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1 Introduction

Second order arithmetic Z2 is a theory formulated in a two sorted language which consists of some
basic axioms, full induction scheme and full comprehension scheme. It is a simple approach to
formalize natural numbers and their subsets. Although this construction seems to be very primitive
and limited, it is indeed powerful enough to formalize a huge branch of mathematics. For example
it is possible to define real numbers in Z2. Even though there is no way in defining the set of real
numbers, since we can deal only with countable sets, single real numbers can be coded as some
distinguished Cauchy sequences. In addition within second order arithmetic, common concepts
from analysis such as continuous functions or Riemann integrability can be formulated. Further,
one can also code concepts from algebra, linear algebra or even mathematical logic. Because such
codings do not need the full induction scheme nor the full comprehension scheme, it makes sense
to consider several subsystems of Z2. The basic subtheory of second order arithmetic is RCA0. The
acronym RCA stands for “recursive comprehension axiom” and the subscript 0 indicates restricted
induction. It may be interpreted as a constructive respectively recursive theory which formalizes
the naturals.
Weak König’s lemma is a non-constructive axiom, ensuring the existence of infinite paths in bi-
nary trees. One can prove that weak König’s lemma is not a valid theorem of RCA0, hence the
theory WKL0, which consists of RCA0 and weak König’s lemma, is a proper supertheory of RCA0.
Surprisingly, WKL0 is equivalent over RCA0 to several existential theorems from ordinary mathe-
matics such as the Heine-Borel covering lemma, the extreme value theorem, Brower’s fixed point
theorem, the separable Hahn-Banach theorem or Gödel’s completeness theorem (see [6] for more
details). In this thesis we will study conservation results, especially Harrington’s conservation
theorem. This theorem says that formulas which have no set quantifiers are provable in WKL0 if
and only if they are already provable in RCA0. This means that there is a huge set of theorems of
WKL0 which do not depend on the non-constructive weak König’s lemma. Harrington’s proof is
model theoretic, making use of a forcing argument. In [4], a pure proof-theoretic proof of Harring-
ton’s theorem is presented, using a cut-elimination argument. The aim of this thesis is to elaborate
this proof. We start with a preliminary section, where generally speaking we introduce a sequent
calculus of WKL0 and present the usual background. In the second section we prove Harrington’s
theorem. This is the mainpart of this thesis. In the last section we combine Harrington’s theo-
rem with a further conservation result, namely Parsons’ theorem. This will show that WKL0 is
Π0

2-conservative over primitive recursive arithmetic. The appendix contains proofs of partial cut
elimination and of Parsons’ theorem.
To understand this thesis, basic knowledge of mathematical logic, recursion theory and proof
theory is required.
I am grateful to Prof. Dr. G. Jäger and Prof. Dr. T. Strahm for supervising this thesis.

Jon Brugger

Berne, April 2010



4 2 PRELIMINARIES

2 Preliminaries

2.1 The language of second order arithmetic

Definition 2.1. Let L2 denote the language of second order arithmetic which contains the follow-
ing symbols:

(i) countably many free number variables a0,a1, . . . ,

(ii) countably many bound number variables x0,x1, . . . ,

(iii) countably many free set variables A0,A1, . . . ,

(iv) countably many bound set variables X0,X1, . . . ,

(v) a constant symbols 0,

(vi) a unary function symbol S and two binary function symbols + and ·,

(vii) three binary relation symbols =, < and ∈,

(viii) the logical symbols ∀, ∃, ∧, ∨ and ¬.

As usual for the notion of terms and formulas we add auxiliary symbols and use infix notation to
improve readability. Numerical terms are the constant 0, the free number variables and S(t1) and
t1 + t2 and t1 · t2 whenever t1 and t2 are numerical terms. Atomic formulas are t1 = t2, t1 < t2 and
t1 ∈ A where t1, t2 are numerical terms and A is a free set variable. In the following we will simply
say term instead of numerical term.

Definition 2.2. The set of L2-formulas is defined inductively by:

(i) every atomic formula is a formula,

(ii) if F, G are formulas, so are F ∧G, F ∨G and ¬F,

(iii) if F is a formula, a is a free number variable and x is a bound number variable not included
in F and t is a term, then ∀x F [x/a], ∃x F [x/a], ∀x ≤ t F [x/a] and ∃x ≤ t F [x/a] are
formulas,

(iv) if F is a formula, A is a free set variable and X is a bound set variable not included in F,
then ∀X F [X/A] and ∃X F [X/A] are formulas.

Here F [x/a] is the result of substituting every occurrence of a in F by x, similarly for F [X/A].

A formula without free number or set variables is called sentence. If F,G are formulas and t1, t2
are terms, then we can define F → G, F ↔ G, t1 6= t2, t1 ≤ t2 etc. in the obvious way. Substituting
terms for free number variables is defined as usual; if G is the result of substituting t for a in F we
will simply write F(a) instead of F and F(t) instead of G to denote this circumstance. Furthermore
the quantifiers ∀x ≤ t and ∃x ≤ t are denoted as bounded number quantifiers or simply bounded
quantifiers.
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2.2 Models and theories of L2

The semantics of the language L2 are given by the following definition.

Definition 2.3. A model of L2, also called a structure for L2 or a L2-structure, is an ordered
7-tuple

M = {|M|,SM,SM,+M, ·M,0M,<M}

where |M| is a set which serves as the range of the number variables, SM is a non-empty set of
subsets of |M| serving as the range of the set variables, S is a unary and +M and ·M are binary
operations on M, 0M is a distinguished element of |M|, and <M is a binary relation on |M|. We
always assume that the sets |M| and SM are disjoint.

If M a L2-structure then a M-assignment is a function α assigning an element of |M| to every free
number variable and an element of SM to every free set variable. We say that a L2-formula F is
true in M with respect to α , written M � F [α], if F is true in M where the free variables of F are
interpreted according to α and where the other symbols of F are interpreted in the obvious way.
We say that M is a model of F ,written M � F , if F is true in M with respect to any M-assignment.
A set T of formulas is true in M respectively M is a model of T , written M � T , if every formula
contained in T is true in M. Further we set T � F if every model of T is a model of F .
Now we discuss the syntactic counterpart. As in the first order case one can define a Hilbert
calculus on L2 in the following way: our axioms are propositional tautologies, the equality axioms

a = a ,

a = b→ S(a) = S(b) ,

a0 = b0∧a1 = b1→ a0 +a1 = b0 +b1 ,

a0 = b0∧a1 = b1→ a0 ·a1 = b0 ·b1 ,

a0 = b0∧a1 = b1∧a0 < a1→ b0 < b1 ,

a = b∧a ∈ X → b ∈ X ,

and all formulas of the form

∀x F(x)→ F(t) , F(t)→∃x F(x) , ∀x≤ t F(x)∧ (s≤ t)→ F(s)

F(s)∧ (s≤ t)→∃x≤ t F(x) , F(A)→∃X F(X) and ∀X F(X)→ F(A),

where s, t are arbitrary terms. The rules of the Hilbert systems are modus ponens and the six
inference rules

F → G(a)
F →∀x G(x)

F(a)→ G
∃x F(x)→ G

F ∧ (a≤ t)→ G(a)
F →∀x≤ t G(x)

F(a)∧ (a≤ t)→ G
∃x≤ t F(x)→ G

F → G(A)
F →∀X G(X)

F(A)→ G
∃X F(X)→ G

,
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where in the first four rules resp. in the last two rules, a resp. A does not appear in the lower
sequent, and where t is a term. If F can be derived in this Hilbert calculus with the formulas of T
as further axioms, we simply write T ` F . As in first order logic we have Gödel’s completeness
theorem, which says that ` and � are equivalent.

Theorem 2.4. For any set of L2-formulas T and any L2-formula F we have

T � F iff T ` F .

Later we will formulate this calculus as a sequent calculus. The basic axioms we will always
assume to be true in this thesis are the axioms of Robinson arithmetic. They regulate the function
symbols and the relation <.

Definition 2.5. The Robinson arithmetic Q is given by the following eight L2-formulas:

(i) S(a) 6= 0

(ii) S(a) = S(b)→ a = b

(iii) a+0 = a

(iv) a+S(b) = S(a+b)

(v) a ·0 = 0

(vi) a ·S(b) = (a ·b)+a

(vii) ¬a < 0

(viii) a < S(b)↔ (a < b∨a = b) .

Although these axioms imply several number theoretic facts, they don’t suffice to prove elementary
theorems such as commutativity of addition. The axioms of Q together with the induction axiom

∀X (0 ∈ X ∧∀x (x ∈ X → S(x) ∈ X)→∀x (x ∈ X))

and the comprehension scheme
∃X ∀x (x ∈ X ↔ F(x)) ,

where F(a) is any formula of L2, build the axioms of second order arithmetic Z2. In the following
we will discuss special subsystems of Z2 with restricted induction and restricted comprehension.
Our basic system is the theory RCA0. First an auxiliary definition.

Definition 2.6. A formula F is called bounded if all quantifiers that occur in F are bounded
number quantifier. The set of all bounded L2-formulas is denoted as ∆0

0. A formula F is called a Σ0
n-

formula (resp. a Π0
n-formula) if there exists a bounded formula G such that F is ∃x0∀x1 . . .xn−1G

(resp. ∀x0∃x1 . . .xn−1G). Note that ∆0
0 = Σ0

0 = Π0
0.
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Definition 2.7. The Σ0
1-induction scheme, Σ0

1-IND, consists of all formulas of the form

F(0)∧∀x (F(x)→ F(S(x)))→∀x F(x) ,

where F(a) is a Σ0
1-formula.

