-complete.

3.2 Deciding Privacy on View Definitions

The problem of data privacy on view definitions is decidable when applied to
ALC knowledge bases, since it is enough to consider only the views entailed
by a finite set of knowledge bases P.

Definition 3.2.1 Given a tuple 〈Obg, DV 〉, Indg is the set of given individuals
(i.e. Indg = Ind(Obg ∪ {a : C ∈ DV })). Let an individual new /∈ Indg. Then,
a knowledge base P ∈ P if

1. P ⊇ Obg and consistent,

2. if > v C ∈ P then > v C ∈ (Obg ∪DV), and

3. if a : C ∈ P then a : C ∈ Obg ∪DV or (a ∈ Indg ∪{new} and C ∈ DV).

In Theorem 3.2.3 we show that data privacy is preserved on a view defi-
nition if it is preserved on every view entailed by some P ∈ P. We first prove
the following lemma:

Lemma 3.2.2 Let P be the set of knowledge bases constructed wrt. a tuple
〈Obg, DV 〉 and an individual new. If P ∈ P and V is the instance of DV

entailed by P , then C〈Obg ,V 〉 and P are logically equivalent.

Proof . First, we show that every element of C〈Obg ,V 〉 is entailed by P and
therefore P is at least as strong as C〈Obg ,V 〉. Since P ⊇ Obg, the elements of
C〈Obg ,V 〉 that come from Obg are entailed by P . The rest of the elements come
from V which, by definition, is a view entailed by P and so each of these
elements is also entailed by P .

Second, we show that C〈Obg ,V 〉 ⊇ P and therefore C〈Obg ,V 〉 is at least as
strong as P . Since Obg ⊆ C〈Obg ,V 〉, the elements of P that come from Obg

are also in C〈Obg ,V 〉. The rest of the elements come from DV . Now, since V
is the instance of DV entailed by P , we have that for every inclusion axiom
> v C ∈ P \ Obg there is a tuple 〈> v C, {tt}〉 ∈ V . Similarly, for every
assertion a : C ∈ P \ Obg there is either a tuple 〈C, In〉 ∈ V with a ∈ In, or a
tuple 〈a : C, {tt}〉 ∈ V . Therefore, these elements are also in C〈Obg ,V 〉. �

3.2. DECIDING PRIVACY ON VIEW DEFINITIONS 47

Theorem 3.2.3 Data privacy is preserved for q wrt. a tuple 〈Obg, DV 〉 if
and only if, for every instance V of DV that is entailed by some P ∈ P, data
privacy is preserved for q wrt. 〈Obg, V 〉.

Proof . (⇒) Trivial, as every V entailed by P is a relevant view.
(⇐) We prove the contrapositive. Assume that V is a view based on 〈Obg, DV 〉
on which q is not preserved. As a consequence of Theorem 3.1.2, C〈Obg ,V 〉 |= q,
if q is boolean or C〈Obg ,V 〉 |= d : q, for some d ∈ Ind(C〈Obg ,V 〉), if q is retrieval.
Let T be the TBox of C〈Obg ,V 〉 and A its ABox. We show that q (resp. d : q) is
entailed by a subset of C〈Obg ,V 〉 that contains at most one additional individ-
ual (i.e. an individual that appears neither in Obg nor in DV). Assume that
there are more than one such individuals appearing in V . We distinguish
between the possible forms of q:

• q = > v C. We show that T |= > v C. Since C〈Obg ,V 〉 |= > v C,
C〈Obg ,V 〉 ∪ {a : ¬C} is inconsistent, for a /∈ Ind(C〈Obg ,V 〉). Therefore,

there is a proof of a : ¬C, A ; T̂ in SALC where, T̂ is the concept that
represents all inclusion axioms of C〈Obg ,V 〉. Since a does not appear

in A, by Lemma 2.5.1 we get a proof of a : ¬C ; T̂ or a proof of
A ; T̂ . While the latter is not possible because it implies that C〈Obg ,V 〉
is inconsistent, the first proof implies that T ∪ {a : ¬C} is inconsistent
and so, by Theorem 2.3.2, T |= > v C.

• q = C. Adding d : ¬C to C〈Obg ,V 〉 would cause inconsistency and so,
there is a proof Π of C〈Obg ,V 〉 ∪ {d : ¬C} in SALC. Let Γx be the set of
assertions of one of the additional individuals x 6= d. Note that x does
not appear in any role assertion in C〈Obg ,V 〉. Therefore, Γx contains only
concept assertions and Lemma 2.5.1 applies to Π with such a Γx. This
gives either a proof of Γx ; T̂ or a proof of Γ, d : ¬C ; T̂ , where
T̂ is the concept that represents T and Γ = A\Γx. While the first
proof is not possible since it would imply that C〈Obg ,V 〉 is inconsistent,
the second proof implies that there is a subset of C〈Obg ,V 〉 with one
additional individual less, that also entails d : q (by Theorem 2.3.2).
Applying the lemma iteratively to the above proof results a knowledge
base that contains at most one additional individual.

• q = a : C. This case is similar to the case q = C.

Now, let C ′ ⊆ C〈Obg ,V 〉 be the obtained knowledge base that has at most one
additional individual x. Renaming every occurrence of x in C ′ by new results
in a knowledge base, say Cr, which is equivalent to C ′ modulo individual
renaming. Therefore Cr also entails some private data, and so does Cr∪Obg,

48 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

too. The latter is a knowledge base in P. Let V r be the instance of DV that
is entailed by Cr∪Obg. Then, Lemma 3.2.2 results that C〈Obg ,V r〉 is equivalent
to Cr ∪ Obg and so, data privacy for q is not preserved on V r either. �

The complexity of data privacy on view definitions

A naive ExpTime decision procedure for this problem can be constructed
directly from the above theorem: first compute P and all views entailed by
its elements, and then decide data privacy on each of these views. Let P+

be the knowledge base constructed from Obg and DV as follows:

P+ = {> v C ∈ DV } ∪
{a : C ∈ DV } ∪
{a : C | (a ∈ Indg or a = new) and C ∈ DV }.

Then, P can be constructed by first computing all subsets of P+ and then
checking their consistency wrt. Obg. Since P+ can be constructed polynomi-
ally wrt. the size of Obg and DV , there are at most 2p(n) subsets of P+ of
maximal cardinality p(n), where n is the total size of Obg, DV and q. Since
consistency is decidable in ExpTime, computing P stays in ExpTime. Now,
in order to compute the views entailed by some P ∈ P, a polynomial number
of entailments on every P ∈ P is required. Therefore the computation of all
views stays also in ExpTime. Finally, Corollary 3.1.5 together with the fact
that V grows polynomially wrt. the size of DV and P , imply that the total
time required for checking privacy on all of the (at most) exponentially many
views is again exponential wrt. n.

The problem of data privacy on view definitions is also ExpTime-hard as
the corresponding problem on views is polynomially reducible to this prob-
lem: data privacy for q is preserved wrt. Obg and V iff it is preserved wrt.
C〈Obg ,V 〉 and the empty view definition.

Corollary 3.2.4 The problem of ALC data privacy on view definitions is
ExpTime-complete.

