
Modal Fixed Point Logics

Gerhard JÄGER 1

IAM, University of Bern

Abstract. The following notes are centered around multi-modal logics extended by
the possibility to introduce least and greatest fixed points. We begin with discussing
a range of traditional results and turn to more recent approaches dealing with finite
and infinite derivations and explicit representations of proofs afterwards. Our focus
is on foundational questions and a proof-theoretic perspective rather than practical
applications.
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Introduction

These notes are centered around multi-modal logics extended by the possibility to intro-
duce least and greatest fixed points of suitable formulas. We begin with discussing the
general framework which is provided by transition systems, monotone inductive defini-
tions over those and the propositional modal µ-calculus. After dealing with some basic
results such as the fundamental semantic theorem of the modal µ-calculus, we take a
proof-theoretic perspective and look at infinitary and finite deductive systems.

Special emphasis is put on the multi-modal approach to knowledge and common
knowledge. We follow the traditional path in designing Hilbert-style system for common
knowledge and its appendant semantics before looking at common knowledge from a
proof-theoretic perspective. The final section is about the recently established relation-
ship between evidence and knowledge, starting off from the so-called logic of proofs.

The focus of these notes is on foundational questions rather than practical applica-
tions.

1. The general framework

Inductive definitions play an important rôle in many parts of mathematics and computer
science; of particular interest in this context are the least and greatest fixed points gen-
erated by monotone operators. In mathematical logic there are prominent formalizations
of inductive definitions, for example the celebrated theories IDn (see, e.g., Buchholz,
Feferman, Pohlers, and Sieg [9] for an overview). And in the context of modal logics we
have the modal µ-calculus which turned out to be of seminal importance in at least two
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ways: for theoretical foundational work and as a tool for setting up environments for the
practical analysis of properties of systems and programs.

We begin this section with recalling some basic facts about monotone inductive
definitions and introducing transition systems as the basic structures to be considered in
the following. Afterwards we turn to the syntax and semantics of the propositional modal
µ-calculus.

SOME PRELIMINARY REMARKS ABOUT FIXED POINTS

Suppose that we are given a set S and a mapping Φ from the power set of S to the power
set of S, i.e.,

Φ : ℘(S)→ ℘(S).

If Φ(M) ⊆ Φ(N) whenever M ⊆ N ⊆ S, then Φ is called a monotone operator on S.
If Φ(M) = M for M ⊆ S, then M is a fixed point of Φ. By a well-known theorem of
Knaster and Tarski we know that any monotone operator Φ on a set S has a least fixed
point lfp(Φ) and a greatest fixed point gfp(Φ) within the ordering (℘(S),⊆). Moreover,
these two fixed points can be characterized as follows:

lfp(Φ) =
⋂
{M ⊆ S : Φ(M) = M} =

⋂
{M ⊆ S : Φ(M) ⊆M},

gfp(Φ) =
⋃
{M ⊆ S : Φ(M) = M} =

⋃
{M ⊆ S : M ⊆ Φ(M)}.

The fixed points lfp(Φ) and gfp(Φ) can also be generated by applying Φ repeatedly on
the empty set and the set S, respectively. To make this precise, we define by recursion on
the ordinals

I0
Φ := ∅, Iσ+1

Φ := Φ(IσΦ), IλΦ :=
⋃
ξ<λ

IξΦ (λ limit),

J0
Φ := S, Jσ+1

Φ := Φ(JσΦ), JλΦ :=
⋂
ξ<λ

JξΦ (λ limit).

The monotonicity of Φ then yields IσΦ ⊆ IτΦ and JτΦ ⊆ JσΦ for any ordinals σ and τ such
that σ ≤ τ . The least and greatest fixed points of Φ are approached by these stages IσΦ
and JσΦ as

lfp(Φ) =
⋃

σ∈On

IσΦ and gfp(Φ) =
⋂

σ∈On

JσΦ.

In this sense, lfp(Φ) and gfp(Φ) are inductively defined sets. A simple cardinality argu-
ment even shows that there exist ordinals σ and τ of cardinalities less than or equal to
the cardinality of S for which

lfp(Φ) = IσΦ = Iσ+1
Φ and gfp(Φ) = JτΦ = Jτ+1

Φ .

Proofs of all these observations can be found, for example, in the textbooks Barwise [5]
and Moschovakis [16].



There exists an interesting duality between least and greatest fixed points. For a
monotone operator Φ on a set S we introduce its dual operator Φd on S by defining, for
any M ⊆ S,

Φd(M) := S \ Φ(S \M).

Obviously, Φd is monotone as well, and easy computations show that the least and great-
est fixed points of one operator are the complements of the greatest and least fixed points
of the dual operator, respectively:

lfp(Φd) = S \ gfp(Φ), gfp(Φd) = S \ lfp(Φ),

lfp(Φ) = S \ gfp(Φd), gfp(Φ) = S \ lfp(Φd).

TRANSITION SYSTEMS

Transition systems provide a very abstract model of distributed systems and concurrent
behavior. There are a set St of states and a set Ac of actions; actions act on states in
the sense that for any action α there is a binary transition relation Tr(α) on St , and
(s, t) ∈ Tr(α) is interpreted as “action α leads from state s to state t” or “state t can be
reached from state s via action α”.

Definition 1 A transition system is a triple T = (St ,Ac,Tr) satisfying the following
conditions:
(TS.1) St is a non-empty set of states, Ac a non-empty set of actions.
(TS.2) Tr is a mapping which assigns to any action α ∈ Ac a binary transition relation

Tr(α) on St , i.e., Tr(α) ⊆ St × St .

If T is the transition system (St ,Ac,Tr), then we usually write |T| for the set St of states

of T. In addition, for s, t ∈ St and α ∈ Ac, the notations s
T(α)7−→ t or simply s α7−→ t, if T

is clear from the context, stand for (s, t) ∈ Tr(α).
Given a transition system T, a run from a state s ∈ |T| is a finite or infinite sequence

of the form

s
α17−→ t1

α27−→ t2
α37−→ t3

α47−→ . . . .

Such a run from s is called an α-run from s if only the action α is involved, i.e., if it is
of the form

s
α7−→ t1

α7−→ t2
α7−→ t3

α7−→ . . . .

Clearly, each initial segment of a run from state s is a run from s as well. Also, given a
run from state s, its end sequence that begins with state t is a run from t.

In building up our abstract framework we further assume that we are given a set
BP of countably many basic properties p0, p1, p2, . . . which may or may not hold at the
individual states of a transition system T. Those states of T which satisfy a basic property
p are collected in the set T(p).



Without going into details we just state that many elementary features of systems
and runs can be expressed in this simple framework. For instance, the infinite run

t0
α17−→ t1

α27−→ t2
α37−→ t3

α47−→ . . .

from t0 has the property “eventually always p” if there exists a natural number i such
that, for all j ≥ i, tj ∈ T(p). The following examples, taken from Bradfield and Stirling
[6], illustrate that more sophisticated properties can be expressed by making use of least
and greatest fixed points of suitable operators.

