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Abstract This paper is devoted to the study of self-referential proofs and/or justifications,
i.e., valid proofs that prove statements about these same proofs. The goal is to investigate
whether such self-referential justifications are present in the reasoning described by standard
modal epistemic logics such as S4. We argue that the modal language by itself is too coarse
to capture this concept of self-referentiality and that the language of justification logic can
serve as an adequate refinement. We consider well-known modal logics of knowledge/belief
and show, using explicit justifications, that S4, D4, K4, and T with their respective justifi-
cation counterparts LP, JD4, J4, and JT describe knowledge that is self-referential in some
strong sense. We also demonstrate that self-referentiality can be avoided for K and D.

In order to prove the former result, we develop a machinery of minimal evidence func-
tions used to effectively build models for justification logics. We observe that the calculus
used to construct the minimal functions axiomatizes the reflected fragments of justification
logics. We also discuss difficulties that result from an introduction of negative introspection.

Keywords Self-referentiality · Justification Logic · Epistemic modal logic · Logic of
Proofs

1 Introduction

The concept of self-reference, or self-referentiality, is a recurring topic in epistemology
and beyond, with Cantor’s Diagonalization Method, Russell’s Paradox, and Gödel’s Incom-
pleteness Theorems being only a few examples where the phenomenon manifests itself as an
object under and/or a tool of investigation. Often self-referentiality is used to demonstrate
contradictions or paradoxes, for which reason it is regarded with suspicion and conscious
efforts are made to avoid it.

In the framework of formal epistemology, the first question to be clarified is what kinds
of self-referring objects are being considered. The case of self-referring sentences in the
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context of Peano Arithmetic received a thorough treatment in [Smo85]. Moreover, it turns
out that many statements about self-reference can be formulated in the modal language,
where proofs, Gödel numbers, and the like are abstracted away and concealed in the 2 of
modal logic GL.

In this paper, we are also interested in self-referentiality in the context of proofs or
justifications, but the self-referring objects we study are proofs themselves.

Following Smoryńsky, we use the term self-reference when talking about self-referring
statements, whereas the term self-referentiality is reserved for proofs and is the main object
of study in this paper.

The question we are trying to answer can be broadly formulated as follows:

Do we normally use proofs that refer to themselves in mathematical discourse? If
so, can we eliminate such self-referential proofs: in a way, can we make proofs
predicative? If in general this is not possible, then which statements can still be
derived without the use of self-referentiality?

Naturally, to answer this question we need to narrow it down, leaving the general discussion
to philosophers. It should be clear that the answer strongly depends on the context and in
certain contexts can be trivial.

For instance, asking this question about proofs in Peano Arithmetic with the standard
Gödel numbering leads to an easy negative answer. Indeed, the Gödel number of a proof is
always strictly greater than the Gödel numbers of any parts of the proven statement. There-
fore, a valid proof can never be present in the statement proven by this proof.

In contrast, arguments understood in a broader sense as valid reasoning templates or
schemas suggest that we can apply them to anything including themselves. For instance, a
proof of the shortest tautology, F → F , in any formal system can certainly be applied to
any F even if it contains this very proof.

In provability logic, it makes sense to ask whether the use of self-referential proofs
is a necessary condition of validity for a particular theorem. Similarly, if one considers
knowledge to be justified true belief (see, e.g., [Get63,Gol67,LP69,Hen03]), it makes sense
to ask whether the use of self-referential justifications is necessary for a particular epistemic
fact to be valid. This question is hard to formulate within the confines of the modal language
although we have some vague intuitive understanding of its relevance.

Example 1 Consider modal statement

Φ = ¬2¬(P→ 2P) , (1)

which is valid in epistemic modal logic S4, i.e., valid for a knowledge agent1 with positive
introspection. This formula intuitively says that it is impossible to know that P does not
imply the knowledge of P. Why? If the agent knew that P did not imply the knowledge of P,
then

(A) the agent would know that P must be true since otherwise false statement P would
imply anything, including 2P, and

(B) the agent would know that she does not know P since otherwise true statement 2P
would follow from anything, including P.

Knowledge is supposed to be factive, so the knowledge of her ignorance of P would mean
that the agent indeed would not know P. In summary, the agent would know P without
knowing it, a contradiction that shows the impossibility of the supposition that the agent
knows that P does not imply the knowledge of P, i.e., in formulas:

1 A knowledge agent only knows true facts, unlike a belief agent whose beliefs can be false.
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1. 2¬(P→ 2P)→ 2P;
2. 2¬(P→ 2P)→ 2¬2P;
3. 2¬2P→¬2P;
4. 2¬(P→ 2P)→¬2P.

From 1. and 4., ¬2¬(P→ 2P) follows by propositional reasoning. There seems to be a
flavor of self-referentiality in this derivation. Indeed, the knowledge of P here is derived
from the knowledge of some fact, ¬(P→ 2P), that involves 2P, the knowledge of P.

Unfortunately, it is not always clear in the modal language whether this knowledge and
that knowledge of the same statement are, in fact, related. An exposition of this phenomenon
in Kripke’s Red Barn Example can be found in [Art08].

In Example 1, there is a reason to believe that self-referentiality does occur because the
consequents of 1. and 4. have to be related in order to derive ¬2¬(P→2P). The consequent
of 4. comes from the consequent of 3., which in its turn follows from part of 3.’s antecedent.
Finally, this antecedent, according to 2., is directly related to 2P inside the parenthesis.

We leave it to the reader to decide how persuasive this argument of the presence of
self-referentiality is. But even if it is, there is always a counterargument that there may be
another derivation that does not exploit self-referentiality.

This example shows that to study the impact of self-referentiality as a proof technique,
we need a richer language that would allow for a finer analysis. In this paper, we show that
the language of justification logic (see [Art08]) fits the bill in many cases. Instead of using
statements 2F (there exists a proof of F) wherein proofs are concealed, justification logics
employ the construct t :F (read term t serves as a justification for or proof of F) with proofs
explicitly present, which greatly simplifies the task of truth-tracking.

In the justification language, it is easy to see when self-referentiality occurs: when a
term t proves something about itself, i.e.,

` t :F(t) . (2)

This is the simplest but not the only type of self-referentiality; for instance, it could happen
that ` t1 :F(t2) and ` t2 :F(t1), with one proof referring to the other and vice versa. We will
discuss both the one-step, or direct, self-referentiality and the multi-step one.

Before defining justification logics and plunging into technicalities, we have to explain
what effect our results about the justification language have on more familiar epistemic
modal logics, such as S4. There is a clear connection between the modal language and the
language with explicit justifications:

Definition 2 Forgetful projection ◦ turns each justification formula into a modal one by
replacing each occurrence of a justification term by 2, (t :G)◦ = 2(G◦), while commuting
with Boolean connectives, (F→G)◦ = F◦→G◦, and keeping sentence letters and Boolean
constants intact, P◦ = P and ⊥◦ =⊥.2

The forgetful projection of a set X of justification formulas is a set of modal formulas
X◦ = {F◦ | F ∈ X}.

A logic L can be viewed as the set of L-theorems. Then, a modal logic ML is said to be
the forgetful projection of a justification logic JL if JL◦ = ML.

2 At this point, the structure of justification terms is not important since forgetful projection erases the
terms, structure notwithstanding. The structure of terms, which is the main truth-tracking tool, will be dis-
cussed in detail in the next section.
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It was shown in [Art95] that the forgetful projection of the first justification logic, Logic
of Proofs LP, is exactly S4, i.e., LP◦ = S4 (see also [Art01]). This statement is typically
called the Realization Theorem and embodies two directions:

1. Replacing each justification term in an LP-theorem by 2 yields an S4-theorem.
2. Vice versa, it is possible to realize all occurrences of 2 in an S4-theorem by justification

terms in such a way that the resulting justification formula is valid. This process of
restoring terms hidden in 2’s is called realization.