3.3 An Efficient Condition for Privacy

In the sequel we present a condition on Obg, DV and q which can be decided
in PTime and implies data privacy for q wrt. 〈Obg, DV 〉. Thus, we have a
sufficient condition for data privacy that can be checked efficiently. It is based
on the syntactic structure of the concepts that constitute the background
knowledge and the view definition.

3.3. AN EFFICIENT CONDITION FOR PRIVACY 49

Because of the syntactic nature of this method, we first need to exclude
some “common sense” queries from being secrets. These queries have trivial
answers that hold on any knowledge base (including the empty knowledge
base) and can be therefore, guessed by the user, whatever the syntactic ap-
pearance of the query is. An inclusion axiom is dangerous when it is tauto-
logical, that is, it can be answered positively on the empty knowledge base.
A tautological concept is, however, dangerous only when at least one indi-
vidual is (potentially) exhibited. In the definition below, this is controlled
by imposing a condition on retrieval and assertional queries. In this way,
the privacy of the query that expresses the secrecy of all individuals of the
system is not excluded.

Definition 3.3.1 A query q is trivial wrt. a tuple 〈Obg, DV 〉 when

• ans(> v C, ∅) = {tt}, if q = > v C.

• ans(> v C, ∅) = {tt}, if q ∈ {C, a : C} and the following holds:

(Ind(Obg) = ∅)⇒ ((∃C′∈DV
Obg 6|= > v ¬C ′) ∨

(∃a:C′∈DV
Obg 6|= > v ¬C ′)) .

An ALC query qualifies as a privacy condition on a tuple 〈Obg, DV 〉 if it is
not trivial wrt. 〈Obg, DV 〉.

Next, we define the boolean function safe() that decides whether a concept
D or a roleR exhibits some information about q. Given a knowledge baseObg,
a view definition DV and a privacy condition q on 〈Obg, DV 〉, the information
about a concept D is safe if safe(D, q) returns 1; and the information of a
role R is safe if safe(R, 〈Obg, DV , q〉) returns 1.

The following conventions apply to the definition of safe(). Concepts
and roles of a tuple 〈Obg, DV 〉 are all inclusion and assertional concepts,
assertional roles and retrieval queries that appear in Obg or DV . The set of
subterms s(C) of a concept C is inductively defined by:

s(A) :={A} s(¬A) := {¬A}
s(C ? D) :={C ? D} ∪ s(C) ∪ s(D) s(QR.C) := {QR.C} ∪ s(C)

where ? is either t or u and Q is either ∀ or ∃. Note that negated atomic
concepts are not decomposable. For instance, the subterms of A1 t ∃R.¬A2

are A1,¬A2,∃R.¬A2 and A1 t ∃R.¬A2.
If a concept C2 has a subterm C1 then C2 is also written as C2[C1]. If,

in addition, there is an occurrence of C1 in C2 that is not prefixed by a

50 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

quantifier, then C2 may also be written as C2[C1]
0. Similarly, if we want to

emphasize that C1 is not prefixed in C2 by an existential quantifier, then C2

may also be written as C2[C1]
0∃ . For example, the concept A1 t ∀R2.(¬A2)

can be also written as A1t∀R2.(¬A2)[¬A2] or A1t∀R2.(¬A2)[¬A2]
0∃ but

not as A1 t ∀R2(¬A2)[¬A2]
0 .

We also introduce the notion of similarity on concepts: two concepts
C1 and D1 are similar when either (i) C1 = D1 or (ii) C1 = ∀R.C2 and
D1 = ∀R.D2 or (iii) C1 = ∃R.C2 and D1 = ∃R.D2.

Now, assume we are given a query qC ∈ {> v C,C, a : C}. The function
safe() is defined on concepts and roles as follows:

For a concept D, safe(D, qC) = 1 iff there are no similar D1 and C1 sub-
terms of D and C, respectively, such that either

1. D[D1]
0 and C[C1]

0∃ hold, or

2. D[D1]
0, C[∃R.C ′[C1]]

0∃ and C[∀R.C ′′] hold.

For a role R and a tuple 〈Obg, DV 〉, safe(R, 〈Obg, DV , qC〉) = 1 iff:

1. C is not of the form C[∃R.C ′]0 and

2. for every concept D2 for which D1[∀R.D2]
0∃ is a concept of 〈Obg, DV 〉,

safe(D2, qC) = 1.

Note that for the needs of the function safe() the first condition on simi-
larity can be restricted to atomic and negated atomic concepts only.

Using the above function, the privacy of a query is guaranteed when all
concepts and roles of the background knowledge and the view definition are
safe. As we already mentioned this solution is partial.

Example 3.3.2 We can correctly detect that data privacy is preserved for A
wrt. 〈{R1(a, b), R2(b, c)}, {∀R1∃R2A}〉. However, we cannot detect that data
privacy is preserved for A wrt. 〈{R1(a, b), R2(c, d)}, {∀R1∀R2A}〉 or even for
A u B wrt. 〈∅, {A}〉. In the first case this is because we do not take care of
the individuals at all. As a consequence, the data privacy of a : C and C is
indistinguishable. In the second case (when q = AuB) this is because we do
not check whether one of the conjuncts forms a trivial query.

Example 3.3.3 Both cases presented in Example 1.3.1 illustrate the cor-
rectness of the solution. That is, we can detect that data privacy is preserved
for the privacy condition Bunker wrt. 〈Rbg, DV1〉. And we cannot detect data

3.3. AN EFFICIENT CONDITION FOR PRIVACY 51

privacy for Bunker wrt. 〈Rbg, DV1 ∪DV2〉, as the second query of DV2 cancels
the safeness of the assertional role Includes. The limitations of the solution
emerges when one modifies the latter example by setting Rbg = R. Now, pri-
vacy is preserved for Bunker wrt. 〈R,DV1 ∪DV2〉 but the functions still return
the same values and so, Includes cannot be shown to be safe.

In the next chapter we will see an application of this solution to modular
ontologies. We now prove the correctness of this solution:

Lemma 3.3.4 Assume that we are given a query qC and a bi-coloured SALC
proof Π of a sequent S1 = d : ?¬C, !Γ ; !T̂ . Furthermore, assume that

(i) safe(!R, 〈Γ∪{> v T̂}, ∅, qC〉) = safe(!D, qC) = 1, for all entities !R and
!D, respectively, in S1.

Let S2 be a sequent in Π of the form

(ii) x : ?rd, x : !gr, ∆ ; !T̂ with

(iii) ?rd = C1[¬C2]
0 , !gr = D1[D2]

0 and, C2 and D2 are similar.

Then, there is a mixed-rule application in the path between S1 and S2.

Proof . By induction on the length n of the path between S1 and S2.
Base case: n = 0. Then S1 = S2 and so C = ¬rd. Therefore, C is of the
form C[C2]

0∃ . Since C2 and D2 are similar, by the definition of safe() on
concepts (first condition) and the form of gr, safe(gr, q¬rd) = 0 and so, (i) is
contradicted. Therefore, this is not possible.