LEAST FIXED POINTS AND LIVENESS

As above, T is supposed to be a transition system. For an action α from T and a basic
property p we consider the operator Φ0 on |T| defined by, for any M ⊆ |T|,

Φ0(M) := T(p) ∪ {s ∈ |T| : ∀t(if s α7−→ t then t ∈M)}.

Φ0 is monotone, and for its least fixed point lfp(Φ) we have:

s ∈ lfp(Φ0) ⇐⇒ Every infinite α-run from s contains a state t ∈ T(p).

According to Bradfield and Stirling [6,7], this may be considered as a liveness property
(“Something good eventually happens”) since to contain a state in T(p) is required to
happen. To formulate that something has to happen on some path, pick a further basic
property q and define an operator Φ1 on |T| by setting, for any M ⊆ |T|,

Φ1(M) := T(q) ∪ (T(p) ∩ {s ∈ |T| : ∃t(s α7−→ t and t ∈M)}).

This operator is also monotone; it satisfies the following property:

s ∈ lfp(Φ1) ⇐⇒
{

There exists an α-run from s containing a state
t ∈ T(q) such that r ∈ T(p) everywhere before t.

GREATEST FIXED POINTS AND SAFETY

As least fixed points can be used to describe liveness, so some greatest fixed points reflect
safety. For a transition system T, an action α and a basic property p we now introduce
the operator Φ2 on |T| which s given by, for any M ⊆ |T|,

Φ2(M) := T(p) ∩ {s ∈ |T| : ∀t(if s α7−→ t then t ∈M)}.

Clearly, Φ2 is a monotone operator, but now we are interested in its greatest fixed point,
for which we have:

s ∈ gfp(Φ2) ⇐⇒
{

For every α-run from s and every state
t on this run we have t ∈ T(p).



This is a safety property in the sense that it states for an s from gfp(Φ2) that it can never
happen that there is an α-run from s which contains a state t violating p. We conclude
these examples by making the operator on |T| a bit more complex; for any M ⊆ |T|,

Φ3(M) := T(q) ∪ (T(p) ∩ {s ∈ |T| : ∀t(if s α7−→ t then t ∈M)}).

The greatest fixed point of this monotone operator provides for a further safety property,
namely:

s ∈ gfp(Φ3) ⇐⇒
{

For every α-run from s, until r ∈ T(q) is reached all
states t prior to this r belong to T(p) (“p until q”).

From the previous characterization we obtain, in particular, that state s belongs to
gfp(Φ3) if p holds everywhere.

SYNTAX OF MODAL µ-CALCULUS

Let Ac be an arbitrary but fixed set of actions. We formulate the propositional modal
µ-calculus in a language L(µ) (depending on Ac) which comprises the following syn-
tactically different basic symbols: (i) countably many atomic propositions P,Q,R and
countably many variables U, V,W,X, Y, Z (both possibly with subscripts) plus the con-
nective ∼ for forming the complements of atomic propositions and variables; (ii) the
propositional constants ⊥ and > and the propositional connectives ∨ and ∧; (iii) for any
action α from Ac, the modal operators 〈α〉 and [α]; the fixed point operators µ and ν. As
auxiliary symbols we allow parentheses, brackets and commas.

Definition 2 The formulasA,B,C, . . . (possibly with subscripts) ofL(µ) are inductively
defined as follows:

1. All atomic propositions P and variables X as well as their complements P̃ and X̃
are formulas of L(µ).

2. The propositional constants ⊥ and > are formulas of L(µ).
3. If A andB are formulas of L(µ), then (A∨B) and (A∧B) are formulas of L(µ).
4. If α is an action and A a formula of L(µ), then 〈α〉A and [α]A are formulas of
L(µ).

5. If A is a formula of L(µ) which does not contain occurrences of X̃ , then (µX)A
and (νX)A are formulas of L(µ).

The syntactic requirement in the last clause ensures that we can later associate a mono-
tone operator to A and use it for defining the semantic meaning of (µX)A and (νX)A.

In general, we will only speak of formulas if it is clear that we refer to formulas of
L(µ) and often omit parentheses whenever there is no danger of confusion. The fixed
point operators µ and ν may be understood as a sort of quantifiers. Therefore we can
speak about free and bound occurrences of a variable X within a formula A as usual.

To introduce substitution of variables by formulas, we proceed in two steps: First,
we confine ourselves to substituting occurrences of a variable X within formulas which
do not contain occurrences of X̃ . Then, after having defined the negations of formulas,
we deal with the general case.



If X is a variable, A a formula which does not contain free occurrences of X̃ , and B
an arbitrary formula, then A[B/X] denotes the formula obtained from A by simultane-
ously replacing all free occurrences of X by B. In order to avoid collision of variables,
a renaming of bound variables of A may be necessary.

The negation ¬A of an L(µ) formula A is inductively defined by the usual laws
of double negation, the standard dualities for the propositional connectives and modal
operators and the dualities with respect to least and greatest fixed points:

¬P := P̃ , ¬P̃ := P,

¬X := X̃, ¬X̃ := X,

¬⊥ := >, ¬> := ⊥,
¬(A ∨B) := (¬A ∧ ¬B), ¬(A ∧B) := (¬A ∨ ¬B),

¬〈α〉A := [α]¬A, ¬[α]A := 〈α〉¬A,
¬(µX)A := (νX)¬D ¬(νX)A := (µX)¬D,

where D := A[X̃/X]; we observe that ¬D then does not contain occurrences of X̃ ,
hence the definitions of ¬(µX)A and ¬(νX)A make sense.

Now suppose that we are given two formulas A,B and a variable X . Then A[B/X]
is the formula which is obtained fromA by simultaneously replacing all free occurrences
of the variable X by B and all occurrences of X̃ by ¬B; in order to avoid collision of
variables, a renaming of bound variables may be necessary. If the formula A is written
as C[X], then we often simply write C[B] instead of C[B/X]. Further variants of this
notation will be obvious.

Further logical connectives are now introduced as abbreviations, for example,

(A→ B) := (¬A ∨B) and (A↔ B) := ((A→ B) ∧ (B → A)).

A formula is said to be normal if all bound variables are distinct and different from the
free variables. In all systems we consider in these notes any formula can be transformed
into an equivalent normal formula (by renaming bound variables).

Following Kozen [15], we now recall a Hilbert-style axiomatization K(µ) of the
propositional modal µ-calculus: the multi-modal version of normal modal logic is ex-
tended by closure axioms and induction rules for the least fixed point formulas (µX)A.

I. Logical axioms of K(µ). All propositional tautologies and the distribution axioms,
i.e., for all propositional tautologies A, all formulas B,C, and all actions α:

A,(TAU)

[α](B → C) → ([α]B → [α]C).(DIS)

II. Logical rules of K(µ). Modus ponens and necessitation, i.e., for all formulas A,B
and all actions α:



A A→ B

B
,(MP)

A

[α]A
.(NEC)

III. Closure axioms of K(µ). For all formulas A[U ] which do not contain occurrences
of Ũ :

A[(µX)A[X]] → (µX)A[X].(µ-CL)

IV. Induction rules of K(µ). For all formulas A[U ] which do not contain occurrences
of Ũ and all formulas B:

A[B] → B

(µX)A[X] → B
.(µ-IND)

Provability of a formula A in the Hilbert system K(µ) is defined as usual and written as
K(µ) ` A.

