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Abstract

Justification logics are refinements of modal logics where modalities are replaced by justification terms.
They are connected to modal logics via so-called realization theorems. We present a syntactic proof
of a single realization theorem that uniformly connects all the normal modal logics formed from the
axioms d, t, b, 4, and 5 with their justification counterparts. The proof employs cut-free nested sequent
systems together with Fitting’s realization merging technique. We further strengthen the realization
theorem for KB5 and S5 by showing that the positive introspection operator is superfluous.
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1 Introduction

Justification logic. The language of justification logic is a refinement of the language
of modal logic. It replaces a single modality by a family of modalities, indexed by what
are called justification terms. Given a modal formula such as 2A, which can be read as
A is provable or as A is known, a justification counterpart of this formula of the form
t :A can be read as t is a proof of A or as A is known for reason t.

The first justification logic, called the Logic of Proofs or LP, was introduced by
Artemov [1,2] as a stepping stone for giving an arithmetical semantics for the modal
logic S4. Justification logics are also interesting as epistemic logics. Justification terms
have a structure and thus provide a measure of how hard it is to obtain knowledge of
something. Because of that, justification logics avoid the well-known logical omniscience
problem, as Artemov and Kuznets argue in [5].

The formal correspondence between S4 and LP is called a realization theorem. It
has two directions. First, each provable formula of S4 can be turned into a provable
formula of LP by realizing instances of modalities with justification terms. Second and
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vice versa, if all terms in a provable formula of LP are replaced with modalities, then
the resulting modal formula is provable in S4.

Similar correspondences have been established for several other modal logics besides
S4. An overview is given by Artemov in [3].

Methods for proving realization. There are two methods of establishing such
correspondences: the syntactic method due to Artemov [1,2] and the semantic method
due to Fitting [11]. The syntactic method makes use of cut-free Gentzen systems for
modal logics, while the sematic method makes use of a Kripke-style semantics for justifi-
cation logics. In contrast to the semantic method, the syntactic method is constructive.
It provides an algorithm that, for each occurrence of a modality in a given provable
modal formula, computes a justification term that realizes it.

The semantic method was used to prove several realization theorems: for S4, S5, K45,
and KD45 [3,11,17]. Constructive realizations, via the syntactic method, are available for
K, D, T, K4, D4, S4, and S5 [1,2,4,7,12,13]. In the case of S5, where no cut-free sequent
system is available, two approaches have been used: first, a cut-free hypersequent system
[4] and, second, an embedding of S5 into K45 [12]. This embedding also requires the
use of a certain technique of realization merging developed by Fitting in [13]. However,
neither approach applies to other modal logics that lack cut-free sequent systems, such
as K5 and KB. The goal of this paper is to realize these logics and, in general, to provide
a uniform constructive method of realizing all normal modal logics formed by the axioms
d, t, b, 4, and 5.

Nested sequents. To that end, we use the cut-free proof systems given by Brünnler
in [9], which are based on nested sequents and which capture all these modal logics.
Nested sequents are essentially trees of sequents. They naturally generalize both sequents
(which are nested sequents of depth zero) and hypersequents (which essentially are nested
sequents of depth one). A crucial feature of these proof systems is deep inference [8,14],
which is the ability to apply inference rules to formulas arbitrarily deep inside a nested
sequent.

Outline. The paper is organized as follows. In Section 2 we introduce justification
logics, in Section 3 we introduce nested sequent systems, and in Section 4 we recall
Fitting’s merging technique. We use them in Section 5 to prove our central result: the
uniform realization theorem. In particular, this proves Pacuit’s conjecture implicit in
[16] that J5 is a justification counterpart of K5. It also creates justification counterparts
for the modal logics D5, KB, DB, TB, and KB5, which, to our knowledge, did not have
justification counterparts before. In Section 6 we go on to show that the operation of
positive introspection is not necessary for the realization of KB5 and S5, which leads to
new minimal realizations for them.

2 Justification Logic

Modal formulas. Modal formulas are given by the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | 2A | 3A ,
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where i ranges over natural numbers, Pi denotes a proposition, and ¬Pi denotes its
negation. Negation of formulas is defined as usual by the De Morgan laws, with ¬ ¬ Pi
being Pi. Further, A → B denotes ¬A ∨ B and ⊥ denotes Pj ∧ ¬Pj for some fixed
proposition Pj .

Justification formulas. Justification terms, or terms for short, are given by the
grammar

t ::= ci | xi | (t · t) | (t+ t) | ! t | ? t .

The ci are called constants and the xi are called variables. The binary operators ·
and + are called application and sum respectively. Application is left-associative. The
unary operators ! and ? are called positive introspection (or proof checker) and negative
introspection respectively. A sequence of n proof checker operators is denoted by !n.
Terms that do not contain variables are called ground and are denoted by p, p1, p2

and so on, whereas arbitrary terms are denoted by t, s, and q. We use the notation
t(x1, . . . , xn) for terms that do not contain variables other than x1, . . . , xn. Justification
formulas are given by the grammar

A ::= Pi | ⊥ | (A→A) | t :A .

Negation, conjunction, and disjunction are defined as usual. Implication is right-
associative and both conjunction and disjunction bind stronger than implication.

Axiom Systems. An axiom system for the modal logic K is assumed to be given.
Extensions of system K are obtained by adding modal axioms from Figure 2 as described
in Figure 3. The axiom system for the basic justification logic J consists of the axioms
and rules given in Figure 1. The AN!-rule is called axiom necessitation with embedded
positive introspection. Extensions of system J are obtained by adding justification axioms
from Figure 2 as described in Figure 3. The justification axioms are mostly standard,
except for jb, which is new. Observe that our choice of the jb-axiom does not increase
the set of operations on terms but uses the well-known negative introspection operation.
In Section 6 we will see that this is a natural choice. The reason why the zero-premise
AN!-rule is defined as a rule and not as an axiom is to prevent it from referring to itself.
We will often use the name of an axiom system to also denote its logic, which is its set
of provable formulas.

From this point on by a justification logic we mean (the logic of) either system J or
one of its extensions. Likewise, by a modal logic we mean either system K or one of its
extensions. Each justification logic has a corresponding modal logic, and vice versa, as
shown in Figure 3, with J corresponding to the modal logic K.

