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1 Introduction

Feferman introduces the theory OST of operational set theory in [6]. On the one
hand OST is a set theory, that is, OST is a theory about sets. On the other hand
OST allows us to treat every object as operation and to apply it to each other.
So every object in a model of OST is a set and an operation at the same time.
Thereby operations are not necessarily total.
In section 2 we will present a minor syntactic variant of Fefermans’s original for-
mulation of OST like in [8] and we give some first useful properties.

The main aim of this thesis is to respond to some ontological questions about
OST.
We would like to know whether we can consistently assume that all operations
are total. In section 3, which is about a few questions concerning the totality of
operations, we show that we can not.
Further we ask about the consistency of the existence of the set of all operations
from a set a to another set b. We will see in section 4 that such a set can not exist
(if a and b contain at least one element, two elements respectively). Then we will
get that objects as operations are not extensional (i.e. all values of two different
operations can agree) as a corollary.
Another question is about set-theoretic functions and operations. We are inter-
ested whether we can consistently assume that the values of every set-theoretic
function f agree with the values of f as operation. In section 5 we will show that
we can. For this we will use some results from various sources without proving
them.

Beeson presents in [3] a computation system based on set theory which has some
similarities to OST. Section 6 is about this system. We will see that we can prove
also within this system with the same approach as in section 4, that there is no
set of all operations from a set a to another set b (if we make some constraints
regarding a and b). In addition we will show that we can prove some axioms of
OST, which are not axioms of Beesons system.
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2 Feferman’s theory OST

The content of this section is adopted from Feferman [6, 7] and Jäger [8, 9] and
elaborated. There is some additional information from other sources which are
mentioned directly in the text.

2.1 The language L◦ of OST

By L we denote the language of classical set theory. The only two relation
symbols of L are ∈ (element) and = (identity). Further we have set variables
a, b, c, f, g, u, v, w, x, y, z, ... (possibly with subscripts) and the constant ω for the
smallest infinite ordinal. There are no function symbols of L, so the only terms
are the variables and the constant ω. The formulas of L are defined as usual.

The theory OST is formulated in the language L◦. L◦ is an extension of L which
gives us the possibility to treat all objects as operations and to apply them to
each other. In addition to the relation symbols of L we have the unary symbol
↓ (defined). Moreover L◦ possess the binary function symbol ◦ for partial term
application. L◦ possess, in addition to the constant of L, these constant symbols:

(i) k and s (combinators),

(ii) >, ⊥, el, non, dis and e (logical operations),

(iii) S, R and C (set-theoretic operations).

The meaning of these constants is described by the axioms of OST (see below).

Definition 2.1 (Terms of L◦). The terms of L◦ (the L◦ terms) are inductively
defined as follows:

(i) If t is a variable or a constant of L◦, then t is a term.

(ii) If s and t are terms, then so is ◦(s, t).

We use the letters r, s and t (possibly with subscripts) to denote terms. We will
often abbreviate ◦(s, t) as (s ◦ t), (st), or st and we will often write s(t1, ..., tn)
instead of st1...tn.

Convention 2.2. The abbreviation t1t2t3...tn stands for ((...((t1t2)t3)...)tn).

Sometimes we write ~t for a finite string t1, ..., tn of terms, but only if the length is
not important or evident from the context.
Because the partial term application ◦ is not necessarily total, there may be terms
which do not denote an object. Therefore we need the definedness predicate ↓:
The formula (t↓) means ”the term t is defined“ or ”the term t denotes an object“.
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Definition 2.3 (Formulas of L◦). The formulas of L◦ (the L◦ formulas) are in-
ductively defined as follows:

(i) If s and t are terms of L◦, then (s ∈ t), (s = t) and (t↓) are formulas of L◦.

(ii) If A and B are formulas of L◦, then so are ¬A and (A ∧B).

(iii) If A is a formula and x is a variable of L◦, then ∀xA is a formula of L◦.

We use the capitals A,B,C,D, ... and the Greek letter φ (possibly with subscripts)
to denote formulas. Parentheses and brackets will be often omitted (if there is no
danger of confusion).
The free variables of terms and formulas are defined as usual. The closed terms
and formulas of L◦ are those which do not contain any free variable. Closed L◦

formulas are called L◦ sentences.

Definition 2.4 (Abbreviations for some formulas). Let A and B be formulas, x
a variable and t a term of L◦ which does not contain x. We define the remaining
logical connectives, quantifier and the symbol ↑ as follows:

(i) (A ∨B) := ¬(¬A ∧ ¬B),

(ii) (A→ B) := (¬A ∨B),

(iii) (A↔ B) := ((A→ B) ∧ (B → A)),

(iv) ∃xA := ¬∀x(¬A),

(v) (∀x ∈ t)A := ∀x(x ∈ t→ A),

(vi) (∃x ∈ t)A := ∃x(x ∈ t ∧A),

(vii) (t↑) := ¬(t↓).

We will often write ∀x1, ..., xnA instead of ∀x1...∀xnA and (∀x1, ..., xn ∈ t)A in-
stead of (∀x1 ∈ t)...(∀xn ∈ t)A (and the same for the existential quantifier).

Convention 2.5. Let A be a formula of L◦, u a variable which does not occur
in A. Then we write Au for the result of replacing each unbounded set quantifier
∀x(...) by (∀x ∈ u)(...) in A.

Convention 2.6. Let ~u = u1, ..., un and ~t = t1, ..., tn be a string of variables and a
string of L◦ terms respectively. Then s[~t/~u] is the L◦ term which is obtained from
the L◦ term s by simultaneously replacing all occurrences of the variables ~u by the
terms ~t. And A[~t/~u] is the L◦ formula which is obtained from A by simultaneously
replacing all free occurrences of the variables ~u by the terms ~t (in order to avoid
collision of variables, a renaming of bound variables may be necessary). We often
write B[~t] instead of B[~t/~u], if A is written as B[u].
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2.2 The logic of OST

The underlying logic of OST is the (classical) logic of partial terms due to Beeson
[2]. In this logic each of the formulas (st)↓, (s = t) and (s ∈ t) implies both s↓
and t↓.

Convention 2.7 (6= and /∈). Let s and t be L◦ terms. We will use the following
abbreviations:

(i) (s 6= t) for (¬(s = t) ∧ s↓ ∧ t↓),

(ii) (s /∈ t) for (¬(s ∈ t) ∧ s↓ ∧ t↓).

Definition 2.8 (Partial equality of terms). Let s and t be L◦ terms. We introduce
partial equality (') of terms by

(s ' t) := ((s↓ ∨ t↓)→ s = t).

In classical logic assertions like ∀xA[x] implies assertions like A[t] for every term
t. In the logic of partial terms this is not the case, since it is not assured that the
term t is defined. To deduce A[t] from ∀xA[x] we need t↓ as additional premise.

2.3 The axioms of OST

The non-logical axioms of OST are divided into four groups: applicative axioms,
basic set-theoretic axioms, logical operations axioms and operational set-theoretic
axioms.

2.3.1 Applicative axioms

The first axioms are about the applicative structure of the universe:

(1) k 6= s,

(2) kxy = x,

(3) sxy↓ ∧ sxyz ' (xz)(yz).

These axioms express that we have a partial combinatory algebra. In the following
we define like in [10] for each L◦ term t a lambda expression (λx.t) which is an L◦

term too and a so-called fixed point operator.

Definition 2.9 (Lambda expression). Given an L◦ term t and a variable x, we
define inductively the L◦ term (λx.t) as follows:

(i) If t is x, then (λx.t) := skk.
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(ii) If t is a variable different from x or a constant of L◦, then (λx.t) := kt.

(iii) If t is (rs) for L◦ terms r and s, then (λx.t) := s(λx.r)(λx.s).

We will often use the abbreviation (λx1...xn.t) for (λx1.(λx2.(...(λxn.t)...))).

Lemma 2.10 (λ-abstraction). Given an arbitrary variable x and terms s and t

of L◦, OST proves the formulas
(λx.t)↓,

(λx.t)x ' t and

s↓ → (λx.t)s ' t[s/x].

The variables of (λx.t) are those of t other than x.

Proof. The proof is a simple induction on the complexity of the term t.

Lemma 2.11. Given two different variables x and y and two terms s and t of
L◦, OST proves the formula (λx.t)[s/y]x ' t[s/y].

Proof. Again the proof is a simple induction on the complexity of the term t

(see [10] p. 16-17).

The first axioms also guarantee the existence of a fixed point operator.

Definition 2.12 (Fixed point operator). Let t be the L◦ term (λyx.f(yy)x).
Then we define the fixed point operator as follows:

fix := (λf.tt).

Lemma 2.13 (Recursion theorem). For three variables x, f and g, OST proves
this formula:

fix(f)↓ ∧ (fix(f) = g → gx ' f(g, x)).

Proof. Let t be the L◦ term (λyx.f(yy)x). By Lemma 2.10 we have t↓ and

fix(f) ' tt ' (λyx.f(yy)x)t ' (λx.f(yy)x)[t/y].

Because both t and (λx.f(yy)x) are defined, we have (λx.f(yy)x)[t/y]↓ (this fol-
lows from the logical axioms of the logic of partial terms) and so fix(f)↓. If we set
g := fix(f), then we have by Lemma 2.11

gx ' (λx.f(yy)x)[t/y]x ' f(tt)x ' f(g, x).

