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Abstract. We give a calculus of proof-nets for classical propositional
logic. These nets improve on a proposal due to Robinson by validating the
associativity and commutativity of contraction, and provide canonical
representants for classical sequent proofs modulo natural equivalences.
We present the relationship between sequent proofs and proof-nets as
an annotated sequent calculus, deriving formulae decorated with expan-
sion/deletion trees. We then see a subcalculus, expansion nets, which
in addition to these good properties has a polynomial-time correctness
criterion.

1 Introduction

In stark contrast to the well-developed theory of proof-identity for in-
tuitionistic natural deduction (given by interpretation of proofs in a
cartesian-closed category), the theory of identity for proofs in classical
logic is very poorly understood. Investigations by several researchers over
the last ten years [16, 7, 12, 13, 2, 11] have only served to underline the dif-
ficulty of the problem. Many of these problems concern proofs with cuts,
since the problem of proof-identity must account for the nonconfluence
of cut-elimination. Yet even for cut-free proofs, opinions on the “right
notion” of proof-identity differ. A reasonable minimal requirement is that
proofs differing by commuting conversions of noninterfering sequent rules
should be equal. Proof-nets [9] provide a tool for providing canonical rep-
resentants of such equivalence classes of proofs in Linear Logic. A pro-
posal by Robinson [16] gives proof-nets for propositional classical logic,
but fails to provide canonical representants for sequent proofs because it
contains explicit weakening attachments. The move from sequent proofs
to Robinson’s nets also fails to validate, among other desirable proof-
identities, commutativity/associativity of contraction, a key assumption
in the development of abstract models of proofs. In Führmann and Pym’s
work [7], a categorical model of proofs based on Robinson’s nets is built
by taking a quotient by equations, ensuring that the structure interpret-
ing the structural rule in the resulting category forms a commutative
monoid, and that those monoids are constructed pointwise.
In this paper we take Robinson’s nets as a starting point for developing
a more abstract notion of proof-net for classical logic; concrete represen-
tatives of the equivalence classes used in [7]. We then go on to identify a
subcalculus of these nets which has a polynomial-time correctness crite-
rion, and therefore forms a propositional proof system [3].
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Fig. 1. Cut-free multiplicative LK (one-sided)

2 Preliminaries

We assume familiarity with proof-nets for unit free multiplicative linear
logic MLL− with Mix. In particular, we assume knowledge of the switch-
ing graph condition for multiplicative proof structures, and how it leads
to a proof of sequentialization for MLL− + Mix proof nets [5, 6]. We
will also assume, without proof, the existence of a polynomial time cor-
rectness criterion equivalent to the switching criterion; such a criterion
is given by attempting to sequentialize by searching for splitting pars, a
technique first described in [6], and available in English translation in
the Linear Logic Primer [4].

3 Proof nets with contraction and weakening.

Robinson’s proof-nets for classical logic [16] are based very closely on
Girard’s proof-nets for MLL with units [9]. The basic idea comes from
[8]: correctness is given by treating the conjunctions and axioms of clas-
sical logic in the same way as the linear logic axiom and tensor, and
treating both contraction and disjunction in the same way as the linear
logic “par” connective. However, unlike Girard’s nets, Robinson’s nets
are presented in a two-sided form, with multiple premises and multiple
conclusions, deriving formulae with an explicit negation connective. We
will consider a small variant of this calculus: one-sided nets, over for-
mulae of classical logic in negation normal form; we assume a set A of
atomic formulae p, q, . . . equipped with an involutive function (¯), such
that p 6= p̄. Propositional formulae are built from these atomic formulae
and the units > and ⊥ using the binary connectives ∧ and ∨. Negation of
general formulae is defined using the De Morgan laws. A cut-free sequent
calculus deriving multisets of such formulae, with explicit structural rules
and multiplicatively formulated logical rules, is given in Figure 1. Con-
sidering one-sided nets allows us to give a more compact presentation of
our systems: the one-sidedness is not necessary for the approach, how-
ever, and the results of the subsequent sections carry over easily to a
two-sided setting. A more important departure from Robinson’s setting
is the treatment of weakening, as will be explained below.
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Fig. 2. Proof nets for classical logic with unrestricted contraction and weakening.

