
Proof-Systems for PLTL

Cycling Sequents and their Use in a
Finitization for PLTL

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Roger Traber

2009

Leiter der Arbeit:

Prof. Dr. Gerhard Jäger
Institut für Informatik und angewandte Mathematik

und

Dr. Luca Alberucci
Institut für Informatik und angewandte Mathematik

Contents

1 Preliminaries 5
1.1 Propositional Linear Time Logic 5

1.1.1 Syntax . 5
1.1.2 Semantics . 10

1.2 Tait-Style Sequent Calculi . 13

2 Proof-Systems for PLTL 15
2.1 Hilbert-style Calculi and Calculi with Cut 15
2.2 Tableau Calculi . 17

2.2.1 A Tableau-Based Decision Procedure 18
2.2.2 From Tableau to Sequent Calculi 21

2.3 The non-wellfounded System DHL 22
2.3.1 Syntax and Semantics 22
2.3.2 Proof Definition . 25
2.3.3 Relating PLTL to DHL 27

2.4 The Labelled System LT1 . 28

3 The Infinitary Calculus K∞ 31

4 Finitising the infinitary Calculus 37
4.1 The general Idea for a Finitization of the ω-Rule 38
4.2 First Attempt towards a Finitization - The System K1 41

4.2.1 Syntax and Semantics of K1 41
4.2.2 Rules of K1 . 44

5 The System K2 49
5.1 Refinement of K1 - Motivating new Cycle Testing Rules 49
5.2 The Calculus K2 . 51
5.3 Conjecture: Completeness . 56

2

Introduction

This work presents various proof-systems for Propositional Linear Time Logic,
henceforth PLTL. Special attention is paid to the possibilities of giving a “clas-
sical” sequent calculus for PLTL. There are many sound and complete systems
based on tableau methods, as for example in [5], [9], [14] or [12]. Still there
is not much satisfying work on sequent-calculi for PLTL. The problem about
most of the known systems is, that they make use of a cut rule or they contain
an infinitary rule, that is, a rule containing infinitely many premisses. Both
properties are critical if we are interested in systematic proof-search. A system
containing a cut for example is found in Peach [10]. The calculus given by
Dax, Hofmann and Lange in [4] is cut-free but has the problem that it is not
wellfounded. A system containing an infinitary rule can be found in Kawai [8],
another one based on the infinitary calculus for the modal µ-calculus will be
presented in this work.
So let us call a calculus to be “classical” when its proof-trees are wellfounded
and when its proofs do not make use of any infinitary rule or a cut rule. It
seem that the system LT1 given by Brünnler and Lange in [3] is so far the only
calculus for PLTL that can be called “classical” in this sense.
In this work an alternative approach that may lead as well to a finitary, cut-free
and wellfounded sequent system is presented. We give a calculus that contains
like LT1 additional to the standard rules, rules that allow to test for cycles on
branches. But in contrary to LT1 the system given here is not so much oriented
on [4], but is rather based on work on the infinitary calculus by Alberucci and
Jäger [1], as well on work by Jäger, Studer and Kretz [7] on the infinitary µ-
calculus and a paper by Studer on the proof-theory of the modal µ-calculus
[11].
The basic idea is to exploit the full power of the premisses of the infinitary rule
of the calculus K∞

Γ, (©>∧ α)n (∀n ∈ N)

Γ,�α
(ω −�)

.

We want to show that there is no need to have premisses for all approximants
of the formula �α, but that it is enough to have only one approximant which is

3

of a sufficiently high degree. This property seems to be strong enough to ensure
the existence of repeating or cycling sequents on a branch of a proof-tree. This
fact shall then be used to drop the infinitary rule and replace it by a rule of the
form:

[Γ, α]∅ [Γ,©x�α]{Γ,x
�α}

[Γ,�α]
(Cyc)

The premise on the right of this rule has to be read as a conditional statement:
That is, given the label {Γ, x�α} holds then also the basic sequent [Γ,©x�α]
must be true. This amounts to establish in the premise of the rule (Cyc) a kind
of induction step, that can be used to derive a formula �α.

In the first chapter some preliminary concepts and notations on PLTL will be
given. In the second chapter some existing calculi for PLTL will be discussed,
such of them including a cut rule or an infinitary rule. A tableau algorithm will
be presented and difficulties about inverting a tableau to a corresponding se-
quent calculus are discussed. Then the mentioned cut-free, but non-wellfounded
system DHL is presented and discussed with respect to the problem of finding
a sequent calculus for PLTL. Then the finitary calculus LT1 is presented that is
based on DHL. It makes use of labels that are annotated to formulas and that
contain information about cycling sequents in the branch of a proof-tree.
In the third section the system K∞ is presented. Soundness and completeness
of this system will be proven in full detail.
In the fourth and fifth section the question is addressed about how a finitization
of K∞ could be given. First the basic ideas for a finitization will informally be
discussed and then put in the strict formal framework of the calculus K1. Some
difficulties about this calculus will be stated and a stronger calculus K2 will be
introduced. Soundness of both calculi is proven, whereas as a conjecture in the
last section a proof for the completeness is given.

Ich danke: Herrn Professor Jäger, der mir in seinen Vorlesungen Einblick
in das spannende Gebiet der mathematische Logik verschafft hat und mir die
Möglichkeit geboten hat, im Rahmen seiner Forschungsgruppe meine Diplomar-
beit zu verfassen. Ein Dank geht auch an meine Eltern, die mich in all meinem
Tun immer unterstützt haben, in jeglicher Hinsicht. Schliesslich geht auch ein
Dank an Luca Alberucci, der mir in den vergangnen Monaten mit seinen Ideen,
Einwänden und Kommentaren stets zur Seite stand. Er hat mit seiner Begeis-
terung für die Logik, seinem mathematischen Scharfsinn, aber auch durch seine
angenehme Person viel dazu beigetragen, dass das Verfassen dieser Arbeit für
mich ein spannendes und positives Erlebnis wurde.

4

Chapter 1

Preliminaries

1.1 Propositional Linear Time Logic

In this chapter we introduce syntax and semantics of PLTL as well as some no-
tions that will be frequently used throughout this work. The infinitary calculus
K∞ presented in chapter three, as well as the calculi given in chapter four and
five will be defined relative to the language LPLTL, resp. to an extension of this
language by propositional variables. Therefore we are going to define LPLTL as
the basic language. Apart from the language LPLTL, also the language LRPLTL

will be introduced in this chapter. Languages of the calculi we come across
in chapter two will be defined there as extensions or reductions of LPLTL, resp.
LRPLTL.

1.1.1 Syntax

Definition 1.1.1. The alphabet of the language LPLTL for PLTL, contains the
following basic syntactical symbols:

1. An enumerable number of positive atomic propositions p1, p2, p3, . . .

2. A symbol ∼ to form negative atomic propositions.

3. The logical symbols ∧ (and), ∨ (or).

4. The temporal connectives � (always), ♦ (eventual), U (until) and© (next).

5. Parentheses, brackets and commas.

The alphabet of the language LRPLTL is identical to LPLTL, but contains the
additional symbol R (release).

5

The negative atomic propositions of LPLTL (resp. LRPLTL) are all expressions
of the form ∼p such that p is a positive atomic proposition.
We use the usual conventions ⊥ := p ∧ ¬p and > := p ∨ ¬p for a fixed atomic
proposition p.

Definition 1.1.2. The set of LPLTL-formulas is defined inductively in the
following way:

1. Every positive and negative atomic proposition is LPLTL-formula.

2. If ϕ and ψ are LPLTL-formulas then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕUψ) are
LPLTL-formulas.

3. If ϕ is a LPLTL-formula, then �ϕ, ♦ϕ and ©ϕ are LPLTL-formulas.

The set of LRPLTL-formulas is defined in the same way as the set of LPLTL-formulas,
but contains the additional clause:

4. If ϕ and ψ are LRPLTL-formulas, then also (ϕRψ) is LRPLTL-formula.

If clear from the context we omit parentheses in formulas, that is, we rather
write ϕ ∧ ψ instead of (ϕ ∧ ψ).
The languages LPLTL and LRPLTL generalize classical propositional logic with
temporal operators, and thus contain the standard propositional connectives
∧ (and) and ∨ (or). The negation ¬ (not) will be introduced in the next defi-
nition, whereas the remaining connectives → (implies) and ↔ (if and only if)
can then be assumed to be defined as the usual abbreviations.
Negation is defined in a way that allows to interpret negated formulas as macros
for formulas just containing positive and negative atomic propositions.

Definition 1.1.3. The negation ¬ϕ of a LPLTL-formula ϕ is inductively de-
fined as follows:

1. If ϕ is a positive atomic proposition p, then ¬ϕ :=∼p; if ϕ is a negative
atomic proposition ∼p, then ¬ϕ := p.

2. If ϕ is of the form (α ∧ β), then ¬ϕ := (¬α ∨ ¬β); if ϕ is of the form
(α ∨ β), then ¬ϕ := (¬α ∧ ¬β).

3. If ϕ is of the form ©α, then ¬ϕ := ©¬α; if ϕ is of the form �α, then
¬ϕ := ♦¬α; if ϕ is of the form ♦α, then ¬ϕ := �¬α.

4. If ϕ is of the form (α Uβ), then ¬ϕ := (¬β U(¬α ∧ ¬β)) ∨�¬β.

6

In the case of LRPLTL negation for until-formulas (αUβ) is defined differently
from above by help of the release-operator; further negation for release-formulas
(αRβ) has to be defined. That is, to define negation for LRPLTL we have clauses
1.-3. form above and the additional clauses:

4. If ϕ is of the form (αRβ), then ¬ϕ := (¬α U¬β).

5. If ϕ is of the form (α Uβ), then ¬ϕ := (¬αR¬β).

Remark: The language LPLTL does not contain the operator R, therefore nega-
tion of until-formulas (αUβ) cannot be defined by its dual as in the case of LRPLTL.
In the next section on the semantics of PLTL we show that this definition of
¬(αUβ) for LPLTL has the intended meaning.
The reason for that we do not uniformly use a language containing the release-
operator R is that the finitary calculi K1 and K2 presented in the last two
chapters are based on a method to check cycles for greatest fixpoints. If there
was a release operator in the language then there would be additional greatest
fixpoints corresponding to formulas (αRβ). This would require to give also a
method to check for cycles involving release-formulas.

Definition 1.1.4. A finite set of LPLTL-formulas (resp. LRPLTL-formulas) will be
called a LPLTL-sequent (resp. LRPLTL-sequent).

If clear from the context we will often talk just about formulas and sequents
and drop the prefix indicating the language.

Convention 1.1.5. As syntactic metavariables we are going to use (often with
sub- and superscripts):

1. Small Greek letters for individual formulas

α, β, γ, ϕ, ψ, . . .

2. Capital Greek letters for sequents

Γ,∆,Π, . . .

Definition 1.1.6. Given a LPLTL-formula α, then �α-approximants are de-
fined inductively:

1. (©>∧ α)0 := >.

2. (©>∧ α)n+1 := (©(©>∧ α)n ∧ α).

7

Definition 1.1.7. Given a LPLTL-formula β, then ♦β-approximants are de-
fined inductively:

1. (©⊥∨ β)0 := ⊥.

2. (©⊥∨ β)n+1 := (©(©⊥∨ β)n ∨ β).

Definition 1.1.8. Given LPLTL-formulas α and β, then (αUβ)-approximants
are defined inductively:

1. ((α ∧©⊥) ∨ β)0 := ⊥.

2. ((α ∧©⊥) ∨ β)k+1 := ((α ∧©((α ∧©⊥) ∨ β)k) ∨ β).

Remark: In our notation for approximants we keep the expression > also in
approximants of higher degrees. The reason is that in the finitary calculi K1
and K2 we will work with transformations that replace the approximants by ex-
pressions containing propositional variables. The notation above will facilitate
an understanding of how this transformation procedure works.

Definition 1.1.9. The rank rank(ϕ) of a LPLTL-formula ϕ is the ordinal num-
ber defined by the following recursion:

1. If ϕ is a positive atomic proposition p, then rank(ϕ) := 0; if ϕ is a negative
atomic proposition ∼p, then rank(ϕ) := 0.

2. If ϕ is of the form (α∧β) or (α∨β), then rank(ϕ) := max(rank(α), rank(β))+1.

3. If ϕ is of the form ©α, then rank(ϕ) := rank(α) + 1.

4. If ϕ is of the form �α or ♦α, then rank(ϕ) := rank(α) + ω.

5. If ϕ is of the form (α Uβ) , then rank(ϕ) := max(rank(α), rank(β)) + ω.

The rank rank(ϕ) of a LRPLTL-formula ϕ is defined as in the case of
LPLTL-formulas, but requires the additional clause

6. If ϕ is of the form (αRβ) , then rank(ϕ) := rank(α ∧ β) + ω.

Lemma 1.1.10. For all LPLTL-formulas α, β and k ∈ N we have that

1. rank(�α) > rank((©>∧ α)k),

2. rank(♦α) > rank((©⊥∨ α)k), and

3. rank(α Uβ) > rank(((α ∧©⊥) ∨ β)k).

8

Proof. Part 1: The proof goes by induction on k ∈ N. First consider the case
where k = 0, then

rank((©>∧ α)0) = rank(>) = rank(p ∨ ∼p) = max(rank(p), rank(∼p)) + 1 = 1.

But then
rank((©>∧ α)0) = 1 < rank(α) + ω = rank(�α).

For the induction step we assume

rank((©>∧ α)k) < rank(α) + ω.