For each of modal logics K, D, T, K4, D4, S4, K5, K45, KD45, and S5, a justification
counterpart has been developed so that its forgetful projection is exactly this modal logic
(see [Art95,Bre00,Pac05,Rub06,Art08]). In this respect, each of these justification logics is
a fair representation of its forgetful projection. So the role of self-referentiality in a particular
type of reasoning represented by a modal logic, say S4, can be investigated through its
justification counterpart, in this case LP.

Definition 3 We say that modal reasoning in a modal logic ML, as represented by its jus-
tification counterpart JL, is not directly self-referential if each modal theorem G of ML can
be realized by a justification theorem Gr that can be derived in JL without using any self-
referential statements t :F(t).

The reasoning of ML and JL is not self-referential if the realization of each modal theo-
rem G can be achieved without using any cycles of references, such as

t2 :F1(t1), . . . , tn :Fn−1(tn−1), t1 :Fn(tn) . (3)

In this paper,3 we consider several representative examples and show that in all the cases

– either direct self-referentiality is required already on the level of atomic justifications
(S4/LP, D4/JD4, K4/J4, and T/JT)

– or self-referentiality can be avoided (K/J and D/JD).

Section 2 describes several justification logics and their forgetful projections. Epistemic
semantics for the justification logics from Sect. 2, the so-called F-models, is described in
Sect. 3. In Sect. 4, we introduce ∗-calculi, an important tool for constructing F-models. Us-
ing the ∗-calculi to construct F-countermodels, in Sect. 5 we prove that the Realization The-
orem for S4, D4, K4, and T requires direct self-referentiality. Section 6 demonstrates how to
avoid self-referentiality while realizing logics K and D. In Sect. 7, we discuss the difficulties
presented by negative introspection. Section 8 outlines directions for future research.

2 Justification Logics

The historically first justification logic, LP, was introduced in [Art95], where its forgetful
projection was shown to be S4 (see also [Art01]). Justification counterparts for K, D, T, K4,
and D4 were developed and the Realization Theorem for them was proved in [Bre00]. The
realizations of several modal logics with negative introspection were considered in [Pac05,
Rub06,Art08]. These logics with negative introspection present substantial difficulties in
applying our methods, which is discussed in detail in Sect. 7. In Sects. 2–6, we focus on
modal logics

K, D, T, K4, D4, S4 (4)

3 An earlier version of this paper appeared in conference proceedings [Kuz08b]. Results for S4/LP date
back to [Kuz06,BK06].
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and their respective justification counterparts

J, JD, JT, J4, JD4, LP . (5)

The language of justification logic is that of propositional logic enriched by a new con-
struct t :F , where F is any formula and t is a justification term:

F ::= P | ⊥ | (F → F) | t :F ,

t ::= ci | x | (t · t) | (t + t) | ! t ,

where ci is a constant from a family of justification constants c1,c2, . . . ,cn, . . .; x is a jus-
tification variable; and P is a sentence letter. Constants from the same family are denoted
by the same letter with different integer indices; different families are denoted by different
letters. ! is a unary operation while + and · are binary operations on terms.4

All the six justification logics from (5) share the following axioms and rules:
A1. Classical propositional axioms5 and rule modus ponens
A2. Application Axiom s :(F → G)→ (t :F → (s · t) :G)
A3. Monotonicity Axiom s :F → (s+ t) :F , t :F → (s+ t) :F
R4. Axiom Internalization Rule:

cn :cn−1 : . . . :c1 :A
where A is an axiom, c1, . . . ,cn is an initial segment of a family of justification con-
stants.

These axioms and rules alone yield the basic justification logic J, whose forgetful projection
is K, the weakest normal modal logic. It is easy to see that the forgetful projection of axioms
of J yields theorems of K. Just like the other modal logics from (4) are obtained by adding
axiom schemes to K, so can their justification counterparts from (5) be obtained by adding
corresponding justification schemes to J. In each case, the added modal axiom scheme is the
forgetful projection of the respective justification scheme:6

Modal Justification Name of Is Added
Scheme Scheme Justification Scheme in Logics

2F → F t :F → F A4. Factivity JT,LP

2F → 22F t :F → ! t :(t :F) A5. Positive Introspection J4,JD4,LP

2⊥→⊥ t :⊥→⊥ A7. Consistency JD,JD4

It is important to note that the modal Seriality Axiom in the last row of the table is a single
axiom, whereas its realization requires an axiom scheme A7.

Theorem 4 (Realization Theorem) [Art95,Bre00]

J◦ = K JD◦ = D JT◦ = T

J4◦ = K4 JD4◦ = D4 LP◦ = S4

For each justification logic, a family of weaker logics with restricted rule R4 is defined.
Note that this rule has a different scope in different justification logics because they have
different sets of axioms. Thus, the following definition of a constant specification depends
on the respective logic. In particular, a constant specification for LP may not be a constant
specification for J.

4 Operation ! is used only in J4, JD4, and LP.
5 It is typically required that this axiomatization be arranged into finitely many axiom schemes, which is

necessary for decidability and complexity results. Since this additional requirement plays no role for self-
referentiality, we omit it here.

6 Axiom and rule numbering is mostly inherited from [Art08].
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Definition 5 A constant specification CS for a justification logic JL is any set of formulas
cn : cn−1 : . . . :c1 :A that can be introduced by Axiom Internalization Rule R4 of this logic.
The only requirement is for such a set to be downward closed, i.e., if cn :cn−1 :. . . :c1 :A∈CS,
then cn−1 : . . . :c1 :A ∈ CS.

Definition 6 Let CS be a constant specification for a justification logic JL. By JLCS we
understand the logic obtained by replacing R4 in logic JL by rule

R4CS. Relativized Axiom Internalization Rule
cn : . . . :c1 :A ∈ CS

cn : . . . :c1 :A

Each logic JL from (5) is essentially JLTCS with the total constant specification TCS:

TCS =
{

cn : . . . :c1 :A
∣∣∣∣ A is an axiom, c1, . . . ,cn is an initial segment

of a family of justification constants

}
.

This will enable us to treat only the case of JLCS in future definitions, formulations, and
proofs and not to mention the case of JL explicitly since JL is an instance of JLCS.

Note 7 Justification logics with axiom A5, e.g., J4, JD4, and LP, allow for a simpler formu-
lation of rule R4, and consequently of a constant specification, of rule R4CS, and of TCS:
R4′. Axiom Internalization Rule

c1 :A
The purpose of rule R4 is to realize 2 . . .2︸ ︷︷ ︸

n

A for any n > 0 and any axiom A. Operations on

justifications take care of extending the realization to all theorems. But axiom A5, together
with rule R4′, enables us to use

! . . . !︸︷︷︸
n−1

c1 : . . . : ! !c1 : !c1 :c1 :A

for the same purpose. The two approaches are largely equivalent, where cn! ! . . . !︸︷︷︸
n−1

c1 pro-

vides a translation between them. Originally, all the six logics from (5) were formulated
with R4′ in [Art95,Bre00,Art01]. The formulation in this paper follows [Art08].