Remark 2.1 Traditionally, the axiomatizations of justification logics that contain the
j4-axiom had the following axiom necessitation rule, which is a simpler variant of the
AN!-rule:

A is an axiom instance
AN −−−−−−−−−−−−−−−−−−−−−−−−−−−−

ci :A
.

Since in these systems the AN!-rule is derivable, our axiomatizations produce the same
logics.
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taut: A fixed complete set of propositional axioms

app: s : (A→B)→ t :A→ (s · t) :B

sum: s :A→ (s+ t) :A and s :A→ (t+ s) :A

A A→B
MP −−−−−−−−−−−−

B

A is an axiom instance
AN! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

!n ci : !n−1 ci : . . . : ! ! ci : ! ci : ci :A

Fig. 1. The axiom system for the basic justification logic J

d: 2⊥→⊥ t: 2A→A b: A→2 ¬2 ¬A
jd: t :⊥→⊥ jt: t :A→A jb: A→ ? t : (¬t : ¬A)

4: 2A→22A 5: ¬2A→2 ¬2A
j4: t :A→ ! t : t :A j5: ¬t :A→ ? t : (¬t :A)

Fig. 2. Modal axioms and their corresponding justification axioms

D T KB K4 K5 DB D4 D5 TB K45 S4 KB5 D45 S5

d t b 4 5 d, b d, 4 d, 5 t, b 4, 5 t, 4 b, 4, 5 d, 4, 5 t, 4, 5

JD JT JB J4 J5 JDB JD4 JD5 JTB J45 LP JB45 JD45 JT45

jd jt jb j4 j5 jd, jb jd, j4 jd, j5 jt, jb j4, j5 jt, j4 jb, j4, j5 jd, j4, j5 jt, j4, j5

Fig. 3. Axiom systems of modal logic and of justification logic

Clearly, we can turn justification formulas into modal formulas by replacing terms
with boxes, which is made formal in the next definition.

Definition 2.2 (Forgetful projection) Given a justification formula A, its forgetful
projection A◦ is defined as: P ◦i := Pi, ⊥◦ := ⊥, (A→B)◦ := A◦→B◦, and (t:A)◦ := 2A◦.
The forgetful projection of a set of justification formulas is defined in the obvious way.

An important fact about justification logics is that they can internalize their own
proofs, i.e. if A is provable, then so is t : A for some term t. This is formally stated
in the lemma below, originally proved by Artemov [2] for LP. A proof for most of our
justification logics can be found in [15]; the remaining cases are similar.

Lemma 2.3 (Internalization) For any justification logic JL, if

JL ` A1 → . . .→An →B ,

then there exists a term t(x1, . . . , xn) such that for all terms s1, . . . , sn

JL ` s1 :A1 → . . .→ sn :An → t(s1, . . . , sn) :B .

Note that t is ground if n = 0.

3 The Nested Sequent Calculus

Nested sequents. Nested sequents, or sequents for short, are inductively defined as
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id −−−−−−−−−−−−
Γ{Pi, ¬Pi}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨B}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧B}

Γ{A,A}
ctr −−−−−−−−−

Γ{A}
Γ{∆,Σ}

exch −−−−−−−−−
Γ{Σ,∆}

Γ{[A]}
2 −−−−−−−−

Γ{2A}
Γ{[A,∆]}

k −−−−−−−−−−−−−
Γ{3A, [∆]}

Γ{[A]}
d −−−−−−−−

Γ{3A}
Γ{A}

t −−−−−−−−
Γ{3A}

Γ{[∆], A}
b −−−−−−−−−−−−−

Γ{[∆,3A]}
Γ{[3A,∆]}

4 −−−−−−−−−−−−−
Γ{3A, [∆]}

Γ{[∆],3A}
5a −−−−−−−−−−−−−

Γ{[∆,3A]}
Γ{[∆], [Π,3A]}

5b −−−−−−−−−−−−−−−−−−
Γ{[∆,3A], [Π]}

Γ{[∆, [Π,3A]]}
5c −−−−−−−−−−−−−−−−−−

Γ{[∆,3A, [Π]]}

Fig. 4. Rules of the nested sequent calculus

follows: the empty sequence ∅ is a nested sequent; if Σ and ∆ are nested sequents and
A is a formula, then Σ, A and Σ, [∆] are nested sequents, where the comma denotes
concatenation of sequences. The brackets in the expression [∆] are called structural box.
The corresponding formula of a sequent Γ, denoted Γ, is inductively defined by ∅ := ⊥,
Σ, A := Σ∨A, and Σ, [∆] := Σ∨2∆. For simplicity we often do not explicitly distinguish
between a sequent and its corresponding formula. We use the letters Γ, ∆, Λ, Ω, Π, and
Σ to denote sequents.

Sequent contexts. A sequent context, or context for short, is a sequent with (ex-
actly) one occurrence of the symbol { }, called a hole, which does not occur inside
formulas. Contexts are denoted by Γ{}. An inductive definition can be given as follows:
{ } is a context and if Σ{ } is a context, then so are [Σ{ }] and ∆,Σ{ },Π, where ∆ and
Π are sequents. The sequent Γ{∆} is obtained by replacing the hole in Γ{ } with ∆.
For example, if Γ{ } = A, [[B], { }] and ∆ = C, [D], then Γ{∆} = A, [[B], C, [D]].

Sequent systems. Consider the inference rules in Figure 4. System SK consists of
the rules id, ∨, ∧, ctr, exch, 2, and k. Extensions of system SK are obtained by adding
further rules from Figure 4 according to Figure 3, where 5 means that all three rules 5a,
5b, and 5c are added. Note that a name in the first row of Figure 3 now denotes both
a (Hilbert-style) axiom system and a sequent system.

These sequent systems are essentially the same as the ones in [9], where their com-
pleteness is proved, so we have the following theorem.

Theorem 3.1 (Completeness) System SK and its extensions are sound and complete
with respect to their corresponding modal logics (as defined by the corresponding axiom
systems).

4 Annotations and Realizations

Our goal is to turn provable formulas of a given modal logic into provable formulas
of the corresponding justification logic by replacing boxes with terms and diamonds
with variables. In order to do so we use annotations, which are indices on modalities.
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Annotations have no semantical meaning but allow us to keep track of occurrences of
modal operators. We adopt Fitting’s notation from [13].

Definition 4.1 (Annotations) Annotated modal formulas, or annotated formulas for
short, are built according to the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | 22k+1A | 32lA ,

where i, k, and l range over natural numbers. An annotated sequent (context) is a
sequent (context) in which only annotated formulas occur and all structural boxes are
annotated by odd indices. The corresponding annotated formula of an annotated sequent
Γ is defined in the obvious way, with Σ, [∆]k := Σ ∨2k∆.