The ∆0
1-comprehension scheme consists of all formulas of the form

∀x (F(x)↔ G(x))→∃X ∀x (x ∈ X ↔ F(x)) ,

where F(a) is any Σ0
1-formula and G(a) is any Π0

1-formula.
The theory RCA0 consists of the axioms of Q, the Σ0

1-induction scheme and the ∆0
1-comprehension

scheme. If we replace the ∆0
1-comprehension scheme by the bounded comprehension scheme, i.e.

every formula ∃X ∀x (x ∈ X ↔ F(x)), where F(a) is a bounded formula, we get the theory RCA−0 .

2.3 Mathematics within RCA−0

Within RCA−0 , by bounded comprehension, there exists a set ω̇ such that ∀x x ∈ ω̇ . The set ω̇ is
unique, meaning that if X satisfies ∀x x ∈ X then X = ω̇ , where X =Y :≡∀x (x ∈ X↔ x ∈Y ). The
axioms of RCA−0 suffice to prove elementary properties of the natural numbers. Let’s write 0̇ := 0,
1̇ := S(0̇), etc.

Proposition 2.8. RCA−0 proves that ω̇,+, ·,0, 1̇,< is a commutative, ordered semiring with can-
cellation.

Proof. See [6] Lemma II.2.1, p. 65.

As a standard result we can define in RCA−0 primitive recursive functions. As we will use them
over and over again, it is easier to interpret them syntactically. This can be done with the following
definition:

Definition 2.9. Let L2[PR] denote the language obtained from L2 by replacing in 2.1 the definition
of the function symbols with the following inductive definition:

(i) S is a unary function symbol,

(ii) for all natural numbers n,m and k, where 0≤ k≤ n, Csn
m and Prn

k are n-ary function symbols,

(iii) if f is an m-ary function symbol and g1, . . . ,gm are n-ary function symbols, then the compo-
sition Compn( f ,g1, . . . ,gm) is an n-ary function symbol,

(iv) if f is an n-ary function symbol and g an (n+2)-ary function symbol, then Recn+1( f ,g) is
an (n+1)-ary function symbol.

The notions of terms, formulas, semantics, Q, Σ0
1-formulas, Σ0

1-IND etc. can easily be transformed
from L2 to L2[PR]. The next definition gives the usual meaning to the function symbols of L2[PR].
Let’s denote P the L2-theory Q enriched with the Σ0

1-IND scheme.

Definition 2.10. The L2[PR]-theory P[PR] consists of the axioms of Q, the Σ0
1-IND scheme (in

L2[PR]) plus
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(i) Csn
m(~a) = ṁ,

(ii) Prn
k(~a) = ak,

(iii) Compn( f ,g1, . . . ,gm)(~a) = f (g1(~a), . . . ,gm(~a)),

(iv) Recn+1( f ,g)(~a,0) = f (~a),

(v) Recn+1( f ,g)(~a,S(b)) = g(~a,b,Recn+1( f ,g)(~a,b)).

It is a well known fact, that for any L2[PR] formula F there exists a translation F− in the language
L2 such that F is provable in P[PR] iff F− is provable in P. Furthermore the translation of a
Σ0

1-formula is a Σ0
1-formula (up to logical equivalence). All our L2-theories T we will work with

contain at least P. Instead of working with T in L2 we will consider from from now on it’s version
T[PR] in L2[PR]. Note that T[PR] may be stronger than T. For example RCA−0 [PR] has a stronger
comprehension scheme than RCA−0 . On the other side RCA0[PR] is equivalent to RCA0 and thus
we can identify these two theories.

Convention 2.11. Rather than writing T[PR] and L2[PR] we again write T and L2.

With this convention we can define a set Seq, sometimes denoted as ω̇<ω̇ , in RCA−0 which encodes
the set of finite sequences. For example this can be done in the following way: we let lg be the
function symbol associated to the primitive function lg : ω → ω that maps a code for a sequent to
it’s length (we use the same symbol for a function symbol and the represented primitive function).
Then we set Seq := {x : x = f (x)} where f is the function symbol associated to the primitive
recursive function n 7→ 〈(n)0, . . . ,(n)lg(n)−̇1〉. This is a set in the theory RCA−0 (more exactly in
RCA−0 [PR]) by bounded comprehension. We will frequently use the notation

s =
〈
s0, . . . ,slg(s)−̇1

〉
or s = 〈sa : a < lg(s)〉 ,

where sa is a shortcut for (s)a i.e. denotes the a-th entry of s whenever a < lg(s). We write s⊆ t to
mean that s is an initial segment of t, i.e. lg(s)≤ lg(t)∧∀x < lg(s) sx = tx. It is important to note
that the expressions lg(s) = a, sa = b, s ⊆ t, s ∈ Seq, etc. are bounded L2[PR]-formulas with free
number variables a,b,s, t. By bounded comprehension, RCA−0 proves the existence of the set of
binary finite sequences 2̇<ω̇ := {s : s ∈ Seq∧∀x < lg(s) (sx < 2̇)} (also denoted {0, 1̇}<ω̇ ).From
now on we write X ⊆ Y :≡ ∀x (x ∈ X → x ∈ Y ) and a ∈ {x : F(x)} :≡ F(a).

Definition 2.12. A set of sequences T is a tree if it is closed under subsequences. If T consists of
finite sequences in {0, 1̇} we call T a binary tree, formally

Tree(T ) :≡ T ⊆ 2̇<ω̇ ∧∀x,y (y ∈ T ∧ x⊆ y→ x ∈ T ) .

Further we say that a binary tree T is infinite if it is not finite. Formally

Tree∞(T ) :≡ Tree(T )∧¬(∃x ∀y (y ∈ T → y < x)) .

The next step is to encode functions within RCA−0 . For this we abbreviate (s, t) := (s+ t)2 + s for
arbitrary terms s and t. Then X×Y is the set of all (x,y) where x ∈ X and y ∈Y . This set exists by
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∆0
0-comprehension. Then we write f : X → Y for any second order variable f , when f encodes a

function from X to Y , i.e.

f ⊆ X×Y ∧∀x,y,z
(
((x,y) ∈ f ∧ (x,z) ∈ f → y = z)∧∀x ∃y ((x,y) ∈ f )

)
.

Note that f : X → {0, 1̇} (also denoted as f ∈ 2̇X ) is a formula with free second order variables f
and X , equivalent to a Π0

1-formula with the same free variables, since the function value of f is
bounded.

Definition 2.13. A function f ∈ 2̇ω̇ is an infinite path through a binary tree T if

Path∞( f ,T ) :≡ ∀x 〈 f (0), . . . , f (x)〉 ∈ T ,

where f (i) denotes the value of f at i, i.e. f (i) = 0 if (i,0) ∈ f and f (i) = 1̇ otherwise. More
precisely Path∞( f ,T ) is the formula

∀x ∀s
(
s ∈ Seq∧ lg(s) = x+1∧∀i < lg(s) ((si = 0↔ (i,0) ∈ f )∧ (si = 1̇↔ (i,0) 6∈ f ))→ s ∈ T

)
.

It can be seen, that Path∞( f ,T ) is equivalent to a Π0
1-formula with free second order variables f

and T .

Now we are ready to write down the definition of weak König’s lemma.

Definition 2.14. Weak König’s lemma states that for every infinite binary tree there exists an
infinite path through it. Formally

∀T (Tree∞(T )→∃ f ∈ 2̇ω̇ Path∞( f ,T )) .

The theory WKL0 is the theory RCA0 plus weak König’s lemma.

An important equivalent reformulation of weak König’s lemma is the FAN0 rule

∀X ∃x F(X ,x)→∃w ∀X ∃x≤ w F(X ,x)

where F is a bounded formula. The FAN0 rule is sometimes denoted as strict Π1
1-reflection. To

see the equivalence we need first a lemma.

Lemma 2.15. Let F(A,~b) be a bounded formula with a distinguished second-order parameter A
and with the first-order parameters~b as shown. One can effectively associate a term tF(~b), with
its free variables as shown, such that the theory RCA−0 proves:

∀s ∈ 2̇tF (~b)
(
∀x < tF(~b)(x ∈ A↔ sx = 0)→ (F(A,~b)↔ F∗(s,~b))

)
,

where F∗ is obtained from F by replacing its atomic subformulas of the form q ∈ A by the expres-
sion sq = 0, and where 2̇tF (~b) is the set of binary sequences of length tF(~b).

Proof. We proceed by induction on the length of F and argue in RCA−0 . If F(A,~b) is of the
form q(~b) = r(~b), q(~b) ≤ r(~b) or q(~b) ∈ B, where B 6= A, then we set tF(~b) := 0. Otherwise,
if F(A,~b) is q(~b) ∈ A, we let tF(~b) := q(~b)+ 1. Now assume that we have already constructed
tG(~b) and tH(~c) for some bounded formulas G(A,~b) and H(A,~c). Then easily the claim holds
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for t¬G(~b) := tG(~b) and tG∧H(~b,~c) := tG∨H(~b,~c) := tG(~b) + tH(~c). In the last case assume that
F(A,~b) equals ∀x≤ q(~b) G(A,x,~b) or ∃x≤ q(~b) G(A,x,~b). The term tG(a,~b) is built up from the
constant 0 and the variables a,~b by primitive recursive function symbols and can therefore be inter-
preted as f (a,~b) where f is the obvious primitive recursive function symbol, i.e. tG(a,~b) = f (a,~b).
Let g be the obvious function symbol associated to the primitive recursive function (n,~m) 7→
∑

n
k=0 f (k,~m). Then we set tF(~b) := g(q(~b),~b). One can show by a straightforward Σ0

1-induction
that ∀y≤ q(~b) (tG(y,~b)≤ tF(~b)) and from this the claim follows.

