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1 Introduction
In this Master’s thesis we study sequent systems without structural rules, i.e., without
weakening, contraction, and cut. After reviewing how such systems are constructed for
classical propositional logic and modal logic S4, we introduce such a sequent system
for the Logic of Proofs LP. Further, we investigate how the presence of contraction
affects self-referentiality in modal logic S4. By eliminating all forms of contraction in
the sequent calculus, we construct a fragment of S4 that is free from self-referentiality.

Modal logic and justification logic. The basic modal language is the language of
propositional logic with an additional unary modal operator !, called ”box.” A modal
operator dual to ! in the same sense in which the existential and universal quantifiers
are dual in first-order logic is denoted ! and called ”diamond,” i.e., !A := ¬!¬A.
Modal operators can been interpreted in a variety of ways: as necessity in alethic modal
logic, as obligation in deontic modal logic, as future necessity in temporal modal logic.
Multimodal logics can be used to describe behavior of multiagent systems, for instance
in distributed computing. The readings we are most interested come from

• epistemic logic where the basic modal language is used to reason about knowl-
edge and !A stands for ”the agent knows that A.” It is customary to write KA
instead of !A in this setting;

• provability logic where !A is read as ”A is provable in a suitable formal theory.”

In [Goe33] Gödel introduced a modal calculus of provability, basically equivalent to
the modal logic S4 of Lewis from [LL32], and showed that (propositional) intuitionis-
tic logic could be translated into S4 in a theorem-preserving way. Gödel’s provability
calculus is an extension of classical propositional logic by modal axioms and rules.
However, unlike Gödel–Löb logic GL, this provability calculus, which encodes intu-
itionistic reasoning, cannot be directly interpreted into Peano Arithmetic. Indeed, let
⊥ be the Boolean constant ”false,” then ! ⊥→⊥ corresponds to the statement that
expresses consistency of Peano Arithmetic PA. Since this formula !(! ⊥→⊥) is a the-
orem of S4, a direct translation of S4 into PA, whereby !A is interpreted as ”there is a
an x such that x is a proof of the formula A,” would result in the consistency of PA being
provable in PA, which contradicts the second Gödel Incompleteness Theorem. Thus,
Gödel left the problem of creating a provability semantics for S4 and for intuitionistic
logic [Goe33] open.
A solution was found by Artemov [Art95]. Instead of the modality !, justification
logics use constructs of the form t : F with the meaning ”justification term t is a proof
of the formula F.” The first justification logic, the Logic of Proofs LP, was introduced
by Artemov in [Art95]. Artemov connected S4 and LP by proving the Realization
Theorem:

• Replacing each justification term in an LP-theorem by ! yields an S4-theorem.
The S4-formula obtained by such a replacement is called the forgetful projection.

• Vice versa, it is possible to realize all occurrences of ! in an S4-theorem by
justification terms in such a way that the resulting justification formula is valid.
This process of replacing boxes by justification terms is called realization.
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Therefore, LP is called the justification counterpart of S4. Such correspondences have
also been proved for all normal modal logics formed by the modal axioms d, t, b, 4,
and 5 (see [Art08, BGK10]).
Proof Theory can be roughly divided into two parts: structural proof theory and in-
terpretational proof theory. In the latter, the tools are syntactical translations of one
formal theory into another, which are often semantically motivated. An example of
such a translation is the embedding of propositional intuitionistic logic into the propo-
sitional fragment of modal logic S4 due to Gödel [Goe33]. Hilbert’s program, which
called for a complete formalization of the relevant parts of mathematics, including the
logical steps in mathematical arguments, has been the driving force behind the devel-
opment of proof theory. Interest in proofs as combinatorial structures in their own right
has been awakened, and is the subject of structural proof theory. Its true beginnings
may be dated from the publication of Gentzen’s Untersuchungen über das logische
Schliessen in 1935, [Gen35], as a contrast to the old axiomatic proof theory by Hilbert.
For Hilbert, the aim was to prove the consistency of axiomatizations of the essential
parts of mathematics by methods that might be considered as evident because of their
elementary character, an aim in which proof theory failed because of Gödel’s Incom-
pleteness Theorems. The first Incompleteness Theorem provides a counterexample to
completeness by offering an arithmetic statement that is true in the standard model
but neither provable nor refutable in PA. The second Incompleteness Theorem, which
follows from the first, states that the consistency of PA cannot be proved in PA itself.
For Gentzen, on the other hand, the aim was to understand the structure of mathemat-
ical proofs. The use of sequent calculus permits the analysis of proofs with profound
results. Today, proof theory is applied in automated theorem proving, which requires
studying proofs as combinatorial structures, and in connection with computer science,
e.g., in verification of correctness of computer programs.
Sequent systems can be used in systems of automated proof search, as well as in logic
programming. In this thesis, we are interested in sequent systems without structural
rules for classical propositional logic, modal logic S4, and the Logic of Proofs. Struc-
tural rules are rules such as Weakening, Contraction, and Cut:

Γ⇒ ∆
Left Weakening

A,Γ⇒ ∆
A, A,Γ⇒ ∆

Left Contraction
A,Γ⇒ ∆

Γ⇒ ∆, A A,Γ′ ⇒ ∆′
Cut

Γ,Γ′ ⇒ ∆,∆′

The rules for right weakening and right contraction are similar to the left weakening
and left contraction respectively.
The presence of structural rules in a sequent system is critical for automated proof
search, that is searching for a proof of a given formula in a specific logical system. If
we consider an instance of the cut rule above, the formula A appears in both premises of
the rule but not necessarily in the conclusion. Thus, while applying the rules in reverse
during a proof search, it is impossible to know how to choose a suitable A among
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the infinitely many formulas. Formally speaking, the cut rule violates the subformula
property since the formulas that occur in the premises of the rule do not necessarily
occur as subformulas in the conclusion. The weakening rules allow to add arbitrary
formulas on both sides of the arrow. The same derivable sequent may be obtained by
several different applications of a weakening rule, and the premises of these weakening
rules need not be derivable themselves. Formally speaking, the weakening rules are
not invertible. The rules for contraction, when applied backward during a proof search,
produces a premise that is more complex than the conclusion, rather than making it
simpler. Sequent calculi free of these structural rules are powerful tools for analyzing
formal derivations; they permit control over the structure of proofs.
Purpose of this thesis. While such sequent systems without structural rules are well
known for propositional logic (e.g. [TS00, section 3.5]) and the logic S4 (e.g. [TS00,
section 9.1]), a similar system has not been developed for the Logic of Proofs yet.
The first goal of this thesis is to construct a weakening-, contraction-, and cut-free
sequent system for LP. The second aim is to find out whether self-referentiality occurs
in contraction-free fragments of modal logic S4. It should be noted that, while the
contraction rule can be eliminated from the sequent calculus for S4, certain forms of
contraction must be retained to ensure completeness of the system. We investigate
the self-referential properties of fragments where these forms of contraction are also
eliminated by applying the machinery of prehistoric phenomena, originally introduced
by Junhua Yu in [Yu10] for the complete structural-rule-free sequent calculus G3s for
modal logic S4, to two incomplete but sound sequent systems G3s’ and G3s∗ with
eliminated weak forms of contraction.
Overview. We start this thesis by describing various sequent systems for classical
propositional logic in Section 1. We recall the main properties of the sequent systems
of interest and show how a weakening-, contraction- and cut-free sequent system can be
obtained from the system that contains structural rules. This section about propositional
logic will serve as a basis for the sections about S4 and the Logic of Proofs, which are
extensions of propositional logic. In Section 2 we recall how these methods extend
from propositional logic to S4. In Section 3, we apply the methods developed for
propositional logic and S4 to introduce a sequent system without structural rules for
the Logic of Proofs. In the last section, we present Yu’s prehistoric phenomena in
a Gentzen-style formulation of S4 and study the occurrence of self-referentiality in
various contraction-free fragments for S4.
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2 Classical propositional logic
Before we start defining systems for classical propositional logic, we make some gen-
eral remarks about the various formalization styles of a logic and how we present de-
ductions in a specific system.

2.1 Preliminary notes
Trees

Deductions in any system will be presented as labeled trees. Trees are partially ordered
sets (X,≤) with a least element and all sets {y : y ≤ x} for x ∈ X linearly ordered. The
elements of X are called the nodes of the tree. Branches are maximal linearly ordered
subsets of X. Trees grow upwards, the least node at the bottom is called the root of the
tree. All the branches in our considerations will be finite and they end in a leaf , that
is, a maximal element of the tree. The length of a branch is defined as the number of
nodes in the branch minus 1; the depth of a tree is the maximum length of the branches
in the tree.

Types of formalism

There are many ways to formalize a logic, such as Hilbert systems, Natural deduction,
Resolution systems, Gentzen systems, Tableau systems and so on. In this work, we will
concentrate on two different formalization styles for classical propositional logic, and
later on for S4 (section 3) and the Logic of Proofs LP (section 4). The formalization
we are especially interested in is the Gentzen style calculus. However, for reasons
of simplicity, we typically introduce logics via Hilbert systems. Proofs or deductions
in Hilbert systems as well as in Gentzen systems will be presented as trees, whose
nodes are labeled with entities or deduction elements of the same type, which will be
described more precisely in the following. A deduction in such a system is a finite tree
whose leaves are labeled with special entities, each internal node-label is connected
with the labels of the successor nodes according to one of the rules of the system, and
the single root of the tree is labeled with the entity which is going to be derived by the
tree. An n-premise rule R is a set of sequences S 0, S 1, ..., S n−1, S of length n+1, where
S i, S are deduction elements. An element of R is said to be an instance or application
of R. An instance is usually written as

S 0 S 1 S 2 ... S n−1
R

S

where S 0, S 1, ..., S n−1 are the premises and S is the conclusion of the rule-application.
A calculus is defined through a finite set of rules of the form described above. Rules of
the form

R
S

are called axioms. In other words, an axiom is a rule without premises. An axiom is
typically written as S . In Hilbert systems axioms are one of the two special entities,
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from which we can start a prooftree. The other special entities are assumptions. As-
sumptions are entities we are allowed to use in addition to the axioms of the system. A
very distinctive property of Hilbert systems is that they usually consist of many axioms
and only few rules. Deductions in Hilbert systems are often written in linear format, a
definition of a deduction in linear format for classical propositional logic is given later
in Definition 2.9. Hilbert systems are widely used in the logical literature, but they are
not very useful to do proof search.
Compared to Hilbert systems, Gentzen systems consist of few axioms and many rules.
An introduction to Natural deduction systems is for example given in [TS00, section 2]
and [Ind10, sections 2, 4], to Resolution in [TS00, section 7] and [Ind10, section 3.2].
An elementary introduction to tableau systems with further references can be found in
[Ind10, section 3.1.2].

2.2 A Hilbert system for classical propositional logic
Definition 2.1. The standard language L for classical propositional logic contains

1. a set of atomic propositions Φ whose elements are usually denoted P,Q, and so
on;

2. the constant ⊥;

3. the Boolean connectives ∨,∧,→;

4. parentheses.

Atomic formulas of L are atomic propositions. Prime formulas are formulas which are
either atomic or ⊥.
The formulas (A, B, C, A1, B1,..., F, G,...) of L are inductively defined as follows:

1. Every prime formula is a formula.

2. If A and B are formulas, then (A ∨ B), (A ∧ B) and (A→ B) are formulas.

In addition we set

(A↔ B) := ((A→ B) ∧ (B→ A))
¬A := (A→⊥)

Notational conventions: In writing formulas we save on parentheses by assuming that
¬ binds stronger than ∨,∧, and that in turn ∨,∧ bind stronger than→,↔. Outermost
parentheses are also usually dropped.

Definition 2.2. The set of subformulas of a formula A, denoted by Sub(A), is induc-
tively defined as

• Sub(P) = P, for prime formulas P;

• Sub(B ◦ C) = Sub(B) ∪ Sub(C) ∪ {B ◦ C}, for arbitrary formulas B,C and
◦ ∈ {∨,∧,→}.
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The set of strict subformulas of a formula A is defined as Sub(A)\{A}.

Definition 2.3. The depth or complexity of a formula A, denoted by |A|, is defined
recursively:

• |P| = 0 for prime formulas P;

• |A ◦ B| = max(|A|, |B|) + 1 for ◦ ∈ {∨,∧,→}.

In the following it is defined how the ”truth” or ”falsity” of a propositional formula
depends on the ”truth” or ”falsity” of its propositions. This is called the semantics of
propositional logic.

Definition 2.4. Let T and F be distinct new symbols, thought of as ”true” and ”false”.
A truth assignment for a set S ⊆ Φ of atomic propositions is, by definition, a function

v : S → {T, F}.

For each truth assignment v we define its extension v̄ to the set of all propositional
formulas formed by propositions from S as follows:

v̄(P) = v(P) if P is atomic;
v̄(⊥) = F;

v̄(A ∧ B) =

{
T, if v̄(A) = v̄(B) = T,
F, otherwise;

v̄(A ∨ B) =

{
T, if v̄(A) = T or v̄(B) = T or both,
F, otherwise;

v̄(A→ B) =

{
F, if v̄(A) = T and v̄(B) = F,
T, otherwise.

This definition can be summarized by means of the following truth table:

A B A∧B A∨ B A→ B ¬A A↔ B
T T T T T F T
T F F T F F F
F T F T T T F
F F F F T T T

Definition 2.5. A propositional formula A built from propositions of S ⊆ Φ is valid,
or called a tautology, if v̄(A) = T for all truth assignments v : S → {T, F}.
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Example 2.6.

1. The formula ¬P ∨ Q→ R has the following truth table:

P Q R ¬P ¬P ∨ Q ¬P ∨ Q→ R
T T T F T T
F T T T T T
T F T F F T
F F T T T T
T T F F T F
F T F T T F
T F F F F T
F F F T T F

2. The formula A ∨ ¬A has the following truth table:

A ¬A A ∨ ¬A
T F T
F T T

Since the truth value of the formula A∨¬A is always T, no matter if the truth value
of A is T or F, the formula A ∨ ¬A (law of the excluded middle) is a tautology.
Other simple examples of tautologies are

¬(A ∧ ¬A) (law of contradiction),
A↔ ¬¬A (law of double negation),

A ∧ B→ A,
A→ A ∨ B.
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Definition 2.7. [TS00, Definition 2.4.1]1 The Hilbert system Hcp for classical propo-
sitional logic is defined by the following axioms, for arbitrary formulas A, B,C in L:

(1) A→ (B→ A)
(2) (A→ (B→ C))→ ((A→ B)→ (A→ C))
(3) A→ A ∨ B
(4) B→ A ∨ B
(5) (A→ C)→ ((B→ C)→ (A ∨ B→ C))
(6) A ∧ B→ A
(7) A ∧ B→ B
(8) A→ (B→ A ∧ B)
(9) ⊥→ A
(10) ¬¬A→ A

and the rule called modus ponens

A A→ B
MP

B
,

for all formulas A,B.

Definition 2.8. A proof or deduction in Hcp of a formula A from assumptions Γ is a
tree where instances of axioms and assumptions from Γ appear at the top nodes, lower
nodes are formed from their successors by the single rule MP, and the root is labeled
by A. Notation: Γ /Hcp A, or when it is clear that we mean a proof in Hcp: Γ / A. If Γ
is the empty set, we simply write /Hcp A or / A, respectively. In this case, A is called
theorem of Hcp.

Proofs in Hilbert systems are often written in linear format, here is the definition of
such a proof:

Definition 2.9. Let Γ be an arbitrary set of formulas. A finite sequence A1, ..., An of
formulas is called a Hcp-proof from T if for each i, 1 ≤ i ≤ n one of the following three
conditions is satisfied:

1. Ai is an axiom of Hcp;

2. Ai is an element of Γ;

3. Ai is the conclusion of (MP) whose premises belong to the sequence A1, ..., Ai−1.

A formula A is derivable from Γ in Hcp, if there exists a Hcp-proof A1, ..., An from Γ
such that An is the formula A.

Remark 2.10. A linear proof is a linearization of the partial order in the corresponding
proof presented as a tree.

1Our definition presented is a restriction of the definition of Hc, a Hilbert system for classical predicate
logic, to the propositional fragment of classical logic.
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Theorem 2.11. (Soundness and completeness) Let A be a formula of L, then

A is valid iff A is a theorem of Hcp.

Proof. ”⇐”: See e.g. [Men97, Proposition 1.12].
”⇒”: See e.g. [Men97, Proposition 1.14]. !

2.3 Gentzen systems for classical propositional logic
In the current and the following subsection we will present various Gentzen systems
for propositional logic and discuss the properties of the systems. The notation of the
systems G1c, G2c, G3c2 is due to [TS00, chapter 3]. Our aim is to define the system
without structural rules in section 2.4 and we show how we obtain it from the system
G1c. Before we introduce a first Gentzen system, we have to define what sequents are,
since, unlike Hilbert systems, Gentzen systems do not derive formulas, but sequents.

Definition 2.12. Sequents are expressions of the form Γ ⇒ ∆, with Γ,∆ finite mul-
tisets of formulas. Multisets are sets with multiplicity, i.e. elements can occur more
than once. A set is a special case of a multiset: a multiset in which each element
occurs only once is a set. The denotational interpretation of Γ ⇒ ∆ is that the con-
junction of the elements in Γ implies the disjunction of the formulas in ∆, that is
A1 ∧ ... ∧ An → B1 ∨ ... ∨ Bm (should be read as (...((A1 ∧ A2) ∧ A3) ∧ ... ∧ An) →
(...((B1 ∨ B2) ∨ B3) ∨ ... ∨ Bm)), if Γ = {A1, ..., An} and ∆ = {B1, ..., Bm}. The short
form of the conjunction (disjunction) is

∧
Γ (
∨
∆) for Γ,∆ sets or multisets. For the

multiset union Γ ∪ ∆ of Γ and ∆ we write Γ,∆, while Γ, A designates a multiset which
is the union of Γ and the singleton multiset containing only A. In a sequent Γ⇒ ∆, the
multiset Γ is called the antecedent and ∆ the succedent.

Definition 2.13. [TS00][Definition 3.1.1] The Gentzen system G1c for classical propo-
sitional logic is defined by the axioms and rules, listed in Figure 1.

The axioms and those rules with the digit ’1’ in their labeling are going to be modified
in either the system G2c or G3c.
In the rules listed in Figure 1, the elements of Γ,∆ are called side formulas. The
active formulas are those formulas in the premise(s), which are not side formulas. The
principal formula is the formula that is not a side formula in the conclusion. The right
and left weakening (RW, LW) as well as the right and left contraction (RC, LC) rules
are so called structural rules. The weakening rules allow us to add arbitrary formulas
to the antecedent and the succedent, while the contraction rules allow us to remove
duplicate formulas in the antecedent and the succedent. The remaining rules are called
logical rules, they introduce logical connectives.
Example 2.14.

1. Let us consider the rule L→ from the system G1c: In the premises, Γ,∆ are
the side formulas and A, B are both active formulas. In the conclusion of this
rule, A→ B is the principal formula and the side formulas from Γ and ∆ remain
unchanged.

2In the following, we will use the notations G[123]c and G[12]c if we want to say something about the
three, two respectively, systems in common.

15



A⇒ A (Ax1) ⊥⇒ (L⊥1)

Γ⇒ ∆
LW

A,Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ ∆, A

A, A,Γ⇒ ∆
LC

A,Γ⇒ ∆
Γ⇒ ∆, A, A

RC
Γ⇒ ∆, A

Ai,Γ⇒ ∆
L∧1 , (i=0,1)

A0 ∧ A1,Γ⇒ ∆
Γ⇒ ∆, A Γ⇒ ∆, B

R∧
Γ⇒ ∆, A ∧ B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨ B,Γ⇒ ∆
Γ⇒ ∆, Ai

R∨1 , (i=0,1)
Γ⇒ ∆, A0 ∨ A1

Γ⇒ ∆, A B,Γ⇒ ∆
L→

A→ B,Γ⇒ ∆
A,Γ⇒ ∆, B

R→
Γ⇒ ∆, A→ B

Figure 1: Gentzen system G1c for propositional logic
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2. In the (LW)-rule from G1c in Figure 1 there are only side formulas Γ,∆ but no
active formula in the premise. In the conclusion, the side formulas from Γ and ∆
remain unchanged and the principal formula A is the formula weakened by the
rule.

Definition 2.15. Let T be a logical system, whose proofs are trees. We writeD /n S if
a prooftree D derives S and has depth at most n. We write /n S or T /n S if for some
D in the system T we haveD /n S .

Definition 2.16. Let T be a logical system, R an arbitrary rule.

• An n-premise rule R is called a derivable rule in T if for each instance S 0, ..., S n−1, S
there is a deduction of S from all S i by means of the rules of T. That is to say, in
this deduction the S i are treated as additional axioms.

• An n-premise rule R is said to be admissible for T, if for all instances

S 0, S 1, ..., S n−1, S of R it is the case that

if for all i < n / S i, then / S .

• An n-premise rule R is said to be depth-preserving admissible (dp-admissible)
for T if for all m

if for all i < n /m S i, then /m S .

• An n-premise rule R of T is said to be i-invertible [i-dp-invertible for T],

i = 1, ..., n − 1, if the rule

Ri ≡ {(S , S i) : (S 0, ..., S n−1, S ) ∈ R}

is admissible [dp-admissible].

• An n-premise rule R is invertible [dp-invertible] if R is i-invertible [i-dp-invertible]
for all 0 ≤ i < n.

Definition 2.17. A rule of a sequent system has the (strict) subformula property, if the
active formulas are (strict) subformulas of the principal formula. A sequent system has
the (strict) subformula property, if each rule has it.

Example 2.18.