2.3.2 Basic set-theoretic axioms

From now on we will use standard set-theoretic terminology. Some examples of
abbreviations, wich are used to formulate the next axioms, are given in the table
below.
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Table 1: Some abbreviations

Abb. Formula Meaning
a 6= ∅ (∃x ∈ a)(x = x) a is not empty.
a ⊆ b (∀x ∈ a)(x ∈ b) a is a subset of b.
y = x ∪ {x} (∀z ∈ x)(z ∈ y) ∧ x ∈ y ∧ (∀z ∈ y)(z ∈ x ∨ z = x)
Tran(a) (∀x ∈ a)(x ⊆ a) a is transitiv.
Ord(a) Tran(a) ∧ (∀x ∈ a)(Tran(x)) a is an ordinal.
Lim(a) Ord(a) ∧ a 6= ∅ ∧ (∀x ∈ a)((∃y ∈ a)(y = x ∪ {x})) a is a limit ordinal.

The axioms of the second group are classical set-theoretic axioms:

(1) ∃x∀y(y /∈ x) (there is the empty set),

(2) ∀u∀v∃x∀z(z ∈ x↔ z = u ∨ z = v) (there are unordered pairs),

(3) ∀x∃y∀z(z ∈ y ↔ ∃u(u ∈ x ∧ z ∈ u)) (there are unions),

(4) Lim(ω) ∧ (∀x ∈ ω)(¬Lim(x)) (ω is the first infinite ordinal),

(5) ∀x∀y(∀u(u ∈ x↔ u ∈ y)↔ x = y) (all objects are extensional),

(6) ∈-induction (L◦-I∈) is available for arbitrary formulas A[x] of L◦.

We say that ∈-induction is available for an L◦ formula A[x] if

∀x((∀y ∈ x)A[y]→ A[x])→ ∀xA[x](L◦-I∈)

holds.

Definition 2.14 (Class). Let A[x] be an L◦ formula. With {x : A[x]} we denote
the class of all sets satisfying A.

An expression of the form {x ∈ t : A[x]} is used as a shorthand for
{x : x ∈ t ∧ A[x]}. Some classes {x : A[x]} are extensionally equal to a set,
but this is not the case for all classes.

Definition 2.15. Given a variable x, a term t and a formula A[x] of L◦ we define

(i) (t ∈ {x : A[x]}) := t↓ ∧A[t],

(ii) (t = {x : A[x]}) := t↓ ∧ ∀x(x ∈ t↔ A[x]),

(iii) B := {x : x = > ∨ x = ⊥},

(iv) V := {x : x↓}.
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So B stands for the unordered pair consisting of the two truth values > and ⊥.
By the previous axioms B is a set. V is the class of all sets, it is not a set itself
(see lemma 4.1).

Definition 2.16. For an arbitrary natural number n and variables a, b, f , x,
x1, ..., xn+1 we define

(i) (f : a→ b) := (∀x ∈ a)(fx ∈ b),

(ii) (f : an+1 → b) := (∀x1, ..., xn+1 ∈ a)(f(x1, ..., xn+1) ∈ b).

The variables a and/or b may be replaced by V and/or B.

This formulas express that f is a unary and (n + 1)-ary mapping from a to b in
the operational sense, respectively. But they do not say that f is a function in
the set-theoretic sense (see below)! The formula (f : a→ V) means that f is total
on a (id est (∀x ∈ a)fx↓), (f : V → b) means that f maps all sets into b. The
formula (f : a→ B) expresses that fx ∈ B if x ∈ a. The n-ary Boolean operations
are those f for which (f : Bn → B) and so on.

2.3.3 Logical operations axioms

The third group of axioms describes the representation of the element relation, el-
ementary logical connectives and bounded existential quantification as operations:

(1) > 6= ⊥,

(2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = > ↔ x ∈ y),

(3) (non : B→ B) ∧ (∀x ∈ B)(non(x) = > ↔ x = ⊥),

(4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = > ↔ (x = > ∨ y = >)),

(5) (f : a→ B)→ (e(f, a) ∈ B ∧ (e(f, a) = > ↔ (∃x ∈ a)(fx = >))).

2.3.4 Operational set-theoretic axioms

The last axiom group consists of three special operational set-theoretic axioms:

(1) Separation for definite operations:

(f : a→ B)→ (S(f, a)↓ ∧ ∀x(x ∈ S(f, a)↔ (x ∈ a ∧ fx = >))).

(2) Replacement:

(f : a→ V)→ (R(f, a)↓ ∧ ∀x(x ∈ R(f, a)↔ (∃y ∈ a)(x = fy))).

(3) Choice:
∃x(fx = >)→ (Cf↓ ∧ f(Cf) = >).
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2.4 The strengthening OST(P) of OST

We get a significant strengthening of OST if we add the operational form of the
power set axiom to the other ones.

Definition 2.17 (L◦(P)). The language L◦(P) is the language L◦ extended by
the new constant P.

The operational power set axiom is stated as follows:

(P : V→ V) ∧ ∀x∀y(x ∈ Py ↔ x ⊆ y).(P)

Definition 2.18 (OST(P)). The axioms of the operational set theory OST(P) are
the axioms of OST, now formulated for all L◦(P) formulas, plus the operational
power set axiom (P).

2.5 The strengthening OST(E, P) of OST

We achieve a further strengthening of OST, if we let a new constant E act as the
unbounded analogue of the constant e.

Definition 2.19 (L◦(E) and L◦(E,P)). The languages L◦(E) and L◦(E,P) are the
languages L◦ and L◦(P) respectively extended by the new constant E.

The role of E is specified by the new axiom

(f : V→ B)→ (E(f) ∈ B ∧ (E(f) = > ↔ ∃x(fx = >))).(E)

Definition 2.20 (OST(E) and OST(E,P)). The axioms of the theory OST(E) and
OST(E,P) are the axioms of OST and OST(P) respectively, now formulated for all
L◦(E) and L◦(E,P) formulas respectively, plus the axiom (E) about unbounded
quantification.

2.6 First consequences of OST

There are two sorts of formulas of L◦ (and of L◦(P)) which can be represented by
constant L◦ terms (and L◦(P) terms respectively).

Definition 2.21 (∆0 formulas). A formula of L◦ (or of L◦(P)) is called ∆0 formula
if it does not contain the function symbol ◦, the relation symbol ↓ or unbounded
quantifiers.

That is, they are the usual ∆0 formulas of set theory, possibly containing additional
constants.

Example 1. All formulas listed in table 1 are ∆0 formulas of L◦.
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Definition 2.22 (eΣ formulas). The eΣ formulas of L◦(P) are inductively defined
as follows:

(i) If s and t are L◦(P) terms, then (s ∈ t), (s = t) and (t↓) are eΣ formulas of
L◦(P).

(ii) If s and t are variables or constants, then (s /∈ t) and (s 6= t) are eΣ formulas
of L◦(P).

(iii) If A and B are eΣ formulas of L◦(P), then so are (A ∨B) and (A ∧B).

(iv) If A is an eΣ formula of L◦(P) and t a term of L◦(P) which does not contain
the variable x, then (∃x ∈ t)A and ∃xA are eΣ formulas of L◦(P).

(v) If A is an eΣ formula of L◦(P) and t a constant or a variable other than the
variable x, then (∀x ∈ t)A is an eΣ formula of L◦(P).

The eΣ formulas of L◦ are exactly the eΣ formulas of L◦(P) in which the constant
P does not occur.

So the eΣ formulas (the extended Σ formulas) of L◦ (and L◦(P)) are as the Σ
formulas of set theory (see definition 5.3) with positive occurrences of arbitrary
L◦ terms (and L◦(P) terms) permitted as well.

Lemma 2.23. Let ~u be the sequence of variables u1, ..., un and A[~u] an L◦ formula
with at most the variables ~u free.

(i) If A[~u] is a ∆0 formula of L◦, then there exists a closed L◦ term tA such
that OST proves the formula

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x]↔ tA(~x) = >).

(ii) If A[~u] is an eΣ formula of L◦, then there exists a closed L◦ term tA such
that OST proves the formula

tA↓ ∧ ∀~x(A[~x]↔ tA(~x) = >).

We also have the analogous result for A[~u] is an L◦(P) formula and the theory
OST(P).

The proof of this Lemma is an elaboration of the proof-idea in [6].

Proof. First we define an operation eq such that

(eq : V2 → B) ∧ (eq(x, y) = > ↔ x = y).
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By the basic set theoretic axiom of extensionality we have x = y ↔ (x ⊆ y∧y ⊆ x)
and thus

x ' y iff (∀z ∈ x)(z ∈ y) ∧ (∀z ∈ y)(z ∈ x)

iff ¬(∃z ∈ x)¬(z ∈ y) ∧ ¬(∃z ∈ y)¬(z ∈ x)

iff ¬((∃z ∈ x)¬(z ∈ y) ∨ (∃z ∈ y)¬(z ∈ x)).

So by the logical operations axioms

eq := (λxy.non(dis(e((λz.non(el(z, y))), x), e((λz.non(el(z, x))), y))))

has the desired properties. Using λ-abstraction and equipped with the terms el,
non, dis, e and eq we can define the term tA with the desired properties formu-
lated in the first part of the lemma. This can be showed by induction on the
complexity of the ∆0 formula A[~u].