Proposition 2.16. The theory generated by RCA−0 and weak König’s lemma proves the FAN0 rule.

Proof. Arguing in the theory generated by RCA−0 and weak König’s lemma, assume that the for-
mula ∀w ∃X ∀x≤ w F(X ,x) holds where F is a bounded formula. We must prove that the formula
∃X ∀x F(X ,x) holds too. Define the class term

T := {s ∈ 2̇<ω̇ : ∃s′ s⊆ s′∧∀x≤ lg(s) F∗(s′,x)} ,

where F∗ is obtained as in the last Lemma. Then for s∈ T , if we write G(A,s)= ∀x≤ lg(s)F(A,x),
we get from Lemma 2.15 that G∗(s′,s)↔ G∗(s′′,s) if s′ � tG(s) = s′′ � tG(s), i.e. ∃s′ ∈ 2̇tG(s) s ⊆
s′ ∧G∗(s′,s) if lg(s) ≤ tG(s) or G∗(s,s) if tG(s) < lg(s). But this means that T may be defined
by a bounded formula and thus is a set by ∆0

0-comprehension. Obviously T is a tree. To see
that T is infinite take w arbitrary and choose X such that H(X ,w) :≡ ∀x ≤ w F(X ,x). Let s′ be a
piecewise code for X of length lg(s′) ≥ max(w, tH(w)). Then ∀x ≤ w F∗(s′,x) and so s′ � w has
length w and is contained in T . Now by WKL0 there exists a path f ∈ 2̇ω̇ through T . We set
X := {n : f (n) = 0} and let x be arbitrary. Then s := 〈 f (0), . . . , f (y)〉, where y = max(x, tF(x)), is
in T , that is ∃s′ s⊆ s′∧∀z≤ lg(s) F∗(s′,z). This means in particular F∗(s,x) since lg(s)≥ tF(x),
so again with Proposition 2.15 we get F(X ,x).

Proposition 2.17. The theory RCA−0 +FAN0 proves weak König’s lemma.

Proof. We assume that T is an infinite binary tree, i.e. Tree∞(T ). As T is infinite we find for every
w a sequence s ∈ T of length w. As the sequence s is a code for a set X we see that ∀w ∃X ∀x ≤
w
(
∃s ∈ 2̇x (∀i < lg(s) (si = 0↔ i ∈ X))∧ s ∈ T

)
. As the formula in brackets is bounded, we

conclude by an application of FAN0 that ∃X ∀x
(
∃s ∈ 2̇x (∀i < lg(s) (si = 0↔ i ∈ X))∧ s ∈ T

)
.

This means that the characteristic function of X is an infinite path through T .

Corollary 2.18. The theories RCA−0 +FAN0 and WKL0 are the same.

Proof. As FAN0 and weak König’s lemma are equivalent over RCA−0 we only need to check that
RCA−0 +FAN0 implies ∆0

1-comprehension. Thus suppose that ∀u (∃y F(u,y)↔∀z G(u,z)) where
F and G are bounded formulas. Given w the set X := {u : ∃y ≤ w F(u,y)} exists by bounded
comprehension. This X victims that

∀w ∃X ∀x≤ w ∀u,y,z≤ x
(
(F(u,y)→ u ∈ X)∧ (u ∈ X → G(u,z))

)
is true. Applying the FAN0 rule gives

∃X ∀x ∀u,y,z≤ x
(
(F(u,y)→ u ∈ X)∧ (u ∈ X → G(u,z))

)
and this entails the desired result.
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2.4 Sequent calculus reformulation of WKL0

To analyse subsystems of second order arithmetic from a proof-theoretic approach we have to
reformulate the Hilbert style calculus as a Gentzen style calculus. The calculus described first is
denoted as LKQ. If we denote the closure under term substitution of the equality axioms and the
axioms of Q as Q then the initial sequents of LKQ are given by Q (Note that a L2-formula F is
interpreted in LKQ as→F) and all sequents of the form F→F where F is any formula. The rules
of LKQ consist of the weak structural rules, the cut rule, the propositional rules and the quantifier
rules. They are stated below.

Weak Structural Rules
The weak structural rules consists of exchange, contraction and weakening.

(Eleft)
Γ,F,G,Π→∆

Γ,G,F,Π→∆
(Eright)

Γ→∆,F,G,Λ

Γ→∆,G,F,Λ

(Cleft)
F,F,Γ→∆

F,Γ→∆
(Cright)

Γ→∆,F,F
Γ→∆,F

(Wleft)
Γ→∆

F,Γ→∆
(Wright)

Γ→∆

Γ→∆,F

The cut rule

(Cut)
Γ→∆,F Γ,F→∆

Γ→∆

The Propositional Rules

(¬left)
Γ→∆,F
¬F,Γ→∆

(¬right)
F,Γ→∆

Γ→∆,¬F

(∧left)
F,G,Γ→∆

F ∧G,Γ→∆
(∧right)

Γ→∆,F Γ→∆,G
Γ→∆,F ∧G

(∨left)
F,Γ→∆ G,Γ→∆

F ∨G,Γ→∆
(∨right)

Γ→∆,F,G
Γ→∆,F ∨G

The First Order Quantifier Rules
For all terms t and all eigenvariables a (i.e. a occurs only in the upper sequent) we have

(∀left)
F(t),Γ→∆

∀x F(x),Γ→∆
(∀right)

Γ→∆,F(a)
Γ→∆,∀x F(x)

(∃left)
F(a),Γ→∆

∃x F(x),Γ→∆
(∃right)

Γ→∆,F(t)
Γ→∆,∃x F(x)

.

The Bounded Quantifier Rules
For all terms s, t and all eigenvariables a (i.e. a occurs only in the upper sequent) we have

(∀≤left)
F(t),Γ→∆

t ≤ s,∀x≤ s F(x),Γ→∆
(∀≤right)

a≤ s,Γ→∆,F(a)
Γ→∆,∀x≤ s F(x)
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(∃≤left)
a≤ s,F(a),Γ→∆

∃x≤ s F(x),Γ→∆
(∃≤right)

Γ→∆,F(t)
t ≤ s,Γ→∆,∃x≤ s F(x)

.

The Second Order Quantifier Rules
For all free second order variables B and all eigenvariables A (i.e. A occurs only in the upper
sequent) we have

(∀2left)
F(B),Γ→∆

∀X F(X),Γ→∆
(∀2right)

Γ→∆,F(A)
Γ→∆,∀X F(X)

(∃2left)
F(A),Γ→∆

∃X F(X),Γ→∆
(∃2right)

Γ→∆,F(B)
Γ→∆,∃X F(X)

.

One easily checks that LKQ is equivalent to Q.

Theorem 2.19. A L2-formula F is provable in Q if and only if→F is derivable in LKQ.

As described in the appendix the calculus LKQ admits partial cut elimination, i.e. for any sequent
derivable in LKQ there exists a proof of this sequence in which the cut formula applies only to
Σ0

1-formulas. Now we enrich LKQ to obtain sequent calculi for RCA−0 and WKL0. First we have
to include the induction rule. It can be stated as follows.

The Σ0
1-Induction Rule

For all Σ0
1-formulas F and any term t we add the rule

(Ind)
F(a),Γ→∆,F(a+1)

F(0),Γ→∆,F(t)
.

The next goal is to implement ∆0
1-comprehension. We could for example take it as an axiom. But

as we don’t want any quantifier in our axioms we do a little trick. For this we have to introduce
the notion of an abstract.

Definition 2.20. Let G(a) be a formula with a distinguished free number variable a. Then the
meta-expression {x : G(x)} is called an abstract for G. If F(A) is a formula and V an abstract
for a formula G(a) then F(V ) is the formula obtained from F by simultaneously replacing every
subformula of the form q ∈ A by G(q).

Now we exchange the second order quantifier rules by the following rules.

The Second Order Quantifier Rules∗
For all Abstracts V for a bounded formula and all eigenvariables A (i.e. A occurs only in the upper
sequent) we have

(∀2left)∗
F(V ),Γ→∆

∀X F(X),Γ→∆
(∀2right)∗

Γ→∆,F(A)
Γ→∆,∀X F(X)

(∃2left)∗
F(A),Γ→∆

∃X F(X),Γ→∆
(∃2right)∗

Γ→∆,F(V )

Γ→∆,∃X F(X)
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These new second order quantifier rules are equivalent to the former second order quantifier rules
together with bounded comprehension. Indeed the formula ∃X ∀x (x ∈ X ↔ F(x)), where F is
bounded, is a direct consequence of (∃2right)∗ with upper sequent→∀x (F(x)↔ F(x)) and ab-
stract V := {x : F(x)}.

Definition 2.21. The sequent calculus obtained in this way is denoted as LKRCA−0
.

Now the calculus LKRCA−0
is equivalent to the theory RCA−0 . If we add the FAN0 rule we get the

sequent calculus reformulation LKWKL0 of WKL0 we are looking for.

The FAN Rule
For all bounded formulas F and all eigenvariables A

(Fan0)
Γ→∆,∃x F(A,x,~b)

Γ→∆,∃v ∀s ∈ 2t(v,~b) ∃x≤ v F∗(s,x,~b)
,

where t(v,~b) is the term associated to ∃x≤ v F(A,x,~b) according to Lemma 2.15.

Theorem 2.22. The calculi LKRCA−0
and LKWKL0 admit partial cut elimination.

A proof of this theorem can be found in the appendix.

3 Harrington’s conservation theorem

If a formula F contains no set quantifier it is called an arithmetical formula. The second order
counterpart of the Σ0

n-formulas are the Σ1
n-formulas given in the next definition.