Induction step: assume that there are n+ 1 rule applications between S1

and S2 and that all of them are single-coloured. Let r be the rule application
with premise S2 and conclusion S ′2. By a case analysis on r we show that in
all possible cases, S ′2 satisfies (ii) and (iii). Thus by the induction hypothesis
there is a mixed-rule application between S1 and S2.

If both ?rd and !gr are in S ′2 then S ′2 satisfies (ii) and (iii). Otherwise,
one of the two is an active entity in S2 that does not appear in S ′2. There
are the following cases on r:

• r = (?GCI). This case is not possible.

• r = (!GCI). Then S ′2 = x : ?rd, ∆ ; !gr. Since ?rd appears in S ′2,
by the form of S1 we have that ¬rd is a subterm of C. There are two
cases on C:

52 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

– C = C[¬rd]0
∃
. Then C is also of the form C[C2]

0 and so by (iii)
and the definition of safe(), safe(!gr, qC) = 0, which contradicts (i)
(!gr is an entity in S1).

– C is of the form C[∃R.C ′[¬rd]]0
∃

and not of the form C[¬rd]0
∃
.

This implies that z : ?∀R.¬C ′ is an active entity on a rule below
r and so, since all rules below r are single-coloured, there is an
?R entity in Π. By the form of S1, this is possible only if there
is an entity ?∃R.C ′′ in Π, which means that C is also of the form
C[∀R.¬C ′′]. Since C is also of the form C[∃R.C ′[C2]]

0∃ , by the def-
inition of safe() on concepts (second condition), safe(!gr, qC) = 0.
This, however, contradicts (i) as gr is an entity in S1.

• r ∈ {(u), (t)}. Then S ′2 = x : ?C ′[rd]0, x : !D′[gr]0, ∆′ ; !T̂ . Both
C ′ and D′ qualify as ?rd and !gr, respectively, and so S ′2 satisfies (ii)
and (iii).

• r = (∃). This cannot be the case, since the active concept that does
not appear in the conclusion has to have a fresh label. Therefore, not
both !gr and ?rd can have the same label.

• r = (?∀). Then S ′2 = y : ?∀R.rd, (y, x) : ?R, x : !gr, ∆′ ; !T̂ . Since
(y, x) : ?R cannot occur in S1, this assertion was created by an (?∃)-
rule below r, and therefore y : ?∃R.C ′ is an active entity in S ′2 and x is
fresh. Since all rules below r are single-coloured and x is fresh, x : !gr
can appear in S2 only in the case !T̂ is of the form !T̂ [gr]0. Reasoning
is then continued similarly to the !GCI case.

• r = (!∀). Then, S ′2 = y : !∀R.gr, (y, x) : !R, x : ?rd, ∆′ ; !T̂ . If
(y, x) : !R were created by an (!∃)-rule, then x would be a new label
and, because of the single-coloured rules below S ′2, x : ?rd would not
be possible. Therefore,

(y, x) : !R appears in S1. (3.1)

Furthermore, the presence of !∀R.gr implies that there is an entity of
the form !D′[∀R.gr] in S1.

– If !D′ is of the form !D′[∀R.gr]0∃ then, by (3.1) and (i), we have
safe(!R, 〈Γ ∪ {> v T̂}, ∅, qC〉) = 1 and !D′[∀R.gr]0∃ is an entity in
Γ. So, by the definition of safe() on roles safe(gr, qC) = 1. There-
fore, by the definition of safe() on concepts and (iii), we have that

C cannot be of the form C[¬rd]0
∃

(for details see the first case of

3.3. AN EFFICIENT CONDITION FOR PRIVACY 53

!GCI). However, by S1 we have that C[¬rd] and thus, there is an
active entity ?∀R′.C ′[rd]0 below r. Therefore, if w is the label of
this entity, we have that (w, x) : ?R′ appears in a sequent below
S ′2 (since x : ?rd is in S ′2). Again, this assertion must have been
created by an (?∃)-rule and thus x is fresh which contradicts (3.1).

– Otherwise, we find that for every zi : !D′′[∀R.gr]0∃ in Π, zi is a
fresh variable. Since y is a label of such a D′′ (y : !∀R.gr occurs
in S ′2), y is also fresh and so (3.1) is contradicted. �

Theorem 3.3.5 Given a consistent ALC-knowledge base Obg, a view defini-
tion DV and a privacy condition q on 〈Obg, DV 〉, data privacy is preserved for
q wrt. 〈Obg, DV 〉 if safe(D, q) = safe(R, 〈Obg, DV , q〉) = 1, for every concept
D and role R of 〈Obg, DV 〉.

Proof . By contradiction. Let q ∈ {> v C,C, a : C}. Assume that (a) there
is a V on 〈Obg, DV 〉 such that data privacy is not preserved for q with respect
to V while (b) safe(D, q) = safe(R, 〈Obg, DV , q〉) = 1, for all concepts and
roles D and R, respectively, of 〈Obg, DV 〉 .

Applying Theorem 3.1.2 to assumption (a) yields ans(q, C〈Obg ,V 〉) 6= ∅.
That is, C〈Obg ,V 〉 |= > v C or C〈Obg ,V 〉 |= d : C for some d ∈ Ind(C〈Obg ,V 〉).
Using Theorem 2.3.2 we can construct now the inconsistent knowledge base
C〈Obg ,V 〉 ∪ q, where q is given as follows:

> v C := {d′ : ¬C}, for d′ /∈ Ind(C〈Obg ,V 〉),

a : C := {a : ¬C},
C := {d : ¬C} .

Theorem 2.4.2 implies that the knowledge base C〈Obg ,V 〉∪q has a proof in SALC
and thus, the sequent Γ, q ; T̂ is SALC-provable, where Γ and T̂ are the
ABox and the TBox transformation of the canonical knowledge base C〈Obg ,V 〉.
We distinguish between public and private information in the sequent by
colouring the entities derived from C〈Obg ,V 〉 green (resp. !) and the entity of q
red (resp. ?). Let Π be a bi-coloured proof of

!Γ, ?q ; !T̂ . (3.2)

According to the colours of its rule applications (green, red or mixed), Π has
either at least one mixed rule or it has no mixed rule at all. We distinguish
between these two cases:

1. Π has no mixed rule application. Since C〈Obg ,V 〉 is consistent, by
Lemma 2.5.5 we have that ?q is an active entity in Π and therefore, Π has

54 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

only ?r-rule applications. Without loss of generality, we can also assume
that there is at least one assertion in C〈Obg ,V 〉. Then, Lemma 2.5.4 applies
and yields a proof of ?q ; . This means that q is an inconsistent knowledge
base and so, Theorem 2.3.2 applied to q results ∅ |= > v C. Furthermore, in
the case q ∈ {C, a : C}, d (or a) is an individual either in Obg or in V , which
means that either Ind(Obg) 6= ∅ or that there exists a query D′ or d : D′

in DV such that Obg 6|= > v ¬D′. Therefore, q is a trivial query and the
assumption of the theorem is contradicted.

2. Π has at least one mixed rule. Let r be a mixed-rule for which all rules
below r are single-coloured. If we can show that Lemma 3.3.4 applies with
S1 = (3.2) and S2 the conclusion of r, then there is a mixed rule application
below r which contradicts the definition of r and thus the theorem is shown.