If A[~u] is a general eΣ formula, it can contain three new things: positive oc-
currences of formulas which contain terms with the function symbol ◦, positive
occurrences of the formula (t↓) where t is an arbitrary L◦ term and unrestricted
existential quantification. For manage formulas like xy = z define ap := (λxy.xy)
and observe that eq(ap(x, y), z) = > ↔ xy = z. For manage formulas like (t↓)
observe that t↓ ↔ t = t (notice that in the second part of the lemma it is only
necessary that tA(~u) has a value if A[~u] is the case). If A[~u] is the eΣ formula
∃xB[~u, x] and tB is the term for the formula B[~u, x], we set s := (λx.tB(~u, x)).
Then the term tA := (λ~u.s(C(s))) has the desired properties. If we have noticed
that, the rest of the proof can be done by induction on the complexity of the eΣ
formula A[~u].

Ordered pairs and products are defined as usual, i.e. ordered pairs are Kuratowski
pairs and products sets of ordered pairs.

Lemma 2.24. There exist the following closed L◦ terms:

(i) ∅ for the empty set,

(ii) uopa for forming unordered pairs,

(iii) un for forming unions,

(iv) p for forming ordered pairs,

(v) prod for forming products,

(vi) pL and pR as projection operations with respect to p, (i.e. pL(p(a, b)) = a

and pR(p(a, b)) = b).
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Proof. The basic set-theoretic axioms guarantee the existence of the empty
set, of the unordered pair of two given sets and of the union of a given set. If a
is one of this sets, then there is a ∆0 formula A[x] of L◦ such that we have by
extensionality A[x] iff. x = a (see [1]). Thus, with the term tA and the operation
C we can pick the set a (like we do it below for the sixth assertion). This finishes
the proof of the first three assertions.

For the fourth assertion take p := λxy.uopa(uopa(x, x),uopa(x, y)).

Let t be the term λb.(λx.R(λy.p(x, y), b)). Then we take prod := λab.un(R(t(b), a)).

For the sixth assertion let A[a, x] be a ∆0 formula of L◦ which expresses that a is
an ordered pair and its first component is x (for the existence of A[a, x] see [1]).
Then set pL := λa.C(λx.tA(a, x)). The term pR is defined analogous.

Sometimes we will write {a, b} for uopa(a, b), ∪a for un(a), 〈a, b〉 for p(a, b) and
a × b for prod(a, b). Now we have introduced some abbreviations which stand
for two different formulas. E.g. a 6= ∅ stands for the formula specified in table
1, but it also stands for the formula (¬(a = t) ∧ a↓ ∧ t↓) where t is the term for
the empty set of lemma 2.24. If we need an abbreviation which stands for two
different formulas, then mostly it doesn’t make any difference which of them we
mean by it, because the two formulas always have the same meaning. If it matters
although which formula we mean, we will declare which one it is.

We denote by Rel(a) and Fun(a) ∆0 formulas of the basic language L which
denote that the set a is a binary relation and function, respectively, in the set-
theoretic sense (it is well-known that such formulas exist, for example see [1]).
Further we need Dom(a) = b and Ran(a) = b as abbreviations for ∆0 formulas
which express that a is a relation with domain b and a is a relation with range
b respectively (surly such formulas exist). If Fun(a) holds and u belongs to the
domain of a we write a′u for the unique v such that 〈u, v〉 ∈ a.

Lemma 2.25. There exist closed L◦ terms dom, ran, op and fun such that OST

proves the following assertions:

(i) dom(f)↓ ∧ ran(f)↓ ∧ op(f)↓.

(ii) Rel(a)→ (Dom(a) = dom(a) ∧Ran(a) = ran(a)).

(iii) (Fun(f) ∧ a ∈ dom(f))→ f ′a = op(f, a).

(iv) (f : a→ V)→ (Fun(fun(f, a)) ∧ dom(fun(f, a)) = a).
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(v) (f : a→ V)→ (∀x ∈ a)(fun(f, a)′x = fx).

Proof. Let A[a, x] and B[a, x] be two ∆0 formulas of L◦, with exactly the vari-
ables a and x free, which expresses that x is in the domain of a and x is in the
range of a respectively. Then we set dom := λa.S(λx.tA(a, x),un(un(a))) and
ran := λa.S(λx.tB(a, x),un(un(a))).
Let C[f, x, y] be a ∆0 formula of L◦, with exactly the variables f , x and y free,
which expresses that the ordered pair with the first component x and the second
component y is an element of f . Then take op := λf.(λx.C(λy.tC(f, x, y))). This
finishes the proof of the first three assertions.

Assume (f : a→ V). If we set s = R(f, a), then of course (f : a→ s). Let ap and
eq be the operations defined in the proof of lemma 2.23 and
t := λfx1x2.eq(ap(f, x1), x2). Thus t(f, x1, x2) = > ↔ fx1 = x2. Then set
fun := λfa.S(λx.t(f,pL(x),pR(x)),prod(a, s)) and check that the assertions four
and five hold.

So we have that each set-theoretic function can be translated into an operation
which yields the same values on the domain of the function. On the other hand
there corresponds to each operation, which is total on a set a, a set-theoretic
function with domain a such that the values of this operation and of this function
agree on a.

Definition 2.26 (Axiom of choice). The axiom of choice is given by

(∀x ∈ a)(x 6= ∅)→ ∃f(Fun(f) ∧Dom(f) = a ∧ (∀x ∈ a)(f ′x ∈ x)).(AC)

Lemma 2.27 (The axiom of choice). The axiom of choice holds in OST.

Proof. Set t := λx.C(λy.el(y, x)). Then for every non-empty set x we have
t(x) ∈ x. Thus if a is a set of non-empty sets, then fun(t, a) is a choice function
on a with the desired properties.
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3 Totality

In this section we are interested in questions about totality for operations.

Definition 3.1 (Totality). Totality is the assertion

∀x∀y(xy↓).(TOT)

First we are asking whether OST plus totality is consistent. Cantini and Crosilla
showed in [5] and [4] via a fixed point argument that the theories COST (con-
structive operational set theory) and EST (elementary constructive operational
set theory), which have similarities with OST, refutes TOT. We choose another
approach (another fixed point argument) to show that the same holds also for
OST.

Theorem 3.2. There is an operation which is nowhere defined. More precisely,
there exists a closed L◦ term t such that OST proves t↓ and ∀x(tx↑).

Proof. We define s as the term given by (λxy.uopa(xy, xy)) and we set
t := fix(s). Then we have t↓ and for an arbitrary set x

tx ' s(t, x) ' uopa(tx, tx) ' {tx}.

If tx↓ held for any x, we would have tx = {tx}. It would follow that tx ∈ tx which
is not possible in OST (this can be showed by ∈-induction). Hence there is no x
such that tx↓.

So we have immediately:

Corollary 3.3. OST refutes TOT.

The second question in this section is: Is there an operation which checks if an
arbitrary operation is total, i.e. does an operation f with the properties

(f : V→ B) ∧ ∀x(fx = > ↔ ∀y(xy↓)) (1)

exist? For the proof that such an operation does not exist we need this lemma:

Lemma 3.4. Let ~x be a sequence of variables x1, ..., xn. For every ∆0 formula
A[~x] with at most the variables ~x free and every two terms t and s of L◦ (or
of L◦(P)), there exists an L◦ term (or L◦(P) term) modt,sA such that OST (or
OST(P)) proves

(t↓ ∧ s↓) → modt,sA ↓ ∧ (modt,sA : Vn → {t, s}) and

(t↓ ∧ s↓) → ((A[~x]→ modt,sA (~x) = t) ∧ (¬A[~x]→ modt,sA (~x) = s)).

If t and s are closed terms, then so is modt,sA .
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Proof. By Lemma 2.23 there is a closed L◦ term (or L◦(P) term) tA such that

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x]↔ tA(~x) = >).

Let r be the term {〈>, t〉, 〈⊥, s〉}. We define

modt,sA := (λx1...xn.op(r, tA(~x))).

It is easy to check that modt,sA has the desired properties.

Theorem 3.5. OST refutes the existence of an operation f with the properties
given by (1).

Proof. Let us assume that there is an operation f with the properties given by
(1). We define the operation mod as

mod := (λxy.(mod(λxy.uopa(xy,xy)),(λxy.∅)
A (fx))xy),

where A[x] is the ∆0 formula x = >. Thus we have

mod(x, y) =

{
{xy} if fx = >,
∅ if fx = ⊥.

Now we set g := fix(mod), and so we have for an arbitrary x

gx ' mod(g, x).

In the case that xy↑ we have mod(x, y) = ∅ and thus ∀x∀y(mod(x, y)↓) and so
∀x(gx↓). It follows that

gx = mod(g, x) = {gx}

like in the proof of theorem 3.2 which is not possible. Thus our assumption is
false.
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4 Sets of operations and operational extensionality

In classical set theory there exists for arbitrary sets a and b the set of all functions
from a to b. This is also the case in operational set theory with the operational
powerset axiom if we mean by it the set of all functions in the typical set-theoretic
sense. How about the set of all operations from a to b ({f : (f : a → b)}), is the
assumption of its existence consistent? This chapter is mainly about this question.
Cantini and Crosilla discussed in [5] and [4] a similar question. They showed via a
fixed point argument (another one than we will use below) that the theories COST

and EST together with the assertion

∀a∀b∃c(c = {f : (∀x ∈ a)(∃y ∈ b)(fx ' y)})

are inconsistent.
Before we can answer the question of this section, we need the following lemmas.

Lemma 4.1. OST proves that there is no set which contains all sets.

Proof. Assume that there is the set of all sets and call it V. Then we had
V ∈ V which is not possible (this can be showed by ∈-induction).

In the proof of the next lemma we need the unbounded quantification operation
E. It is an interesting question whether we can prove the assertion also for OST,
i.e. without the operation E.

Lemma 4.2. Let f be a total injective operation, i.e.