Definition 3.1. A formula F is called called a Σ1
n-formula (resp. a Π1

n-formula) if there exists
an arithmetical formula G such that F is ∃X0∀X1 . . .Xn−1G (resp. ∀X0∃X1 . . .Xn−1G). Note that
Σ1

0 = Π1
0 is the set of arithmetical formulas.

Now we can state the main theorem of this thesis, namely Harringston’s conservation theorem.

Theorem 3.2 (Harrington). The theory WKL0 is Π1
1-conservative over RCA−0 , i.e. if WKL0 proves

the sentence ∀X F(X), where F(A) is an arithmetical formula, then already RCA−0 proves ∀X F(X).

We proof this with a cut elimination approach. If we suppose that WKL0 proves the sentence
∀X F(X) then there is a proof of→F(A) in the sequent calculus LKWKL0 described in the last
section. By the partial cut elimination theorem 2.22 there is a proof of→F(A) in LKWKL0 in
which the cut rule applies only to bounded or Σ0

1-formulas. As a consequence, this proof has
no occurrences of second-order quantifiers. Modulo some exchange rules, every sequence in the
proof has the form

Γ,∃w1 H1(w1,~A), . . . ,∃wn Hn(wn,~A)→∆,∃y1 G1(y1,~A), . . . ,∃ym Gm(ym,~A) (1)

where:

(i) the Hs and the Gs are bounded formulas and where we allow the absence of the existential
quantifiers ∃wi or ∃y j in order to accommodate plain bounded formulas in the above sequent;
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(ii) there are no bounded or Σ0
1-formulas in Γ or ∆;

(iii) the tuple ~A displays exactly the second-order parameters which occur in the Hs or in the Gs
without occurring neither in Γ nor ∆. These are called the special parameters of the sequent;

(iv) we are not displaying other (first or second order) parameters. In particular, we are not
displaying second-order parameters that occur in Γ or in ∆ (and which may concurrently
occur in the Hs or in the Gs).

If the (Fan0) rule is not applied in the proof, then of course, ∀X F(X) is a theorem of RCA−0 .
Otherwise, it occurs for a first time in some branch of the proof tree. At this point we need a
lemma in order to eliminate this occurrence.

Lemma 3.3. Let be given a proof of a sequent of the form (1) in the sequent calculus LKRCA−0
.

Suppose further that this proof is normal in the following sense: every cut formula is bounded or
a Σ0

1-formula; and, no formula of the proof has second-order quantifiers. Under these conditions,
the theory RCA−0 proves{

Γ∧¬∆→
(
∀w1, . . . ,wn ∃v ∀~A (H1(w1,~A)∧ . . .∧Hn(wn,~A)→

∃y1 ≤ v G1(y1,~A)∨ . . .∨∃ym ≤ v Gm(ym,~A))
)
,

where v is a new bounded number variable not occurring in (1).

We will first show how this lemma implies the theorem.

Proof of theorem 3.2. When we arrive at the top sequent of a first application of the (Fan0) rule in
our normal proof of F(A), RCA−0 proves

Γ(~b)∧¬∆(~b)→
(
∀w ∃v ∀A(H(w,~b)→∃x≤ v F(A,x,~b)∨∃y≤ v G(y,~b)

)
,

where we are not showing any special parameters besides A and where for simplicity n = 1 and
m = 2. Note that A is an eigenvariable and only shows up in the auxiliary formula of the (Fan0)
rule. Note, also, that the universal quantifications over the other special parameters can safely
cross over the quantifier ∃v. We are displaying the first order parameters ~b that appear in the
auxiliary formula. Hence, RCA−0 proves

Γ(~b)∧¬∆(~b)∧∃w H(w,~b)→∃v ∀A
(
∃x≤ v F(A,x,~b)∨∃y≤ v G(y,~b)

)
.

As a consequence, the theory RCA−0 proves the conditional whose antecedent is Γ(~b)∧¬∆(~b)∧
∃w H(w,~b) ans whose consequent is

(
∃v ∀s ∈ 2t(v,~b)∃x≤ v F∗(s,x,~b)

)
∨∃y G(y,~b).

We have arrived at the conclusion of a first application of the (Fan0) rule in a normal proof in
LKWKL0 via a proof in LKRCA−0

. With a partial cut elimination argument this proof may be taken
as a normal proof, in the sense of Lemma 3.3. If we repeat this procedure enough times, we arrive
at a (normal) proof of→F(A) in LKRCA−0

. Hence, the theory RCA−0 already proves the sentence
∀X F(X).

It remains to prove the lemma. At various points, the proof of the lemma makes appeal to the
so-called bounded collection scheme BΣ0

1.



15

Proposition 3.4. The theory RCA−0 proves

∀x≤ a ∃y F(x,y)→∃z ∀x≤ a ∃y≤ z F(x,y) ,

for all bounded formulas F.

Proof. The formula G(a′) :≡ a′ ≤ a→ ∃z ∀x ≤ a′ ∃y ≤ z F(x,y) is obviously equivalent to a Σ0
1-

formula. If we assume H(a) :≡ ∀x ≤ a ∃y F(x,y) we get G(0). By assuming additionally G(x′)
we find yx′+1 and zx′ such that F(x′+1,yx′+1) and ∀x≤ x′ ∃y≤ zx′ F(x,y) whenever x′ < a. If we
set zx′+1 := yx′+1 + zx′ we immediately get ∀x ≤ x′+1 ∃y ≤ zx′+1 F(x,y). Hence we have proven
H(a)→ G(0)∧∀x′ (G(x′)→ G(x′+ 1)). So by Σ0

1-induction we conclude H(a)→ ∀x G(x) and
by a further substitution we get the desired result H(a)→ G(a).

Definition 3.5. The depth depth(P) of a given proof tree is defined as the maximal length from the
root to a leaf.

Proof of Lemma 3.3. The proof is by induction on the depth of the given normal proof. There is
nothing to prove regarding initial sequents, since they are quantifier-free. One must check that
the induction hypothesis is carried over by every rule of LKRCA−0

except for the second order
quantifier rules which do not occur in the proof. This is trivial for the weak structural rules. The
induction step for the propositional rules is proved by distinguishing whether the auxiliary formula
is bounded, Σ0

1 or none of them, and then a straightforward propositional argumentation.
(¬left). If the auxiliary formula is neither bounded nor Σ0

1 then the claim is trivial. Assume that F
is bounded and that the inference looks like

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∃x F(x,~B)

Γ,∃w H(w,~A,~B),¬∃x F(x,~B)→∆,∃y G(y,~A,~B)
,

where, for simplicity, we consider only one bounded formula H and one bounded formula G,
and where we distinguish between the special parameters which occur in the auxiliary formula
(the parameters ~B) and those that do not occur there (the parameters ~A). Note that the former are
no longer special parameters of the lower sequent. The induction hypothesis tells us that RCA−0
proves

Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃x≤ v F(x,~B))

)
.

But this gives immediately

RCA−0 ` Γ∧¬∆∧¬∃x F(x,~B)→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
for fixed ~B. If we omit the quantifiers ∀x, ∃x, i.e. if we consider a bounded auxiliary formula, we
get instead

RCA−0 ` Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)∧¬F(~B)→∃y≤ v G(y,~A,~B))

)
,

and this is the desired result.
(¬right). Again w.l.o.g. we can assume that the auxiliary formula is bounded or Σ0

1. In the Σ0
1 case

we have an inference of the form

Γ,∃w H(w,~A,~B),∃x F(x,~B)→∆,∃y G(y,~A,~B)

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),¬∃x F(x,~B)
,
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where F is bounded. The induction hypothesis is now that RCA−0 proves

Γ∧¬∆→
(
∀w ∀x ∃v ∀~A ∀~B (H(w,~A,~B)∧F(x,~B)→∃y≤ v G(y,~A,~B))

)
.

From this we conclude

RCA−0 ` Γ∧¬∆∧¬¬∃x F(x,~B)→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

If we omit the quantifiers ∀x, ∃x, i.e. if we consider a bounded auxiliary formula, we get instead

RCA−0 ` Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨¬F(~B))

)
.

(∧left). First we assume that the two auxiliary formulas are either bounded or Σ0
1. Then the rule is

given by
Γ,∃w H(w,~A,~B),∃x F(x,~B),∃z E(z,~B)→∆,∃y G(y,~A,~B)

Γ,∃w H(w,~A,~B),∃x F(x,~B)∧∃z E(z,~B)→∆,∃y G(y,~A,~B)
,

where we allow the absence of the existential quantifiers in front of the bounded formulas E and
F . The induction hypothesis is

RCA−0 ` Γ∧¬∆→
(
∀w ∀x ∀z ∃v ∀~A ∀~B (H(w,~A,~B)∧F(x,~B)∧E(z,~B)→∃y≤ v G(y,~A,~B))

)
.

If both auxiliary formulas are bounded then we are done. Otherwise the conjunction ∃x F ∧∃z E
is neither bounded nor Σ0

1 and we have

RCA−0 ` Γ∧ (∃x F(x,~B)∧∃z E(z,~B))∧¬∆→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

The claim is trivial if both auxiliary formulas are neither bounded nor Σ0
1. In the last case we have

an unbounded non Σ0
1-formula F and a bounded or Σ0

1-formula ∃z E(z,~B), where we allow the
absence of ∃z, with inference rule

Γ,∃w H(w,~A,~B),F,∃z E(z,~B)→∆,∃y G(y,~A,~B)

Γ,∃w H(w,~A,~B),F ∧∃z E(z,~B)→∆,∃y G(y,~A,~B)
,

and induction hypothesis

RCA−0 ` Γ∧F ∧¬∆→
(
∀w ∀z ∃v ∀~A ∀~B (H(w,~A,~B)∧E(z,~B)→∃y≤ v G(y,~A,~B))

)
.