1. The contraction rules of G1c have the subformula- but not the strict subformula
property. The active formulas are subformulas of the principal one, but not strict
subformulas.

2. All the rules introducing logical connectives in G1c have the strict subformula
property.
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The (strict) subformula property is very nice to have for sequent systems. If a sequent
system has the strict subformula property, we have that not only the active formulas
of each rule are built out of subformulas of the principal formula, but also these active
formulas are strictly simpler than the principal formula. If we think about proof search
this is exactly what we want. The cut-rule that we define in the following, does not
enjoy the subformula property.

Definition 2.19. The following rule is called Cut:

Γ⇒ ∆, A A,Γ′ ⇒ ∆′
Cut

Γ,Γ′ ⇒ ∆,∆′

The cut-rule is a structural rule. A is called the cut formula. The rank of a cut is
|A|+ 1. The cutrank of a deductionD, is the maximum of the ranks of the cut formulas
occurring inD.

The cut formula A in the two premises is in general not a subformula of a formula
in Γ,Γ′,∆,∆′, hence the cut rule violates the subformula property. Although the rule
is not contained in the system G1c, it can be proved that cut is admissible for G1c.
That is, the conclusion of cut is derivable in G1c, if the premises are. This is a very
important property. which all the following systems also have.
For the proof of the following theorem we refer to [TS00, Theorem 3.2.1].

Theorem 2.20. Cut is admissible for G1c.

Theorem 2.21. The Gentzen system G1c and the Hilbert system Hcp are equivalent.

Proof. The equivalence of the two systems follows from [TS00, Theorem 3.3.3], which
states that

G1c +Cut / Γ⇒ A iff Nc / Γ⇒ A,

where G1c is the sequent system for full classical logic defined in [TS00, Definition
3.1.1], Nc is the natural deduction system for classical logic, and from [TS00, Theorem
2.4.2], which states the equivalence of the systems Hc and Nc. The theorems we refer
to in [TS00] are proved for full classical logic, not only for the propositional fragment,
but the statements also hold for propositional logic. !

On our way to define a sequent system without structural rules for classical proposi-
tional logic, the first step is to define a weakening-free sequent system.

Definition 2.22. [TS00, Definition 3.1.6] The Gentzen system G2c for classical propo-
sitional logic, is the system obtained from G1c by leaving out the weakening rules (LW,
RW) and taking the more general axioms:

Γ, A⇒ A,∆ (Ax2) and ⊥,Γ⇒ ∆ (L⊥2).

In G2c, the left conjunction rule and the right disjunction rule are denoted by L∧2,
R∨2, respectively. Even though there is no difference between the corresponding rules
L∧1 and R∨1 from system G1c. The reason therefore is that it is clear from which
systems axioms and rules we are talking in the following. All the axioms and those
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rules with an additional digit ’1’, ’2’ or ’3’ in their labeling get modified at least in one
of the systems G[123]c.
It is easy to prove, that weakening is depth-preserving admissible in G2c, that is

Lemma 2.23.

If G2c /n Γ⇒ ∆ then G2c /n Γ,Γ′ ⇒ ∆,∆′.

Proof. By induction on the depth n of the proofD /n Γ⇒ ∆:
Case 1. If Γ⇒ ∆ is an instance of the axiom (Ax2) or (L⊥2), then Γ,Γ′ ⇒ ∆,∆′ is an
axiom-instance, too.

Case 2. If the last rule of D is (LC),
A, A,Γ⇒ ∆

LC
A,Γ⇒ ∆

, the derivation of the premise

A, A,Γ⇒ ∆ has depth≤ n−1 and by induction hypothesis we get /n−1 A, A,Γ,Γ′ ⇒ ∆,∆′.
Applying (LC) again we obtain a proof of depth ≤ n of A,Γ,Γ′ ⇒ ∆,∆′:

A, A,Γ,Γ′ ⇒ ∆,∆′
LC

A,Γ,Γ′ ⇒ ∆,∆′
.

Case 3. If the last rule ofD is R∧
Γ⇒ ∆, A Γ⇒ ∆, B

R∧
Γ⇒ ∆, A ∧ B

The premises have deductions of smaller depth, thus induction hypothesis can be ap-
plied to the premises to obtain

/n−1 Γ,Γ
′ ⇒ ∆,∆′, A and /n−1 Γ,Γ

′ ⇒ ∆,∆′, B.

Now we use R∧ to get G2c /n Γ,Γ′ ⇒ ∆,∆′, A ∧ B.
The remaining cases are similar. !

The dp-admissibility of weakening in G2c implies the fact that all the sequents which
are derivable in G1c can be also proved in G2c and vice versa. The two systems are
equivalent, that is exactly what the following theorem says:

Theorem 2.24.
G1c / Γ⇒ ∆ iff G2c / Γ⇒ ∆.

Proof. ”⇒”: Let D be a G1c-proof of depth at most n, D /n Γ ⇒ ∆. By an induction
on the depth n ofD, we show that there is G2c-derivation of Γ⇒ ∆:
Case 1. If Γ⇒ ∆ is one of the axioms (Ax1) or (L⊥1), Γ⇒ ∆ is a G2c-axiom too.
Case 2. If the last rule ofD is (LW) or (RW)

Γ⇒ ∆
LW,

A,Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ ∆, A

we apply the induction hypothesis to the premise, which has a deduction of depth
≤ n−1, and have that G2c /n−1 Γ⇒ ∆. Since weakening is depth-preserving admissible
in G2c we obtain G2c /n−1 A,Γ⇒ ∆ and G2c /n−1 Γ⇒ ∆, A.
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The remaining rules of G1c are exactly the same as in G2c, hence we apply the in-
duction hypothesis to the premise of the last rule used in D and apply the same rule
in G2c to get the desired G2c-proof. The described translation from a G1c-proof to a
G2c-proof does not increase the depth of the proofs.

”⇐”: Let D be a G2c-proof of depth at most n, D /n Γ ⇒ ∆. By an induction on the
depth n of D, we show that there is G1c-derivation of Γ ⇒ ∆. To prove this direction,
it suffices to show that the more general axioms from G2c are derivable in G1c, since
the rules of G2c are contained in G1c.
Case 1. Consider (Ax2) A,Γ ⇒ ∆, A: we obtain a G1c-proof of this sequent if we
apply k instances of (LW), where k is the number of formulas in Γ and l instances of
(RW), where l is the number of formulas in ∆, to the corresponding axiom A⇒ A:

A⇒ A
================ LW
A,Γ1, ...,Γk ⇒ A

========================== RW
A,Γ1, ...,Γk ⇒ A,∆1, ...,∆l

Where the double lines in the prooftree stand for several rule applications. Obviously,
the (LW)- and (RW)-rules can be applied in arbitrary order.
Case 2. The same way we proceed to obtain a G1c-proof of (L⊥2) ⊥,Γ⇒ ∆: we take
the corresponding axiom in G1c and apply left and right weakening as much as we
have formulas in Γ and ∆

⊥⇒
============== LW
⊥,Γ1, ...,Γk ⇒

======================= RW
⊥,Γ1, ...,Γk ⇒ ∆1, ...,∆l

!

Corollary 2.25.

If G1c /n Γ⇒ ∆ then G2c /n Γ⇒ ∆.
Proof. From the proof of the previous lemma direction ”⇒” it follows that whenever
G1c /n Γ ⇒ ∆ then G2c /n Γ ⇒ ∆. But the converse does not hold: we have for
example

G2c /0 P ∧ Q,R⇒ P ∧ Q, S
since the sequent P ∧ Q,R⇒ P ∧ Q, S is an instance of (Ax2), and

G1c !0 P ∧ Q,R⇒ P ∧ Q, S

since (Ax1) allows only axiom instances of the form A⇒ A, but of course the sequent
P ∧ Q,R⇒ P ∧ Q, S derivable in G1c:

P ∧ Q⇒ P ∧ Q
LW

P ∧ Q,R⇒ P ∧ Q
RW

P ∧ Q,R⇒ P ∧ Q, S
!
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Corollary 2.26. Cut is admissible for G2c.

Proof. The statement follows from Theorem 2.20 (cut admissible for G1c) and Theo-
rem 2.24 (equivalence of the systems G1c and G2c). !

Corollary 2.27. The systems Hcp and G2c are equivalent.

Proof. The claim follows from the equivalence of the systems Hcp and G1c (Theorem
2.21), and the systems G1c and G2c (Theorem 2.24). !

In this subsection we have seen that if we replace the axioms of G1c by more general
ones and leave out the weakening rules, the resulting system G2c is still strong enough
to derive exactly the same sequents like the original one. But the system G2c is just
an intermediate system on our way to the system where all the structural rules are
absorbed in the axioms and rules. In the next subsection we obtain such a system
without structural rules from G2c.

2.4 A contraction-free Gentzen system for classical propositional
logic

We start by defining the weakening- and contraction-free system G3c and proceed by
proving some distinctive properties such as dp-admissibility of weakening, contraction
and cut, invertibility of the rules and the equivalence of the systems G1c and G3c.

Definition 2.28. [TS00, Definition 3.5.1] The Gentzen system G3c is obtained from
G2c by dropping the contraction rules (LC, RC) and taking

P,Γ⇒ ∆, P (P atomic) (Ax3) instead of A,Γ⇒ ∆, A (Ax2),

A, B,Γ⇒ ∆
L∧3

A ∧ B,Γ⇒ ∆
instead of

Ai,Γ⇒ ∆
L∧2 , (i=0,1)

A0 ∧ A1,Γ⇒ ∆
,

Γ⇒ ∆, A, B
R∨3

Γ⇒ ∆, A ∨ B
instead of

Γ⇒ ∆, Ai
R ∨ 2, (i=0,1)

Γ⇒ ∆, A0 ∨ A1
.

Remark 2.29.

1. The reason for exchanging the two rules will become more intelligible later in
this subsection. Here is just a try to direct the reader’s focus on the next para-
graph: the two G2c-rules (L∧2) and (R∨2) are not invertible, but the modified
G3c-rules are. The invertibility of the rules is necessary for the method we will
use to prove admissibility of contraction. For a similar reason we have to modify
the axiom (Ax3): if we allow axioms of the form A,Γ ⇒ ∆, A, we cannot prove
depth-preserving invertibility of all the rules from G3c.

2. Since G3c does not contain any structural rules and the logical rules all enjoy the
strict subformula property, the system has the strict subformula property.
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Lemma 2.30. Weakening is dp-admissible in G3c, that is

if G3c /n Γ⇒ ∆ then G3c /n Γ,Γ′ ⇒ ∆,∆′.

Proof. This property can be proved by induction on the depth of the proof of Γ ⇒ ∆,
like we did it for G2c. !

An essential property of the system G3c is that all the rules of the system are
depth-preserving invertible: if the conclusion of a rule R of G3c can be derived in G3c
by a deduction of depth n, then there is a deduction of depth ≤ n in G3c of the
premise(s) of R.

Lemma 2.31. (dp-invertibility of the rules) Let / denote deducibility in G3c.

1. If /n A ∧ B,Γ⇒ ∆, then /n A, B,Γ⇒ ∆.

2. If /n Γ⇒ ∆, A ∨ B, then /n Γ⇒ ∆, A, B.

3. If /n A ∨ B,Γ⇒ ∆, then /n A,Γ⇒ ∆ and /n B,Γ⇒ ∆.

4. If /n Γ⇒ ∆, A ∧ B, then /n Γ⇒ ∆, A and /n Γ⇒ ∆, B.

5. If /n Γ⇒ A→ B,∆, then /n Γ, A⇒ ∆, B.

6. If /n Γ, A→ B⇒ ∆ then, /n Γ⇒ ∆, A and /n Γ, B⇒ ∆.

Proof. By induction on the depth n of the derivation. As a typical example we prove
statement 4: assume 4. to have been proved for n and all Γ,∆, A, B. Let /n+1 Γ⇒ ∆, A ∧ B
by a deductionD, then we have to consider the following cases:
Case 1. If Γ⇒ ∆, A ∧ B is an axiom, then A ∧ B is not principal and Γ⇒ ∆, A as well
as Γ⇒ ∆, B are axioms too.
Case 2. If Γ⇒ ∆, A ∧ B is not an axiom and A ∧ B is not principal, then we have:

Γ′ ⇒ ∆′, A ∧ B (Γ′′ ⇒ ∆′′, A ∧ B)
R

Γ⇒ ∆, A ∧ B

we apply the induction hypothesis to the premise(s), which have deductions of depth at
most n, to get:

/n Γ′ ⇒ ∆′, A (1)
/n Γ′ ⇒ ∆′, B (2)

/n (Γ′′ ⇒ ∆′′, A) (3)
/n (Γ′′ ⇒ ∆′′, B). (4)

An inspection of all the rules from G3c shows that we can apply the same rule R to (1)
and (3) to obtain a deduction of /n+1 Γ ⇒ ∆, A and to (2) and (4) to obtain a deduction
of /n+1 Γ ⇒ ∆, B. The reason this works is that no rule has any restrictions on the side
formulas in the premise, and what we changed by applying the induction hypothesis
were only the side formulas in the premise(s).
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Case 3. If A ∧ B is principal, the last rule ofD is

Γ⇒ ∆, A Γ⇒ ∆, B
R∧

Γ⇒ ∆, A ∧ B

and we can take the immediate subdeductions, which are of depth at most n, of the
premises.

!

In the following we discuss the properties of those axioms and rules from the systems
G[123]c, which are of particular interest:

1. Two easy counterexamples show that the weakening rules

Γ⇒ ∆
LW

A,Γ⇒ ∆
,

Γ⇒ ∆
RW

Γ⇒ ∆, A

of the system G1c are not invertible, since we lose the information content of the
formula A:

Example 2.32.

(a) If P,Q are atomic formulas, we have an easy derivation of the sequent
P,Q⇒ Q:

Q⇒ Q
LW

Q, P⇒ Q
.

Invertibility of (LW) would imply that G1c / P ⇒ Q, which is obviously
wrong. Thus G1c ! P⇒ Q and G1c / Q, P⇒ Q.

(b) For the right weakening we have for example G1c / P⇒ P,Q and
G1c ! P⇒ Q.

The non-invertibility of (LW) and (RW) is the reason for our ambition to get rid
of them - but to still have dp-admissibility of weakening.

2. The contraction rules of G[12]c

A, A,Γ⇒ ∆
LC

A,Γ⇒ ∆
,

Γ⇒ ∆, A, A
RC

Γ⇒ ∆, A

are invertible in G[12]c, that is

(a) if / A,Γ⇒ ∆, then / A, A,Γ⇒ ∆ and

(b) if / Γ⇒ ∆, A, then / Γ⇒ ∆, A, A.

In the weakening-free system G2c, we can prove dp-invertibility of the contrac-
tion rules, since weakening is depth-preserving admissible. In the system G1c
we can only prove invertibility of contraction, but not depth-preserving invert-
ibility. The reason is that weakening is present as a rule, or more precisely as

23



two rules. For instance, if we have G1c /n Γ ⇒ ∆, A, we apply (RW) to obtain
G1c /n+1 Γ⇒ ∆, A, A. But it is not possible to have a deduction for Γ⇒ ∆, A, A
with the same depth as for Γ ⇒ ∆, A: we have for example that G1c /0 B ⇒ B
for any formula B, since the sequent is an instance of (Ax1). On the other hand
B ⇒ B, B is no instance of (Ax1), thus G1c !0 B ⇒ B, B, but of course still
derivable in G1c:

B⇒ B
RW

B⇒ B, B
.

3. We refer to Remark 2.29 and show in more detail, why we need axioms of the
form P,Γ ⇒ ∆, P, where P is atomic, instead of A,Γ ⇒ ∆, A: consider the
sequent C → D ⇒ C → D and we try to prove dp-invertibility of R→. In the
system where A,Γ ⇒ ∆, A is an axiom, C → D ⇒ C → D is obviously an
instance of the axiom (Ax2) and has a proof of depth 0. However, the sequent
C → D,C ⇒ D, is not an axiom-instance and therefore not derivable with depth
0.

4. We still refer to Remark 2.29: it was not only the axioms we modified to obtain
G3c from G2c, we also had to adjust the left conjunction (L∧2) and the right
disjunction (R∨2) rule. To be precise, in G[12]c there are even two (L∧)3 and
(R∨) rules each, namely

A0,Γ⇒ ∆
L∧[12]

A0 ∧ A1,Γ⇒ ∆
,

A1,Γ⇒ ∆
L∧[12]

A0 ∧ A1,Γ⇒ ∆
,

Γ⇒ ∆, A0
R∨[12]

Γ⇒ ∆, A0 ∨ A1
,

Γ⇒ ∆, A1
R∨[12]

Γ⇒ ∆, A0 ∨ A1
.

The four rules are not invertible, but the corresponding G3c-rules are. We give
an example for the (L∧[12])-rule: the sequent P ∧ Q ⇒ P ∧ Q is an axiom-
instance in G2c and derivable in G[13]c. To prove dp-invertibility of (L∧), the
premises of the following rule-applications have to be derivable with the same or
lower depth as the conclusions are:

P⇒ P ∧ Q
L∧[12]

P ∧ Q⇒ P ∧ Q
,

P,Q⇒ P ∧ Q
L∧3

P ∧ Q⇒ P ∧ Q
.

It is easy to see, that the premise of (L∧[12]) is not derivable in G2c for all P,Q,
because G2c is sound and P → P ∧ Q is not a valid formula (truth table). Thus
(L∧[12]) is not invertible. A similar reasoning implies the non-invertibility of
(R∨[12]). On the other hand, we proved invertibility of (L∧3) and (R∨3) in G3c
in the previous lemma.

5. The proof of Lemma 2.31 applies to the systems G[12]c, too, with the exception
of the rules mentioned in the current enumeration.

3In the following, by L∧[12] we denote the identic rules L∧1 from G1c and L∧2 from G2c. The same
applies to R∨[12].
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Lemma 2.33. (dp-admissibility of contraction)

1. If G3c /n A, A,Γ⇒ ∆ then G3c /n A,Γ⇒ ∆.

2. If G3c /n Γ⇒ ∆, A, A then G3c /n Γ⇒ ∆, A.
Proof. We prove the lemma by a simultaneous induction on n for both statements.
Assume the statements to be true for derivations of depth ≤ n, and let D be a proof of
depth n + 1, such thatD /n+1 A, A,Γ⇒ ∆.
Case 1. If A, A,Γ⇒ ∆ is an instance of one of the axioms (Ax3), (L⊥3) and

1. A is principal, then the sequent is of the form P, P,Γ⇒ ∆′, P or ⊥,⊥,Γ⇒ ∆. In this
case, the sequents P,Γ ⇒ ∆′, P and ⊥,Γ ⇒ ∆ are also instances of the axioms (Ax3),
and (L⊥3), respectively.

2. A is not principal, then A,Γ⇒ ∆ is an instance of an axiom, too.
Case 2. If A is not principal in the last rule applied in D, then the last rule of D is of
the form:

/n A, A,Γ′ ⇒ ∆′ (/n A, A,Γ′′ ⇒ ∆′′)
R

/n+1 A, A,Γ⇒ ∆
We apply the induction hypothesis to the premise(s) to get /n A,Γ′ ⇒ ∆′
(and /n A,Γ′′ ⇒ ∆′′, if R is a two-premise rule) and if we use R again, we have that

G3c /n+1 A,Γ⇒ ∆.

Case 3. If A is principal in the last rule applied inD we have to consider the following
subcases:

1. The last rule ofD is L∧:

/n B,C, B ∧C,Γ⇒ ∆
L∧3

/n+1 B ∧C, B ∧C,Γ⇒ ∆
If we apply the inversion lemma to the premise, we find a proof of /n B,C, B,C,Γ⇒ ∆.
Now we can use the induction hypothesis twice to get /n B,C,Γ ⇒ ∆ and by applying
L∧3 we get that /n+1 B ∧C,Γ⇒ ∆.

2. The last rule ofD is L∨:

/n B, B ∨C,Γ⇒ ∆ /n C, B ∨C,Γ⇒ ∆
L∨

/n+1 B ∨C, B ∨C,Γ⇒ ∆
We apply the inversion lemma to the premises, which have deductions of depth at most
n, and find proofs of /n B, B,Γ ⇒ ∆ (from the left premise) and /n C,C,Γ ⇒ ∆ (from
the right premise). By induction hypothesis we have /n B,Γ ⇒ ∆ and /n C,Γ ⇒ ∆. To
obtain the desired sequent we apply L∨.

3. The last rule ofD is L→:

/n B→ C,Γ⇒ ∆, B /n B→ C,C,Γ⇒ ∆
L→

/n+1 B→ C, B→ C,Γ⇒ ∆
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We apply the inversion lemma to the premises and find proofs of /n Γ ⇒ B, B,∆
(from the left premise) and /n Γ,C,C ⇒ ∆ (from the right premise). By induction
hypothesis we obtain /n Γ ⇒ B,∆ (induction hypothesis for the right contraction) and
/n Γ,C ⇒ ∆ (induction hypothesis for the left contraction) from which we can derive
/n+1 B→ C,Γ⇒ ∆ by one application of L→.

LetD be a derivation of depth n + 1, such thatD /n+1 Γ⇒ ∆, A, A.
Case 4. If the sequent Γ⇒ ∆, A, A is an instance of an axiom, and

1. A is principal, then the sequent is of the form Γ′, P⇒ ∆, P, P and Γ′, P⇒ ∆, P is an
instance of (Ax3) too.

2. A is not principal, then Γ⇒ ∆, A is an axiom-instance too.
Case 5. The case where A is not principal in the last rule applied in D, can be treated
similarly to case 2.
Case 6. If A is principal in the last rule applied inD we have to consider the following
subcases:

1. The last rule ofD is R→:

/n Γ, B⇒ ∆,C, B→ C
R→

/n+1 Γ⇒ ∆, B→ C, B→ C

We apply the inversion lemma to the premise and find a proof /n Γ, B, B ⇒ ∆,C,C.
Applying the induction hypothesis twice, leads to /n Γ, B⇒ ∆,C and with one instance
of R→ we have a proof of the desired sequent.