We know that rank(α) + ω must be a limit ordinal number and therefore there
must an ordinal number n ∈ ω such that

rank((©>∧ α)k) < rank(α) + n.

From this we get

rank((©>∧ α)k+1) = rank((©>∧ α)k) + 2 < rank(α) + ω = rank(�α)

and we are done.

Proof of 2: This case is done analogously to part 1.

Proof of 3: If k = 0 then

rank(((α ∧©⊥) ∨ β)0) = 1

and therefore clearly

rank(((α ∧©⊥) ∨ β)0) < rank(α ∧ β) + ω = rank(αUβ).

Now assume that rank(((α ∧ ©⊥) ∨ β)k) < rank(α ∧ β) + ω = rank(α Uβ).
Again we know that rank(α Uβ) must be a limit ordinal and therefore cannot
be reached by a successor of rank(((α ∧©⊥) ∨ β)k). Therefore we have

rank(((α ∧©⊥) ∨ β)k+1) = rank(((α ∧©((α ∧©⊥) ∨ β)k) ∨ β))

= rank((α ∧©((α ∧©⊥) ∨ β)k)) = rank(©((α ∧©⊥) ∨ β)k)

= rank(((α ∧©⊥) ∨ β)k) + 1 < rank(αUβ).

Proof of 4: This case is done analogously to part 3.

9

1.1.2 Semantics

The temporal connectives are interpreted over a flow of time that is linear,
discrete, bounded in the past and infinite in the future. An obvious choice
for such a timeline is any structure that is order isomorphic1 to the natural
numbers N ordered by the standard < relation. So PLTL-models are defined in
the following way:

Definition 1.1.11. A PLTL-model is a pair M = (N, π), where:

• N is a set of a copy of the natural numbers (that is, N and N are order
isomorphic).

• π is a valuation function such that for every propositional variable p we
have π(p) ⊆ N .

The set π(p) is understood as the set of all states where the propositional
variable p is true.
Since the set of states, N, is a copy of N we will often denote a given state as
nN or simply write n, where n ∈ N.

Definition 1.1.12. Given a PLTL-model M = (N, π), the set ‖ϕ‖M of states
satisfying the LPLTL-formula ϕ is defined inductively as follows:

1. If ϕ = p, then ‖p‖M= π(p).

2. If ϕ =∼p, then ‖∼p‖M= N \ π(p).

3. If ϕ = (α ∧ β), then ‖(α ∧ β)‖M=‖α‖M ∩ ‖β ‖M.

4. If ϕ = (α ∨ β), then ‖(α ∨ β)‖M=‖α‖M ∪ ‖β ‖M.

5. If ϕ = (αUβ), then

‖(αUβ)‖M= {n ∈ N | ∃m ≥ n (m ∈ ‖β‖M and ∀ n ≤ n′ < m n′ ∈ ‖α‖M)}

6. If ϕ = �α, then ‖�α‖M= {n ∈ N | ∀m ≥ n m ∈‖α‖M}.

7. If ϕ = ♦α, then ‖♦α‖M= {n ∈ N | ∃m ≥ n m ∈‖α‖M}.
1Two posets (A,<A) and (B,<B) are said to be order isomorphic if there exists a

bijective mapping f : A→ B such that for all u and v in A we have

u <A v ⇔ f(u) <B f(v).

10

8. If ϕ =©α, then ‖©α‖M= {n ∈ N | n+ 1 ∈‖α‖M}.

The set ‖ϕ‖M of states satisfying the LRPLTL-formula ϕ if defined by adding to
the definition above a further clause to interpret release formulas (αRβ):

9. ‖(αRβ)‖M= {n ∈ N | ∀m ≥ n (m ∈ ‖β‖M or ∃ n ≤ n′ < m n′ ∈ ‖α‖M)}.

Let us informally characterize the meaning of the temporal connectives. First
consider the unary connectives ©, ♦ and �. The connective © can be read
as “at the next timepoint”. Thus the formula ©α will be satisfied at some
timepoint if and only if α is satisfied at the next timepoint. ♦ means “either
now, or at some time in the future”. Thus the formula ♦α is satisfied at some
time if and only if α is satisfied at that timepoint or at some timepoint in the
future. The connective � is interpreted as “now, and at all times in the future.
So �α is satisfied at some timepoint, if α is satisfied at that timepoint and at
every timepoint in the future. The binary connective U is interpreted as “until”.
The formula (αUβ) is said to be satisfied at some timepoint if and only if the
formula β is satisfied at that timepoint or at some state in the future, and α is
satisfied at every timepoint until the timepoint that β is satisfied. The binary
connective R is interpreted as “release”. Thus the formula (αRβ) is satisfied
at some timepoint if and only if the formula β is satisfied until the formula α
is satisfied at some timepoint, or forever if such a state does not exist.

Definition 1.1.13. Let ϕ be a LPLTL-formula, then:

1. The formula ϕ is said to be satisfiable in a PLTL-model M = (N, π),
if there exists a state n ∈ N such that n ∈‖ϕ‖M, we then writeM, n |= ϕ,
or simply n |= ϕ.

2. The formula ϕ is said to be valid in a PLTL-model M = (N, π), if we
have for all n ∈ N that M, n |= ϕ, we then write M |= ϕ.

3. The formula ϕ is said to be valid, if we haveM |= ϕ for all PLTL-models
M = (N, π), we then write |= ϕ.

Definition 1.1.14. Let Γ be a LPLTL-sequent, then:

1. The sequent Γ is said to be satisfiable in a PLTL-model M = (N, π),
if there exists a state n ∈ N such that n |=

∨
Γ, in this case we write

M, n |= Γ, or simply n |= Γ.

2. The sequent Γ is said to be valid in a PLTL-model M = (N, π), if we
have for all n ∈ N that M, n |=

∨
Γ, we then write M |= Γ.

11

3. The sequent Γ is said to be valid, if we have M |= Γ for all PLTL-models
M = (N, π), we then write |= Γ.

The definitions of satisfaction and validity for LRPLTL are analogue.
If we have for a formula not n |= ϕ, then we write n 6|= ϕ. Analogously we
define M 6|= ϕ, 6|= ϕ, n 6|= Γ, M 6|= Γ and 6|= Γ.

Lemma 1.1.15. For all states n in a PLTL-modelM and for all LPLTL-formulas
ϕ we have that

n |= ϕ ⇔ n 6|= ¬ϕ.

Proof. The proof goes by induction on rank(ϕ). In the case where rank(ϕ) = 0,
then ϕ must be equal to a positive atomic proposition p or to a negative atomic
proposition ∼p. We have n |= p if and only if n ∈ π(p). But n ∈ π(p) if and
only if n 6∈ N \ π(p) = ‖ ∼p‖M. Thus we have n |= p if and only if n 6|=∼p.
The case for ∼p is analogue.
In the case where rank(ϕ) is a successor ordinal, then ϕ must be of the form
α ∧ β, α ∨ β and ©α. We have n |= α ∧ β if and only if n |= α and n |= β. By
induction hypothesis this is the case if and only if n 6|= ¬α and n 6|= ¬β, and
so n 6|= ¬α ∨ ¬β, but this is the same as n 6|= ¬(α ∧ β). The case for α ∨ β is
analogue. If we have n |=©α, then by the semantics of the nexttime operator
this is the case if and only if n + 1 |= α and therefore by induction hypothesis
if and only if n + 1 6|= ¬α. Thus n |= ©α if and only if n 6|= ©¬α what is the
same as n 6|= ¬© α.
Then in the case where rank(ϕ) is a limit ordinal, ϕ must be of the form �α, ♦α
or αUβ. We have n |= �α if and only if n + l |= α for all l ∈ N. By induction
hypothesis that is n |= �α if and only if n + l 6|= ¬α for all l ∈ N. But this
is equivalent to n 6|= ♦α what is the same as n 6|= ¬�α. The case for ♦α is
analogue. Suppose that n |= (αUβ) then there is a natural number m ≥ n such
that m |= β and for all n′ with n ≤ n′ < m we have n′ |= α. From this we get by
induction hypothesis that there is a natural number m ≥ n such that m 6|= ¬β
and for all n′ with n ≤ n′ < m we have n′ 6|= ¬α. Now choose the smallest such
m ≥ n. As we have m 6|= ¬β we get n 6|= �¬β. If m = n then clearly we have
n 6|= ¬βU(¬α ∧ ¬β). If m > n, then we have for all n′ with n ≤ n′ < m that
n′ |= ¬β and m 6|= ¬α ∧ ¬β, but then we have as well n 6|= ¬βU(¬α ∧ ¬β).
Therefore we have shown that

n |= (αUβ) ⇒ n 6|= (¬βU(¬α ∧ ¬β)) ∨�¬β.

But as the right side of the implication is exactly the definition of the negation
for until-formulas, we get what we want

n |= (αUβ) ⇒ n 6|= ¬(αUβ).

12

For the other direction, by contraposition we assume n 6|= (αUβ). If there is no
n′ > n such that n′ |= β, then n |= �¬β and we are done. Suppose there is a
least natural number l such that n+ l |= β, then for all n′ with n ≤ n′ < n+ l
we have n′ |= ¬β and there must be a natural number n′′ with n ≤ n′′ < n + l
such that n′′ |= ¬α. But from this we get n |= ¬βU(¬α ∧ ¬β) and so we are
done.

The corresponding lemma for LRPLTL-formulas can be proven analogue.

1.2 Tait-Style Sequent Calculi

In this work we will often use Tait-style sequent calculi. Let K stand for such an
arbitrary calculus, then it is used to derive finite sets (or multisets) of formulas
of a given language L. These finite sets (or multisets) are called sequents. The
rules of inference of K are configurations of the form

Γi, γi i ∈ I
Γ, γ

(θ)

The sequents Γi, γi above the line are called the premisses of the rule θ, the K-
sequent Γ, γ below the line is called the conclusion of the rule θ. If I = ∅ then
the rule (θ) does not have any premisses, such rules are denoted as axioms. The
particular formula γ displayed explicitly in the conclusion of the rule is called
the principle or distinguished formula. The active formulas of the rule
are those formulas that are explicitly shown in the rule, that is, the formulas γi
and γ. The formulas contained in the sequents Γ and Γi are called side formulas.

Definition 1.2.1. For all sequents Γ and all ordinal numbers α, we define `α Γ
by induction on α:

1. If Γ is an axiom of K, then we have K `α Γ for all ordinals α.

2. If there is a Tait rule (θ) with conclusion Γ such that for all premisses
Γi i ∈ I we have K `αi Γi with αi < α, then we have K `α Γ.

Hence the meaning of the expression K `α Γ is that there exists a proof for the
K-sequent Γ in the system K whose depth is bounded by the ordinal number
α. We write K ` Γ if there is an ordinal number α such that K `α Γ. The
prooflength is the minimal α such that we have K `α Γ. We write K `<α Γ if
there is an ordinal number β < α such that K `β Γ.

13

Definition 1.2.2. Given a language L, a class of models C for that language
and a calculus K, then a Tait rule of the form

Γi, γi i ∈ I
Γ, γ

(θ)

is said to be sound with respect to C if for all models M∈ C we have

M |= Γi, γi for all i ∈ I ⇒ M |= Γ, γ.

If C is clear from the context we will just say that a rule (θ) is sound.

14

Chapter 2

Proof-Systems for PLTL

2.1 Hilbert-style Calculi and Calculi with Cut

Lichtenstein and Pnueli present in [9] a sound and complete Hilbert-style ax-
iom system for PLTL. In a Hilbert-style system a finite list of axiom-schemas
determines which formulas are taken as axioms and so by definition as true.
These axioms together with a finite number of inference rules constitute the
logic. Speaking more exactly in a Hilbert-style system a proof of a formula ϕ
is a finite sequence of formulas ϕ1, ϕ2, . . . , ϕn = ϕ such that every ϕi is either
an axiom or it is the result of an application of an inference rule to some of the
previous formulas ϕj j < i. If there is a proof for a formula ϕ, then ϕ is said
to be a theorem. The logic of a given Hilbert-style axiom system then consits
in the set of theorems.

The Hilbert-style system for PLTL given by Pnueli and Lichtenstein contains
the following axiom-schemas, that is, for arbitrary LPLTL-formulas ϕ and ψ the
following formulas are valid:

• A0. ϕ, if ϕ is the substitution instance of a propositional tautology.

• A1. ` ©¬ϕ↔ ¬© ϕ

• A2. ` ©(ϕ→ ψ)→ (©ϕ→©ψ)

• A3. ` �(ϕ→ ψ)→ (�ϕ→ �ψ)

• A4. ` �(ϕ→©ϕ)→ (ϕ→ �ϕ)

• A5. ` (ϕUψ)↔ (ψ ∨ (ϕ ∧ (ϕUψ)))

• A6. ` (ϕUψ)→ ♦ψ

15

Note that A0. also includes temporal instances of tautologies; for example also
the formula ¬�α ∨ �α would be the instance of a propositional tautology. A
detailed comment on the axioms can be found in [9]. The system contains the
following rules of inference:

• (NEC©) is the necessitation rule for the next-operator ©

α
©α (NEC©)

.

• (NEC�) is the necessitation rule for the always-operator �

α
�α

(NEC�)
.

• (MP) is the usual rule for the modus ponens

ϕ→ ψ ϕ

ψ
(MP)

.