(f : V→ V) ∧ ∀x∀y(fx = fy → x = y).

Then OST(E) proves
¬∃a∀x(fx ∈ a).

Proof. Assume that there is a set a such that we have for all x that fx ∈ a.
Now let t be the term (λyx.eq(fx, y)) where the term eq is defined as in the proof
of lemma 2.23. Since f is total, we have (t : V2 → B) and

t(y, x) =

{
> if fx = y,

⊥ if fx 6= y.

So we have for every y that (t(y) : V → B) and thus by the axiom (E) about
unbounded quantification

E(t(y)) ∈ B ∧ (E(t(y)) = > ↔ ∃x(fx = y)).
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Then by operational separation there is the set a′ = S(λy.E(t(y)), a) which is equal
to the class {y : ∃x(fx = y)}.

Now we define the operation f−1 by the term (λy.C(t(y))). By the operational
choice axiom it follows that f−1 : a′ → V and for every y ∈ a′

f−1y = x↔ fx = y,

because f is injective. So we have by the operational replacement axiom R(f−1, a′)↓
and from the totality of f it follows that R(f−1, a′) contains every set. This is not
possible by reason of the previous lemma. Thus a set with the properties of a can
not exist.

Theorem 4.3. Given an arbitrary set a and a nonempty set b, OST(E) refutes
the existence of a set which is extensionally equal to the class {f : (f : a→ b)}.

Proof. We denote by w an element of b. Since there is no set which contains
all sets, there is a set which is not in a. We pick such a set and call it x0. Then
we define f as the operation

λz.un(uopa(prod(a,uopa(w,w)),uopa(p(x0, z),p(x0, z))))

= λz.(a× {w}) ∪ {〈x0, z〉}.

So we have that f(z) = {〈x,w〉 : x ∈ a} ∪ {〈x0, z〉} for every z. In particular f is
total and injective (by the basic set-theoretic axioms) and we have Fun(f(z)) for
every z. Further we define g as the operation given by λz.op(f(z)). Then also g
is total and, because g(z, x0) = z for every z, it is also injective (i.e. g(z1) = g(z2)
iff z1 = z2). Further we have g(z) ∈ {f : (f : a → b)} for every set z. Thus, by
the previous lemma there is no set equal to {f : (f : a→ b)}.

A set-theoretic function is only defined on its domain which is always a set. But
the formula (f : a → b) doesn’t state that f is only defined on a. If we translate
a set-theoretic function with domain a into an operation yielding the same values
on a, then there are many possibilities in order to which values the operation
can yield outside of a. The proof of theorem 4.3 says that these are too many
possibilities such that the class of operations {f : (f : a → b)} can not be a set.
We can now restrict this class such that there is only one possibility in order to
which values the operation can yield outside of a. So the next question is: is the
class

{f : (f : a→ b) ∧ ∀x(x /∈ a→ fx = c)},

where c is an arbitrary set, a set? The next theorem states that this is not the
case if a and b contains at least one element, two elements respectively.

17



Theorem 4.4. Given a set a containing at least one element, a set b containing
at least two elements and an arbitrary set c. Then OST refutes that the class

{f : (f : a→ b) ∧ ∀x(x /∈ a→ fx = c)}

is a set.

Proof. Let a, b, c, v, w1 and w2 be sets where v is an element of a and w1 and
w2 are two different elements of b.

Let’s assume that

{f : (f : a→ b) ∧ ∀x(x /∈ a→ fx = c)}

is a set and denote it by u.

We denote by A[x, y] the formula x = y and by B[x, y] the formula x ∈ y. Both
formulas are ∆0. We define the term mod as

mod :=
(
λfx.modmod

w1,w2
A (fx,w2),c

B (x, a)
)
,

(for the definition of modmod
w1,w2
A (fx,w2),c

B see Lemma 3.4) and we have

mod(f, x) =


w1 if fx = w2 and x ∈ a,
w2 if fx 6= w2 and x ∈ a,
c if x /∈ a and fx↓.

It follows that if f ∈ u then also (λx.modfx) ∈ u.

Another term MOD is defined as

MOD :=
(
λfx.(modλx.mod(f,x),λx.mod

w1,c
B (x,a)

B (f, u))x
)

and so

MOD(f, x) =


mod(f, x) if f ∈ u,
w1 if f /∈ u and x ∈ a,
c if f /∈ u and x /∈ a.

Hence for an arbitrary set f we have MODf ∈ u.

Now we set g := (λf.MODf) and h := fix(g). Therefore h(x) ' gh(x), and
because gh ∈ u we have also h ∈ u. It follows
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h(v) = gh(v) = MOD(h, v) = mod(h, v) =

{
w1 if hv = w2,

w2 if hv 6= w2.

Because w1 6= w2 this is a contradiction. Therefore the assumption is false and u

is not a set.

We can also restrict the class {f : (f : a → b)} such that the members of the
restricted class does only take values in a. Such a class is also not a set in OST

(if a and b contains at least one element, two elements respectively). The proof of
this fact is very similar to the proof of the previous theorem as you can see in the
following.

Theorem 4.5. Given a set a containing at least one element and a set b containing
at least two elements. Then OST refutes that the class

{f : (f : a→ b) ∧ ∀x(x /∈ a→ fx↑)}

is a set.

Proof. Let a, b, v, w1 and w2 be sets where v is an element of a and w1 and
w2 are two different elements of b.

Let’s assume that
{f : (f : a→ b) ∧ ∀x(x /∈ a→ fx↑)}

is a set and denote it by u.

Let c be an operation which is nowhere defined (by theorem 3.2 such an operation
exists). We denote by A[x, y] the ∆0 formula x = y and by B[x, y] the ∆0 formula
x ∈ y and define the term mod as

mod :=
(
λfx.modmod

(λx.w1),(λx.w2)
A (fx,w2),c

B (x, a)
)
.

Then we have

(mod(f, x))x '


w1 if fx = w2 and x ∈ a,
w2 if fx 6= w2 and x ∈ a,
cx if x /∈ a.

Because cx↑ it follows that if f ∈ u then also (λx.(mod(f, x))x) ∈ u.

The term MOD is defined as

MOD :=
(
λfx.(modλx.mod(f,x),λx.mod

(λx.w1),c
B (x,a)

B (f, u))xx
)

19



and so

MOD(f, x) '


(mod(f, x))x if f ∈ u,
w1 if f /∈ u and x ∈ a,
cx if f /∈ u and x /∈ a.

Hence for an arbitrary set f we have MODf ∈ u.

Now we set g := (λf.MODf) and h := fix(g). Therefore h(x) ' gh(x), and
because gh ∈ u we have also h ∈ u. It follows

h(v) = gh(v) = MOD(h, v) = (mod(h, v))v =

{
w1 if hv = w2,

w2 if hv 6= w2.

Because w1 6= w2 this is a contradiction. Therefore the assumption is false and u

is not a set.

Definition 4.6 (Operational extensionality). Extensionality for operations is the
assertion

∀x(fx ' gx)→ f = g.(EXT)

In [5] and [4] Cantini and Crosilla showed that the theories COST and EST refutes
extensionality for operations. They argued that every total operation f in an
extensional partial combinatory algebra possess a fixed point (i. e. there is an x

such that fx = x) and proved that this is not the case in models of COST and
EST. Here we deduce from theorem 4.4 that extensionality for operations fails also
in the theory OST.

Corollary 4.7. OST refutes EXT.

Proof. Given the set a := {∅}, the set b := {∅, a}, an arbitrary set c, and the
class D := {f : (f : a → b) ∧ ∀x(x /∈ a → fx = c)}. Let f1 and f2 be operations,
such that

f1x =

{
∅ if x = ∅,
c if x 6= ∅,

and

f2x =

{
a if x = ∅,
c if x 6= ∅.

By Lemma 3.4 such operations exist (take f1 = (λx.mod∅,cA (x, ∅)) and
f2 = (λx.moda,cA (x, ∅)) where A[x, y] is the formula x = y) and we have that
f1, f2 ∈ D. With EXT we can even prove that D = {f1, f2} and so D ist a set
by the axiom for unordered pairs. This is a contradiction to theorem 4.4, and so
OST plus EXT is not consistent.
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5 Functions as operations

In this section expressions like 〈x, y〉 = z do not represent formulas like p(x, y) = z,
but they denote ∆0 formulas wich express statements like ”z is identical with the
ordered pair 〈x, y〉“ (how such ∆0 formulas can be defined, is written for example
in [1]).

We introduce two versions of an axiom which is also mentioned in [3]. The weaker
version of the axiom states that if f is a set-theoretic function, then the values of
f as function agree with the values of f as operation on the set-theoretic domain
of f . The stronger version of the axiom says in addition that f as operation does
not take any values outside of the set-theoretic domain of f .

Definition 5.1 (Functions are operations). The weaker version of the axiom

”functions are operations“ is given by

Fun(f)→ ∀x∀y(〈x, y〉 ∈ f → fx = y),(FO1)

and the stronger one is given by

Fun(f)→ ∀x∀y(〈x, y〉 ∈ f ↔ fx = y).(FO2)

In this section we are interested in the question whether the theory OST plus FO1
(plus FO2 respectively) is consistent. Since the axioms of OST does not specify
the behaviour of any object as operation and the properties of the same object as
set at the same time, it would be a surprise, if OST and FO1 (FO2 respectively)
got not along with each other. The way to answer the question of this section is
similar to the way to identify the consistency strength of OST in [8].