Therefore, it remains to prove that the assumptions of Lemma 3.3.4 hold.
First we show that for all entities !R and !D of the sequent (3.2)

safe(!R, 〈Γ ∪ {> v T̂}, ∅, q〉) = safe(!D, q) = 1. (3.3)

We first show the case of the concepts. Since the value of safe(D, q) depends
only on q, by (b) we have that safe(D, q) = 1 for all D ∈ Γ. The same is also

the case when C = T̂ since, T̂ is a conjunction of safe concepts wrt. q and
the conjunction of two safe concepts is again safe wrt. the same query.

We now turn to the case of the roles. According to the definition of safe()

on roles, the degree of R might change only if there is a concept D1[∀R.D2]
0∃

in 〈Γ ∪ {> v T̂}, ∅〉 and there is no concept D′1[∀R.D2]
0∃ in 〈Obg, DV 〉.

However, this is not possible since, on the one hand, by the construction of
C〈Obg ,V 〉 all concepts of 〈C〈Obg ,V 〉, ∅〉 are also concepts of 〈Obg, DV 〉. There-

fore, Γ does not introduce any new concepts. On the other hand, T̂ is a
conjunction of concepts of C〈Obg ,V 〉 and so, for every concept D1[∀R.D2]

0∃ of

〈Γ ∪ {> v T̂}, ∅〉 there is a concept D′1[∀R.D2]
0∃ in 〈Obg, DV 〉. Therefore,

together with (b), we conclude that safe(R, 〈Γ ∪ {> v T̂}, ∅, q〉) = 1 and
thus (3.3) holds.

Next, we show that the conclusion of r has the form required for the
sequent S2 in Lemma 3.3.4. The mixed rule application r must be of the
form:

(ax)
x : !A, x : ?¬A, Γ′ ; !T̂

,
(ax)

x : ?A, x : !¬A, Γ′ ; !T̂
,

y : ?C ′, x : ?∀R′.C ′, (x, y) : !R′, Γ′ ; !T̂
(∀)

x : ?∀R′.C ′, (x, y) : !R′, Γ′ ; !T̂
,

3.3. AN EFFICIENT CONDITION FOR PRIVACY 55

or
y : !C ′, x : !∀R′.C ′, (x, y) : ?R′, Γ′ (!T̂)

(∀)
x : !∀R′.C ′, (x, y) : ?R′, Γ′ ; !T̂)

where y : C ′ does not appear in Γ′. If r = (ax) then its conclusion is trivially
of that form. Otherwise, if r = (∀) we observe that in both applications of
(∀), the role assertion (x, y) : R′ was created by an (∃)-rule. This can be
seen as follows:

• For the first rule. Since ?∀R′.C ′ occurs in the conclusion of r, we have
either

(i) ¬C is of the form ¬(C[∀R′.C ′]0) or

(ii) QR′′.C ′′[∀R′.C ′]0 for some quantifier Q, is an active entity in a
rule ?r′ that appears below r.

We show that in both cases, (x, y) : !R′ cannot appear in (3.2). If (i)
holds we have C[∃R′.¬C ′]0 and, by the definition of safe() on roles, we
have safe(R

′, 〈Obg, DV , q〉) = 0. Therefore, by (b), !R does not appear
in (3.2). If (ii) holds, then there is an entity (z, x) : ?R′′ in the premise
of r′ which, by definition of (3.2), cannot appear in (3.2). This implies
that (z, x) : ?R′′ was created by an (∃)-rule and x is fresh. Therefore,
(x, y) : R′ does not appear in (3.2).

• For the second rule. By the definition of q, the set q does not contain
any role assertions.

Consequently, in both cases the role assertion was created in the course of the
proof and this can happen only by means of an (∃)-rule application. Thus,
x : !∃R′.D′ or x : ?∃R′.D′ appears in the proof before the first or the second
(∀)-rule, respectively. Since nothing is thrown away while applying rules,
the existential concepts occur in Γ′ in their respective rule application above.
Therefore, the conclusion of r has the required form and Lemma 3.3.4 applies
to Π with S1 = (3.2) and S2 the conclusion of r. �

The complexity of the procedure

The following algorithm computes the function safe() based directly on its
definition. Given a concept D and a query qC, safe(D, qC) can be computed as
follows: find all occurrences of positive atoms A, negated atoms ¬A, universal
and existential role restrictions ∀R and ∃R, respectively, that appear in D
and are not prefixed by a quantifier, and check whether any of them appear

56 CHAPTER 3. DATA PRIVACY IN ALC KNOWLEDGE BASES

also in C. If there are such occurrences and are not prefixed by an existential
quantifier in C then safe(D, qC) = 0. Otherwise, let R′ be any of the outmost
existentially restricted roles that prefix some of the above occurrences in C.
If R′ is also a universal restriction in C then, again, safe(D, qC) = 0. In all
other cases safe(D, qC) = 1. Finding all the above occurrences takes linear
time wrt. the size of D since, at worst all subterms of D will be checked.
Checking C for a specific occurrence takes again linear time and thus, the
total computation stays in PTime wrt. the size of C and D.

Given a role R and a tuple 〈Obg, DV , qC〉, safe(R, 〈Obg, DV , qC〉) can be
computed by a number of safe() computations on concepts, which are as

many as there are concepts of the form D1[∀R.D2]
0∃ occurring in 〈Obg, DV 〉.

Finding these concepts takes linear time wrt. the size of 〈Obg, DV 〉. Thus,
the safe() function on a role can be computed in PTime, too.

To conclude, deciding data privacy for a privacy condition q wrt. 〈Obg, DV 〉
using the above functions takes polynomial time wrt. the size of q and
〈Obg, DV 〉.

Theorem 3.3.6 Given a knowledge base Obg, a view definition DV and a
privacy condition q, it can be decided in PTime whether for every concept D
and role R of 〈Obg, DV 〉, safe(D, q) = safe(R, 〈Obg, DV , q〉) = 1.

The above theorem assumes that the privacy condition is given a priori.
An ExpTime algorithm that checks whether a query q qualifies as a privacy
condition can be obtained directly from the definition of triviality. When q is
an inclusion axiom, a single entailment on the empty knowledge base suffices
and therefore, the decision is obtained in PSpace. When q is retrieval or an
assertion, a number of entailments on the background knowledge is required
and therefore, the decision is (at worst case) obtained in ExpTime.

The algorithm can be further simplified if one weakens slightly the re-
sults by ruling out of the privacy condition tautological retrieval queries and
assertions altogether - although they are not dangerous. In that case, the
condition on the definition of a trivial assertion or retrieval query is removed
and the triviality of a query can be decided with a single entailment on the
empty knowledge base, too.

Chapter 4

Some Immediate Results

4.1 Securing Actual Data

The purpose of data privacy is to assure that certain potential data are not
provided to unauthorized users. The privacy of the query > v C assures
that in the case > v C is true in the current knowledge base, the user will
not be able to infer it. This is indeed the case as the user cannot distinguish
between the current knowledge base and any of the other possible knowledge
bases that respect Obg and V . Since privacy is preserved for this query, it
follows that there is a possible knowledge base in which this query is not true.
From the perspective of the user, that knowledge base could be the current
one and therefore, the data > v C is secured. Following the same reasoning,
the privacy of the query a : C (resp. C) assures that in the case the (some)
assertion(s) of the form a : C is (are) true in the current knowledge base, the
user will not be able to infer it (any of them).