From this we conclude

RCA−0 ` Γ∧ (F ∧∃z E(z,~B))∧¬∆→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

(∧right). Assume first that the auxiliary formulas are given by bounded or Σ0
1-formulas. The

inference (∧right) says that from the two sequents

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∃x F(x,~B)

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∃z E(z,~B)



17

one can infer
Γ,∃w H(w,~A,~B)→ ∆,∃y G(y,~A,~B),∃x F(x,~B)∧∃z E(z,~B) ,

where we again allow the absence of the quantifier associated with E and F . We have the induction
hypothesises that RCA−0 proves both

Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃x≤ v F(x,~B))

)
and

Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃z≤ v E(z,~B))

)
.

If both existential quantifier are absent, i.e. if the two auxiliary formulas are bounded, the conclu-
sion of the induction step is immediate. Otherwise ∃x F ∧∃z E is neither bounded nor Σ0

1 and we
get

RCA−0 ` Γ∧¬∆∧¬(∃x F(x,~B)∧∃z E(z,~B))→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

If both auxiliary formulas are not included in ∆0
0 ∪Σ0

1 the claim is trivial. In the last case one
auxiliary formula is included in ∆0

0∪Σ0
1 and the other is not. Then the rule says that from

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),F

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∃z E(z,~B) ,

where F 6∈ ∆0
0∪Σ0

1, E ∈ ∆0
0 and where we allow the absence of ∃z, one can infer

Γ,∃w H(w,~A,~B)→ ∆,∃y G(y,~A,~B),F ∧∃z E(z,~B) .

From the hypothesises that RCA−0 proves both

Γ∧¬∆∧¬F →
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
and

Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃z≤ v E(z,~B))

)
,

we conclude

RCA−0 ` Γ∧¬∆∧¬(F ∧∃z E(z,~B))→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

The remaining propositional rules can be proved very similar. Alternatively we could formulate
our calculus only with the propositional operator ¬,∧ and since nothing else changes we are done.
(∀left). The study of this rule is only interesting when the auxiliary formula is Σ0

1 or bounded
(otherwise the claim follows from ∀x F(x)→ F(t)). In the former case we have an inference of
the form

Γ,∃w H(w,~A,~B),∃x F(x, t,~B)→∆,∃y G(y,~A,~B)

Γ,∃w H(w,~A,~B),∀z ∃x F(x,z,~B)→∆,∃y G(y,~A,~B)
,

where we are distinguishing between the special variables. By induction hypothesis, the theory
RCA−0 proves the conditional whose antecedent is Γ∧¬∆ and whose consequent is

∀w ∀x ∃v ∀~A ∀~B (H(w,~A,~B)∧F(x, t,~B)→∃y≤ v G(y,~A,~B)) .
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We reason inside RCA−0 . Fix ~B′ and assume the conjunction of Γ with ¬∆ and ∀z ∃x F(x,z,~B′).
Take x′ such that F(x′, t,~B′). Fix w. It is now clear that there is v such that ∀~A (H(w,~A,~B′)→∃y≤
v G(y,~A,~B′)). The case where the auxiliary formula is bounded follows by simply by omitting the
quantifiers in the proof of the Σ0

1 case.
(∀right). This rule is only interesting when the auxiliary formula is bounded or Σ0

1. The former
case follows easily from the proof of the second case by admitting a quantifier. So let F be bounded
and let the rule be given by

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∃x F(x,a,~B)

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∀z ∃x F(x,z,~B)
,

where ~B are the special variable occurring in the auxiliary formula. Then the induction hypothesis
and the fact that a is an eigenvariable say that

Γ∧¬∆→
(
∀a ∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃x≤ v F(x,a,~B))

)
is provable in RCA−0 . We argue inside RCA−0 . Fix ~B′ and assume Γ∧¬∆∧¬∀z ∃x F(x,z,~B′). We
fix w and choose z′ such that ∀x¬F(x,z′,~B′). Hence we get the desired result ∃v ∀~A (H(w,~A,~B′)→
∃y≤ v G(y,~A,~B′)).
(∃left). Similar to the (∀right) rule the interesting cases are those where the auxiliary formula is
bounded or Σ0

1; otherwise it follows from the fact that a is an eigenvariable. Let’s first assume, that
the auxiliary formula F is bounded an thus the inference reads

Γ,∃w H(w,~A),F(a,~A)→∆,∃y G(y,~A)

Γ,∃w H(w,~A),∃z F(z,~A)→∆,∃y G(y,~A)
.

From the induction hypothesis we get

RCA−0 ` Γ∧¬∆→
(
∀w ∃v ∀~A (H(w,~A)∧F(a,~A)→∃y≤ v G(y,~A))

)
.

The conclusion of the induction step is now immediate, as a is an eigenvariable and thus we can
quantify over a on the expression on the right side of the implication arrow. Now we assume that
the auxiliary formula is Σ0

1. This time the inference looks like

Γ,∃w H(w,~A,~B),∃x F(x,a,~B)→∆,∃y G(y,~A)

Γ,∃w H(w,~A,~B),∃z ∃x F(x,z,~B)→∆,∃y G(y,~A,~B)
,

where we again distinguish between the special variables occurring in F and those that don’t. By
induction hypothesis, the theory RCA−0 proves the conditional whose antecedent is Γ∧¬∆ and
whose consequent is

∀w ∀x ∃v ∀~A ∀~B (H(w,~A,~B)∧F(x,a,~B)→∃y≤ v G(y,~A,~B)) .

Let’s reason inside RCA−0 . We fix ~B′ and assume Γ∧¬∆∧ ∃z ∃x F(x,z,~B′). Now we fix w.
According to our assumption we find x′,z′ such that F(x′,z′,~B′). Since a is an eigenvariable we
find with the induction hypothesis v such that ∀~A (H(w,~A,~B′)→ ∃y ≤ v G(y,~A,~B′)) and this was
to prove.



19

(∃right). Again w.l.o.g. we assume that the auxiliary formula is bounded or Σ0
1. In the former case

the inference is
Γ,∃w H(w,~A),→∆,∃y G(y,~A),F(t,~A)

Γ,∃w H(w,~A)→∆,∃y G(y,~A),∃z F(z,~A)
.

From the induction hypothesis

RCA−0 ` Γ∧¬∆→
(
∀w ∃v ∀~A (H(w,~A)→∃y≤ v G(y,~A)∨F(t,~A))

)
,

we immediately get the conclusion of the induction step, as F(t,~A)→ ∃z ≤ t F(z,~A). Now we
assume that the auxiliary formula is Σ0

1. Then we have the rule

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∃x F(x, t,~B)

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∃z ∃x F(x,z,~B)
,

and the induction hypothesis says that within RCA−0 the conditional Γ∧¬∆ implies

∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃x≤ v F(x, t,~B)) .

Let’s reason inside RCA−0 . We fix ~B′ and assume Γ∧¬∆∧¬∃z ∃x F(x,z,~B′). Fix w. Then we find
v with ∀~A (H(w,~A,~B′)→∃y≤ v G(y,~A,~B′)).
(∀≤left). This rule has the form

F(t,~B),Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B)

t ≤ s,∀x≤ s F(x,~B),Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B)
.

In the case F /∈ ∆0
0∪Σ0

1 we get the induction hypothesis

RCA−0 ` Γ∧¬∆∧F(t,~B)→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

From this we conclude by distinguishing within RCA−0 the cases t ≤ s and s < t that also

Γ∧¬∆∧∀x≤ s F(x,~B)→
(
∀w ∃v ∀~A (t ≤ s∧H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
is provable in RCA−0 . The second case is F ∈ Σ0

1, i.e. F(t,~B) ≡ ∃z E(t,z,~B) for E ∈ ∆0
0. The

induction hypothesis is now that RCA−0 proves

Γ∧¬∆→
(
∀w ∀z ∃v ∀~A ∀~B (H(w,~A,~B)∧E(t,z,~B)→∃y≤ v G(y,~A,~B))

)
.

As before we conclude

RCA−0 ` Γ∧¬∆∧∀x≤ s F(x,~B)→
(
∀w ∃v ∀~A (t ≤ s∧H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

In the third case, i.e. if F ∈ ∆0
0, our induction hypothesis is given by

RCA−0 ` Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)∧F(t,~B)→∃y≤ v G(y,~A,~B))

)
,

and this implies

RCA−0 ` Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (t ≤ s∧H(w,~A,~B)∧∀x≤ s F(x,~B)→∃y≤ v G(y,~A,~B))

)
.
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(∀≤right). The inference is given by

Γ,a≤ t,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),F(a,~B)

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),∀x≤ t F(x,~B)
.

First assume F /∈ ∆0
0∪Σ0

1. With the induction hypothesis we have that RCA−0 proves

Γ∧¬∆∧¬F(a,~B)→
(
∀w ∃v ∀~A (a≤ t ∧H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

We argue in RCA−0 . If we fix ~B′ and assume Γ∧¬∆∧¬∀x≤ t F(x,~B′) we can choose x′ ≤ t such
that ¬F(x′,~B′). For fixed w we find v such that ∀~A (H(w,~A,~B′)→ ∃y ≤ v G(y,~A,~B′)). Now let
F ∈ Σ0

1 i.e. F = ∃z E(a,z,~B) for some bounded E. Within RCA−0 we have in this case

Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (a≤ t ∧H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃z≤ v E(a,z,~B))

)
.

We reason in RCA−0 . Fix ~B′ and assume Γ∧¬∆∧¬∀x≤ t F(x,~B′). Again by assigning an adequate
value to a and the fact that this is an eigenvariable we get the conclusion ∀w ∃v ∀~A (H(w,~A,~B′)→
∃y≤ v G(y,~A,~B′)). Lastly let F ∈ ∆0

0. This time RCA−0 proves the formula

Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (a≤ t ∧H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨F(a,~A))

)
.