5.1 The theory KPω

For answer the main question of this section we introduce the theory KPω, the
Kripke-Platek set theory without urelements (see [1]) plus infinity. KPω is formu-
lated in our basic language L. The logic of KPω is the classical first order logic
with equality.

Definition 5.2 (Axioms of KPω). The non-logical axioms of KPω are: extension-
ality, pair, union, infinity (ω is the first infinite ordinal), ∈-induciton for arbitrary
formulas A[x] of L,

∀x((∀y ∈ x)A[y]→ A[x])→ ∀xA[x],(L-I∈)

as well as ∆0 separation and ∆0 collection, i.e.

∃x(x = {y ∈ a : B[y]}),(∆0-Sep)
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(∀x ∈ a)(∃yC[x, y])→ ∃z(∀x ∈ a)(∃y ∈ z)C[x, y](∆0-Col)

for arbitrary ∆0 formulas B[u] and C[u, v] of L.
Note that the first four axioms are formulated as in 2.3.2.

Definition 5.3 (Σ formulas and Π formulas). The Σ formulas of L are inductively
defined as follows:

(i) If A is a ∆0 formula of L, then A is a Σ formula of L.

(ii) If A and B are Σ formulas of L, then so are (A ∨B) and (A ∧B).

(iii) If A is a Σ formula of L, x is a variable and t a constant or a variable of L,
then (∃x ∈ t)A and ∃xA are Σ formulas of L.

(iv) If A is a Σ formula of L, x is a variable and t a constant or a variable of L,
then (∀x ∈ t)A is a Σ formula of L.

On the other hand, the Π formulas of L are inductively defined as follows:

(i) If A is a ∆0 formula of L, then A is a Π formula of L.

(ii) If A and B are Π formulas of L, then so are (A ∨B) and (A ∧B).

(iii) If A is a Π formula of L, x is a variable and t a constant or a variable of L,
then (∃x ∈ t)A is a Π formula of L.

(iv) If A is a Π formula of L, x is a variable and t a constant or a variable of L,
then (∀x ∈ t)A and ∀xA are Π formulas of L.

Remark 1. The negation of any Σ formula of L is logically equivalent to a Π
formula of L and vice versa.

The proof of the next theorem can be looked up in [1].

Theorem 5.4 (The Σ reflection principle). If A is a Σ formula, then KPω proves

A↔ ∃uAu.

Definition 5.5 (∆ formulas). An L formula A is ∆ over KPω if there is some Σ
formula B of L and some Π formula C of L, such that both contain exactly the
same free variables as A and KPω proves A↔ B and A↔ C.

Example 2. Of course all ∆0 formulas are ∆.
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We use lower case Greek letters α, β, γ, ... (possibly with subscripts) for ordinals
(a set x is an ordinal, if Ord(x) holds, see table 1) and write (α < β) for (α ∈ β).
Further (a ∈ Lα) states that a is an element of the αth level Lα of the constructible
hierarchy and (a <L b) means that a is smaller than b according to the well-
ordering <L on the constructible universe L. It is well-known that the assertions
a ∈ Lα and a <L b are ∆ over KPω (see for example [1] or [12]).

Definition 5.6 (V = L). The axiom (V = L) says:

All sets are constructible.(V = L)

Important here is: the axiom (V = L) guarantees that the universe is well-ordered
by <L and for every set a there is an α such that a ∈ Lα.

5.2 The embedding of OST plus FO1/2 into KPω plus (V = L)

There are ∆0 formulas which express that the set a is an ordered pair and that
the first or second component of a is x (see [1]). Generally for any natural number
n greater than 0 we select a ∆0 formula Tupn(a) formalising that a is an ordered
n-tuple and ∆0 formulas (a)i = b, (a)i ∈ b and (a)i /∈ b formalising that its ith
component is b, is an element of b and is no element of b respectively. So we have

Tupn(a) ∧ (a)1 = b1 ∧ ... ∧ (a)n = bn → a = 〈b1, ..., bn〉.

In addition we fix a ∆0 formula Tup3(a) which formalises that a is a special
sort of ordered triple: a is a set containing two usual ordered triples, namely
a = {〈x, y, z〉, 〈x, y, {z}〉} for some sets x, y and z. Then we write a = [x, y, z].
Notice that usual ordered triples have the form 〈〈x, y〉, z〉 (for example in [11]). If
you wonder why the form of the ordered triples matters in the following, you have
to be patient until remark 3 (in [8] such unusual triples are not used). We fix also
a ∆0 formula [a]i = b, formalising that the ith component of the special triple a
is b. So we have for example if a = [x, y, z], then [a]2 = y. We can define Tup3(a)
and [a]i = b like in the following table.

Table 2: Special abbreviations

Abbreviation Formula
Tup3(a) (∃x, y ∈ a)((∀z ∈ a)((z = x ∨ z = y) ∧ Tup3(x) ∧ Tup3(y)

∧ (x)1 = (y)1 ∧ (x)2 = (y)2 ∧ (y)3 = {(x)3}))
[a]i = b for i ∈ {1, 2} (∀x ∈ a)((a)i = b)
[a]3 = b (∃x, y ∈ a)((x)3 = b ∧ (y)3 = {b})

Further we fix pairwise different sets k̂, ŝ, >̂, ⊥̂, êl, n̂on, d̂is, ê, Ŝ, R̂ and Ĉ which do
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all contain infinitely many elements and which are all not set theoretic functions,
i.e. KPω proves ¬Fun(a) if a is a set of the list (in [8] these sets only must not be
ordered pairs and triples, the stronger conditions here will be used in the proofs
of the lemmas 5.9 and 5.10). We will use them as codes of the corresponding
constants of L◦. L◦ terms like kx, sx or sxy will be coded by the ordered tuples
〈k̂, x〉, 〈̂s, x〉 and [̂s, x, y].

Definition 5.7 (The language L(R)). Let R be a fresh 4-place relation symbol.
The language L(R) is the extension of the language L which we get if we permit
expressions R(α, a, b, c) as additional atomic formulas. We abbreviate

R<α(a, b, c) := (∃β < α)R(β, a, b, c).

The L(R) formula introduced in the next definition will be used for the inter-
pretation of applying operations of OST to others within the theory KPω plus
(V = L).

Definition 5.8. The L(R) formula A[R,α, a, b, c] is defined as

A[R,α, a, b, c] := c ∈ Lα ∧B[R,α, a, b, c],

where B[R,α, a, b, c] is the L(R) formula given as the disjunction of the following
clauses:

(1) a = k̂ ∧ c = 〈k̂, b〉,

(2) Tup2(a) ∧ (a)1 = k̂ ∧ (a)2 = c,

(3) a = ŝ ∧ c = 〈̂s, b〉,

(4) Tup2(a) ∧ (a)1 = ŝ ∧ c = [̂s, (a)2, b],

(5) Tup3(a) ∧ [a]1 = ŝ

∧ (∃x, y ∈ Lα)(R<α([a]2, b, x) ∧R<α([a]3, b, y) ∧R<α(x, y, c)),

(6) a = êl ∧ c = 〈êl, b〉,

(7) Tup2(a) ∧ (a)1 = êl ∧ (a)2 ∈ b ∧ c = >̂,

(8) Tup2(a) ∧ (a)1 = êl ∧ (a)2 /∈ b ∧ c = ⊥̂,

(9) a = n̂on ∧ b = >̂ ∧ c = ⊥̂,

(10) a = n̂on ∧ b = ⊥̂ ∧ c = >̂,

(11) a = d̂is ∧ c = 〈d̂is, b〉,
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(12) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = >̂ ∧ c = >̂,

(13) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = >̂ ∧ c = >̂,

(14) Tup2(a) ∧ (a)1 = d̂is ∧ (a)2 = ⊥̂ ∧ b = ⊥̂ ∧ c = ⊥̂,

(15) a = ê ∧ c = 〈ê, b〉,

(16) Tup2(a) ∧ (a)1 = ê ∧ (∃x ∈ b)(R<α((a)2, x, >̂)) ∧ c = >̂,

(17) Tup2(a) ∧ (a)1 = ê ∧ (∀x ∈ b)(R<α((a)2, x, ⊥̂)) ∧ c = ⊥̂,

(18) a = Ŝ ∧ c = 〈Ŝ, b〉,

(19) Tup2(a) ∧ (a)1 = Ŝ ∧ (∀x ∈ b)(R<α((a)2, x, >̂) ∨R<α((a)2, x, ⊥̂))
∧ (∀x ∈ c)(x ∈ b ∧R<α((a)2, x, >̂))
∧ (∀x ∈ b)(R<α((a)2, x, >̂)→ x ∈ c),

(20) a = R̂ ∧ c = 〈R̂, b〉,

(21) Tup2(a) ∧ (a)1 = R̂ ∧ (∀x ∈ b)(∃y ∈ c)(R<α((a)2, x, y))
∧ (∀y ∈ c)(∃x ∈ b)(R<α((a)2, x, y)),

(22) a = Ĉ ∧R<α(b, c, >̂) ∧ (∀x ∈ Lα)(x <L c→ ¬R<α(b, x, >̂))
∧ (∀β < α)(∀x ∈ Lβ)(¬R<β(b, x, >̂)),

(23) Fun(a) ∧ 〈b, c〉 ∈ a.

Remark 2. The formula A[R,α, a, b, c] is ∆ over KPω with respect to the language
L(R).

Lemma 5.9. If we have Fun(a) for a set a, then no one of the clauses (1)-(22)
of the previous definition can be satisfied for this a and any α, b and c.