Definition 8 A constant specification CS for a justification logic is called

– self-referential if {a1 : A1(bi1),b1 : A2(ci2), . . . ,e1 : An(ain)} ⊆ CS, where a, b, c, . . . , e
represent families of constants and axioms A j(di j ) must have at least one occurrence of
constant di j from family d;

– directly self-referential if c1 :A(ci) ∈ CS;
– axiomatically appropriate7 if

1. every axiom A of the logic has at least one family of constants c such that c1 :A∈CS;
and

2. CS is upward closed, i.e., if cn : . . . :c1 :A ∈ CS, then cn+1 :cn : . . . :c1 :A ∈ CS.

These definitions of self-referential and directly self-referential CS use the downward
closure of constant specifications:

an : . . . :a1 :A(bi) ∈ CS =⇒ a1 :A(bi) ∈ CS ,

7 The term is due to Melvin Fitting (see [Fit05]).
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i.e., if family a refers to family b, this reference happens already on the level of a1, the
first constant in family a. So self-referentiality means the existence of a cycle of references
between families of constants, whereas direct self-referentiality requires some family of
constants to refer to itself. These two types of self-referentiality are atomic-level manifes-
tations of our general definition of (direct) self-referentiality from Definition 3. As it turns
out, already this basic level is often necessary.

The following property is fundamental for justification logics and is an important tool
in proving the Realization Theorem.

Lemma 9 (Internalization Property) [Art95] Let JLCS be a justification logic with an
axiomatically appropriate CS. Then, for any derivation F1, . . . ,Fn `JLCS

B there exists an
evidence term s(x1, . . . ,xn) such that

t1 :F1, . . . , tn :Fn `JLCS
s(t1, . . . , tn) :B . (6)

Proof A step-by-step translation from the given derivation into the target one.
A  c1 :A (R4CS), where A is an axiom, the exis-

tence of c1 :A ∈ CS is guaranteed by ax-
iomatic appropriateness

Fi  ti :Fi (hypothesis)
cn : . . . :c1 :A  cn+1 :cn : . . . :c1 :A (R4CS), where cn : . . . :c1 :A ∈ CS,

again using axiomatic appropriate-
ness

D→ G D
G

 
s1 :(D→ G) s2 :D

(s1 · s2) :G
using A2 and modus ponens twice

ut

Total constant specification TCS is always directly self-referential. Therefore, the stan-
dard proofs of the Realization Theorem from [Art01,Bre00] only show that realization is
possible when direct self-referentiality is used. Our first task is to determine when realiza-
tion cannot be achieved without (directly) self-referential CS. A relationship to Definition 3
can be described by the following

Proposition 10 Let a modal logic ML be the forgetful projection of a justification logic JL,
i.e., JL◦ = ML.

1. If (JLCS)◦ 6= ML for any CS that is not directly self-referential, ML/JL describe directly
self-referential reasoning.

2. If (JLCS)◦ 6= ML for any CS that is not self-referential, ML/JL describe self-referential
reasoning.

3 Epistemic Models for Justification Logics

The self-referentiality of S4, D4, K4, and T is established by a semantic argument. The
Kripke-like models we use, epistemic F-models, were first developed by Fitting for LP. The
proof of soundness and completeness of LP with respect to them, as well as their adaptation
to J, JT, and J4 can be found in [Fit05]. Soundness and completeness arguments for J and JD

can be found in [Pac05], for JT and J4 in [Art08]. The F-models for JD4 are, perhaps, first
developed here.

Definition 11 (F-models) An F-model is a quadruple M = 〈W,R,A ,V 〉, where 〈W,R,V 〉
is a Kripke model with
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– a set of worlds W 6= /0,
– an accessibility relation R⊆W ×W , and
– a valuation function V : SLet→ 2W that assigns to a sentence letter P a set V (P)⊆W of

all worlds where this sentence letter is deemed true.

Finally, an admissible evidence function A : Tm×Fm→ 2W assigns to a pair of a term t and
a formula F a set A (t,F)⊆W of all worlds where t is deemed admissible evidence for F .
Depending on the logic, there are various restrictions on the types of R and A allowed. The
following closure conditions must be satisfied by A for all justification logics:

C2. A (t,F → G)∩A (s,F)⊆A (t · s,G);
C3. A (t,F)∪A (s,F)⊆A (t + s,F);
CS. A (cn, cn−1 : . . . :c1 :A) = W , where n≥ 1 and cn :cn−1 : . . . :c1 :A ∈ CS.

The forcing relation 
 is defined as follows:

– M ,w 
 P iff w ∈V (P), where P is a sentence letter;
– Boolean cases are standard;
– M ,w 
 t :F iff 1) M ,u 
 F for all wRu and 2) w ∈A (t,F).

Closure conditions C2 and C3 are required to validate axioms A2 and A3 respectively, which
is reflected in their numbering. The additional conditions depend on the axioms added to the
logic:

– for JTCS and LPCS, axiom t :F → F requires that R be reflexive.
– For JDCS and JD4CS, axiom t :⊥→⊥ requires that R be serial.
– For J4CS, JD4CS, and LPCS, axiom t : F → ! t : t : F requires that R be transitive. In

addition, two more closure conditions are imposed on A :
C5. A (t,F)⊆A (! t, t :F);

Monotonicity. wRu and w ∈A (t,F) imply u ∈A (t,F).

Note that w ∈ A (t,F) in no way implies that F itself holds at w. Rather, w ∈ A (t,F)
means that at world w term t is acceptable, although not necessarily conclusive, evidence
for F .

Just as we sometimes talk about an accessibility relation on W or a valuation function
on W without presenting the whole Kripke model, we will often deal with admissible evi-
dence functions without presenting a specific F-model. Note that due to the Monotonicity
Condition, to determine whether something is an admissible evidence function, at least for
some justification logics, we need to know both W and R; hence, we will usually talk about
admissible evidence functions on a given Kripke frame 〈W,R〉.

Theorem 12 (Completeness Theorem) [Fit05,Pac05,Art08,Kuz08a] Justification logics
JCS, JTCS, J4CS, and LPCS are sound and complete with respect to their F-models. JDCS

and JD4CS are sound with respect to their F-models; completeness also holds provided CS is
axiomatically appropriate.

Proof The proof is by the standard maximal consistent set construction. The complete de-
tails can be found in [Kuz08a]. ut

The method we employ to prove direct self-referentiality consists of taking a modal the-
orem, such as (1) or its variant for weaker logics, and showing that it cannot be realized
unless directly self-referential constants are used. To show the impossibility, we take a pos-
sible realization and construct a countermodel for it under the assumption that constants are
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not directly self-referential. So at the center of our method is our ability to construct a model
with given properties. The main challenge, of course, lies in constructing the admissible ev-
idence function with given properties since creating an underlying Kripke model is a routine
procedure from modal logic.

4 ∗-Calculi and Minimal Evidence Functions

The method for constructing the so-called minimal admissible evidence functions8 goes
back to [Mkr97] but was first explicitly shaped as a calculus, for the case of LP, in [Kru06].

Definition 13 Let F = 〈W,R〉 be a Kripke frame. A possible evidence function on F is any
function B : Tm×Fm→ 2W .

We will use possible evidence functions to formulate positive conditions on the admissible
evidence function we plan to construct: namely, to describe which terms have to be evidence
for which formulas. Note also that an admissible evidence function on F is, by definition,
also a possible evidence function on F .

Definition 14 For a given Kripke frame F = 〈W,R〉, we say that a possible evidence func-
tion B2 on F is based on a possible evidence function B1, also on F , and write B1 ⊆B2
if B1(t,F)⊆B2(t,F) for any term t and any formula F .

Intuitively, B ⊆ A means that admissible evidence function A satisfies the positive con-
ditions set forth in B. The goal is typically to construct the minimal admissible evidence
function based on the given possible evidence function B:

Definition 15 Let B be a possible evidence function on a Kripke frame F = 〈W,R〉. The
minimal admissible evidence function A based on B must satisfy two conditions:

1. it is based on B, i.e., B ⊆A ;
2. it is the smallest one, i.e., B ⊆ A ′ =⇒ A ⊆ A ′ for any other admissible evidence

function A ′ on the same Kripke frame.