If A is a modal formula that is obtained from an annotated formula A′ by dropping
all indices on its modalities, then we call A′ an annotated version of A, and likewise
for sequents. An annotated formula or sequent is called properly annotated if no index
occurs twice in it. From now on we will always assume that an annotated formula or
sequent is properly annotated, unless stated otherwise.

Remark 4.2 Since our modal formulas are in negation normal form, in contrast to [13]
every subformula of a properly annotated formula is itself properly annotated.

Definition 4.3 (Annotated rule instance) An annotated rule instance is any in-
stance of a rule in Figure 5 provided that its conclusion and each of its premises are
properly annotated sequents and, in case of the ctr-rule, additionally A1, A2, and A3 do
not share indices and are annotated versions of the same modal formula. An annotated
proof is built as usual from annotated rule instances.

Remark 4.4 Note that we do not define the negation of an annotated formula. The
obvious definition, where ¬2kA is 3k ¬A, does not work because it does not produce an
annotated formula. In particular, this prevents us from even formulating a cut-rule for
annotated sequents.

Lemma 4.5 (Annotating Proofs) For each sequent calculus proof P there exists an
annotated proof P ′ that is an annotated version of P, meaning that P can be obtained
from P ′ by dropping all annotations.

Proof. We take P, replace the endsequent with a properly annotated version of it, and
straightforwardly propagate the annotations upwards. 2

Now we can define realizations as functions from natural numbers to terms, with the
restriction that even numbers are mapped to variables. This restriction is often called
the normality condition.

Definition 4.6 (Realization function) A realization function r is a partial mapping
from natural numbers to terms such that if r(2i) is defined, then r(2i) = xi. A realization
function on a given annotated formula (sequent) is one that is defined on all indices of
that formula (sequent).

Definition 4.7 (Realization) If A is an annotated formula and r is a partial mapping
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id −−−−−−−−−−−−
Γ{Pi, ¬Pi}

Γ{A,B}
∨ −−−−−−−−−−−

Γ{A ∨B}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧B}

Γ{A1, A2}
ctr −−−−−−−−−−−−

Γ{A3}
Γ{∆,Σ}

exch −−−−−−−−−
Γ{Σ,∆}

Γ{[A]k}
2 −−−−−−−−−

Γ{2kA}
Γ{[A,∆]k}

k −−−−−−−−−−−−−−−−−
Γ{32mA, [∆]i}

Γ{[A]k}
d −−−−−−−−−−−

Γ{32mA}
Γ{A}

t −−−−−−−−−−−
Γ{32mA}

Γ{[∆]k, A}
b −−−−−−−−−−−−−−−−−

Γ{[∆,32mA]i}
Γ{[32mA,∆]k}

4 −−−−−−−−−−−−−−−−−−
Γ{32mA, [∆]i}

Γ{[∆]k,32mA}
5a −−−−−−−−−−−−−−−−−−

Γ{[∆,32mA]i}
Γ{[∆]k, [Π,32mA]i}

5b −−−−−−−−−−−−−−−−−−−−−−−
Γ{[∆,32mA]l, [Π]j}

Γ{[∆, [Π,32mA]i]k}
5c −−−−−−−−−−−−−−−−−−−−−−−

Γ{[∆,32mA, [Π]j ]l}

Fig. 5. Annotated rules of the nested sequent calculus

(Pi)r := Pi (A ∨B)r := Ar ∨Br (32lA)r := ¬r(2l) : ¬Ar

(¬Pi)r := ¬Pi (A ∧B)r := Ar ∧Br (22k+1A)r := r(2k + 1) :Ar

Fig. 6. Realization of a formula

from natural numbers to terms (not necessarily a realization function) that is defined on
all indices of A, then the justification formula Ar is inductively defined as in Figure 6.
Note that if r is a realization function, then (32lA)r = ¬xl : ¬Ar. Given an annotated
sequent Γ, we define Γr as (Γ)r.

We introduce some notation for stating restrictions on realization functions.

Definition 4.8 (diavars(A), r �A) Given an annotated formula A, we define

diavars(A) := {xk | 32k occurs in A}
r �A := r � {i | 2i or 3i occurs in A} ,

where f �S is the restriction of the partial function f to the set S.

The next definition is mostly standard, see, e.g., Baader and Nipkow [6].

Definition 4.9 (Substitution) A substitution, denoted by σ, is a total mapping from
variables to terms. If σ is a substitution, then σ̃ is the function that maps terms to terms
and formulas to formulas by simultaneously replacing each occurrence of a variable x

with the term σ(x). The domain of σ is dom(σ) := {x | σ(x) 6= x}, the range of σ is
range(σ) := {σ(x) | x ∈ dom(σ)}, and the variable range of σ, denoted by vrange(σ), is
the set of variables that occur in terms in range(σ). We write tσ and Aσ to denote σ̃(t)
and σ̃(A) respectively. We also write σ ◦ r for σ̃ ◦ r, where function composition is as
usual, namely (f2 ◦ f1)(n) := f2(f1(n)).

The following lemma is standard, see, e.g., [15].

Lemma 4.10 (Substitution) If JL ` A for a justification logic JL, then
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(i) JL ` Aσ for any substitution σ and

(ii) JL ` A[Pi 7→ B], where A[Pi 7→ B] is the result of simultaneously replacing each
occurrence of the proposition Pi in A with the formula B.

The following immediate facts are used in many of the proofs that follow.

Lemma 4.11 (Facts about Substitutions and Realization Functions)

(i) σ ◦ r is a realization function iff xn /∈ dom(σ) whenever r(2n) is defined.

(ii) Arσ = Aσ◦r.

(iii) If dom(r1) ∩ dom(r2) ⊆ {n | n is even}, then r1 ∪ r2 is a realization function.

(iv) If dom(σ1) ∩ dom(σ2) = ∅, then σ1 ∪ σ2 is a substitution.

(v) If σ ◦ r is a realization function, then dom(σ ◦ r) = dom(r).

(vi) If r1 ∪ r2 is a realization function, then dom(r1 ∪ r2) = dom(r1) ∪ dom(r2).

(vii) If σ1 ∪ σ2 is a substitution, then dom(σ1 ∪ σ2) = dom(σ1) ∪ dom(σ2).