The definition of these nets begins with a notion of proof structure: an
object which locally has the structure of a proof-net:

Definition 1. A Robinson proof-structure is a directed graph built from
the subgraphs in Figure 2 having no incoming edges.

The edges coming into the ∧ and ∨ vertices are ordered (alternatively,
we can think of them as being labelled “left” and “right”); this is im-
portant for distinguishing between the conjunctions A ∧ B and B ∧ A.
We refer to the vertices of a Robinson structure labelled with formulae
of propositional logic as formula-nodes. The other vertices are referred
to as rule-nodes.
In proof-nets, it is typically necessary to anchor each weakening to some
other node of the proof. In [16] this anchoring is part of the structure of
the weakening node: we instead use the more usual notion of an attach-
ment

Definition 2. An attachment f for a Robinson proof-structure F is a
function mapping each rule node labelled with to some other rule-node of
the proof-structure. By an attached proof structure we mean a pair (F, f)
of a proof structure F and an attachment f for F .

Example 1. The grey arrows in the following two proof nets represent
two different attachments, assigning a rule node of the structure to each
node labelled Wk:
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A proof in LK can be seen as a recipe for building an attached proof struc-
ture: each rule of the calculus corresponding to a rule node. This pro-
cedure is sometimes referred to as desequentialization, and is described
in detail in [16]. We choose the attachment for a weakening from one of
the formulae present in the context. This arbitrary choice means that
attached proof-nets themselves cannot be the canonical proof objects
we seek. For MLL, the right notion of canonical proof object is a quo-
tient of attached proof-nets by so-called Trimble rewiring [17], whereby
two proof-nets are equivalent if just one of the attachments of a unit is
changed. According to Trimble rewiring, the two attached nets in (1) are
not equal; this is important, as the corresponding morphisms are distin-
guished in some ∗-autonomous categories. We know of no natural model
of classical proofs (whatever the formulation) where such proofs are dis-
tinguished, and so are happy to take unattached nets as proof-objects in
their own right.
The standard problem in the theory of proof-nets is to give a global
correctness criterion for identifying, among the proof-structures, those
which can be obtained from desequentializing a sequent proof. This then
leads to a sequentialization theorem, allowing one to reconstruct a sequent
proof out of a correct proof-net. We may adapt any of the many equiva-
lent formulations of correctness for MLL− nets, taking care to account
correctly for the presence of weakenings. For example, the following is
the switching graph criterion, suitably altered for our setting:

Definition 3. Let F be a Robinson proof-structure.
(a) A rule-node of F is switched if it is a Ctr or ∨ node. A switching

of a Robinson proof-structure is a choice, for each switched node, of
one of its successors.

(b) Given an attachment f for F , and a switching σ for F , the switching
graph σ(F, f) is the graph obtained by deleting from F all edges
from a switched node to its successor not chosen by σ, forgetting
directedness of edges, and adding an edge from each Wk node to its
image under f .

(c) (F, f) is ACC-correct if, for each switching σ, σ(F, f) is acyclic and
connected.

(d) F is a Robinson net if there is an attachment f such that (F, f) is
ACC-correct.

Thus correctness for (unattached) Robinson nets is in NP, since it is
necessary to guess an attachment before deciding the switching criterion.

Theorem 1 (Robinson).
(a) Every proof-structure arising from a sequent proof in the system in

Figure 1 plus Mix is a Robinson-net.
(b) Every Robinson-net can be obtained by desequentializing a sequent

proof.

Using the techniques developed in [6, 4], we can capture a larger class of
sequent proofs: those using the Mix rule:

` Γ ` ∆
Mix

` Γ,∆



Definition 4. Let F be a Robinson proof-structure, and f an attachment
for F
(a) (F, f) is AC-correct if, for each switching σ, σ(F, f) is acyclic.
(b) F is a Mixnet if there is an attachment f such that (F, f) is AC-

correct.

Theorem 2. (a) Every proof-structure arising from a sequent proof in
the system in Figure 1 plus Mix is a Mix-net.

(b) Every Mix-net can be obtained by desequentializing a sequent proof
with Mix.

The mix rule will be important later; in its presence, we can give a
complete class of proof nets with polynomial-time correctness.