In addition to the privacy of inclusion axioms and concept assertions,
we can also assure the privacy of certain role assertions that might follow
from the current knowledge base. In particular, we can show that no role
assertions are provided to the user other than the ones that are explicitly
stated in Obg.

We first show the following proposition:

Proposition 4.1.1 Given a knowledge base O, O |= (a, b) : R if and only if
(a, b) : R ∈ O.

Proof. (⇒) Assume O |= (a, b) : R. Then by monotonicity we have that
O ∪ {a : ∀R.B, b : ¬B} |= (a, b) : R, too, where B ∈ AConc and does not
occur in O. Following the model definition, however, this is possible only
if the augmented knowledge base is inconsistent and therefore, it is SALC-
provable. Let Π be a proof of the sequent that corresponds to this knowledge

57

58 CHAPTER 4. SOME IMMEDIATE RESULTS

base. Since B does not occur inO, we have thatO∪{a : ∀R.B} is a consistent
knowledge base. Therefore, by Lemma 2.5.5 there is a rule application r in
Π in which b : ¬B is an active entity. The only rule in which b : ¬B can
be active is an axiom rule. Thus, b : B is also active in r. Since B does
not occur anywhere else in O, this entity came from a (∀)-rule application in
which a : ∀R.B was active too. However, this is possible only if (a, b) : R is
an entity in the same application rule, which is in turn possible only in the
case (a, b) : R was already in O.

(⇐) Trivial. �

Next, we need to allow role assertions as queries. The evaluation of a role
assertion is similar to that of a concept assertion:

ans((a, b) : R,O) := {tt} , if O |= (a, b) : R,

ans((a, b) : R,O) := ∅ , if O 6|= (a, b) : R.

Proposition 4.1.1 implies that a role assertion is entailed by a knowledge
base only when its individuals appear in that knowledge base. Therefore,
the expected condition {a, b} ⊆ Ind(O) is omitted. Also, note that this
extension is required only for defining data privacy on role assertions and
does not propagate to the definitions of V and DV given in Section 2.3. As
so, the scheme of the knowledge base we consider remains the same. Now we
can define the secured data of a knowledge base:

Definition 4.1.2 Let SECR be the subset of a knowledge base that contains
some secrecies. The data in SECR is secured wrt. a valid tuple 〈Obg, V 〉
(resp. 〈Obg, DV 〉) if and only if data privacy is preserved for each element in
SECR wrt. Obg and V (resp. DV).

The results on data privacy preservation shown in the previous chapters
can be easily extended to cover the data privacy preservation of role asser-
tions. More specifically, the constructions of C〈Obg ,V 〉 and P remain the same
and the case q = (a, b) : R in Theorem 3.1.2 is similar to the case q = > v C.
The non-trivial direction of Theorem 3.2.3 can be shown for q = (a, b) : R
as follows: Since C〈Obg ,V 〉 |= (a, b) : R and there are no role assertions in V ,
Proposition 4.1.1 implies that (a, b) : R ∈ Obg. Every P includes Obg and
therefore, P |= (a, b) : R, too.

Corollary 4.1.3 Data privacy is preserved for (a, b) : R wrt. 〈Obg, V 〉 or
〈Obg, DV 〉 if and only if (a, b) : R /∈ Obg.

The above corollary allows us to easily extend the partial condition pre-
sented in Section 3.3 to cover role assertion queries. Theorem 3.3.5 now holds

4.2. DATA PRIVACY IN MODULAR ONTOLOGIES 59

for every query other than a role assertion. For the role assertion just check
whether it is an element of Obg.

Note that the notion of secured data refers to the exact data of SECR
and not to their consequences. Any data, however, that imply some secured
data is also secured. Furthermore, the security of some data can be implied
by the privacy of a retrieval query. These two observations give alternative
ways in deciding privacy, depending on what is known a priori.

Proposition 4.1.4 1. Let p and q be elements of a knowledge base. If q
is secured wrt. 〈Obg, V 〉 and C〈Obg ,V 〉 ∪ {p} |= q, then p is also secured
wrt. 〈Obg, V 〉.

2. If data privacy is preserved for C wrt. 〈Obg, V 〉 and C〈Obg ,V 〉 |= D v C
(= > v ¬D t C), then data privacy is also preserved for D wrt. 〈Obg, V 〉.

3. Let 〈Obg, V 〉 be a tuple for which Ind(C〈Obg ,V 〉) 6= ∅. If data privacy is
preserved for C wrt. 〈Obg, V 〉 then data privacy is also preserved for
(i) a : C and (ii) > v C wrt. 〈Obg, V 〉.

Proof. 1. By contradiction, assume that p is not secured. Then, C〈Obg ,V 〉 |= p
and so C〈Obg ,V 〉 and C〈Obg ,V 〉 ∪ {p} are logically equivalent. Thus, C〈Obg ,V 〉 |= q
and q is not secured either.
2. By contradiction, assume that C〈Obg ,V 〉 |= a : D. But then C〈Obg ,V 〉 |= a : C
by the model definition on inclusions.
3. By contradiction, assume that (i) C〈Obg ,V 〉 |= a : C and a ∈ Ind(C〈Obg ,V 〉), or
that (ii) C〈Obg ,V 〉 |= > v C. Since there is at least one individual in C〈Obg ,V 〉,
both cases imply that C〈Obg ,V 〉 |= b : C, for some b ∈ Ind(C〈Obg ,V 〉) and so,
ans(C, C〈Obg ,V 〉) 6= ∅. �

4.2 Data Privacy in Modular Ontologies

Above we have seen how data stored in a knowledge base can be shown to
be secured. Based on those results and the partial solution presented in
Section 3.3, we will see how a whole sub-knowledge base can be shown to
be secured. Now, not only the exact data stored in the knowledge base is
secured, but also their consequences.

We first present a general application to modular ontologies (for a sur-
vey see [WHB07]). After that, we present a more specific instance of it to
E-Connections. In both solutions, the ontology language imposes, by defini-
tion, certain syntactic restrictions on the knowledge base. Therefore, these

60 CHAPTER 4. SOME IMMEDIATE RESULTS

solutions can be identified simply by the construction of the knowledge base
and so, their validity can be checked quickly.

We begin with the general application. Assume that a knowledge base
consists of several ALC sub-knowledge bases (called modules). Depending
on the method applied, the elements of a module are structurally restricted.
We do not wish to choose a specific method at this point, instead we only
require that these restrictions are expressible in terms of inclusion axioms
and/or assertions of an ALC knowledge base. In other words, each module
Mi consists of (i) inclusion axioms and concept assertions built on certain,
restricted ALC concepts Ci, as well as of (ii) role assertions built on certain
assertional roles Ri. For example, an inclusion axiom of the module M1 has
the form >1 v C1 and >1 = A1 t ¬A1 and C1 are concepts allowed in M1.
The set of individuals Ind is shared by all modules.