Although the closure axioms and induction rules of K(µ) are only formulated for
formulas (µX)A[X], it is an easy exercise to show that the duals of (µ-CL) and (µ-IND)
can be derived in K(µ) for formulas of the form (νX)A[X]. All we have to do in order
to prove the following lemma is to take the respective contrapositions and to recall the
definition of the negations of formulas.

Lemma 3 For all formulas A[U ] which do not contain occurrences of Ũ and for all
formulas B we have:

1. K(µ) ` (νX)A[X] → A[(νX)A[X]].
2. K(µ) ` B → A[B] =⇒ K(µ) ` B → (νX)A[X].

Note that the closure axiom (µ-CL) and the first part of the previous lemma only state
that (µX)A[X] and (νX)A[X] are a pre-fixed point and a post-fixed point of A[U ], re-
spectively. Now we show in K(µ) that both have the fixed point property. Before proving
this, we turn to two useful properties of K(µ).

Lemma 4 (Substitution) For all formulas A[U ] and B we have

K(µ) ` A[U ] =⇒ K(µ) ` A[B].

To prove this result, one simply verifies that all axioms and rules of inference of K(µ)
are closed under substitution and then proceeds by induction on the derivation of A[U ].

Lemma 5 (Monotonicity) For all formulas A[U ] which do not contain occurrences of
Ũ and all formulas B,C we have

K(µ) ` B → C =⇒ K(µ) ` A[B]→ A[C].



PROOF. We assume K(µ) ` B → C and proceed by induction on the build-up of A[U ].
If U does not occur in A[U ] or if A[U ] is the variable U , then our assertion is triv-
ially satisfied. If A[U ] is of the form (D0[U ] ∨D1[U ]), (D0[U ] ∧D1[U ]), 〈α〉D[U ], or
[α]D[U ], the assertion follows from the induction hypothesis by straightforward reason-
ing in K(µ).

Now let A[U ] be of the form (µX)D[X,U ]. Then the induction hypothesis implies

K(µ) ` D[X,B]→ D[X,C]

from which we obtain in view of the previous lemma that

K(µ) ` D[(µX)D[X,C], B]→ D[(µX)D[X,C], C].

From this implication and the following axiom (µ-CL)

D[(µX)D[X,C], C]→ (µX)D[X,C]

we infer

K(µ) ` D[(µX)D[X,C], B]→ (µX)D[X,C].

Taking this implication as premise of an induction rule (µ-IND) for (µX)D[X,B] per-
mits us to conclude

K(µ) ` (µX)D[X,B]→ (µX)D[X,C],

and this is what we have to show. It only remains the case that A[U ] is of the form
(νX)D[X,U ] which by Lemma 3 can be treated accordingly. 2

Having this lemma at hand, it is now an easy matter to prove that (µX)A[X] and
(νX)A[X] are fixed points of A[U ].

Lemma 6 (Fixed points) For all formulas A[U ] which do not contain occurrences of Ũ
we have:

1. K(µ) ` (µX)A[X] ↔ A[(µX)A[X]].
2. K(µ) ` (νX)A[X] ↔ A[(νX)A[X]].

PROOF. Axiom (µ-CL) states the direction from right to left of the first assertion. For
the converse direction consider the formula B := A[(µX)A[X]]. By axiom (µ-CL) we
therefore have

K(µ) ` B → (µX)A[X],

so that the previous lemma implies

K(µ) ` A[B] → B.

It only remains to apply (µ-IND), and we obtain what we need. The second assertion of
this lemma follows by duality. 2



Thus we know that, provably in K(µ), the formulas (µX)A[X] and (νX)A[X]
really stand for fixed points of the formulaA[U ]. That they are the least and greatest such
fixed point immediately follows from (µ-IND) and the second part of Lemma 3.

SEMANTICS OF MODAL µ-CALCULUS

Semantically, the modal µ-calculus can be elegantly approached from transition systems.
We simply have to tell at which states the atomic propositions and variables are satisfied
and then extend the valuation to arbitrary formulas according to the usual rules of modal
logic, with an extra proviso for the formulas (µX)A and (νX)A.

Definition 7 A µ-structure is a transition system T = (St ,Ac,Tr), where Ac is the set
of actions of L(µ), associating sets of states T(P ) and T(X) to all atomic propositions
P and variables X .

IfM is a subset of |T|, then we write T[M :X] for the µ-structure which maps the variable
X to M and otherwise agrees with T.

Definition 8 Given a µ-structure T, the truth set ‖A‖T of a formula A is inductively
defined as follows:

1. For atomic propositions, variables, and propositional constants:

‖P‖T := T(P ), ‖P̃‖T := |T| \ T(P ),

‖X‖T := T(X), ‖X̃‖T := |T| \ T(X),

‖>‖T := |T|, ‖⊥‖T := ∅.

2. For disjunctions and conjunctions:

‖A ∨B‖T := ‖A‖T ∪ ‖B‖T, ‖A ∧B‖T := ‖A‖T ∩ ‖B‖T.

3. For formulas prefixed by a modal operator:

‖〈α〉B‖T := {s ∈ |T| : ∃t(s α7−→ t and t ∈ ‖B‖T)},

‖[α]B‖T := {s ∈ |T| : ∀t(if s α7−→ t then t ∈ ‖B‖T)}.

4. For fixed point formulas: Given a formula A[X] which does not contain occur-
rences of X̃ , we first introduce the monotone operator

ΦA[X] : ℘(|T|)→ ℘(|T|), ΦA[X](M) := ‖A[X]‖T[M :X].

Based on this Φ, we now set

‖(µX)A[X]‖T := lfp(ΦA[X]) and ‖(νX)A[X]‖T := gfp(ΦA[X]).



We say that a formula A is valid in the µ-structure T, written T |= A, if |T| = ‖A‖T.
A formula is defined to be µ-valid if it is valid in all µ-structures; in this case we write
µ |= A. Finally, a formula A is called µ-satisfiable if there exists a µ-structure T such
that ‖A‖T 6= ∅.

It is quite easy to see that all axioms of K(µ) are µ-valid and that the inference rules
of K(µ) preserve µ-validity. Hence K(µ) is sound. The completeness of K(µ) turned
out to be rather complicated and was finally solved in Walukiewicz [20].

Theorem 9 (Soundness and completeness of K(µ)) For all formulas A we have

K(µ) ` A ⇐⇒ µ |= A.

The system K(µ) is unsuitable for proof search – most notably because of (MP) – and de-
fiant against proper proof-theoretic analysis. Therefore we will later introduce sound and
complete finite and infinite sequent systems which are better tailored for proof-theoretic
research.

Coming back to the four operators which we considered in the previous section in
connection with least and greatest fixed points, we can now write down the corresponding
formulas of L(µ):

lfp(Φ0) ≈ (µX)(P ∨ [α]X), lfp(Φ1) ≈ (µX)(Q ∨ (P ∧ 〈α〉X))

gfp(Φ2) ≈ (νX)(P ∧ [α]X), gfp(Φ3) ≈ (νX)(Q ∨ (P ∧ [α]X)).