4 Expansion/deletion nets

As a way of canonically representing cut-free proofs, unattached Robinson-
style proof-nets are a substantial improvement over LK proofs. Two se-
quent derivations differing by a simple permutation of rule occurrences
desequentialize to the same proof-net. However proof identity in clas-
sical logic is more complicated than for, for example, MLL−; simple
rule permutations are not the only source of non-canonicity in proofs. In
the following section we consider sources of non-canonicity arising from
the contraction rule, which Robinson’s nets suffer from as acutely as
the sequent calculus. We will then give a new formulation of proof nets
(expansion/deletion nets) which do not exhibit these problems.

4.1 Problems with contraction

Contraction is not associative Given three copies of the conclusion
A, there are two ways we can contract them, which should be equivalent.

A

Ctr

AA

Ctr

AA
≡

A

Ctr

A

Ctr

AA

A

Girard suggests an obvious fix in [8]: n-ary contraction nodes. Of course,
binary contractions are a subcase of n-ary contractions; in addition, we
should require that the conclusion of the link is not in turn the premise
of another contraction link. We will call contractions of this special kind
expansions.

Weakening is not a unit for contraction Given a proof-net
deriving a formula A, we can weaken to form another copy of A and
then immediately apply contraction, to again obtain a proof of A. We
would prefer that weakening be a unit to contraction; that these two
proofs of A be identified.



Contraction on disjunctions is not pointwise The following
two figures contain the same essential information, and two proofs dif-
fering by them are essentially the same:

A B A B

∨ ∨

Ctr

A ∨B

A B A B

Ctr Ctr

∨

A ∨B

We can ensure that only one of these figures may appear in our nets by
forbidding the contraction node to act on disjunctions, this is natural,
since the sequent rule introducing disjunction is invertible.

4.2 Expansion/deletion trees

In our view a proof net is best seen as a forest together with a relation
on the nodes of the forest (representing the axiom links of a proof net
as usually presented). For MLL− (with or without mix) the forest is
built from formula trees, but for classical logic the trees must contain
additional structure, to account for contraction and weakening. Our proof
nets will be built from typed expansion/deletion trees or ed-trees; these
can be seen as formula trees where, at a node typed p, p̄ or A ∧ B,
we can expand (corresponding to a single n-ary contraction) or delete
(corresponding to weakening).

Definition 5 (Expansion/deletion trees). Let X = x, y, . . . be a
countable set – the axiom variables. An expansion/deletion tree (or ed-
tree) over X is of the form t below:

t ::= 1 | ∗ | (w + · · ·+ w) | (t ∨ t) w ::= x | x̄ | t⊗ t

where (w + · · · + w) denotes a nonempty finite formal sum, and ∗ de-
notes the empty formal sum. We call the empty sum a deletion, and a
nonempty sum an expansion. We call the members of the grammar w
“witnesses”.

The advantage of using formal sums of witnesses to keep track of con-
tractions is that formal sums are associative and commutative: that ∗ is
the unit for the formal sum means that weakening will be the unit for
contraction.
Types for ed-trees and witnesses are as follows:

Definition 6. A type is either

(a) A formula of classical propositional logic;
(b) A witness type of one of the two following forms:

• A positive witness type, written [p], where p is a positive atom;
• A negative witness type, written [p̄], where p̄ is a negative atom;

or



x̄ : [p̄] 1 : > ∗ : A x : [p]
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(w1 + · · ·+ wn) : A ∧B

Fig. 3. Typing derivations for terms

• A conjunctive witness type, written A ⊗ B, where A and B are
formulae of propositional classical logic.

Definition 7. A typed term is a pair t : A of a term t and a type A,
derivable in the typing system given in Figure 3.

The typing rules in Figure 3 ensure that the conclusion of an expansion
is never the premise of another expansion.

Having found the right notion of tree, a proof-structure is just a forest
of those trees. We will refer to these forests as annotated sequents, since
we will later give sequent calculi deriving them.

Definition 8. An annotated sequent is a forest F of typed ed-trees in
which

(a) there is at most one occurrence of each axiom variable x, and

(b) there is an occurrence of x̄ in F if and only if there is an occurrence
of x.

The type of an annotated sequent F is the ordinary sequent comprising
the multiset of types of the the ed-trees making up F .

