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Abstract

Several decades ago Friedman showed that the subsystem Σ1
1-AC of

second order arithmetic is proof-theoretically equivalent – and thus
equiconsistent – to (Π1

0-CA)<ε0 . In this article we prove the analogous
result for Σ1

1 choice in the context of the von Neumann-Bernays-Gödel
theory NBG of sets and classes.
Keywords: Proof theory, theories of sets and classes.

1 Introduction

Several decades ago Friedman showed that the subsystem Σ1
1-AC of second

order arithmetic is proof-theoretically equivalent – and thus equiconsistent –
to (Π1

0-CA)<ε0 (cf. Friedman [7]). Later Feferman [2, 3], Tait [16], Feferman
and Sieg [6] and Cantini [1] reproved and extended this result, always making
use of different proof-theoretic techniques.

In this article we start off from the von Neumann-Bernays-Gödel theory
NBG of sets and classes, extend it by the schema (L2-I∈) of ∈-induction for
arbitrary formulas of the language L2 of NBG and study the effect of adding
Σ1

1 choice and Σ1
1 collection,

∀x∃Y A[x, Y ] → ∃Z∀xA[x, (Z)x],(Σ1
1-AC)

∀x∃Y A[x, Y ] → ∃Z∀x∃yA[x, (Z)y],(Σ1
1-Col)

where A is an elementary formula of L2, i.e. an L2 formula which does not
contain bound class variables. We will show that the resulting theories are
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equiconsistent to the system NBG<E0 which is obtained from NBG + (L2-I∈)
by adding iterations of elementary comprehension along all initial segments
of the notation system (E0,C). E0 is an elementarily definable class and
C an elementary binary class relation on E0 which, provably in NBG, well-
orders all initial segments of E0. The notation system (E0,C) may be seen
as the analogue of (ε0, <) with the ordinal ω replaced by the collection of all
ordinals. In this sense, our result is the perfect analogue of Friedman’s result
mentioned above with natural numbers and sets of natural numbers replaced
by sets and classes, respectively.

Our characterization of NBG + (L2-I∈) + (Σ1
1-AC) is also interesting in con-

nection with Feferman’s operational set theory OST, introduced in Feferman
[4, 5]. As shown in Jäger [11], the extension OST(E,P) of OST with un-
bounded existential quantification and power set is equiconsistent to NBG<E0

and therefore, in view of the results of this paper, also to the more familiar
system NBG+(L2-I∈)+(Σ1

1-AC). The results of this paper are discussed from
a broader perspective in Jäger [12].

The embedding of NBG<E0 into NBG + (L2-I∈) + (Σ1
1-AC) is straightforward.

The difficult part of this paper is the reduction of NBG+(L2-I∈)+(Σ1
1-AC) to

NBG<E0 , and here an asymmetric interpretation plays a major rôle. Similar
forms of asymmetric interpretations have been used, for example, in Cantini
[1] to deal with subsystems of second order arithmetic and in Jäger [9, 10, 11]
and Jäger and Strahm [13] in the context of theories of admissible sets,
explicit mathematics and operational set theory.

First we observe that (Σ1
1-AC) can be replaced by (Σ1

1-Col). Then, in order
to get rid of (L2-I∈), we develop (within NBG<E0) an infinitary sequent style
reformulation G∞ of NBG+(Σ1

1-Col) in which constants for all sets are avail-
able. By making use of an infinitary rule for universal quantification over
sets, we show

NBG + (L2-I∈) + (Σ1
1-Col) ` A =⇒ NBG<E0 ` “G∞ proves A”.

A next step is to strengthen this assertion by a partial cut elimination argu-
ment for G∞ to

NBG + (L2-I∈) + (Σ1
1-Col) ` A =⇒
NBG<E0 ` “G∞ proves A with simple cuts”.

Now the technical part begins: we have to go back from provability in G∞

to provability in NBG<E0 . This is achieved in two further steps:

(i) Introduction of a sort of constructible hierarchy of classes and a truth
definition based on this hierarchy which reflects all closed elementary
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formulas A,
NBG<E0 ` Tr [A] ↔ A.

(ii) An asymmetric interpretation of a suitable fragment of G∞ with respect
to this hierarchy such that, for all closed elementary formulas A of G∞,

NBG<E0 ` (“G∞ proves A with simple cuts” → Tr [A]).

Altogether, we thus have

NBG + (L2-I∈) + (Σ1
1-Col) ` A =⇒ NBG<E0 ` A

for all closed elementary formulas, and this is the required reduction. The
definitions of our analogue of the constructible hierarchy and the associated
notion of truth – although conceptually clear – require some care since every-
thing has to be carried through within the restricted framework of NBG<E0 .

2 Von Neuman-Bernays-Gödel set theory

The von Neumann-Bernays-Gödel set theory NBG is a theory of sets and
classes conservative over the system ZFC of Zermelo-Fraenkel set theory with
the axiom of choice. NBG is known to be finitely axiomatizable although the
version we are going to present below permits axiom schemas and as such is
an infinite axiomatization.

Let L1 be a typical first order language of set theory with countably many
set variables a, b, c, f, g, u, v, w, x, y, z, . . . and a single symbol for the element
relation, but without function or individual constants.

L2, the language of NBG, augments L1 by a second sort of countably many
variables U, V,W,X, Y, Z, . . . for classes; its formulas (A,B,C, . . .) are induc-
tively generated as follows:

1. If a, b are set variables and if U is a class variable, then all expressions
of the form (a ∈ b) and (a ∈ U) are (atomic) formulas of L2.

2. If A and B are formulas of L2, then so are are ¬A, (A∨B) and (A∧B).

3. If A is a formula of L2, then ∃xA, ∀xA, ∃XA and ∀XA are formulas
of L2.

The denotations for set variables, class variables and L2 formulas may be
used with and without subscripts. Since we will be working within classical
logic, the remaining logical connectives can be defined as usual.
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We will often omit parentheses and brackets whenever there is no danger
of confusion. Moreover, we frequently make use of the vector notation ~a as
shorthand for a finite string a1, . . . , an of set variables whose length is not
important or evident from the context.

Equalities between sets/sets, sets/classes, classes/sets and classes/classes are
not atomic formulas of L2 but defined as

(Var 1 = Var 2) := ∀x(x ∈ Var 1 ↔ x ∈ Var 2)

where Var 1 and Var 2 denote set or class variables. A formula of L2 is called
elementary if it does not contain bound class variables; free class variables,
however, are permitted. The Σ1

1 formulas of L2 are those of the form ∃XA
with elementary A. Finally, an L2 formula A is called Σ1 if all positive
occurrences of class quantifiers are existential and all negative occurrences
of class quantifiers are universal; it is called Π1 if all positive occurrences of
class quantifiers are universal and all negative occurrences of class quantifiers
are existential. By a closed formula we mean one which does not contain free
set or class variables.

The logic of NBG is classical two-sorted logic with equality for the first sort.
The non-logical axioms of NBG are given in six groups. To increase readabil-
ity, we freely use standard set-theoretic terminology.

I. Elementary comprehension For any elementary formula A[u] of L2

and any class variable X not free in A[u]:

∃X∀y(y ∈ X ↔ A[y]).(ECA)

Hence every elementary NBG formula A[u] defines a class, which is typically
written as {x : A[x]}. It may be (extensionally equal to) a set, but this is
not necessarily the case.

II. Basic set existence

∀x∀y∃z(z = {x, y}),(Pair)

∀x∃y(y = ∪x),(Union)

∀x∃y∀z(z ∈ y ↔ z ⊂ x),(Power set)

∃x(∅ ∈ x ∧ (∀y ∈ x)(y ∪ {y} ∈ x)).(Infinity)

In the following we write 〈a, b〉 for the ordered pair of the sets a and b à la
Kuratowski. Class relations are classes which consist of ordered pairs only,
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and class functions are class relations which are right unique; i.e. for all U
we set:

Rel [U ] := (∀x ∈ U)∃y∃z(x = 〈y, z〉),

Dom[U ] := {x : ∃y(〈x, y〉 ∈ U)},

Fun[U ] := Rel [U ] ∧ ∀x∀y∀z(〈x, y〉 ∈ U ∧ 〈x, z〉 ∈ U → y = z).