2. Basic results

The central semantic result about the propositional modal µ-calculus is the the so-called
fundamental semantic theorem due to Streett and Emerson [19]; the subsequent presen-
tation, however, follows Bradfield and Stirling [7].

Definition 10 A pre-model is a pair (T,) such that T is a µ-structure and  is a binary
relation satisfying

for arbitrary A: (T, s)  ¬A ⇐⇒ (T, s) 6 A,

for literals D: (T, s)  D ⇐⇒ s ∈ ‖D‖T,

for non-literals: (T, s)  A ∨B ⇐⇒ (T, s)  A or (T, s)  B,

(T, s)  A ∧B ⇐⇒ (T, s)  A and (T, s)  B,

(T, s)  〈α〉B ⇐⇒ ∃t(s α7−→ t and (T, t)  B),

(T, s)  [α]B ⇐⇒ ∀t(if s α7−→ t then (T, t)  B),

(T, s)  (µX)A[X] ⇐⇒ (T, s)  A[(µX)A[X]],

(T, s)  (νX)A[X] ⇐⇒ (T, s)  A[(νX)A[X]].

Thus in a pre-model formulas (µX)A[X] and (νX)A[X] are interpreted as arbitrary
fixed points, not necessarily as least and greatest fixed points, respectively. As a con-



sequence, there are pre-models (T,), states s, and formulas A with (T, s)  A and
s 6∈ ‖A‖T. Thus validity with respect to all pre-models does not coincide with µ-validity.
However, it is possible to characterize the those pre-models (T,) which behave “ade-
quately” in this respect (see below).

Definition 11 Let (T,) be a pre-model. A function f which assigns to any state s ∈ |T|
and formula (A ∨B) a formula f(s,A ∨B) and to any state s ∈ |T| and formula 〈α〉A
a state f(s, 〈α〉A) ∈ |T| is called a choice function for (T,) if it satisfies the following
two conditions:

(C.1) For every s ∈ |T| and (A ∨B) we have

(T, s)  A ∨B =⇒ f(s,A ∨B) ∈ {A,B} and (T, s)  f(s,A ∨B).

(C.2) For every s ∈ |T| and 〈α〉A we have

(T, s)  〈α〉A =⇒ s
α7−→ f(s, 〈α〉A) and (T, f(s, 〈α〉A))  A.

Given a pre-model (T,) and a choice function f for (T,) we introduce a dependency
relation � on expressions of the form (T, f, s)  A, where A is assumed to be normal,
by requiring that

(T, f, s)  A1 ∨A2 � (T, f, s)  f(s,A1 ∨A2),

(T, f, s)  A1 ∧A2 � (T, f, s)  Ai for i = 1, 2,

(T, f, s)  〈α〉B � (T, f, f(s, 〈α〉B))  B,

(T, f, s)  [α]B � (T, f, t)  B for all t such that s α7−→ t,

(T, f, s)  (µX)A[X] � (T, f, s)  A[(µX)A[X]],

(T, f, s)  (νX)A[X] � (T, f, s)  A[(νX)A[X]].

A trail for (T, f, s)  A is a maximal chain of dependencies

(T, f, s0)  A0 � (T, f, s1)  A1 � (T, f, s2)  A2 � · · ·

with s0 being the state s and A0 being the formula A. A choice function f for (T,)
is called well-founded if for every state s ∈ |T| and every formula A the following
requirement is fulfilled: the outermost bounded variable occurring infinitely often in any
trail for (T, f, s)  A is bounded by ν. The pre-model (T,) is called well-founded if
there exists a well-founded choice function for (T,).

Theorem 12 (Fundamental semantic theorem)

1. Let T be a µ-structure. Then there exists a well-founded pre-model (T,) such
that for any s ∈ |T| and any normal formula A

s ∈ ‖A‖T ⇐⇒ (T, s)  A.



2. Let (T,) be a well-founded pre-model. Then we have for all s ∈ |T| and all
normal formulas A that

(T, s)  A =⇒ s ∈ ‖A‖T.

For a proof of this theorem one may consult the original publication Streett and Emerson
[19] or Bradfield and Stirling [7], where the central ideas are described. There are also
more recent presentations of this result and its proof in an automata-theoretic environ-
ment; see, for example, Wilke [21].

The fundamental semantic theorem and the techniques developed for its proof en-
abled Streett and Emerson to obtain the decidability and small model property of the
modal µ-calculus. Again we omit proofs and refer to Streett and Emerson [19].

Theorem 13 (Decidability and small model property)

1. Given a formula A, it is decidable whether A is µ-satisfiable.
2. If the formula A is µ-satisfiable, then there exists a finite µ-structure T of size

exponential in the size of A such that ‖A‖T 6= ∅.

Open problem 14 For a µ-structure T with state s ∈ |T| and a formula A a typical
question of model-checking is: Do we have s ∈ ‖A‖T? For finite µ-structures T this
question is decidable and known to be in NP ∩ coNP with respect to the size of T plus
the size of A. But is it polynomial?

Now we leave the semantics of the modal µ-calculus and turn to some of its proof-
theoretic aspects. As mentioned at the end of Section 1, Hilbert systems are inappropriate
for proof-theoretic investigations. There exist a lot of proof-theoretically relevant work
about tableau systems for the modal µ-calculus and game-theoretic approaches (e.g.,
Stirling and Walker [18], Niwiński and Walukiewicz [17]). Here we follow a different
track and focus on a traditional sequent-style approach.

We present two Tait-style systems Kω(µ) and K<ω(µ) for the modal µ-calculus,
which both are sound, complete and cut-free. Kω(µ) is an infinitary deduction system,
introducing greatest fixed points (νX)A[X] by a sort of ω-rule (ω-ν); K<ω(µ) is the
finitization of Kω(µ). In the formulation of the rule (ω-ν) we use the finite approxima-
tions of (νX)A[X] which are inductively defined, for each natural number n > 0, as
follows:

(νX)1A[X] := A[>] and (νX)n+1A[X] := A[(νX)nA[X]].

Both, Kω(µ) and K<ω(µ), derive finite sets Γ,∆,Π,Σ, . . . (possibly with subscripts)
of formulas rather than individual formulas. These finite sets of formulas are interpreted
disjunctively, and in general we write Γ, A for Γ ∪ {A}; similarly for expressions like
Γ,∆, A,B. In addition, if Γ is the set {A1, . . . , Am} and α some action, then we set

〈α〉Γ := {〈α〉A1, . . . , 〈α〉Am} and Γ∨ := A1 ∨ . . . ∨Am.

Kω(µ) contains the standard axioms and logical rules of multi-modal logic, the Tait-
style analogues of the µ-closure-axioms plus the above mentioned infinitary rule for
introducing (νX)A[X].