If ϕ is a theorem of the given Hilbert-style axiom system, then we write HS ` ϕ.
It is an easy exercise to check the soundness of the axioms and of the inference
rules. More difficult is a proof of completeness: The proof in [9] is based on
a decision procedure using a semantic tableau that allows to check for the
satisfiability of a given formula. The crux is that for checking the satisfiability
it is enough to check for the existence of so called “fulfilling paths” on maximal
strongly connected graphs that are constructed by the tableau procedure. Thus
the following theorem holds for the Hilbert-style axiom system:

Theorem 2.1.1. For every LPLTL-formula ϕ we have

HS ` ϕ ⇔ |= ϕ.

From a proof theoretic standpoint the Hilbert-style system above has the dis-
advantage that Modus Ponens is like a cut rule. Any system containing an
(unrestricted) cut rule makes it impossible to go for a systematic proof-search:
Given an instance of an application of a cut rule, then there is no way to step
back from the conclusion to its premisses. In the premisses there is always a
formula that does not appear in the conclusion, therefore to check for all pos-
sible premisses in an application of (MP) would require to check for infinitely
many premisses. Thus, the system above does not guide us from a formula ϕ to
a proof of this formula. It is in some way forward and not backward oriented:
That is, we always start with axioms and say because ϕ1, . . . , ϕn are theorems

16

we can infer that also ϕ must be a theorem, but there is no way back from
the conclusion ϕ to its premisses. The structure of the formula that should be
proven does not come into play or at least not systematically. Proofs in Hilbert-
style systems require experience about the best way to handle the axioms and
inference rules and they force us to make proofs sometimes by trial and error.
In the literature also sequent-systems for PLTL can be found that contain a cut
rule. Such as in Brünnler and Steiner [2] where the cut rule is inbuilt in the
induction rule for formulas �α:

Γ, ψ ¬ψ,©ψ ¬ψ, α
Γ,�α

(�− Ind)
.

Similarly we find in Peach [10] a cut rule hidden in the induction rule for the
weak-until-operator W1:

Γ, ψ ¬ψ,©(β ∨ (α ∧ ψ))

Γ, αWβ
(R− Ind)

.

2.2 Tableau Calculi

According to Schwendimann [12] the standard approach to work with tableaux
for PLTL proceeds in two steps: There is a first step to create a graph fol-
lowed by a second step to check for the fulfillment of the eventuality formulas.
This second step usually involves an analysis of the strongly connected compo-
nents contained in the graph. Work of this kind can be found in Pnueli and
Lichtenstein [9], but as well in Wolper [14]. A different approach is found in
Schwendimann [12], where a tableau method is given that performs the second
step locally.
Here we present a tableau calculus that follows the standard method and is
worked out in detail by Dixon, Fisher and Wooldridge in [5]. There a tableau-
algorithm is presented that in a first step expands a structure in a way that
later maybe a model can be extracted. Then in a second step this structure is
contracted such that states are deleted that can not be part of a model. Finally
this algorithm amounts to a decision procedure for the satisfiability of a given
formula ϕ.

1The weak-untilW is similar to the regular until, but differs from that insofar a formula of
the form (αWβ) does not require that in the future the formula β must be satisfied. Formulas
containing a weak-until can be introduced as the abbreviation

(αWβ) := (αUβ) ∨�α.

17

The tableau system presented in [5] is in fact designed for a combined logic of
knowledge and time (resp. belief and time), that is, it extends the standard
decision procedure for LPLTL-formulas to a language that contains an additional
operator for knowledge (resp. for belief). We just have a closer look at the
temporal part of this tableau system.

2.2.1 A Tableau-Based Decision Procedure

The tableau procedure is defined with respect to the language LPLTL. It makes
use of the following tableau rules for the classical and temporal operators:

Tableau rules:
α ∧ β
α, β

(∧)
α ∨ β
α | β

(∨)

�ϕ
ϕ,©�ϕ

(�)
♦ϕ

ϕ | ¬ϕ ∧©♦ϕ
(♦)

ϕUψ
ψ | ¬ψ ∧ ϕ ∧©(ϕUψ)

(U)

These rules will be used to construct the set of propositional tableaux.
There is need to ensure that the states constructed in the tableau procedure
are consistent, this is done by checking if a state is proper or not.

Definition 2.2.1. A set of LPLTL-formula ∆ is said to be proper if

ϕ ∈ ∆ ⇒ ¬ϕ 6∈ ∆.

Let us now give the algorithm for the construction of the set of propositional
tableaux for a given set of formulas ∆. There are two steps in the algorithm:
First the tableau rules above are used to expand the set F = {∆} to a set
F = {∆1, . . . ,∆n}. In a second step improper sets ∆i ∈ F are deleted.

The Set of Propositional Tableaux of ∆: Start with the set F = {∆} and
apply the next step until no further application is possible, then move to step
two.

1. For any proper ∆′ ∈ F , we take a formula ϕ ∈ ∆′ on which one of the
tableau rules has not yet been applied, then

• If ϕ = α ∧ β, then

F = F \ {∆′} ∪ {∆′ ∪ {α, β}}

18

• If ϕ = �α, then

F = F \ {∆′} ∪ {∆′ ∪ {α,©�α}}

• If ϕ = ♦α, then

F = F \ {∆′} ∪ {∆′ ∪ {ϕ}} ∪ {∆′ ∪ {¬ϕ ∧©♦ϕ}}

• If ϕ = αUβ, then

F = F \ {∆′} ∪ {∆′ ∪ {ψ}} ∪ {∆′ ∪ {¬ψ ∧ ϕ ∧©(ϕUψ)}}

2. Every improper ∆i ∈ F is deleted.

The set F = {∆1, . . . ,∆n} resulting from the application of this algorithm to ∆
is called the set of propositional tableaux of ∆. Note that a tableau rule is
only applied if it changes the set of propositional tableaux. For example there
is no iterated application of the (�)-rule when just the same sets are obtained.

Given we can construct the set of propositional tableaux for a given set ∆, a
further algorithm can be defined that allows to check for the satisfiability of a
given formula ϕ0. This algorithm will construct a tableau structure from which
a LPLTL-model for ϕ0 can be extracted.

Definition 2.2.2. We say a tableau structure is a triple H = (S, η, L),
where:

• S is a set of states.

• η ⊂ S×S is a binary relation, that is interpreted as the nexttime-relation
on S.

• L : S → P(Fml(LPLTL)) is a function that labels each state with a set of
formulas.

We give in detail the algorithm for the construction of the tableau structure
H = (S, η, L) for a given formula ϕ0.

Tableau Algorithm: Given the LPLTL-formula ϕ0 , then proceed by the fol-
lowing steps.

1. Initialization:

First, set
S = η = L = ∅.

Construct F , the set of propositional tableaux for {ϕ0}. For each ∆i ∈ F
create a new state si and let L(si) = ∆i and S = S ∪ {si}. For each
∆i ∈ F proceed with the next step until none apply.

19

2. Creating ©-successors:

For any state s labelled by formulas L(s), where L(s) is proper and a
propositional tableau, if ©ψ ∈ L(s) create the set of formulas
∆ =©(L(s))2. For each ∆ construct F the set of propositional tableaux
for ∆, and for each member ∆′ ∈ F if there is a state s′′ ∈ S such that
∆′ = L(s′′) then add (s, s′′) to η, otherwise add a state s′ to the set of
states , labelled by L(s′) = ∆′ and add (s, s′) to η.

3. Contraction:

Continue deleting any state s where:

• There is a ♦ϕ ∈ L(s) such that there is no s′ with (s, s′) ∈ η∗ and
ϕ ∈ L(s′).3

• There is ©ϕ ∈ L(s) such that there is no s′ with (s, s′) ∈ η.

Continue with this step until no further deletions are possible.

It is important that expansion steps and deletion steps are not interleaved, oth-
erwise states may be wrongly deleted. For a formula ϕ0 the tableau algorithm
is said to be successful if the constructed structure contains a state s such
that ϕ0 ∈ L(s). The following theorem relates the notion of satisfaction to the
tableau algorithm.

Theorem 2.2.3. If ϕ0 is a LPLTL-formula then ϕ0 is satisfiable if and only if the
tableau algorithm on ϕ0 returns a structure H = (S, η, L) such that ϕ0 ∈ L(s).

In the proof of this theorem it is shown that from the constructed tableau
structure H = (S, η, L) for ϕ0 an ordinary LPLTL-model M = (N, π) for ϕ0

can be extracted. The set of states S together with the successor relation η
defines a timeline N , whereas the labelling function L can be used to determine
a valuation function π. This is worked out in full detail in [5].
That the tableau algorithm establishes effectively a decision procedure there is
need to make sure that it terminates, this is stated by the following theorem.

2We follow the convention: ©(L(s)) := {ϕ | © ϕ ∈ L(s)}.
3Given the relation η ⊂ S × S we define:

(a) The transitive hull of η is given by:

(x, y) ∈ η+ :⇔ ∃n ≥ 0 ∃x = x1, . . . , xn = y ∈ S such that (xi, xi+1) ∈ η.

(b) Whereas the transitive closure of η is:

(x, y) ∈ η∗ :⇔ x = y or (x, y) ∈ η+.

20

Theorem 2.2.4. If ϕ0 is a LPLTL-formula, then the tableau algorithm applied
to ϕ0 terminates.

2.2.2 From Tableau to Sequent Calculi

Often a tableau can easily be converted into a sequent calculus. Unfortunately
this is not true for PLTL and it is hard to see how a corresponding sequent
calculus to a tableau like the one presented above should look like. To give
the corresponding sequent-system for this tableau would require us not only to
invert the tableau rules, but also to simulate the deletion process that is involved
in the tableau algorithm. It is far from clear how this deletion process can be
incorporated in a sequent calculus that can still be understood as “classical”.
Although, it is elucidating to have a closer look to what happens when we
are just standardly inverting the rules of the tableau presented in [5]. For the
eventual operator ♦ and the �-operator we would get as corresponding sequent-
rules the unfolding rules for the fixpoints:

Γ, α,©♦α
Γ,♦α

(♦)
Γ, α Γ©�α

Γ,�α
(�)

.

Brünnler and Lange show in [3] that a system containing a �-rule of this form
can lead into a branch that never ends on an axiomatic sequent of the form
Γ, p,∼p. This case occurs when in the countermodel construction in the case of
an unfolding of a formula �α always the right side of the premisses is chosen.
For example suppose we want to give a proof of the induction axiom

ϕ ∧�(ϕ→©ϕ)→ �ϕ.

A proof-tree could be of the form:

♦(ϕ ∧©¬ϕ),¬ϕ,ϕ

©♦(ϕ ∧©¬ϕ), ϕ,¬ϕ,©�ϕ

♦(ϕ ∧©¬ϕ),¬ϕ,�ϕ
©♦(ϕ ∧©¬ϕ),©¬ϕ,¬ϕ,©�ϕ

(©)

©♦(ϕ ∧©¬ϕ), ϕ ∧©¬ϕ,¬ϕ,©�ϕ
(∧)

♦(ϕ ∧©¬ϕ),¬ϕ,©�ϕ
(♦)

♦(ϕ ∧©¬ϕ),¬ϕ,�ϕ (�)

In this case the sequent appearing in the root is repeated in the branch on the
right. This proof can infinitely often be repeated and therefore there would be
a branch in the proof-tree that does not close. So there is need for an additional
criteria to deal with cycling branches of this form. An obvious answer would be
to say a branch is closed if we have established a cycle, that is, we would call
a branch closed after the first repetition of a sequent. As Brünnler and Lange

21

show this would lead to an unsound calculus, they present a counterexample of
a derivation of a formula that is not valid:

�ϕ,©♦�ϕ
♦�ϕ

(♦)

ϕ,©♦�ϕ
(©)

�ϕ,©♦�ϕ
�ϕ,♦�ϕ

(♦)

©�ϕ,©♦�ϕ
(©)

�ϕ,©♦�ϕ
(�)

This indicates that cycles involving lowest fixpoints as ♦ϕ and cycles involving
greatest fixpoints �ϕ behave in a different manner. This point will be made
clear in the next section where the system DHL will be presented that allows
to check systematically for cycles in a proof-tree. We will see that in fact it is
sufficient to check for cycles that occur by the unfolding of greatest fixpoints.

2.3 The non-wellfounded System DHL

Dax, Hofmann and Lange exploit in [4] properties of cycling sequents in infinite
branches to develop a sound and complete proof-system for the linear time µ-
calculus. We will refer to this system henceforth as the system DHL. Instead
of particular temporal operators the language of the linear time µ-calculus Llinµ
contains greatest and least fixpoint operators to construct arbitrary fixpoints.
The language Llinµ can then be understood as the µ-calculus interpreted over
the PLTL-models introduced in the first chapter. As LPLTL-formulas containing
temporal connectives can be viewed as fixpoints, PLTL can be seen as a fragment
of the linear time µ-calculus. Hence the system DHL for the linear time µ-
calculus is relevant for our work insofar it induces also a proof-system for PLTL.
In this section we are going to have a closer look at the system DHL, especially
at the use of so called threads in order to proof completeness.