If U is a function and x an element of Dom[U ], we write U(x) for the unique
y such that 〈x, y〉 ∈ U . Replacement states that the range of a set under a
function is a set.

III. Replacement For any class variable U :

Fun[U ] → ∀x∃y(y = {U(z) : z ∈ Dom[U ] ∩ x}).(REP)

Global choice is a very uniform principle of choice which claims the existence
of a class function which picks an element of any non-empty set.

IV. Global choice

∃X(Fun[X] ∧ Dom[X] = {y : y 6= ∅} ∧ ∀y(y 6= ∅ → X(y) ∈ y)).(GC)

To complete the list of axioms of NBG, we add foundation. In NBG it is
claimed that the element relation is well-founded with respect to classes.

V. Class foundation For any class variable U :

U 6= ∅ → (∃x ∈ U)(∀y ∈ x)(y /∈ U).(C-I∈)

A set a is called an ordinal if a itself and all its elements are transitive, On
stands for the class of all ordinals; i.e.

On := {x : Tran(x) ∧ (∀y ∈ x)Tran(y)}.

The axioms (Infinity) and (C-I∈) imply that there exists a least infinite ordinal,
which we denote by ω, as usual. The elements of ω are identified with the
natural numbers in the sense that 0 := ∅, 1 := {0}, 2 := 1 ∪ {1} and so on.
In the following small Greek letters are supposed to range over On.

One important property of NBG is the subset property: the intersection of a
set a with a class is a subset of a. Its proof is standard.

There exist various alternative presentations of NBG. So it is an appealing
feature of NBG that the schema of elementary comprehension can be replaced
by finitely many axioms and thus a finite axiomatization of NBG is possible.
Furthermore, according to a well-known result, see, e.g., Levy [14], NBG is a
conservative extension of ZFC.
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Theorem 1 A sentence of the language L1 is provable in NBG if and only
if it is provable in ZFC.

In the following we will be mainly concerned with extensions of NBG. The
first of those consists in adding to NBG the schema of ∈-induction for arbi-
trary L2 formulas A[u],

∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x].(L2-I∈)

Further interesting principles are the schemas of Σ1
1 choice and Σ1

1 collection
which consists of all formulas

∀x∃Y A[x, Y ] → ∃Z∀xA[x, (Z)x],(Σ1
1-AC)

∀x∃Y A[x, Y ] → ∃Z∀x∃yA[x, (Z)y](Σ1
1-Col)

where A[u, V ] is an elementary L2 formula and (Z)a is the class given by

(Z)a := {x : 〈a, x〉 ∈ Z}.

Clearly, every instance of (Σ1
1-Col) follows from (Σ1

1-AC). However, in NBG
also the converse is the case.

Theorem 2 If A[u, V ] is an elementary L2 formula, then we have

NBG + (Σ1
1-Col) ` ∀x∃Y A[x, Y ] → ∃Z∀xA[x, (Z)x].

Proof. We work within NBG+(Σ1
1-Col). Following the pattern of the usual

proof of the well-ordering theorem in ZFC and exploiting the fact that we
have global choice, it is easy to show that there exist a bijective class function
W from On to the collection of all sets. We write W−1 for the inverse of W .

Now suppose ∀x∃Y A[x, Y ], where A[u, V ] is an elementary L2 formula. Then
by (Σ1

1-Col) there exists a class Z such that

∀x∃yA[x, (Z)y].(?)

Now the function W−1 comes into play in order to associate to any x a unique
y for which A[x, (Z)y]. Namely, by elementary comprehension and (?)

Sel := {〈x, y〉 : A[x, (Z)y] ∧ ∀z(A[x, (Z)z] → W−1(y) ≤ W−1(z))}

is a class function whose domain is the collection of all sets. Finally, if we
write S for the class {〈x, y〉 : y ∈ (Z)Sel(x)}, which exists by elementary
comprehension, we have (S)x = (Z)Sel(x) for all sets x. Hence ∀xA[x, (S)x].
In other words, S is the required witness for (Σ1

1-AC). 2
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Corollary 3 The theories NBG + (Σ1
1-AC) and NBG + (Σ1

1-Col) prove the
same formulas.

In this paper we are interested in the consistency strength of the theories
NBG + (L2-I∈) + (Σ1

1-AC) and NBG + (L2-I∈) + (Σ1
1-Col). The much simpler

analysis of NBG + (Σ1
1-AC) and NBG + (Σ1

1-Col) will be presented elsewhere.

3 The notation system (E0,C)

In this section we work within NBG+(L2-I∈) and set up the notation system
(E0,C). The underlying idea is very simple: (E0,C) is designed to be the
analogue of (ε0, <) with the set of the natural numbers, i.e. the ordinal ω,
replaced by the class of all ordinals. All we have to do is to follow one of
the standard introductions of the ordinal notation system up to ε0 as, for
example, in Schütte [15], taking care of the few additional complications
arising by the fact that we now have all elements of On as basic entities.

Definition 4 By finite sequences we mean those functions whose domain is
a finite ordinal; FS is defined to be the class of all finite sequences,

FS := {f : Fun[f ] ∧ (∃n < ω)(Dom[f ] = n)}.

If we are given n sets a0, . . . , an−1 for some natural number n, we often write
(a0, . . . , an−1) for that element f of FS which satisfies Dom[f ] = n and
(∀i < n)(f(i) = ai).

By elementary comprehension it can be easily shown in NBG that there exists
a binary class relation C on FS satisfying the property (I) below. To simplify
the formulation of this property, we abbreviate:

a C b := 〈a, b〉 ∈C and a E b := a C b ∨ a = b.

In addition, let Clex be the lexicographic extension of C; i.e. if a and b are
finite sequences of sets, then a Clex b is written for

(Dom[a] < Dom[b] ∧ (∀i < Dom[a])(a(i) = b(i)) ∨

(∃i < Dom[a])(i < Dom[b] ∧ a(i) C b(i) ∧ (∀j < i)(a(j) = b(j)).

(I) The binary relation C on FS . For all elements a and b of FS we
have a C b if and only if Dom[a] and Dom[b] are at least 2 and one of the
following cases holds:
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(1) a(0) = b(0) = 0 ∧ a(1) < b(1),

(2) a(0) = 0 ∧ 0 < b(0),

(3) a(0) = 1 ∧ 2 ≤ b(0),

(4) a(0) = b(0) = 2 ∧ a(1) C b(1),

(5) a(0) = 2 ∧ b(0) = 3 ∧ a E b(1),

(6) a(0) = 3 ∧ b(0) = 2 ∧ a(1) C b,

(7) a(0) = b(0) = 3 ∧ a Clex b.

For the time being, this is a rather weird binary relation on finite sequences.
Its real meaning will become transparent when restricted to the subclass E0

of FS which is introduced in (III) and whose definition is based on C.

For every ordinal α we let α be the finite sequence (0, α). In addition, Ω is
defined to be the finite sequence (1, 0).

(II) The ω-exponentiation of elements of FS . There exists a class
function ω̃ which is described by Dom[ω̃] = FS and, for all elements a of FS ,

ω̃(a) =


ωα if a = α for some ordinal α,

Ω if a = Ω,

(2, a) otherwise.

In the following, the function ω̃ will be interesting four us only when re-
stricted to those finite sequences which act as notations. They are collected
in the class E0 which can be defined be elementary comprehension and is
characterized as follows.

(III) The class E0 of notations. E0 is defined to be the smallest subclass
of FS which satisfies the following closure properties:

(1) For all ordinals α we have α ∈ E0.

(2) Ω ∈ E0.

(3) If a ∈ E0, then ω̃(a) ∈ E0.