2. The case where the last rule applied inD is R∧ can be treated similarly to case 3.2.

3. The case where the last rule applied inD is R∨ can be treated similarly to case 3.1.
!

Lemma 2.34. The sequent A⇒ A is derivable in G3c for all A.

Proof. Induction on the complexity of the formula A. If A is a prime formula (A atomic
or A ≡⊥): P ⇒ P and ⊥⇒⊥ are both instances of the axioms in G3c. Let A be a
formula of depth k + 1, and assume that the statement holds for formulas of smaller
depth.
Case 1. A≡ A0 ∧ A1:
By induction hypothesis, A0 ⇒ A0 and A1 ⇒ A1 are derivable sequents. By dp-
admissibility of weakening we have G3c / A0, A1 ⇒ A0 and G3c / A0, A1 ⇒ A1. We
get a proof of the desired sequent as follows:

A0, A1 ⇒ A0 A0, A1 ⇒ A1
R∧

A0, A1 ⇒ A0 ∧ A1
L∧3

A0 ∧ A1 ⇒ A0 ∧ A1
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Case 2. A≡ A0 ∨ A1: By induction hypothesis, A0 ⇒ A0 and A1 ⇒ A1 are derivable
sequents. By dp-admissibility of weakening we have G3c / A0 ⇒ A0, A1 and G3c /
A1 ⇒ A0, A1. We get a proof of the desired sequent as follows:

A0 ⇒ A0, A1 A1 ⇒ A0, A1
L∨

A0 ∨ A1 ⇒ A0, A1
R∨3

A0 ∨ A1 ⇒ A0 ∨ A1

Case 3. A ≡ A0 → A1: By induction hypothesis, A0 ⇒ A0 and A1 ⇒ A1 are derivable
sequents. By dp-admissibility of weakening we have G3c / A0 ⇒ A0, A1 and G3c /
A0, A1 ⇒ A1. We get a proof of the desired sequent as follows:

A0 ⇒ A0, A1 A0, A1 ⇒ A1
L→

A0, A0 → A1 ⇒ A1
R→

A0 → A1 ⇒ A0 → A1

!

The dp-admissibility of weakening and contraction for G3c implies that the systems
G3c and G1c are equivalent:

Theorem 2.35.
G1c / Γ⇒ ∆ iff G3c / Γ⇒ ∆.

Proof. In both directions, the proof of this equivalence proceeds by induction on the
depth of the deductions.
”⇒”: Let D be a G1c-proof of depth n, such that D /n Γ ⇒ ∆. It suffices to treat the
cases where Γ ⇒ ∆ is an axiom or the last rule of D is one of the omitted or modified
rules:
Case 1. If Γ⇒ ∆ is an instance of the axiom A⇒ A. we know by the previous lemma
that G3c / A⇒ A. If Γ⇒ ∆ is an instance of ⊥⇒, it is an G3c-axiom too.
Case 2. If the last rule ofD is (LW)

Γ⇒ ∆
LW

A,Γ⇒ ∆
,

we apply the induction hypothesis to the premise, which has a deduction of depth n−1,
and get G3c / Γ ⇒ ∆. By dp-admissibility of weakening, we have G3c / A,Γ ⇒ ∆.
The case where the last rule ofD is (RW) can be treated similar.
Case 3. The last rule ofD is (RC)

Γ⇒ ∆, A, A
RC

Γ⇒ ∆, A
we apply the induction hypothesis to the premise again to get G3c / Γ ⇒ ∆, A, A and
by dp-admissibility of contraction we have G3c / Γ ⇒ ∆, A. The case where the last
rule ofD is (LC) can be treated similar.
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Case 4. If the last rule ofD is (L∧1)

Ai,Γ⇒ ∆
L∧1, (i=0,1)

A0 ∧ A1,Γ⇒ ∆
we apply the induction hypothesis to the premise and have G3c / Ai,Γ ⇒ ∆. By
dp-admissibility of weakening we can add A0, A1 respectively, depending on which of
the formulas Ai is, to get G3c / A0, A1,Γ ⇒ ∆. It remains to use (L∧3) and we have
G3c / A0 ∧ A1,Γ⇒ ∆.
Case 5. The last case we have to consider is, if the last rule ofD is (R∨1)

Γ⇒ ∆, Ai
R∨1, (i=1,0)

Γ⇒ ∆, A0 ∨ A1

we apply the induction hypothesis to the premise and weaken the sequent by the for-
mula we need to get G3c / Γ⇒ ∆, A0, A1. Applying (R∨3) leads to

G3c / Γ⇒ ∆, A0 ∨ A1.

”⇐”: Let D be a G3c-deduction of depth n, such that G3c /n Γ ⇒ ∆. Again, to prove
this direction it suffices to treat the axioms and the modified rules:
Case 1. If Γ ⇒ ∆ is an instance of P,Γ′ ⇒ ∆′, P, this sequent can be derived from the
instance P ⇒ P of the G1c-axiom (Ax1) by applying weakening (LW) and (RW) as
much as there are formulas in Γ′,∆′. If Γ ⇒ ∆ is an instance of ⊥,Γ′ ⇒ ∆′, we can
derive this sequent in G1c from the corresponding axiom ⊥⇒ by applying weakening
again.
Case 2. If the last rule ofD is (L∧3)

A0, A1,Γ⇒ ∆
L∧3

A0 ∧ A1,Γ⇒ ∆
we apply the induction hypothesis to the premise, which has a deduction of depth n−1,
and get G1c / A0, A1,Γ⇒ ∆. Now we can use (L∧1) twice to have

G1c / A0 ∧ A1, A0 ∧ A1,Γ⇒ ∆.

Now we can contract the two occurrences of A0 ∧ A1 by one LC-application and have
the desired derivation in G1c.
Case 3. If the last rule ofD is (R∨3)

Γ⇒ ∆, A0, A1
R∨3

Γ⇒ ∆, A0 ∨ A1

by induction hypothesis we have G1c / Γ ⇒ ∆, A0, A1. Now we use (R∨1) twice and
contract the two occurrences of A0 ∨ A1 by one instance of RC.
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Remark 2.36. From the equivalence-proof of the systems G1c and G2c we even ob-
tained that if G1c /n Γ ⇒ ∆ then G2c /n Γ ⇒ ∆. In [TS00, remark to proposition
3.5.9] this corollary is stated for G1c and G3c as well, which turns out to be a mistake.
The source of the problem is the axiom (Ax3) and its restriction to atomic propositions:
Since B ⇒ B is an instance of (Ax1), we have that G1c /0 B ⇒ B for any formula B.
But in G3c the same statement G3c /0 B⇒ B is restricted to prime formulas B. If B is
an atomic proposition then B ⇒ B is an instance of (Ax3), if B ≡⊥ then B ⇒ B is an
instance of (L⊥3). But if we take B to be B ≡ P → Q, then P → Q ⇒ P → Q is not
an instance of (Ax3) for sure, thus we have

G1c /0 P→ Q⇒ P→ Q and G3c !0 P→ Q⇒ P→ Q,

which is a counterexample for the mentioned remark in [TS00].

The following property of G3c follows from the equivalence of the systems G1c and
G3c, and from Theorem 2.20:

Corollary 2.37. Cut is admissible for G3c.

Remark 2.38. The previous statement can also be proved directly, see for example
[TS00, Theorem 4.1.5].

Corollary 2.39. The Hilbert system Hcp and the Gentzen systems G1c, G2c and G3c
are equivalent.

Proof. The claim follows from the equivalence of Hcp and G1c (Theorem 2.21), the
equivalence of G1c and G2c (Theorem 2.24), and the equivalence of G1c and G3c
(Theorem 2.35). !

We summarize how we obtained the system G3c from the system G1c: first, we got rid
of the weakening rules. Instead of the two rules for weakening, we have more general
axioms in G2c and we proved that weakening is still dp-admissible in the weakening-
free system G2c, which implies that G1c and G2c are equivalent.
In a second step we also absorbed the contraction rules into the remaining axioms and
rules of the system: therefore we had to restrict the axiom (Ax2) to Γ, P ⇒ P,∆, such
that P is atomic. But this was not the only modification we had to make. Since we
want the system without structural rules to be equivalent to the original system G1c,
contraction has to be depth-preserving admissible. To prove this property, we need all
the rules of the system G3c to be depth-preserving invertible. Since (L∧1) and (R∨1),
as they are defined in G[12]c, are not invertible, we have to modify them for the system
G3c.
This strategy will be used again when we define contraction-free sequent systems for
the modal logic S4 and for the Logic of Proofs LP.
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3 Modal logic S4 and its formalizations
In this section, our aim is to define a weakening-, contraction- and cut-free sequent
system for the logic S4. We start by introducing a Hilbert system for S4 in the first
subsection, and in the second subsection we change to the semantic perspective and
introduce the canonical model for S4. The canonical model will be used later on in
this section, when we will prove that one of the contraction-free sequent systems we
introduce, is incomplete.

3.1 A Hilbert system for S4
Modal logic S4 is one of five axiom systems introduced first in Lewis and Langford’s
joint book Symbolic Logic [LL32], published in 1932, which contains a detailed de-
velopment of Lewis’ earlier ideas. Lewis was not the first who considered modal rea-
soning, but the link between his work and contemporary modal logic is more straight-
forward done than for other mathematicians work. But Lewis’ work seems strange to
modern eyes. For example, his axiomatic systems are not modular. Instead of extend-
ing a base system of propositional logic with specifically modal axioms, Lewis defines
his axioms directly in terms of the binary modality he introduced. The modular ap-
proach to modal Hilbert systems is due to Kurt Gödel. Instead of using the Lewis and
Langford axiomatization, in [Goe33] Gödel took ! as a primitive and formulated S4 in
the way that has become standard.

Definition 3.1. The language of S4, we denote it by L+, is obtained by adding to the
language of classical propositional logic L a unary operator !.
The modal formulas are given by the grammar

A ::= P | ⊥ | (A1 ∧ A2) | (A1 ∨ A2) | (A1 → A2) | !A.

!A may be read as A is provable or A is known. The formulas ¬A and A1 ↔ A2 are
defined as in Definition 2.1. We shall use our conventions for eliminating parentheses.
In addition, we set

!A := ¬!¬A.

The operator ! is the dual of !. !A may be read as possibly A or diamond A.

Definition 3.2. To define the depth or complexity of a modal formula !A, we refer to
the Definition 2.3 of the depth of a propositional formula and add the following case:
|!A| = |A| + 1, for all formulas A.

Definition 3.3. [TS00, Definition 9.1.1] A Hilbert style system Hs for S4 is obtained
by adding to the axioms and rules for classical propositional logic Hcp, the following
axioms, where A, B denote any L+-formulas:

(T) !A→ A
(K) !(A→ B)→ (!A→ !B)
(4) !A→ !!A
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and the necessitation rule:
A

N
!A

, for all L+-formulas A.

The notion of a deduction in Hs, may be defined as follows. A deduction is a tree
constructed starting from

A (A axiom)

by means of rules
A

N
!A

A→ B A
MP

B
.

Remark 3.4. S4 belongs to the family of normal modal logics. A modal logic is normal,
if it contains the formulas:

(K) !(A→ B)→ (!A→ !B),
(Dual) !A↔ ¬!¬A

and is closed under necessitation, that is, if A is derivable, then so is !A. An introduc-
tion to normal modal logic is given in [BRV01, section 1.6].

3.2 The canonical model for S4
In this subsection we introduce relational semantics for S4, and therefore refer to parts
of section 1 and 4 from [BRV01]. Relational semantics is often called Kripke seman-
tics, since Kripke’s work was crucial in establishing the relational approach.
Our aim is to state soundness and completeness for S4 with respect to its canonical
model. For the proofs of the theorems stated in this subsection, we will refer to the
corresponding theorem in [BRV01].

Definition 3.5. An n-place relation (or a relation with n arguments) on a set X is a
subset of Xn - that is, a set of ordered n-tupels of elements of X. A 2-place relation
is called a binary relation. Given a binary relation R on a set X, we simply write uRv
instead of (u, v) ∈ R, for u, v ∈ X. A binary relation R on X is said to be reflexive if xRx
for all x ∈ X; R is transitive if xRy and yRz imply xRz, for x, y, z ∈ X.

Definition 3.6. A relational structure is a tuple F whose first component is a non-
empty set W called the universe (or domain) of F , and whose remaining components
are relations on W. We assume that every relational structure contains at least one
relation. The elements of W have a variety of names, including: points, states, nodes,
worlds, times, instants and situations.

Definition 3.7. A frame for the language L+ is a pair F = (W,R) such that

1. W is a non-empty set.

2. R is an accessibility relation on W ×W.
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In other words, a frame for L+ is simply a relational structure bearing a single binary
relation. A model forL+ is a pairM = (F ,V) = ((W,R),V), where F is a frame forL+
and V is a function assigning to each proposition letter P a subset V(P) of W. We will
often writeM = (W,R,V) to denote a modelM = ((W,R),V). Formally, V is a map:
Φ → P(W), where P(W) denotes the power set of W. Informally we think of V(P) as
the set of worlds in our model where P is true. The function V is called a valuation.
Given a modelM = (F ,V), we say thatM is based on the frame F , or that F is the
frame underlyingM.

Definition 3.8. [BRV01, Definition 1.20]4 Suppose w is a world in a modelM = (W,R,V),
that is w ∈ W. Then we inductively define the notion of a formula A being satisfied or
true inM at world w as follows:

M,w " P iff w ∈ V(P), where P ∈ Φ,
M,w "⊥ never ,

M,w " A ∨ B iff M,w " A or M,w " B,
M,w " A ∧ B iff M,w " A and M,w " B,
M,w " A→ B iff M,w " A implies M,w " B,
M,w " !A iff for all v ∈ W such that wRv, we haveM, v " A.

If follows from this definition thatM,w " !A if and only if for some v ∈ W with wRv
we haveM, v " A. Finally, we say that a set Σ of formulas is true at a world w of a
modelM, if all members of Σ are true at w. Notation:M,w " Σ.

Notational conventions:
IfM does not satisfy A at w we writeM,w " A, and say that A is false at w. WhenM
is clear from the context, we write w " A forM,w " A and w " A forM,w " A.

Definition 3.9. A formula A is globally or universally true in a model M (notation:
M " A) if it is satisfied at all worlds inM (that is, ifM,w " A, for all w ∈ W). A
formula A is satisfiable in a modelM if there is some world inM at which A is true; a
formula is falsifiable or refutable in a model if its negation is satisfiable.
A set Σ is globally true (satisfiable, respectively) in a model M if M,w " Σ for all
worlds w inM (some world w inM).

Definition 3.10. A formula A is valid at a world w in a frame F if A is true at w in
every model (F ,V) based on F . Notation: F ,w " A. A is valid in a frame F if it is
valid at every world in F . Notation: F " A. A formula A is valid on a class of frames
F if it is valid on every frame F in F. Notation: F" A. A formula A is valid if it is
valid on the class of all frames. Notation: " A. The set of all formulas that are valid in
a class of frames F is called the logic of F. Notation: ΛF.

Definition 3.11. Let S be a class of models (a class of frames), and Σ, A be a set of
formulas and a single formula. A is a local semantic consequence of Σ over S (notation:
Σ "S A) if for all modelsM from S, and all worlds w inM, ifM,w " Σ thenM,w " A.

4Note that we adapt the definition to the definitions we chose for the language L+ and its well-formed
formulas.
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Definition 3.12. If Γ ∪ {A} is a set of formulas then A is deducible in the logic Λ from
Γ if /Λ A or there are formulas B1, ..., Bn ∈ Γ such that

/Λ (B1 ∧ ... ∧ Bn)→ A.

If this is the case we write Γ /Λ A, if not, Γ !Λ A. A set of formulas Γ is Λ-consistent
if Γ !Λ⊥, and Λ-inconsistent otherwise. A formula A is Λ-consistent if {A} is Λ-
consistent; otherwise A is Λ-inconsistent.

Now we define the two fundamental concepts soundness and completeness linking the
syntactic and semantic perspectives:

Definition 3.13. [BRV01, Definition 4.9] Let S be a class of frames (or models). A
normal modal logic Λ is sound with respect to S if Λ ⊆ ΛS . (Equivalently: Λ is sound
with respect to S if for all formulas A , and all structures S ∈ S, /Λ A implies S " A.)
If Λ is sound with respect to S we say that S is a class of frames (or models) for Λ.

Theorem 3.14. S4 is sound with respect to the class of reflexive, transitive frames.

For the proof of the soundness of S4 one shows that the axioms (T, K, 4) are valid, and
that the rules of proof preserve validity.

Definition 3.15. [BRV01, Definition 4.10] Let S be a class of frames (or models). A
logic Λ is strongly complete with respect to S if for any set of formulas Γ ∪ {A}, if
Γ "S A then Γ /Λ A. That is, if Γ semantically entails A on S then A is deducible in
Λ from Γ. A logic is weakly complete with respect to S if for any formula A, if S " A
then /Λ A.

Proposition 3.16. [BRV01, Proposition 4.12] A logic Λ is strongly complete with re-
spect to a class of structures S iff every Λ-consistent set of formulas is satisfiable on
some S ∈ S . Λ is weakly complete with respect to a class of structures S iff every
Λ-consistent formula is satisfiable on some S ∈ S .

The content of the proposition above is, that completeness theorems are essentially
model existence theorems. Given a normal logic Λ, we prove its strong complete-
ness with respect to some class of structures by showing that every Λ-consistent set of
formulas can be satisfied in some suitable model. Thus the fundamental question is:
how are this suitable satisfying models built? The answer to this question presented in
[BRV01, section 4.2] is, to build models out of maximal consistent sets of formulas,
and in particular, build canonical models.

Definition 3.17. A set of formulas Γ is maximal Λ-consistent if Γ is Λ-consistent,
and any set of formulas properly containing Γ is Λ-inconsistent. If Γ is a maximal
Λ-consistent set of formulas then we say it is a Λ-MCS.

It is good to know that any consistent set of formulas can be extended to a maximal
consistent one. This is what Lindenbaum’s Lemma is about:

Lemma 3.18. (Lindenbaum’s Lemma)[BRV01, Lemma 4.17] If Σ is a Λ-consistent set
of formulas then there is a Λ-MCS Σ+ such that Σ ⊆ Σ+.
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To see why MCSs are used in completeness proofs, we first have to note that every
world w in every modelM for a logic Λ is associated with a set of formulas, namely
{A : M,w " A}. It can be shown that this set of formulas is actually a Λ-MCS. That
is: if A is true in some model for Λ, then A belongs to Λ-MCS. Second, if w is related
to v in some model M, then it is clear that the information embodied in the MCSs
associated with w and v is ”coherently related”.
The idea behind the canonical model construction is to turn these observations about
MCSs and models around: that is, to work backwards from collections of coherently
related MCSs to the desired model. By building a special model, the canonical model,
whose worlds are all MCSs of the logic of interest, it is possible to prove the so called
Truth Lemma (cp. [BRV01, Lemma 4.21]), which states that ”A belongs to an MCS”
is actually equivalent to ”A is true in some model.”

Definition 3.19. [BRV01, Definition 4.18]5 The canonical modelMS4 for the modal
logic S4 is the triple (WS4,RS4,VS4) where:

1. WS4 is the set of all S4-MCSs;

2. RS4 is the binary relation on WS4 defined by wRS4v if !A ∈ w implies A ∈ v, for
all formulas A. RS4 is called the canonical relation;

3. VS4 is the valuation defined by VS4(P) = {w ∈ WS4 : P ∈ w}. VS4 is called the
canonical (or natural) valuation.

The pair F S4 = (WS4,RS4) is called the canonical frame for S4.

In the following we will omit the superscripts in WS4,RS4,VS4 if it is clear that we are
talking about the canonical model for S4.
Here are some comments about the three clauses: First, the canonical valuation equates
the truth of a propositional symbol at w with its membership in w. It is possible to lift
this ”truth=membership” equation to arbitrary formulas in L+ (cp. [BRV01, Truth
Lemma 4.2.1]). Second, it should be noted that the worlds ofMS4 consist of all S4-
consistent MCSs. The significance of this is that by Lindenbaum’s Lemma, any S4-
consistent set of formulas is a subset of some world in MS4 - hence, by the Truth
Lemma, any S4-consistent set of formulas is true at some world in this model. In short,
the single structure MS4 is a ”universal model” for the logic S4, which is why it is
called ”canonical”. Finally, we consider the canonical relation: a world w is related to
a world v precisely when for !A in w, v contains the information A, for each formula
A. Intuitively, this captures what is meant by MCSs being ”coherently related.” The
canonical modelMS4 is reflexive and transitive, that is, the canonical relation R on W is
reflexive and transitive. In fact, the canonical frame of any normal logic containing the
axiom 4 is transitive (cp. [BRV01, Theorem 4.27]). A similar statement can be proved
for the axiom T: the canonical frame of any normal logic containing T is reflexive (cp.
[BRV01, Theorem 4.28]).

5We restrict ourselves to the definition of the canonical model for S4. While the canonical model can be
defined for any normal modal logic, it does not always work, that is, the canonical model may not belong to
the desired class of models.
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Theorem 3.20. [BRV01, Theorem 4.22]6 Modal logic S4 is strongly complete with
respect to its canonical modelMS4.

Proof. Suppose Σ is a consistent set of the logic S4. By Lindenbaum’s Lemma there is
a S4-MCS Σ+ extending Σ. By the Truth Lemma,MS4,Σ+ " Σ. !