2.3.1 Syntax and Semantics

Definition 2.3.1. The alphabet of the language Llinµ contains the following ba-
sic syntactical symbols:

1. An enumerable number of positive atomic propositions p1, p2, p3, . . .

2. An enumerable number of propositional variables x1, x2, x3, . . .

3. A symbol ∼.

4. The connectives ∧ (and), ∨ (or) and © (next).

5. The operators µ and ν to construct least, resp. greatest fixpoints.

22

6. Parentheses, brackets, dots and commas.

Definition 2.3.2. The Llinµ -formulas are defined inductively in the following
way:

1. Every positive atomic proposition p and every negative atomic proposition
∼p is Llinµ -formula.

2. Every positive propositional variable x and every negative propositional
variable ∼x is Llinµ -formula.

3. If ϕ and ψ are Llinµ -formulas then (ϕ ∧ ψ) and (ϕ ∨ ψ) are Llinµ -formulas.

4. If ϕ is a Llinµ -formula, then ©ϕ is a Llinµ -formula.

5. If ϕ is a Llinµ -formula, then νx.ϕ(x) and µx.ϕ(x) are Llinµ -formulas.

Definition 2.3.3. A finite set of Llinµ -formulas will be called a Llinµ -sequent.

If clear from the context we will often talk just about formulas and sequents,
rather than Llinµ -formulas and Llinµ -sequents. We will often use the symbol σ
meaning that we have either ν or µ. The substitution of all occurrences of a
propositional variable x by a formula ψ is written as ϕ[ψ/x].
Negation ¬ϕ for any Llinµ -formula ϕ is introduced by definition, where we make
use of de Morgan’s laws and of the duality of µ and ν.

Definition 2.3.4. The negation ¬ϕ of a Llinµ -formula ϕ is inductively defined
as follows:

1. If ϕ is a positive atomic proposition p, then ¬ϕ :=∼p; if ϕ is a negative
atomic proposition ∼p, then ¬ϕ := p.

2. If ϕ is a positive propositional variable x, then ¬ϕ :=∼x; if ϕ is a negative
propositional variable ∼x, then ¬ϕ := x.

3. If ϕ is of the form (α ∧ β), then ¬ϕ := (¬α ∨ ¬β); if ϕ is of the form
(α ∨ β), then ¬ϕ := (¬α ∧ ¬β).

4. If ϕ is of the form ©α, then ¬ϕ :=©¬α.

5. If α is of the form µx.ϕ(x), then ¬ϕ := νx.¬ϕ(¬x)

6. If α is of the form νx.ϕ(x), then ¬ϕ := µx.¬ϕ(¬x)

The connectives → and ↔ can now be defined in the usual way by the use of
¬ and ∧.

23

Definition 2.3.5. The set of subformula sub(ϕ) for a Llinµ -formula ϕ is
defined inductively:

1. If ϕ is a positive atomic proposition p, then sub(ϕ) := {p}; if ϕ is a
negative atomic proposition ∼p, then sub(∼p) := {∼p}.

2. If ϕ is a positive propositional variable x, then sub(ϕ) := {x}, if ϕ is a
negative propositional variable ∼x, then sub(ϕ) := {∼x}

3. If ϕ is of the form (α ∧ β), (α ∨ β) or (α Uβ), then
sub(ϕ) := {ϕ} ∪ sub(α) ∪ sub(β).

4. If ϕ is of the form µx.α(x) or νx.α(x), then sub(ϕ) := {ϕ} ∪ sub(α)

Definition 2.3.6. The semantics for the system DHL is defined relative to a
linear time model T = (M,V), where:

• M is an ordinary PLTL-model M = (N, π).

• V is a valuation function V : X → P(N) for the propositional variables.

Definition 2.3.7. Given a linear time model T = (M,V), the set ‖ϕ ‖MV of
states satisfying the formula ϕ is defined inductively as follows:

1. If ϕ = p, then ‖p‖MV = π(p).

2. If ϕ =∼p, then ‖∼p‖MV = N \ π(p).

3. If ϕ = x, then ‖x‖MV = V(x).

4. If ϕ =∼x, then ‖∼x‖MV = N \ V(x).

5. If ϕ = (α ∧ β), then ‖(α ∧ β)‖MV =‖α‖MV ∩ ‖β ‖MV .

6. If ϕ = (α ∨ β), then ‖(α ∨ β)‖MV =‖α‖MV ∪ ‖β ‖MV .

7. If ϕ =©α, then ‖©α‖MV = {n | n+ 1 ∈‖α‖MV }.

8. If ϕ = µx.α(x), then ‖µx.α(x)‖MV =
⋂
{S ⊂ N | ‖α‖MV[x:=S]⊆ S}.

9. If ϕ = νx.α(x), then ‖νx.α(x)‖MV =
⋃
{S ⊂ N | S ⊆‖α‖MV[x:=S]}.

Where V [x := S] is the valuation function that maps x on S and is identical to
V in all the other cases.

24

Definition 2.3.8. Given a PLTL-model M = (N, π) and a valuation function
V for the propositional variables, then a Llinµ -formula ϕ is said

1. to be satisfiable in the linear time model T = (M,V) if there is a
state n ∈ N such that n ∈‖ϕ‖MV , we then write T , n |= ϕ.

2. to be valid in the linear time model T = (M,V), if for all states
n ∈ N we have T , n |= ϕ, we then write T |= ϕ.

3. to be valid if for all linear time models T = (M,V) we have T |= ϕ, we
then write |= ϕ.

Definition 2.3.9. Given a PLTL-model M = (N, π) and a valuation function
V for the propositional variables, then a Llinµ -sequent Γ is said

1. to be satisfiable in T = (M,V), if there is a state n such that
n ∈ ‖

∨
Γ‖MV , we then write T , n |= Γ.

2. to be valid in T = (M,V), if for all states n ∈ N , we have T , n |= Γ,
we then write T |= Γ.

3. to be valid, if for all linear time structures T = (M,V) we have T |= Γ,
we then write |= Γ.

2.3.2 Proof Definition

A Tait-style proof system for DHL can be established by the following rules of
inference:

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ (∧)
Γ, ϕ, ψ

Γ, ϕ ∨ ψ (∨)

Γ
©Γ,∆

(©)
Γ, ϕ[σx.ϕ/x]

Γ, σx.ϕ
(σ)

Definition 2.3.10. A pre-proof for ϕ is a possibly infinite tree whose nodes
are labeled with sequents, whose root is labeled with ϕ and which is built according
the proof rules (∧), (∨), (©), (σ).

Definition 2.3.11. Let Γ be a set of Llinµ -formulas. The Fischer-Ladner
Closure FL(Γ) of Γ is defined to be the smallest set such that:

1. Γ ⊆ FL(Γ).

2. If (α ∧ β) or (α ∨ β) is in FL(Γ), then α and β are in FL(Γ).

25

3. If ©α is in FL(Γ), then α is in FL(Γ).

4. If µx.ψ(x) is in FL(Γ), then ψ(x)[µx.ψ(x)/x] is in FL(Γ).

5. If νx.ψ(x) is in FL(Γ), then ψ(x)[νx.ψ(x)/x] is in FL(Γ).

By Fischer and Ladner [6] the cardinality |FL(Γ)| is bound by the syntactical
length of the formulas ϕ ∈ Γ.
In the sequel we are going to introduce the notion of a thread in a pre-proof
tree.

Definition 2.3.12. Given a rule application (θi) occurring in a pre-proof for
ϕ0. We define a connection relation Con(θi) ⊂ FL({ϕ0}) × FL({ϕ0}) as
follows, we have (ϕ, ψ) ∈ Con(θi) if:

1. ϕ = ψ is a side formula of (θi).

2. ϕ is an active formula in the conclusion and ψ is an active formula in the
premise of (θi).

Definition 2.3.13. Given a branch Γ0,Γ1, . . . in a pre-proof tree 4, let (θi) be
the rule application that infers Γi from Γi+1. A thread in this branch is a
sequence of formula ϕ0, ϕ1, . . . such that (ϕi, ϕi+1) ∈ Con(θi) and ϕi ∈ Γi for
all i.

Definition 2.3.14. We say that a thread ϕ0, ϕi, . . . is ν-thread if there is a
νx.ψ(x) ∈ FL(ϕ0) such that ϕi = νx.ψ(x) for infinitely many i ∈ N and for all
µy.ψ′(y) s.t. νx.ψ ∈ sub(µy.ψ′(y)) there are only finitely many ϕi = µy.ψ′(y).
A µ-thread is defined analogously.

To ensure that the proof-definition is well-defined the following lemma is given
in [4].

Lemma 2.3.15. Every thread is either a ν-thread or a µ-thread.

Proofs will now be defined as possibly infinite trees in which the infinite branches
satisfy some global condition.

Definition 2.3.16. A proof for ϕ0 is a pre-proof such that every finite branch
ends in a sequent Γ, p,∼p , and every infinite branch contains a ν-thread. If
there is a proof for ϕ0 we write DHL ` ϕ0.

Theorem 2.3.17. For every Llinµ -formula ϕ, we have

DHL ` ϕ ⇔ |= ϕ

Proof. The proof can be found in [4].

4When talking about branches we always have a bottom up perspective on a proof tree,
that is, in the branch Γ0,Γ1 . . . the sequent Γ0 is the root of the proof-tree.

26

2.3.3 Relating PLTL to DHL

Formulas of LPLTL containing temporal operators correspond to fixpoints-formulas
in the language Llinµ . For example the LPLTL-formula �ϕ can be interpreted as
the greatest fixpoint of the Llinµ -formula ϕ ∧ ©x. Therefore the Llinµ -formula
corresponding to the always-operator would be

ν.ϕ ∧©x.

Analogue the LPLTL-formula ♦ϕ corresponds to the formula

µ.ϕ ∨©x

and the LPLTL-formula ϕUψ would be interpreted as

µ.(ψ ∨ (ϕ ∧©x)).

Therefore LPLTL can be viewed as a fragment of the linear-time µ-calculus. In
this spirit the system DHL restricted to the unfolding rules for the fixpoints
corresponding to �ϕ, ♦ϕ and ϕUψ induces a proof system for PLTL that is
sound and complete. The problem about this restriction of DHL to PLTL is
that the resulting proof system is not wellfounded and therefore not “classical”
in our sense.
Still there are interesting observations to make that might be helpful to give a
finitary, cut-free and wellfounded calculus for PLTL. Suppose we are given a
restriction of DHL as indicated above, that is, we have a calculus for the language
LPLTL that contains apart from the rules for the classical connectives and a rule
for the next time operator the unfolding rules for the temporal operators U , ♦
and �:

Γ, α ∧©�α
Γ,�α

(�)

Γ, (α ∧©(αUβ)) ∨ β
Γ, αUβ (U)

Γ, α ∨©♦α
Γ,♦α

(♦)

Adapting the proof-definition of DHL to this fragment would amount to say that
in a proof-tree either a branch will end on a regular axiom of the form Γ, p,∼p or
either it will be ¡ and contain a thread belonging to a greatest fixpoint. As both
U and ♦ generate only lowest fixpoints, we are just required to check for the
existence of threads corresponding to �-formulas, let us call them �-threads.
This says, given an infinite branch Γ0,Γ1, . . . then there must be a formula �α
occurring infinitely often in a thread of this branch. Therefore there must be
infinitely many Γk with k ∈ N on this branch such that

27

Γk = ∆k,�α.

We know that all ∆k ⊆ FL(Γ0) and we know as well that |FL(Γ0)| < ∞. But
from this we infer by an easy combinatorial exercise that on the branch there
must be sequents Γi and Γj with i < j such that

Γi = Γj = ∆i,�α.

That is, on infinite branches containing a �-thread there must be a repetition
of at least one sequent. This fact is similarly also stated in Studer [11].
In the next section a system will be presented that uses theses observations
about the cycling behavior of sequents to give a finitary calculus for PLTL.

2.4 The Labelled System LT1

Finally let us have a look at the sequent calculus LT1 that is based on the system
DHL and is truly finitary and cut free. It was developed by Brünnler and Lange
and is found in [3]. As we have seen in the last section the completeness of
DHL depends on the existence of cycling sequents on infinite branches. Having
this in mind Brünnler and Lange present a proof-system for PLTL that closes
infinite branches after the first repetition of a cycling sequent.
The system LT1 makes use of the language LR+

PLTL: That is, the language LRPLTL

first reduced by the temporal operators for eventual ♦ and always � and then ex-
tended by labelled or how Brünnler and Lange call it annotated release-formulas.
These are release-formulas that possess a subscript H which stands for a finite
set of sequents. Formally they are defined in the following way: If ψ and ϕ are
LR+

PLTL-formulas, then also

(ϕRHψ) and © (ψRHϕ) are LR+
PLTL-formulas

where the label or annotation H is a finite set of finite sets of formulas. In other
words, a labelled formula in LT1 is a pair of a label H and a formula ϕRψ, resp.
©(ϕRψ).
The fundamental idea is that the label H is used to store all the contexts on the
branch where an unfolding rule to a release formula has been applied. In this
way it becomes possible to detect if there is a cycling sequent on the branch
or not, if yes then the branch will be closed. As shown in DHL there is only
need to establish the existence of cycles generated by the unfolding of greatest
fixpoints. Therefore there is no need to annotated formulas corresponding to
lowest fixpoints.

Definition 2.4.1. A LR+
PLTL-sequent is said to be a finite set of LR+

PLTL-formulas
that contains at most one annotated formula.

28

The interpretation of LR+
PLTL-formulas is the standard semantics presented in the

first chapter. Whereas the semantics of an annotated formula (ϕRHψ) is given
by the interpretation of its corresponding formula

(ϕ ∨H)R(ψ ∨H)

where
H :=

∧
γi∈Γ1

¬γi ∨ · · · ∨
∧
γi∈Γn

¬γi Γi ∈ H.