(viii) dom(σ2 ◦ σ1) ⊆ dom(σ1) ∪ dom(σ2).

The proof of our main result, the realization theorem in the next section, is by induc-
tion on the depth of a given proof. For branching rules, we need to merge realizations.
The following theorem allows us to do that. It is essentially Theorem 8.2 in Fitting [13].
There it is formulated for LP but the proof only makes use of the operations + and ·
and the Internalization Lemma. Hence, the theorem also holds for all justification logics
we consider.

Theorem 4.12 (Realization Merging) Let JL be a justification logic, A be a properly
annotated formula, and r1 and r2 be realization functions on A. Then there exists a
realization function r on A and a substitution σ such that: 1) for any x the term σ(x)
contains no variables other than x, 2) dom(σ) ⊆ diavars(A),

3) JL ` Ar1σ →Ar , and 4) JL ` Ar2σ →Ar .

(Note that it is not assumed that Ar1 or Ar2 is provable.)

The next lemma easily follows from the associativity of Boolean disjunction. It is
needed because in general the formula Γ,Σ does not coincide with the formula Γ ∨ Σ.

Lemma 4.13 (Associativity of Disjunction) For any sequents Γ and Σ and for any
realization function r, we have J ` (Σ,Γ)r ↔ Σr ∨ Γr.

5 The Realization Theorem

We now prove the realization theorem. The argument is by induction on the depth of a
given annotated proof. The following lemmas mostly correspond to the inductive cases
for the various sequent calculus rules.

Lemma 5.1 (id-rule) Given an annotated id-instance as in Figure 5, there exists a
realization function r on its conclusion Ω such that J ` Ωr.
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Proof. By induction on the structure of Γ{ }.
Base case Γ{ } = { }. The empty realization function suffices.
Induction step. By induction hypothesis, there exists a realization function r′ on
Σ{Pi, ¬Pi} such that J ` Σ{Pi, ¬Pi}r

′
.

Case Γ{ } = [Σ{ }]k. By the Internalization Lemma there exists a ground term p such
that J ` p : Σ{Pi, ¬Pi}r

′
. Since the conclusion Ω = [Σ{Pi, ¬Pi}]k is properly annotated,

r := (r′ � Σ{Pi, ¬Pi})∪{(k, p)} is a realization function on [Σ{Pi, ¬Pi}]k by Lemma 4.11.
It follows that J ` ([Σ{Pi, ¬Pi}]k)r.
Case Γ{} = ∆,Σ{},Π. Let r be a realization function on ∆,Σ{Pi, ¬Pi},Π that extends
r′ � Σ{Pi, ¬Pi}. Then J ` ∆r ∨ Σ{Pi, ¬Pi}r ∨ Πr follows by propositional reasoning.
Therefore, by Lemma 4.13, J `

(
∆,Σ{Pi, ¬Pi},Π

)r. 2

Lemma 5.2 (∧-rule) Given an annotated ∧-instance as in Figure 5, let r1 and r2 be
realization functions on its premises Λ1 and Λ2 respectively. Then there exists a sub-
stitution σ with dom(σ) ⊆ diavars(Λ1) ∪ diavars(Λ2) = diavars(Ω) and a realization
function r on the conclusion Ω such that J ` (Λ1)r1σ → (Λ2)r2σ → Ωr.

Proof. By induction on the structure of Γ{ }.
Base case Γ{ } = { }. Let r := (r1 �A)∪ (r2 �B) and let σ be the identity substitution.
The former is a realization function by Lemma 4.11 because Ω = A ∧ B is properly
annotated. Thus, Ar1 ∧Br2 = (A ∧B)r and J ` Ar1σ →Br2σ → (A ∧B)r because it is a
propositional tautology.
Induction step. By induction hypothesis there exists a substitution σ′ with dom(σ′) ⊆
diavars(Σ{A ∧B}) and a realization function r′ on Σ{A ∧B} such that

J ` Σ{A}r1σ′ → Σ{B}r2σ′ → Σ{A ∧B}r
′

. (1)

Case Γ{ } =
[
Σ{ }

]
k
. By the Internalization Lemma,

J ` r1(k)σ′ : (Σ{A}r1σ′)→ r2(k)σ′ : (Σ{B}r2σ′)→ t
(
r1(k)σ′, r2(k)σ′

)
: Σ{A ∧B}r

′

for some term t(x, y). In other words,

J ` ([Σ{A}]k)r1σ′ → ([Σ{B}]k)r2σ′ → ([Σ{A ∧B}]k)r

for r := (r′ � Σ{A ∧B})∪ {(k, t(r1(k)σ′, r2(k)σ′)}, which by Lemma 4.11 is a realization
function on the properly annotated sequent Ω = [Σ{A ∧B}]k.
Case Γ{ } = ∆,Σ{ },Π. Since Ω = ∆,Σ{A ∧ B},Π is properly annotated, Σ{A ∧ B}
shares no indices with ∆,Π. Thus, by Lemma 4.11, both σ′ ◦ (r1 � ∆,Π) and
σ′ ◦ (r2 � ∆,Π) are realization functions on ∆,Π. By Theorem 4.12 (Realization
Merging) there exists a realization function rm on ∆,Π and a substitution σm with
dom(σm) ⊆ diavars(∆,Π) such that

J ` (∆,Π)σ
′◦(r1 � ∆,Π)σm → (∆,Π)rm , (2)

J ` (∆,Π)σ
′◦(r2 � ∆,Π)σm → (∆,Π)rm , (3)
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and x is the only variable in σm(x), for any x. By Lemma 4.11, (∆,Π)σ
′◦(r1 � ∆,Π)σm

is (∆,Π)r1σ′σm and (∆,Π)σ
′◦(r2 � ∆,Π)σm is (∆,Π)r2σ′σm. Therefore, (2) and (3) are

identical to

J ` (∆,Π)r1σ′σm → (∆,Π)rm , (4)
J ` (∆,Π)r2σ′σm → (∆,Π)rm . (5)

From (1) by Lemma 4.10 (Substitution) it follows that

J ` Σ{A}r1σ′σm → Σ{B}r2σ′σm → Σ{A ∧B}r
′
σm .