Here are the axioms and rules of the calculi that describe minimal evidence functions9.
We collectively call the two types of axiom systems described below — ∗CS and ∗!CS — the
∗-calculi.

Definition 16 (∗-Calculi) Let CS be a constant specification for one of the justification
logics from (5). The axioms and rules of ∗CS-calculus for logics JCS, JDCS, and JTCS are as
follows:
∗CS. Axioms: for any cn :cn−1 : . . . :c1 :A ∈ CS, n≥ 1, ∗(cn, cn−1 : . . . :c1 :A)

∗A2. Application Rule
∗(s,F → G) ∗ (t,F)

∗(s · t,G)

∗A3. Sum Rule
∗(s,F)
∗(s+ t,F)

∗(t,F)
∗(s+ t,F)

For the logics with positive introspection, J4CS, JD4CS, and LPCS, an additional rule has
to be added:

8 Perhaps, it would be more accurate to call them the smallest admissible evidence functions, but the term
minimal has been traditionally used and we leave it here for the sake of consistency.

9 For brevity, we will sometimes omit the word admissible and call them minimal evidence functions.
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∗A5. Positive Introspection Rule
∗(t,F)
∗(! t, t :F)

The resulting calculus is called ∗!CS-calculus.

The Internalization Property can be reformulated for the ∗-calculi:

Lemma 17 (Internalization Property) Let JLCS be a justification logic from (5) with an
axiomatically appropriate CS. Then, for any derivation F1, . . . ,Fn `JLCS

B and for the evi-
dence term s(x1, . . . ,xn) constructed for this derivation in Lemma 9,

∗ (t1,F1), . . . ,∗(tn,Fn) `∗CS
∗(s(t1, . . . , tn),B) . (7)

Proof The proof repeats that of Lemma 9, only (R4CS) in the target derivation should be
replaced by ∗CS, while A2 followed by double modus ponens becomes ∗A2. ut

Note that neither ∗A3 nor ∗A5 is used in this proof. This is the reason we can use ∗CS even
for logics with positive introspection.

The converse statement does not hold for ∗!CS as the following example10 shows:

Example 18 ∗(x,P) `∗!CS
∗(!x,x :P) for any CS, but surely P 0JLCS

x :P.

But we can prove a weaker statement:

Lemma 19 For a justification logic JLCS with positive introspection, i.e., for J4CS, JD4CS,
and LPCS, if

∗(t1,F1), . . . ,∗(tn,Fn) `∗!CS
∗(s,B) ,

then

1. t1 :F1, . . . , tn :Fn, F1, . . . ,Fn `JLCS
s :B,

2. t1 :F1, . . . , tn :Fn, F1, . . . ,Fn `JLCS
B.

Proof The proof of both claims is by simultaneous induction on the given ∗!CS-derivation.
For ∗(cn,F), an instance of ∗CS, it is clear that cn : F ∈ CS, where F is either in CS

(for n > 1) or an axiom (for n = 1). Thus, both cn :F and F are derivable in JLCS.
For hypothesis ∗(ti,Fi), both Fi (Claim 2) and ti :Fi (Claim 1) are taken as hypotheses in

our JLCS-derivations.
If ∗(s1 · s2,G) is obtained by ∗A2 from ∗(s1,F → G) and ∗(s2,F), then in JLCS we can

derive
1. (s1 · s2) :G from s1 :(F → G) and s2 :F and
2. G from F → G and F .

The case of ∗A3 is similar to ∗A2.
Let ∗(!s1,s1 :F) be obtained from ∗(s1,F) by ∗A5. Claim 1 for s1, which holds by IH,

happens to coincide with Claim 2 for !s1: they both require that s1 : F be derivable. Then
Claim 1 for !s1, i.e., derivability of !s1 :s1 :F , can be inferred from Claim 2 for !s1 by means
of positive introspection A5. ut

Since in this proof, hypotheses ti :Fi are needed only for Claim 1, whose proof interacts
with the proof of Claim 2 only in the ∗A5-clause, and since ∗A5 is also the only clause where
positive introspection is used, it follows that for ∗CS the converse of Lemma 17 holds:

10 The example is due to Vladimir Krupski.
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Lemma 20 For a justification logic JLCS without positive introspection, i.e., for JCS, JDCS,
and JTCS, if

∗(t1,F1), . . . ,∗(tn,Fn) `∗CS
∗(s,B) ,

then
F1, . . . ,Fn `JLCS

B .

Corollary 21 For any JLCS ∈ {JCS,JDCS,JTCS,J4CS,JD4CS,LPCS} and its corresponding
∗-calculus `∗,

`∗ ∗(s,B) =⇒ JLCS ` B .

In order to define minimal evidence functions in terms of the ∗-calculi, we use the fol-
lowing piece of notation:

Definition 22 For a possible evidence function B on a Kripke frame F = 〈W,R〉 and a
world w ∈W ,

B∗w = {∗(t,F) | w ∈B(t,F)} . (8)

So B∗w contains ∗(t,F) iff w ∈ B(t,F). In this sense ∗ can be seen as an abbreviation
for w ∈B.

Theorem 23 Let B be a possible evidence function on a Kripke frame F = 〈W,R〉. Define
possible evidence function A as follows: for logics JCS, JDCS, and JTCS, let

∗ (t,F) ∈A ∗
w ⇐⇒ B∗w `∗CS

∗(t,F) ; (9)

for logics J4CS, JD4CS, and LPCS, we assume, in addition, that R is transitive and let

∗ (t,F) ∈A ∗
w ⇐⇒ B∗w∪

⋃
uRw

B∗u `∗!CS
∗(t,F) . (10)

For each of the six logics, A so defined is the minimal evidence function based on B.

Proof The ∗-calculi act locally, within each world, as do most closure conditions with the
exception of Monotonicity. Since B∗w is part of the set of hypotheses in both (9) and (10),
clearly B ⊆A .

In both cases, A at each world is built from B at the same world by applying the clo-
sure rules (in the equivalent form of ∗-calculus rules), which have to be satisfied anyway.
The additional hypotheses from B∗u in (10), where uRw, must be satisfied at w due to the
Monotonicity Condition: if u ∈B(t,F), then u ∈ E (t,F) for any admissible evidence func-
tion E based on B. It follows by the Monotonicity Condition for E that w ∈ E (t,F). So
these additional hypotheses do not violate the minimality of A .

It remains to show that A is, in fact, an admissible evidence function. Rules ∗A2, ∗A3,
and ∗A5 guarantee that closure conditions C2, C3, and C5 respectively are satisfied (note
that ∗A5 is only used in (10), where C5 has to be satisfied). The axioms from ∗CS similarly
take care of the CS Closure Condition. The Monotonicity Condition needs to be satisfied
only when (10) is used. Let us show that w ∈ A (t,F) whenever u ∈ A (t,F) and uRw.
u ∈A (t,F) means that

B∗u ∪
⋃
zRu

B∗z `∗!CS
∗(t,F)

by definition of A . For these logics we assume R to be transitive, so zRu implies zRw,
given uRw. Therefore,

B∗u ∪
⋃
zRu

B∗z ⊆ B∗w∪
⋃
zRw

B∗z
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so that

B∗w∪
⋃
zRw

B∗z `∗!CS
∗(t,F) ,

i.e., w ∈A (t,F). ut

It should be noted that, apart from being a method for constructing models, the ∗-calculi
axiomatize the so-called reflected fragments of the respective justification logics.

Definition 24 The reflected fragment rJLCS of a justification logic JLCS consists of all its
theorems of form t :F :

rJLCS = {t :F | JLCS ` t :F} .