The system LT1 is determined by the following rules:

I. Axioms of LT1:

Γ, p,∼p (Ax.1)
Γ, ϕRH,Γψ

(Ax.2)

II. Classical rules of LT1:

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ (∧)
Γ, ϕ, ψ

Γ, ϕ ∨ ψ (∨)

Γ, (ϕ ∧©(ϕUψ)) ∨ ψ
Γ, ϕUψ (U)

Γ, ψ ∧ (©(ϕRψ) ∨ ϕ)

Γ, ϕRψ (R)

Γ
©Γ,∆

(©) © Γ := {©γ | γ ∈ Γ}

III. Cycle testing rules of LT1:

Γ, ϕR∅ψ
Γ, ϕRψ (foc)

Γ, ψ ∧ (©(ϕRH,Γψ) ∨ ϕ)

Γ, ϕRHψ
(RNH)

Let us have a closer look at the non standard axioms and rules that are intro-
duced to deal with cycling sequents:

• (RNH): In a top down reading of the proof-tree this rule eliminates se-
quents that are contained in the label H. In the more intuitive bottom
up reading of the proof tree this rule stores the side formulas that are
involved in every application of an unfolding of a release formula. Note

29

that the rule looks like the ordinary unfolding rule (R) except that the
release formula is labelled by all the sets that occurred as side formulas
on this branch while applying the unfolding rule to the release formula.
Remember that the crucial point is to close a branch Γ0,Γ1 . . . after we
have found a repetition of a sequent on it, that is, if we have found Γi,Γj
with i < j such that

Γi = Γj = ∆, ϕRψ.

As the release formula in a sequent contains all the information about
former applications of the unfolding rule, it enables us to check for such
repetitions of sequents on the branch.

• (foc): This rule says that if we have a proof of a release formula annotated
with an empty label (ϕR∅ψ), then we have a proof of the label-free formula
(ϕRψ). In a top-down reading of the proof-tree this means that if we were
able to eliminate all sets contained in the annotation by sufficiently many
applications of the unfolding rule, then we are allowed to switch from an
annotated release formula to an ordinary release formula.

• (Ax.2): This additional axiom is needed to close a branch if we were able
to establish the existence of a cycle.

The labelled system LT1 is sound and complete for sequents that do not contain
annotated formulas:

Theorem 2.4.2. Let Γ be a LT1-sequent such that it does not contain an an-
notated formula, then we have

LT1 ` Γ ⇔ |= Γ.

30

Chapter 3

The Infinitary Calculus K∞

The core element about an infinitary system for PLTL is that it makes use of
an ω-rule, that is, a rule containing infinitely many premisses allowing to derive
a sequent containing a formula �α. There are several ways such an infinitary
rule can be formulated, a prominent version is

Γ,©kα (∀k ∈ N)

Γ,�α
(ω)

.

Where the expression ©kα is defined inductively as

©kα :=

{
α if k = 0
©(©k−1α) if k > 0.

A sound and complete proof-system containing an ω-rule of this form is pre-
sented by Brünnler and Steiner in [2]. The infinitary system K∞ presented here
is based on work by Jäger and Alberucci in [1] and by Jäger, Studer and Kretz
in [7]. The ω-rule it contains differs from the one above as it is not formulated
by the ©-operator, but with respect to the approximants of a formula �α.

In the following we present the relevant Tait-style inference rules for the system
K∞. The calculus is defined with respect to the language LPLTL, where we are
working with LPLTL-sequents.

I. Axiom of K∞:

Γ, p,∼p (Ax)

31

II. Classical rules of K∞:

Γ, α Γ, β

Γ, α ∧ β (∧)
Γ, α, β

Γ, α ∨ β (∨)

Γ
©Γ,∆

(©) © Γ := {©γ | γ ∈ Γ}

Γ, ((α ∧©(αUβ)) ∨ β)

Γ, αUβ (U)
Γ, (α ∨©♦α)

Γ,♦α
(♦)

III. ω-rule of K∞:

Γ, (©>∧ α)n (∀n ∈ N)

Γ,�α
(ω −�)

Theorem 3.0.3. Every K∞-rule is sound.

Proof of (Ax): Choose any PLTL-model M = (N, π), clearly in every state n
either p or ∼p must hold, therefore the (Ax) must be valid.

Proof of (∧): Choose any PLTL-model M = (N, π). By assumption we have
for any state n we have M, n |= Γ, α and M, n |= Γ, β, therefore by definition
of the semantics for (∧) we have M, n |= Γ, α ∧ β and so we are done.

Proof of (∨): Choose any PLTL-model M = (N, π). By assumption for any
state n we haveM, n |= Γ, α, β, therefore by definition of the semantics for (∨)
we have M, n |= Γ, α ∨ β and so we are done.

Proof for (♦): Choose any PLTL-model M = (N, π). By assumption we
have for any state n we have M, n |= Γ, α,©♦α. If there is a γ ∈ Γ that is
satisfied in n then clearlyM, n |= Γ,♦α. IfM, n |= α, then by definition of the
♦-operator we must have as well M, n |= ♦α. If M, n |= ©♦α then we have
M, n+ 1 |= ♦α and so M, n |= ♦α.

Proof for (U): Choose any PLTL-model M = (N, π). In the case where
no formula γ ∈ Γ is satisfied, M, n |= ((α ∧ ©(α Uβ)) ∨ β) must hold and
therefore M, n |= (α ∧©(α Uβ)), β must be true as well. If M, n |= β holds,
we have clearly as well M, n |= (αUβ). On the other hand if M, n 6|= β, then
M, n |= (α ∧©(α Uβ)) must hold. But from this we get that M, n |= α and
M, n+ 1 |=©(αUβ) and therefore we have that M, n |= (αUβ).

32

Proof for (©): For any PLTL-model M = (N, π) and for any state n we
know that M, n |= Γ holds. Therefore we know that Γ holds as well in any
©-successor of n, i.e. M, n+ 1 |= Γ, but then we have M, n |= ∆,©Γ.

Proof for (ω−�): Choose any PLTL-modelM = (N, π). In the case where no
formula γ ∈ Γ is satisfied, M, n |= (©>∧ α)k (∀k ∈ N) must hold. Therefore
M, n |= ©kα must hold for any k ∈ N and so M,m |= α for all m ≥ n. But
then M, n |= �α.

Theorem 3.0.4. For all LPLTL-sequents Γ we have that

K∞ ` Γ ⇒ |= Γ.

Proof. Suppose that K∞ ` Γ, then we know that there is an ordinal α such that
K∞ `α Γ. We proceed by induction on the prooflength α. If α = 0 then Γ must
be of the form of (Ax) and therefore by the preceding theorem Γ must be valid.
In the case where α > 0, then Γ must be the conclusion of an application of a K∞

rule (θ) with premisses Γi for i ∈ I. As Γ is provable, also the premisses must
be provable and we have K∞ `<α Γi for all i ∈ I. By induction hypothesis this
yields |= Γi for all i ∈ I. Therefore by the preceding theorem we get |= Γ.

Definition 3.0.5. A (possibly infinite) set ∆ of LPLTL-formulas is called not
provable if for all finite subsets Γ ⊆ ∆ we have that

K∞ 6` Γ.

Definition 3.0.6. A not provable set of LPLTL-formulas Γ is called saturated
if the following holds:

1. If α ∧ β ∈ Γ then α ∈ Γ or β ∈ Γ.

2. If α ∨ β ∈ Γ then α, β ∈ Γ.

3. If �α ∈ Γ then there is a natural number k ∈ N such that (©>∧α)k ∈ Γ.

4. If ♦α ∈ Γ then (α ∨©♦α) ∈ Γ.

5. If α Uβ ∈ Γ then (β ∨ (α ∧©(α Uβ))) ∈ Γ.

Lemma 3.0.7. For any not provable LPLTL-sequent Γ there is a saturated set
Γs such that Γ ⊆ Γs.

Proof. The saturated superset Γs can be constructed by systematically adding
formulas to Γ such that all the saturation conditions are satisfied. We fix an
enumeration δ0, δ1, . . . of all LPLTL-formulas. If the formula α is the formula
δi, then i will be called the index of α. Then we define for each non-provable
sequent ∆ the sequent ∆′ ⊇ ∆ in the following way:

33

• If ∆ is saturated then ∆ = ∆′.

• If ∆ is not saturated then we take the formula α ∈ ∆ with the smallest
index for which one of the conditions of the definition of saturated sets is
violated. Then ∆′ is constructed as following:

1. If α = (β ∨ γ) ∈ ∆ then ∆′ := {β, γ} ∪∆.

2. If α = (β ∧ γ) ∈ ∆, then as ∆ is not provable, we know

K∞ 6` ∆, β or K∞ 6` ∆, γ.

We set

∆′ :=

{
{β} ∪∆ if K∞ 6` ∆, β.

{γ} ∪∆ if K∞ 6` ∆, γ.

3. If α = �β ∈ ∆ and as ∆ is not provable, we know

K∞ 6` ∆, (©>∧ β)k for a natural number k ∈ N.

We choose the smallest such k and set

∆′ := {(©>∧ β)k} ∪∆.

4. If α = ♦β ∈ ∆ then ∆′ := {β ∨©♦β} ∪∆.

5. If α = (βUγ) ∈ ∆ then ∆′ = {(γ ∨ (β ∧ (βUγ)))} ∪∆.

Obviously this construction ensures that every ∆′ remains unprovable. Now we
set:

Γn =

{
Γ if n = 0

Γ′n−1 if n > 0.

We define
Γs :=

⋃
n∈N

Γn.

Clearly Γ ⊂ Γs. It remains to show that Γs is not provable and saturated.
Given a finite ∆ ⊂ Γs, then there must be a Γn such that ∆ ⊂ Γn. As Γn is not
provable, we get that K∞ 6` ∆. Therefore Γs is not provable. The saturation
of Γs follows by the construction: Suppose for example that α ∧ β ∈ Γs. Then
there is a natural number n such that already α ∧ β ∈ Γn, but then α ∈ Γn+1

or β ∈ Γn+1. As Γn+1 ⊂ Γs we get therefore that α ∈ Γs or β ∈ Γs and we are
done. The other cases for saturation follow in the same way.

34

·s can be seen like a function mapping a not provable sequent Γ to a minimal
saturated set Γs ⊇ Γ. Given a not provable sequent Γ we define its canonical
countermodel, cm(Γ) = (N cm, πcm), as follows:

• The states N cm = {0cm, 1cm, . . .} of the canonical countermodel are defined
inductively such that 0cm = Γs and such that if ncm = ∆ then

(n+ 1)cm = {α | © α ∈ ∆}s.

• Further, for all atomic propositions p we have that

πcm(p) = {ncm | p 6∈ ncm}.

Lemma 3.0.8. For any not provable sequent Γ the canonical countermodel
cm(Γ) is a well-defined PLTL-model.

Proof. By a straightforward induction on n it can be shown that all states ncm

are saturated sets of formulas and, therefore, that the construction using ·s
works, that is, we have N cm ∼= N. Further, since all states are not provable the
valuation πcm is well-defined.

Lemma 3.0.9. Let Γ be a not provable set of LPLTL-formulas. For all states
ncm of the canonical countermodel cm(Γ) we have that

α ∈ ncm ⇒ ncm |= ¬α.

Proof. By induction on rank(α). The case where rank(α) = 0 is clear. If rank(α)
is a successor ordinal then α is of the form β ∧ γ, β ∨ γ of ©β. For α being of
the form β∧γ or β∨γ the induction step follows by the properties of saturated
sets. If α is of the form©β then by construction we have that β ∈ (n+1)cm and
by induction hypothesis we have that (n+ 1)cm |= ¬β and, therefore, n |= ¬α.
If α is a limit ordinal then it is of the form �β,♦β or βUγ. If it is of the form �β
then by construction of saturated sets there is k ∈ N such that (©>∧β)k ∈ ncm.
Since by Lemma 1.1.10 we have that rank(©>∧ β)k < rank(�β) by induction
hypothesis we have that ncm |= ¬(©>∧ β)k and, therefore, that ncm |= ¬�β.
If α is of the form ♦β then by construction of saturated sets we have
(β ∨ ©(♦β)) ∈ ncm, and by the properties of saturated sets we have that
β,©(♦β)) ∈ ncm. With the induction hypothesis this yields that ncm |= ¬β,
and by construction of the canonical model we have that β ∈ (n + 1)cm, and,
therefore, that (n+ 1)cm |= ¬β. By iterating this argument we easily infer that
for all i ≥ 0 we have that

(n+ i)cm |= ¬β

35

and, therefore, that ncm |= ¬♦β.
If α is of the form β Uγ then by construction of saturated sets we have
(γ ∨ (β ∧ ©(β Uγ)) ∈ ncm, and by the properties of saturated sets we have
that

γ, β ∈ ncm or γ,©(β Uγ) ∈ ncm

If γ, β ∈ ncm then by induction hypothesis we have that

ncm |= ¬γ ∧ ¬β

and, therefore, that ncm |= ¬(β Uγ). In the second case, we must have that
ncm |= ¬γ and, by construction of the canonical model, that

β Uγ ∈ (n+ 1)cm.

By iterating this argument we either get an l ∈ N such that

(n+ l)cm |= ¬γ ∧ ¬β and for all k < l (n+ k)cm |= ¬γ

or, we have that for all n′ ≥ n it holds that

n′cm |= ¬γ.

In both cases we have that
ncm |= ¬(βUγ).

Theorem 3.0.10. For all LPLTL-sequents Γ we have that

K∞ ` Γ ⇔ |= Γ.