I. Axioms of Kω(µ). For all finite formula sets Γ, all atomic propositions P , and all
variables X:

Γ, >,(Ax1)

Γ, P, P̃ ,(Ax2)

Γ, X, X̃.(Ax3)

II. Logical rules of Kω(µ). For all finite formula sets Γ,∆, all actions α, and all formu-
las A,B:

Γ, A, B
Γ, A ∨B

,(∨)

Γ, A Γ, B
Γ, A ∧B

,(∧)

Γ, A
〈α〉Γ, [α]A, ∆

.(DIS)

III. µ-rules of Kω(µ). For all finite formula sets Γ and all formulas A[U ] which do not
contain occurrences of Ũ :

Γ, A[(µX)A[X]]
Γ, (µX)A[X]

.(µ)

IV. ν-rules of Kω(µ). For all finite formula sets Γ and all formulas A[U ] which do not
contain occurrences of Ũ :

. . . Γ, (νX)nA[X] . . . (for all 0 < n < ω)
Γ, (νX)A[X]

.(ω-ν)

Provability of Γ in Kω(µ) is defined as usual and denoted by Kω(µ) ` Γ. On account
of the rule (ω-ν) there are derivations in Kω(µ) which are infinitely branching trees of
infinite depths.

In Jäger, Kretz, and Studer [14] the completeness of Kω(µ) is proved by adapting
the canonical saturated sets construction. Problems only arise because of the impred-
icativity of the rule (µ): the logical complexity of A[(µX)A[X]] is greater than that of
(µX)A[X]. As a consequence, proofs by induction on the lengths of formulas cannot be
carried through directly. But by carefully assigning finite sequences of ordinals (rather
than ordinals) to formulas and taking up ideas from Streett and Emerson [19], we achieve
our goal.

Theorem 15 (Completeness of Kω(µ)) For all sentences A we have

µ |= A =⇒ Kω(µ) ` A.



Rather than showing the soundness of Kω(µ) directly, we move on to its finitization
K<ω(µ). Looking at the rules of Kω(µ), we immediately notice that only the rule (ω-ν)
is responsible for possibly infinite derivations. Hence all proofs will be finite if we suc-
ceed in restricting the infinitely many premises of each application of (ω-ν) to a finite
subset. Fortunately, this can be achieved by exploiting the small model property of the
modal µ-calculus, see Theorem 13.

From the small model property of the modal µ-calculus we know that there exists
a function `, defined on all finite sets of formulas Γ and exponential in the number of
symbols occurring in Γ, which has the following property: If Γ∨ is µ-satisfiable, then
there exists a µ-structure T such that the cardinality of |T| is smaller than `(Γ) and
‖Γ∨‖T 6= ∅.

With this bounding function ` at our disposal, the finite versions of the ν-rules are
obtained. The rules (fin-ν) are the truncations of (ω-ν) at a bound provided by `.

V. Finite ν-rules. For all finite formula sets Γ,∆ and all formulas A[U ] which do not
contain occurrences of Ũ :

. . . Γ, (νX)nA[X] . . . (for all 0 < n < `(Γ, (νX)A[X]))
Γ, (νX)A[X], ∆

.(fin-ν)

The system K<ω(µ) is obtained from Kω(µ) by replacing the ν-rules (ω-ν) by their
finite variants (fin-ν); the notion K<ω(µ) ` Γ is introduced in analogy to Kω(µ) ` Γ.

Observe that the number of premises of a finite ν-rule depends on the length of (the
essential part of) its conclusion; the set ∆ is added in the conclusions just to incorporate
weakening.

Naturally, K<ω(µ) is a finite system. Besides that, every derivation in Kω(µ) col-
lapses to a derivation in K<ω(µ). The proof of this observation is by induction on the
derivations in Kω(µ), and one only has to observe that each application of a rule (ω-ν)
in Kω(µ) may be replaced by the appropriate rule (fin-ν) in K<ω(µ).

Lemma 16 For all finite sets Γ of formulas we have

Kω(µ) ` Γ =⇒ K<ω(µ) ` Γ.

Of course, this means that the completeness of Kω(µ) transfers to K<ω(µ); just combine
the previous lemma with Theorem 15.

Corollary 17 (Completeness of K<ω(µ)) For all sentences A we have

µ |= A =⇒ K<ω(µ) ` A.

What remains is to show the soundness of K<ω(µ). The following auxiliary considera-
tion is an immediate consequence of the properties of approximations of greatest fixed
points, which have been stated in Section 1.

Lemma 18 Let T be a µ-structure whose universe |T| contains at most n elements (n a
positive natural number). For all formulas (νX)A[X] we then have

‖(νX)A[X]‖T = ‖(νX)nA[X]‖T.



Combining this lemma with the small model property of the µ-calculus, we can now
easily establish the soundness of K<ω(µ).

Theorem 19 (Soundness of K<ω(µ)) For all finite sets Γ of formulas we have

K<ω(µ) ` Γ =⇒ µ |= Γ∨.

PROOF. The proof proceeds by induction on the derivation of Γ, and we distinguish the
following cases:
1. Γ is an axiom or the conclusion of a logical rule of K<ω(µ). Then our assertion is
obvious or an immediate consequence of the induction hypothesis.
2. Γ is the conclusion of a µ-rule of K<ω(µ). Then there exist a set ∆ and a formula
(µX)A[X] so that Γ is the set ∆, (µX)A[X], and this rule has the form

∆, A[(µX)A[X]]
∆, (µX)A[X]

.

Now the induction hypothesis yields

µ |= ∆∨ ∨A[(µX)A[X]].(1)

But according to our semantics we also have

µ |= A[(µX)A[X]]→ (µX)A[X],(2)

and therefore the desired µ-validity of Γ∨ is a trivial from (1) and (2).
3. Γ is the conclusion of a finite ν-rule of K<ω(µ). Then there exist sets ∆,Π and a
formula (νX)A[X] so that Γ is the set ∆, (νX)A[X],Π, and this rule has the form

. . . ∆, (νX)nA[X] . . . (for all 0 < n < `(∆, (νX)A[X]))
∆, (νX)A[X], Π

.

In this case the induction hypothesis yields

µ |= ∆∨ ∨ (νX)nA[X](3)

for all natural numbers n such that 0 < n < `(∆, (νX)A[X]). Now assume that the
formula ∆∨ ∨ (νX)A[X] is not µ-valid. Then ¬∆∨ ∧ ¬(νX)A[X] has to be µ-satis-
fiable, and we infer from the small model property that there exists a µ-structure T such
that the cardinality of |T|, we call it k, is smaller than `(∆, (νX)A[X]) and

‖¬∆∨ ∧ ¬(νX)A[X]‖T 6= ∅.(4)

In view of Lemma 18 this inequality can be rewritten as

‖¬∆∨ ∧ ¬(νX)kA[X]‖T 6= ∅,(5)



implying that the formula ∆∨ ∨ (νX)kA[X] is not µ-valid. However, this is in contra-
diction to (3), and therefore ∆∨∨ (νX)A[X] has to be µ-valid. This completes the proof
of our theorem. 2

Considering this theorem in the context of Lemma 16, it provides the soundness of
the infinitary calculus Kω(µ).