To see an annotated sequent as a proof structure in the more usual sense
we can consider its graph, in which we add axiom links to the forest:

Definition 9. The graph of an annotated sequent F is a directed graph
with vertices given by instances of subtrees of F ; we call these the nodes
of F . The edges of the graph are given by the forest structure (with edges
directed toward the root), plus an edge from x to x̄ for each variable x
appearing in F . The edges above a ⊗ or ∨ node are ordered; edges above
expansion nodes are unordered.

Example 2. The following annotated sequent represents a proof of Pierce’s
law

(((x̄) ∨ ∗)⊗ (ȳ)) : (p̄ ∨ q) ∧ p̄, (x + y) : p (2)



The graph of this annotated sequent is

(p̄ ∨ q) ∧ p̄

+

⊗
p̄

+
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∗

p̄

+

x̄

p

+
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(3)

Correctness for annotated sequents is analogous to that for Robinson
structures:

Definition 10. Let F be an annotated sequent. An attachment for F is
a function assigning, to each deletion ∗ of F , some other subterm of F .
An attached annotated sequent is a pair (F, f) of an annotated sequent
F and an attachment f for F .

Definition 11. Let (F, f) be an attached annotated sequent.
(a) A switching σ for (F, f) is a choice of successor for each expansion

node and each ∨ node.
(b) The switching graph σ(F, f) is obtained from the graph of F by

1: deleting all incoming edges to each expansion and ∨ node, other
than those coming from the nodes chosen by the switching,

2: forgetting the directedness of edges,
3: adding an edge between each deletion and its image under the

attachment f .
(c) (F, f) is an ed-net if, for every switching σ of F , σ(F, f) is acyclic.

4.3 Expansion nets

We consider now a subclass of ed-nets, expansion nets, which are inter-
esting because they have a default attachment ; this allows a polynomial
time correctness criterion.

Definition 12. (a) An expansion/deletion tree t is an expansion tree
if every deletion ∗ of t occurs as the left or right disjunct of a dis-
junctive subterm.

(b) An ed-net F is an expansion net if every term appearing in F is an
expansion tree.

Definition 13. Let F be an forest of typed expansion trees. The default
attachment of F is a function assigning to each subterm of the form ∗,
the subterm t with which it forms t ∨ ∗ or ∗ ∨ t.

This default attachment can then be used to check correctness:
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Proposition 1. An forest of typed expansion trees F is an expansion-
net if and only if, for every switching σ, σ(F, f) is acyclic, where f is
the default attachment.

Since the acyclicity of the switching graphs can be decided polynomially,
correctness for expansion-nets is polynomial time.

Remark 1. Let MLL∗ be the subset of binary MLL formulae (in which
each atom occurs at most once) having no subformula of the form (⊥⊗A)
or (A⊗⊥). A similar argument to the one above shows that provability
for this fragment of MLL is polynomial time: the formula itself defines
a proof-net with a default attachment for each ⊥. By replacing switched
nodes with par and unswitched nodes with tensor, an expansion net gives
rise to a binary MLL formula; this formula belongs to MLL∗, and so
its provability can be checked in polynomial time.

What remains to see is that we have not lost any theorems of propo-
sitional logic by restricting contraction and weakening: that the system
of expansion nets is complete. To see this, we consider the relationship
between sequent proofs and expansion nets; specifically, we give an an-
notated sequent calculus deriving annotated sequents. We first give a
sequent calculus such that every annotated sequent derivable in this sys-
tem is an ed-net, and then give a system deriving expansion nets.

5 Decorating sequent derivations with terms

In Figure 4 we give a sequent-style calculus for deriving annotated se-
quents. One should think of this calculus in the same way as a lambda-
term-annotated sequent system for intuitionisitic logic; the annotated se-
quents themselves are proof objects, with the sequent proof giving their
inductive buildup. The annotated system plays, for LKed, the role of
desequentialization.
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Example 3. The following annotated sequent proof illustrates how con-
tractions at the level of proofs are interpreted by expansions at the level
of the assignment.