Proof. The direction from the left to the right is Theorem 3.0.4. For the other
direction assume that K∞ 6` Γ. This means that Γ is not provable and there is
a canonical countermodel cm(Γ). Since by construction we have that Γ ⊆ 0cm

by Lemma 3.0.9 we have that

0cm |=
∧
α∈Γ

¬α

and, therefore, we get that 6|= Γ and finish the proof.

36

Chapter 4

Finitising the infinitary Calculus

It is tempting to go for a finitization of the ω-rule of K∞, that is, to find a
way to replace the rule by some weaker rules that rely only on a finite number
of premisses. The resulting system would then be cut-free, wellfounded and
finite, what is all we want. In this section we are going to sketch how such a
finitization could look like. The basic idea is on the one hand to introduce some
new rules that allow to check for cycles in a proof tree and on the other hand to
exploit the full power of the premisses of the ω-rule. That is to say that there
is no need for having a proof of all approximants (©>∧ α)k to derive �α, but
that it is enough to have a derivation of an approximant of a sufficiently high
degree. Roughly speaking the overall strategy amounts to find a new calculus
Knew in which we can establish a lemma of the following form :

Finitization Lemma 4.0.11. For a sequent Γ and a natural number k big
enough

Knew ` Γ, (©>∧ α)k ⇒ Knew ` Γ,�α.

How does this lemma lead to a finitization of the ω-rule? Suppose that our new
calculus Knew is identical to K∞ except that the ω-rule is replaced by one or
more finitary rules such that the lemma above holds. Then we can establish a
proof of a lemma that says:

K∞ ` Γ ⇒ Knew ` Γ. (4.1)

The proof can be done by an induction on the prooflength: As K∞ and Knew are
identical up to the ω-rule the only critical induction step is an application of the
ω-rule. But in this case there are premisses of the form
K∞ ` Γ, (©>∧ α)k for all k ∈ N and therefore by the induction hypothesis
Knew ` Γ, (©>∧ α)k for all k ∈ N. But form this we get by the finitization
lemma Knew ` Γ,�α and so finally 4.1 must hold.

37

This fact together with the completeness of K∞ then yields in the end the
completeness of the finitary calculus Knew:

|= Γ ⇒ K∞ ` Γ ⇒ Knew ` Γ.

4.1 The general Idea for a Finitization of the

ω-Rule

How are we going to find the calculus Knew such that the finitization lemma
above holds? The idea is to introduce cycle-testing rules that allow to transform
fully syntactically a proof Knew ` Γ, (©>∧α)k into a proof Knew ` Γ,�α. More
concretely we want to take a proof tree for Knew ` Γ, (©> ∧ α)k and give
instructions about how to transform it to get a new proof-tree for Knew ` Γ,�α.
What follows is an informal sketch about how such a transformation could look
like and how it motivates the introduction of the finitary rules that will in the
end replace the ω-rule.
It is clear from what we said above that we can choose the degree of the ap-
proximant (©>∧α)k arbitrarily big and therefore we can choose it big enough.
But how big is big enough? Big enough for k means that it must be bigger than
the cardinality of the powerset P(FL(Γ)) where the set Γ are the sideformulas
contained in the root of the proof-tree Knew ` Γ, (©>∧ α)k. So we must have

k > 2|FL(Γ)|.

The reason is, that in this case on branches with sufficiently many unfoldings
of the approximant (©>∧α)k there will be some kind of cycle: Given a branch
Γ0, . . .Γn in the proof tree of Knew ` Γ, (©> ∧ α)k with sufficiently many un-
foldings of (©>∧ α)k, then there would be sequents Γi,Γj with 0 ≤ i < j ≤ n
such that

Γi = ∆,©(©>∧ α)k
′

and Γj = ∆, (©>∧ α)k
′′

where k′ > k′′.

Suppose now we are given the proof tree of the sequent Knew ` Γ, (©> ∧ α)k

where k > 2|FL(Γ)| then we are going to check on every branch if we can find
a cycle of the form above and if yes, the branch will be cut after the second
occurrence of the repeating sequent1. Schematically after cutting a branch we
find the following situation:

1We have a bottom up reading of the proof tree.

38

....
∆i, α

∆i, (©>∧ α)ki−l
....

∆i,©(©>∧ α)ki−1

∆i, (©>∧ α)ki
(∧)

....
Γ, (©>∧ α)k

Obviously the cut branch is not ending on an axiomatic sequent. Therefore
we have to construct the new calculus Knew in a way that this branch will
be closed. The idea is to make use of propositional variables simulating the
behavior of the �α approximants. This is to say: An occurrence of (©>∧ α)k

is replaced by a formula x and an occurrence of©(©>∧α)k by a formula©x.
Additionally labels are introduced that store the cycling sequent and allow to
close the branch. Let us illustrate this practice, transforming what we had
before would yield:

[∆i, α]∅

[∆i, x]{∆i,x}
....

[∆i,©x]{∆i,x}

[∆i, x]{∆i,x}

....
[Γ, x]{∆i,x}

The intended interpretation of the expression [∆, x]{∆,x} is the following: If the
sequent contained in the label {∆i, x} is valid in a model then also the basic
sequent [∆i, x] must be valid in that model. Clearly for an expression of the
form [∆, x]{∆,x} this holds for every ∆. Therefore they will be called pseudo
axioms and we are going to say that a branch is closed if it ends on such a
pseudo axiom.
The remaining challenge is to introduce the formula �α. This will be done by
help of a so called cycle rule:

[Γ, α]∅ [Γ,©x�α]{Γ,x
�α}

[Γ,�α]
(Cyc)

.

The intuitive reading of this rule is the following: Having established the pre-
misses of the cycle rule is in fact the same as having established some kind of
induction step, that is, it allows to proceed from any approximant of a certain
degree to the next higher approximant of the formula �α.
In the case illustrated above the cycle rule can be applied to eliminate the label
that we introduced with the axiom. So we get:

39

....
[∆i, α]∅

[∆i, x]{∆i,x}
....

[∆i,©x]{∆i,x}

[∆i,�α]∅
(Cyc)

....
[Γ,�α]∅

Finally this amounts to introduce a formula �α after having established the
existence of a cycle on a branch of the proof-tree.

Is the introduction of a cycle rule enough to give a full transformation of a proof
of Knew ` Γ, (©> ∧ α)k into a proof of Knew ` Γ,�α? Above we just replaced
naively all formulas of the form (©>∧α)k, resp. ©(©>∧α)k by the proposi-
tional variable x, resp. ©x, we were making use of a pseudo-axiom to close the
cycling branch and applied the cycle-rule to introduce the formula �α, but es-
sentially we did undergo the same proof as for
Knew ` Γ, (©> ∧ α)k. Now imagine that we have somewhere in the original
proof tree for Knew ` Γ, (©>∧ α)k a rule application of the form

Γ, α Γ,©(©>∧ α)ki

Γ, (©>∧ α)ki+1
(∧)

.

So we consider a rule application that unfolds an approximant (©>∧α)ki+1 that
might be of a lower degree than the approximant (©>∧α)k which is contained
in the root, i.e. ki+1 ≤ k. If we would simply transform this application of (∧)
in the way as indicated before we would get

[Γ, α]∅ [Γ,©x]∅

[Γ, x]∅ .

Obviously this is not any longer an application of (∧) and therefore the naive
transformation would not lead to a correct copy of the original proof, that is,
the tree resulting from the naive transformation would in fact not be a proof.
The problem with the naive approach was, that it did not take in account that
the approximants in the original proof-tree do change their degrees. Therefore
an unfolding rule for the propositional variables has to be introduced:

[Γ,©x ∧ α]L

[Γ, x]L
(Unf)

.

Then the rule application

Γ, α Γ,©(©>∧ α)ki

Γ, (©>∧ α)ki+1
(∧)

40

could be transformed as following

[Γ, α]∅ [Γ,©x]∅

[Γ,©x ∧ α]∅
(∧)

[Γ, x]∅
(Unf)

.

Thus to transform the original proof-tree there is an additional rule application
necessary to deal with the newly introduced propositional variables. The proof
for Knew ` Γ,�α will therefore in the end become longer than the proof of
Knew ` Γ, (©>∧ α)k.

4.2 First Attempt towards a Finitization - The

System K1

Let us pin down those rather rough ideas in the strict formal framework of a
sequent-calculus called K1.

4.2.1 Syntax and Semantics of K1

In order to introduce the calculus K1 we have slightly to extend the language
LPLTL to the new language L+

PLTL. This is done by introducing a new set of
propositional variables X such that

X = {x�ϕ | �ϕ ∈ LPLTL}.

This means, that for each LPLTL-formula of the form �ϕ the extended language
L+

PLTL contains a variable of the form x�ϕ. A variable of this form will be called
a �ϕ-variable. If we do not want to refer to a variable belonging to a specific
formula, then we simply speak of a �-variable. The index �ϕ indicates that
the variable x�ϕ will be interpreted as an approximant of the fixpoint �ϕ.

Definition 4.2.1. The L+
PLTL-formulas are defined inductively in the following

way:

1. Every positive and negative atomic proposition p, resp. ∼ p is
L+

PLTL-formula.

2. Every propositional variable x�ϕ that is contained in X is L+
PLTL-formula.

3. If ϕ and ψ are L+
PLTL-formulas then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ Uψ) are

L+
PLTL-formulas.

41

4. If ϕ is a L+
PLTL-formula, then �ϕ, ♦ϕ and ©ϕ are L+

PLTL-formulas.

Note that in L+
PLTL we do not introduce negation. This is because negated oc-

currences of �-variables would be in conflict with the soundness of the unfolding
rule (Unf). We say that a L+

PLTL-formula α is pure if it does not contain any
�-variables. Clearly the set of pure L+

PLTL-formulas is equal to the set of all
LPLTL-formulas. Therefore we can say that for the fragment LPLTL of L+

PLTL

negation is defined as given in the first chapter.

Definition 4.2.2. Sequents and pseudo-sequents for the system K1 are intro-
duced in the following way:

1. Γ is said to be a K1-sequent if it is a multiset of L+
PLTL-formulas.

2. L is said to be a K1-label if it is a multiset of K1-sequents L = {Γ1, . . . ,Γn}.

3. A K1-pseudo sequent will be called an expression of the form

[Γ]L

where Γ is a K1-sequent and L is a K1-label. We refer to the multiset Γ
which is part of the expression [Γ]L as the K1-basic sequent of the given
K1-pseudo sequent.

An ordinary K1-sequent Γ can be understood as a pseudo sequent with empty
label [Γ]∅, in these cases we will also write just Γ.
If clear from the context, we will often talk just about sequents, labels and
pseudo-sequents rather than about K1-sequents, K1-labels and K1-pseudo se-
quents.

Definition 4.2.3. The set of subformula sub(ϕ) for a L+
PLTL-formula ϕ is

defined inductively:

1. If ϕ is a positive atomic proposition p, then sub(ϕ) := {p}; if ϕ is a
negative atomic proposition ∼p, then sub(∼p) := {∼p}.

2. If ϕ is a �-variable x�α, then sub(ϕ) := {x�α}.

3. If ϕ is of the form (α ∧ β), (α ∨ β) or (α Uβ), then
sub(ϕ) := {ϕ} ∪ sub(α) ∪ sub(β).

4. If ϕ is of the form ♦α, �α or ©α, then sub(ϕ) := {ϕ} ∪ sub(α).

42

Convention 4.2.4. Let Γ be a K1-sequent and L be a K1-label:

1. If there is a ϕ ∈ Γ such that α ∈ sub(ϕ), then we write

α ≤ Γ.

2. If there is a Γi ∈ L such that α ≤ Γi, then we write

α ≤ L.

If not α ≤ Γ, resp. not α ≤ L, we write α 6≤ Γ, resp. not α 6≤ L.
We are just interested in a semantics for K1 where the variable x�α is inter-
preted as approximant of the fixpoint �α. This aspect will be captured by the
introduction of so called consistent valuation functions.

Definition 4.2.5. We say that a given valuation function V : X → P(N) is
consistent if for all variables x�α we have that:

V(x�α) = ‖(©>∧ α)k‖MVc for a k ∈ N.

We will write Vc if a valuation function V is consistent.

Definition 4.2.6. The semantics for the system K1 is defined relative to a
linear time model, this is a pair T = (M,Vc), where:

• M is an ordinary PLTL-model M = (N, π).

• Vc is a consistent valuation function for the �-variables.

Definition 4.2.7. Given a linear time model T = (M,Vc), the set ‖ϕ‖MVc of
states satisfying the formula ϕ is defined inductively:

1. If ϕ = p, then ‖p‖MVc = π(p).

2. If ϕ =∼p, then ‖∼p‖MVc= N \ π(p).

3. If ϕ = x�α, then ‖x�α ‖MVc= Vc(x�α).

4. If ϕ = (α ∧ β), then ‖(α ∧ β)‖MVc=‖α‖MVc ∩ ‖β ‖
M
Vc .

5. If ϕ = (α ∨ β), then ‖(α ∨ β)‖MVc=‖α‖MVc ∪ ‖β ‖
M
Vc .

6. If ϕ = (αUβ), then

‖α Uβ ‖MVc= {n | ∃m ≥ n m ∈‖β‖MVc and ∀n′ n ≤ n′ < m n′ ∈‖α‖MVc }.