In fact, Nikolai Krupski in [Kru06] introduced the ∗!-calculus11 to axiomatize rLP, the
reflected fragment of LP. His result can be extended to other logics as follows:

Theorem 25 [Kru06,Kuz08a]

1. The reflected fragment rJLCS of JLCS ∈ {JCS,JDCS,JTCS} is completely axiomatized by
the ∗CS-calculus:

rJLCS ` t :F ⇐⇒ JLCS ` t :F ⇐⇒ ∗CS-calculus ` ∗(t,F) .

2. The reflected fragment rJLCS of JLCS ∈ {J4CS,JD4CS,LPCS} is completely axiomatized
by the ∗!CS-calculus:

rJLCS ` t :F ⇐⇒ JLCS ` t :F ⇐⇒ ∗!CS-calculus ` ∗(t,F) .

Proof (Sketch) In each case the middle statement is equivalent to the left one by definition.
To derive the right statement from the left one, we use proof by contradiction. Indeed,

if 0 ∗(t,F), then by Theorem 23 it would be possible to construct a model with w /∈A (t,F)
for some world w by taking A to be the minimal evidence function based on the empty
possible evidence function, B(t,F) ≡ /0. This world would then falsify theorem t : F in
violation of soundness.

Predictably, to get the left statement from the right one, completeness can be used. If
` ∗(t,F), then JLCS ` F by Corollary 21. Thus, F is valid by soundness. By Theorem 23,
it follows from ` ∗(t,F) that A (t,F) = W for any admissible evidence function A in any
model. Therefore, t :F is valid and hence derivable by completeness.

Full details of the proof can be found in [Kuz08a].

Armed with minimal evidence functions as a tool for constructing F-models, we are now
ready to prove direct self-referentiality.

5 Self-Referential Cases: S4, D4, T, and K4

Theorem 26 Realization of S4 in LP, of D4 in JD4, and of T in JT requires directly self-
referential constants and, hence, direct self-referentiality.

11 Under the name of C(CS).
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Proof Formula Φ = ¬2¬(P→ 2P) from (1) is derivable in all the three modal logics: D4,
T, and S4.12 Indeed, the S4-derivation from Example 1 (on p. 3) uses only normal modal
reasoning and the reflection axiom (in line 3). Hence, it can be performed in T as is. Here is
a similar derivation for D4:

1. 2¬(P→ 2P)→ 2P; (as in Example 1)
2. 2¬(P→ 2P)→ 2¬2P; (as in Example 1)
3. 2¬(P→ 2P)→ (¬2P→⊥); (from 1. by propositional reasoning)
4. 22¬(P→ 2P)→ (2¬2P→ 2⊥); (from 3. by normal modal reasoning)
5. 2¬(P→ 2P)→ (2¬2P→ 2⊥); (from 4. by transitivity)
6. 2¬(P→ 2P)→ (2¬2P→⊥); (from 5. by seriality)
7. 2¬(P→ 2P)→⊥. (from 6. and 2. by propositional reasoning)

The last formula is nothing but Φ .
Our goal is to show that no potential realization of Φ can be valid in F-models of JD4CS,

JTCS, or LPCS respectively unless CS contains directly self-referential constants.
Let JL ∈ {JD4,JT,LP} and CS be the maximal constant specification for JL without

directly self-referential constants:

CS =
{

cn :cn−1 : . . . :c1 :A
∣∣∣∣ A is an axiom of JL that does not

contain constants ci from family c

}
. (11)

For any pair of terms t and t ′ proposed as realizations of the two 2’s in Φ , we construct
an F-model for JLCS that falsifies ¬t : [¬(P→ t ′ :P)], thus demonstrating that no realization
of Φ is JLCS-valid. Note that only the soundness of JLCS with respect to its F-models is used
in this argument. The additional condition for CS to be axiomatically appropriate, necessary
for completeness in case of JD4, thus plays no role, even though it is, in fact, satisfied for
the CS from (11).

Given t and t ′, consider the following F-model for JLCS: M = 〈W,R,A ,V 〉 with the
Kripke frame 〈W,R〉 that consists of a single reflexive world w, i.e., with W = {w} and
R = {〈w,w〉}. Such R is obviously serial, reflexive, and transitive, thus making the frame
suitable for JD4, JT, and LP alike. Since w is the only world in the model, we can write


 F instead of M ,w 
 F ,
A (s,F) instead of w ∈A (s,F), and
¬A (s,F) instead of w /∈A (s,F).

Let us analyze what is needed to falsify ¬t : [¬(P→ t ′ : P)] (at the only world in the
model). Clearly, it is sufficient to satisfy t : [¬(P→ t ′ : P)]. So the first requirement on the
model is that

A (t, ¬(P→ t ′ :P)) . (12)

In addition, ¬(P→ t ′ :P) itself has to be true. This amounts to two requirements:


 P (13)

and 1 t ′ :P. In general, there are two ways to guarantee the latter: either by making P false
in one of the accessible worlds or by making t ′ not admissible as evidence for P. In our case,
the only accessible world is w itself, so (13) effectively prohibits the first path. Thus, we
must require

¬A (t ′,P) . (14)

12 The idea to use this formula for S4 was suggested by an anonymous referee of an earlier version of this
paper. Melvin Fitting then conjectured that it could also be used for the other two modal logics.
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Satisfying (12) – (14) is clearly sufficient for our purposes.
Let V (P) = W = {w}, which takes care of (13). The truth values of the other sentence

letters are unimportant. Let B be a possible evidence function on 〈W,R〉 defined by

B∗w = {∗(t, ¬(P→ t ′ :P))} , (15)

and let A be the minimal evidence function based on this B. (Note that A depends on
terms t and t ′.) This choice of A guarantees that (12) is satisfied, so it remains to verify (14),
i.e., according to (9) or (10), to show that

∗ (t, ¬(P→ t ′ :P)) 0∗ ∗(t ′,P) (16)

in the corresponding ∗-calculus. This is achieved by means of the following lemma:

Lemma 27 For any subterm s of term t ′:

1. If `∗ ∗(s,F), then F does not contain occurrences of t ′.
2. If ∗(t, ¬(P→ t ′ :P)) `∗ ∗(s,F), but 0∗ ∗(s,F), then F has at least one occurrence of t ′.

Moreover, if F is an implication, then F = ¬(P→ t ′ :P).13

Here `∗ represents `∗CS
in the case of JTCS or `∗!CS

in the case of JD4CS and LPCS.

The proof of this lemma is rather technical and sheds little light on what is going on. Let
us first finish the proof of the theorem. The proof of the lemma can be found below on p. 14.

Consider ∗(t ′,P). JLCS 0 P, so by Corollary 21, 0∗ ∗(s,P). Further, since t ′ does not
occur in P, by Lemma 27.2, ∗(t, ¬(P→ t ′ :P)) 0∗ ∗(s,P) either.

Thus, the constructed model satisfies (12) – (14) and, hence, falsifies the proposed real-
ization of (1). ut

The technicalities in the formulation of Lemma 27 may obscure the fact that it is nothing
but a formal reformulation of the argument in Example 1. In fact, the example was originally
inspired by this lemma.

Lemma 17 helps to understand how (16) can be violated: if term t ′ encodes a derivation
¬(P→ t ′ : P) `JLCS

P. In this derivation, the hypothesis has to be used because P is not
valid on its own; this argument corresponds to Corollary 21. And any meaningful way of
using hypothesis ¬(P→ t ′ : P) requires that it be part of an axiom, which is represented
in t ′ by a constant. This constant would justify the axiom and, thus, would refer to t ′, at
the same time being part of t ′. This is the essence of the second claim of Lemma 27. The
difference between the claims of Lemma 27 is the difference between using a hypothesis “in
a meaningful way” (Claim 2) and otherwise (Claim 1).