Since a is an eigenvariable we can quantify over the expression on the right side of the implication.
We argue as usual in RCA−0 , assume Γ∧¬∆ and fix w. Then we have

∀a≤ t ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B′)∨F(a,~B)) .

The subformula which begins with ∃v is logically equivalent to a Σ0
1-formula according to Lemma

2.15. Therefore we can apply BΣ0
1 collection and thus get

∃v ∀a≤ t ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B′)∨F(a,~B)) .

Now the claim follows immediately.
(∃≤left). This rule has the form

Γ,a≤ t,F(a,~B),∃w H(w,~A,~B)→∆,∃y G(y,~A,~B)

Γ,∃x≤ t F(x,~B),∃w H(w,~A,~B)→∆,∃y G(y,~A,~B)
,

with the usual conditions. We distinguish three cases. First let F be neither bounded nor Σ0
1. Then

according to the induction hypothesis RCA−0 proves

Γ∧¬∆∧F(a,~B)→
(
∀w ∃v ∀~A (a≤ t ∧H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

From this we conclude that RCA−0 proves also

Γ∧¬∆∧∃x≤ t F(x,~B)→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
,

since a is an eigenvariable. The second case is F ∈ Σ0
1 i.e. F equals ∃z E(a,z,~B) for some bounded

formula E. This time RCA−0 proves

Γ∧¬∆→
(
∀w ∀z ∃v ∀~A ∀~B ∀(a≤ t ∧H(w,~A,~B)∧E(a,z,~B)→∃y≤ v G(y,~A,~B))

)
.



21

Again since a is an eigenvariable RCA−0 proves also

Γ∧¬∆∧∃x≤ t F(x,~B)→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

In the last case F is bounded. Then RCA−0 proves the

Γ∧¬∆→
(
∀a ∀w ∃v ∀~A ∀~B (a≤ t ∧F(a,~B)∧H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
,

where we have used that a is an eigenvariable. We work within RCA−0 and assume Γ∧¬∆ and
fix w. We have with the induction hypothesis ∀a ≤ t ∃v ∀~A ∀~B (F(a,~B)∧H(w,~A,~B)→ ∃y ≤
v G(y,~A,~B)). We can use Lemma 2.15 and BΣ0

1 collection to see that

∃v ∀a≤ t ∀~A ∀~B (F(a,~B)∧H(w,~A,~B)→∃y≤ v G(y,~A,~B)) .

The conclusion of the induction step is an immediate consequence of the above.
(∃≤right). We have the rule

Γ,∃w H(w,~A,~B)→∆,∃y G(y,~A,~B),F(t,~B)

Γ,∃w H(w,~A,~B), t ≤ s→∆,∃y G(y,~A,~B),∃x≤ s F(x,~B)

and we distinguish again three cases. The first case is F /∈ ∆0
0 ∪Σ0

1. The induction hypothesis
equals

RCA−0 ` Γ∧¬∆∧¬F(t,~B)→
(
∀w ∃v ∀~A (H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

A straightforward argumentation within RCA−0 shows

Γ∧¬∆∧¬∃x≤ s F(x,~B)→
(
∀w ∃v ∀~A (t ≤ s∧H(w,~A,~B)→∃y≤ v G(y,~A,~B))

)
.

This formula follows within RCA−0 also in the case where F is a Σ0
1-formula, i.e. F(t,~B) ≡

∃z E(t,z,~B), from the hypothesis that

Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨∃z≤ v E(t,z,~B))

)
is valid in RCA−0 . In the last case, i.e. F is bounded, we have the hypothesis

RCA−0 ` Γ∧¬∆→
(
∀w ∃v ∀~A ∀~B (H(w,~A,~B)→∃y≤ v G(y,~A,~B)∨F(t,~B))

)
.

The conclusion of the induction step is an easy consequence of this.
(Ind). The induction rule equals (modulo renaming of bound variables)

Γ,∃w H(w,~A),∃x F(x,a,~A)→∆,∃y G(y,~A),∃x′ F(x′,a+1,~A)

Γ,∃w H(w,~A),∃x F(x,0,~A)→∆,∃y G(y,~A),∃x′ F(x′, t,~A)

under the usual conditions, and where a is an eigenvariable and t is an arbitrary term. By induction
hypothesis and the fact that a is an eigenvariable, the theory RCA−0 proves the conditional whose
antecedent is Γ∧¬∆ and whose consequent is

∀a ∀w ∀x ∃v ∀~A (H(w,~A)∧F(x,a,~A)→∃x′ ≤ v F(x′,a+1,~A)∨∃y≤ v G(y,~A)) . (2)
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Let us reason in RCA−0 . Assume Γ∧¬∆ and fix elements w and x. We claim that, for all elements
a,

∃v ∀~A (H(w,~A)∧F(x,0,~A)→∃x′ ≤ v F(x′,a,~A)∨∃y≤ v G(y,~A)) .

This solves or problem (substitute t for a). The claim is proved by induction on a. Note that this
induction is permissible since by Lemma 2.15, the above formula is equivalent to a Σ0

1-formula.
The base case a = 0 is clear. To argue for the induction step, assume that there is v such that

∀~A (H(w,~A)∧F(x,0,~A)→∃x′′ ≤ v F(x′′,a,~A)∨∃y≤ v G(y,~A)) .

By (2) we have:

∀x′′ ≤ v ∃v′ ∀~A (H(w,~A)∧F(x′′,a,~A)→∃x′ ≤ v′ F(x′,a+1,~A)∨∃y≤ v′ G(y,~A))

By bounded collection BΣ0
1 and Lemma 2.15, there is v′ such that,

∀x′′ ≤ v ∀~A (H(w,~A)∧F(x′′,a,~A)→∃x′ ≤ v′ F(x′,a+1,~A)∨∃y≤ v′ G(y,~A)) .

It clearly follows that

∀~A (H(w,~A)∧F(x,0,~A)→∃x′ ≤ v′′′ F(x′,a+1,~A)∨∃y≤ v′′′ G(y,~A)) ,

where v′′′ := max(v,v′).
(Cut). The cut rule says that from the two sequents

Γ,∃w H(w,~A)→∆,∃y G(y,~A),∃x F(x,~A,~B) and

∃x F(x,~A,~B),Γ,∃w H(w,~A)→∆,∃y G(y,~A)

one can infer the sequent Γ,∃w H(w,~A)→Γ,∃y G(y,~A). We are distinguishing the special param-
eters which only occur in the cut-formula (the parameters ~B). By induction hypothesis, the theory
RCA−0 proves that Γ∧¬∆ implies both

∀w ∃v1 ∀~A (H(w,~A)→∃y≤ v1 G(y,~A)∨∀~B ∃x≤ v1 F(x,~A,~B)) and

∀w ∀x ∃v2 ∀~A ∀~B (F(x,~A,~B)∧H(w,~A)→∃y≤ v2 G(y,~A)) .

Let us fix w. Take v1 according to the first assertion above. An application of Lemma 2.15 and
bounded collection BΣ0

1 to the second assertion above yields v2 such that

∀~B ∀x≤ v1 ∀~A (F(x,~A,~B)∧H(w,~A)→∃y≤ v2 G(y,~A)) .

It is now clear that ∀~A (H(w,~A)→∃y≤max(v1,v2) G(y,~A)) follows as wanted.

4 Further Results

There is no improvement in Harrington’s conservation theorem; we show below that WKL0 is
already not Π1

2-conservative over RCA0. This is an immediate consequence of the fact that weak
König’s lemma is not a theorem of RCA0.



23

Proposition 4.1. Weak König’s lemma is not provable in RCA0.

Proof. We show that König’s lemma is false in the standard model R = {ω,R,S,+, ·,0,<} of
RCA0, where R is the set of all recursive subsets of ω . Let A and B be a disjoint pair of recursively
inseparable, recursively enumerable subsets of ω . Further let f and g be recursive functions such
that im( f ) = A and im(g) = B. Since A and B are recursively inseparable, if follows that for any
recursive function h ∈ 2ω we have either h(n) = 0 for some n ∈ A or h(n) = 1 for some n ∈ B. Let

T := {s ∈ 2<ω : ∀m,n < lg(s) (( f (m) = n→ sn = 1)∧ (g(m) = n)→ sn = 0)} .

Obviously T ∈R and T is an infinite binary tree. Moreover h ∈ 2ω is a path through T if and only
if h(n) = 1 for all n ∈ A and h(n) = 0 for all n ∈ B. Thus T has no recursive path.

In the following we will present further conservation results where we consider also first order
theories. Therefore we introduce a first order language.

Definition 4.2. Let L1 denote the language of first order arithmetic which contains the following
symbols:

(i) countably many free number variables a0,a1, . . . ,

(ii) countably many bound number variables x0,x1, . . . ,

(iii) the function symbols are defined inductively by :

(a) 0 is a 0-ary function symbol (i.e. a constant) and S is a unary function symbol,

(b) for all natural numbers n,m and k, where 0 ≤ k ≤ n, Csn
m and Prn

k are n-ary function
symbols,

(c) if f is an m-ary function symbol and g1, . . . ,gm are n-ary function symbols, then the
composition Compn( f ,g1, . . . ,gm) is an n-ary function symbol,

(d) if f is an n-ary function symbol and g an (n+2)-ary function symbol, then Recn+1( f ,g)
is an (n+1)-ary function symbol.

(iv) two binary relation symbols = and <,

(v) the logical symbols ∀, ∃, ∧, ∨ and ¬.

Terms, Formulas, Models, Semantics, Hilbert calculi, Sequent calculi, Arithmetical Hierarchies
etc. for L1 can be obtained as for L2 by obvious modifications. Next we formulate two important
L1-theories.