43

7. If ϕ = �α, then ‖�α‖MVc= {n | ∀m ≥ n m ∈‖α‖MVc }.

8. If ϕ = ♦α, then ‖♦α‖MVc= {n | ∃m ≥ n m ∈‖α‖MVc }.

9. If ϕ =©α, then ‖©α‖MVc= {n | n+ 1 ∈‖α‖MVc }.

Notions of satisfaction and validity for L+
PLTL-formulas ϕ and L+

PLTL-multisets Γ
with respect to a linear time model T = (M,Vc) can be defined analogously as
it has been done for the system DHL. But there is need for a further concept:
As the rules of the calculus K1 manipulate pseudo sequents a notion of validity
with respect to pseudo sequents has to be introduced.

Definition 4.2.8. Let [Γ]L be a pseudo sequent and T = (M,Vc) a linear time
model. Then [Γ]L is said to be valid in T , written as T |= [Γ]L, if the following
holds

T |= Γi for all Γi ∈ L ⇒ T |= Γ.

Definition 4.2.9. Let [Γ]L be a pseudo sequent, then [Γ]L is said to be valid,
written as |= [Γ]L, if the following holds

T |= [Γ]L for all linear time models T .

4.2.2 Rules of K1

The classical Tait-style inference rules of K1 are labelled versions of the rules of
K∞. The ω-rule of K∞ is replaced by the finitary cycle testing rules (Unf) and
(K1− Cyc). Also a new kind of a axiom is introduced.

I. Axioms of K1:

[Γ, p,∼p]L
(Ax.1)

[Γ,∆, x�α]L,{Γ,x
�α}

(Ax.2)
x�α 6≤ Γ

II. Logical rules of K1:

[Γ, ϕ]L [Γ, ψ]L

[Γ, (ϕ ∧ ψ)]L
(∧)

[Γ, ϕ, ψ]L

[Γ, (ϕ ∨ ψ)]L
(∨)

[Γ, (ϕ ∨©♦ϕ)]L

[Γ,♦ϕ]L
(♦)

[Γ, (ψ ∨ (ϕ ∧©(ϕUψ)))]L

[Γ, (ϕUψ)]L
(U)

44

[Γ]L

[∆,©Γ]L
(©)

Γ 6= ∅.

III. Cycle testing rules of K1:

[Γ, (©x�α ∧ α)]L

[Γ, x�α]L
(Unf)

[Γ, α]L [Γ,©x�α]L,{Γ,x
�α}

[Γ,�α]L
(K1− Cyc)

x�α 6≤ L x�α 6≤ Γ.

Theorem 4.2.10. The K1-rules are sound.

Proof of (Ax.1): For any linear time model T = (M,Vc) holds T , n |= Γ, p,∼p
for every state n that is contained in the PLTL-model M = (N, π). Therefore
if T |= Γi holds for all Γi ∈ L then trivially T |= Γ, p,∼p holds as well. And
therefore the K1-sequent [Γ, p,∼p]L must be valid.

Proof of (Ax.2): Given an arbitrary linear time model T = (M,Vc), suppose
that T |= Γi for all Γi ∈ L and T |= Γ, x�α. In this case trivially T |= Γ,∆, x�α

must be true as well. As we have chosen no particular T = (M,Vc) we must

have |= [Γ,∆, x�α]L,{Γ,x
�α}.

Proof of (∧): Suppose that |= [Γ, ϕ]L and |= [Γ, ψ]L hold. For an arbitrary
linear time model T = (M,Vc) we assume T |= Γi for all Γi ∈ L. Then by
the truth of the premisses of (∧) it follows that T |= Γ, ϕ and T |= Γ, ψ must
hold. By definition this is the same as to say T , n |= Γ, ϕ holds for all n ∈ N
and T , n |= Γ, ψ holds for all n ∈ N , where N is the universe belonging to the
PLTL-model M. But from this we get that T , n |= ϕ ∧ ψ for all n ∈ N and
therefore T |= ϕ ∧ ψ must be true. So we have shown that T |= ϕ ∧ ψ must
hold by the assumption that T |= Γi is true for all Γi ∈ L, but this together
with the fact that we have chosen an arbitrary linear time model T = (M,Vc)
gives that |= [Γ, ϕ ∧ ψ]L and so (∧) must be sound.

Proof of (∨), (♦), (�), (©), (U): As in the case of an application of (∧)
there is no interaction between the labels and the basic sequents, the labels in
these rule applications remain untouched. Therefore as in the case of (∧) the
soundness of these rules is an immediate consequence of the soundness of the
corresponding standard rules.

45

Proof of (Unf): We know that |= [∆,©x�α∧α]L holds, which means that for
any T = (M,Vc) we have:

T |= Γi for all Γi ∈ L ⇒ T |= (©x�α ∧ α).

Now suppose that the labels of the conclusion of (Unf) are valid, that is,
T |= Γi for all Γi ∈ L. From this and the proof hypothesis we can infer
T |= Γ,©x�α∧α. As we are dealing with a consistent valuation function Vc we
know that Vc(x�α) =‖(©>∧ α)k ‖MVc for a k ∈ N. We know that approximants
of a certain order are contained in the approximants of lower order and therefore
we have:

‖x�α ‖MVc = ‖(©>∧ α)k ‖MVc ⊇ ‖(©>∧ α)k+1 ‖MVc = ‖(©x�α ∧ α)k ‖MVc .

Therefore if T |= Γ, (©x�α ∧ α) holds, we have as well that T |= Γ, x�α must
hold and we are done.

Convention 4.2.11. In the proof of (K1− Cyc) we make use of the following
notation for a so called k-modification of the valuation Vc with respect to the
variable y�β. We set

Vy�β ,k
c (x�α) :=

{
Vc(x�α) if x�α 6= y�β

‖(©>∧ β)k‖MVc if x�α = y�β

We often write T ,Vy�β ,k
c |= Γ to indicate explicitly how the valuation function

Vc is modified.

Proof (K1− Cyc): We show that

|= [Γ, (©>∧ α)k]L for k = 0, 1, 2, . . .

We proceed by induction on k: The case for k = 0 is clear. Now let us consider
the induction step: By the proof hypothesis we have |= [Γ,©x�α]L,{Γ,x

�α}, what
means that for every linear time model T the following implication holds

T |= Γi for all Γi ∈ L, x�α 6≤ L
T |= Γ, x�α

}
⇒ T |= Γ,©x�α. (4.2)

As induction hypothesis we assume |= [Γ, (©> ∧ α)k]L, thus for every linear
time model T

T |= Γi for all Γi ∈ L, x�α 6≤ L ⇒ T |= Γ, (©>∧ α)k. (4.3)

Suppose now that for an arbitrary linear time model T = (M,V)

T |= Γi for all Γi ∈ L. (4.4)

46

By this and the induction hypothesis we get

T |= Γ, (©>∧ α)k.

But then, as x�α 6≤ L and x�α 6≤ Γ the following must hold as well

T ,Vx�α,k
c |= Γi for all Γi ∈ L and T ,Vx�α,k

c |= Γ, x�α.

From this and 4.2 we get

T ,Vx�α,k
c |= Γ,©x�α.

Together with the second premise this yields

T ,Vx�α,k
c |= Γ,©x�α ∧ α

what is the same as
T ,Vx�α,k+1

c |= Γ, x�α.

But this is equivalent to

T |= Γ, (©>∧ α)k+1.

and we are done.

�

Theorem 4.2.12. Let Γ be a K1-sequent, then we have

K1 ` [Γ]L ⇒ |= [Γ]L.

Proof. Suppose that K1 ` [Γ]L, then we know that there is a natural number
n such that K1 `n [Γ]L. We proceed by induction on the prooflength n. If
n = 0 then [Γ]L must be of the form of (Ax.1) or (Ax.2) and therefore by the
preceding theorem [Γ]L must be valid. In the case where n > 0, then [Γ]L must
be the conclusion of an application of a K1 rule (θ) with premisses [Γi]

Li for
i ∈ I. As [Γ]L is provable, also the premisses must be provable and we have
K1 `n−1 [Γi]

Li for all i ∈ I. By induction hypothesis this yields |= [Γi]
Li for all

i ∈ I. Therefore by the preceding theorem we get |= [Γ]L.

Example of a derivation using (K1− Cyc):

[p,∼p]{p,x�©∼p}

[©p,© ∼p]{p,x�©∼p}
(©)

[p, x�©∼p]{©p,x
�©∼p},{p,x�©∼p}

[©p,©x�©∼p]{©p,x
�©∼p},{p,x�©∼p}

(©)

[©p,�© ∼p]{p,x�©∼p}
(K1− Cyc))

47

Let us verify that the pseudo sequent [©p,�© ∼p]{p,x�©∼p} is valid in a linear
time model T = (M,V) with V(x�©∼p) = ‖(©>∧© ∼p)1‖MV . Then we have
to show the following implication

T |= p ∨© ∼p ⇒ T |=©p ∨�© ∼p.

So suppose that for all states of the model

T , s |= p ∨© ∼p.

Then there is a state n such that

T ,m |= p for all m < n

and
T , s |=∼p for all m ≥ n.

But then clearly we have
T |=©p,�© ∼p.

This example illustrates that in a pseudo sequent [Γ]L the label L expresses a
global and not a local condition for the basic sequent, locally the implication
above would not hold.

48

Chapter 5

The System K2

5.1 Refinement of K1 - Motivating new Cycle

Testing Rules

Using the notation of pseudo-sequents introduced for K1 we can formulate more
precisely what we are actually aiming at: Given we have a proof-tree for

K1 ` [Γ, (©>∧ α)k]L

then we want to transform it into a proof-tree of

K1 ` [Γ,�α]L
∗
.

Where L and L∗ are labels with the same cardinality. The strategy for the
transformation of the proof tree proceeds in two steps:

• First the original proof tree is cut on branches that contain cycling se-
quents.

• Then approximants of the form (©>∧α)k or©(©>∧α)k occurring in the
cut proof-tree are replaced in a suitable way by propositional variables.
Additional applications of the cycle rules (Unf) and (K1 − Cyc) will be
necessary to deal with these newly introduced variables and to derive �α.

The first step can be managed without great problem, but it is quiet a difficult
task to find a transformation procedure such that the transformed proof-tree
really becomes a proof in our new calculus.
Let us consider some further difficulties in the transformation-procedure that
lead to the introduction of new cycle testing rules.

Consider the following scheme of a proof-tree which has branches that are al-
ready cut:

49

[∆1, (©>∧ α)k
′
]

....
[∆1,©(©>∧ α)k]

....
[Γ, γ1,©(©>∧ α)k]

[∆2, (©>∧ α)k
′′
]

....
[Γ, γ2,©(©>∧ α)k]

[Γ, γ1 ∧ γ2,©(©>∧ α)k]
(∧)

....
[∆2,©(©>∧ α)k]

....

A naive transformation would just replace the approximants as we said, intro-
duce labels for the cycling sequents and apply the rule (K1−Cyc) to introduce
the formula �α. Transforming the tree above in this way would then yield:

[∆1, x
�α]{∆1,x�α}

....
[∆1,©x�α]{∆1,x�α}

[∆1,�α]∅
(K1− Cyc)

....
[Γ, γ1,�α]∅

[∆2, x
�α]{∆2,x�α}

....
[Γ, γ2,©x�α]{∆2,x�α}

[Γ, γ1 ∧ γ2,©x�α]{∆2,x�α}
(∧)

....
[∆2,©x�α]{∆2,x�α}

[∆2,�α]∅
....

In this case the cycle rule is always applied just right when we have arrived
to establish a cycle. The problem with the transformation above is that the
application of (∧) is not any longer sound.
The transformation procedure should be designed in a way that the local sound-
ness of the rule applications in the original proof tree is preserved. Therefore
we split the cycle rule in a rule (K2 − Cyc) that eliminates labels after the
occurrence of a cycle and a rule (Dec) that introduces the formula �α after the
elimination of all labels containing x�α:

[Γ,©x�α ∧ α]L,{Γ,x
�α}

[Γ,©x�α ∧ α]L
(K2− Cyc)

50

[Γ,©x�α ∧ α]L

[Γ,�α]L
(Dec)

x�α 6≤ L.

Then we could transform the proof above in the following way:

[∆1, x
�α]{∆1,x�α}

....
[∆1,©x�α ∧ α]{∆1,x�α}

[∆1,©x�α ∧ α]∅
(K2− Cyc)

....
[Γ, γ1,©x�α ∧ α]∅

[∆2, x
�α]{∆2,x�α}

....
[Γ, γ2,©x�α ∧ α]{∆2,x�α}

[Γ, γ1 ∧ γ2,©x�α ∧ α]{∆2,x�α}
(∧)

....
[∆2,©x�α ∧ α]{∆2,x�α}

[∆2,©x�α ∧ α]∅
(K2− Cyc)

[∆2,�α]∅
(Dec)

....

Further refinements of the cycle-testing rules are necessary. Rather technical
problems in a proof of the finitization lemma require an even stronger version
of the rule (K2− Cyc):

[Γ,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn]L,{Γ,x
�α1 ,...,x�αn}

[Γ,∆,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn]L
(K2− Cyc)

x�α1 , . . . , x�αn 6≤ L

The rules of K1 are too weak for a transformation of the original proof-tree
of [Γ, (©x�α ∧ α)k]L. There is need for rules that enable to deal better with
the propositional variables that replace the approximants in the original proof.
The final calculus K2 which is presented in the next section might have these
stronger rules.

5.2 The Calculus K2

Let us now present the final version of a finitary calculus for PLTL. In contrary to
K1 in the system K2 basic sequents are defined to be sets and not multisets. The
reason is that a proof of completeness seems to require the hidden contraction
that is incorporated in a sequent-calculus with sets.