Proof (of Lemma 27)
(A) Case s = x, a justification variable:
∗(x,F) can only be derived from ∗(t, ¬(P→ t ′ : P)) and only if they coincide; there-
fore, t = x and F = ¬(P → t ′ : P), which does contain t ′ and is the only allowed
implication.

(B) Case s = cn, a justification constant:
Unless ∗(cn,F) coincides with the hypothesis as in (A), it can only be derived by ∗CS,
in which case cn :F ∈ CS and we are in the situation of Claim 1. Then, either n = 1 and
F = A or n > 1 and F = cn−1 : . . . :c1 :A, where A is an axiom. Since CS is not directly
self-referential, A cannot contain occurrences of cn, a subterm of t ′, and neither can
c1, . . . ,cn−1. Thus, F does not contain t ′.

13 We consider ¬G to be an abbreviation of G→⊥. Assuming that ¬ is a primary connective would only
simplify matters.
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(C) Case s = !s1 (only for logics JD4CS and LPCS):
Unless ∗(!s1,F) coincides with the hypothesis as in (A), it can only be derived by ∗A5
from ∗(s1,G) and only if F = s1 : G. If ∗(s1,G) is derivable without the hypothesis
(Claim 1), G does not contain t ′ by IH, whereas s1 is a proper subterm of t ′. Therefore,
F = s1 :G does not contain t ′.
If ∗(s1,G) can only be derived from the hypothesis (Claim 2), G contains t ′ by IH,
and so does F = s1 :G, which is not an implication.

(D) Case s = s1 + s2 :
Unless ∗(s1 + s2,F) coincides with the hypothesis as in (A), it can only be derived
by ∗A3 from ∗(si,F) for some i = 1,2. Therefore, either claim for F holds by IH.

(E) Case s = s1 · s2 :
Unless ∗(s1 · s2,F) coincides with the hypothesis as in (A), it can only be derived
by ∗A2 from ∗(s1,G→ F) and ∗(s2,G) for some formula G. If both premises can be
derived without the hypothesis (Claim 1), then G→ F does not contain t ′ by IH, and
consequently neither does F .
It turns out that this is the only possibility. Indeed, if ∗(s2,G) is not derivable without
the hypothesis, G must contain t ′ by IH. Therefore, G→ F also contains t ′, and by IH
∗(s1,G→ F) is not derivable without the hypothesis either. Thus, whenever the hy-
pothesis is needed at all, ∗(s1,G→ F) definitely requires it. Suppose it does. Being
an implication, by IH

G→ F = ¬(P→ t ′ :P) = (P→ t ′ :P)→⊥

must be the only implication allowed in Claim 2. So G = P→ t ′ :P. Then ∗(s2,G) can
only belong to Claim 2 because G contains t ′. However, G is an implication other than
the only one allowed by IH. This contradiction completes the proof of (E). ut

Theorem 28 Realization of K4 in J4 requires direct self-referentiality.

Proof Formula Φ from (1) is not derivable in K4 and thus cannot be used here. But since
the Hilbert-style axiom system for D4 is obtained from that of K4 by adding just one axiom,
Seriality, K4 ` ¬2⊥→¬2¬(P→ 2P).14 We will show that its equivalent form

Ψ = 2¬(P→ 2P)→ 2⊥ (17)

cannot be realized in J4 without directly self-referential constants.
For any potential realization

Ψ
r = t : [¬(P→ t ′ :P)]→ k :⊥ , (18)

we construct an F-model for J4CS that falsifies Ψ r, thus showing that no realization of Ψ

is J4CS-valid. As in Theorem 26, here CS is the maximal constant specification without
directly self-referential constants defined by (11) with JL = J4.

This time the frame in the falsifying model consists of a single irreflexive world, i.e.,
W = {w}, R = /0. In such a model, any F is vacuously true at all accessible worlds. Therefore,

 s :F iff A (s,F). Once again, we take A to be the minimal evidence function based on B
defined by (15). (Note that R is not present in the definition of B, so the fact that R used
in Theorem 26 differs from the one used here plays no role as long as W is the same.)
Valuation V is not important.

14 The idea to use this formula for K4 is due to Melvin Fitting.
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Clearly, A (t, ¬(P→ t ′ :P)), so to falsify (18) it is sufficient to show ¬A (k,⊥), which,
according to (10), is equivalent to

∗(t, ¬(P→ t ′ :P)) 0∗!CS
∗(k,⊥) .

Suppose towards a contradiction that ∗(t, ¬(P→ t ′ :P)) `∗!CS
∗(k,⊥). By Lemma 19.2,

¬(P→ t ′ :P), t : [¬(P→ t ′ :P)] `J4CS
⊥ ;

in other words, by soundness, the two hypotheses would not be J4CS-satisfiable. At the same
time, the F-model constructed in the proof of Theorem 26 for the case of LP satisfies both of
them. It remains to show that any LPCS′ -model is also a J4CS-model, where CS′ stands for
the maximal constant specification for LP that is not directly self-referential, whereas CS is
the respective maximal constant specification for J4. LPCS′ -models also require that R be
transitive and A satisfy closure conditions C2, C3, C5, and Monotonicity. All axioms of J4

are also axioms of LP, and the definition of directly self-referential constants is logic inde-
pendent, so CS ⊂ CS′. Thus, the ∗CS′-closure implies the ∗CS-closure. So the supposedly
unsatisfiable formulas have a model. This contradiction completes the proof. ut

6 Non-Self-Referential Cases: D and K

In this section, we will show that (JDCS)◦ = D and (JCS)◦ = K for some non-self-referential
constant specifications CS. Moreover, we will make sure that no realization of a modal
theorem requires any self-referential cycles.

To construct such realizations, we divide both the set of constants and the set of justifi-
cation variables into levels indexed by non-negative integers as follows. Let `(ci) and `(x)
denote the level of constant ci and of variable x respectively. We require that consecutive
constants from the same family have consecutive levels: `(ci+1) = `(ci)+ 1. We also dis-
tribute constants and variables into levels in such a way that for each non-negative integer i
both set

{a1 | a is a family of constants and `(a1) = i}

and set
{x | x is a justification variable and `(x) = i}

are infinite.
Let At be the set of all atomic justification terms: constants and variables, and let

At(F) and At(t) denote the sets of all atomic terms that occur in formula F and in term t
respectively. We extend the definition of level to terms and formulas as follows:

`(t) = max{`(p) | p ∈ At(t)} , (19)

`(F) = max{`(p) | p ∈ At(F)} . (20)

If At(F) = /0, we define `(F) =−1. For instance, `(P) =−1 for any sentence letter P. Let

CS = {cn :cn−1 : . . . :c1 :A ∈ TCSJL | `(c1) > `(A)} (21)

for JL ∈ {J,JD}. Such a constant specification is clearly axiomatically appropriate.

Theorem 29 It is possible to realize D in JD and K in J without self-referentiality.
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Proof We reprove the Realization Theorem for D in JDCS and for K in JCS for the respec-
tive CS from (21) making sure that whenever t :F appears in the derivation of the realizing
justification formula, `(t) > `(F).

Since JLCS ⊆ JL, we have (JDCS)◦ ⊆ JD◦ = D and (JCS)◦ ⊆ J◦ = K, so it remains
to prove the other inclusion. Before doing so, we need to describe the behavior of 2’s in
cut-free Gentzen derivations for logics K and D.15

We take Gentzen calculus G3c from [TS00] for classical propositional logic, i.e., we
restrict the axioms to ⊥⇒ and P⇒ P for sentence letters P.16 The only modal rule to be
added for logic K is

C1, . . . ,Cn⇒ B
2C1, . . . ,2Cn⇒ 2B

. (22)

In addition, logic D enjoys
C1, . . . ,Cn,D⇒

2C1, . . . ,2Cn,2D⇒
. (23)

(Gentzen rules necessary for various modal logics can be found, for instance, in [Wan94,
Fit07]. The system for D seems to originate from [Gob74]. See also [Val93] for the expo-
sition of a syntactic cut-elimination for D, which subsumes the one for K since rule (22) is
present in D.)