(4) If a0, . . . , an+1 ∈ E0 and Ω E an+1 E . . . E a1 E a0, then

(3, ω̃(a0), ω̃(a1), . . . , ω̃(an+1)) ∈ E0.
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(5) If a0, . . . , an ∈ E0 and Ω E an E . . . E a1 E a0 and α 6= 0, then

(3, ω̃(a0), ω̃(a1), . . . , ω̃(an), α) ∈ E0.

The elements of E0 of the form (0, a) code the ordinals, the element (1, 0) = Ω
is the least element greater than the codes of all ordinals, (2, a) codes the
ω-exponentiation of a and (3, a0, . . . , an−1) is for the sum of ω-powers and
possibly the code of an ordinal, given in decreasing order. The proof of the
following lemma is without any problems.

Lemma 5 The relation C is a strict linear ordering on the class E0.

In the following we use the small Gothic type letters a, b, . . . (possibly with
subscripts) for elements of E0. Expressions like ∃a(. . .) and ∀a(. . .) are then
to be read as (∃a ∈ E0)(. . .) and (∀a ∈ E0)(. . .), respectively. For simplicity
of notation, we also write ωa instead of ω̃(a).

Definition 6 For all positive natural numbers n and all a0, . . . , an−1 ∈ E0

we set

[a0, . . . , an−1] :=

{
a0 if n = 1 ∧ (a0 E Ω ∨ ∃b(a0 = ωb)),

(3, a0, . . . , an−1) if (3, a0, . . . , an−1) ∈ E0.

In all other cases [a0, . . . , an−1] may be taken to be undefined or to have the
value ∅.

So every element a of E0 can be uniquely written as [a0, . . . , an−1]. This repre-
sentation is useful for a compact description of the addition of ordinal terms.
Once more, it can be introduced as a binary class function by elementary
comprehension and is characterized by the following properties.

(IV) Addition of elements of E0. For all a and b we have:

(1) If a = 0, then a + b = b, if b = 0, then a + b = a.

(2) If a = [a0, . . . , am−1, α] and b = β for some ordinals α and β greater
than 0, then

a + b = [a0, . . . , am−1, α+ β].

(3) If a = [a0, . . . , am−1] such that Ω E am−1 and b = β for some ordinal β
greater than 0, then

a + b = [a0, . . . , am−1, b].
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(4) If a = [a0, . . . , am−1] and b = [b0, . . . , bn−1] such that Ω E b0, then, if k
is the largest natural number i for which b0 E ai,

a + b = [a0, . . . , ak, b0, . . . , bn−1].

Before turning to the well-ordering of initial parts of E0, a further class
function, describing the finite addition of ω-powers of elements of E0, has to
be introduced.

(V) The function ω̂ on elements of E0 and finite numbers. There
exists a class function ω̂ which is described by Dom[ω̃] = E0 × ω and, for all
a and all n < ω,

ω̂(a, n) =

{
0 if n = 0,

ω̂(a, n− 1) + ωa if 0 < n < ω.

We omit the proof of the following lemma since it is in complete analogy to
the case of the notation system for (ε0, <).

Lemma 7 The following assertions can be proved in NBG:

1. (a + b) + c = a + (b + c).

2. a C b + ωc ∧ 0 C c → (∃d C c)(∃n < ω)(a C b + ω̂(d, n)).

Starting with Ω + 1 a sequence of terms which is cofinal in E0 is obtained by
simply iterating ω-exponentiation.

Definition 8 For all natural numbers n, the ordinal terms Ωn are induc-
tively defined by

Ω0 := Ω + 1 and Ωn+1 := ωΩn .

The purpose of the next paragraphs is to show that NBG + (L2-I∈) proves
the well-ordering of the relation C on E0 up to each term Ωk for k being any
standard natural number. To do so, we need the following notations.

Definition 9 Let A[u] be an arbitrary formula of the language L2 of NBG.
Then we set:

ProgC[A] :⇐⇒ ∀u((∀v C u)A[v] → A[u]),

TI C[u, A] :⇐⇒ ProgC[A] → (∀v C u)A[v].

A∗[u] :⇐⇒ ∀v((∀w C v)A[w] → (∀w C v + ωu)A[w]).
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The first two of these formulas express, as usual, the progressiveness of A with
respect to C and transfinite induction for A along C up to u, respectively;
A∗ is the jump of A. The core of the well-ordering proofs up to Ωk, for any
standard natural number k, is provided by the following two properties of
the jump-operation.

Lemma 10 For any formula A[u] of the language L2, we can prove in NBG:

1. ProgC[A] → ProgC[A∗].

2. TI C[u, A∗] → TI C[ωu, A].

All our notations are chosen such that the proof of this lemma can be taken
literally from the proof of the corresponding lemma for notations less than
ε0 in Schütte [15].

Theorem 11 For any standard natural number k and for any formula A[u]
of the language L2 we have

NBG + (L2-I∈) ` TI C[Ωk, A].

Proof. We work informally in NBG + (L2-I∈) and prove this theorem by
metainduction on k. Assume that k = 0. Then Ωk = Ω + 1 and ∈-induction
on the ordinals yields, for arbitrary L2 formulas A[u],

ProgC[A] → (∀u C Ω)A[u].

By the definition of progressiveness, this implies

ProgC[A] → (∀u C Ω + 1)A[u],

i.e. TI C[Ω0, A]. For k > 0 we have in view of the induction hypothesis for
any L2 formulas A[u] that TI C[Ωk−1, A

∗]. Now we simply have to apply
Lemma 10 in order to obtain TI C[Ωk, A]. 2

In connection with the notation system (E0,C) it only remains to introduce
a few further notations which will be taken up again towards the end of
Section 5.

Definition 12 The classes of limit notations and strong limit notations are
defined by

Lim := {x ∈ E0 : x 6= 0 ∧ (∀y ∈ E0)(x 6= y + 1},

SLim := {x ∈ Lim : (∀y ∈ E0)(x 6= y + ω}.

In addition, we define Lim0 := {0} ∪ Lim and SLim0 := {0} ∪ SLim and,
for any U ⊂ E0 and a, b ∈ E0,

a ∈ U ∩ b := a ∈ U ∧ a C b.
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This means that the elements of Lim are the analogues of limit ordinals and
the elements of SLim correspond to those limit ordinals which cannot be
obtained by adding ω. Clearly, any Ωn belongs to SLim.

4 Elementary hierarchies

This section begins with introducing the theory NBG<E0 which permits the
iteration of elementary comprehension up to any Ωk with k a standard natural
number. It is easily verified afterwards that NBG<E0 is contained in the
system NBG + (L2-I∈) + (Σ1

1-AC).

Definition 13 Let A[U, V, u, v] be an elementary L2 formula with at most
the variables U, V, u, v free. Then we write HierA[a, U, V ] for the elementary
L2 formula

(∀b C a)((V )b = {x : A[U,Σ(V, b), x, b]}).

Here Σ(V, b) stands for the class {〈x, c〉 ∈ V : c C b} representing the disjoint
union of the projections of V up to b.

NBG<E0 is the theory of sets and classes which extends NBG + (L2-I∈) by
claiming the existence of such hierarchies along each initial segment of E0.
Hence the axioms of NBG<E0 comprise the axioms of NBG, the schema (L2-I∈)
plus

∀X∃YHierA[Ωn, X, Y ](It-ECA)

for arbitrary elementary L2 formulas A[U, V, u, v] with at most the variables
U, V, u, v free and all standard natural numbers n.

Employing (Σ1
1-AC), the following lemma is proved by transfinite induction

along C up to Ωn, which is available in NBG + (L2-I∈) according to Theo-
rem 11. The argument is very similar to that of second order arithmetic,
establishing that Π0

1-CA<ε0 is a subsystem of Σ1
1-AC, and left to the reader.