Definition 4.3. The L1-theory of primitive recursive arithmetic PRA is Q enriched with the five
axioms from Definition 2.10 and with the induction scheme

F(0)∧∀x (F(x)→ F(x+1))→∀x F(x)

for all quantifier free L1-formulas F. If we take the induction scheme where F runs over all
Σ0

1-formulas of L1 we get the theory IΣ1.
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The first order part of RCA0 is exactly IΣ1. This circumstance is formulated in the next proposition.

Proposition 4.4. The theory RCA0 is conservative over IΣ1, i.e. any L1-formula F which is prov-
able in RCA0 is already provable in IΣ1.

Proof. Let F be a formula which is not valid in IΣ1. According to the completeness theorem we
find a first order model M = {|M|,SM,+M, ·M,0M,<M} of IΣ1 in which F is false. We aim to
extend M to a second order model M∗ of RCA0 by declaring a set SM∗ . We let SM∗ be the set of
all S ⊆ |M| such that there exists a Σ0

1-formula G(a,~b) ∈ L1 and a Π0
1-formula H(a,~c) ∈ L1 with

free variables as shown, such that

S = {x : M � G(x,~m)}= {x : M � H(x,~n)}

for some parameters ~m,~n ∈ |M|. Then we set M∗ = {|M|,SM∗ ,SM,+M, ·M,0M,<M}. Obviously
Q is true in M∗. We next show that M∗ satisfies ∆0

1-comprehension and Σ0
1-induction. Let K be an

arithmetical L2-formula with parameters from |M| ∪SM∗ . We construct a L1-translation K1 of K.
First K is logically equivalent to a formula K′ with the same parameters such that the negation ¬
occurs exclusively in front of atomic formulas. The translation K1 is obtained by substituting every
occurrence of x∈ S in K′ by G(x,~m) and every occurrence of x /∈ S in K′ by¬H(x,~n), where G resp.
H is a Σ0

1 resp. Π0
1 formula of L1 which defines S. Clearly K and K1 are equivalent in M∗ and the

translation of a Σ0
1 resp. Π0

1-formula is again a Σ0
1 resp. a Π0

1-formula (modulo logical equivalence).
This implies that M∗ proves ∆0

1-comprehension and Σ0
1-induction. Hence M∗ � RCA0.

As F is a first order formula with M � ¬F we have also M∗ � ¬F . Thus F is not provable in
RCA0.

The next theorem is due to Parsons. It’s proof can be found in the appendix.

Theorem 4.5 (Parsons). The theory IΣ1 is Π0
2-conservative over PRA.

If we combine Harrington’s theorem, Parsons’ theorem and Proposition 4.4 we finally conclude
the following corollary.

Corollary 4.6. The theory WKL0 is Π0
2-conservative over PRA.
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A Partial cut elimination

The aim of this paragraph is to give a proof of partial cut elimination. In order to simplify the
notation we make some changes in our sequent calculi. The main difference is that we interpret
from now on a sequence Γ→∆ no longer as an ordered pair of two finite sequences of formulas
Γ and ∆, but as an ordered pair of two finite sets of formulas Γ and ∆. This gives us the exchange
rules and the contraction rules for free. The next change is the notion of an initial sequent.

Definition A.1. An initial sequent is either Γ→∆,F, where F is an axiom of Q or a sequent of
the form Γ→∆, where Γ∩∆ is nonempty.

Now we can formulate the definition of the new sequent calculi.

Definition A.2. The sequent calculi LK∗Q, LK∗RCA−0 and LK∗WKL0
are obtained from the calculi

LKQ, LKRCA−0
and LKWKL0 by interpreting sequences and initial sequences as described above

and by omitting the weak structural rules. Note that an auxiliary formula on the right (resp. left)
side of an upper sequent in an inference rule may occur additionally as a side formula on the right
(resp. left) side of this sequent. We write T to mean one of the calculi LK∗Q, LK∗RCA−0 or LK∗WKL0

.

These modifications are certainly equivalent to the versions without *. This is justified as weak-
ening is admissible (see Lemma A.4). The next step is to assign to each L2-formula a rank.

Definition A.3. The rank |F | of a formula F is defined as 0 if F is either bounded or Σ0
1 and

otherwise defined inductively by

(i) |¬F |= |F |+1,

(ii) |F ∧G|= |F ∨G|= max(|F |, |G|)+1,

(iii) |∀x F |= |∃x F |= |∀x≤ t F |= |∃x≤ t F |= |∀X F |= |∃X F |= |F |+1.

We write T `n Γ→∆ if there exists a T -proof of Γ→∆ with depth less or equal n. Furthermore
we write T `r Γ→∆ if there exists a T -proof of Γ→∆ where every cut formula has rank less
than r. Sometimes we will combine these two notations. Clearly we have the following lemma.

Lemma A.4 (Weakening). If T `n
r Γ→∆ then also T `n

r Γ,Γ′→∆,∆′.

The idea is now that given a proof of a sequent we try to modify this into a proof of the same
sequent where every cut formula has rank 0. We aim to prove the following theorem.

Theorem A.5 (Partial Cut Elimination). If T ` Γ→∆ then also T `1 Γ→∆.

This theorem is a direct consequence of the following lemma.

Lemma A.6. Assume that T `m
r Γ,F→∆ and T `n

r Λ→Π,F where F is a formula with 0 <

|F | ≤ r. Then we have T `2(m+n)
r Γ,Λ→∆,Π.

Proof of Theorem A.5. Assume that T `n
r+2 Γ→∆. A straightforward induction on n shows that

T `4n

r+1 Γ→∆. If we apply this procedure r+1 times we finally get T `1 Γ→∆.
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Proof of Lemma A.6. The proof is by induction on m+n. We use the abbreviations R :≡ Γ,F→∆

and S :≡ Λ→Π,F . If m = 0 then R is an initial sequent, i.e. Γ∩∆ 6= /0, Q ∩∆ 6= /0 or F ∈
∆. In the first two cases Γ,Λ→∆,Π is again an initial sequent. Otherwise Γ,Λ→∆,Π equals
Γ,Λ→∆,Π,F and so the conclusion of the induction step follows directly from Lemma A.4. If
n = 0 then the argumentation is similar (note that all elements of Q have rank 0, so F /∈Q). So
let m,n > 0. Now assume that R is the consequence of an inference I with upper sequent(s)
Γ′,F→∆′ (and Γ′′,F→∆′′) such that F is not a principal formula of this inference. According to
the induction hypothesis we have T `2((m−1)+n)

r Γ′,Λ→∆′,Π (and T `2((m−1)+n)
r Γ′′,Λ→∆′′,Π).

After applying I we get the desired result T `2(m+n)−1
r Γ,Λ→∆,Π. If S is the consequence

of an inference rule such that F is not a principal formula of this inference, the argumentation
is similar. Hence we can assume that both R and S are consequences of inference rules with
principal formula F . To prove the theorem we distinguish between the possible inference rules
which can be applied to get R. Without loss of generality we can assume F /∈ Γ∪Π.
(¬left). The formula F equals ¬G. This means that S is the consequence of a (¬right) rule. Thus
we have

Γ′→∆,G
Γ′,¬G→∆

and
Λ,G→Π′

Λ→Π′,¬G
,

such that Γ,¬G=Γ′,¬G and Π,¬G=Π′,¬G. By Lemma A.4 we can assume that F is included in
both Γ′ and Π′, that is Γ′ = Γ,¬G and Π′ = Π,¬G. Applying cross-cuts, the induction hypothesis
and weakening imply T `2(m−1)+n)

r Γ,Λ→∆,Π,G and T `2(m+(n−1))
r Γ,Λ,G→∆,Π. As G has

rank less than r we can apply a cut inference and we get T `2(m+n)−1
r Γ,Λ,→∆,Π.

(∧left). We find formulas G,H such that F equals G∧H. The sequence S has to be the conse-
quence of of a (∧right) rule. This means that we have

Γ′,G,H→∆

Γ′,G∧H→∆
and

Λ→Π′,G Λ→Π′,H
Λ→Π′,G∧H

,

where Γ,G∧H = Γ′,G∧H and Π,G∧H = Π′,G∧H. As before we can assume Γ′ = Γ,G∧H
and Π′ = Π,G∧H. Again we apply cross-cuts and with the hypothesis and Lemma A.4 we get

T `2((m−1)+n)
r Γ,Λ,G,H→∆,Π , T `2(m+(n−1))

r Γ,Λ,H→∆,Π,G

and T `2(m+(n−1))
r Γ,Λ→∆,Π,H .

If we first apply a cut with cut formula G to the first two sequents, and then apply again the cut
rule to this result and the third sequent above we finally get T `2(m+n)

r Γ,Λ→∆,Π.
(∨left). This is proved very similar.
(∀left). In this case F equals ∀x G(x) and so S is the result of a (∀right) inference. That is we
have

Γ′,G(t)→∆

Γ′,∀x G(x)→∆
and

Λ→Π′,G(a)
Λ→Π′,∀x G(x)

,

where Γ,∀x G(x)=Γ′,∀x G(x) and Π,∀x G(x)=Π′,∀x G(x). Again we can assume Γ′=Γ,∀x G(x)
and Π′ = Π,∀x G(x). We have according to our assumption that T `n−1

r Λ→Π′,G(a). If we
modify the proof of this sequence by replacing, if necessary, some free variables that occur as
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eigenvariables and by substituting t for a we get T `n−1
r Λ→Π′,G(t). Now we can applying

weakening and cross-cuts to get

T `2((m−1)+n)
r Γ,Λ,G(t)→∆,Π and T `2(m+(n−1))

r Γ,Λ→∆,Π,G(t) .