We define the depth of an occurrence of 2 in a modal formula F by induction on the
size of F : the outer 2 in 2G has depth 0 in 2G; for any occurrence of 2 inside G, its depth
in 2G is obtained by adding 1 to its depth in G.

We now define the level of an occurrence of 2 in a Gentzen derivation as its depth in the
formula it occurs in plus the number of modal rules (22) and (23) used on its branch after
this occurrence.

All occurrences of 2 in a cut-free Gentzen derivation can be divided into families of
related occurrences. It is easy to prove that

Lemma 30 In a Gentzen K- or D-derivation of ⇒G, the levels of all occurrences of 2 from
a given family are equal to the depth of the family’s occurrence in G.

Thus, we can define the level of a family of 2’s. Moreover, it is fairly obvious that all
new 2’s introduced by a particular instance of either (22) or (23) have the same level, which
enables us to define the level of a given instance of a modal rule.

Let N be the largest level of 2’s in a given cut-free derivation.
We use a proof of the Realization Theorem that transforms a given cut-free Gentzen

derivation of a modal theorem G, i.e., of sequent⇒ G, into a Hilbert derivation of its real-
ization Gr by induction on the Gentzen derivation, whereby each sequent ` Γ ⇒ ∆ is being
transformed into Γ r `

∨
∆ r.17 A detailed description can be found in [Art01,Bre00,BK06].

Our approach here is different in that we realize 2’s according to their levels, which eventu-
ally enables us to avoid self-referentiality. We first describe the Realization Procedure along
with level assignments. Then we show why self-referentiality does not occur.

A cut-free derivation preserves the polarity of formulas, so we can divide families of 2’s
into positive and negative. We realize each negative family by a distinct justification variable

15 It was suggested by Valentin Shehtman that this property is due to uniformity of these modal logics. For
a discussion of uniform modal logics, see [Fin75,CZ97].

16 In G3c Weakening and Contraction rules are absorbed into the axioms. Here it is more convenient to have
Weakening and Contraction present explicitly while keeping the axioms as plain as possible. This allows for a
greater control over where 2’s are introduced. It is important nevertheless that the systems we use be cut-free.

17 As always, the empty disjunction is interpreted as ⊥.
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of level N− i, where i is the level of this family of 2’s. The same is done for the positive fam-
ilies that are introduced exclusively by Weakening. If at least one 2 in a positive family is
introduced by rule (22), such a family is realized by a sum of auxiliary variables v1 + . . .+vl ,
one variable per each use of (22) to introduce a 2 from this family. (Note that rule (23) does
not introduce new positive 2’s.) These auxiliary variables are not real justification terms;
they are placeholders to be replaced by actual terms in the course of the realization. The
level of each auxiliary variable is also defined to be N− i, where i is the level of the respec-
tive instance of (22), or equivalently the level of the family of 2’s the variable temporarily
realizes. Let us call this preliminary realization of 2’s in the given Gentzen derivation a pre-
realization. As will be seen later, the prerealization is only changed by instances of modal
rule (22).

The Gentzen axioms, propositional rules, and Contraction do not introduce any new 2’s
and can be translated from Gentzen into Hilbert using the standard propositional translation
methods. Since the reasoning involved is purely propositional, there are no changes to the
prerealization; in particular, no new terms or subformulas of type t : F appear anywhere in
the Hilbert derivation under construction due to Gentzen axioms or these rules.

Instances of Weakening can introduce formulas with 2’s, so new terms (at least new to
this Gentzen branch) may have to be introduced. The realization of 2’s introduced by Weak-
ening is done according to the prerealization, except that some auxiliary variables might
have already been replaced by real justification terms during the translation of preceding
modal rules. Since the reasoning needed to translate instances of Weakening is also purely
propositional, no new terms are introduced, except those that realize new 2’s, and no new
subformulas of type t :F appear in the Hilbert derivation, except those that realize new modal
subformulas in the Gentzen derivation.

Thus, changes to the prerealization can happen only when instances of modal rules (22)
and (23) are translated. To translate such instances, we use the Internalization Property
(Lemma 9). This prompts an appearance of terms and formulas of type t : F in the Hilbert
derivation that do not themselves realize any 2’s and modal formulas in the Gentzen deriva-
tion. Such terms may be subterms of realizing terms or, as in the case of rule (23), terms may
simply disappear from the final justification formula and only remain present in the Hilbert
derivation. Our goal is to show that self-referentiality does not occur even in such “hidden”
terms and formulas.

Consider rule (22) first. By IH, we already have a Hilbert derivation of

Cr
1, . . . ,C

r
n ` Br . (24)

By Lemma 9, there exists a term t(x1, . . . ,xn) such that

x1 :Cr
1, . . . ,xn :Cr

n ` t(x1, . . . ,xn) :Br , (25)

where each xi is the prerealization of the negative 2 in front of Ci in the conclusion of (22).
Throughout the Hilbert proof, we substitute t(x1, . . . ,xn) for the auxiliary variable that corre-
sponds to this instance of rule (22) in the sum realization of the family of the 2 in front of B
(in the conclusion of the modal rule). According to the proof of Lemma 9, each axiom A in
derivation (24) gives rise to a constant c1 in (25), to be taken from a fresh family of constants
and used in c1 :A. Similarly, each use of the Axiom Internalization Rule, ck :ck−1 : . . . :c1 :A,
in (24) requires a new constant ck+1, to be used in ck+1 : ck : ck−1 : . . . :c1 :A in (25), where
naturally ck+1 is taken from the same family of constants as c1, . . . ,ck. In the latter case, the
level of ck+1 is predetermined by the level of ck. In the former case, we choose a new con-
stant so that `(c1) = N− i, where i is the level of this instance of rule (22), or equivalently
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the level of the family of the 2 in front of B. Each hypothesis Cr
i in (24) acquires in (25)

variable xi according to the prerealization. The level of these variables is also N− i, where
i is the level of this instance of (22). All the new constants and variables become subterms
of term t(x1, . . . ,xn), which realizes the 2 in front of B.

Rule (23) is treated similarly. Here the Internalization yields

x1 :Cr
1, . . . ,xn :Cr

n,y :Dr ` t(x1, . . . ,xn,y) :⊥ ,

from which ⊥ can be easily derived by means of axiom A7, t(x1, . . . ,xn,y) :⊥ → ⊥, and
modus ponens. We use the same guidelines for assigning levels to new constants c1 in-
side t(x1, . . . ,xn,y) as the ones we used for rule (22) except that there is no B and hence no 2

to be realized. But we can still use the level of the instance of (23) to figure out the level of the
new constants. Note that no change to the prerealization happens here: term t(x1, . . . ,xn,y)
simply disappears even though the constants that comprise it remain in the Hilbert deriva-
tion. These are the “hidden” constants referred to earlier. These constants, or rather constants
from the same family, can later be incorporated into terms to replace positive 2’s in the sub-
sequent instances of rule (22).

We have chosen the level of each variable and auxiliary variable in the prerealization to
be equal to N− i, where i is the level of the family of 2’s realized by the respective (aux-
iliary) variable. We have made sure that this correspondence remains valid for constants c1
introduced in the modal rules if those constants are used in the realization of some posi-
tive 2. In instances of rule (23), the level has been matched to that of the rule. It remains to
verify that constants ck+1 introduced during Internalizations also comply. It will then follow
that the substitutions of a term for an auxiliary variable in translating instances of (22) do
not violate this preset harmony. These substitutions are the source of self-referentiality in
stronger modal logics.