From this, (4), and (5) it follows by propositional reasoning that

J ` Σ{A}r1σ′σm ∨ (∆,Π)r1σ′σm → Σ{B}r2σ′σm ∨ (∆,Π)r2σ′σm
→ Σ{A ∧B}r

′
σm ∨ (∆,Π)rm . (6)

Since dom(σm) ⊆ diavars(∆,Π), it follows by Lemma 4.11 that σm ◦ (r′ � Σ{A ∧ B}) is
a realization function on Σ{A ∧B}. Again by Lemma 4.11, we conclude that

r := (σm ◦ (r′ � Σ{A ∧B})) ∪ (rm � ∆,Π)

is a realization function on ∆,Σ{A ∧B},Π. And since

Σ{A ∧B}r
′ � Σ{A∧B}σm = Σ{A ∧B}σm◦(r′ � Σ{A∧B})

by Lemma 4.11, we can rewrite (6) as

J `
(
Σ{A} ∨ (∆,Π)

)r1
σ →

(
Σ{B} ∨ (∆,Π)

)r2
σ →

(
Σ{A ∧B} ∨ (∆,Π)

)r (7)

for σ := σm ◦σ′ with dom(σ) ⊆ dom(σ′)∪dom(σm) ⊆ diavars(∆,Σ{A∧B},Π). Finally,
(7) is by Lemma 4.13 propositionally equivalent to

J ` (∆,Σ{A},Π)r1σ → (∆,Σ{B},Π)r2σ → (∆,Σ{A ∧B},Π)r .

2

The proof of the following lemma is in Appendix A.

Lemma 5.3 (ctr-rule) Given an annotated ctr-instance as in Figure 5, let r1 be a
realization function on its premise Λ. Then there exists 1) a realization function r on its
conclusion Ω and 2) a substitution σ with dom(σ) ⊆ diavars(Λ) such that J ` Λr1σ→Ωr.

Lemma 5.4 (∨- and exch-rule) Given an annotated ρ-instance with ρ ∈ {∨, exch} as
in Figure 5, let r1 be a realization function on its premise Λ. Then there exists a
realization function r on its conclusion Ω such that J ` Λr1 → Ωr.
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Proof. By induction on the structure of Γ{ }.
Base case Γ{ } = { }. It suffices to take r := r1 � Ω for either rule. Indeed, we have
A,B = A ∨ B = A ∨B for ρ = ∨. For ρ = exch, the desired statement follows from
Lemma 4.13.
Induction step. The arguments are the same as in the proof of Lemma 5.3, given in
Appendix A, except that here the substitution is the identity substitution. 2

Lemma 5.5 (k-rule) Given an annotated k-instance as in Figure 5, let r1 be a re-
alization function on its premise Λ. Then there exists a realization function r on its
conclusion Ω such that J ` Λr1 → Ωr.

Proof. By induction on the structure of Γ{ }.
Base case Γ{ } = { }. For the propositional tautology (A,∆)r1 → ¬Ar1 →∆r1 , by the
Internalization Lemma, J ` r1(k) : (A,∆)r1 → xm : ¬Ar1 → t(r1(k), xm) : ∆r1 for some
term t(x, y). It follows by propositional reasoning that

J ` r1(k) : (A,∆)r1 → ¬xm : ¬Ar1 ∨ t(r1(k), xm) : ∆r1 , which is

J `
(
[A,∆]k

)r1 → (32mA)r1 ∨ t(r1(k), xm) : ∆r1 .

For r := (r1 � A,∆) ∪ {(i, t(r1(k), xm)), (2m,xm)} this is identical to

J `
(
[A,∆]k

)r1 → (32mA, [∆]i)r .

Induction step. The arguments are the same as in Lemma 5.4. 2

In order to realize the modal rules 5b and 5c, we will use realizations of theorems
2(2A→A) and 2(¬22A→¬2A) of K5. They are provided by the following two auxiliary
lemmas. We have to omit the proofs for space reasons.

Lemma 5.6 (Internalized Factivity) There is a term t(x) such that for any term s

and any formula A we have that J5 ` t(s) : (s :A→A).

Lemma 5.7 (Internalized Positive Introspection) There are terms t1(x) and
t2(x) such that J5 ` t1(t) : (¬t2(t) : t : A → ¬t : A) for any term t and any formula
A.

The following lemma covers the remaining rules.

Lemma 5.8 (Modal Rules) Given an annotated ρ-instance with ρ ∈ {d, t, b, 4, 5a,
5b, 5c} as given in Figure 5, let r1 be a realization function on its premise Λ. Then
there is a realization function r on its conclusion Ω such that Jρ ` Λr1 → Ωr, where by
Jd we mean JD, and so on, except for ρ ∈ {5a, 5b, 5c} where we mean J5.

Proof. By induction on the structure of Γ{ }.
Base case Γ{ } = { }. We need to consider each rule ρ in turn.
Subcases ρ = d, t, 4. The proof is similar to the k-rule and is omitted for space reasons.
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Subcase ρ = b. Since ∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 is a propositional tautology, by the
Internalization Lemma there exists a term t1(y) such that

JB ` r1(k) : ∆r1 → t1(r1(k)) : (∆r1 ∨ ¬xm : ¬Ar1) . (8)

Similarly, for a propositional tautology ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 , there exists a
term t2(x) such that

JB ` ?xm : ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) . (9)

It follows from (8) and (9) by axiom sum and propositional reasoning that

JB ` r1(k) : ∆r1 ∨ ?xm : ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1)

for t := t1(r1(k))+t2(?xm). Finally, from the instance Ar1→?xm :¬xm :¬Ar1 of axiom jb

it follows that JB ` r1(k) :∆r1 ∨Ar1→ t : (∆r1 ∨¬xm :¬Ar1). Hence the desired realization
function is r := (r1 � ∆, A) ∪ {(i, t), (2m,xm)}.
Subcases ρ = 5a, 5c. The proof can be found in Appendix B.
Subcase ρ = 5b. By Lemma 5.7 there exist terms t1(x) and t2(x) that satisfy the
condition J5 ` t1(xm) : (¬t2(xm) : xm : ¬Ar1 → ¬xm : ¬Ar1). Thus, by app and MP,

J5 ` ? t2(xm) : ¬t2(xm) : xm : ¬Ar1 → (t1(xm) · ? t2(xm)) : ¬xm : ¬Ar1 .