The rightness of this lemma is less trivial as it may seem, because there are ordered
pairs which are also set theoretic functions, as the following example shows.

Example 3. Because

〈x, x〉 = {{x}, {x, x}} = {{x}}

we have
〈〈x, x〉, 〈x, x〉〉 = 〈{{x}}, {{x}}〉 = {{{{x}}}}.

But we have also
{〈{x}, {x}〉} = {{{{x}}}}.

Thus Tup2({{{{x}}}}) as well as Fun({{{{x}}}}).
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Proof of lemma 5.9. In all the clauses of the previous definition, in which a

is an ordered pair, we have that (a)1 = ĉ, where ĉ is one of the sets for coding
the constants of L◦ other than ω. So at first we show that an ordered pair 〈ĉ, x〉
is never a set theoretic function. We distinguish between the case ĉ = x and the
case ĉ 6= x.
First assume ĉ = x. Then we have 〈ĉ, x〉 = {{ĉ}}, and this is a set containing
exactly one element. Thus if this set were a function f , we would have

f = {〈y1, y2〉} = {{{y1}, {y1, y2}}} = {{ĉ}}

for some sets y1, y2. By extensionality it would follow {{y1}, {y1, y2}} = {ĉ} and
thus y1 = y2 (because {ĉ} contains only one set) and so {y1} = ĉ. This is a
contradiction since {y1} contains only one set and ĉ is an infinite set.
On the other hand if ĉ 6= x, then 〈ĉ, x〉 contains two sets. That is, if it were equal
to a function f , we would have

f = {〈y1, y2〉, 〈z1, z2〉} = {{{y1}, {y1, y2}}, {{z1}, {z1, z2}}} = {{ĉ}, {ĉ, x}}

for some sets y1, y2, z1, z2 with y1 6= z1. It would follow

{ĉ} = {{y1}, {y1, y2}} or {ĉ} = {{z1}, {z1, z2}}.

Without loss of generality we can assume {ĉ} = {{y1}, {y1, y2}} and get the same
contradiction as above.
Thus, and since the sets, which act as codes, are all not set theoretic functions, no
one of the clauses (1)-(4) and (6)-(22) of the previous definition can be satisfied if
Fun(a).

It remains to show that if a = [ŝ, x, y] for arbitrary x and y, then a is not a set
theoretic function. But this is a direct consequence of the definition of [ŝ, x, y] (a
is a relation but not a function; if it were a function, we would have a′(〈ŝ, x〉) = y

and a′(〈ŝ, x〉) = {y} at the same time).

Lemma 5.10. If A[R,α, a, b, c] holds in KPω + (V = L), then exactly one of the
clauses (1)-(23) of the previous definition is satisfied for these α, a, b and c in
KPω + (V = L).

Proof. Since the sets, which act as codes, are all infinite sets, they are all not
ordered pairs. Thus by means of lemma 5.9 it is easy to verify, that at most one
of the clauses (1)-(4) and (6)-(23) of the previous definition can be satisfied for
fixed α, a, b and c.
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In order to show that the fifth clause of the previous definition can not be satisfied
at the same time as one of the clauses (1)-(4) and (6)-(22) for fixed α, a, b and c,
it is enough to show that a special ordered triple [̂s, x, y] is never an ordered pair
〈ĉ, v〉, where ĉ is one of the sets for coding the constants of L◦ other than ω and x,
y and v are arbitrary sets. Assume that [̂s, x, y] is the ordered pair {{ĉ}, {ĉ, v}}.
The set [̂s, x, y] contains exactly two different sets, so ĉ 6= v. We have

[̂s, x, y] = {〈̂s, x, y〉, 〈̂s, x, {y}〉}
= {〈〈̂s, x〉, y〉, 〈〈̂s, x〉, {y}〉}
= {{{〈̂s, x〉}, {〈̂s, x〉, y}}, {{〈̂s, x〉}, {〈̂s, x〉, {y}}}},

and thus {ĉ} = {{〈̂s, x〉}, {〈̂s, x〉, y}} or {ĉ} = {{〈̂s, x〉}, {〈̂s, x〉, {y}}} which is
impossible since ĉ contains infinitely many elements. Hence [̂s, x, y] is not an
ordered pair 〈ĉ, v〉.

Remark 3. If we used usual ordered triples in clause (5) of the definition above,
we would have the following problem: Of course the set f = {〈{ŝ}, {ŝ}〉} is a set
theoretic function. In a model of OST plus FO1 we have therefore f({ŝ}) = {ŝ}.
On the other hand we have

f = {{{{ŝ}}}} = 〈〈̂s, ŝ〉, 〈̂s, ŝ〉〉.

If we used usual ordered triples, the set 〈〈̂s, ŝ〉, 〈̂s, ŝ〉〉 = 〈̂s, ŝ, 〈̂s, ŝ〉〉 would be a
code for the L◦ term ss(ss). But we don’t want to enforce (ss(ss))({s}) = {s} in
our model.

Definition 5.11. For any L formula B[α, a, b, c] with at most the indicated free
variables we write A[B,α, a, b, c] for the L formula resulting by replacing each
occurrence of an atomic formula of the form R(α, r, s, t) in A[R,α, a, b, c] by
B[α, r, s, t].

The following theorem is a special case of ”definition by Σ recursion“ (or more
precisely a corollary of it) developed in [1] (notice that the transitive closure of an
ordinal α is α itself).

Theorem 5.12. There exists a Σ formula B[α, a, b, c] of L with at most the vari-
ables α, a, b and c free such that KPω proves

B[α, a, b, c]↔ A[B,α, a, b, c].(Σ-Rec/A)

Definition 5.13. Let BA be a Σ formula of L associated to the operator from
A[R,α, a, b, c] according to (Σ-Rec/A) of the previous theorem. We define

B<α
A [a, b, c] := (∃β < α)BA[β, a, b, c] and

ApA[a, b, c] := ∃αBA[α, a, b, c].

27



The next step is to show that ApA[a, b, c] is functional in its third argument, i.e.
ApA[a, b, x] and ApA[a, b, y] implies x = y.

Lemma 5.14. The theory KPω proves

BA[α, Ĉ, f, a] ∧BA[β, Ĉ, f, b]→ α = β ∧ a = b.

Proof. From the left hand side of the claimed assertion and by lemma 5.10 we
have:

(a) a ∈ Lα ∧ b ∈ Lβ,

(b) B<α
A [f, a,>] ∧B<β

A [f, b,>],

(c) (∀x ∈ Lα)(x <L a→ ¬B<α
A (f, x, >̂)),

(d) (∀x ∈ Lβ)(x <L b→ ¬B<β
A (f, x, >̂)),

(e) (∀γ < α)(∀x ∈ Lγ)(¬B<γ
A (f, x, >̂)),

(f) (∀γ < β)(∀x ∈ Lγ)(¬B<γ
A (f, x, >̂)).

From (a), (b), (e) and (f) it follows α = β (because < is a linear ordering). But
then (a)-(d) imply a = b (because <L is a linear ordering too).

Lemma 5.15. The theory KPω proves

(i) B<α
A [a, b, u] ∧B<α

A [a, b, v]→ u = v,

(ii) ApA[a, b, u] ∧ApA[a, b, v]→ u = v.

Proof. Equipped with the lemmas 5.9, 5.10 and 5.14 the first assertion is easily
proved by induction on α. The second assertion is a direct consequence of the
first.

The next thing to do is associating to each term t of L◦ a formula JtKA(u) of L
expressing that u is the value of t under the interpretation of the OST-application
via the Σ formula ApA.

Definition 5.16 (JtKA(u) formula). Let t be an L◦ term with u not occurring in
t. We define the L formula JtKA(u) inductively as follows:

(i) If t is a variable or the constant ω, then JtKA(u) is the formula (t = u).

(ii) If t is another constant, then JtKA(u) is the formula (t̂ = u).
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(iii) If t is the term (rs), then we set

JtKA(u) := ∃x∃y(JrKA(x) ∧ JsKA(y) ∧ApA[x, y, u]).

Remark 4. For every term t of L◦ its translation JtKA(u) is a Σ formula.

Now we are able to translate arbitrary formulas of L◦ into formulas of L.

Definition 5.17 (Translation of L◦ formulas). Let A be a formula of L◦. The L
formula A∗ is inductively defined as follows:

(i) For the atomic formulas of L◦ we set

(t↓)∗ := ∃xJtKA(x),

(s ∈ t)∗ := ∃x∃y(JsKA(x) ∧ JtKA(y) ∧ x ∈ y),

(s = t)∗ := ∃x∃y(JsKA(x) ∧ JtKA(y) ∧ x = y).

(ii) If A is the formula ¬B, then A∗ is ¬B∗.

(iii) If A is the formula (B ∧ C), then A∗ is (B∗ ∧ C∗).

(iv) If A is the formula ∀xB[x], then A∗ is ∀xB∗[x].

The translations of the axioms of the logic of partial terms are provable in KPω

plus (V = L), the proof is an easy exercise.

Lemma 5.18. If A is the logical operations axiom about bounded existential quan-
tification of OST, then we have

KPω + (V = L) ` A∗.