Corollary 20 For all finite sets Γ of formulas we have

K<ω(µ) ` Γ ⇐⇒ Kω(µ) ` Γ ⇐⇒ µ |= Γ∨.

While the previous tells us that the finite Hilbert-style system K(µ) and the infinitary
Tait-style system Kω(µ) prove the same sentences, we have no way (yet?) to take a proof
of a sentence A in K(µ) and transform it into a proof of A in Kω(µ). This is due to the
lack of an equivalent of Modus Ponens in Kω(µ). To overcome this deficiency, we add a
further rule.

The cut rule. For all finite formula sets Γ and all formulas A:

Γ, A Γ, ¬A
Γ

.(cut)

The formulas A and ¬A are called the cut formulas of this cut.
It is fairly easy to see that every proof of a formula A of L(µ) within the system

K(µ) can be translated – in a natural way – into a proof ofA within the system Kω(µ)+
(cut), where (cut) takes over the rôle of (MP) in this translation.

Nevertheless, if only provability (and not the translation of proofs) is considered, the
cut-rule is not needed. Since (cut) is obviously correct, semantic cut elimination follows
from Corollary 20.

Corollary 21 (Semantic cut elimination) For all finite sets Γ of formulas of L(µ) we
have:

1. Kω(µ) + (cut) ` Γ =⇒ Kω(µ) ` Γ.
2. K<ω(µ) + (cut) ` Γ =⇒ K<ω(µ) ` Γ.

What we have achieved are a natural infinitary axiomatization of the propositional modal
µ-calculus and its finitization K<ω(µ), which are both sound and complete. They are
cut-free, but because of their completeness, cut rules could be added without changing
their strength.

K<ω(µ) is the finite collapse of Kω(µ), but one may argue how natural K<ω(µ)
is as a deductive system. However, the important purpose of this system is to provide
an explicit proof that a cut-free adequate axiomatization of the propositional modal µ-
calculus exists.

Open problems 22

1. Are there syntactic cut elimination procedures for Kω(µ) and K<ω(µ)?
2. Is there a more natural finite derivation system for the modal µ-calculus which is

cut-free, sound and complete?



3. Knowledge and common knowledge

In this section we consider subsystems of the full modal µ-calculus which play an im-
portant rôle in the context of epistemic logic and epistemic reasoning. We fix a natu-
ral number n ≥ 1 and concentrate on transition systems whose set of actions is the set
{1, . . . , n}. Actions are now called agents and may stand for any nodes (e.g., persons,
processors) in a complex distributed and possibly communicating environment.

Definition 23 An n-knowledge structure is a µ-structure T = (St ,Ac,Tr) whose set of
actions Ac is the set {1, . . . , n}.

In the context of n-knowledge structures T, given a natural number α such that 1 ≤ α ≤
n and states s, t ∈ |T|, we propose to read

s
α7−→ t as agent α at state s considers state t as possible.

The modal-logic approach to modeling the knowledge of an agent α is to identify α’s
knowledge with what is the case in all states that α considers possible at the present state:

α knows A at s ⇐⇒ A holds at all states t that α considers possible at s.

As this coincides with the semantics of [α]A, the (informal) interpretation of [α]A as
“agent α knows that A” is justified.

A word of caution: Often knowing a statement A is supposed to imply the truth of
A. If we want this to be the case here as well, then, for all agents α and all formulas A,
the standard truth axioms

[α]A → A(T)

have to be added and only n-knowledge structures with reflexive transition relations
must be considered. Without (T), the formula [α]A is then the formalization of “agent
α believes that A”. Further possible strengthenings of knowledge add the axioms about
positive introspection

[α]A → [α][α]A(PI)

or even positive introspection plus negative introspection

¬[α]A → [α]¬[α]A,(NI)

which on the semantic side corresponds to the restriction to n-knowledge structures
whose transition relations are reflexive-transitive relations or equivalence relations, re-
spectively. This all is more or less a matter of taste or context and not relevant for us
in the following. Therefore we confine us here to the most elementary case without (T),
(PI) or (NI).

With n agents around, “everybody knows that A” is written E[A] and defined by

E[A] := [1]A ∧ . . . ∧ [n]A.



It must not be confused with the common knowledge of A. To see why, we recall the
famous muddy children puzzle taken, in this formulation, from Fagin, Moses, Halpern,
and Vardi [10]:

There are n children playing together. During their play some of the children, say k of them,
get mud on their foreheads. Each can see the mud on others but not on his own forehead.
Along comes a father, who says, “At least one of you has mud on your forehead”. He then
asks the following question, over and over: “Can any of you prove that you have mud on your
forehead?” Assuming that all the children are perceptive, intelligent, truthful, and that they
answer simultaneously, what will happen?

There is a proof that the first k − 1 times the father asks the question, the children will all
say “no” but that the k-th time the children that are dirty will answer “yes”.

The rôle of the father’s announcement is that all children know that at least one of them
has mud on his/her forehead and that all know that the others also know that this is the
case; actually, this fact becomes common knowledge. Moreover, whenever that father re-
peats his question, all children can deduce that so far his question could not be answered.
Try to find out what happens without the father’s announcement.

The iterations Em[A] of “everybody knows” are inductively defined, for any natural
number m, by

E0[A] := A and Em+1[A] := E[Em[A]],

and the infinite conjunction
∧
m≥1 Em[A] reflects the intuitive idea that A is common

knowledge.

SYNTAX OF Kn(C)

The language Ln(C) for n agents and common knowledge is the modification of the
language L(µ) obtained by specifying the set Ac to be the set {1, . . . , n}, dropping
the fixed point operators µ and ν and adding instead two new operators C and C̃. The
formulas A,B,C, . . . (possibly with subscripts) of Ln(C) are defined by the following
grammar:

A ::= P | P̃ | X | X̃ | ⊥ | > | (A ∨A) | (A ∧A) | 〈α〉A | [α]A | C(A) | C̃(A),

where P and X range over atomic propositions and variables, respectively, and α is a
natural number, 1 ≤ α ≤ n. The negation ¬A of an Ln(C) formula A is defined as
before with the clauses

¬C(A) := C̃(¬A) and ¬C̃(A) := C(¬A)

for the operators C and C̃. Picking some variable X which does not occur in A and
replacing C(A) by (νX)E[A ∧X] and C̃(A) by (µX)D[A ∨X] with

D[U ] := 〈1〉U ∨ . . . ∨ 〈n〉U.

yields an embedding of Ln(C) into L(µ). Later we will see that this translation does
exactly what is intended.



Now we recall a Hilbert-style axiomatization Kn(C) for n agents and common
knowledge as presented, for example, in Fagin, Moses, Halpern, and Vardi [10]. Its log-
ical axioms and logical rules are the same as for K(µ), formulated for the language
Ln(C). In addition, for all Ln(C) formulasA, the system Kn(C) comprises a co-closure
axiom for the operator C and the corresponding induction principle.