From the instance ¬t2(xm) : xm : ¬Ar1 → ? t2(xm) : ¬t2(xm) : xm : ¬Ar1 of j5 it follows:

J5 ` ¬t2(xm) : xm : ¬Ar1 → (t1(xm) · ? t2(xm)) : ¬xm : ¬Ar1 . (10)

By a propositional tautology and the Internalization Lemma applied to it,

J5 ` p1 :
(
xm : ¬Ar1 → Πr1 ∨ ¬xm : ¬Ar1 → Πr1

)
for some ground term p1. Thus, by app and MP,

J5 ` t2(xm) : xm : ¬Ar1 → (p1 · t2(xm)) : (Πr1 ∨ ¬xm : ¬Ar1 →Πr1) .

Again by app and propositional reasoning,

J5 ` t2(xm) : xm : ¬Ar1 → r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → (p1 · t2(xm) · r1(i)) : Πr1 ,

which is propositionally equivalent to

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → ¬t2(xm) : xm : ¬Ar1 ∨ s : Πr1

for s := p1 · t2(xm) · r1(i). From this and (10) by propositional reasoning we obtain

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → (t1(xm) · ? t2(xm)) : ¬xm : ¬Ar1 ∨ s : Πr1 . (11)
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By the Internalization Lemma for the tautology ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 and
propositional reasoning, there is a term t3(x) such that

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t3(t1(xm) · ? t2(xm)) : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 . (12)

Since ∆r1 →∆r1 ∨¬xm :¬Ar1 is a propositional tautology, by the Internalization Lemma
there is a term t4(x) such that J5 ` r1(k) :∆r1→ t4(r1(k)) : (∆r1 ∨¬xm :¬Ar1). Therefore,
by axiom sum,

J5 ` r1(k) : ∆r1 → t : (∆r1 ∨ ¬xm : ¬Ar1) (13)

for t := t3(t1(xm) · ? t2(xm)) + t4(r1(k)). Similarly, by (12) and sum,

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 . (14)

Finally by propositional reasoning from (13) and (14),

J5 ` r1(k) : ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)→ t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 .

Hence the desired realization function is r := (r1 � ∆,32mA,Π) ∪ {(l, t), (j, s)}.
This completes the proof of the base case of the induction.

Induction step. The proof is the same as in Lemma 5.4. 2

Now we are ready to prove our main result.

Theorem 5.9 (Realization) For any modal logic ML and its corresponding justifica-
tion logic JL we have that ML = JL◦.

Proof. The inclusion JL◦ ⊆ ML is easy since forgetful projections of axioms and rules
of any justification logic can easily be derived in the corresponding modal logic. So we
now turn to the more interesting opposite inclusion. It follows from Theorem 3.1 (Com-
pleteness), Lemma 4.5 (Annotating Proofs), and the following
Claim. Let S be the sequent system for a modal logic ML and let P be an annotated
proof with the endsequent ∆ such that the unannotated version of P is a sequent calculus
proof in S. Then there exists a realization function r on ∆ such that JL ` ∆r for the
justification logic JL that corresponds to ML.

We prove the claim by induction on the depth of P by case analysis on the lowermost
rule.
Case id. The claim follows from Lemma 5.1.
Cases ∨- and exch-rules. The claim follows from the induction hypothesis and
Lemma 5.4.

Case
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−
Γ{A ∧B}

. By induction hypothesis there exist realization functions r1 and r2

such that JL ` Γ{A}r1 and JL ` Γ{B}r2 . By Lemma 5.2, there exists a realization
function r on the conclusion Γ{A ∧ B} and a substitution σ such that J ` Γ{A}r1σ →
Γ{B}r2σ → Γ{A ∧ B}r. By Lemma 4.10, JL ` Γ{A}r1σ and JL ` Γ{B}r2σ, hence,
JL ` Γ{A ∧B}r.
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Case ctr-rule. The claim follows from the induction hypothesis, Lemma 5.3, and
Lemma 4.10 (Substitution).
Case 2-rule. The claim immediately follows from the induction hypothesis.
Case k-rule. The claim follows from the induction hypothesis and Lemma 5.5.
Cases for rules in {d, t, b, 4, 5a, 5b, 5c}. The claim follows from the induction hypoth-
esis and Lemma 5.8. 2

Remark 5.10 Fitting’s Merging Theorem from [13] states a stronger result than used
in this paper, namely that the proofs can be made injective. An injective proof uses each
constant for only one axiom instance. We are confident that the results of this paper
can also be extended to injective proofs.

6 A Strengthened Realization Theorem for S5 and
KB5

We now introduce two new justification logics: JT5 and JB5. The axiom systems for
them are obtained from the axiom systems for JT45 and JB45 respectively by removing
the operator ! from the language and, therefore, dropping j4 and replacing AN! with AN

from Remark 2.1. Note that, although S5 = KT5 = KT45 and KB5 = KB45, it is obvious
that JT5 6= JT45 and JB5 6= JB45 simply because the languages are different. The proof
of the Internalization Lemma relies on the AN!-rule, which is not admissible in either
JT5 or JB5. Thus, we need to show the existence of a term dpi(x) that plays the role
of !x for these two logics, where dpi stands for derived positive introspection.

Lemma 6.1 (Positive Introspection in JB5 and JT5) There is a term dpi(x) such
that for any term t and any formula A

JB5 ` t :A→ dpi(t) : t :A and JT5 ` t :A→ dpi(t) : t :A .

Proof. Since j5 is an axiom of JB5, by AN there exists a constant ci such that

JB5 ` ci :
(
¬y : P → ? y : ¬y : P

)
(15)

for some proposition P and variable y. It can be shown using AN, app, and propositional
reasoning that there exists a ground term p such that

JB5 ` p :
(
(¬y : P → ? y : ¬y : P ) → ¬ ? y : ¬y : P → y : P

)
.

From this and (15) by app and MP, we have JB5 ` (p · ci) : (¬ ? y : ¬y : P → y : P ). Again
by app and MP, we have JB5 ` ? ? y : ¬ ? y : ¬y : P → (p · ci · ? ? y) : y : P . Since

y : P → ? ? y : ¬ ? y : ¬y : P (16)

is an instance of axiom jb, by propositional reasoning

JB5 ` y : P → dpi(y) : y : P (17)
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for dpi(y) := p · ci · ? ? y. We now show that (16) is provable in JT5. Indeed, formula
¬ ? y : ¬y : P → ? ? y : ¬ ? y : ¬y : P is an instance of j5. Hence, (16) follows by syllogism
with y : P → ¬ ? y : ¬y : P , which is a contraposition of an instance of jt. Thus, (17)
also holds if JB5 is replaced with JT5. The statement of the lemma for either logic now
follows from (17) by the Substitution Lemma, which also holds for these logics. 2

Because of Lemma 6.1, using dpi(t) instead of ! t we can adapt the standard proof of
the Internalization Lemma to JT5 and JB5. As a consequence, versions of Theorem 4.12,
as well as of Lemmas 5.1, 5.2, 5.3, 5.4, 5.5, and 5.8, for JT5 and JB5 also hold. The proofs
apply literally except that in the case of the 4-rule in Lemma 5.8, we use Lemma 6.1
instead of axiom j4.