Lemma 14 Let A[u, v, U, V ] be an elementary L2 formula with at most the
variables u, v, U, V free. For all standard natural numbers n and all class
variables X, the theory NBG + (L2-I∈) + (Σ1

1-AC) then proves

(∀a C Ωn)∃YHierA[a, X, Y ].

From this lemma we conclude that all axioms (It-ECA) are provable in the
system NBG + (L2-I∈) + (Σ1

1-AC). Therefore, the embedding of NBG<E0 into
NBG + (L2-I∈) + (Σ1

1-AC) is an immediate consequence.
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Theorem 15 The theory NBG<E0 is contained in NBG+(L2-I∈)+(Σ1
1-AC);

i.e. for all L2 formulas A we have

NBG<E0 ` A =⇒ NBG + (L2-I∈) + (Σ1
1-AC) ` A.

For the reduction of NBG + (L2-I∈) + (Σ1
1-Col) to NBG<E0 it is convenient

to have a global well-ordering of the set-theoretic universe at our disposal.
Therefore, let LW be the extension of L2 by a fresh binary relation symbol
W and include formulas W(u, v) into the list of atomic formulas. Then the
global well-ordering axiom states

∀x∃!αW(x, α) ∧ ∀x∀y∀α(W(x, α) ∧W(y, α) → x = y).(GWO)

We write NBGW for the theory NBG – now all schemas formulated for LW
formulas – in which the axiom of global choice (GC) has been replaced by
the axiom global well-ordering (GWO). Accordingly, NBGW<E0 is the theory
NBGW + (LW-I∈) extended by the iteration axiom (It-ECA), now formulated
for all elementary LW formulas.

It goes without saying that NBG and NBG<E0 are contained in NBGW and
NBGW<E0 , respectively. Moreover, with little effort and by making use of
standard techniques it can even be shown that we have the following theorem.

Theorem 16 NBGW is a conservative extension of NBG and NBGW<E0 is
a conservative extension of NBG<E0, in both cases with respect to all L2

formulas.

5 Reducing NBG + (L2-I∈) + (Σ1
1-AC) to NBG<E0

The eventual aim of this section is to show that NBG+(L2-I∈)+(Σ1
1-AC) can

be reduced to NBG<E0 . In order to achieve this it is sufficient – in view of what
we have achieved so far – to reduce the theory NBGW + (LW-I∈) + (Σ1

1-Col)
to NBGW<E0 , where in this context (Σ1

1-Col) is for LW formulas.

In the following we develop, within NBGW<E0 , an infinitary sequent calculus
G∞ for NBGW+(LW-I∈)+(Σ1

1-Col). For this purpose we code the set variables
as pairs 〈0, n〉 and the class variables as pairs 〈1, n〉, n always a natural
number. Moreover, to any set a we assign the set constant 〈2, a〉. For natural
numbers n and sets a we set

hn := 〈0, n〉, Hn := 〈1, n〉, pa := 〈2, a〉.

We also fix several elementary class functions defined, for arbitrary sets a, b, c,
by (some are written in infix or another mnemonically suitable notation):

(a ∈̇ b) := 〈3, a, b〉, Ẇ (a, b) := 〈4, a, b〉,
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¬̇ a := 〈5, a〉, (a ∨̇ b) := 〈6, a, b〉,

(a ∧̇ b) := 〈7, a, b〉, ∃̇ a b := 〈8, a, b〉,

∀̇ a b := 〈9, a, b〉.

We proceed with our development of G∞ within NBGW<E0 and present all
formulas of G∞ as sets, mimicking the build up of the formulas of LW .

Definition 17 The class For∞ is defined to be the smallest class which sat-
isfies the following closure properties:

(1) For all natural numbers m,n and all sets a, b the class For∞ contains

(hm ∈̇ hn), (hm ∈̇ pa), (pa ∈̇ hm), (pa ∈̇ pb).

(2) For all natural numbers m,n and all sets a, the class For∞ contains

(hm ∈̇ Hn), (pa ∈̇ Hn).

(3) For all natural numbers m,n, all sets a, b, the class For∞ contains

Ẇ (hm, hn), Ẇ (hm, pa), Ẇ (pa, hm), Ẇ (pa, pb).

(4) For all x, y ∈ For∞, the class For∞ also contains

¬̇ x, (x ∨̇ y), (x ∧̇ y).

(5) For all x ∈ For∞ and all natural numbers n, the class For∞ also con-
tains

∃̇ hn x, ∀̇ hn x, ∃̇Hn x, ∀̇Hn x.

This definition could be reformulated as an explicit elementary formula, for
the prize of being less perspicuous. We are not going to work out the details,
only formulate the corresponding assertion.

Lemma 18 For∞ is an elementarily definable class of NBGW<E0.

Clearly, for any sets a and b, (a →̇ b) stands for (¬̇ a ∨̇ b) and (a ↔̇ b) for
((a →̇ b) ∧̇ (b →̇ a)); other abbreviations of this sort are used as expected.

It is also elementarily decidable whether a set or class variable occurs freely
(in the usual sense) within an element of For∞. Moreover, there is an elemen-
tary class function Sub taking care of all sorts of simultaneous substitutions of
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free occurrences of set and class variables within an element of For∞ by con-
stants and variables of the appropriate sort. For instance, given a ϕ ∈ For∞,
a set a and i1, i2, j,m, n < ω,

Sub(〈pa, hm, Hn〉, 〈hi1 , hi2 , Hj〉, ϕ)

is the element of For∞ obtained from ϕ by simultaneously replacing all free
occurrences of hi1 , hi2 and Hj by pa, hm and Hn, respectively. Also, if ϕ is
given in the form ψ[hi1 , hi2 , Hj], we often simply write ψ[pa, hm, Hn] instead
of Sub(〈pa, hm, Hn〉, 〈hi1 , hi2 , Hj〉, ϕ).

The previous definition is so that Gödel numbers, all belonging to For∞,
can be canonically assigned to the formulas of LW . For this purpose we
begin with fixing an mapping \ which assigns natural numbers to all set and
class variables, making sure that different variables are mapped onto different
natural numbers.

If u, v are set variables and if U is a class variable of LW , we define

p(u ∈ v)q := (h\(u) ∈̇ h\(v)), p(u ∈ U)q := (h\(u) ∈̇ H\(U)),

pW(u, v)q := Ẇ (h\(u), h\(v)).

The Gödel numbers of the non-atomic formulas of LW are inductively calcu-
lated in compliance with the equations

p¬Aq := ¬̇ pAq,

p(A ∨B)q := (pAq ∨̇ pBq),

p(A ∧B)q := (pAq ∧̇ pBq),

p∃xAq := ∃̇ h\(x) pAq,

p∀xAq := ∀̇ h\(x) pAq,

p∃XAq := ∃̇H\(X) pAq,

p∀XAq := ∀̇H\(X) pAq.

The elements of For∞ are called L∞W formulas and will be denoted by the
small Greek letters θ, ϕ, χ and ψ (possibly with subscripts). To increase the
readability we often omit the dots when it is clear from the context that we
speak about elements of For∞.
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The set-closed formulas are those L∞W formulas which do not contain free set
variables (but they may contain free class variables and set constants); the
closed formulas of L∞W are those L∞W formulas which contain neither free set
variables nor free class variables. We collect the set-closed formulas in the
class SC∞ and the closed formulas of L∞W in the class CFor∞; both classes
are elementarily definable.

The capital Greek letters Θ,Φ,Ψ, . . . (possibly with subscripts) denote finite
sequences of set-closed formulas. If Φ is the sequence of set-closed formulas
ϕ1, . . . , ϕm and Ψ the sequence of set-closed formulas ψ1, . . . , ψn, then

〈12,m, n, ϕ1, . . . , ϕm, ψ1, . . . , ψn〉

is the sequent with antecedent Φ and succedent Ψ; typically, it will be written
as (Φ ⊃ Ψ) or simply as Φ ⊃ Ψ.