Co-closure axioms of Kn(C). For all Ln(C) formulas A:

C(A) → E[A ∧ C(A)].(C-CCL)

Induction rules of Kn(C). For all Ln(C) formulas A,B:

B → E[A ∧B]
B → C(A)

.(C-IND)

Of course, provability of an Ln(C) formula A in the Hilbert system Kn(C) is denoted
by Kn(C) ` A. The co-closure axioms and induction rules are the syntactic form of
expressing that C(A) is the greatest fixed point of the formula E[A ∧ U ].

SEMANTICS OF Kn(C)

To set up the semantics of Kn(C), we take an n-knowledge structure T and proceed in
defining the truth set ‖A‖T of an Ln(C) formula A as in Definition 8 provided that A
does not begin with C or C̃ and set otherwise:

‖C(A)‖T :=
⋂
m≥1

‖Em[A]‖T and ‖C̃(A)‖T := |T| \ ‖C(¬A)‖T.

Then an Ln(C) formulaA is called (n,C)-valid, denoted by (n,C) |= A, if |T| = ‖A‖T
for all n-knowledge structures T.

It is easily verified that ‖C(A)‖T is the greatest fixed point of the monotone operator
Φ on |T|, satisfying, for any M ⊆ |T|,

Φ(M) = ‖E[A ∧X]‖T[M :X],

and ‖C̃(A)‖T is the least fixed point of the monotone operator Ψ on |T|, satisfying, for
any M ⊆ |T|,

Ψ(M) = ‖D[A ∨X]‖T[M :X],

where X is not to occur in A. Kn(C) can be shown to be sound an complete; see, for
example, Fagin, Moses, Halpern, and Vardi [10].

Theorem 24 (Soundness and completeness of Kn(C)) For all Ln(C) formulas A we
have

Kn(C) ` A ⇐⇒ (n,C) |= A.



From what we have mentioned in Section 2 it follows that (n,C)-validity of an Ln(C)
formula is decidable. Without going into details we also mention that checking for va-
lidity is EXPTIME-complete in the size of the input formula and refer to Halpern and
Moses [12] for further details.

A TAIT-STYLE REFORMULATION OF Kn(C)

Our interest is in the proof theory of common knowledge. Since Kn(C) can be regarded
as a subsystem of K(µ), we can, of course, proceed as in the previous section and go
over from Kn(C) to an infinitary Tait-style version Kω

n(C) and its finitization K<ω
n (C).

Both systems are cut-free and provide sound and complete axiomatizations of common
knowledge. K<ω

n (C) has, more or less, the same positive properties as K<ω(µ) and
should only be considered as a basis for more research about cut-free common knowl-
edge. See Jäger, Kretz, and Studer [13] and Brünnler and Studer [8] for more work in
this direction.

What we want to do now is to present a natural Tait-style reformulation Kn(C) of
Kn(C) which allows us to control all cuts involved, but unfortunately, does not permit
full cut elimination. Kn(C) derives finite sets of formulas, comprises the usual axioms
and rules of Tait-calculi for multi-modal logic plus additional rules for the epistemic
operators. If Γ is the set {A1, . . . , Am} of Ln(C) formulas, we set

C̃(Γ) := {C̃(A1), . . . , C̃(Am)}.

I. Axioms of Kn(C). For all finite formula sets Γ of Ln(C) formulas, all atomic propo-
sitions P and all variables X:

Γ, >,(Ax1)

Γ, P, P̃ ,(Ax2)

Γ, X, X̃.(Ax3)

II. Logical rules of Kn(C). For all finite formula sets Γ,∆,Π of Ln(C) formulas, all
agents α (1 ≤ α ≤ n), and all Ln(C) formulas A,B:

Γ, A, B
Γ, A ∨B

,(∨)

Γ, A Γ, B
Γ, A ∧B

,(∧)

Γ, A, C̃(∆)

〈α〉Γ, [α]A, C̃(∆), Π
.(DIS)

III. C-rules of Kn(C). For all finite formula sets Γ,∆,Π of Ln(C) formulas and all
Ln(C) formulas A:



Γ, ¬E[¬A]

Γ, C̃(A)
,(C̃)

E[A], C̃(∆)

C(A), C̃(∆), Π
.(C)

IV. Induction rules of Kn(C). For all finite formula sets ∆,Π of Ln(C) formulas and
all Ln(C) formulas A,B:

B, E[A], C̃(∆) B, E[¬B], C̃(∆)

B, C(A), C̃(∆), Π
.(Ind)

The axioms and rules of our Tait-style reformulation of Kn(C) do not comprise cuts. We
will mention them explicitly in order to emphasize which cuts are being used. Let Ω be a
collection of Ln(C) formulas closed under negations. Then the Ω-cuts are all cuts whose
cut formulas belong to Ω.

V. Ω-cuts. For all finite formula sets Γ of Ln(C) formulas and all formulas A ∈ Ω (the
designated formulas A and ¬A are the cut formulas of this cut):

Γ, A Γ, ¬A
Γ

.(Ω-cut)

Derivability of a finite set Γ of Ln(C) formulas within Kn(C) with possible additional
Ω-cuts is defined as usual and written as Kn(C) + (Ω-cut) ` Γ.

It is relatively easy to show that, if arbitrary cuts are permitted, this Tait-style system
proves the same formulas as Kn(C). Some care is only needed to check that the co-
closure axioms for C are provable in Kn(C) and that Kn(C) + (Ln(C)-cut) is closed
under (C-IND); see Alberucci and Jäger [1] for all details.

Theorem 25 For all finite sets Γ of Ln(C) formulas we have that

Kn(C) + (Ln(C)-cut) ` Γ ⇐⇒ Kn(C) ` Γ∨.

The rule (Ln(C)-cut) is the stumbling block to a decent proof-theoretic analysis of com-
mon knowledge within Kn(C) + (Ln(C)-cut). Moreover, on the basis of Kn(C) cuts
cannot be avoided completely. To see why, pick two different atomic propositions P and
Q and consider the formula A defined by

A := 〈1〉(P̃ ∨ C̃(Q̃)) ∨ 〈2〉(Q̃ ∨ C̃(P̃ )) ∨ C(P ∨Q).

Then it is easily checked that (2,C) |= A, implying K2(C) + (L2(C)-cut) ` A because
of Theorem 24 and Theorem 25. On the other hand, it is also not difficult to show that A
cannot be derived in K2(C).

What we can achieve, however, is a formalism, in which all necessary cuts can be
controlled by means of the Γ which is to be derived. To do so we first introduce the
so-called Fischer-Ladner closure FL(A) of an Ln(C) formula A.



Definition 26 The Fischer-Ladner closure FL(A) of an Ln(C) formula A is the set of
Ln(C) formulas which is inductively defined as follows:
(FL1) A belongs to FL(A).
(FL2) If B belongs to FL(A), then ¬B belongs to FL(A).
(FL3) If (B ∨ C) belongs to FL(A), then B and C belong to FL(A).
(FL4) If 〈α〉B belongs to FL(A), then B belongs to FL(A).
(FL5) If C(B) belongs to FL(A), then B, E[B], and E[C(B)] belong to FL(A).

The Fischer-Ladner closure of any Ln(C) formula is finite and, according to Fischer and
Ladner [11], the number of elements of FL(A) is of orderO(|A|), where |A| denotes the
length of the formula A.