It follows from the Realization Theorem for JT45 and JB45 that JT5◦ ⊆ S5 and
JB5◦ ⊆ KB5. The opposite inclusions can be shown by literally repeating the proof of
the Realization Theorem.

Theorem 6.2 (Strengthened Realization) S5 = JT5◦ and KB5 = JB5◦.

7 Conclusion

We have used cut-free nested sequent systems to constructively realize each of our 15
modal logics. In doing so, we have reproved in a uniform way several known realization
theorems and have realized logics that did not have justification counterparts before. For
two logics, we have also shown that the positive introspection operation is superfluous.

For now we have realized these logics. However, some of them have more than
one axiomatization. Justification counterparts of different axiomatizations of the same
modal logic can be different, e.g., JT5 and JT45 are both justification counterparts of S5

but are based on different axiomatizations of it. Thus, it is a natural next step for us
to try to obtain realizations for all the 32 different axiomatizations of these 15 logics.
We believe that nested sequent systems with structural modal rules [9,10], which are
modular in a certain sense, will allow us to do this.

Another direction for future research is to look for cut-free proof systems for all our
justification logics. Currently many justification logics lack such proof systems, and the
problems in obtaining them seem to be the same as for modal logics. Nested sequents
have provided cut-free proof systems for all our modal logics, and thus we believe they
can also provide cut-free proof systems for justification logics.
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A Proof of Lemma 5.3 (Contraction)

Proof. By induction on the structure of Γ{ }.
Base case Γ{ } = { }. In order to demonstrate the statement, a subinduction on the
structure of the common unannotated version A of formulas A1, A2, and A3 is employed.
The statement proved by subinduction is the same as in the main induction with an extra
restriction on σ, namely that vrange(σ) ⊆ diavars(Ω).
Subinduction base: A = Pi or A = ¬Pi. The identity substitution σ and r := ∅
suffice.
Subinduction step. The following cases have to be considered:
Subinduction case A = B ∨ C. The annotated formulas A1 = B1 ∨ C1, A2 = B2 ∨

C2, and A3 = B3 ∨ C3 do not share indices. By subinduction hypothesis, there exist
realization functions r′B on B3 and r′C on C3, as well as substitutions σB with dom(σB) ⊆
diavars(B1 ∨B2) and σC with dom(σC) ⊆ diavars(C1 ∨ C2) such that

J ` (B1 ∨B2)r1σB → (B3)r
′
B and J ` (C1 ∨ C2)r1σC → (C3)r

′
C .

Also, we have that vrange(σB) ⊆ diavars(B3) and vrange(σC) ⊆ diavars(C3). By
Lemma 4.11, σ := σB ∪ σC is a substitution with dom(σ) ⊆ diavars(Λ). In addition, for
restrictions rB := r′B �B3 and rC := r′C �C3, both σC ◦ rB and σB ◦ rC are realization
functions on B3 and C3 respectively. Since (B3)r

′
B = (B3)rB and (C3)r

′
C = (C3)rC , by

Lemma 4.10

J ` (B1 ∨B2)r1σBσC → (B3)rBσC and J ` (C1 ∨ C2)r1σCσB → (C3)rCσB .

Note that σC has no effect on any term σB(x) ∈ range(σB) because σB(x) only contains
variables from diavars(B3), which is disjoint from diavars(C1 ∨ C2) ⊇ dom(σC). Thus,
(B1 ∨B2)r1σBσC = (B1 ∨B2)r1σ. Similarly, (C1 ∨C2)r1σCσB = (C1 ∨C2)r1σ. From this
and Lemma 4.11 it follows that

J ` (B1 ∨B2)r1σ → (B3)σC◦rB and J ` (C1 ∨ C2)r1σ → (C3)σB◦rC .

Finally, by propositional reasoning,

J `
(
(B1 ∨ C1) ∨ (B2 ∨ C2)

)r1
σ → (B3)σC◦rB ∨ (C3)σB◦rC .

In other words, J ` Λr1σ→Ωr for r := (σC ◦ rB)∪ (σB ◦ rC), which by Lemma 4.11 is a
realization function on Ω = B3 ∨ C3.
Subinduction case A = B ∧ C. It is analogous to B ∨ C.
Subinduction case A = 3B. The annotated formulas A1 = 32kB1, A2 = 32mB2,
A3 = 32nB3 do not share indices. By induction hypothesis, there are a realization
function r′B on B3 and a substitution σB with dom(σB) ⊆ diavars(B1 ∨ B2) such that
J ` (B1 ∨ B2)r1σB → (B3)r

′
B . In addition, vrange(σB) ⊆ diavars(B3). By propositional

reasoning,

J ` ¬(B3)r
′
B → ¬(B1)r1σB and J ` ¬(B3)r

′
B → ¬(B2)r1σB .
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By the Internalization Lemma, there exist terms t1(y) and t2(y) such that

J ` xn : ¬(B3)r
′
B → t1(xn) : ¬(B1)r1σB and J ` xn : ¬(B3)r

′
B → t2(xn) : ¬(B2)r1σB .

It then follows by propositional reasoning that

J ` ¬t1(xn) : ¬(B1)r1σB ∨ ¬t2(xn) : ¬(B2)r1σB → ¬xn : ¬(B3)r
′
B . (A.1)

Since dom(σB) ⊆ diavars(B1 ∨ B2) 63 xn, the substitution σB does not affect xn and,
hence, (A.1) is identical to

J `
(
¬t1(xn) : ¬(B1)r1 ∨ ¬t2(xn) : ¬(B2)r1

)
σB → ¬xn : ¬(B3)r

′
B .