The elementary, Σ1
1, Σ1 and Π1 formulas of L∞W are defined analogously to

the corresponding classes of LW formulas; set constants are now, of course,
permitted as parameters.

Looking at the basic set existence and replacement axioms and at the global
well-ordering axiom (GWO) of NBGW, we can convince ourselves that the
corresponding axioms, formulated within the language L∞W , are elementary
L∞W formulas. We collect the resulting set-closed formulas in the class AX∞.

Definition 19 The degree dg(ϕ) of a set-closed formula ϕ is inductively
defined as follows:

1. If ϕ is a set-closed elementary or Σ1
1 formula of L∞W , then dg(ϕ) := 0.

2. For all set-closed formulas which are neither elementary nor Σ1
1 we set

dg(¬ψ) := dg(ψ) + 1,

dg(ψ1 ∨ ψ2) := max(dg(ψ1), dg(ψ2)) + 1,

dg(ψ1 ∧ ψ2) := max(dg(ψ1), dg(ψ2)) + 1,

dg(∃hnψ[hn]) := dg(ψ[p∅]) + 1,

dg(∀hnψ[hn]) := dg(ψ[p∅]) + 1,

dg(∃Hnψ[Hn]) := dg(ψ[Hn]) + 1,

dg(∀Hnψ[Hn]) := dg(ψ[Hn]) + 1.

G∞ is an extension of the classical Gentzen sequent calculus LK (cf., e.g.,
Girard [8] or Takeuti [17]) by additional axioms and rules of inference which
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take care of the non-logical axioms of NBGW. Universal set quantification
in the succedent and the corresponding existential set quantification in the
antecedent are infinitary rules branching over the collection of all sets. The
axioms and rules of G∞ can be grouped as follows.

I. Axioms. For all set-closed elementary formulas ϕ, all elements ψ of AX∞,
all sets a, b, all set-closed elementary formulas θ[p∅] and all Hm, hn so that
no variable conflicts arise:

(A1) ϕ ⊃ ϕ,

(A2) ⊃ ψ,

(A3) ⊃ (pa ∈ pb) if a ∈ b,

(A4) ⊃ (pa /∈ pb) if a /∈ b,

(A5) ⊃ ∃Hm∀hn(hn ∈ Hm ↔ θ[hn]).

II. Structural rules. The structural rules of G∞ consist of the usual weak-
ening, exchange and contraction rules.

III. Propositional rules. The propositional rules of G∞ consist of the usual
rules for introducing the propositional connectives on the left and right hand
sides of sequents.

IV. Quantifier rules for sets. Formulated only for succedents; there are
also corresponding rules for the antecedents. For all set variables hn, all set
constants pa and all set-closed formulas ϕ[p∅]:

Φ ⊃ Ψ, ϕ[pa]

Φ ⊃ Ψ, ∃hnϕ[hn]
,

Φ ⊃ Ψ, ϕ[pb] for all sets b

Φ ⊃ Ψ, ∀hnϕ[hn]
.

V. Quantifier rules for classes. Formulated only for succedents; there
are also corresponding rules for the antecedents. By (?) we mark those rules
where the designated free class variables are not to occur in the conclusion.
For all set-closed formulas ϕ[H0]and all class variables Hm, Hn so that no
variable conflicts arise:

Φ ⊃ Ψ, ϕ[Hm]

Φ ⊃ Ψ, ∃Hnϕ[Hn]
,

Φ ⊃ Ψ, ϕ[Hm]

Φ ⊃ Ψ, ∀Hnϕ[Hn]
(?).
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VI. Σ1
1 collection rules. For all set-closed elementary formulas ϕ[p∅, H0]

and all variables hm, Hn, Hk so that no variable conflicts arise:

Φ ⊃ Ψ, ∀hm∃Hnϕ[hm, Hn]

Φ ⊃ Ψ, ∃Hi∀hm∃hnϕ[hm, (Hi)hn ]
.

VII. Cuts. For all set-closed formulas ϕ:

Φ ⊃ Ψ, ϕ Φ, ϕ ⊃ Ψ

Φ ⊃ Ψ
.

The formula ϕ is called the cut formula of this cut; the degree of a cut is the
degree of its cut formula.

Since G∞ has inference rules which branch over all sets, namely the rules for
introducing universal quantification over sets in the succedents and existen-
tial quantification over sets in the antecedents, infinite proof trees may occur.
We confine ourselves to those whose depths are bounded by initial segments
of E0.

Definition 20 Let k be an arbitrary standard natural number. For any no-
tation a C Ωk, any n < ω and any sequent Φ ⊃ Ψ, we define G∞

k `a
n Φ ⊃ Ψ

by induction on a.

1. If Φ ⊃ Ψ is an axiom of G∞, then we have G∞
k `a

n Φ ⊃ Ψ for all
n < ω.

2. If G∞
k `ax

n Φx ⊃ Ψx and ax C a for every premise of a rule which is
not a cut, then we have G∞

k `a
n Φ ⊃ Ψ for the conclusion Φ ⊃ Ψ of this

rule.

3. If G∞
k `ai

n Φi ⊃ Ψi and ai C a for the two premises Φi ⊃ Ψi of a cut
(i = 1, 2) whose degree is less than n, then we have G∞

k `a
n Φ ⊃ Ψ for

the conclusion Φ ⊃ Ψ of this cut.

To be precise, given a standard natural number k, we employ axiom (It-ECA)
to introduce a class U such that, for any a C Ωk, the projection (U)a consists
of all pairs (Φ ⊃ Ψ, n) for which we have G∞

k `a
n Φ ⊃ Ψ.

G∞
k `a

0 Φ ⊃ Ψ says that there exists a cut-free proof in G∞ whose depth is
bounded by the notation a and a C Ωk. If we have G∞

k `a
1 Φ ⊃ Ψ, then

only set-closed formulas which are elementary or Σ1
1 are permitted as cut

formulas.

Since the main formulas of all axioms and the main formulas of the conclu-
sions of all Σ1

1 collection rules are elementary or Σ1
1 formulas of L∞W , partial
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cut elimination – eliminating all cuts whose cut formulas are neither elemen-
tary nor Σ1

1 formulas – can be proved following standard patterns; see, for
example, Schütte [15].

Theorem 21 (Partial cut elimination) Let k be a standard natural num-
ber. Then NBGW<E0 proves for all n < ω, all a ∈ E0 such that ωa C Ωk

and all sequents Φ ⊃ Ψ that

G∞
k `a

n+2 Φ ⊃ Ψ → G∞
k `ωa

n+1 Φ ⊃ Ψ.

The axioms and rules of G∞ are so that apart from ∈-induction, all axioms of
NBGW + (Σ1

1-Col) are directly verified within G∞. For proving the instances
of (LW-I∈) infinite derivations are required in general.

Lemma 22 Let k be a standard natural number. Then NBGW<E0 proves
for all set-closed formulas ϕ[p∅]:

1. For all ordinals α, all sets a of set-theoretic rank α and all ordinals β
such that β = ωα + ω + 2,

G∞
k `β0 ∀hm((∀hn ∈ hm)ϕ[hn] → ϕ[hm]) ⊃ ϕ[pa].

2. G∞
k `Ω

0 ∀hm((∀hn ∈ hm)ϕ[hn] → ϕ[hm]) ⊃ ∀hmϕ[hm].

Proof. We let ψ be the formula ∀hm((∀hn ∈ hm)ϕ[hn] → ϕ[hm]) and show
the first assertion by induction on α. Given a set a of rank α, the induction
hypothesis implies for all b ∈ a

G∞
k `γ0 ψ ⊃ ϕ[pb](1)

where γ := ωα. If b /∈ a, then according to (A4) and weakening

G∞
k `1

0 ψ ⊃ pb /∈ pa.(2)

From (1) and (2) we conclude, for any set b,

G∞
k `γ+1

0 ψ ⊃ pb /∈ pa ∨ ϕ[pb].