Theorem 3.21. [BRV01, Theorem 4.29] S4 is strongly complete with respect to the
class of reflexive, transitive frames.

3.3 Sequent systems G1s and G2s
In this section we define two sequent systems for S4. We proceed by the same strategy
we used to define the G3-system for classical propositional logic. First, we define a
Gentzen system with structural rules, and then, we omit the structural rules and modify
the remaining axioms and rules, such that the obtained system is still equivalent to the
original one.

Definition 3.22. [TS00, Definition 9.1.3]7 The axioms and rules defining the Gentzen
system G1s for modal logic S4 are listed in Figure 2.

Remark 3.23.

1. Like we did it in the definition of the system G1c, we add the digit ’1’ to the
name of those rules and axioms, which are going to be modified either in G2s
or in G3s. The corresponding axiom- and rule-names in G2s, G3s respectively,
will have the number ’2’, ’3’ respectively, even if they are not modified.

2. The system G1c is a subsystem of G1s or in other words, G1s is G1c with two
additional rules, L!1 and R!1, thus the properties of the propositional fragment
G1s are the same as for the rules in G1c. Especially we would like to mention the
non-invertibility of the weakening rules and the rules R∨1, L∧1 (cp. observation
4. on page 24).

3. The R!1-rule is only restrictively applicable. The sequent, to which the R!1-
rule is applied, has to satisfy the following conditions:

• the antecedent contains only boxed formulas, and
• the only formula present in the succedent, is the formula which is going to

be boxed by the R!1-rule.

The R!1-rule is the only rule in G1s which has this restrictive conditions.

4. The modal rule L!1 is not invertible: we have for example G1s / !P⇒ !P for
atomic propositions P, since!P⇒ !P is an instance of (Ax1) and G1s ! P⇒ !P,
since P→ !P is not valid.

6In the theorem we refer to, the Canonical Model Theorem is stated for any normal modal logic. But
since in this case, we are only interested in S4, we restrict the statement to the logic of interest.

7In the definition we refer to, there are four modal rules, L!, L!,R!, and R!, added to G1c to obtain
G1s, but as the remark in definition 9.1.3 says, it suffices to add L! and R! (or equivalently, L! and R!),
since L! and R!, such as R! and L! are dual rules.
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A⇒ A (Ax1) ⊥⇒ (L⊥1)

Γ⇒ ∆
LW

A,Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ ∆, A

A, A,Γ⇒ ∆
LC

A,Γ⇒ ∆
Γ⇒ ∆, A, A

RC
Γ⇒ ∆, A

Ai,Γ⇒ ∆
L∧1 , (i=0,1)

A0 ∧ A1,Γ⇒ ∆
Γ⇒ ∆, A Γ⇒ ∆, B

R∧
Γ⇒ ∆, A ∧ B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨ B,Γ⇒ ∆
Γ⇒ ∆, Ai

R∨1, (i=0,1)
Γ⇒ ∆, A0 ∨ A1

Γ⇒ ∆, A B,Γ⇒ ∆
L→

A→ B,Γ⇒ ∆
A,Γ⇒ ∆, B

R→
Γ⇒ ∆, A→ B

Γ, A⇒ ∆
L!1

Γ,!A⇒ ∆
!Γ⇒ A

R!1
!Γ⇒ !A

where !Γ = {!Γ1, ...,!Γn} is a finite multiset of boxed formulas only.

Figure 2: Gentzen system G1s for modal logic S4
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5. The modal rule R!1 is invertible (cp. Corollary 3.25), but not dp-invertible:
if !Γ ⇒ !A is an instance of (Ax1), then the only element of !Γ is !A and
the instance of (Ax1) is !A ⇒ !A, thus G1s /0 !A ⇒ !A. If R!1 were
dp-invertible, !A ⇒ A would have to be an axiom too, but obviously we have
G1s !0 !A⇒ A.

As it can be proved for the propositional sequent systems we presented in section 2,
cut is admissible for G1s. For the proof of the following theorem, we refer to [TS00,
Theorem 9.1.5].

Theorem 3.24. Cut is admissible for the system G1s.

Corollary 3.25. The rule R!1 from the system G1s is invertible.

Proof. What we have to show is that whenever G1s / !Γ⇒ !A, then G1s / !Γ⇒ A,
for all Γ, A. Let G1s / !Γ⇒ !A, and since A⇒ A is an instance of (Ax1) we have

A⇒ A
L!1

!A⇒ A
.

Together we have G1s / !Γ ⇒ !A and G1s / !A ⇒ A. By Cut-admissibility for G1s
we obtain G1s / !Γ⇒ A. !

Theorem 3.26. The sequent system G1s and the Hilbert system Hs are equivalent.

Proof. By an induction on the depth of the G1s-proof, Hs-proof respectively, it can be
shown that /Hs

∧
Γ→ A if and only if G1s / Γ⇒ A.

For the equivalence of a similar Gentzen system for S4 and the Hilbert system Hs see
for example [Kan57]. !

We define the weakening-free sequent system G2s next. As for G2c, weakening is
depth-preserving admissible for G2s.

Definition 3.27. The system G2s for modal logic S4 is obtained from G1s by leaving
out the weakening rules (LW), (RW), replacing the axioms by the following two general
ones

Γ, A⇒ A,∆ (Ax2) and ⊥,Γ⇒ ∆ (L⊥2),

and taking

!Γ⇒ A
R!2

Γ′,!Γ⇒ !A,∆′
instead of

!Γ⇒ A
R!1

!Γ⇒ !A
.

The system G2s is an extension of G2c by the two modal rules L!2 and R!2, where
L!2 is exactly the same rule as L!1.

Lemma 3.28. Weakening is depth-preserving admissible for G2s, that is

if G2s /n Γ⇒ ∆ then G2s /n Γ,Γ′ ⇒ ∆,∆′.
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Proof. In section 2, we already proved the lemma for G2c, by induction on the depth n
of the derivation D of Γ ⇒ ∆, so it remains to show the two cases, where the last rule
of the deductionD is a modal one:
Case 1. If the last rule ofD is L!2, then we have:

/n−1 A,Γ⇒ ∆
L!2

/n !A,Γ⇒ ∆

and we apply the induction hypothesis to the premise and get G2s /n−1 A,Γ,Γ′ ⇒ ∆,∆′.
Using L!2 we have G2s /n !A,Γ,Γ′ ⇒ ∆,∆′.
Case 2. If the last rule ofD is R!2 then we have:

/n−1 !Γ⇒ A
R!2

/n Ψ,!Γ⇒ !A,Φ

and we just apply the following instance of R!2 to the premise

/n−1 !Γ⇒ A
R!2

/n Γ′,Ψ,!Γ⇒ !A,Φ,∆′

to get the desired derivation.
!

Remark 3.29. In the proof of the second case it becomes clear, why we have to modify
the rule introducing a ! in the succedent for the weakening-free system G2s: without
doing it, we would not be able to prove dp-admissibility of weakening for this system.
By the way, in opposition to R!1, R!2 is no longer invertible. As an easy counterex-
ample we have G2s / !P⇒ !P for any proposition P, since this sequent is an instance
of (Ax2) and G2s !⇒ P.

Theorem 3.30. The systems G1s and G2s are equivalent, that is

G1s / Γ⇒ ∆ iff G2s / Γ⇒ ∆.

Proof. Again, we refer to the proof of the corresponding theorem in the previous sec-
tion (equivalence of G1c and G2c) and only show the modal cases. Therefore, the
dp-weakening admissibility lemma for G2c is replaced in the proof by the previous
dp-weakening admissibility lemma for G2s. For both directions, the proof proceeds by
an induction on the depth of the deduction. ”⇒”: LetD be a G1s-derivation of Γ⇒ ∆
of depth n, such thatD /n Γ⇒ ∆:
Case 1. If the last rule ofD is L!1:

Γ, A⇒ ∆
L!1

Γ,!A⇒ ∆

we apply the induction hypothesis to the premise and use the same rule in G2s, denoted
by L!2, to have a desired proof.
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Case 2. If the last rule ofD is R!1:

!Γ⇒ A
R!1

!Γ⇒ !A

by induction hypothesis we get G2s /n−1 !Γ⇒ A. We can use R!2 in G2s:

!Γ⇒ A
R!2

Γ′,!Γ⇒ !A,∆′

with Γ′ = ∆′ = ∅, to have the desired G2s-proof of the sequent.
It should be noted that also for the modal cases, the depth of a G2s-derivation of Γ⇒ ∆
does not exceed the depth of the G1s-derivation of the same sequent.

”⇐”: LetD be a G2s-derivation of /n Γ⇒ ∆:
Case 1. If the last rule ofD is L!2:

Γ, A⇒ ∆
L!2

Γ,!A⇒ ∆
we apply the induction hypothesis to the premise and use the same rule, denoted by
L!1, in G1s to have a desired proof.
Case 2. If the last rule ofD is R!2:

!Γ⇒ A
R!2

Γ′,!Γ⇒ !A,∆′

by induction hypothesis we get G1s /n−1 !Γ ⇒ A. We can use R!1 in G1s to have
G1s /n !Γ ⇒ !A, and applying some instances of weakening we obtain the desired
G1s-proof of the sequent.

!

Corollary 3.31.

If G1s /n Γ⇒ ∆ then G2s /n Γ⇒ ∆.

Proof. The statement follows from the proof of the equivalence of G1c and G2c (The-
orem 2.24), and the previous theorem. !

Corollary 3.32. Cut is admissible for G2s.

Proof. The statement follows from Theorem 3.24 (cut-admissibility for G1s) and the
equivalence of the systems G1s and G2s (Theorem 3.30). !

Corollary 3.33. The Hilbert system Hs and the Gentzen system G2s are equivalent.

Proof. The corollary follows from the equivalence of the systems Hs and G1s (Theo-
rem 3.26), and the systems G1s and G2s (Theorem 3.30). !
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3.4 A contraction-free sequent system for S4
In this subsection we define a Gentzen system without weakening- and contraction
rules for S4 and prove that it is equivalent to the system containing structural rules.

Definition 3.34. [TS00, Definition 9.1.4] The Gentzen system G3s for S4 is obtained
from G2s by leaving out the contraction rules (LC, RC) and taking

P,Γ⇒ ∆, P (P atomic) (Ax3) instead of A,Γ⇒ ∆, A (Ax2),

A, B,Γ⇒ ∆
L∧3

A ∧ B,Γ⇒ ∆
instead of

Ai,Γ⇒ ∆
L∧2 , (i=0,1)

A0 ∧ A1,Γ⇒ ∆
,

Γ⇒ ∆, A, B
R∨3

Γ⇒ ∆, A ∨ B
instead of

Γ⇒ ∆, Ai
R∨2 , (i=0,1)

Γ⇒ ∆, A0 ∨ A1
,

Γ, A,!A⇒ ∆
L!3

Γ,!A⇒ ∆
instead of

Γ, A⇒ ∆
L!2

Γ,!A⇒ ∆
.

The system G3s extends G3c by the two modal rules.

Lemma 3.35. Weakening is depth-preserving admissible for G3s, that is

if G3s /n Γ⇒ ∆ then G3s /n Γ,Γ′ ⇒ ∆,∆′.

Proof. We already proved the lemma for G3c and G2s by an induction on the depth n
of the derivationD /n Γ⇒ ∆. The case where the last rule ofD is R!3 can be checked
up in the proof of the corresponding lemma for G2s, since R!3 is the same rule as
R!2. If the last rule ofD is L!3,

Γ, A,!A⇒ ∆
L!3

Γ,!A⇒ ∆
we apply the induction hypothesis to the premise, which has a derivation of depth
≤ n − 1, and obtain G3s /n−1 Γ

′,Γ, A,!A ⇒ ∆,∆′. Now, we apply L!3 to have the
desired derivation. !

Lemma 3.36. (dp-invertibility of the rules) Let / be deducibility in G3s.

1. If /n A ∧ B,Γ⇒ ∆, then /n A, B,Γ⇒ ∆.

2. If /n Γ⇒ ∆, A ∨ B, then /n Γ⇒ ∆, A, B.

3. If /n A ∨ B,Γ⇒ ∆, then /n A,Γ⇒ ∆ and /n B,Γ⇒ ∆.

4. If /n Γ⇒ ∆, A ∧ B, then /n Γ⇒ ∆, A and /n Γ⇒ ∆, B.

5. If /n Γ⇒ A→ B,∆, then /n Γ, A⇒ ∆, B.
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6. If /n Γ, A→ B⇒ ∆, then /n Γ⇒ ∆, A and /n Γ, B⇒ ∆.

7. If /n Γ,!A⇒ ∆, then /n Γ, A,!A⇒ ∆.

Proof. We proved dp-invertibility of the rules for the system G3c by an induction on
the depth n of the derivation, in Lemma 2.31. Since G3s in an extension of G3c by the
rules R!3 and L!3, we have to show that the proof still works with this two additional
rules. As a representative statement, we prove the first statement. Assume 1. to have
been proved for n and all Γ,∆. Let /n+1 A ∧ B,Γ ⇒ ∆ by a deduction D. It suffices to
treat the cases where the last rule of the deduction D is one of the modal ones, since
the other cases work exactly the same as in the proof of Lemma 2.31.
Case 1. If the last rule ofD is L!3

A ∧ B,!D,D,Γ⇒ ∆
L!3

A ∧ B,!D,Γ⇒ ∆
we apply the induction hypothesis to the premise and obtain /n A, B,!D,D,Γ⇒ ∆. To
this sequent we apply L!3 and have /n+1 A, B,!D,Γ⇒ ∆.
Case 2. If the last rule ofD is R!3

!Γ⇒ D
R!3

A ∧ B,Γ′,!Γ⇒ !D,∆′

the premise of the last rule-application has to be of the form !Γ ⇒ D, otherwise the
R!3-rule is not applicable. Thus we just apply another R!3-instance to !Γ⇒ D:

!Γ⇒ D
R!3

A, B,Γ′,!Γ⇒ !D,∆′

to obtain the desired proof.
The remaining cases for the statements 2.-4. work similar.
dp-invertibility of the L!3-rule 7., is the only rule, for which we did not proved the
statement yet. But if we have G3s /n Γ,!A ⇒ ∆, then the desired derivation of
G3s /n Γ,!A, A⇒ ∆ follows from the dp-admissibility of weakening for G3s. !

Remark 3.37. We only stated dp-invertibility for L!3 but not for the R!3-rule. Since
R!3 is the same rule as R!2, the rule is not invertible for a similar reason. On one
hand we have G3s / !P ⇒ !P: P ⇒ P is an instance of (Ax3) and by dp-weakening
admissibility we obtain G3s / P,!P ⇒ P. The desired sequent can be obtained as
follows:

P,!P⇒ P
L!3

!P⇒ P
R!3

!P⇒ !P
On the other hand we have G3s !⇒ P. But fortunately it will turn out that the non-
invertibility of R!3 is no problem, even to prove dp-admissibility of contraction.

Lemma 3.38. (dp-admissibility of contraction for G3s)
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1. If G3s /n A, A,Γ⇒ ∆ then G3s /n A,Γ⇒ ∆.
2. If G3s /n Γ⇒ ∆, A, A then G3s /n Γ⇒ ∆, A.

Proof. We prove the lemma by a simultaneous induction on the depth n for both state-
ments. We already proved this lemma for G3c (Lemma 2.33), thus it remains to treat
the cases where the last rule of the deductions is a modal one.
LetD be a deduction of depth n+1, such thatD /n+1 A, A,Γ⇒ ∆.
Case 1. If neither occurrence of A is principal and the last rule applied in D is R!3,
then, depending on the formula A and the rule instance of R!3, we have the following
possibilities:

1. If A is not a boxed formula, or A ≡ !B is a boxed formula but has been weakened in
R!3

!Γ⇒ D
R!3

Γ′, A, A,!Γ⇒ !D,∆′

then we take the premise of the last R!3-application and use another instance of R!3
to obtain G3s /n+1 Γ

′, A,!Γ⇒ !D,∆′.

2. If A is a boxed formula A ≡ !B and only one occurrence of !B has been weakened
by the R!3-rule

!B,!Γ⇒ D
R!3

Γ′,!B,!B,!Γ⇒ !D,∆′

then we just apply the following R!3-instance to obtain a proof of the desired sequent:

!B,!Γ⇒ D
R!3

Γ′,!B,!Γ⇒ !D,∆′
.

3. If A is a boxed formula A ≡ !B and both occurrences have not been weakened in
R!3

!B,!B,!Γ⇒ D
R!3

Γ′,!B,!B,!Γ⇒ !D,∆′

we apply the induction hypothesis to the premise to obtain G3s /n !B,!Γ ⇒ D. To
this sequent we can apply R!3 and we have that G3s /n+1 Γ

′,!B,!Γ⇒ !D,∆′.
Case 2. If A is not principal and the last rule applied inD is L!3,

A, A, B,!B,Γ⇒ ∆
L!3

A, A,!B,Γ⇒ ∆
we apply the induction hypothesis to the premise to obtain G3s /n A, B,!B,Γ⇒ ∆. To
this sequent we can apply L!3 and we have that G3s /n+1 A,!B,Γ⇒ ∆.
Case 3. If A is principal and the last rule applied in D is L!3, then A is of the form
A≡ !B

!B, B,!B,Γ⇒ ∆
L!3

!B,!B,Γ⇒ ∆
We apply the induction hypothesis to the premise, and get G3s /n B,!B,Γ ⇒ ∆. To
this sequent we can apply L!3 and we have that G3s /n+1 !B,Γ⇒ ∆.
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LetD be a deduction of depth n+1 of the sequent Γ⇒ ∆, A, A.
Case 4. If A is not principal and the last rule applied inD is L!3

B,!B,Γ⇒ ∆, A, A
L!3

!B,Γ⇒ ∆, A, A

we apply the induction hypothesis to the premise to obtain G3s /n B,!B,Γ⇒ ∆, A. To
this sequent we can apply L!3 and we have that G3s /n+1 !B,Γ⇒ ∆, A.
Case 5. If A is not principal and the last rule applied inD is R!3,

!Γ⇒ B
R!3

Γ′,!Γ⇒ !B, A, A,∆′

we just take the immediate subdeduction of depth n of the premise and apply the fol-
lowing instance of R!3

!Γ⇒ B
R!3

Γ′,!Γ⇒ !B, A,∆′

to obtain G3s /n+1 Γ
′,!Γ⇒ !B, A,∆′.

Case 6. If A is principal and the last rule applied in D is R!3, then A is of the form
A≡ !B

!Γ⇒ B
R!3

Γ′,!Γ⇒ !B,!B,∆′

we take the immediate subdeduction of the premise and apply the following instance
of R!3

!Γ⇒ B
R!3

Γ′,!Γ⇒ !B,∆′

to obtain G3s /n+1 Γ
′,!Γ⇒ !B,∆′.

!

Remark 3.39.

1. The depth-preserving invertibility of the L!3-rule is not needed in the proof
above. The reason for not necessarily using this property of the L!3-rule is the
additional copy of !B in the premise of the rule, in other words, the embedded
contraction in L!3. Obviously, if L!3 was not dp-invertible, for example if we
take the left box-rule to be the rule L![12] defined in G[12]s, then this particular
proof of case 3 would not be possible.

2. The R!3-rule is the only rule from the system G3s, which does not need to
be invertible to prove dp-admissibility of contraction. The depth-preserving in-
vertibility of any G3s-rule R, with the exception of L!3, in the proof of dp-
admissibility of contraction is needed in the specific case, where the last rule
of the deduction is the rule R and one of the formulas A, which are going to
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be contracted, is the principal formula in R. In all the rules R, except for R!3,
there is an occurrence of the second copy of the formula A, the non-principal
A, in the premise of R. We try to make the difference visible for the case of
dp-admissibility of the right contraction:

!Γ⇒ B
R!3

Γ′,!Γ⇒ !B,!B,∆′
Γ⇒ A0 ∨ A1, A0, A1,∆

R∨
Γ⇒ A0 ∨ A1, A0 ∨ A1,∆

Γ⇒ A0 ∧ A1, A0,∆ Γ⇒ A0 ∧ A1, A1,∆
R∧3

Γ⇒ A0 ∧ A1, A0 ∧ A1,∆

Γ, A0 ⇒ A0 → A1, A1,∆
R→

Γ⇒ A0 → A1, A0 → A1,∆

In the cases, where the last rule is R∧3, R∨ and R→ there is still one of the
formulas, which are going to be contracted, in the succedent of the premise (the
formula written in bold face). With the dp-invertibility of this rules, we find
a derivation of Γ ⇒ A0, A1, A0, A1,∆ (in the case for R∨) on which we can
finally apply the induction hypothesis of the proof. But if the last rule applied
is R!3, this second copy of !B has been weakened by R!3 and we do not need
invertibility of the rule.

Lemma 3.40. The sequent A⇒ A is derivable in G3s for all formulas A.

Proof. Induction on the complexity of the formula A. The corresponding property has
been proved for G3c, thus it suffices to consider the case where A ≡ !B. Therefore,
the dp-weakening admissibility lemma for G3c is be replaced in the proof by the dp-
weakening admissibility lemma proven for G3s.
Assume that the statement holds for sequents A ⇒ A with depth |A| = k. Let A ≡ !B,
by induction hypothesis we know that B⇒ B is a derivable sequent. By dp-admissibility
of weakening it follows that G3s / B,!B ⇒ B. We get a proof of the desired sequent
as follows:

B,!B⇒ B
L!3

!B⇒ B
R!3

!B⇒ !B
!

Now we are ready to prove that the weakening- and contraction-free system G3s is
equivalent to the original system G1s:

Theorem 3.41.
G1s / Γ⇒ ∆ iff G3s / Γ⇒ ∆.