Let us prove that the level of ck+1 still matches the level of the rule that prompts its
introduction. Indeed, as we have seen, constants are only introduced to be used in Axiom
Internalizations. Each instance of Axiom Internalization remains in the Hilbert derivation
throughout the subsequent propositional Gentzen steps until an appearance of the next in-
stance of a modal rule because the translation of a propositional Gentzen rule, logical or
structural alike, only appends the existing Hilbert derivation. Each constant c1 has level N− i
by construction, where i is the level of the corresponding instance of the modal rule. Suppose
constants ck also satisfy this property. Consider an instance of a modal rule whose transla-
tion has introduced constant ck+1. It gets introduced because ck had already been used in
the Hilbert derivation. By IH, the level of ck is equal to N− i, where i is the level of the
instance of the rule that introduces ck. (Note that every constant is introduced only once
because we always choose a fresh constant and substitutions do not influence the introduc-
tion of constants, only of the formulas justified by these constants.) It is easy to observe
that if instance I2 of a modal rule follows instance I1 of a modal rule in a Gentzen deriva-
tion with no other modal rules on the branch between them, then `(I2) = `(I1)− 1. Thus,
`(ck+1) = `(ck)+1 = N− `(I1)+1 = N− `(I2).

Therefore, whenever a term t replaces an auxiliary variable, this term consists entirely of
constants and variables whose level is N− i, where i is the level of the family of 2’s realized
by t. The replaced auxiliary variable has the exact same level, so substitutions do not change
the level of any terms or formulas.

We now prove that whenever t :F appears in the translation, `(t) > `(F) by induction on
the depth of the Gentzen derivation. As discussed before, we only need to consider Gentzen
steps corresponding to modal rules. Consider an instance I of a modal rule of level i. All
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modal rules in the subtree whose root is the premise of I and all 2’s present in this subtree
have levels strictly greater than i. Therefore, all variables and constants in the Hilbert deriva-
tion of the realization of the premise of I have levels strictly smaller than N− i (here we con-
sider the final form of the derivation after substitutions have replaced all auxiliary variables).
So all the formulas in the Hilbert derivation before Internalization have levels < N− i. All
the constants and variables introduced during Internalization have level N− i, and so do all
the new terms constructed by Internalization. Therefore, whenever formula s : F appears in
the internalized derivation, i.e., the derivation of the conclusion of I, `(s) = N− i > `(F)
because F was present in the derivation before Internalization (see proof of Lemma 9).

Demonstrating that self-referentiality does not occur is now easy. Suppose formulas

t2 :F1(t1), . . . , tm :Fm−1(tm−1), t1 :Fm(tm)

are present in the final Hilbert derivation. That would imply that
`(t2) > `(F1(t1))≥ `(t1) ,
...
`(tm) > `(Fm−1(tm−1))≥ `(tm−1) ,

`(t1) > `(Fm(tm))≥ `(tm) .

In other words, we would have

`(tm) > `(tm−1) > · · ·> `(t2) > `(t1) > `(tm) ,

which is impossible.
We have shown that self-referentiality can be avoided in formulas that realize all modal

theorems of K and D, as well as in derivations of these realizing formulas. ut

7 What Is Wrong with Negative Introspection?

Modal logics with negative introspection K5, K45, KD45, and S5 also have their justifica-
tion counterparts. These counterparts are obtained by adding a new unary operation ? on
justification terms. The role of ? with respect to negative introspection is similar to that
of ! with respect to positive introspection. We discuss the difficulties in expanding the study
of self-referentiality to these logics using JT45, the counterpart of S5, as a representative
example.

JT45 is obtained from LP by adding
A6. Negative Introspection Axiom ¬t :F → ? t :¬t :F
(see [Pac05,Rub06,Art08]). It would seem that the argument from Example 1, which only
requires T reasoning, can therefore be performed in S5 equally well. This hints at the self-
referentiality of S5, which should be provable through terms of JT45.

However, this program is far from completion. Our method for demonstrating self-re-
ferentiality for S4 and several other logics involves showing that the only way to falsify
¬t : [¬(P→ t ′ : P)] is by using directly self-referential constants. On the face of it, this can
be done in two ways. The first option is to analyze all possible derivations to show that
they all feature self-referential constants. But studying the properties of Hilbert derivations
is an unwieldy task given an absence of the subformula property. So we resort to showing
the contrapositive: we eliminate self-referential constants and in their absence are able to
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construct a countermodel. In doing so we rely on the existence of a minimal admissible
evidence function such that for some world w

w ∈A (t,¬(P→ t ′ :P)) but w /∈A (t ′,P) .

Logic JT45 also has an epistemic semantics complete with admissible evidence func-
tions. They have to satisfy an additional closure condition
C6. [A (t,F)]c ⊆A (? t, ¬t :F),
where [·]c means the complement within W . Unfortunately, all variants of F-models for JT45

feature another requirement that proves to be non-recursive. Pacuit in [Pac05] imposes a
condition that he calls Negative Proof Checker, which states: “If there is a v such that wRv
and M ,v 
 ¬F [...], then w ∈ A (? t,¬t : F).” This condition is non-constructive since
A (? t, ·) is not determined solely by A (t, ·). It is not clear, in particular, how to satisfy
this condition if F contains ? t. Rubtsova in [Rub06] and Artemov in [Art08] replace this re-
quirement by the so-called Strong Evidence: “if w∈A (t,F), then M ,w
 t :F .”18 Although
this condition looks a little nicer, it is in fact equivalent to Pacuit’s condition and thus is as
hard to satisfy. It also ties a statement about admissible evidence w ∈ A (t,F) to the truth
of formula F at worlds accessible from w, which is implied by w 
 t : F , thus violating the
useful separation of truth from admissible evidence in LP and weaker logics: the truth of
formulas there does not affect the admissibility of evidence.

Still, a condition of such type is necessary for the validity of the Negative Introspection
Axiom. Indeed, ¬t : F could be true simply because F is false in some accessible world,
which has nothing to do with whether t is admissible evidence. But to validate ? t :¬t :F we
must make ? t admissible evidence for ¬t :F . It seems that a different semantics is needed to
handle justification logics with negative introspection.

8 Future Research

There are many directions in which this study can be developed.
Self-referentiality results can be used to prove structural properties of Gentzen modal

derivations, e.g., the unavoidability of double introduction of the same family of 2’s on
the same branch for directly self-referential modal logics. This opens new applications of
Justification Logic to structural proof theory.

It remains to see what triggers self-referentiality. It appears that self-referentiality is tied
to the possibility of mixing levels of 2’s in a Gentzen derivation, to the non-uniformity
of a modal logic, but we need a larger sample set to make any definite conclusions. We
conjecture that the statement of Lemma 30 can be viewed as a purely modal formulation of
a sufficient criterion for non-self-referentiality. It would be interesting to see whether it is
also necessary.

We still do not know of an example when self-referentiality is required but direct self-
referentiality can be avoided.

A manageable semantics for logics with negative introspection could open a lot of av-
enues into their study, including self-referentiality, decidability, complexity, etc.

Another direction is a deeper study of self-referentiality where it is unavoidable.19 Some
modal theorems in, say, S4 can be realized without self-referentiality, e.g., all theorems of D.

18 This formulation is from [Art08]; Rubtsova’s condition is almost identical. The term strong evidence is
due to Fitting and is a property of the canonical models for all justification logics.

19 This direction of research was suggested by Vladimir Krupski.
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What is the non-self-referential fragment of S4 and of other modal logics? Are such frag-
ments decidable? Do they have a nice axiomatization? Can these fragments be constructed
uniformly for different modal logics?
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