By universal set quantification we thus have

G∞
k `γ+2

0 ψ ⊃ (∀hn ∈ pa)ϕ[hn],

and from this, simple manipulations within G∞ also lead to

G∞
k `γ+ω0 ψ, (∀hn ∈ pa)ϕ[hn] → ϕ[pa] ⊃ ϕ[pa].
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Universal set quantification and contraction within the antecedent therefore
finish the proof of our first assertion. The second assertion follows from the
first by a universal set quantification in the succedent. 2

It is now routine to verify by induction on the lengths of the proofs in the
system NBGW+(LW-I∈)+(Σ1

1-Col) that every theorem of NBGW+(LW-I∈)+
(Σ1

1-Col) is derivable in G∞.

Theorem 23 Let k be a standard natural number and A a formula of LW
without free set variables. If A is derivable in NBGW + (LW-I∈) + (Σ1

1-Col),
then there exist standard natural numbers m and n such that NBGW<E0

proves
G∞
k `Ω+m

n ⊃ pAq.

Applying Theorem 21 finitely often we can strengthen this theorem to an
interpretation of NBGW + (LW-I∈) + (Σ1

1-Col) in G∞ with proofs whose cut
formulas are either elementary or Σ1

1 formulas and whose depths are bounded
by Ωk for suitable standard natural numbers k.

Corollary 24 Let A be a formula of LW without free set variables. If A is
derivable in NBGW+(LW-I∈)+(Σ1

1-Col), then there exists a standard natural
number k such that NBGW<E0 proves that there is a notation a C Ωk such
that

G∞
k `a

1 ⊃ pAq.

The next step is to introduce a truth definition for the set-closed formulas.
This truth definition will always depend on a class U such that the class
parameters are interpreted as projections (U)a (a any set) of U and the class
quantifiers range over all projections of U ; the set quantifiers range over the
universe of all sets.

In the following we let Lh be the elementary class function which assigns
to any element ϕ of For∞ the number Lh(ϕ) < ω of occurrences of logical
connectives in ϕ. Also, Fω is defined to be the class of all functions with
domain ω; i.e. we set

Fω := {f : Fun[f ] ∧ Dom[f ] = ω}.

For an f ∈ Fω, a set a and an n < ω, we write f(a|n) for the element of Fω
which maps n to a and otherwise agrees with f .

Definition 25

1. Sat [U, V, u, v] is defined to be the elementary LW formula

(∃ϕ ∈ SC∞)(∃f ∈ Fω)(u = 〈ϕ, f〉 ∧ Lh(ϕ) = v ∧ A[U, V, f, ϕ]),
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where A[U, V, f, ϕ] is the auxiliary formula taken to be the disjunction
of the following clauses:

(1) ∃x∃y(ϕ = (px ∈̇ py) ∧ x ∈ y),
(2) ∃x(∃n < ω)(ϕ = (px ∈̇ Hn) ∧ x ∈ (U)f(n)),

(3) ∃x∃y(ϕ = Ẇ (px, py) ∧ W(x, y)),

(4) ∃x(ϕ = ¬̇ x ∧ 〈x, f〉 /∈ V ),

(5) ∃x∃y(ϕ = (x ∨̇ y) ∧ (〈x, f〉 ∈ V ∨ 〈y, f〉 ∈ V )),

(6) ∃x∃y(ϕ = (x ∧̇ y) ∧ 〈x, f〉 ∈ V ∧ 〈y, f〉 ∈ V ),

(7) ∃x(∃n < ω)(ϕ = ∃̇ hn x ∧ ∃y(〈Sub(py, hn, x), f〉 ∈ V )),

(8) ∃x(∃n < ω)(ϕ = ∀̇ hn x ∧ ∀y(〈Sub(py, hn, x), f〉 ∈ V )),

(9) ∃x(∃n < ω)(ϕ = ∃̇Hn x ∧ ∃y(〈x, f(y|n)〉 ∈ V )),

(10) ∃x(∃n < ω)(ϕ = ∀̇Hn x ∧ ∀y(〈x, f(y|n)〉 ∈ V )).

2. A class V is called a satisfaction hierarchy with respect to U if it sat-
isfies iterating this formula Sat along the natural numbers; i.e.

SH [U, V ] := (∀n < ω)((V )n = {x : Sat [U,
⋃
{(V )i : i < n}, x, n]}).

In this definition, the parameter U codes a universe of classes; the class V
collects those pairs 〈ϕ, f〉 ∈ SC∞×Fω such that ϕ is satisfied with respect to
U if its class parameters are interpreted according to f . This leads directly
to the definition of the truth of set-closed formulas with respect to a class U
and an f ∈ Fω.

Definition 26 For all classes U and sets f, ϕ we set

Tr [U, f, ϕ] := ϕ ∈ SC∞ ∧ f ∈ Fω ∧ ∃X(SH [U,X] ∧ 〈ϕ, f〉 ∈ (X)Lh(ϕ)).

Note that the principle (It-ECA) makes sure that, provable in NBGW<E0 , for
every class U there exists a satisfaction hierarchy with respect to U which
is essentially unique: if SH [U, V1] and SH [U, V2], then (V1)n = (V2)n for all
n < ω. It is now an easy exercise to verify that this definition of truth has
the expected closure properties

Lemma 27 The theory NBGW<E0 proves, for all classes U , all f ∈ Fω, all
set-closed formulas ϕ, ψ, all sets x, y and all n < ω, that

Tr [U, f, (px ∈̇ py)] ↔ x ∈ y,

Tr [U, f, (px ∈̇ Hn)] ↔ x ∈ (U)f(n),
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Tr [U, f, Ẇ (px, py)] ↔ W(x, y),

Tr [U, f, ¬̇ϕ] ↔ ¬Tr [U, f, ϕ],

Tr [U, f, (ϕ ∨̇ ψ)] ↔ (Tr [U, f, ϕ] ∨ Tr [U, f, ψ]),

Tr [U, f, (ϕ ∧̇ ψ)] ↔ (Tr [U, f, ϕ] ∧ Tr [U, f, ψ]),

Tr [U, f, ∃̇ hnϕ] ↔ ∃xTr [U, f, Sub(px, hn, ϕ)],

Tr [U, f, ∀̇ hnϕ] ↔ ∀xTr [U, f, Sub(px, hn, ϕ)],

Tr [U, f, ∃̇Hnϕ] ↔ ∃xTr [U, f(x|n), ϕ],

Tr [U, f, ∀̇Hnϕ] ↔ ∀xTr [U, f(x|n), ϕ].

A further expected property of this truth definition is that the truth of an
set-closed elementary formula only depends on the interpretation of its class
parameters. The following is obvious from, for example, the previous lemma.

Lemma 28 In NBGW<E0 we have, for all classes U, V , all f, g ∈ Fω and
all set-closed elementary formulas ϕ, that

(∀n < ω)((U)f(n) = (V )g(n)) → (Tr [U, f, ϕ] ↔ Tr [V, g, ϕ]).

This definition of truth reflects LW formulas without bound class variables
in the appropriate way. To simplify the formulation of the following lemma,
we state it only for formulas without class parameters.

Lemma 29 (Truth reflection) Let A be a closed elementary formula of
LW and B a closed Π1 formula of LW . Then the theory NBGW<E0 proves,
for any U and f ∈ Fω:

1. A ↔ Tr [U, f, pAq].

2. B → Tr [U, f, pBq].

In the following Elm stands for the class of all elementary L∞W formulas which
contain h0 as the only free set variable; additional free occurrences of class
variables are permitted. Then we write

Def [U, V, u] := Def 1[U, u] ∨ Def 2[U, V, u],

where

Def 1[U, u] := ∃v(u = 〈0, v〉 ∧ v ∈ U),
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Def 2[U, V, u] :=

{
∃z(∃ϕ ∈ Elm)(∃f ∈ Fω)(u = 〈〈ϕ, f〉, z〉

∧ Sat [U, V, 〈Sub(pz, h0, ϕ), f〉,Lh(ϕ)]).