51

Definition 5.2.1. Sequents and pseudo-sequents for the system K2 are intro-
duced in the following way:

1. Γ is said to be a K2-sequent if it is a set of L+
PLTL-formulas.

2. L is said to be a K2-label if it is a multiset of K2-sequents L = {Γ1, . . . ,Γn}.

3. A K2-pseudo sequent will be called an expression of the form

[Γ]L

where Γ is a K2-sequent and L is a K2-label. We refer to the multiset
Γ which is part of [Γ]L as the K2-basic sequent of the given K2-pseudo
sequent.

The calculus K2 contains the same axioms as K1, as well as the same rules for
the classical and temporal connectives. The rules form K2 differ to K1 insofar as
they are defined with respect to basic-sequents that are sets and not multisets.
As state above K2 contains stronger cycle-testing rules than K1.

Cycle testing rules of K2:

[Γ,©x�α ∧ α]L

[Γ, x�α]L
(Unf)

[Γ,©x�α ∧ α]L

[Γ,∆,�α]L
(Dec)

x�α 6≤ Γ

[Γ,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn]L,{Γ,x
�α1 ,...,x�αn}

[Γ,∆,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn]L
(K2− Cyc)

x�αi 6≤ Γ i = 1, . . . , n

Theorem 5.2.2. The K2-rules are sound.

Proof of (Ax.1), (Ax, 2), (∧), (∨), (♦), (�), (©), (U), (Unf): The proof
goes like in the case of K1.

To make the proofs for (Dec) and (K2− Cyc) more readable we use again the
k-modification of the valuation Vc with respect to the variable y�β that we
introduced in the proof for the soundness of (K1− Cyc).

52

Proof of (Dec): We are going to show that for any linear time model
T = (M,Vc) and for all k ∈ N the following implication must hold:

T ,Vx�α,k
c |= Γi for all Γi ∈ L ⇒ T ,Vx�α,k

c |= Γ,∆, x�α (5.1)

From this statement we then get immediately that for an arbitrary linear time
model T = (M,Vc) we he have:

T |= Γi for all Γi ∈ L ⇒ T |= Γ,∆,�α

We are going to prove 5.1 by an induction on k. First we consider the case
where k = 0. Then Vx�α,0

c (x�α) = ‖>‖MVc and we get the equivalence

T ,Vx�α,0
c |= Γ,∆, x�α ⇔ T ,Vx�α,0

c |= Γ,∆,>.

Therefore in the case where k = 0 the statement 5.1 holds trivially.
Now we consider the step from k to k + 1. By proof hypothesis we know that
the premise of (Dec) must hold, that is, we have |= [Γ,©x�α ∧ α]L. Therefore
for an arbitrary linear time model T = (M,Vc) it holds that

T |= Γi for all Γi ∈ L ⇒ T |= Γ,©x�α ∧ α. (5.2)

Suppose that

T ,Vx�α,k+1
c |= Γi for all Γi ∈ L.

As x�α occurs only positively in L we can infer from this

T ,Vx�α,k
c |= Γi for all Γi ∈ L.

But from this together with 5.2 we get

T ,Vx�α,k
c |= Γ,©x�α ∧ α.

As x�α 6≤ Γ this is the same as

T ,Vx�α,k+1
c |= Γ, x�α.

But then we have as well

T ,Vx�α,k+1
c |= Γ,∆, x�α.

Therefore we have proven the implication for the case k + 1:

T ,Vx�α,k+1
c |= Γi for all Γi ∈ L ⇒ T ,Vx�α,k+1

c |= Γ,∆, x�α.

53

Therefore we get

T |= Γi for all Γi ∈ L ⇒ T |= Γ,∆,�α

and so we are done.

Proof of (K2−Cyc): We are going to show that if the premise for the cycle rule

holds, that is, if we have that |= [Γ,©x�α1∧α1, . . . ,©x�αn∧αn]L,{Γ,x
�α1 ,...,x�αn},

then it must as well be true that |= [Γ,∆,©x�α1 ∧α1, . . . ,©x�αn ∧αn]L holds.
The latter is equivalent to show that for an arbitrarily chosen linear time model
T = (M,Vc) it must be true that

T |= Γi Γi ∈ L ⇒ T |= Γ,∆,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn.

But that is the same as to say that for an arbitrary linear time model T = (M,Vc)
and for every natural number k we have

T ,Vx�αn ,k
c |= Γi Γi ∈ L ⇒ T ,Vx�αn ,k

c |= Γ,∆,©x�α ∧ α . . . ,©x�αn ∧ αn.
(5.3)

By the proof hypothesis we know that

|= [Γ,©x�α1 ∧ α, . . . ,©x�αn ∧ αn]L,{Γ,x
�α1 ,...,x�αn}

what can be written as the implication

T |= Γi Γi ∈ L
T |= Γ, x�α1 , . . . , x�αn

}
⇒ T |= Γ,©x�α1 ∧ α, . . . ,©x�αn ∧ αn (5.4)

where T is an arbitrary linear time model.
We are going to proof 5.3 by induction on k. First consider the case where k = 0,
then Vx�αn ,0

c (x�αn) = ‖>‖MVc . Therefore we have the semantic equivalence

T ,Vx�αn ,0
c |= Γ, x�α1 , . . . , x�αn ⇔ T ,Vx�αn ,0

c |= Γ, x�α1 , . . . , x�αn−1 ,>.

As the expression on the right side holds trivially we know

T ,Vx�αn ,0
c |= Γ, x�α, . . . , x�αn (5.5)

Now we suppose that

T ,Vx�αn ,0
c |= Γi Γi ∈ L. (5.6)

But 5.5 and 5.6 are the premisses of 5.4 and therefore we can infer

T ,Vx�αn ,0
c |= Γ,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn

54

But then clearly we have as well

T ,Vx�αn ,0
c |= Γ,∆,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn.

So we have verified for the case where k = 0 that

T ,Vx�αn ,0
c |= Γi Γi ∈ L ⇒ T ,Vx�αn ,0

c |= Γ,∆,©x�α1∧α1, . . . ,©x�αn∧αn.

Now let us show the step from k to k+ 1. By induction hypothesis we have for
a fixed k that

T ,Vx�αn ,k
c |= Γi Γi ∈ L ⇒ T ,Vx�αn ,k

c |= Γ,∆,©x�α1 ∧α1, . . .©x�αn ∧αn.

As ∆ can chosen to be empty we have

T ,Vx�αn ,k
c |= Γi Γi ∈ L ⇒ T ,Vx�αn ,k

c |= Γ,©x�α1 ∧ α1, . . .© x�αn ∧ αn.
(5.7)

Now assume that for all Γi ∈ L we have

T ,Vx�αn ,k+1
c |= Γi (5.8)

As x�αi for i = 1, . . . , n occurs only positively in L we get by semantic
considerations

T ,Vx�αn ,k
c |= Γi. (5.9)

This together with 5.7 implies

T ,Vx�αn ,k
c |= Γ,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn.

But this is in fact the same as

T ,Vx�αn ,k+1
c |= Γ,©x�α1 ∧ α1, . . . ,©x�αn−1 ∧ αn−1, x

�αn .

From this we can infer

T ,Vx�αn ,k+1
c |= Γ, x�α1 , . . . , x�αn . (5.10)

But 5.9 and 5.10 are in fact premisses for the proof hypothesis 5.4 and therefore
we can infer

T ,Vx�αn ,k+1
c |= Γ,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn.

From what we get clearly

T ,Vx�αn ,k+1
c |= Γ,∆,©x�α1 ∧ α1, . . . ,©x�αn ∧ αn.

and we are done.

55

�

An easy induction, like done for theorem 4.2.12 leads to the soundness of K2.

Theorem 5.2.3. Let Γ be a K2-sequent, then we have

K2 ` [Γ]L ⇒ |= [Γ]L.

5.3 Conjecture: Completeness

We conjecture the following version of the finitization lemma. Then complete-
ness for the finitary calculus K2 can be established.

Finitization Lemma 5.3.1. For a K2-pseudo sequent Γ of pure L+
PLTL-formulas,

labels L and L∗, and a natural number k > 2|FL(Γ)| we have:

K2 ` [Γ, (©>∧ α)k]L ⇒ K2 ` [Γ,�α]L
∗

where the labels have the same cardinality, i.e. |L| = |L∗|.

The claim about the cardinality of the labels is needed to ensure that a proof of
the sequent [Γ, (©> ∧ α)k]L with L = ∅ implies a proof the sequent [Γ,�α]L

∗

where the label remains the empty set, that is, L∗ = ∅.
The next lemma relates the calculus K2 to the infinitary calculus K∞.

Lemma 5.3.2. Given a LPLTL-sequent Γ, then

K∞ ` Γ ⇒ K2 ` Γ

Proof. We proceed by an induction on the prooflength n. First consider the
case where n = 0. Then we are dealing with a K∞-Axiom, that is, we have

K∞ `0 Γ, p,∼p.

Clearly the pseudo-sequent [Γ, p,∼p]∅ must be a K2-axiom as well and therefore
we have

K2 `0 [Γ, p,∼p]∅

what by notational convention is the same as

K2 `0 Γ, p,∼p.

For the induction step from n− 1 to n we proceed by a case distinction on the
last rule that has been applied in the proof.

56

Proof of (∧): In this case we are given a conclusion of the form

K∞ `n Γ, γ1 ∧ γ2

where the premisses must be

K∞ `n−1 Γ, γ1 and K∞ `n−1 Γ, γ2.

By induction hypothesis we get

K2 `n−1 Γ, γ1 and K2 `n−1 Γ, γ2.

By notational convention this is the same as

K2 `n−1 [Γ, γ1]∅ and K2 `n−1 [Γ, γ2]∅.

From this we get by use of the K2 rule (∧) that the following must hold

K2 `n [Γ, γ1 ∧ γ2]∅.

And so we are done.

Proof of (∨), (♦), (©), (U): The proof of these cases is analogue to the proof
of (∧). Note that if the labels of the pseudo-sequents are empty, then the rules
of K∞, except the omega-rule, are the same as the rules for K2.

Proof of (ω − �): The only critical case is when the last inference was an
application of the ω-rule

Γ, (©>∧ α)k (∀k ∈ N)

Γ,�α
(ω −�)

.

That is, we have a premise of the form

K∞ `n−1 Γ, (©>∧ α)k (∀k ∈ N).

So we get by the induction hypothesis

K2 `n−1 Γ, (©>∧ α)k (∀k ∈ N)

what by notational convention is the same as

K2 `n−1 [Γ, (©>∧ α)k]∅ (∀k ∈ N).

This means that we can choose an approximant for �α of such a large degree
that we can apply the finitization lemma 5.3.1. That is, for sure we find a
natural number k such that

K2 `n−1 [Γ, (©>∧ α)k]∅ for k > 2|FL(Γ)|.

57

As that is the premise of the finitization lemma 5.3.1 we can infer (remember
that if L = ∅ then also L∗ = ∅)

K2 `n [Γ,�α]∅

what is exactly what we want.

We get the completeness of K2 as an easy corollary:

Corollary 5.3.3. For any pure K2-sequent, we have:

|= Γ ⇒ K2 ` Γ

Proof. By the completeness of K∞ and the foregoing lemma 5.3.2:

|= Γ ⇒ K∞ ` Γ ⇒ K2 ` Γ.

58

Bibliography

[1] Alberucci L. and Jag̈er G.: About cut elimination for logics of com-
mon knowledge. Annals of Pure and Applied Logic 133: 73-99 (2005)

[2] Brünnler K., Steiner D.: Finitisation for Propositional Linear Time
Logic. Unpublished.

[3] Brünnler K., Lange M.: Cut-Free Sequent Systems for Temporal
Logic. Journal of Logic and Algebraic Programming 76(2): 216-225
(2008)

[4] Dax C., Hofman M., Lange M.: A proof system for the linear time
µ-calculus. Proc. 26th Conf. on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS06 volume 4337 of LNCS: 274-
285 (2006)

[5] Dixon C., Wooldridge M., Fisher M.: A Tableau-Based Proof
Method for Temporal Logics of Knowledge and Belief. Journal of Applied
Non-Classical Logics 8 (3): (1998)

[6] Fischer M.J. and Ladner R. E.: Propositional Dynamic Logic of Reg-
ular Programs. Journal of Computer and System Sciences 18: 194-211
(1979)

[7] Jäger G., Kretz M., Studer T.: Canonical completeness of infinitary
mu. Journal of Logic and Algebraic Programming 76 (2): 270–292 (2008)

[8] Kawai H.: Sequential calculus for a first order infinitary temporal logic.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 33:
423-432 (1987)

[9] lichtenstein O., Pnueli A.: Propositional Temporal Logics: Decid-
ability and Completeness. Logic Journal of the IGPL 8(1): 55-85 (2000)

59

[10] Peach B.: Gentzen-systems for propositional temporal logics. CSL 88:
Proceedings of the 2nd Workshop on Computer Science Logic 240-253
(1989)

[11] Studer T.: On the proof theory of modal mu-calculus. Studia Logica
89 (3): 343–363 (2008)

[12] Schwendimann S.: A New One-Pass Tableau Calculus for PLTL.
TABLEAUX98: Proceedings of the International Conference on Auto-
mated Reasoning with An- alytic Tableaux and Related Methods 277-292
(1998)

[13] Tarski A.: A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions. Pacific Journal of Mathematics 5(2): 285–309 (1955)

[14] Wolper P.: The tableau method for temporal logic: an overview.
Logique et Analyse (110-111): 119-136 (1985)

60