Proof. In both directions, the proof proceeds by an induction on the depth n of the
deductions. Since we already proved the corresponding theorem for G1c and G3c, it
remains to treat the cases where the last rule of the deductionD is L!3 and R!3.
”⇒”: LetD be a G1s-deduction of depth at most n, such thatD /n Γ⇒ ∆.
Case 1. If the last rule ofD is L!1:

Γ, A⇒ ∆
L!1

Γ,!A⇒ ∆
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we can apply the induction hypothesis to the premise to obtain G3s / Γ, A ⇒ ∆. By
the dp-admissibility of weakening for G3s we get G3s / Γ, A,!A ⇒ ∆, now L!3 is
applicable in G3s and we have a derivation of the desired sequent.
Case 2. If the last rule ofD is R!1:

!Γ⇒ A
R!1

!Γ⇒ !A

we apply the induction hypothesis to the premise and have G3s / !Γ ⇒ A, R!3 is
directly applicable and we have G3s / !Γ⇒ !A.

”⇐”: LetD be a G3s-deduction of depth at most n, such thatD /n Γ⇒ ∆.
Case 1. If the last rule ofD is L!3:

Γ, A,!A⇒ ∆
L!3

Γ,!A⇒ ∆
Applying the induction hypothesis to the premise implies G1s / Γ, A,!A ⇒ ∆ and by
the following rule-applications we get a G1s-proof of the desired sequent as follows:

Γ, A,!A⇒ ∆
L!1

Γ,!A,!A⇒ ∆
LC

Γ,!A⇒ ∆
Case 2. If the last rule ofD is R!3:

!Γ⇒ A
R!3

Γ′,!Γ⇒ !A,∆′

we apply the induction hypothesis to the premise and get G1s / !Γ⇒ A, where we can
directly apply R!1 to obtain G1s / !Γ⇒ !A. Applying some instances of weakening
we obtain a proof of the desired sequent.

!

The equivalence of the systems G1s, G3s, and cut-admissibility for G1s (Theorem
3.24) imply the following corollary:

Corollary 3.42. Cut is admissible for G3s.

Remark 3.43. The previous statement can also be proven directly, see for example
[TS00, Theorem 9.1.5].

Corollary 3.44. The Gentzen systems G1s, G2s, G3s and the Hilbert system Hs for S4
are equivalent.

Proof. This follows from the equivalence of the systems Hs and G1s (Theorem 3.26),
G1s and G2s (Theorem 3.30), and G1s and G3s (Theorem 3.41). !
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3.5 G3s’ - a modification of the system G3s
In the current subsection, we slightly modify the weakening- and contraction-free sys-
tem G3s, and it turns out that this slight modification has a really bad consequence: the
resulting system is incomplete. With the help of this example, we show how important
the properties, that we proved for G3s, actually are.

Definition 3.45. The sequent style calculus G3s’ is the system G3s with an alternative
box rule for the left side. The original rule L!3 is replaced by the rule

A,Γ⇒ ∆
L!1

!A,Γ⇒ ∆
.

Lemma 3.46. Weakening is depth-preserving admissible for G3s’.

Proof. We already proved the lemma for G3s (Lemma 3.35) by an induction on the
depth n of the derivationD /n Γ⇒ ∆. If the last rule ofD is L!1,

Γ, A⇒ ∆
L!1

Γ,!A⇒ ∆
we apply the induction hypothesis to the premise, which has a derivation of depth
≤ n − 1, and obtain G3s′ /n−1 Γ

′,Γ, A⇒ ∆,∆′. Now, we apply L!1 and have

G3s′ /n Γ′,Γ,!A⇒ ∆,∆′.

!

Lemma 3.47. The sequent A⇒ A is derivable in G3s’ for all formulas A.

Proof. Induction on the complexity of the formula A. Assume that the statement holds
for sequents A ⇒ A with depth |A| = k and show that the statement holds for formulas
A such that |A| = k + 1. Since we already proved this lemma for G3s, the only case it
remains to consider is the case where A ≡ !B:

B⇒ B
L!1

!B⇒ B
R!

!B⇒ !B

By induction hypothesis, B⇒ B is derivable in G3s’. !

In Theorem 3.48 and 3.50, if we use the expression incomplete (sound) with respect
to S4, we mean incomplete (sound) with respect to the class of Kripke models for S4
introduced in subsection 3.2.

Theorem 3.48. The system G3s’ is incomplete with respect to S4.

There are two different proofs we would like to give for the incompleteness of the
system G3s’. In the first proof we introduce a formula, which is valid but not provable
in G3s’, and in the second proof we show that the systems G3s and G3s’ are not
equivalent, which will bring to light the reason for G3s’ being incomplete.
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First proof of the Theorem. The useful formula φ = ¬!¬!(¬!¬P → !¬!¬P), where
P is an atomic proposition, is due to Rajeev P. Goré [Gor92, page 47]. First, we prove
that this formula is not derivable in G3s’:
Starting with the sequent ⇒ ¬!¬!(¬!¬P→ !¬!¬P) at the root of a tree, the first
five steps backwards are determined:

¬!¬P⇒ !¬!¬P
R→

⇒ ¬!¬P→ !¬!¬P
R!3

⇒⊥,!(¬!¬P→ !¬!¬P) ⊥⇒⊥
L→

¬!(¬!¬P→ !¬!¬P)⇒⊥
L!1

!¬!(¬!¬P→ !¬!¬P)⇒⊥
R→

⇒ ¬!¬!(¬!¬P→ !¬!¬P)

(5)

Considering the sequent ¬!¬P ⇒ !¬!¬P we have two possibilities to continue: we
could apply the rule R! or the rule L→. If we apply R! backwards, the following steps
are fix again and we get the tree

⇒ P,⊥ ⊥⇒⊥
L→

¬P⇒⊥
L!1

!¬P⇒⊥
R→

⇒ ¬!¬P
R!3

¬!¬P⇒ !¬!¬P

(6)

The sequent⇒ P ⊥ is not an instance of an axiom, thus this is no proof for our sequent.
But what happens if we continue with L→ instead of R!?

⇒ !¬P,!¬!¬P ⊥⇒ !¬!¬P
L→

¬!¬P⇒ !¬!¬P
(7)

Going one step backwards with L→we get an instance of (L⊥) on the right side and the
sequent⇒ !¬P,!¬!¬P on the left. Since both formulas in the succedent are boxed,
the only rule we can apply backwards is the right box rule. It does not depend on which
formula we apply the rule first, in both trees we get if we proceed the backward proof
search, we do not have axioms at the top nodes:

⇒ P,⊥ ⊥⇒⊥
L→

¬P⇒⊥
L!1

!¬P⇒⊥
R→

⇒ ¬!¬P
R!3

⇒ !¬P,!¬!¬P

(8)

P⇒⊥
R→

⇒ ¬P
R!3

⇒ !¬P,!¬!¬P

(9)

47



Since our possibilities to derive a sequent like⇒ ¬!¬!(¬!¬P → !¬!¬P) from our
axioms by means of the available rules are limited, and we checked all the possibilities,
we can be sure that there is no proof for this sequent in our system. Thus

G3s′ !⇒ ¬!¬!(¬!¬P→ !¬!¬P).

It remains to show that the formula¬!¬!(¬!¬P→ !¬!¬P) is valid: LetM = (W,R,V)
be an arbitrary reflexive and transitive model. If we want to check whether or not our
formula ¬!¬!(¬!¬P → !¬!¬P) is valid in the modelM, we have to write out the
definition of validity first:

M " ¬!¬!(¬!¬P→ !¬!¬P) i f f for all w ∈ W,w " ¬!¬!(¬!¬P→ !¬!¬P).
i f f for all w ∈ W,w " !¬!(¬!¬P→ !¬!¬P)
i f f ∃u ∈ W s.t. wRu and u " ¬!(¬!¬P→ !¬!¬P)
i f f ∃u ∈ W s.t. wRu and u " !(¬!¬P→ !¬!¬P).

u " !(¬!¬P→ !¬!¬P) i f f ∀v ∈ W(uRv→ v " ¬!¬P→ !¬!¬P)
i f f ∀v ∈ W(uRv→ (v " ¬!¬P or v " !¬!¬P))
i f f ∀v ∈ W(uRv→ (v " !¬P or v " !¬!¬P)).

v " !¬P or v " !¬!¬P i f f ∀r(vRr → r " ¬P) or ∀r(vRr → r " ¬!¬P)
i f f ∀r(vRr → r " P) or ∀r(vRr → r " !¬P)
i f f ∀r(vRr → r " P) or ∀r(vRr → ∃s(rRs and s " ¬P))
i f f ∀r(vRr → r " P) or ∀r(vRr → ∃s(rRs and s " P)).

We have to show that for all w ∈ W there exists a world u such that the listed conditions
hold. Let w be an arbitrary world in W. We define the set

RP(w) = {u : wRu and u " P}

of worlds, accessible from w, where P is valid. If wRv, then the corresponding set
RP(v) of worlds accessible from v satisfying P is a subset of RP(w) by transitivity of R:
let p be an element of RP(v), so what we know about p is vRp and p " P. Since we
have wRv (by assumption) and vRp the transitivity of R leads to wRp and therefore to
p ∈ RP(w), thus RP(v) ⊆ RP(w). To complete the proof it remains to distinguish the
following two cases:
Case 1. If RP(u) = ∅ for some u with wRu, by definition of RP(u) we have found a
world u such that for any accessible world r (uRr), r " P.
Case 2. If for all worlds u accessible from w, RP(u) " ∅, we pick any r with wRuRvRr.
By transitivity of R we have wRr, so RP(r) " ∅. Thus there is an s such that rRs and
s " P.

!
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Since the system G3s is sound an complete with respect to S4, and φ is valid in any
model for S4, the formula φ has to be derivable in G3s. In Figure 3 there is a derivation
of φ in G3s.

Second proof of the Theorem. In this proof of the incompleteness of G3s’ it becomes
clear, for which reason the system is incomplete. But actually, we already know it: it
has to be the non-invertibility of the L!1-rule, the only rule which makes the difference
between G3s’ and G3s. A counterexample proves that the rule L!1 is not invertible:

(1) G3s′ / !¬!¬P⇒ !¬!¬P
(2) G3s′ ! ¬!¬P⇒ !¬!¬P

(1) follows from Lemma 3.47, the sequent A⇒ A is derivable in G3s’ for any formula
A, and (2) follows from the first proof of the incompleteness theorem. All attempts to
derive the sequent ¬!¬P ⇒ !¬!¬P in G3s’ were without success. The invertibility
of L! would state that if G3s′ / !¬!¬P⇒ !¬!¬P then G3s′ / ¬!¬P⇒ !¬!¬P.
Of course, it would be nice to have a system with invertible rules, but why is it so
bad, that L!1 is not invertible? The problem is that with the non-invertible L!1-rule,
we cannot prove dp-admissibility of contraction: the standard proof (see for example
the proof of dp-admissibility of contraction for G3s, Lemma 3.38) proceeds by an
induction on the depth of the derivation D, such that D /n A, A,Γ ⇒ ∆. In the case,
where the last rule of D is L!1, and one of the formulas A is the principal formula,
thus A is of the form A ≡ !B, we would need the depth-preserving invertibility of L!1
to prove the statement:

B,!B,Γ⇒ ∆
L!1

!B,!B,Γ⇒ ∆
.

Thus, we already found the reason for G3s’ not being equivalent to the original system
G3s. In the previous subsection we have shown that contraction is dp-admissible for
G3s, and it is clear from the observations above, that it is not dp-admissible for G3s’.
In fact, we can even state more, namely, that contraction is not admissible for G3s’ in
general. The following counterexample proves the statement:

(1) G3s′ / !¬(P→ !P),!¬(P→ !P)⇒⊥
(2) G3s′ ! !¬(P→ !P)⇒⊥ .
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(1) follows from the following deduction in G3s’:

P⇒ !P, P
R→

⇒ P→ !P, P ⊥⇒ P
L→

¬(P→ !P)⇒ P
L!1

!¬(P→ !P)⇒ P
R!3

!¬(P→ !P), P⇒ !P,⊥
R→

!¬(P→ !P)⇒ P→ !P,⊥ ⊥,!¬(P→ !P)⇒⊥
L→

¬(P→ !P),!¬(P→ !P)⇒⊥
L!1

!¬(P→ !P),!¬(P→ !P)⇒⊥
Statement (2) follows from the following observations:

⇒ P
R!3

P⇒ !P,⊥
R→

⇒ P→ !P,⊥ ⊥⇒⊥
L→

¬(P→ !P)⇒⊥
L!1

!¬(P→ !P)⇒⊥
Looking for a G3s’-derivation of the sequent !¬(P → !P) ⇒⊥, we start with the
sequent at the root of a tree and apply G3s’-rules in reverse. From the root-node until
the leaves of the tree above, there is only one rule applicable at each step. Since the left
leaf is no axiom-instance, this is no G3s’-proof for the sequent !¬(P→ !P)⇒⊥, and
since this was the only possibility to derive the sequent in G3s’, we have
G3s′ ! !¬(P→ !P)⇒⊥.
So not for every sequent derivable in G3s, there is a proof in G3s’: Let D be a G3s-
derivation of !A,Γ⇒ ∆, the last rule applied inD is L!3:

A,!A,Γ⇒ ∆
L!3

!A,Γ⇒ ∆
The standard proof of the equivalence of two Gentzen systems proceeds by an induction
on the depth of the deductions, see for example the proof of Theorem 3.41. Let D be
a G3s-deduction of !A,Γ ⇒ ∆, with depth n + 1. By induction hypothesis, we have
G3s′ / A,!A,Γ⇒ ∆. In G3s’, we proceed by an application of L!1:

A,!A,Γ⇒ ∆
L!1

!A,!A,Γ⇒ ∆
and then we would need dp-admissibility of contraction to find a proof of !A,Γ⇒ ∆.

!

Remark 3.49. As a conclusion of the fact that contraction is not dp-admissible for
G3s’ is that cut is not admissible for the system. Contraction-admissibility is used in
the proof for cut-admissibility.
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The conclusion of the previous two proofs is, that there are sequents derivable in G3s,
but not derivable in G3s’, and we know the reason for those sequents not being deriv-
able in the modified system. But what can we say about the other direction? Is there a
G3s-proof for any sequent, derivable in G3s’? The following theorem gives an answer
to this question:

Theorem 3.50. The system G3s′ is sound with respect to S4.

Proof. What we have to prove is: if G3s′ / Γ ⇒ ∆ then
∧
Γ → ∨∆ is valid in the

class of reflexive, transitive frames. Since G3s is a sound and complete system for S4,
it’s enough to show that whenever G3s′ / Γ ⇒ ∆ then G3s / Γ ⇒ ∆. This is provable
by an induction on the depth n of the G3s′-proof D, such that D /n Γ ⇒ ∆. Assume
the statement to hold for derivations of smaller depth.
Case 1. If Γ⇒ ∆ is an instance of the axioms, it is a G3s-axiom-instance too.
Case 2. If the last rule of the deductionD is one of the G3s′-rules different from L!1,
we apply the induction hypothesis to the premise and use the same rule in G3s to get a
G3s-proof of Γ⇒ ∆.
Case 3. If the last rule of the deductionD is L!1:

Γ, A⇒ ∆
L!1

Γ,!A⇒ ∆

By induction hypothesis we get G3s /n−1 Γ, A ⇒ ∆ and since weakening is dp-
admissible in G3s we have G3s /n−1 Γ, A,!A ⇒ ∆. Now we can apply the L!3-rule
and have a G3s-derivation of /n Γ,!A⇒ ∆:

Γ, A,!A⇒ ∆
L!3

Γ,!A⇒ ∆
.

!

Corollary 3.51. If G3s′ /n Γ⇒ ∆ then G3s /n Γ⇒ ∆.

Proof. The statement follows from the proof of the previous theorem. !
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4 A G3-style sequent calculus for the Logic of Proofs
The aim of this section is to define a G3-style system for the Logic of Proofs LP and to
prove that this system enjoys the already well-known properties like dp-admissibility
of contraction, weakening and cut as well as dp-invertibility of the rules.

4.1 A Hilbert system for the Logic of Proofs
LP introduced by S. Artemov in [Art95] was the first of those logics which are in sum-
mary called justification logics today. Artemov developed LP to solve the problem of
a provability semantics for S4. Compared to the language of modal logic, the language
of justification logic is richer, what allows us to do a finer analysis of formulas and
proofs. There is a new construct occurring in justification logic, it is a formula of the
type term:formula, for example t : A, with the intended semantics term t is a proof of
formula A.

Definition 4.1. The language LLP of LP contains the language of classical proposi-
tional logic, proof constants a0, a1, ..., an, ... and proof variables x1, ..., xn, ..., one monadic
function symbol ! such as two binary function symbols · and + and a symbol of the
type term:formula. Justification terms are defined by the grammar

t ::= x | a | !t | (t1 · t2) | (t1 + t2).

These terms are called proof polynomials and we denote them by p, r, s, t, etc. Con-
stants correspond to proofs of a finite fixed set of axioms. We assume that p · r · s...
should be read as (...((p · r) · s)...), and p + r + s... as (...((p + r) + s)...). Using t stand
for any term.
Justification formulas are given by the grammar

A ::= P | ⊥ | (A1 ∧ A2) | (A1 ∨ A2) | (A1 → A2) | t : A.

The formulas ¬A and A1 ↔ A2 are defined as in Definition 2.1. In writing formulas
we save on parentheses by assuming the following precedence from highest to lowest:
!, ·,+, :,¬,∧,∨,→.

Definition 4.2. We continue Definition 2.3 to define the depth or complexity of justifi-
cation formulas by

|t : A| = |A| + 1, for all formulas A.

Definition 4.3. [Art01, Definition 5.2] The Hilbert-style formalization for LP is ob-
tained from Hcp by adding the following axioms:

A1. t : F → F
A2. t : (F → G)→ (s : F → (t · s) : G)
A3. t : F →!t : (t : F)
A4. s : F → (s + t) : F, t : F → (s + t) : F
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and the axiom necessitation rule AN

A
AN

c : A

where A is an axiom A0-A4, and c a proof constant. By A0 we denote the finite set of
axioms from Hcp (cp. Definition 2.7).
The system LP0 is LP without the axiom necessitation rule.

Definition 4.4. Given a justification formula A, its forgetful projection is defined as:

1. P◦ = P, for atomic propositions P;

2. ⊥◦=⊥;

3. (A0 ◦ A1)◦ = A◦0 ◦ A◦1, for any formulas A0, A1 and ◦ ∈ {∧,∨,→};

4. (t : B)◦ = !B◦ for all formulas B.

The forgetful projection Γ◦ of a set of justification formulas Γ = {A0, A1, ..., An} is
defined as Γ◦ = {A◦0, A◦1, ..., A◦n}.

Finding the Logic of Proofs, Artemov shows that S4 is nothing but the forgetful pro-
jection of LP. This result is stated in the Realization Theorem8 in [Art01, section 9]:

• The forgetful projection of an LP-theorem is an S4-theorem (cp. [Art01, Lemma
9.1]).

• It is possible to realize all occurrences of ! in an S4-theorem by justification
terms, such that the resulting justification formula is an LP-theorem (cp. [Art01,
Theorem 9.4]). This process is called realization.

In other words, LP◦ = S4, the forgetful projection of LP is exactly S4.

Working with LP, we have to know what a Constant Specification is:

Definition 4.5. A Constant Specification (CS) is a set of LP-formulas c1 : A1, c2 : A2, ...
where ci’s are constants and Ai’s are instances of the axioms A0-A4. CS is injective
if for each constant c there is at most one formula c : A ∈ CS . Each derivation in LP
generates the CS consisting of all formulas introduced in this derivation by the axiom
necessitation rule AN. For a constant specification CS , LP(CS ) is LP0 plus formulas
from CS as additional axioms.

Artemov proves arithmetical soundness of LP, for the standard provability interpreta-
tion of LP we refer to [Art01, section 6], and to prove completeness he introduces a
sequent formulation of LP. The system he defines in [Art01, section 7] is a weakening-
free Gentzen system, which contains rules for contraction. Thus, it is a system of the
family of G2-Gentzen calculi.

8Realization Theorems have been proved (e.g. in [BGK10]) for many further modal logics and their
justification counterparts, like (modal logic/justification logic) K/J, D/JD, T/JT, K4/J4 and so on.
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4.2 The Gentzen systems LPG1 and LPG2
The sequent system LPG introduced by Artemov is a G2-style system for LP. Since
we want to proceed the same way we did in the previous chapters about propositional
logic and S4, respectively, we first introduce a G1-style system for LP and then define
a weakening- and contraction-free sequent system.

Definition 4.6. The Gentzen system LPG1 for LP is defined by the axioms and rules
listed in Figure 4.

The system LPG10 is LPG1 without (Rc).

Remark 4.7. The system LPG1 is an extension of the G1-system G1c for propositional
logic by the rules (L:1), (R!1), (R+1), (R·1), and (Rc), introducing LP-formulas.

In the following definition, we already introduce the weakening-free system for LP and
prove in a next step, that weakening is depth-preserving admissible for LPG2.

Definition 4.8. [Art01, Section 7]9 The system LPG2 is obtained from LPG1 by leav-
ing out the weakening rules (LW), (RW), and replacing the axioms by the following
two general ones

Γ, A⇒ A,∆ (Ax2) and ⊥,Γ⇒ ∆ (L⊥2).

The system LPG20 is LPG2 without (Rc).

All the rules from the system LPG1 with a number ’1’ in their rule-labeling (L∧1,
R∨2, L:1, R!1, R+1, R·1) have the number ’2’ in LPG2, although the rules remain the
same.