For carrying through an asymmetric interpretation of the (quasi cut-free)
derivations of the systems G∞

k in Theorem 37 below, we need hierarchies
of classes with sufficiently strong closure properties. One possible approach
to provide such hierarchies is to turn to an analogue of the constructible
hierarchy.

Definition 30 Let k be a standard natural number. Then a class W is said
to be a k-constructible hierarchy if, for all a ∈ SLim0 ∩ Ωk, b ∈ Lim0 ∩ Ωk

and n < ω, we have:

(W )a = {〈〈x, y〉, z〉 : x ∈ Lim0 ∩ a ∧ 〈y, z〉 ∈ (W )x},

(W )b+(n+1) = {x : Sat [(W )b,
⋃
{(W )b+y : 0 < y < (n+ 1)}, x, n]},

(W )b+ω = {x : Def [(W )b,
⋃
{(W )y : b C y C b + ω}, x]}.

The following lemma follows more or less directly, by coding two formulas
into one, from the hierarchy axiom of NBGW<E0 ; its proof can therefore be
omitted.

Lemma 31 Let k be a standard natural number. Then NBGW<E0 proves
the existence of a k-constructible hierarchy.

Now assume that W is a k-constructible hierarchy. For any a ∈ Lim0, the
class (W )a may be considered as a code of the collection of all classes ((W )a)u,
where u is an arbitrary set. The idea of this hierarchy then is as follows:

(i) (W )0 codes the empty collection of classes.

(ii) For any b ∈ Lim0, the successor stages b+(n+ 1) are used to collect all
set-closed formulas of length n together with f ∈ Fω which are true if
their class parameters are interpreted by projections of (W )b via f and
their class quantifiers range over the projections of (W )b.

(iii) At limit stages of the form b +ω the class (W )b+ω collects (W )b and all
classes which are definable by elementary formulas and interpretations
of class parameters as projections of (W )b.

(iv) At strong limits simply all projections of the previous limit stages are
coded together.
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Lemma 32 Let k be a standard natural number. Then NBGW<E0 proves
for all k-constructible hierarchies W , all f ∈ Fω, all a ∈ Lim0 ∩ Ωk and all
set-closed formulas ϕ with Lh(ϕ) = n and all ψ ∈ Elm:

1. Tr [(W )a, f, ϕ] ↔ 〈ϕ, f〉 ∈ (W )a+(n+1).

2. ((W )a+ω)〈ψ,f〉 = {x : Tr [(W )a, f, Sub(px, h0, ψ)]}.

The proof of this lemma is by carefully carrying out the informal consider-
ations above; its details can be left out. Some further useful properties of
hierarchies of this sort are listed in the following lemma. For its formulation
and for later use we introduce the abbreviations

U ∈̇ V := ∃x(U = (V )x),

U ⊂̇ V := ∀x((U)x ∈̇ V ),

U ⊂̇ω V := (∀n < ω)((U)n ∈̇ V ).

Lemma 33 Let k be a standard natural number. Then NBGW<E0 proves for
all k-constructible hierarchies W , all a ∈ Lim0 ∩ Ωk and all b ∈ Lim0 ∩ a:

1. (W )a ∈̇ (W )a+ω and (W )a ⊂̇ (W )a+ω.

2. (W )b ⊂̇ (W )a and (W )b ∈̇ (W )a.

Proof. Assume that W , a and b satisfy the assumptions of this lemma.
Then (W )a ∈̇ (W )a+ω follows from (W )a = ((W )a+ω)0. In order to show
(W )a ⊂̇ (W )a+ω, pick any set x and an f ∈ Fω such that f(0) = x. If ϕ is
the elementary L∞W formula (h0 ∈ H0), then ((W )a)x = ((Wa+ω)〈ϕ,f〉. This
establishes the first assertion.

If a is an element of SLim0 and b ∈ Lim0 ∩ a, then (W )b ⊂̇ (W )a directly
follows from the definition of (W )a. From a ∈ SLim0 and b ∈ Lim0 ∩ a it
also follows that b + ω ∈ Lim0 ∩ a, hence (W )b+ω ⊂̇ (W )a. In view of the
first assertion this implies (W )b ∈̇ (W )a. A simple transfinite induction on
a, combined with the first assertion, finishes the proof of the second. 2

The formula Tr [U, f, ϕ] interprets the class parameters of ϕ by projections of
U which are provided by the element f of Fω. Sometimes it is more practical
to have them coded into a class V .

Definition 34 For classes U, V and set-closed formulas ϕ we set

TR[U, V, ϕ] := (∃f ∈ Fω)((∀n < ω)((V )n = (U)f(n)) ∧ Tr [U, f, ϕ]).
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For classes V,X, Y and an n < ω we write Y = V (X|n) to express that
(Y )n = X and (Y )m = (V )m for any m < ω which is different from n. Then

TR[U, V, ϕ(X/Hn)] := X ∈̇ U ∧ ∃Y (Y = V (X|n) ∧ TR[U, Y, ϕ]).

Hence in TR[U, V, ϕ(X/Hn)] all free occurrences of the class variable Hn

within ϕ are interpreted by X and all others according to V . Naturally,
the predicate TR[U, V, ϕ] inherits the closure properties stated in Lemma 27
from Tr [U, f, ϕ]. We collect them for later reference.

Lemma 35 The theory NBGW<E0 proves, for all classes U, V , all set-closed
formulas ϕ, ψ, all sets x, y and all n < ω, that

TR[U, V, (px ∈̇ py)] ↔ x ∈ y,

TR[U, V, (px ∈̇ Hn)] ↔ x ∈ (V )n,

TR[U, V, Ẇ (px, py)] ↔ W(x, y),

TR[U, V, ¬̇ϕ] ↔ ¬TR[U, V, ϕ],

TR[U, V, (ϕ ∨̇ ψ)] ↔ (TR[U, V, ϕ] ∨ TR[U, V, ψ]),

TR[U, V, (ϕ ∧̇ ψ)] ↔ (TR[U, V, ϕ] ∧ TR[U, V, ψ]),

TR[U, V, ∃̇ hnϕ] ↔ ∃xTR[U, V, Sub(px, hn, ϕ)],

TR[U, V, ∀̇ hnϕ] ↔ ∀xTR[U, V, Sub(px, hn, ϕ)],

TR[U, V, ∃̇Hnϕ] ↔ (∃X ∈̇ U)TR[U, V, ϕ(X/Hn)],

TR[U, V, ∀̇Hnϕ] ↔ (∀X ∈̇ U)TR[U, V, ϕ(X/Hn)].

Utilizing these properties, it is routine to show (by simultaneous induction
on the length of ϕ and ψ) that set-closed Σ1 formulas are upward persistent
and set-closed Π1 formulas downward persistent.

Lemma 36 Let k be a standard natural number. Then NBGW<E0 proves for
all k-constructible hierarchies W , all classes U , all set-closed Σ1 formulas
ϕ, all set-closed Π1 formulas ψ and all a, b ∈ Lim0 ∩ Ωk:

1. a C b ∧ TR[(W )a, U, ϕ] → TR[(W )b, U, ϕ].

2. a C b ∧ U ⊂̇ω (W )a ∧ TR[(W )b, U, ψ] → TR[(W )a, U, ψ].
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If Φ and Ψ are finite sequences of set-closed formulas, (Φ ⊃ Ψ)• denotes (the
Gödel number of) the disjunction whose disjuncts are the negated formulas
of Φ and the formulas of Ψ.

Theorem 37 Let k be a standard natural number. In NBGW<E0 we can
prove that, for all k-constructible hierarchies W , all classes U , all finite
sequences Φ of set-closed Π1 formulas, all finite sequences Ψ of set-closed
Σ1 formulas, all a C Ωk and all b, c ∈ Lim0 ∩ Ωk, we have the implication

G∞
k `a

1 Φ ⊃ Ψ ∧ b + ωa+1 E c ∧ U ⊂̇ω (W )b → TR[(W )c, U, (Φ ⊃ Ψ)•].