Proof. The translation of the premise (f : a → B) of the bounded existential
quantification axiom is equivalent to

(∀x ∈ a)(ApA[f, x, >̂] ∨ApA[f, x, ⊥̂]), (2)

and thus by the Σ reflection principle (theorem 5.4) there must be an ordinal α
such that

(∀x ∈ a)(B<α
A [f, x, >̂] ∨B<α

A [f, x, ⊥̂]), (3)

and by lemma 5.15 we have

(∀x ∈ a)(ApA[f, x, >̂]↔ B<α
A [f, x, >̂]). (4)

By the clauses (16) and (17) of definition 5.8 the assertion (3) also implies

A[BA, α, 〈ê, f〉, a, >̂] ∨ A[BA, α, 〈ê, f〉, a, ⊥̂] and (5)
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A[BA, α, 〈ê, f〉, a, >̂]↔ (∃x ∈ a)B<α
A [f, x, >̂]. (6)

From the assertions (4)-(6) we can conclude together with theorem 5.12 and lemma
5.15 that

ApA[〈ê, f〉, a, >̂] ∨ApA[〈ê, f〉, a, ⊥̂] and (7)

ApA[〈ê, f〉, a, >̂]↔ (∃x ∈ a)ApA[f, x, >̂], (8)

which is equivalent to

Je(f, a)KA(>̂) ∨ Je(f, a)KA(⊥̂) and (9)

Je(f, a)KA(>̂)↔ (∃x ∈ a)ApA[f, x, >̂]. (10)

So we have showed that (2) implies (9) and (10). This implication is equivalent
to the translation of the axiom about bounded existential quantification, which is
thus proved in KPω + (V = L).

Lemma 5.19. If A is the operational set-theoretic axiom about separation for
definite operations of OST, then we have

KPω + (V = L) ` A∗.

Proof. The axiom about operational separation for definite operations has
again the premise (f : a→ B) which is translated into a formula equivalent to (2).
From this we can deduce by the Σ reflection principle that there is a set b such
that

(∀x ∈ a)((ApA[f, x, >̂])b ∨ (ApA[f, x, ⊥̂])b). (11)

By ∆0-Sep we can introduce a set c satisfying

∀x(x ∈ c↔ (x ∈ a ∧ (ApA[f, x, >̂])b)). (12)

Now we select an ordinal α such that a, b and c belong to Lα. Then from (11),
(12), lemma 5.15 and Σ persistence (see in [1] corollary 8.6) it follows

c = {x ∈ a : B<α
A [f, x, >̂]} = {x ∈ a : ApA[f, x, >̂]} and (13)

(∀x ∈ a)(B<α
A [f, x, >̂] ∨B<α

A [f, x, ⊥̂]). (14)

If we remember clause (19) of definition 5.8, we see that (13) and (14) imply

A[BA, α, 〈Ŝ, f〉, a, c],

and hence by theorem 5.12
ApA[〈Ŝ, f〉, a, c]. (15)
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Then we get by (13), (15) and lemma 5.15 that

∃yJS(f, a)KA(y) and (16)

∃y(JS(f, a)KA(y) ∧ ∀x(x ∈ y ↔ (x ∈ a ∧ApA[f, x, >̂]))). (17)

So we have showed again an implication ((2) implies (16) and (17)) which is
equivalent to the translation of the axiom, this time the axiom about operational
separation for definite operations. That is, KPω+ (V = L) proves this axiom too.

Lemma 5.20. If A is the operational set-theoretic axiom about replacement of
OST, then we have

KPω + (V = L) ` A∗.

Proof. The premise (f : a → V) of the operational replacement axiom is
translated into an L formula equivalent to

(∀x ∈ a)(∃yApA[f, x, y]). (18)

Hence, by the Σ reflection principle, there exists a set b satisfying

(∀x ∈ a)(∃y ∈ b)(ApA[f, x, y])b, (19)

and by ∆0-Sep there is a set c such that

∀y(y ∈ c↔ (y ∈ b ∧ (∃x ∈ a)(ApA[f, x, y])b)). (20)

Let α be an ordinal such that a, b and c are all in Lα. Then because of lemma
5.15 and Σ persistence (see in [1] corollary 8.6) we can deduce from (19) and (20)
that

c = {y ∈ b : (∃x ∈ a)B<α
A [f, x, y]} = {y : (∃x ∈ a)ApA[f, x, y]} and (21)

(∀x ∈ a)(∃y ∈ c)B<α
A [f, x, y] ∧ (∀y ∈ c)(∃x ∈ a)B<α

A [f, x, y]. (22)

Thus by clause (21) of definition 5.8 we obtain

A[BA, α, 〈R̂, f〉, a, c]

from (22). Then by theorem 5.12 we have

ApA[〈R̂, f〉, a, c]. (23)

In view of lemma 5.15, the assertions (21) and (23) we get

∃zJR(f, a)KA(z) and (24)
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∃z(JR(f, a)KA(z) ∧ ∀y(y ∈ z ↔ (∃x ∈ a)ApA[f, x, y])). (25)

Thus KPω + (V = L) proves the implication from (18) to (24) and (25). So
KPω + (V = L) proves the axiom about operational replacement, since its trans-
lation is equivalent to this implication.

Lemma 5.21. If A is the operational set-theoretic axiom about choice of OST,
then we have

KPω + (V = L) ` A∗.

Proof. If we translate the premise ∃x(fx = >) of the axiom about operational
choice, we get a formula equivalent to

∃xApA[f, x, >̂]. (26)

This satement and ∈-induction implies that there is a least ordinal α such that

(∃x ∈ Lα)B<α
A [f, x, >̂]. (27)

Because <L well-orders the universe, statement (27) implies that we can pick the
least set a with respect to <L satisfying

a ∈ Lα ∧B<α
A [f, a, >̂]. (28)

According to clause (22) of definition 5.8 we therefore have

A[BA, α, Ĉ, f, a],

and by theorem 5.12
ApA[Ĉ, f, a]. (29)

Of course statement (28) also implies

ApA[f, a, >̂], (30)

and we get by (29) and (30)

∃x(JCfKA(x) ∧ApA[f, x, >̂]). (31)

So (26) implies (31). This implication is equivalent to the translation of the axiom
about operational choice, which is thus also proved in KPω + (V = L).

Lemma 5.22. For every axiom A of OST we have

KPω + (V = L) ` A∗.
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Proof. The basic set-theoretic axioms of OST are not affected by this trans-
lation and are availabele in KPω + (V = L) too. We have defined the formula
A[R,α, a, b, c] such that this lemma goes through. This is more or less trivial for
all applicative axioms and for the first four logical operations axioms. The lem-
mas 5.18-5.21 say that the assertion is also true, if A is one of the four remaining
axioms of OST.

Lemma 5.23. If A is the axiom FO1 or FO2, then we have

KPω + (V = L) ` A∗.

Proof. Surely we can prove in KPω + (V = L) that the translation of the
premise Fun(f) is equivalent to Fun(f) itself, since it is an L formula.
There is an ordinal α such that f ∈ Lα. Of course also (∀x ∈ f)(x ∈ Lα) and
c ∈ Lα if 〈b, c〉 ∈ f . Thus for arbitrary b, c with (〈b, c〉 ∈ f)∗ (which is equivalent
to 〈b, c〉 ∈ f) the translated premise implies A[BA, α, f, b, c] and thus ApA[f, b, c]
which is equivalent in KPω + (V = L) to (fb = c)∗. Thus KPω + (V = L) proves
(FO1)∗.
On the other hand if we have (fb = c)∗ and so ApA[f, b, c], i.e. there is an ordinal
α such that A[BA, α, f, b, c], then by lemma 5.9 the translated premise implies
〈b, c〉 ∈ f and thus (〈b, c〉 ∈ f)∗. Hence KPω + (V = L) also proves (FO2)∗.

Since the theory KPω + (V = L) is closed under all rules of inference available in
OST, the lemmas 5.22 and 5.23 directly implies the next lemma.

Lemma 5.24. The theories OST + FO1 and OST + FO2 can be embedded into
KPω + (V = L); i.e. for all L◦ formulas A we have

OST + FO1 ` A =⇒ KPω + (V = L) ` A∗ and

OST + FO2 ` A =⇒ KPω + (V = L) ` A∗.

Formulas, which are ∆ over KPω, are also called absolute formulas. The next
theorem is well-known.

Theorem 5.25. The theory KPω + (V = L) is a conservative extension of KPω

for absolute formulas.

Now it is easy to give an answer to the main question of this section.

Theorem 5.26. Supposed that the theory KPω is consistent, the theories
OST + FO1 and OST + FO2 are consistent.

Proof. The theorem is a direct consequence of lemma 5.24 and theorem 5.25.
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6 Beeson’s theory ZFR

Beeson’s theory ZFR is presented in [3]. The letters stand for “Zermolo-Fraenkel
set theory with rules”. The theory ZFR guarantees not only the existence of sets,
but also the existence of natural numbers as urelements, i.e. natural numbers
which are not sets. Like the theory OST, ZFR is a set theory which allows apply-
ing objects to other ones, i.e. all objects are not only sets or numbers, but they
are also operations. In [3], operations are called rules, but in this thesis we use
the name operation also in respect of ZFR.

In section 4 we’ve seen that in a model of OST there is no set of all operations from
a to b (if a is a set containing at least one element, b a set containing at least two
elements). In the proofs of the theorems 4.4 and 4.5 we required amongst others
the second logical operations axiom of OST about the operation el (the axiom is
required for proving the lemmas 3.4 and 2.23). In Beeson’s theory ZFR there is no
such axiom about an operation like el (we will see later that we can define such an
operation anyway). The main question of this section is: Can we prove although
a theorem like theorem 4.5 within the theory ZFR? In [3] this question is declared
as an open question. In the next subsection we introduce the theory ZFR.