Lemma 4.9. Weakening is depth-preserving admissible for LPG2, that is

if LPG2 /n Γ⇒ ∆ then LPG2 /n Γ,Γ′ ⇒ ∆,∆′.

Proof. We prove the lemma by an induction on the depth n of the derivation D of
Γ ⇒ ∆. Since we already proved the statement for G2c, we refer to the corresponding
Lemma 2.23 and restrict ourselves to the cases, where the last rule of the deduction D
is one of the justification rules. LetD /n Γ⇒ ∆:
Case 1. If the last rule ofD is (L:2)

Γ, A⇒ ∆
L :2

Γ, t : A⇒ ∆

we apply the induction hypothesis to the premise and have LPG2 /n−1 Γ,Γ′, A⇒ ∆,∆′.
Now we use L:2 to obtain the desired proof LPG2 /n Γ,Γ′, t : A⇒ ∆,∆′.

9The system LPG2 we define here is the system LPG Artemov introduces in his work, adapted to our
notation.
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A⇒ A (Ax1) ⊥⇒ (L⊥1)

Γ⇒ ∆
LW

A,Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ ∆, A

A, A,Γ⇒ ∆
LC

A,Γ⇒ ∆
Γ⇒ ∆, A, A

RC
Γ⇒ ∆, A

Ai,Γ⇒ ∆
L∧1 , (i=0,1)

A0 ∧ A1,Γ⇒ ∆
Γ⇒ ∆, A Γ⇒ ∆, B

R∧
Γ⇒ ∆, A ∧ B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨ B,Γ⇒ ∆
Γ⇒ ∆, Ai

R∨1 , (i=0,1)
Γ⇒ ∆, A0 ∨ A1

Γ⇒ ∆, A B,Γ⇒ ∆
L→

A→ B,Γ⇒ ∆
A,Γ⇒ ∆, B

R→
Γ⇒ ∆, A→ B

Γ, A⇒ ∆
L :1

Γ, t : A⇒ ∆
Γ⇒ ∆, t : A

R!1
Γ⇒ ∆, !t : t : A

Γ⇒ ∆, ti : A
R+1, (i=0,1)

Γ⇒ ∆, (t0 + t1) : A

Γ⇒ ∆, s : (A→ B) Γ⇒ ∆, t : A
R·1

Γ⇒ ∆, (s · t) : B

Γ⇒ ∆, A
Rc

Γ⇒ ∆, c : A

where in (Rc), A is an axiom A0-A4, and c a proof constant.

Figure 4: Gentzen system LPG1 for LP
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Case 2. If the last rule ofD is (R!2)

Γ⇒ ∆, t : A
R!2

Γ⇒ ∆, !t : t : A

we apply the induction hypothesis to the premise and use R!2 to obtain

LPG2 /n Γ,Γ′ ⇒ ∆, !t : t : A,∆′.

Case 3. If the last rule ofD is (R+2)

Γ⇒ ∆, ti : A
R+2, (i=0,1)

Γ⇒ ∆, (t0 + t1) : A

we apply the induction hypothesis to the premise and have

LPG2 /n−1 Γ,Γ
′ ⇒ ∆, ti : A,∆′ for i ∈ {0, 1}.

However, we use (R+2) to obtain

LPG2 /n Γ,Γ′ ⇒ ∆, (t0 + t1) : A,∆′.

Case 4. If the last rule ofD is (R·2)

Γ⇒ ∆, s : (A→ B) Γ⇒ ∆, t : A
R·2

Γ⇒ ∆, (s · t) : B

we apply the induction hypothesis to the premises, which have deductions of depth ≤
n − 1, to get LPG2 /n−1 Γ,Γ′ ⇒ ∆, s : (A→ B),∆′ and LPG2 /n−1 Γ,Γ′ ⇒ ∆, t : A,∆′.
Using (R·2) leads to LPG2 /n Γ,Γ′ ⇒ ∆, (s · t) : B,∆′.
Case 5. If the last rule ofD is (Rc)

Γ⇒ ∆, A
Rc

Γ⇒ ∆, c : A

where A is an instance of an axiom A0-A4, and c is a proof constant. We apply the
induction hypothesis to the premise, to get LPG2 /n−1 Γ,Γ′ ⇒ ∆, A,∆′ and use (Rc) to
obtain LPG2 /n Γ,Γ′ ⇒ ∆, c : A,∆′.

!

Corollary 4.10. Weakening is depth-preserving admissible for LPG20.

Proof. It follows from the proof of the lemma for LPG2 that the statement holds for
LPG20 too, since we can just omit the case where the last rule of the deduction is
(Rc). !

The dp-admissibility of weakening for LPG2 implies that the systems LPG1 and
LPG2 are equivalent:
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Theorem 4.11.
LPG1 / Γ⇒ ∆ iff LPG2 / Γ⇒ ∆.

Proof. The justification rules of the two systems are identical, and for the remaining
rules we refer to the corresponding proof for G1c and G2c in section 1 (Theorem
2.24). !

Corollary 4.12.
LPG10 / Γ⇒ ∆ iff LPG20 / Γ⇒ ∆.

Proof. By definition, the systems LPG10 and LPG20, are the systems LPG1 and
LPG2 without the rule (Rc). In the proof of the equivalence of the systems LPG1
and LPG2, the rule (Rc) is not needed to transfer a deduction from one system into
the other, only if the last rule of the deduction is (Rc). But this can not happen, if we
consider proofs in the reduced systems. !

Corollary 4.13.

If LPG1 /n Γ⇒ ∆ then LPG2 /n Γ⇒ ∆.

The contrary does not hold. The statement follows from the corresponding corollary
for G1c and G2c (Corollary 2.25), and the fact that the justification rules of the two
systems are the same.
Artemov proved for his systems LPG2, LPG20 that cut is admissible and that the
Hilbert system LP is equivalent to the Gentzen system LPG2.

Theorem 4.14. Cut is admissible for the systems LPG2, LPG20.

Proof. The statement for LPG20 follows from the arithmetical completeness theorem
for LP0 [TS00, Theorem 8.1], and the proof for LPG2 is given in [Art01, Corollary
8.13]. !

Theorem 4.15. The Hilbert system LP and the sequent system LPG2 are equivalent.
The same can be stated for LP0 and LPG20.

Proof. Again, the proof for LP0 follows from [Art01, Theorem 8.1] and in the proof
of [Art01, Corollary 8.13] Artemov states that an analog of his Theorem 8.1 can be
proved for LP. From this analogue, the equivalence of LP and LPG2 follows. !

From the equivalence of the systems LPG1(0) and LPG2(0) and the previous two theo-
rems we can follow the same properties for LPG1(0) as for LPG2(0):

Corollary 4.16. Cut is admissible for the systems LPG1, LPG10.

Corollary 4.17. The Hilbert system LP and the sequent system LPG1, as well as the
systems LP0 and LPG10 are equivalent.
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Unlike the propositional and the S4 case, our starting-point was the weakening-free
system for LP defined in [Art01] and then we found the system LPG1 containing rules
for weakening by reverse engineering. To keep the order of the definitions of the sys-
tems (1. system containing structural rules, 2. system not containing weakening, 3.
system not containing weakening and contraction), we first introduced the system con-
taining rules for weakening and contraction, although we obtained it from the system
LPG2. In the next subsection, we make a short side trip to the Kripke semantics for LP,
and then, we will be ready to define a weakening-, contraction- and cut-free sequent
system for LP.

4.3 F-models for LP
In this subsection, we introduce the semantics of F-models for the Logic of Proofs,
due to Melvin Fitting [Fit05]. However, for F-models, admissible evidence functions
and so on, we will use the notation from [Kuz09]. The Kripke semantics for LP will
be used in the following subsection, to prove the non-invertibility of some rules of the
system LPG2.

Definition 4.18. [Fit05, Definitions 3.1, 3.2, 3.3] An F-Model for LP(CS ) is a quadru-
ple
M = (W,R,A,V), where (W,R,V) is a Kripke model with

• a set of worlds W " ∅,

• an accessibility relation R ⊆ W ×W, R is reflexive and transitive, and

• a valuation function V : Φ → V(P), that assigns to an atomic proposition P the
set V(P) ⊆ W of all worlds where this proposition is deemed true.

Finally, an admissible evidence function A : Tm × Fm → 2W assigns to a pair of a
term t and a formula F a set A(t, F) ⊆ W of all worlds where t is deemed admissible
evidence for F. A satisfies the following closure conditions:

C2. A(t, F → G) ∩A(s, F) ⊆ A(t × s,G);
C3. A(t, F) ⊆ A(!t : t : F);
C4. A(t, F) ∪A(s, F) ⊆ A(t + s, F);
CS . A(c, A) = W, where c : A ∈ CS ;

Monotonicity. wRu and w ∈ A(t, F) imply u ∈ A(t, F).

Closure conditions C2, C3 and C4 are required to validate axioms A2, A3, A4 respec-
tively, which is reflected in their numbering.
The forcing relation " is defined as follows:

• M,w " P iff w ∈ V(P), where P ∈ Φ;

• M,w "⊥, never;

• Boolean cases are standard (cp. Definition 3.8);
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• M,w " t : F iff (1)M, u " F for all wRu and (2) w ∈ A(t, F).

For the proof of the following theorem, we refer to [Kuz09, Theorem 12]:

Theorem 4.19. [Fit05, Theorem 8.4] LP(CS ) is sound an complete with respect to its
F-models.

Definition 4.20. Let F = (W,R) be a Kripke frame. A possible evidence function on
F is any function B : Tm × Fm→ 2W .

It has to be noted that an admissible evidence function on F is, by definition, also a
possible evidence function on F .

Definition 4.21. [Kuz09, Definition 14] For a given Kripke frame F = (W,R), we say
that a possible evidence function B2 on F is based on a possible evidence function B1,
also on F , and write B1 ⊆ B2 if B1(t, F) ⊆ B2(t, F) for any term t and any formula F.

Intuitively, B ⊆ A means that admissible evidence function A satisfies the positive
conditions set forth in B. The goal is typically to construct the minimal admissible
evidence function based on the given possible evidence function B:

Definition 4.22. [Kuz09, Definition 15] Let B be a possible evidence function on a
Kripke frame F = (W,R). The minimal admissible evidence function A based on B
must satisfy the following two conditions:

1. it is based on B, i.e. B ⊆ A;

2. it is the smallest one, i.e., B ⊆ A′ implies thatA ⊆ A′ for any other admissible
evidence functionA′ on the same Kripke frame.

The following calculus is due to Nikolai Krupski [Kru06], while the idea goes back to
Alexey Mkrtychev [Mkr97].

Definition 4.23. Let CS be a constant specification for LP. The axioms and rules of
the ∗!CS -calculus for LP(CS ) are defined as follows:

∗CS . Axioms: ∗ (c, A), where c : A ∈ CS .

∗A2. Application Rule
∗(s, F → G) ∗ (t, F)

∗(s · t, F)
.

∗A3. Positive Introspection Rule
∗(t, F)

∗(!t, t : F)
.

∗A4. Sum Rule
∗(s, F)

∗(s + t, F)
,

∗(t, F)

∗(s + t, F)
.
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Definition 4.24. [Kuz09, Definition 22] For a possible evidence functionB on a Kripke
frame F = (W,R) and a world w ∈ W,

B∗w = {∗(t, F) : w ∈ B(t, F)}.

So B∗w contains ∗(t, F) iff w ∈ B(t, F). In this sense ∗ can be seen as an abbreviation for
w ∈ B.

Theorem 4.25. [Kuz09, Theorem 23]10 Let B be a possible evidence function on a
Kripke frame F = (W,R) for LP(CS). Define possible evidence functionA as follows:
let

∗(t, F) ∈ A∗w ⇐⇒ B∗w ∪
⋃

uRw

B∗u /∗!CS ∗(t, F).

A so defined is the minimal evidence function based on B.

4.4 A contraction-free sequent system for LP
The standard strategy to obtain a weakening- and contraction-free Gentzen system out
of a weakening-free system is - roughly speaking - to leave out the contraction rules,
restrict the axiom (Ax2) to atomic formulas, and to modify the rules to make them
invertible, as we have shown for propositional logic and S4. The depth-preserving in-
vertibility of the rules is the reason for restricting the axiom (Ax2), and the invertibility
is necessary to verify depth-preserving admissibility of contraction for the G3-system.
The procedure for constructing a G3-style system for LP is obvious for the proposi-
tional part: we just take G3c as a basis for our system. But to enlarge the system to a
full system for LP is not that evident. We now continue by the definition of the system
LPG3, and then the explanation of our approach will follow:

Definition 4.26. The weakening- and contraction-free Gentzen system LPG3 for LP
is specified by the axioms and rules listed in Figure 5.

The system LPG30 is LPG3 without (Axc).
The weakening- and contraction-free system LPG3 is an extension of the system G3c
for propositional logic, by the justification part, which consists of two axioms: (Axc),
(Axt), and four rules: (L:3), (R!3), (R+3), (R·3).

The system LPG3 has been obtained from LPG2 by

1. taking the axiom (Ax3) instead of (Ax2);

2. leaving out the contraction rules (LC), (RC);

3. taking the invertible rules (L∧3), (R∨3) instead of (L∧2), (R∨2);

4. embedding contraction into the rules (L:2), (R+2), (R·2) leads to (L:3), (R+3),
(R·3);

10We restrict ourselves to state the theorem only for LP(CS).
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P,Γ⇒ ∆, P (Ax3), P atomic ⊥,Γ⇒ ∆ (L⊥3)

t : A,Γ⇒ ∆, t : A (Axt)

Γ⇒ ∆, c : A (Axc), c proof constant, A axiom A0-A4

A, B,Γ⇒ ∆
L∧3

A ∧ B,Γ⇒ ∆
Γ⇒ ∆, A Γ⇒ ∆, B

R∧
Γ⇒ ∆, A ∧ B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨ B,Γ⇒ ∆
Γ⇒ ∆, A, B

R∨3
Γ⇒ ∆, A ∨ B

Γ⇒ ∆, A B,Γ⇒ ∆
L→

A→ B,Γ⇒ ∆
A,Γ⇒ ∆, B

R→
Γ⇒ ∆, A→ B

Γ, A, t : A⇒ ∆
L :3

Γ, t : A⇒ ∆
Γ⇒ ∆, t : A, !t : t : A

R!3
Γ⇒ ∆, !t : t : A

Γ⇒ ∆, t0 : A, t1 : A, (t0 + t1) : A
R+3

Γ⇒ ∆, (t0 + t1) : A

Γ⇒ ∆, s : (A→ B), (s · t) : B Γ⇒ ∆, t : A, (s · t) : B
R·3

Γ⇒ ∆, (s · t) : B

Figure 5: Gentzen system LPG3 for LP
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5. adding the axiom (Axt);

6. embedding contraction into the rule (R!2) leads to (R!3);

7. replacing the rule (Rc) by an axiom (Axc).

Here is a try to explain, why this are the ”right” modifications to obtain LPG3 from
LPG2. As we already mentioned, it was clear to take G3c as a basis for LPG3, since
the Logic of Proofs is an extension of propositional logic. Thus the reasons for doing
1., 2. and 3. are clear. We continue with the justification rules. The rules (L:2),
(R+2), (R·2) from the system LPG2 are not invertible. To prove this claim, we have to
resort to the semantics of F-Models for the Logic of Proofs, introduced in the previous
subsection. We start with the rule (L:2):

• (L:2) is not invertible:

To prove that (L:2) is not invertible, we construct an F-model M′, such that
M′ " P → x : P. LetM′ = (W,R,A,V), with W = {u, v} and A(t, F) = W, for
all terms t and all formulas F. ThusA is the total admissible evidence function.
In addition, we set V(P) = u, R = {(u, v), (u, u), (v, v)}. In this model, we have

M′, u " P andM′, v " P ⇒ M′, u " x : P
⇒ M′, u " P→ x : P
⇒ M′ " P→ x : P.

With the completeness Theorem 4.19 and with the equivalence of LP and LPG2
(Theorem 4.15) we obtain LPG2 ! P⇒ x : P.

On the other hand, we have

LPG2 / x : P⇒ x : P

since the sequent is an instance of (Ax2).

• (R+2) is not invertible:

We construct a countermodel M′, such that M′ " x : P → y : P. Let
M′ = (W,R,A∗,V), with W = {u}, V(P) = {u} = W, R = {(u, u)}, and A∗
is the minimal evidence function based on B, where B is defined as follows:
B(x, P) = {u} and B(y, P) = ∅. From Theorem 4.25 we have that

∗(y, P) ∈ A∗u ⇐⇒ B∗u ∪
⋃

wRu

B∗w /∗!CS ∗(y, P),

⇐⇒ B∗u /∗!CS ∗(y, P),
⇐⇒ ∗(x, P) /∗!CS ∗(y, P).

From the definition of the ∗!CS -calculus it is clear that ∗(x, P) !∗!CS ∗(y, P), and
therefore ∗(y, P) # A∗u. This means nothing but u # A∗(y, P). Thus we have
M′, u " x : P → y : P, and therewith M′ " x : P → y : P. With the
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completeness Theorem 4.19 and the equivalence of the systems LP and LPG2
(Theorem 4.15) we obtain:

LPG2 ! x : P⇒ y : P.

On the other hand, the following LPG2-proof

x : P⇒ x : P
R+2

x : P⇒ (x + y) : P

shows that LPG2 / x : P⇒ (x + y) : P, which proves the non-invertibility of
R+2.

• (R·2) is not invertible:
We construct a countermodel M′, such that M′ " (x · y) : P → y : Q. Let
M′ = (W,R,A,V), with W = {u}, V(P) = {u}, V(Q) = ∅, R = {(u, u)}, and A is
the total evidence functionA(t, F) = W for all terms t and all formulas F. Then
we have:

M′, u " P ⇒ M′, u " (x · y) : P, since u is the only accessible world for u,
and u ∈ A(x · y, P) by definition ofA.

M′, u " Q ⇒ M′, u " y : Q, since u is the only accessible world for u.

Thus we have

M′, u " (x · y) : P→ y : Q ⇒ M′ " (x · y) : P→ y : Q.

Again, with the completeness Theorem 4.19 and the equivalence of the systems
LP and LPG2 (Theorem 4.15) we obtain:

LPG2 ! (x · y) : P⇒ y : Q.

On the other hand, we have that LPG2 / (x · y) : P ⇒ (x · y) : P, since the
sequent is an instance of (Ax2).

It is clear from the three proofs above that we have to take the invertible versions of the
rules (L:2), (R+2) and (R·2), that is, the rules with embedded contraction (L:3), (R+3)
and (R·3). The dp-invertibility of those rules will just follow from the dp-admissibility
of weakening for LPG3. Thus, 4. from our list above is also clear.
The next step is to add an additional axiom, namely (Axt) to the system. Why do we
have to do that? It turned out to be impossible to derive the sequent t : A ⇒ t : A for
arbitrary formulas of the form t : A within our temporary system. One reason therefore
is that the axiom (Ax3) is restricted to atomic propositions, thus t : A ⇒ t : A is
obviously no instance of (Ax3). The other reason will become clear with the following
example:

(x + y) : P, P⇒ x : P, y : P, (x + y) : P
R + 3

(x + y) : P, P⇒ (x + y) : P
L : 3

(x + y) : P⇒ (x + y) : P
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There is no rule we could apply to the top-most sequent of the tree above, to get rid of
the terms x and y of the formulas x : P, y : P in the top-most node, to obtain a single
P to have a derivation of the desired sequent. The same problem occurs, if we want to
derive the sequent (x · y) : P⇒ (x · y) : P. These are the reasons for doing 5.
But with (Axt) as an additional axiom in our new temporary system, let us call it
LPG3’, another problem occurs: the rule (R!2) is not depth-preserving invertible.
Counterexample: Since !t : t : P ⇒!t : t : P is an instance of (Axt), we have that
LPG3′ /0!t : t : P ⇒!t : t : P. But obviously !t : t : P ⇒ t : P is no instance of (Axt)
and no instance of one of the other axioms, too, thus LPG3′ !0!t : t : P ⇒ t : P. This
is the reason for taking the invertible version of (R!2), in other words, the reason for
embedding contraction in the rule, thus taking (R!3).
It remains to explain 7.: Instead of having a (Rc)-rule with embedded contraction, we
decided to replace the rule by the axiom (Axc). We prefer the axiom, since with this
additional axiom in our system, we do not need another rule with contraction embed-
ded, which is absolutely not beneficial if we do proof search. In the rules (L:3), (R!3),
(R+3) and (R·3), where contraction has been built in, the premise is even more compli-
cated than the conclusion of the rule, which gives more space to continue, while doing
proof search.
This is how the system has been constructed. In the following we prove that LPG3 has
all the properties we want it to have, namely dp-admissibility of weakening, contraction
and cut, and dp-invertibility of the rules.

Lemma 4.27. Weakening is depth-preserving admissible in LPG3, that is

if LPG3 /n Γ⇒ ∆ then LPG3 /n Γ,Γ′ ⇒ ∆,∆′.

Proof. By induction on n. It remains to consider the cases, where Γ ⇒ ∆ is an axiom
instance of (Axc) or (Axt), and the cases where the last rule of the proof LPG3 /n Γ⇒ ∆
is one of the justification rules. LetD be a deduction of depth n, such thatD /n Γ⇒ ∆.
Case 1. If the sequent Γ⇒ ∆ is an instance of (Axc) or (Axt), then so is Γ′,Γ⇒ ∆,∆′.
Case 2. If the last rule ofD is (L:3)

Γ, A, t : A⇒ ∆
L :3

Γ, t : A⇒ ∆
we apply the induction hypothesis to the premise and use (L:3) to obtain
LPG3 /n Γ′,Γ, t : A⇒ ∆,∆′.
Case 3. If the last rule ofD is (R·3)

Γ⇒ ∆, s : (A→ B), (s · t) : B Γ⇒ ∆, t : A, (s · t) : B
R·

Γ⇒ ∆, (s · t) : B

the two premises have derivations of smaller depth, thus we apply the induction hy-
pothesis to obtain

LPG3 /n−1 Γ
′,Γ⇒ ∆, s : (A→ B), (s·t) : B,∆′ and LPG3 /n−1 Γ

′,Γ⇒ ∆, t : A, (s·t) : B,∆′.