Ax
(x̄) : ā, (x) : a

Ax
(ȳ) : ā, (y) : a

∧
(x̄) : ā, (ȳ) : ā, (x⊗ y) : a ∧ a

Ax
(z̄) : ā, (z) : a

∧
(x̄) : ā, (ȳ) : ā, z̄ : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

C
(x̄) : ā, (ȳ + z̄) : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

C
(x̄ + ȳ + z̄) : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

(4)

The particular way in which the contractions are carried out does not
affect the annotated endsequent: any commutation or association of the
contractions gives rise to the same term assignment.

Applying the standard sequentialization techniches to ed-nets, we obtain
the following statement of the surjectivity of desequentialization:

Proposition 2. An annotated sequent F is an ed-net if and only if it
can be derived in LKed.

Given a proof in LKed, we can recover an ordinary sequent proof by
forgetting the annotations: this yields a proof in LK. This forgetful pro-
jection of LKed is a subcalculus of LK, since it only has contractions for
conjunctions and atoms. If we can show all the missing rules admissible
in LKed, then we have shown that LKed (and, by extension, expan-
sion/deletion nets) are complete. In fact, we will show an even more
restricted calculus, LKe, complete: this calculus derives expansion nets.
Completeness of LKed will then follow as a corollary.

5.1 A calculus deriving expansion nets

Let LKe be derived from LKed as follows; LKe consists of all the rules
of LKed except W, and has in addition the two rule ∨L and ∨R shown
in Figure 5. The term ∗ is only introduced by these disjunction rules,
and so the conclusion of an LKe derivation consists of expansion trees.
We show now that LKe and LKed are equivalent with respect to prov-
ability – that is, they prove the same theorems. The easier direction is
the following:

Proposition 3. If LKe ` t : A, then LKed ` t : A.



Proof. By induction on the length of proofs. The property clearly holds
for the axioms. For every rule in LKe other than ∨L and ∨R, there is a
corresponding rule in LKed, and the proof is easy. We need only show
the admissibility of ∨L and ∨R. But these can be easily simulated by one
application of weakening followed by one of the LKed ∨ rule.

For the opposite direction, we will need the following easy lemma:

Lemma 1. (a) If LKe ` F, t ∨ s : A ∨ B, and s, t 6= ∗, then LKe ` t :
A, s : B.

(b) If LKe ` F, t∨∗ : A∨B or LKe ` F, ∗∨t : B∨A, then LKe ` F, t : A.

Since LKe is not complete for sequents, but only for (annotated) formu-
lae, we cannot directly prove that if LKed proves a sequent of type Γ, so
does LKe. Instead, we prove that, if LKed proves a sequent of type Γ,
there is a term t such that LKe proves t :

∨
Γ.

Proposition 4. If F has type Γ = A1, . . . , An, and LKed ` F , then
there are terms ti : Ai such that, if t = (((t1 ∨ t2) ∨ . . . tn−1) ∨ tn),
thenLKe ` t : (((A1 ∨A2) ∨ . . . An−1) ∨An).

Proof. For any proof in LKed of an annotated sequent s1 : A1, . . . sn :
An, we give a sequence t1 : A1, . . . tn : An such that t = (((t1 ∨ t2) ∨
. . . tn−1) ∨ tn) :

∨
Γ is provable in LKe, by induction on the height of a

proof in LKed.
For the axioms of LKed, the claim is clearly true. For the inductive step,
we proceed by case analysis on the last rule ρ of the LKed proof. We
assume that this rule introduces the last formula in the sequent. In each
case, we assume that the proposition holds for the premisses of ρ.

ρ = W By the induction hypothesis, we have terms t1 : A1 . . . tn−1 : An−1

with LKe ` ((t1 ∨ t2)∨ . . . tn−1) : ((A1 ∨A2)∨ · · · ∨An−1) apply the
rule ∨L in LKe, to add a new disjunct of type An to the conclusion.

ρ = ∨ In the case of the ∨ rule, applied to an annotated sequent F, s1 :
A, s2 : B, consider the subterms tn−1 : A and tn : B of t. If neither
tn−1 nor tn are ∗, we can use Lemma 1 and the ∨ rule to obtain the
required proof. If both tn−1 and tn are ∗, then apply Lemma 1 twice,
followed by ∨L, to obtain a proof of the correct term. If tn = ∗ but
tn−1 6= ∗, then apply Lemma 1, once to remove the deletion, again
to isolate tn−1, and then followed by ∨L and ∨, gives a proof of the
correct term.