6.1 The theory ZFR

As noted obove, in a model of the theory ZFR there are objects, which are not
sets, but they are natural numbers. We will use the predicates S(x) and N(x) for
expressing “x is a set” and “x is natural a number” respectively.

6.1.1 Language and logic

The language of ZFR, let’s call it L◦ZFR, is an extension of our basic language L, but
without the constant ω. L◦ZFR contains the unary relation symbols ↓ (like in L◦),
S for sets and N for numbers. The binary relation symbols of L◦ZFR are those of
L. Like L◦, L◦ZFR posses the binary function symbol ◦ for partial term application.
The constants of L◦ZFR are k, s, sN, 0, ∅, P, d, uopa, un, N, im and countable many
cφ (one cφ for every primitive formula, primitive formulas are defined later).
The terms and formulas of L◦ZFR are inductively defined, the same way as the
terms and formulas of L◦, but with the additional atomic formulas S(t) and N(t)
for L◦ZFR terms t.
We will use the same abbreviations for L◦ZFR terms and formulas as we have defined
for L◦ terms and formulas.

Definition 6.1 (Primitive formulas). A formula of L◦ZFR is called primitive if it
does not contain the function symbol ◦ or any constant cφ.
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ZFR has the same logic as OST, the classical logic of partial terms.

6.1.2 Non-logical axioms

The first axioms of ZFR are the applicative axioms like in OST (see section 2.3.1).
Thus λ-abstraction and the recursion theorem (lemmas 2.10 and 2.13) are available
in ZFR.

Convention 6.2. To abbreviate some formulas we will use in this section a, b, c,
and u as (meta)variables for sets and n and m for natural numbers (all possibly
with subscripts). That is to say ∃aφ(a) means ∃a(S(a) ∧ φ(a)) and so on. The
variables f , g, v, w, x, y and z (of course possibly with subscripts) will be used
for arbitrary objects. So ∃xφ(x) means ”there is an object x which is a set or a
number such that φ(x)“ and so on.

The remaining axioms are:

(A1) Extensionality: ∀x(x ∈ a↔ x ∈ b)→ a = b.
(A2) Pairing: S(uopayz) ∧ ∀x(x ∈ uopayz ↔ x = y ∨ x = z).
(A3) Union: S(una) ∧ ∀x(x ∈ una↔ ∃u(u ∈ a ∧ x ∈ u)).
(A4) Empty set: S(∅) ∧ ∀x(x /∈ ∅).
(A5) Infinity: S(N) ∧ ∀x(x ∈ N↔ N(x)).
(A6) Separation: For every primitive formula φ:

S(cφ(a, y1, ..., yn))
∧∀x(x ∈ cφ(a, y1, ..., yn)↔ (x ∈ a ∧ φ(x, y1, ..., yn))).

(A7) Images: (∀x ∈ a)(fx↓)→ S(im(a, f))
∧∀z(z ∈ im(a, f)↔ (∃x ∈ a)(fx = z)).

(A8) Powerset: S(Pa) ∧ ∀x(x ∈ Pa↔ (S(x) ∧ (∀z ∈ x)(z ∈ a))).
(A9) ∈-induction: For every formula φ:

∀u((∀x ∈ u)(φ(x))→ φ(u))→ ∀u(φ(u)).
(B1) y ∈ x→ S(x).
(B2) Cases: dnnxy = x ∧ (n 6= m→ dnmxy = y).
(B3) Successor: N(0) ∧N(sNn) ∧ (sNn = sNm→ n = m) ∧ sNn 6= 0.
(B4) Induction: For every formula φ:

(φ(0) ∧ ∀n(φ(n)→ φ(sNn)))→ ∀nφ(n).

We will need 1 as an abbreviation for sN0.

6.2 Sets of operations

For proving a similar theorem like theorem 4.5, we need a lemma like lemma 3.4
and a theorem like theorem 3.2 which are given in the following.
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Lemma 6.3. Let ~y be a sequence of variables y1, ..., yn, A[~y] a primitive formula
of L◦ZFR with at most the variables ~y free. Further let t and s be two terms of L◦ZFR.
Then there exists a term itet,sA of L◦ZFR such that ZFR proves

(t↓ ∧ s↓) → itet,sA ↓ ∧ (itet,sA : Vn → {{t}, {s}}) and

(t↓ ∧ s↓) → ((A[~y]→ itet,sA (~y) = {t}) ∧ (¬A[~y]→ itet,sA (~y) = {s})).

Further there exists a term modt,sA of L◦ZFR such that ZFR proves

(S(t) ∧ S(s)) → modt,sA ↓ ∧ (modt,sA : Vn → {t, s}) and

(S(t) ∧ S(s)) → ((A[~y]→ modt,sA (~y) = t) ∧ (¬A[~y]→ modt,sA (~y) = s)).

If t and s are closed terms, then so are itet,sA and modt,sA .

Proof. Assume that t↓ and s↓ and let a be the set {t, s} and φ(x, y1, ..., yn) be
the formula

(x = t ∧A[~y]) ∨ (x = s ∧ ¬A[~y]).

We have
x ∈ cφ(a, ~y)↔ x ∈ a ∧ φ(x, ~y).

We set itet,sA := λy1...yn.cφ(a, y1, ..., yn) and we have

itet,sA (~y) =

{
{t} if A[~y],
{s} if ¬A[~y].

Further we set modt,sA := λy1...yn.un(itet,sA (~y)). If t and s are sets, then of course
un({t}) = t and un({s}) = s and so

modt,sA (~y) =

{
t if A[~y],
s if ¬A[~y].

Remark 5. It would be easy to prove the assertions about the term modt,sA of
the previous lemma also for the case that t and s are not sets, if there were an
operation f such that f({x}) = x for all singletons {x}. But for the following
reason ZFR doesn’t prove the existence of such an operation: Beeson presents in
[3] a model M of ZFR, in which all operations from sets to numbers are constant
operations. I.e. if a and b are two sets in M and g is an operation in M with
g(a) ∈ N and g(b)↓, then M satisfies g(a) = g(b). Thus if we have in this model
f({n}) = n for a number n, then f({m}) = n for all numbers m with f({m})↓.
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Theorem 6.4. There is an operation which is nowhere defined. More precisely,
there exists a closed L◦ZFR term t such that ZFR proves t↓ and ∀x(tx↑).

Proof. The proof is like the proof of theorem 3.2.

Now we are able to formulate and prove the desired theorem.

Theorem 6.5. Given a set a containing at least one element and a set b containing
at least two sets. Then ZFR refutes that the class

{f : (f : a→ b) ∧ (∀x)(x /∈ a→ fx↑)}

is a set.

Proof. Let v be an element of a and w1 and w2 be two different elements of b
wich are sets. The rest of the proof is like the proof of theorem 4.5.

Remark 6. Note that the set b in the previous theorem must contain at least two
sets. The proof doesn’t work if b contains two or more numbers but less than two
sets.

6.3 Logical operations

As noted above, ZFR does not contain axioms like the logical operations axioms of
OST. Although we can define closed terms of L◦ZFR which act as logigal operatons.

Theorem 6.6. There are closed terms >̃, ⊥̃, ẽl, ñon, d̃is and ẽ of L◦ZFR such that
ZFR proves for B̃ := {>̃, ⊥̃}

(i) >̃ 6= ⊥̃,

(ii) (ẽl : V2 → B̃) ∧ ∀x∀y(ẽl(x, y) = >̃ ↔ x ∈ y),

(iii) (ñon : B̃→ B̃) ∧ (∀x ∈ B̃)(ñon(x) = >̃ ↔ x = ⊥̃),

(iv) (d̃is : B̃2 → B̃) ∧ (∀x, y ∈ B̃)(d̃is(x, y) = >̃ ↔ (x = >̃ ∨ y = >̃)),

(v) (f : a→ B̃)→ (ẽ(f, a) ∈ B̃ ∧ (ẽ(f, a) = >̃ ↔ (∃x ∈ a)(fx = >̃))).

Proof. For the first assertion we set for example >̃ := {1} and ⊥̃ := {0}. For
later use we set b as the set {0, 1}.

For the assertions two to four we define in each case the requested terms as
λy1...yn.cφj (b, y1, ..., yn) where n is 1 or 2, j is the number of the assertion and φj
is one of the formulas given below.

φ2(x, y1, y2) is (x = 1 ∧ y1 ∈ y2) ∨ (x = 0 ∧ y1 /∈ y2).
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φ3(x, y) is (x = 1 ∧ y = ⊥̃) ∨ (x = 0 ∧ y = >̃).

φ4(x, y1, y2) is (x = 1 ∧ (y1 = >̃ ∨ y2 = >̃)) ∨ (x = 0 ∧ ¬(y1 = >̃ ∨ y2 = >̃)).

For the fifth assertion let φ5(x, y) be the formula

(x = 1 ∧ (∃z ∈ y)(z = >̃)) ∨ (x = 0 ∧ ¬(∃z ∈ y)(z = >̃)).

The term ẽ is given by λfa.cφ5(b, im(a, f)).

Remark 7. In a model M which is presented in [3] (the same model which is
also mentioned in remark 5), all operations from N to N are recursive. This may
be confusing, because equipped with the operation ẽl we can construct operations
which are not computable. For example we can construct a characteristic oper-
ation f of an arbitrary set a, i.e. an operation f such that f(x) = >̃ if x ∈ a

and f(x) = ⊥̃ if x /∈ a for all x (take f := λx.ẽl(x, a)). We would say that f
is non-recursive if a is non-recursive. Although this is not contradictory to the
assertion that every operation from N to N is recursive, since f is not from N to N.
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