Let σ′ := {(xk, t1(xn)), (xm, t2(xn))} ∪ {(xi, xi) | i /∈ {k,m}}. By Lemma 4.10,

J `
(
¬t1(xn) : ¬(B1)r1 ∨ ¬t2(xn) : ¬(B2)r1

)
σBσ

′ → ¬xn : ¬(B3)r
′
Bσ′ . (A.2)

Since 2k and 2m do not occur in B3, σ′ ◦ (r′B �B3) is a realization function on B3 by
Lemma 4.11. Let r := (σ′ ◦ (r′B �B3)) ∪ {(2n, xn)}. Clearly, it is a realization function
on 32nB3. Since σB affects neither xk nor xm, (A.2) becomes

J ` (32kB1 ∨32mB2)r1σ → (32nB3)r

for σ := σ′ ◦σB . In other words, J ` Λr1σ→Ωr. It remains to note that, by Lemma 4.11,
dom(σ) ⊆ dom(σB)∪dom(σ′) ⊆ diavars(32kB1 ∨32mB2) and, in addition, we also have
vrange(σ) ⊆ diavars(B3) ∪ {xn} = diavars(32nB3).
Subinduction case A = 2B. The annotated formulas A1 = 2kB1, A2 = 2lB2,
A3 = 2mB3 do not share indices. By induction hypothesis, there exists a realization
function rB on B3 and a substitution σ with dom(σ) ⊆ diavars(B1 ∨ B2) such that
J ` (B1 ∨ B2)r1σ → (B3)rB . In addition, vrange(σ) ⊆ diavars(B3). By propositional
reasoning and the Internalization Lemma, there exist terms t1(y) and t2(y) such that

J ` r1(k)σ : (B1)r1σ → t1(r1(k)σ) : (B3)rB ,

J ` r1(l)σ : (B2)r1σ → t2(r1(l)σ) : (B3)rB .

By axiom sum, for s := t1(r1(k)σ) + t2(r1(l)σ),

J ` r1(k)σ : (B1)r1σ → s : (B3)rB and J ` r1(l)σ : (B2)r1σ → s : (B3)rB .

Thus, by propositional reasoning,

J ` (2kB1 ∨2lB2)r1σ → (2mB3)r

for r := (rB �B3) ∪ {(m, s)}. It is clear that r is a realization function on 2mB3.
This completes the proof by subinduction of the base case Γ{ } = { }.
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Induction step. By induction hypothesis, there exists a realization function r′ on
Σ{A3} and a substitution σ with dom(σ) ⊆ diavars(Σ{A1, A2}) such that

J ` Σ{A1, A2}r1σ → Σ{A3}r
′

.

Case Γ{ } = [Σ{ }]k. By the Internalization Lemma,

J ` r1(k)σ :
(
Σ{A1, A2}r1σ

)
→ t(r1(k)σ) : Σ{A3}r

′

for some term t(x). In other words, the desired result

J `
(
[Σ{A1, A2}]k

)r1
σ →

(
[Σ{A3}]k

)r ,

is achieved for a realization function r := (r′ � Σ{A3}) ∪ {(k, t(r1(k)σ))} and the same
substitution σ.
Case Γ{ } = ∆,Σ{ },Π. By propositional reasoning,

J ` ∆r1σ ∨ Σ{A1, A2}r1σ ∨Πr1σ → ∆r1σ ∨ Σ{A3}r
′
∨Πr1σ .

Since dom(σ) ⊆ diavars(Σ{A1, A2}), by Lemma 4.11, σ ◦ (r1 � ∆,Π) is a realization
function on ∆,Π. Then for r :=

(
σ ◦ (r1 � ∆,Π)

)
∪ (r′ � Σ{A3}),

J ` (∆ ∨ Σ{A1, A2} ∨Π)r1σ → (∆ ∨ Σ{A3} ∨Π)r .

It remains to apply Lemma 4.13 to obtain the desired result

J ` (∆,Σ{A1, A2},Π)r1σ → (∆,Σ{A3},Π)r

for the realization function r and the same substitution σ.
Note that induction steps never alter σ. 2

B Cases for Rules 5a and 5c in Lemma 5.8

Proof. Subcase ρ = 5a. By a propositional tautology ∆r1 →∆r1 ∨ ¬xm : ¬Ar1 and the
Internalization Lemma there exists a term t1(x) such that

J5 ` r1(k) : ∆r1 → t1(r1(k)) :
(
∆r1 ∨ ¬xm : ¬Ar1

)
. (B.1)

Similarly, for a tautology ¬xm : ¬Ar1 →∆r1 ∨ ¬xm : ¬Ar1 there is t2(y) such that

J5 ` ?xm : ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) .

From the instance ¬xm : ¬Ar1 → ?xm : ¬xm : ¬Ar1 of j5 by propositional reasoning

J5 ` ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) . (B.2)
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It follows from (B.1) and (B.2) by axiom sum and propositional reasoning that

J5 ` r1(k) : ∆r1 ∨ ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1).

for t := t1(r1(k)) + t2(?xm). In other words,

J5 ` ([∆]k,32mA)r1 → ([∆,32mA]i)r

for r := (r1 � ∆,32mA) ∪ {(i, t)}.
Subcase ρ = 5c. The existence of terms t1(xm), t2(xm), and s that satisfy (11) follows
as in the subcase of ρ = 5b. Thus, by propositional reasoning,

J5 ` ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → ∆r1 ∨ (t1(xm) · ? t2(xm)) : ¬xm : ¬Ar1 ∨ s : Πr1 .

By the Internalization Lemma there exists a term s1(x) such that

J5 ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→

s1(r1(k)) :
(
∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1

)
, (B.3)

where q1 := t1(xm)·? t2(xm) in the above formula. By Lemma 5.6 there exists a term t(x)
such that

J5 ` t(q1) :
(
q1 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1

)
. (B.4)

By a propositional tautology and the Internalization Lemma applied to it,

J5 ` p2 :
((
q1 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1

)
→

∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1 → ∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1
)

for some ground term p2. From this and (B.4) by app and MP it follows that

J5 ` (p2 · t(q1)) :
(
∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1 → ∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1

)
.

It follows by app and MP that

J5 ` s1(r1(k)) : (∆r1 ∨ q1 : ¬xm : ¬Ar1 ∨ s : Πr1) → q3 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1)

for q3 := p2 · t(q1) · s1(r1(k)). By propositional reasoning with (B.3) it follows that

J5 ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→ q3 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1) .

Hence the desired realization function is r := (r1 � ∆,32mA,Π) ∪ {(j, s), (l, q3)}. 2
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