Using one application of (Cut) we finally get T `2(m+n)−1
r Γ,Λ→∆,Π.

(∃left). This time F ≡ ∃x G and S is the result of a (∃right) rule. This case is proved similar to
the last case. Note that since F has a positive rank even if T equals LK∗RCA−0 or LK∗WKL0

it’s not
possible that S is the result of a (Ind) or a (Fan0) rule.
(∀≤left). We have that F is ∀x ≤ s G(x). The case F ≡ t ≤ s is impossible because F has a rank
different from 0. This means that S is the result of a (∀≤right) rule, i.e.

Γ′,G(t)→∆

Γ′, t ≤ s,∀x≤ s G(x)→∆
and

Λ,a≤ s→Π′,G(a)
Λ→Π′,∀x≤ s G(x)

,

where Γ,∀x ≤ s G(x) = Γ′, t ≤ s,∀x ≤ s G(x) and Π,∀x ≤ s G(x) = Π′,∀x ≤ s G(x). As before
we can assume Γ′ = Γ, t ≤ s,∀x ≤ s G(x) and Π′ = Π,∀x ≤ s G(x). Similar to the unbounded
quantifier case we can substitute t for a. We apply cross-cuts and get

T `2((m−1)+n)
r Γ,Λ, t ≤ s,G(t)→∆,Π and T `2(m+(n−1))

r Γ,Λ, t ≤ s,→∆,Π,G(t) .

Considering t ≤ s ∈ Γ and using one more cut-rule with cut-formula G(t) we get the desired result

T `2(m+n)−1
r Γ,Λ→∆,Π .

(∃≤left). This is proved very similar.
The second order quantifier rules∗ are proved similar to their first order counterparts. The essential
point is here that if we replace in a formula an abstract corresponding to a bounded formula for a
free variable, the rank of the formula does not change.

B Parsons’ Theorem

The aim of this paragraph is to show the proof of Parsons’ theorem which can be found in [5].
We work exclusively with first order logic. The first step is Herbrand’s theorem stated below.
Remember that a universal theory is a theory consisting of universal formulas.

Theorem B.1 (Herbrand). Let U be a universal theory in the (countable) first-order language L.

(i) Suppose ∃~x F(~x,~a) is a consequence of U , where F is a quantifier-free formula with it’s
variables as shown. Then there are terms~t1(~a), . . . ,~tk(~a) with at most the variables ~a such
that

U � F(~t1(~a),~a)∨·· ·∨F(~tk(~a),~a) .

(ii) Suppose ∃~x ∀~y F(~x,~y,~a) is a consequence of U , where F is an existential formula, with its
free variables as shown. Then there are terms~t1(~a),~t2(~a,~y1), . . . ,~tk(~a,~y1, . . . ,~yk−1) with it’s
variables among the ones shown such that

U � F(~t1(~a),~y1,~a)∨F(~t2(~a,~y1),~y2,~a)∨·· ·∨F(~tk(~a,~y1, . . . ,~yk−1),~yk,~a) .
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Proof. In order to make the proof more readable we consider only single variables x,y and a rather
than vectors~x,~y and~a.
(i). This is a particular case of (ii): just insert two dummy quantifiers and substitute the yi’s by the
variable a in the term.
(ii). Assume that no conjunction as in (ii) is a consequence of the theory U . Let a0,a1,a2 be a list
of the (free) variables and fix an enumeration t1, t2, t3, . . . of all terms of the language such that the
variables of ti(a0, . . .ai−1) are among a0, . . . ,ai−1. Consider the set

U ∪{¬F(t1(c),d1,c),¬F(t2(c,d1),d2,c), . . . ,¬F(ti(c,d1, . . . ,di−1),di,c), . . .}

of L(c,d1,d2, . . .)-formulas, where c,d1,d2, . . . are new constants. It follows from our assumption
that this set is finitely satisfiable. By compactness, it has a L(a,d1,d2, . . .)-model M . Let us
consider the following subset of the domain of M :

M∗ := {tM1 (c), tM2 (c,d1), . . . , tMi (c,d1, . . . ,di−1), . . .} .

Note that all elements cM ,dM
1 ,dM

2 , . . . are members of M∗ because the variables ai appear in the
enumeration of terms. It is also clear that M∗ defines a substructure M ∗ of M . Using the fact that
U is a universal theory, M ∗ is a model of U . But

M ∗ � ∀x ∃y ¬F(x,y,c) .

In fact, for x = ti(c,d1, . . . ,di−1) take y = di and use the fact, that ¬F is a universal formula, and
therefore, downward absolute between M and M ∗. If we interpret M ∗ as a L-model this gives a
contradiction.

We will apply this theorem to the L1-theory PRA. This is allowed, since PRA may be interpreted
as a universal theory. As PRA admits definition by cases, in part 1 of the above theorem we may
simply take k = 1. We are now ready to prove Parsons’ theorem.

Theorem B.2 (Parsons). The theory IΣ1 is Π0
2-conservative over PRA.

Proof. Suppose that the Π0
2-sentence ∀u ∃v F(u,v) is a consequence of IΣ1, where F is a bounded

formula. Without loss of generality we can assume that F is quantifier free since by using primitive
recursive functions, bounded quantifiers can be eliminated (for example if G has no quantifiers
then ∃x ≤ t G(x) is in PRA equivalent to G( f (t)), where f (x) = µy ≤ x G(y)). By compactness,
the given Π0

2-sentence is a consequence of PRA and finitely many instances of the Σ0
1-induction

scheme. If G is a L1-formula we write IndG for the universal closure of an induction instance
with induction formula G. Clearly IndJ → IndG ∧ IndH is derivable, where J(i,a) :≡ (i = 0→
G(a))∧ (i 6= 0→ H(a)). This means, that the finitely many instances of Σ0

1-induction can be
subsumed by a single instance, i.e. together with the deduction theorem we have

PRA � IndG→∀u ∃v F(u,v) ,

where IndG can be identified with

∀c ∀z (G(c,0)∧∀x (G(c,x)→ G(c,x+1))→ G(c,z)) ,
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for a certain Σ0
1-formula G(c,x) :≡ ∃y H(c,x,y), H quantifier-free (it is all right to consider only

a single parameter c because PRA has a pairing function). We now put the sentence IndG →
∀u ∃v F(u,v) in prenex normal form and obtain

PRA � ∃v,c,z,y0 ∀x,y,w ∃y′ (F(u,v)∨ J(c,z,y0,x,y,w,y′)) , (3)

where J(c,z,y0,x,y,w,y′) is the quantifier-free formula

H(c,0,y0)∧ (H(c,x,y)→ H(c,x+1,y′))∧¬H(c,z,w) .

Lemma B.3. Let t(~p), s(~p), r(~p) and q(~p,x,y,w) be terms of L1, with variables as shown. Then

PRA � ∀~p ∃x,y,w ¬J(t(~p),s(~p),r(~p),x,y,w,q(~p,x,y,w)) .

Proof. We reason inside PRA. In order to get a contradiction, suppose that there is ~p such that
∀x,y,w J(t(~p),s(~p),r(~p),x,y,w,q(~p,x,y,w)). We get

(i) H(t(~p),0,r(~p)),

(ii) ∀x,y,w (H(t(~p),x,y)→ H(t(~p),x+1,q(~p,x,y,w))), and

(iii) ∀w¬H(t(~p),s(~p),w).

Define h by primitive recursion according to the following clauses:

h(0,~p) = r(~p) ,

h(x+1,~p) = q(~p,x,h(x,~p),0) .

By (i), (ii) and bounded-induction, it follows that ∀x H(t(~p),x,h(x,~p)). In particular we have
∃w H(t(~p),s(~p),w). This is a contradiction to (iii).

Now we apply the second part of Herbrand’s theorem to (3). That is we find terms r1(u),~t1(u),
r2(u,~z1),~t2(u,~z1), . . . ,rk(u,~z1, . . . ,~zk−1),~tk(u,~z1, . . . ,~zk−1) such that the disjunction of the follow-
ing formulas is a consequence of PRA:

F(u,r1(u))∨∃y′ J(~t1(u),~z1,y′)

F(u,r2(u,~z1))∨∃y′ J(~t2(u,~z1),~z2,y′)
...

F(u,rk(u,~z1, . . . ,~zk−1))∨∃y′ J(~tk(u,~z1, . . . ,~zk−1),~zk,y′) ,

where each~zi abbreviates a triple of variables and each~ti abbreviates a triple of terms. Hence , the
disjunction of ∃v F(u,v) with the formula

∃y′ J(~t1(u),~z1,y′)∨∃y′ J(~t2(u,~z1),~z2,y′)∨·· ·∨∃y′ J(~tk(u,~z1, . . . ,~zk−1),~zk,y′) ,

is a consequence of PRA. By the first part of Herbrand’s theorem applied to this disjunction, there
is a term q(u,~z1, . . . ,~zk) such that the last clause in this disjunction can be substituted by

J(~tk(u,~z1, . . . ,~zk−1),~zk,q(u,~z1, . . . ,~zk)) .
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By the above lemma
∃~zk ¬J(~tk(u,~z1, . . . ,~zk−1),~zk,q(u,~z1, . . . ,~zk)) .

is valid in PRA. Therefore the disjunction of ∃v F(u,v) with the formula

∃y′ J(~t1(u),~z1,y′)∨∃y′ J(~t2(u,~z1),~z2,y′)∨·· ·∨∃y′ J(~tk−1(u,~z1, . . . ,~zk−2),~zk−1,y′) ,

is also a consequence of PRA. If we repeat the previous argument k− 1 times we eventually
conclude that PRA � ∃v F(u,v).
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