In this general type of modular ontologies reasoning is applied as in a
normal knowledge base. If n is the number of modules in the ontology then
the knowledge base that corresponds to it is O = M1 ∪ . . . ∪Mn and the
consequences of the ontology are defined on O. A query qi obeys to the same
restrictions the entities of Mi do. The query evaluation ans(qi,O) remains
as before (i.e. the difference now is on the allowed queries, not the way they
are evaluated).

Definition 4.2.1 Let M1 be a module of an ontology O. Then, M1 is data-
free secured wrt. a valid tuple 〈Obg, V 〉 (resp. 〈Obg, DV 〉) if and only if every
element allowed in M1 is secured wrt. 〈Obg, V 〉 (resp. 〈Obg, DV 〉).

Note: this definition covers the privacy of every possible M1 and its con-
sequences.

Proposition 4.2.2 A module M1 is data-free secured wrt. a public module
M2 and a view V (resp. a view definition DV) when the following conditions
are satisfied:

• if R or A is allowed to occur in M1, then it may also occur in M2 or V
(resp. DV) but only in concepts C of 〈M2, V 〉 (resp. 〈M2, DV 〉) that are
of the form C[QR′.C ′[A]0] or of the form C[QR′.C ′[Q′R.C ′′]0], where
{Q,Q′} ⊆ {∃,∀} (i.e. behind an R′-restriction). In addition to this,
when Q is a universal quantifier, R′ is not allowed to be an assertional
role in M2.

• inclusion axioms and concept assertions allowed in M1 qualify as pri-
vacy conditions on the tuple 〈M2, DV 〉.

4.2. DATA PRIVACY IN MODULAR ONTOLOGIES 61

Proof. We must show that data privacy is preserved for every inclu-
sion axiom and assertion that is allowed in M1. Since the semantics of the
modular ontology are identical to those of a usual ALC knowledge base,
all results shown by now are also valid here. Therefore, it is enough to
show that (i) the premise of Theorem 3.3.5 and (ii) Corollary 4.1.3 are
valid. The latter holds trivially as no assertional role R1 may appear in
M2. For (i), we must show that every inclusion axiom or concept asser-
tion qC1 that is allowed in M1 qualifies as a privacy condition and that
safe(D, qC1) = safe(R2, 〈M2, DV , qC1〉) = 1, for every concept D and role
R2 of 〈M2, DV 〉. That every qC1 qualifies as a privacy condition is given by
the construction of the ontology. The equations are shown as follows:

• safe(D, qC1). By the construction of the ontology, if C1 is of the form
C1[C

′] then every A and R that occur in C ′ can appear in D only
behind an R′-restriction. Since any concept D′ that is similar to C ′

shares at least a role or atomic concept with C ′, it is not possible to
have D[D′]0. Therefore, safe(D, qC1) = 1.

• safe(R2, 〈M2, DV , qC1〉). By the construction of the ontology, R2 is not
allowed to occur in M1 and so, C1 cannot be of the form C1[∃R2.C

′]0.
Thus, the first condition of the function is satisfied. For the second
condition: since R2 is an assertional role in M2, by the construction of
the ontology it follows that, for every concept D[∀R2.D

′], D′ cannot be
of the form D′[A]0 or D′[QR.D′]0, where A and R are allowed to occur
in M1. This means that D′ could be a concept of 〈M2, DV 〉 and so - as
it is shown above - safe(D

′, qC1) = 1.

The case of V follows from the above results since, for V an instance of
DV , safe(R

′, 〈M2, DV , qC1〉) = 1 and therefore safe(R
′, 〈C〈M2,V 〉, ∅, qC1〉) = 1,

too. Also, a privacy condition qC1 on 〈M2, DV 〉 is a privacy condition on
〈C〈M2,V 〉, ∅〉, too. �

We demonstrate the above solution on a certain kind of modular ontolo-
gies, the E-Connections [CPSK05, KLWZ04] and, in particular, in a certain
instance of two ALC knowledge bases (CE(ALC,ALC)). In such an ontology,
each of the constituted knowledge bases, Ei, has its own distinct language Li

that consists of the countable sets of individuals Indi, atomic concepts AConci

and local roles Roli. In addition to these, a set of special roles E that connect
individuals of E1 to individuals of E2 is provided. The ALC-Concepts of L1

62 CHAPTER 4. SOME IMMEDIATE RESULTS

and L2 are built as follows:

C1 := A1 | ¬A1 | C1 tD1 | C1 uD1 | ∃R1.C1 | ∀R1.C1 | ∃E.C2 | ∀E.C2

C2 := A2 | ¬A2 | C2 tD2 | C2 uD2 | ∃R2.C2 | ∀R2.C2

where all concepts and roles indexed by i ∈ {1, 2} belong to Li and E ∈ E .
The knowledge base Ei is then a set of inclusion axioms >i v Ci, concept
assertions ai : Ci and role assertions (ai, bi) : Ri with {ai, bi} ⊂ Indi. In
addition to these, E1 may also include E role assertions (a1, a2) : E. As
usual, the individuals of Indj that appear in Ei are denoted by Indj(Ei).

The semantics of E-Connections generalize those of the usual ALC knowledge
bases. We refer to E-Connections that are built as described above as OE .

Definition 4.2.3 An interpretation Ie of an E-Connection OE is a tuple
of the form 〈I1, I2, (E)I

e〉, where I1 and I2 are normal ALC interpretations
that assign values to the sets of L1 and L2, respectively, and (E)I

e
assigns to

every E ∈ E a relation (E)I
e ⊆ ∆I1 ×∆I2.

The interpretation Ie extends then as follows:

(ai)
Ie

= (ai)
Ii

(Ai)
Ie

= (Ai)
Ii

(Ri)
Ie

= (Ri)
Ii

(¬Ai)
Ie

= ∆Ii \ (Ai)
Ie

(Ci uDi)
Ie

= (Ci)
Ie ∩ (Di)

Ie

(Ci tDi)
Ie

= (Ci)
Ie ∪ (Di)

Ie

(∀Ri.Ci)
Ie

= {di ∈ ∆Ii | ∀d2 ((d1, d2) ∈ (Ri)
Ie ⇒ d2 ∈ (Ci)

Ie

)}
(∃Ri.Ci)

Ie

= {di ∈ ∆Ii | ∃d2 ((d1, d2) ∈ (Ri)
Ie

& d2 ∈ (Ci)
Ie

)}
(∀E.C2)

Ie

= {d1 ∈ ∆I1 | ∀d2 ((d1, d2) ∈ (E)I
e ⇒ d2 ∈ (C2)

Ie

)}
(∃E.C2)

Ie

= {d1 ∈ ∆I1 | ∃d2 ((d1, d2) ∈ (E)I
e

& d2 ∈ (C2)
Ie

)}

An interpretation models inclusion axioms and assertions in the usual
way. For the sake of uniformity, we define an E-Connection as the union of
the two knowledge bases E1 and E2. In this way, the definition of privacy
preservation applies also here.