We use (R·3) to find a proof of LPG3 /n Γ′,Γ⇒ ∆, (s · t) : B,∆′.
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The remaining cases are proved similar. !

Corollary 4.28. Weakening is depth-preserving admissible for LPG30.

Proof. Axiom (Axc) is only used in the proof of the previous lemma, if the sequent
Γ ⇒ ∆ is an instance of (Axc), thus we take the same proof for LPG30 and just omit
the mentioned case. !

In the following lemma we prove dp-invertibility of the rules in LPG3:

Lemma 4.29 (Inversion Lemma). Let / be deducibility in LPG3.

1. If /n A ∧ B,Γ⇒ ∆, then /n A, B,Γ⇒ ∆.

2. If /n Γ⇒ ∆, A ∨ B, then /n Γ⇒ ∆, A, B.

3. If /n A ∨ B,Γ⇒ ∆, then /n A,Γ⇒ ∆ and /n B,Γ⇒ ∆.

4. If /n Γ⇒ ∆, A ∧ B, then /n Γ⇒ ∆, A and /n Γ⇒ ∆, B.

5. If /n Γ⇒ A→ B,∆, then /n Γ, A⇒ ∆, B.

6. If /n Γ, A→ B⇒ ∆, then /n Γ⇒ ∆, A and /n Γ, B⇒ ∆.

7. If /n Γ, t : A⇒ ∆, then /n Γ, A, t : A⇒ ∆.

8. If /n Γ⇒ ∆, !t : t : A, then /n Γ⇒ ∆, t : A, !t : t : A.

9. If /n Γ⇒ ∆, (t + s) : A, then /n Γ⇒ ∆, t : A, s : A, (t + s) : A.

10. If /n Γ⇒ ∆, (s · t) : B, then /n Γ⇒ ∆, s : (A→ B), (s · t) : B and

/n Γ⇒ ∆, t : A, (s · t) : B, for a formula A.

Proof. The statements 1.-6. have been proved for G3c in the corresponding lemma of
section 1 (Lemma 2.31). The proof for LPG3 works exactly the same, the only case
we have to look at, is, if the conclusion of the rule (which we want to be invertible)
is an axiom-instance of (Axc) or (Axt): We show the case for the first statement: If
A ∧ B,Γ ⇒ ∆ is an instance of (Axc) or (Axt), then A ∧ B is not principal, thus
A, B,Γ ⇒ ∆ is an axiom-instance too. In addition, it has to be mentioned that no new
rule (compared to G3c) can have the formula A ∧ B as a principal formula. The same
argumentation works for the statements 2.-6.
The statements 7.-10. follow from the dp-admissibility of weakening for LPG3. !

Corollary 4.30. Depth-preserving invertibility of the rules also holds for LPG30.

Proof. (Axc) is only needed in the proof above, when the conclusion of the rule (we
want to be invertible) is an instance of (Axc), but this can not be the case in LPG30.
dp-admissibility of weakening for LPG30 has been proved in Corollary 4.28. !

Lemma 4.31. Contraction is depth-preserving admissible for LPG3, that is

1. If LPG3 /n A, A,Γ⇒ ∆ then LPG3 /n A,Γ⇒ ∆, and
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2. if LPG3 /n Γ⇒ ∆, A, A then LPG3 /n Γ⇒ ∆, A

Proof. We prove the lemma by a simultaneous induction on n of both statements. As-
sume the two statements to have been proved for n.
Let LPG3 /n+1 A, A,Γ⇒ ∆ by a deductionD.
Case 1. If the sequent A, A,Γ ⇒ ∆ is an instance of one of the axioms, then so is
A,Γ⇒ ∆.
Case 2. If the sequent A, A,Γ ⇒ ∆ is no axiom-instance, and none of the formulas
A is principal, we apply the induction hypothesis to the premise(s), which has (have)
deduction(s) of smaller depth, and then use the same rule to obtain the deduction of
A,Γ⇒ ∆:

/n A, A,Γ′ ⇒ ∆′
R

/n+1 A, A,Γ⇒ ∆
⇒ (IH)

/n A,Γ′ ⇒ ∆′
R

/n+1 A,Γ⇒ ∆
.

Case 3. If the sequent A, A,Γ ⇒ ∆ is no axiom-instance, and one the formulas A is
principal, we have to distinct between A ≡ A0 ∧ A1, A ≡ A0 ∨ A1, A ≡ A0 → A1 and
A ≡ t : B.

1. If A ≡ A0 ∧ A1
/n Γ, A0, A1, A0 ∧ A1 ⇒ ∆

L∧3
/n+1 Γ, A0 ∧ A1, A0 ∧ A1 ⇒ ∆

we use the dp-invertibility of the rule L∧3 to find a proof of /n Γ, A0, A1, A0, A1 ⇒ ∆.
Applying the induction hypothesis to this sequent twice, we get /n Γ, A0, A1 ⇒ ∆ from
what we derive /n+1 Γ, A0 ∧ A1 ⇒ ∆ by one application of L∧3.

2. If A ≡ A0 ∨ A1

/n Γ, A0, A0 ∨ A1 ⇒ ∆ /n Γ, A1, A0 ∨ A1 ⇒ ∆
L∨

/n+1 Γ, A0 ∨ A1, A0 ∨ A1 ⇒ ∆
we use dp-invertibility of the rule L∨ to obtain /n Γ, A0, A0 ⇒ ∆ from the left premise,
and /n Γ, A1, A1 ⇒ ∆ from the right premise. Now we apply the induction hypothesis
to the two derivations of depth n to contract the two occurrences of A0, A1 respectively
and apply L∨ to get the desired deduction.

3. If A is of the form A0 → A1,

/n Γ, A0 → A1 ⇒ ∆, A0 /n A1,Γ, A0 → A1 ⇒ ∆
L→

/n+1 Γ, A0 → A1, A0 → A1 ⇒ ∆
we use dp-invertibility of the rule L→ to obtain /n Γ⇒ ∆, A0, A0 (from the left premise)
and /n A1, A1,Γ⇒ ∆ (from the right premise). Applying induction hypothesis to those
two derivations of depth n leads to /n Γ ⇒ ∆, A0 and /n A1,Γ ⇒ ∆, and we apply one
instance of L→ to obtain a proof of /n+1 Γ, A0 → A1 ⇒ ∆.

4. If A is of the form t : B,

/n Γ, t : B, B, t : B⇒ ∆
L :3

/n+1 Γ, t : B, t : B⇒ ∆
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applying the induction hypothesis to the premise we get

/n Γ, t : B, B⇒ ∆

and using the rule (L:3) delivers the proof of /n+1 Γ, t : B⇒ ∆.

Let /n+1 Γ⇒ ∆, A, A by a deductionD.
Case 4. If the sequent Γ ⇒ ∆, A, A is an instance of one of the axioms, then so is
Γ⇒ ∆, A.
Case 5. If the sequent Γ⇒ ∆, A, A is no axiom-instance, and none of the formulas A is
principal, we apply the IH to the premise(s), which has (have) deduction(s) of smaller
depth, and then use the same rule to obtain the deduction of Γ⇒ ∆, A:

/n Γ′ ⇒ ∆′, A, A
R

/n+1 Γ⇒ ∆, A, A
⇒ (IH)

/n Γ′ ⇒ ∆′, A
R

/n+1 Γ⇒ ∆, A
.

Case 6. If the sequent Γ ⇒ ∆, A, A is no axiom-instance, and one the formulas A is
principal, we have to distinct between A ≡ A0 ∧ A1, A ≡ A0 ∨ A1, A ≡ A0 → A1,
A ≡!t : t : B, A ≡ (t + s) : B, and A ≡ (s · t) : B. The propositional cases work similar
to the shown cases above. We just consider the justification cases:

1. If A is of the form !t : t : B,

/n Γ⇒ ∆, !t : t : B, t : B, !t : t : B
R!3

/n+1 Γ⇒ ∆, !t : t : B, !t : t : B

we apply the induction hypothesis to the premise and find a proof of

/n Γ⇒ ∆, !t : t : B, t : B

and applying the rule R!3 delivers the proof of /n+1 Γ⇒ ∆, !t : t : B.

2. If A ≡ (t + s) : B

/n Γ⇒ ∆, (t + s) : B, t : B, s : B, (t + s) : B
R+3

/n+1 Γ⇒ ∆, (t + s) : B, (t + s) : B

we apply the induction hypothesis to the premise to obtain

/n Γ⇒ ∆, (t + s) : B, t : B, s : B

and then we use one application of R+3 to have a derivation of

/n+1 Γ⇒ ∆, (t + s) : B.

3. If A ≡ (s · t) : B

/n Γ⇒ ∆, s : (C → B), (s · t) : B, (s · t) : B /n Γ⇒ ∆, t : C, (s · t) : B, (s · t) : B
R·3

/n+1 Γ⇒ ∆, (s · t) : B, (s · t) : B
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we apply the induction hypothesis to the premises, to obtain

/n Γ⇒ ∆, s : (C → B), (s · t) : B and /n Γ⇒ ∆, t : C, (s · t) : B

and then use R·3 to find a proof of /n+1 Γ⇒ ∆, (s · t) : B.
!

Corollary 4.32. Contraction is dp-admissible for LPG30.

Proof. We replace the dp-invertibility of the rules for LPG3 in the previous proof by
the dp-invertibility of the rules for LPG30 (Corollary 4.30). !

Lemma 4.33. The sequent A⇒ A is derivable in LPG3 for all A.

Proof. Induction on the complexity of the formula A. The proof for propositional
formulas A has been done in the corresponding lemma for the system G3c (Lemma
2.34). If A is a formula of the form t : B, the sequent A ⇒ A is an instance of
(Axt). !

Corollary 4.34. The sequent A⇒ A is derivable in LPG30 for all A.

Proof. To prove that A ⇒ A is derivable in LPG3 for all formulas A the axiom (Axc)
is not necessary, thus the statement holds for the reduced system LPG30 too. !

Now, after we have shown that weakening and contraction are still depth-preserving
admissible for LPG3 (LPG30), in other words, that weakening and contraction are
still present in the system not containing the structural rules, we are ready to prove the
equivalence of LPG1 and LPG3.

Theorem 4.35. The sequent systems LPG1 and LPG3 are equivalent, that is

LPG1 / Γ⇒ ∆ i f f LPG3 / Γ⇒ ∆.

Proof. Both directions are provable by an induction on the depth n of the deductionD
of the sequent Γ⇒ ∆.
”⇒”: LetD be a deduction of depth n, such thatD /n Γ⇒ ∆ in LPG1.
Case 1. If Γ ⇒ ∆ is an instance of (Ax1), the sequent is of the form A ⇒ A, and we
know by the previous lemma, that A ⇒ A is derivable in LPG3 for all formulas A. If
Γ⇒ ∆ is an instance of (L⊥1), it is an instance of (L⊥3) too.
Case 2. If the last rule ofD is (RW)

Γ⇒ ∆
RW

Γ⇒ ∆, A

we apply the induction hypothesis to the premise and have LPG3 / Γ ⇒ ∆, and then
by dp-admissibility of weakening we obtain LPG3 / Γ⇒ ∆, A.
The case where the last rule ofD is (LW) can be treated symmetrically.
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Case 3. If the last rule of the deductionD is (LC):

A, A,Γ⇒ ∆
LC

A,Γ⇒ ∆
By induction hypothesis, LPG3 / A, A,Γ ⇒ ∆. Since contraction is admissible in
LPG3, we have that LPG3 / A,Γ⇒ ∆.
The case where the last rule ofD is (RC) is treated symmetrically.
Case 4. The last rule of the deductionD is (L∧1):

Ai,Γ⇒ ∆
L∧1

A0 ∧ A1,Γ⇒ ∆
By induction hypothesis, LPG3 / Ai,Γ ⇒ ∆. Since weakening is dp-admissible in
LPG3 we can add A0 or A1 (it depends on which of the formulas is already there) to
the antecedent and get LPG3 / A0, A1,Γ⇒ ∆. Now we apply (L∧3), to obtain a proof
of the desired sequent:

A0, A1,Γ⇒ ∆
L∧3

A0 ∧ A1,Γ⇒ ∆
.

Case 5. The last rule of the deductionD is (R∨1):

Γ⇒ ∆, Ai
R∨1

Γ⇒ ∆, A0 ∨ A1

By induction hypothesis, LPG3 / Γ ⇒ ∆, Ai. Since weakening is dp-admissible in
LPG3 we are able to add one of the formulas A0 or A1 (it depends on which of the
formulas is already there) to the succedent and get LPG3 / Γ ⇒ ∆, A0, A1. Now we
apply (R∨3), to obtain a LPG3-proof of the desired sequent:

Γ⇒ ∆, A0, A1
R∨3

Γ⇒ ∆, A0 ∨ A1
.

In the cases where the last rule of D is (L∨), (R∧), (L→) and (R→), we just apply the
induction hypothesis to the premise of the rule and apply the same rule in LPG3.
Case 6. If the last rule of the deductionD is (L:1),

A,Γ⇒ ∆
L :1

t : A,Γ⇒ ∆
we apply the induction hypothesis to the premise and obtain LPG3 / A,Γ⇒ ∆. Since
weakening is dp-admissible in LPG3 we have that LPG3 / A, t : A,Γ⇒ ∆ and we are
able to apply the rule (L:3) in LPG3:

A, t : A,Γ⇒ ∆
L :3

t : A,Γ⇒ ∆
The case where the last rule ofD is (R!1) is treated similarly.

70



Case 7. If the last rule ofD is (R+1)

Γ⇒ ∆, ti : A
R+1, i ∈ {0, 1}

Γ⇒ ∆, (t0 + t1) : A

we apply the induction hypothesis to the premise and get LPG3 / Γ ⇒ ∆, ti : A,
i ∈ {0, 1}. From dp-admissibility of weakening we obtain

LPG3 / Γ⇒ ∆, t0 : A, t1 : A, (t0 + t1) : A,

and we are able to use (R+3) in LPG3 to find a desired LPG3-derivation of
Γ⇒ ∆, (t0 + t1) : A.
Case 8. If the last rule ofD is (R·1)

Γ⇒ ∆, s : (A→ B) Γ⇒ ∆, t : A
R·1

Γ⇒ ∆, (s · t) : B

we apply the induction hypothesis to the premises, which have deductions of smaller
depth, and have

LPG3 / Γ⇒ ∆, s : (A→ B) and LPG3 / Γ⇒ ∆, t : A.

From dp-admissibility of weakening we obtain

LPG3 / Γ⇒ ∆, s : (A→ B), (s · t) : B and LPG3 / Γ⇒ ∆, t : A, (s · t) : B.

Applying (R·3) in LPG3 leads to a derivation of Γ⇒ ∆, (s · t) : B.
Case 9. If the last rule ofD is (Rc)

Γ⇒ ∆, A
Rc

Γ⇒ ∆, c : A

we do not have a corresponding rule in LPG3, but we have an axiom, namely

Γ⇒ ∆, c : A (Axc).

If LPG1 / Γ ⇒ ∆, c : A then LPG3 / Γ ⇒ ∆, c : A, since this sequent will always be
an instance of (Axc).

”⇐”: LetD be a deduction of depth n, such thatD /n Γ⇒ ∆ in LPG3.
Case 1. 1. If the sequent Γ⇒ ∆ is an instance of (Ax3) or (L⊥3), we start by the corre-
sponding axiom instances in LPG1, namely P ⇒ P (Ax1) and ⊥⇒ (L⊥1), and derive
the desired sequent with a finite number of right- and left weakening-applications.

2. If the sequent Γ ⇒ ∆ is an instance of (Axt), we start by the axiom instance
t : A⇒ t : A of (Ax1) in LPG1, and derive the desired sequent with applications of
(LW) and (RW).
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3. If the sequent Γ⇒ ∆ is an instance of (Axc), the sequent is of the form Γ⇒ ∆, c : A,
where c is a proof constant, and A one of the Hilbert-system axioms A0-A4. Since
LPG1 is equivalent to the Hilbert system LP (cp. Corollary 4.17), there is a LPG1-
derivation of the Hilbert-system axiom A, thus LPG1 /⇒ A. Applying one instance of
(Rc) implies that LPG1 /⇒ c : A. To obtain a derivation of the desired sequent, we
use (RW) and (LW) until we have LPG1 / Γ⇒ ∆, c : A.
Case 2. If the last rule of the deductionD is (L∧3):

A, B,Γ⇒ ∆
L∧3

A ∧ B,Γ⇒ ∆
By induction hypothesis we have that LPG1 / A, B,Γ ⇒ ∆ and we get a LPG1-proof
of the desired sequent as follows:

A, B,Γ⇒ ∆
L∧1

A ∧ B, B,Γ⇒ ∆
L∧1

A ∧ B, A ∧ B,Γ⇒ ∆
LC

A ∧ B,Γ⇒ ∆
Case 3. If the last rule of the deductionD is (R∨3):

Γ⇒ ∆, A, B
R∨3

Γ⇒ ∆, A ∨ B

by induction hypothesis we have that LPG1 / Γ ⇒ ∆, A, B and we get a LPG1-proof
of the desired sequent as follows:

Γ⇒ ∆, A, B
R∨1

Γ⇒ ∆, A ∨ B, B
R∨1

Γ⇒ ∆, A ∨ B, A ∨ B
RC

Γ⇒ ∆, A ∨ B

If the last rule of D is L∨, R∧, L → or R → we apply the induction hypothesis to the
premise and apply the same rule in LPG1.
Case 4. If the last rule of the deductionD is (R!3),

Γ⇒ ∆, t : A, !t : t : A
R!3

Γ⇒ ∆, t : t : A

by induction hypothesis we have that LPG1 / Γ ⇒ ∆, t : A, !t : t : A and we get a
LPG1-proof of the desired sequent as follows:

Γ⇒ ∆, t : A, !t : t : A
R!1

Γ⇒ ∆, !t : t : A, !t : t : A
RC

Γ⇒ ∆, !t : t : A
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The case where the last rule ofD is (L:3) can be treated similarly.
Case 5. If the last rule of the deductionD is (R+3),

Γ⇒ ∆, t : A, s : A, (t + s) : A
R+3

Γ⇒ ∆, (t + s) : A

by induction hypothesis we have that LPG1 / Γ ⇒ ∆, t : A, s : A, (t + s) : A and we
get a LPG1-proof of the desired sequent as follows:

Γ⇒ ∆, t : A, s : A, (t + s) : A
R+1

Γ⇒ ∆, t : A, (t + s) : A, (t + s) : A
RC

Γ⇒ ∆, t : A, (t + s) : A
R+1

Γ⇒ ∆, (t + s) : A, (t + s) : A
RC

Γ⇒ ∆, (t + s) : A

Case 6. If the last rule of the deductionD is (R·3),

Γ⇒ ∆, s : (A→ B), (s · t) : B Γ⇒ ∆, t : A, (s · t) : B
R·3

Γ⇒ ∆, (s · t) : B

by induction hypothesis we have that LPG1 / Γ ⇒ ∆, s : (A → B), (s · t) : B and
LPG1 / Γ ⇒ ∆, t : A, (s · t) : B. We get a LPG1-proof of the desired sequent as
follows:

Γ⇒ ∆, s : (A→ B), (s · t) : B Γ⇒ ∆, t : A, (s · t) : B
R·1

Γ⇒ ∆, (s · t) : B, (s · t) : B
RC

Γ⇒ ∆, (s · t) : B
!

Corollary 4.36.

LPG10 / Γ⇒ ∆ i f f LPG30 / Γ⇒ ∆.

Proof. By definition, LPG10 and LPG30 are the corresponding systems without the
rule (Rc) and the axiom (Axc), respectively. In the proof of the equivalence of the
two systems, the axiom (Axc) in LPG3 is only needed, if the last rule of the LPG1-
deduction is (Rc), and (Rc) is only necessary, if the sequent Γ ⇒ ∆ is an instance of
the LPG3-axiom (Axc). Thus, the systems LPG0 and LPG30 are equivalent. !

Corollary 4.37. Cut is admissible for the systems LPG3 and LPG30.

Proof. The statement for LPG3 follows from the equivalence of LPG1 and LPG3
(Theorem 4.35) and cut-admissibility for LPG1 (Corollary 4.16). The statement for
LPG30 follows from the previous corollary and cut-admissibility for LPG10 (Corollary
4.16). !

The following corollary summarizes the equivalences between the different systems for
the Logic of Proofs:
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Corollary 4.38.

(1) The systems LP, LPG1, LPG2 and LPG3 are equivalent.
(2) The systems LP0, LPG10, LPG20 and LPG30 are equivalent.