ρ = C Similar to the treatment of disjunction.
ρ = Mix Suppose that LKed ` F and LKed ` G, where F has typeA1, . . . , An

and G has type B1, . . . Bm, and that we have corresponding LKe-
provable terms t and s. The result of applying Mix to F and G has a
corresponding term of type (((((A1∨A2) . . . ,∨An)∨B1)∨. . . )∨Bm);
we leave details to the reader.

ρ = ∧ Given annotated sequents F1, s1 : A1 and F2, s2 : A2, with cor-
responding LKe-provable terms t and t′, let tA1 and tA2 be the
disjuncts of t and t′ corresponding to s1 and s2:

• If neither tA1 nor tA2 is ∗, then we may apply Lemma 1 twice,
followed by ∧ and then ∨, to obtain a proof of the correct shape.



• If both tA1 = ∗ and tA2 = ∗ are ∗ then apply Lemma 1 to
remove the deletions. By applying Mix and then ∨L, we obtain
a provable term of the required shape.

• The final case is where exactly one tAi = ∗; without loss of
generality, let it be tA1 . We treat this much like a cut against
weakening in LK. We know that LKe ` (((t1∨ t2)∨ . . . tm)∨∗).
By Lemma 1, LKe ` (((t1 ∨ t2) ∨ . . . tm). Now “weaken” the
conclusion once for A∧B and once for each member of F2: that
is, apply ∨L once for each of those formulae. The result is an
LKe provable term ((((t1 ∨ t2) ∨ . . . tm) ∨ ∗) ∨ · · · ∨ ∗) of the
correct type.

The content of the above result is that, at the theorem level, the rules of
conjunction, disjunction, weakening and Mixare admissible in LKe; the
contraction rule is also admissible when restricted to atoms and conjunc-
tions. In the following section we demonstrate the general admissibility of
contraction in LKe, which is enough to see that it is a complete calculus
for classical propositional logic.

5.2 Cut-free completeness of LKe

By cut-free completeness of LKe, we mean the following:

Theorem 3. For every formula A of classical propositional logic such
that ` A in LK, there is an expansion tree t such that LKe ` t : A.

To show this, we need only show that the contraction rule of LK is
admissible for theorems of LKe, in the sense that, if t : B ∨ (A ∨ A)
is provable, then there is a term t′ so that t′ : B ∨ A is provable ; the
remaining cases to check are disjunctions and the unit >. The following
lemma will be essential:

Lemma 2. (a) If LKe ` F, 1 : >, then LKe ` F .

(b) If LKe ` t ∨ 1 : A ∨ >, then either t = ∗ or LKe ` t : A.

Proof. By induction on the length of proofs. For example, in case the
last rule proving F, 1 : > is a conjunction

` G1, t : A, 1 : > G2, s : B
∧

` G1, G2, (t⊗ s) : A ∧B, 1 : >

G1, t : A is is provable, and so we may prove G1, G2, (t⊗ s) : A∧B ut

Lemma 3. If LKe ` t ∨ (s1 ∨ s2) : B ∨ (A ∨ A), then there is a term s
such that LKe ` t ∨ s : B ∨A.

Proof. If either one or both si is ∗, this can be easily shown using
Lemma 1. Similarly, if A is a conjunction or atom, we can use Lemma 1
and the relevant contraction rule of LKe. If A is the unit >, then s1 and
s2 are equal to 1, and by Lemma 2, LKe ` t∨1 : B∨>. Finally, suppose



that the claim holds for all formulae of size n, and let A = B1 ∨ B2 of
size n+ 1. Apply Lemma 1 four times to obtain a proof of

t : B, ta : B1, tb : B2, tc : B1, td : B2

using ∨ and the induction hypothesis, we obtain a proof of (t ∨ u) ∨ v :
(B ∨ B1) ∨ B2 and by rearranging the order of the disjunctions using
Lemma 1, we obtain a proof of t ∨ (u ∨ v) : B ∨ (B1 ∨B2) ut

Corollary 1. If A is provable in LK, then there is an expansion/deletion
tree t such that LKe ` t : A.