The evaluation of a query qCi on an E-Connection differs from the usual
evaluation in that now, the evaluation is restricted to individuals of Indi and

4.2. DATA PRIVACY IN MODULAR ONTOLOGIES 63

not of Ind.

ans(>i v Ci,OE) := {tt} , if OE |= >i v Ci,

ans(>i v Ci,OE) := ∅ , if OE 6|= >i v Ci,

ans(a : Ci,OE) := {tt} , if OE |= a : Ci and a ∈ Indi(OE),
ans(a : Ci,OE) := ∅ , if OE 6|= a : Ci or a 6∈ Indi(OE),

ans(Ci,OE) := {a ∈ Indi(OE) | OE |= a : Ci} .

Theorem 2.3.2 is valid in this setting too, after replacing Ind with Indi.

Proposition 4.2.4 If OE is inconsistent then it is inconsistent under the
normal ALC semantics, too.

Proof. We prove the contrapositive. Assume that there is an ALC in-
terpretation I such that I |= E1 ∪ E2. Then, I ′ is the interpretation with
∆I

′
= {a′ | a ∈ ∆I} and all its assignments are like in I, except that now

every occurrence of a ∈ ∆I that occur in the assignments of I is replaced by
a′. A model Ie = 〈I1, I2, (E)I

e〉 of OE is constructed as follows:

• ∆I1 = ∆I and all assignments of I1 are identical to those of I.

• ∆I2 = ∆I
′

and all assignments of I2 are identical to those of I ′.

• EIe
= {(a, b′) | (a, b) ∈ EI}.

By an easy induction on the structure of Ci, we can show that CI
e

1 = CI1
and CI

e

2 = CI
′

2 . Therefore, we conclude that Ie is a model of OE and the
proposition holds. �

Consider now two ALC E-Connected knowledge bases E1 and E2 built as
described above.

Proposition 4.2.5 If every allowed inclusion axiom and concept assertion
in E2 qualifies as a privacy condition and there is no role assertion (a1, b2) : E
in E1 for any E-universal restriction that occurs in E1, then E2 is data-free
secured wrt. 〈E1, ∅〉.

Proof. As in the previous proposition, we show that both (i) Theo-
rem 3.3.5 and (ii) Corollary 4.1.3 apply to this setting. The latter follows
by the construction of OE as no assertion of R2 is allowed in E1. For (i):
it is easy to check that E2 and E1 satisfy the restrictions of the modules M1

64 CHAPTER 4. SOME IMMEDIATE RESULTS

and M2, respectively, of Proposition 4.2.2. Therefore, the equations on safe()
are satisfied. Furthermore, the elements of E2 qualify as privacy conditions,
by definition, and so, the assumptions of the theorem are satisfied. Now we
need to show that the theorem holds. By contradiction, we assume that data
privacy is not preserved and so E1 ∪ {d : ¬C2}, with d ∈ Indi is inconsistent.
By Proposition 4.2.5 this implies that the normal ALC knowledge base of
the same data is inconsistent and therefore, reasoning is continued as in the
existing proof of Theorem 3.3.5. �

Conclusions

This thesis comprises an initial study on the problem of provable privacy for
ALC-knowledge bases. In particular, we have applied privacy to the following
setting: background knowledge is an ALC-knowledge base whereas views
might provide positive or neutral answers to inclusion axioms (boolean),
concepts (retrieval) and concept assertions (boolean) that are built on ALC-
concepts. In addition to the queries that are allowed in a view, a secret can
also be a role assertion (see Section 4.1). Provable privacy guarantees that
the secret information cannot be inferred accurately from a publicly available
background knowledge and a view.

We have presented complete procedures that decide provable privacy for
ALC-knowledge bases. More specifically, we have shown that privacy wrt.
a view reduces to a polynomial number of entailments and is an ExpTime-
complete problem. Privacy wrt. a view definition (i.e. a family of views) is
also ExpTime-complete and can be decided by considering only exponentially
many views.

A privacy preserving condition that can be decided in PTime and applies
to both views and view definitions is also provided. This condition poses
restrictions on the structure of the secret query that depends on the structure
of the publicly available data (i.e. the background knowledge and the view
or view definition). Because of its syntactic nature, the secret query has the
a priori requirement to be non-trivial. This means that its validity is syntax-
sensitive and, therefore, it depends on the current knowledge base. This a-
priori assumption can be computed in PSpace when the secret is an inclusion
axiom and in ExpTime when it is a concept or a concept assertion. Adding
a further restriction to the non-valid secrets leads to a (worst-case) PSpace
computation. Finally, the applicability of this procedure is demonstrated on
modular ontologies. There, it is shown that when an ontology is connected
to a second ontology, the information of the second ontology is not exhibited
to users that have access only to the first ontology.

Current results on provable privacy can be strengthen in a variety of
ways as the system requirements we have considered are minimal. A first

65

66 CONCLUSIONS

extension could deal with the formulation of stronger secrecies. We believe
that the formulation of a secret in terms of a query and the notion of provable
privacy can express stronger notions of privacy in a very simple and intuitive
way. Note, however, that the current definition might not be able to capture
correctly certain queries. This happens because we have defined provable
privacy in systems that do not take into consideration implicit knowledge
that might come from the view definition. If, for instance, a : C is a query in
the view definition, then we know that a is a valid individual, independently
of its evaluation. However, this information is not expressible in a repository.
This means that the current definition of provable privacy will not work as
intended once, for instance, the secret query “a is not in the repository”
or “a is a valid individual” are considered. In order to capture correctly
such privacy issues, stronger forms of background knowledge and appropriate
adjustments of the privacy definition should be considered.

Another important direction of further work is the study of privacy issues
on stronger ontologies. The ALC is a simple language that is nevertheless
sensible to study. There are, however, very powerful languages that are used
in today’s ontological systems. For instance, web applications make use of the
description logic SHOIN (D). Apart from the direct benefits, such a study
will also allow the identification of stronger privacy preserving patterns.

Bibliography

[AA01] D. Agrawal and C. C. Aggarwal. On the design and quantifi-
cation of privacy preserving data mining algorithms. In PODS
’01 , pp. 247–255. ACM, 2001. ISBN 1-58113-361-8.

[AL05] M. Arenas and L. Libkin. XML Data Exchange: Consistency
and Query Answering. In PODS , pp. 13–24. 2005.

[Are00] C. E. Areces. Logic Engineering: the case of description and
hybrid logics . Ph.D. thesis, ILLC, University of Amsterdam,
2000.

[BB04] J. Biskup and P. A. Bonatti. Controlled query evaluation for
enforcing confidentiality in complete information systems. In-
ternational Journal of Information Security , 3(1):14–27, 2004.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, eds. The Description Logic Handbook .
Cambridge University Press, 2003.

[BFJ00] A. Brodsky, C. Farkas, and S. Jajodia. Secure Databases: Con-
straints, Inference Channels, and Monitoring Disclosures. IEEE
Trans. on Knowl. and Data Eng., 12(6):900–919, 2000. ISSN
1041-4347.

[BKS95] P. A. Bonatti, S. Kraus, and V. S. Subrahmanian. Foundations
of Secure Deductive Databases. Transactions on Knowledge
and Data Engineering , 7(3):406–422, 1995. ISSN 1041-4347.