For a finite set Γ of Ln(C) formulas we set FL(Γ) := FL(Γ∨). Furthermore,
DC1(Γ) is defined to be the closure of FL(Γ) under conjunctions (without repetitions)
and DC2(Γ) the closure of DC1(Γ) under disjunctions (without repetitions). Then the
disjunctive-conjunctive closure of Γ is given by

DC(Γ) := DC2(Γ) ∪ {¬A : A ∈ DC2(Γ)}.

In Alberucci and Jäger [1] we showed that cuts with cut formulas from DC(Γ) are suffi-
cient in order to derive a valid finite set Γ of Ln(C) formulas. The proof is by construct-
ing a canonical n-knowledge structure whose worlds are the maximal DC(Γ)-consistent
sets.

Theorem 27 For all finite sets Γ of Ln(C) formulas we have that

Kn(C) + (DC(Γ)-cut) ` Γ ⇐⇒ (n,C) |= Γ∨.

This theorem says that for a proof of a valid formula A only cuts are needed which
belong to the bounded set DC({A}) and thus permits a control of the cuts. From the
point of view of computational complexity and proof search, the size of DC({A}) is still
infeasible. We know that the restriction to cuts from DC({A}) is far from being optimal,
but it is an interesting open question how far we can go.

4. Evidence and knowledge

We end this overview by presenting some connections between Artemov’s so-called logic
of proofs and the previously considered epistemic systems. Good comprehensive intro-
ductions into the logic of proofs or justification logic (as it is often called recently) are
presented in Artemov [2] and Artemov and Beklemishev [4].

One of the basic ideas is to extend the framework of multi-modal logic with n agents
by a system of terms for representing evidence and expressions of the form “(a : A)”
expressing the idea that “a provides evidence for A”. In the original logic of proofs
these terms acted as explicit representations of proofs, but their interpretation as evidence
witnesses makes sense as well. What we are going to sketch now is a first attempt to
combine knowledge and evidence; it partly follows Artemov [3].



Evidence terms a, b, c, . . . (possibly with subscripts) are built from evidence con-
stants u, v, w, . . . and evidence variables x, y, z, . . . (all possibly with subscripts) by the
following grammar:

a ::= u | x | (a · a) | (a+ a) | !a,

where · (application) and + (union) are binary operations on terms while ! (inspection)
is a unary operation on terms.

The language Len for n agents and evidence is similar to the language Ln(C), but

instead of the formulas C(A) and C̃(A) we have (a : A) and (̃a : A), respectively.
Accordingly, the formulas A,B,C, . . . (possibly with subscripts) of Len are defined by
the following grammar:

A ::= P | P̃ | X | X̃ | ⊥ | > | (A ∨A) | (A ∧A) | 〈α〉A | [α]A | (a : A) | (̃a : A),

where P and X range over atomic propositions and variables, respectively, and α is a
natural number, 1 ≤ α ≤ n. The negation ¬A of an Len formula A is defined as before
with the clauses

¬(a : A) := (̃a : A) and ¬(̃a : A) := (a : A).

The system Te
n provides a Hilbert-style formalization of knowledge with evidence. Its

knowledge axioms are as in Kn(C) with the additional claim that knowledge implies
truth. Then there are specific axioms and rules for evidence and a principle connecting
evidence and knowledge.

I. Logical axioms of Te
n. All propositional tautologies, the distribution axioms, and the

truth axioms, i.e., for all propositional tautologiesA of Len, all Len formulasB and C and
all agents α (1 ≤ α ≤ n):

A,(TAU)

[α](B → C) → ([α]B → [α]C),(DIS)

[α]B → B.(T)

II. Logical rules of Te
n. Modus ponens and necessitation, i.e., for all Len formulas A and

B, and all agents α (1 ≤ α ≤ n):

A A→ B

B
,(MP)

A

[α]A
.(NEC)

III. Evidence axioms of Te
n. For all Len formulas A,B and all evidence terms a, b:

a : A ∧ b : (A→ B) → (b · a) : B,(Application)



a : A → (a+ b) : A and b : A → (a+ b) : A,(Union)

a : A → !a : (a : A),(Inspection)

a : A → A.(Reflexivity)

IV. Evidence-to-knowledge axioms of Te
n. For all Len formulas A, all evidence terms

a, and all agents α (1 ≤ α ≤ n):

a : A → [α]A.(EK)

V. Constant specifications of Te
n. For all axioms A of group I, group III, and group IV

and all evidence constants u:

u : A.(CS)

As always previously, provability of a formula A in the Hilbert system Te
n is written as

Te
n ` A.

The theory Te
n shares many features of the logic of proofs. In particular, it has the

internalization property which states that every derivation in Te
n is witnessed by an evi-

dence term. For its proof see Artemov [3].

Theorem 28 (Internalization) If Te
n ` A for some Len formula A, then there exists an

evidence term a such that Te
n ` a : A.

Interesting in our context and establishing a connection to common knowledge is the
observation that all formulas a : A are fixed points of E[A ∧ U ].

Theorem 29 For all Len formulas A and all evidence terms a we have that

Te
n ` a : A ↔ E[A ∧ a : A].

PROOF. From E[A ∧ a : A] we deduce [1](A ∧ a : A), and from that a : A follows in
view of (T). This settles the right-to-left part of our theorem. For the converse direction,
use (EK) to derive a : A → [α]A for any agent α, hence

a : A → E[A].(1)

By (Inspection) we also have a : A → !a : (a : A). The axioms (EK) then yield
a : A → [α](a : A) for all agents α, hence

a : A → E[a : A].(2)

The assertions (1) and (2) and simple reasoning in modal logic conclude the proof of the
direction from left to right. 2

This theorem does not say, however, that the formulas (a : A) are greatest fixed
points of E[A ∧ U ]. If we add the operators C and C̃ plus the respective axioms, then



a : A → C(A) becomes provable. Hence evidence of A is stronger than common
knowledge of A.

Even though this interplay between evidence, knowledge and common knowledge
sheds light on an interesting area of epistemic logic and brings in some new and inter-
esting parameters, it should be far from being the final answer. There are still several
shortcomings of this approach which deserve substantial further research. We conclude
this article with mentioning some of them.

Open problems 30

1. It seems unnatural that there are only global evidence assertions (a : A). More
flexibility is gained by adding evidence with respect to agents, (a :α A). Some
first interesting steps in this direction are due to Yavorskaya [22], but more – most
notably proof-theoretic – research about such systems is needed.

2. An evidence-based version of common knowledge in the proper sense (greatest
fixed point of E[A∧U ]) does not exist yet. There is promising work by S. Bucheli,
and it seems that only minor technicalities are left to be straightened out.

3. Artemov [2] presents a sequent-style reformulation of his logic of proofs LP, and
it should be easy to obtain the same for Te

n. But these systems are only free of
external cuts; internal cuts in form of the application axiom cannot be eliminated.
Is there a system of evidence terms, axioms and rules equivalent to Te

n which
permits the elimination of internal and external cuts? It may well be that we have
to introduce a form of reduction of evidence terms.
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