6 Conclusions and further work

We have given a calculus of proof-nets which identifies more sequent
proofs than Robinson’s proposal, while maintaining a connection with
the sequent calculus. Other researchers have given abstract notions of
proof-net for classical logic; these make the identifications we wish to
make but lack a strong connection to the sequent calculus. Lamarche
and Strassburger [12] give two notions of proof-net, both of which vali-
date more identities than Robinson. The B-nets are nothing more than
binary linkings on a sequent forest: they possess sequentialization into
an additive sequent calculus, but checking correctness of such a net is
no more efficient than checking the truth-table of the conclusion. The
same paper introduces N-nets, which give a better account of proof-
identity, but for which no correctness criterion/sequentialization theorem
is known. Hughes’s combinatorial proofs [10, 11] also make more identi-
fications than Robinson’s nets, and have a polynomial-time correctness
criterion. However, the mapping from sequent proofs to combinatorial
proofs is not surjective; there are correct combinatorial proofs which do
not correspond to a sequent-calculus proof. Moreover, Hughes’s approach
does not deal directly with the units > and ⊥. Hughes’s system can be
seen as a kind of “Herbrand’s theorem for propositional logic”, reducing
provability in unit-free propositional logic (coNP) to provability in the
binary fragment of unit free MLL+Mix (P-time). Seen in this light, our
result extends this connection to the classical units; we reduce provability
in propositional logic to provability in a (polytime decidable) fragment
of MLL + Mix (with units).
In both of the cases above, there is a mismatch between sequent calculus
and the proposed proof nets: the nets we present here are, we believe,
the first sufficiently abstract nets to maintain a good correspondence to
sequent calculus proofs.
We mention now some further work.

Garbage collection Given a subterm of the form s = ∗ ⊗ t or
s = t ⊗ ∗ in an ed-net, we can view the subproof introducing t as
garbage; garbage collection would be an algorithm taking a net with
garbage and returning a garbage free net: i.e. an expansion net. For sim-
ilar situations in MAL+Mix nets [1] and combinatorial proofs, there is a



confluent garbage collection algorithm; unfortunately, attempts to apply
those methods to ed-nets yield annotated sequents which fail to satisfy
correctness. This opens up two directions for further research: to find a
garbage collection procedure which stays within correct proof nets, or to
find a good generalization of correctness so that the existing algorithms
work.

Cut-elimination We can easily add cuts to ed-nets by adding a new
constructor ./ for terms, with typing rule

t : A s : Ā

t ./ s : Cut

It is then possible to define a weakly normalizing cut-elimination pro-
cedure based on Gentzen’s original procedure; the definition of the re-
ductions requires the notion of subnet, which for ed-nets is rather tricky
to define. Since cut-elimination depends on the calculation of subnets
(either kingdoms or empires) it is not local; this is somewhat alien to the
spirit of proof nets, but it is not clear if a cut-reduction theory for such
proof-nets can be local and retain a close correspondence to the sequent
calculus. One way to improve the cut-reduction theory of the nets is to
asymmetrize all the cuts, by insisting that, for each dual pair A and Ā,
contraction is admissible for one of the pair. This is only a challenge for
the atoms, where we need contraction on both p and p̄ for completeness.
Nevertheless, this is possible, by treating the atoms in the same way as
universal/existential quantifiers, leading to a calculus in which the con-
traction/contraction and weakening/weakening critical pairs cannot be
formed.

Classical quantifiers The terminology expansion/deletion recalls
Miller [15], whose expansion tree proofs can be seen as a prototype notion
of proof-net for classical logic. The paper [14] makes this connection
explicit in the case of first-order prenex formulae; the paper introduces
a notion of Herbrand net using Girard’s notion of a quantifier jump,
in which provability at the propositional level is treated as trivial —
propositional axioms are replaced by arbitrary propositional tautologies.
We foresee no major obstacles in combining Herbrand nets with the
results of the current paper to capture nets for first- or higher-order
classical quantifiers.

Nets for additively formulated classical logic The correct-
ness/sequentialization results for our nets are heavily tied to the multi-
plicatively formulated sequent calculus. It is, of course, possible to ex-
tract an ed-net from a proof in an additively formulated calculus, but
there are natural identities in those calculi which are not validated by
our nets.Taking the view that the additive classical connectives are es-
sentially different operations (that hapen to coincide at the level of prov-
ability), we look for natural notions of proof net for additively formulated
classical logic.
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