[BS01] F. Baader and U. Sattler. An Overview of Tableau Algorithms
for Description Logics. Studia Logica, 69:5–40, 2001.

[BW08] J. Biskup and T. Weibert. Keeping secrets in incomplete
databases. Journal of Information Security , 7(3):199–217,
2008.

67

68 BIBLIOGRAPHY

[CCGL02] A. Cal̀ı, D. Calvanese, G. D. Giacomo, and M. Lenzerini. Data
Integration under Integrity Constraints. In Proc. of CAiSE
2002 , volume 2348 of LNCS , pp. 262–279. Springer, 2002.

[CPSK05] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Au-
tomated Partitioning of OWL Ontologies using E-Connections.
In Proceedings of Int. Workshop on Description Logics . 2005.

[DD79] D. E. Denning and P. J. Denning. Data Security. ACM Comput.
Surv., 11(3):227–249, 1979. ISSN 0360-0300.

[DM00] F. M. Donini and F. Massacci. EXPTIME Tableaux for ALC.
Artificial Intelligence, 124(1):87–138, 2000.

[DMS05] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic Conditional
Probabilities for Conjunctive Queries. In ICDT , volume 3363
of LNCS , pp. 289–305. Springer, 2005.

[Don03] F. M. Donini. Complexity of Reasoning , chapter 3, pp. 96–136.
The Description Logic Handbook. Cambridge University Press,
2003.

[DP05] A. Deutsch and Y. Papakonstantinou. Privacy in database pub-
lishing. In ICDT . 2005.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. In PODS ’03:
Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems , pp.
211–222. ACM, New York, NY, USA, 2003. ISBN 1-58113-
670-6.

[ESAG02] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy
preserving mining of association rules. In 8th ACM SIGKDD
International Conference on Knowledge Discovery in Databases
and Data Mining . 2002.

[FJ02] C. Farkas and S. Jajodia. The inference problem: a survey.
SIGKDD Explor. Newsl., 4(2):6–11, 2002. ISSN 1931-0145.

[FKMP05] R. Fagin, P. G. Kolaitis, R. Miller, and L. Popa. Data Ex-
change: Semantics and Query Answering. Theoretical Com-
puter Science, 336:89–124, 2005.

BIBLIOGRAPHY 69

[Hal01] A. Y. Halevy. Answering queries using views: A survey. The
VLDB Journal , 10(4):270–294, 2001. ISSN 1066-8888.

[HM70] L. Hoffman and W. Miller. Getting a personal dossier from a
statistical data bank. Datamation, 16:74–75, 1970.

[Hof05] M. Hofmann. Proof-Theoretic Approach to Description-Logic.
In 20th IEEE Symposium on Logic in Computer Science (LICS
2005), pp. 229–237. IEEE Computer Society, 2005.

[KLWZ04] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-
connections of abstract description systems. Artifical Intelli-
gence, 156(1):1–73, 2004.

[KMMZ05] Y. Kanza, A. O. Mendelzon, R. J. Miller, and Z. Zhang.
Authorization-Based Access Control for XML, 2005. Technical
report CSRG-527, University of Toronto, Department of Com-
puter Science. Available from ftp://ftp.cs.toronto.edu/csrg-
technical-reports.

[KMMZ06] Y. Kanza, A. O. Mendelzon, R. J. Miller, and Z. Zhang.
Authorization-Transparent Access Control for XML under the
Non-Truman Model. In EDBT , volume 3896 of LNCS , pp.
222–239. Springer, 2006.

[MG06] A. Machanavajjhala and J. Gehrke. On the efficiency of check-
ing perfect privacy. In PODS ’06: Proceedings of Principles of
database systems , pp. 163–172. ACM Press, 2006.

[MKGV07] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub-
ramaniam. L-diversity: Privacy beyond k-anonymity. ACM
Trans. Knowl. Discov. Data, 1(1), 2007. ISSN 1556-4681.

[MKMG07] D. J. Martin, D. Kifer, A. Machanavajjhala, and J. Gehrke.
Worst-Case Background Knowledge for Privacy-Preserving
Data Publishing. In Proceedings ICDE . 2007.

[MS04] G. Miklau and D. Suciu. A formal analysis of information dis-
closure in data exchange. In SIGMOD , pp. 575–586. ACM,
2004.

[ND07] A. Nash and A. Deutsch. Privacy in GLAV Information Integra-
tion. In T.Schwentick and D.Suciu, eds., ICDT 2007 , volume
4353 of LNCS , pp. 89–103. Springer, 2007.

70 BIBLIOGRAPHY

[RMSR04] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending
query rewriting techniques for fine-grained access control. In
SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data, pp. 551–562. ACM,
New York, NY, USA, 2004. ISBN 1-58113-859-8.

[Sch91] K. Schild. A Correspondence Theory for Terminological Logics:
Preliminary Report. In Twelfth International Conference on
Artificial Intelligence IJCAI’91, pp. 466–471. 1991.

[SDJVdR83] G. L. Sicherman, W. De Jonge, and R. P. Van de Riet. Answer-
ing queries without revealing secrets. ACM Trans. Database
Syst., 8(1):41–59, 1983. ISSN 0362-5915.

[SS98] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information (abstract). In PODS ,
p. 188. ACM Press, 1998. ISBN 0-89791-996-3.

[SS05] K. Stoffel and T. Studer. Provable Data Privacy. In K. Vi-
borg, J. Debenham, and R. Wagner, eds., Database and Expert
Systems Applications DEXA 2005 , volume 3588 of LNCS , pp.
324–332. Springer, 2005.

[SS07] P. Stouppa and T. Studer. A Formal Model of Data Privacy.
In I. Virbitskaite and A. Voronkov, eds., Perspectives of Sys-
tem Informatics PSI’06 , volume 4378 of LNCS , pp. 401–411.
Springer, 2007.

[SS09] P. Stouppa and T. Studer. Data Privacy for ALC Knowledge
Bases. In S. Artemov and A. Nerode, eds., Proceedings of Log-
ical Foundations of Computer Science LFCS’09 , volume 5407
of LNCS , pp. 409–421. Springer, 2009.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive concept de-
scriptions with complements. Artificial Intelligence, 48(1):1–
26, 1991.

[vdM98] R. van der Meyden. Logical approaches to incomplete infor-
mation: a survey. In Logics for databases and information sys-
tems , pp. 307–356. Kluwer Academic Publishers, 1998. ISBN
0-7923-8129-7.

[WHB07] Y. Wang, P. Haase, and J. Bao. A Survey of formalisms for
modular ontologies. In Proceedings from IJCAI’07 . 2007.

BIBLIOGRAPHY 71

[WSQ94] M. Winslett, K. Smith, and X. Qian. Formal query languages
for secure relational databases. ACM Trans. Database Syst.,
19(4):626–662, 1994. ISSN 0362-5915.

[YWJ05] C. Yao, X. S. Wang, and S. Jajodia. Checking for k-anonymity
violation by views. In Proceedings of the 31st VLDB , pp. 910–
921. 2005.