Proof. We show this theorem by induction on a, which is justified by
Theorem 11, and distinguish the following cases:

1. Φ ⊃ Ψ is an axiom (A1)–(A4) or a conclusion of a structural rule, a
propositional rule, a quantifier rule for set or a quantifier rule for classes.
Then the assertion is trivially satisfied, is a consequence of Lemma 29 and
Lemma 35 or follows from the induction hypothesis.

2. Φ ⊃ Ψ is an axiom (A5). Then Φ is empty and Ψ consists of a single
formula ∃Hm∀hn(hn ∈ Hm ↔ ϕ[hn]), where ϕ[p∅] is a set-closed elementary
formula. In this case, the assertion is a consequence of Lemma 32, Lemma 35,
and Lemma 36.

3. Φ ⊃ Ψ is a conclusion of a Σ1
1 collection rule. Then the sequence Ψ is of

the form Ψ0,∃Hi∀hm∃hnθ[hm, (Hi)hn ] for some set-closed elementary formula
θ[p∅, H0], and there exists an a0 C a such that

G∞
k `a0

1 Φ ⊃ Ψ0, ∀hm∃Hnθ[hm, Hn].

For c0 := b + ωa0+1 the induction hypothesis gives us

TR[(W )c0 , U, (Φ ⊃ Ψ0,∀hm∃Hnθ[hm, Hn])
•].

Clearly, c0 C c, and therefore Lemma 33 implies

(W )c0 ⊂̇ (W )c and (W )c0 ∈̇ (W )c.(1)

Now we set θ1[hm] := θ[hm, Hn] and θ2[hm, hn] := θ[hm, (Hi)hn ]. Then by
Lemma 35

TR[(W )c0 , U, (Φ ⊃ Ψ0)
•] ∨ ∀x∃yTR[(W )c0 , U, θ1[px]((W )c0)y/Hn)],

and a simple persistency argument, see Lemma 36, together with (1) yields

TR[(W )c, U, (Φ ⊃ Ψ0)
•] ∨ ∀x∃yTR[(W )c, U, θ1[px]((W )c0)y/Hn)].
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This can also be written as

TR[(W )c, U, (Φ ⊃ Ψ0)
•] ∨ ∀x∃yTR[(W )c, U, θ2[px, py]((W )c0/Hi)].

In view of (W )c0 ∈̇ (W )c, see (1), we continue with

TR[(W )c, U, (Φ ⊃ Ψ0)
•] ∨ (∃Z ∈̇ (W )c)∀x∃yTR[(W )c, U, θ2[px, py](Z/Hi)].

By Lemma 35 this tells us

TR[(W )c, U, (Φ ⊃ Ψ0,∃Hi∀hm∃hnθ[hm, (Hi)hn ])•],

completing the treatment of this case.

4. Φ ⊃ Ψ is a conclusion of a cut. By assumption, its cut formula has to
be a set-closed elementary formula or a set-closed formula of the form ∃Hnθ,
where θ is set-closed elementary. In the remainder we concentrate on the
second and more complicated case. Then there exists a1, a2 C a such that

G∞
k `a1

1 Φ ⊃ Ψ, ∃Hnθ,(2)

G∞
k `a2

1 Φ, ∃Hnθ ⊃ Ψ.(3)

Set c1 := b + ωa1+1 and apply the induction hypothesis to (2). Then we
obtain

TR[(W )c1 , U, (Φ ⊃ Ψ,∃Hnθ)
•]

and from that, because of Lemma 35,

TR[(W )c1 , U, (Φ ⊃ Ψ)•] ∨ (∃X ∈̇ (W )c1)TR[(W )c1 , U, θ(X/Hn)].(4)

Furthermore, by an inversion argument (we did not formulate it explicitly
but it can be proved in a straightforward way), assertion (3) gives

G∞
k `a2

1 Φ, Sub(〈Hm〉, 〈Hn〉, θ) ⊃ Ψ,(5)

where Hm is a fresh class variable which does not occur in Φ ⊃ Ψ and ∃Hnθ.
For c2 := c1 + ωa2+1 and all V ⊂̇ω (W )c1 the induction hypothesis applied to
(5) – with a, b and c replaced by a2, c1 and c2, respectively – yields

TR[(W )c2 , V, (Φ, Sub(〈Hm〉, 〈Hn〉, θ) ⊃ Ψ)•].

In particular, this is the case for any V ⊂̇ω (W )c1 satisfying (V )m ∈̇ (W )c1

as well as (V )i = (U)i if i < ω and i 6= m. Once more we apply Lemma 35
and deduce

TR[(W )c2 , U, (Φ ⊃ Ψ)•] ∨

(∀X ∈̇ (W )c1)¬TR[(W )c2 , U, Sub(〈Hm〉, 〈Hn〉, θ)(X/Hm)].
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In view of the persistency properties formulated in Lemma 36 and an obvi-
ous exchange of variables, TR[(W )c2 , U, Sub(〈Hm〉, 〈Hn〉, θ)(X/Hm)] is equiv-
alent, for X ∈̇ (W )c1 , to TR[(W )c1 , U, θ(X/Hn)], and it follows that

TR[(W )c2 , U, (Φ ⊃ Ψ)•] ∨ (∀X ∈̇ (W )c1)¬TR[(W )c1 , U, θ(X/Hn)].

Together with (4) this implies

TR[(W )c1 , U, (Φ ⊃ Ψ)•] ∨ TR[(W )c2 , U, (Φ ⊃ Ψ)•].

Since c2 = c1 + ωa2+1 = b + ωa1+1 + ωa2+1 C b + ωa+1 E c, Lemma 36 proves
TR[(W )c, U, (Φ ⊃ Ψ)•], as desired.

Therefore all possible cases for deriving the sequent Φ ⊃ Ψ within G∞
k have

been considered, proving our theorem. 2

Corollary 38 Let k be a standard natural number and A a closed elemen-
tary LW formula. Then the theory NBGW<E0 proves, for all a C Ωk, that

G∞
k `a

1 ⊃ pAq → A.

Proof. First of all, Lemma 31 implies that there exists a k-constructible
hierarchy W . Then, assuming G∞

k `a
1 ⊃ pAq and setting c := ωa+1, the

previous theorem implies TR[(W )c, ∅, pAq]. Because of truth reflection, c.f.
Lemma 29, we therefore also have A. 2

Theorem 39 (Reduction) The theory NBGW+(LW-I∈)+(Σ1
1-Col) can be

reduced to the theory NBGW<E0 with respect to all closed elementary LW
formulas; i.e. for all closed elementary LW formulas A we have

NBGW + (LW-I∈) + (Σ1
1-Col) ` A =⇒ NBGW<E0 ` A.

Proof. Let A be a closed elementary LW formula provable in the theory
NBGW + (LW-I∈) + (Σ1

1-Col). According to Corollary 24 we thus have

NBGW<E0 ` (∃a C Ωk)(G
∞
k `a

1 ⊃ pAq)

for a suitable standard natural number k. Hence the previous corollary yields
NBGW<E0 ` A. 2

Corollary 40 (Final result) The four theories NBG + (L2-I∈) + (Σ1
1-AC),

NBGW + (LW-I∈) + (Σ1
1-Col), NBGW<E0 and NBG<E0 are equiconsistent.

To prove this summary, we simply recall what we have shown before: In view
of Theorem 15, NBG<E0 is contained in NBG + (L2-I∈) + (Σ1

1-AC), which,
according to Corollary 3, is equivalent to NBG+(L2-I∈)+(Σ1

1-Col). However,
this system is obviously contained in NBGW+(LW-I∈)+(Σ1

1-Col). The above
reduction theorem provides the reduction of NBGW + (LW-I∈) + (Σ1

1-Col) to
NBGW<E0 , a conservative extension of NBG<E0 by Theorem 16. Thus the
circle is closed.
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