Proof. (1) follows from Theorem 4.15, Theorem 4.11 and Theorem 4.35, statement (2)
from Theorem 4.15, Corollary 4.12 and Corollary 4.36. !
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5 Self-referentiality in G3-systems for S4
In this section we will analyze self-referentiality in contraction-free fragments of S4.
The Logic of Proofs is the justification counterpart of S4, by verifying the realization
theorem. In the justification language, it is easy to see, when self-referentiality occurs.
Self-referential proofs are valid proofs that prove statements about these same proofs,
for instance, / t : F(t). But this direct self-referentiality is not the only type of self-
referentiality. It could happen that / t1 : F(t2) and / t2 : F(t1), in other words, one
proof refers to the other and vice versa. On the other hand, it is not always clear in the
modal language whether this knowledge and that knowledge of the same statement are,
in fact, related, and thus self-referentiality occurs. There is a clear connection between
the modal language and the language with explicit justifications, so the role of self-
referentiality in different fragments of S4, can be investigated through its justification
counterpart, the Logic of Proofs.
In [Kuz09], Roman Kuznets scrutinized self-referentiality on the logic-level: he proved
that for the logics K, D, T, S4, D4 and K4, either direct self-referentiality is required
already on the level of atomic justifications, or self-referentiality can be avoided. From
our perspective, one of his results [Kuz09, Theorem 26] is of particular interest: the
realization of S4 in LP requires directly self-referential constants and, hence, self-
referentiality. In other words, there is at least one S4-theorem φ which cannot be
realized by an LP-theorem φr such that φr can be derived in LP without using any
self-referential statements t : F(t). Since G3s is an appropriate sequent system for
S4, we can follow that there are realizations of proofs in G3s with self-referential con-
stants. But how can we find those G3s-proofs, whose realizations are calling for self-
referentiality in LP? This is exactly, what Junhua Yu’s paper [Yu09] is about. Com-
pared to R. Kuznets, Yu works on the theorem-level: he considers self-referentiality
in realizations of specified theorems. Yu is asking for criteria to find out whether an
S4-theorem has to call for a self-referential constant specification to prove its realized
form in LP. Yu introduces prehistoric phenomena in G3s-derivations and then a spe-
cific prehistoric phenomenon, the left prehistoric loop, is shown to be necessary for
self-referentiality.
We proceed on the theorem-level-track and show that different contraction-free sequent
systems represent different fragments of S4. First, we introduce the notion of prehis-
toric phenomena in G3s, which we will keep on using for the systems G3s’ and G3s∗.
Then we summarize Yu’s work about G3s-systems and self-referentiality, and apply
his machinery of prehistoric phenomena to G3s’-proofs, to check whether realizations
of such proofs still call for self-referential constant specifications. In the last subsec-
tion, we present the sequent system G3s∗, representing a non-self-referential fragment
of S4.
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5.1 Notations
The notations presented in the following are more or less adopted from [Yu09, chapters
2-5]. Since we will restrict our observations to G3-style systems, we omit the ’3’ added
in the rule-names of L∧3, R∨3, L!3 and R!3, and write L∧, R∨, L! and R! in the
following.

Definition 5.1. In a G3s-prooftreeT we define negative, positive and principal-positive
families of boxes.

• Positive and negative occurrences of boxes in a formula, sequent respectively are
defined as follows:

1. The indicated occurrence of ! in !F is positive;
2. any occurrence of ! from F in G → F, G ∧ F, F ∧G, G ∨ F, F ∨G, !F

and Γ ⇒ ∆, F has the same polarity as the corresponding occurrence of !
in F;

3. any occurrence of ! from F in ¬F, F → G and F,Γ ⇒ ∆ has a polarity
opposite to that of the corresponding occurrence of ! in F.

• The direct relation between occurrences of boxes in a G3s-rule application is
defined as follows:

1. Each occurrence of ! in a side formula A in a premise is directly related
only to the corresponding occurrence of ! in A in the conclusion;

2. Each occurrence of ! in an active formula in a premise is directly related
only to the corresponding occurrence of ! in the principal formula of the
conclusion.

A family of boxes is an equivalence class with respect to the reflexive transitive
closure of the direct relation defined above. We denote families of boxes by
f0, f1, .... Since cut is not contained in G3s, all rules of G3s respect the polarity
of formulas, hence, each family consists of boxes of the same polarity.

• A family of boxes is positive (negative) if it consists of positive (negative) boxes.

• We say that a rule introduces a box from a family fi, if the box is present in the
principal formula of the rule application but not in the active one(s). From this
definition it follows that there is only one single rule from G3s, which introduces
boxes, the R!-rule. The L!-rule does not introduce boxes, since the principal
formula is always one of the active formulas by definition of the rule.

• The box introduced in an instance of an R!-rule is called principal. A principal
box is always positive, and will be denoted by #:

!Γ⇒ A
R!

!Γ,Γ′ ⇒ #A,∆′
.

The box introduced in an instance of an R!-rule is the only principal box in the
conclusion of this R!-application.
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• A positive family of boxes is principal-positive (essential), if at least one of its
boxes is related to a principal box. In other words, we call a family principal-
positive, if at least one member of the family has been introduced by an instance
of R!. Also the boxes which belong to principal-positive families, will be de-
noted by #. In T , we have only finitely many principal-positive families of
boxes, say, f1, ..., fm. An occurrence of a member of the principal-positive family
fi is denoted by #i. For each principal-positive family fi, there are only finitely
many R!-rules introducing members of this family. This R!-applications are
denoted by (R!)i.1,...,(R!)i.mi , they introduce finitely many boxes, denoted by
#i.1, ...,#i.mi , of the principal positive family fi.

• In T , the sequent in the premise (conclusion) of (R!)i. j is denoted by Pi. j (Ci. j).

Remark 5.2. The L!-rule is the only rule which can relate two occurrences of boxes in
one sequent together. We give two examples for such a rule-application, which relates
two occurrences of boxes to one occurrence, one for principal positive boxes and the
second one for negative boxes:

1.
!¬#P,¬#P,Γ⇒ ∆

L!
!¬#P,Γ⇒ ∆

,

2.
Γ, A→ !B,!(A→ !B)⇒ ∆

L!
!(A→ !B),Γ⇒ ∆

.

In the first example, the two occurrences of the principal positive box (boxing P) in the
premise are related to the single occurrence of the same box in the conclusion. In the
second example, the two occurrences of the box boxing the formula B are related to
the single occurrence of the same box in the conclusion.

Now, we will present some results about properties of families of boxes in G3s-proofs,
due to Yu. For the proofs of the following lemmas and theorems we refer to the corre-
sponding lemma, theorem in [Yu09].

Lemma 5.3. [Yu09, Lemma 15] In a G3s-proof T , each family of boxes has exactly
one occurrence in the root of the prooftree.

Theorem 5.4. [Yu09, Theorem 16] In any sequent in a G3s-proof, any pair of nested
boxes belongs to different families.

Proof. By induction on the depth of the prooftree T . For the induction step we need
the fact that no G3s-rule relates two nested boxes in a premise to a same box in the
conclusion. !

Theorem 5.5. [Yu09, Theorem 17] In a G3s-proof T , if a # j occurs in the scope of
a #i in a sequent, then for any #i in any sequent of T , there is a # j occurring in the
scope of this #i.
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5.2 Prehistoric loops in G3s-proofs and self-referentiality
Definition 5.6. In a given G3s-prooftree T , we will identify nodes with their labels.
Thus we will talk about occurrences of a sequent in the prooftree. Let T be a set of
such occurrences, then T = (T,R), where T := {s0, s1, ..., sz} is the set of occurrences
of sequents, and

R := {(si, s j) ∈ T × T : si is the conclusion of a rule with the premise s j}

is a binary relation. As usual, the reflexive transitive closure of R is denoted by R∗. By
sr, we denote the sequent at the root-node of the prooftree. A path in T is identified
with its maximum node. In particular, each branch is identified with its leaf. Since each
path in T from the root of the prooftree sr is associated with an unique end-node, we
can denote paths by their end-nodes. For any branch s0 of the form srR∗Ci. jRPi. jR∗s0
in a G3s-proof T , the path Ci. j is called a history of fi in branch s0.

Definition 5.7. [Yu09, Definition 20] Prehistoric relation is defined with respect to
branches at first, and then with respect to a prooftree. For any principal-positive fami-
lies of boxes fi, fh, and any branch s of the form srR∗Ci. jRPi. jR∗s:

• If Pi. j has the form
!α1, ...,!αk(#h), ...,!αn ⇒ β,

where αk(#h) is any formula with an occurrence of #h, then fh is a left prehistoric
family in s of fi. Notation: h ≺s

L i.

• If Pi. j has the form
!α1, ...,!αn ⇒ β(#h),

then fh is a right prehistoric family in s of fi. Notation: h ≺s
R i.

• The relation of prehistoric family in s is defined by: ≺s:=≺s
L ∪ ≺s

R.

• In a G3s-proofT , binary relations of left prehistoric, right prehistoric and prehis-
toric is defined by: ≺L:=

⋃{≺s
L: s is a leaf of T }, ≺R:=

⋃{≺s
R: s is a leaf of T },

≺:=≺L ∪ ≺R.

• To denote one of ≺, ≺L, ≺R, ≺s, ≺s
L or ≺s

R, we write $.

While the right prehistoric relation can be seen from the form of the succedent of the
conclusion of an R!-application, the left prehistoric relation is not very obvious. This
is why we give an example for this relation:

Example 5.8. We consider the following G3s-proof of the S4-formula

Φ = !¬!!!P→ ¬!P
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!¬#2!#1P,!P, P,!¬#1P⇒ P
L!

!¬#2!#1P,!P,!¬#1P⇒ P
R!1

!¬#2!#1P,!P,!¬#1P⇒ #1P,⊥ ⊥, ...⇒⊥
L→

!¬#2!#1P,!P,!¬#1P,¬#1P⇒⊥
L!

!¬#2!#1P,!P,!¬#1P⇒⊥
R→

!¬#2!#1P,!P⇒ ¬!¬#1P
R!2

!¬#2!#1P,!P⇒ #2!#1P,⊥
R→

!¬#2!#1P⇒ #2!#1P,¬!P ⊥, ...⇒ ¬!P
L→

!¬#2!#1P,¬#2!#1P⇒ ¬!P
L!

!¬#2!#1P⇒ ¬!P
R→

⇒ !¬#2!#1P→ ¬!P
We just indicate the right premises of the two L→-applications, but it is clear that the
sequents are instances of (L⊥3). The two R!-applications are denoted by R!1 and
R!2, they introduce one principal positive family each, f1 an f2. Each occurrence of
a principal positive box in the prooftree, is a member of either family f1 or f2, and
denoted by #1, #2 respectively. So let us consider the premises of the two R!-rules to
check whether there are such left (right) prehistoric families. The premise of R!1 is

!¬#2!#1P,!P,!¬#1P⇒ P.

From the succedent it is clear that none of the families f1, f2, is a right prehistoric
family of the other one, since there is no principal positive box-occurrence on the right
side of the premise. In the antecedent, we have to look for principal positive boxes in
the scope of a negative box, and find the two formulas

φ1 = !¬#2!#1P, φ2 = !¬#1P.

In φ1, there are even two occurrences of principal positive boxes (#1,#2) in the scope of
a negative box-occurrence. Since we are considering the rule-application introducing
#1, we have that f1 is a left prehistoric family of itself, notation: 1 ≺L 1, and f2 is a left
prehistoric family of f1, 2 ≺L 1. From φ2, it follows again that f1 is a left prehistoric
family of itself. To continue our observations, we consider the premise of the second
R!-application, R!2, introducing family f2:

!¬#2!#1P,!P⇒ ¬!¬#1P.

There is an occurrence of #1 in the formula present in the succedent of the sequent.
From the conclusion of R!2 it is even more evident that f1 is a right prehistoric family
of f2: #2!#1P. In the antecedent, there is an occurrence of φ1 again, and therefore we
have that f2 is a left prehistoric family of itself, 2 ≺L 2, and f1 is a left prehistoric
family of f2, 1 ≺L 2. In summary, we have 1 ≺L 1, 1 ≺L 2, 2 ≺L 1, 2 ≺L 2 and 1 ≺R 2.

Lemma 5.9. [Yu09, Lemma 21] The following are equivalent:
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1. h ≺s i;

2. In the branch s, there is a sequent s′ with an occurrence of #h in it. There is also
a history of fi in s, which does not include s’.

Remark 5.10.

1. Each history in a branch s breaks the branch into two parts, the historic period
(from the conclusion of the R!-rule to the root of the proof tree), and the prehis-
toric period (from the leaf of the branch to the premise of the R!-rule):

s

...

Pi. j
R!i. j

Ci. j

...

sr

2. By the previous lemma we know that h ≺s i iff #h has an occurrence in a prehis-
toric period of fi in s. This is the reason why Yu calls the ≺-relation prehistoric
relation.

The following corollaries are left without proof:

Corollary 5.11. [Yu09, Corollary 22] For any principal-positive family fi, i ⊀R i.

Corollary 5.12. [Yu09, Corollary 24] If k ≺R j and j $ i, then k $ i.

Definition 5.13. [Yu09, Definition 25] (Prehistoric Loop) In a G3s-proof T , the or-
dered sequence of principal-positive families fi1 , ..., fin is called

• a prehistoric loop, if i1 ≺ i2 ≺ ... ≺ in ≺ i1, and

• a left prehistoric loop, if i1 ≺L i2 ≺L ... ≺L in ≺L i1.

Remark 5.14. The G3s-proof of the formula Φ = !¬!!!p → ¬!p presented in
Example 5.8, has a left prehistoric loop: 1 ≺L 2 ≺L 1.

The following theorem states that the ≺L’s are the only essential steps in a prehistoric
loop:

Theorem 5.15. [Yu09, Theorem 26]T has a prehistoric loop iffT has a left prehistoric
loop.

Before we present the main result of Yu’s paper [Yu09], which provides a connection
between his notion of prehistoric loops and self-referentiality, we have to define (direct)
self-referential modal reasoning:
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Definition 5.16. [Kuz09, Definition 3] Modal reasoning in a modal logic ML, as rep-
resented by its justification counterpart JL, is not directly self-referential if each modal
theorem φ of ML can be realized by an justification theorem φr that can be derived in
JL without using any self-referential statements t : F(t).
The reasoning of ML and JL is not self-referential if the realization of each modal
theorem φ can be achieved without using any cycles of references, such as

t2 : F1(t1), ..., tn : Fn−1(tn−1), t1 : Fn(tn).

Theorem 5.17. [Kuz09, Theorem 26] Realization of S4 in LP, of D4 in JD4, and of T
in JT requires directly self-referential constants and, hence, direct self-referentiality.

Definition 5.18. [Yu09, Definition 6] The constant specification CS of a derivation in
LP is not direct self-referential if CS does not contain any formulas of the form t : F(t).
Notation: CS ∗.
CS is not self-referential, if it does not contain cycles of references

t2 : F1(t1), ..., tn : Fn−1(tn−1), t1 : Fn(tn).

Notation: CS ⊗.

Theorem 5.19. [Yu09, Theorem 30](Necessity of Left Prehistoric Loop for Self-ref.)
If an S4-theorem φ has a left-prehistoric-loop-free G3s-proof, then there is an LP-
formula ψ such that ψ◦ = φ and /LP(CS ⊗) ψ, for some CS ⊗.

The previous theorem states that whenever we can derive an S4-theorem φ in the se-
quent system G3s without loop, there is a realization of φ which is derivable in LP
with a non-self-referential constant specification. In this subsection, the left prehistoric
relation turned out to be the determinant relation among the prehistoric phenomena.
Considering the rules in G3s, the modal rules introducing boxes play an important
rule concerning left prehistoric loops. The L!-rule, the only rule which can relate
two box-occurrences in one sequent together, determines the family-wise-situation of
a proof. On the other hand, the R!-rule defines the prehistoric relation between princi-
pal positive families of boxes. Roughly speaking, it is the L!-rule with its embedded
contraction, which causes at least partially, the development of a left prehistoric loop.
But what happens, if we replace the L!-rule with the built-in contraction (L!3), by
the rule without contraction (L!1)? Are there still occurring loops in such derivations?
The following subsection will give an answer to this question.

5.3 Prehistoric loops in G3s’-proofs and self-referentiality
In the previous subsection, the contraction embedded in the L!-rule turned out to be
one reason, or maybe even the reason, for a loop occurring in a G3s-proof. In the cur-
rent subsection, we dispel contraction from the L!-rule, which leads us to the modified
system G3s’, and try to find out whether loops can still appear in such proofs.
In section 3.5 we introduced the sequent system G3s’, the system we get from G3s if
we replace L!3 by
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Γ, A⇒ ∆
L!1

Γ,!A⇒ ∆
.

L!1 is not invertible, which transpired to be the reason for contraction not being ad-
missible for the system. This fact in turn, breeds the incompleteness of G3s’. At first
sight, it could seem strange to work with an incomplete system. But fortunately, the
system is sound (Theorem 3.50) and therefore does not derive sequents, which are not
valid in S4. The question we would like to answer now is, if all the proofs in G3s’ can
be realized without self-referentiality.

We use the same definition of families of boxes for the system G3s’ as for G3s (cp.
Definition 5.1).
A a first important property of G3s’-proofs is, that in G3s′ there is no rule, which
relates two occurrences of boxes in one sequent together. The reason therefore is, of
course, the missing contraction in the L!1-rule of this system. As a consequence of
this important fact we are able to amplify Lemma 5.3 for the system G3s′. It is not
only in the root sequent of a derivation, where each family of boxes has exactly one
occurrence, it is the case for each sequent of the derivation:

Lemma 5.20. In all the sequents of a G3s′-proof, more than one box of the same family
can never occur.

Proof. From Lemma 5.3 (which also holds for G3s′, since none of the rules relates two
occurrences of boxes in the conclusion to a same occurrence in a premise) we know that
each family of boxes has exactly one occurrence in the root-sequent of each prooftree.
There is no rule in G3s′ which relates an occurrence of a box from the conclusion
to two occurrences of boxes in the premise of the rule. The three propositional two-
premise rules, namely L→, L∨ and R∧, relate an occurrence of a box in the conclusion
to two occurrences of boxes, but only each in one premise. For example:

Γ⇒ !A, B Γ⇒ !A,C
R∧

Γ⇒ !A, B ∧C
.

Thus, we will never find two occurrences of boxes of the same family in one sequent
of a G3s′-derivation. !

Remark 5.21. In the following, we will use the same definitions of left and right pre-
historic families and (left) prehistoric loops for G3s′-proofs as we defined it for G3s-
derivations.

The next properties of the sequent system we introduce, are consequences of Lemma
5.20:

Corollary 5.22. If fi is a principal positive family in a G3s′-proof, then

1. i ⊀L i,

2. i ⊀R i.
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Proof. The first statement is a consequence of the previous lemma: Assume that there
is a principal positive family fk such that k ≺L k. In the G3s′proof, there has to occur
an R! application of the form:

!Γ,!α(#k)⇒ A
R!k

Γ′,!Γ,!α(#k)⇒ #kA,∆′
.

In the conclusion of this rule occur two boxes of the same family fk, which is a contra-
diction to Lemma 5.20.
The second statement can be proved by an induction on the G3s′-derivation. For the
induction step, we need the fact, that no G3s′-rule relates two nested boxes in a premise
to a same box in the conclusion. !

Remark 5.23. The fact, that any principal positive family in an arbitrary G3s’-proof
can not be a left prehistoric family of itself (i ⊀L i) constitutes a significant difference
between the systems G3s′ and G3s.

Lemma 5.24. The system G3s’ enjoys the subformula property, that is, every rule from
G3s’ has the subformula property.

Proof. By Definition 2.17, a sequent system rule has the subformula property, if the
active formulas of the rule are subformulas of the principal formula. An inspection of
the rules from G3s’ shows that there is no active formula, which is not a subformula of
the principal formula of the rule. !

Corollary 5.25. In a G3s’-proof T , if the formula A occurs in a sequent q of any
branch, A occurs as a subformula in each sequent below the node labeled with q, until
sr.

Proof. Lets consider the node sq of the prooftree labeled with the sequent q. From the
previous lemma we know that no matter which G3s’-rule R we apply to the node sq (if
R is a two-premise rule, sq is labeled with q and another sequent), the formula A occurs
as a subformula in the sequent of the conclusion of R. Since this holds for any rule,
we can be sure that A occurs as a subformula in every single node below sq until the
root-node sr of the derivation T . !

Corollary 5.26. In G3s′, each principal positive family of boxes #i can be intro-
duced only once in each branch s of the proof. In other words, there is only one
R!-application, R!i, for each principal positive family fi in each branch s of the proof.

Proof. Consider the branch s in a G3s′-proof T and assume that there are two R!-
rules, R!i, j1 and R!i, j2 , introducing the same principal positive family fi. The branch s
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has the form: s

...

!Γ⇒ A
R!i. j1

Γ′,!Γ⇒ #i. j1 A,∆′

...

!ψ(#i. j1 A),!Ψ⇒ A
R!i. j2

Ψ′,!ψ(#i. j1 A),!Ψ⇒ #i. j2 A,Φ′

...

From Corollary 5.25 we know that the formula #iA occurs as a subformula in the
conclusion of the second R! application, which contradicts Lemma 5.20. !

Corollary 5.27. In G3s′-proofs, occurrences of principal positive boxes #i appear only
in the historic period of R!i, that is, the sequents from the conclusion of the R!i-rule
to the root of the tree.

Proof. Assume that #i which is going to be introduced by R!i, occurs already in the
premise of the rule:
Case 1. If #i occurs in the antecedent of the premise

!Γ,!α(#i)⇒ A
R!i

Γ′,!Γ,!α(#i)⇒ #iA,∆′

then there are obviously two occurrences of boxes of the same family in the conclusion
of the R!-rule, which is a contradiction to Lemma 5.20.
Case 2. If #i occurs in the succedent of the premise

!Γ⇒ α(#i)
R!i

Γ′,!Γ⇒ #iα(#i),∆′

then we have that i ≺R i, which is a contradiction to Corollary 5.22.
!

Breaking down the definition of a (left) prehistoric loop from a whole derivation to the
branches of a prooftree, we obtain an interesting property of G3s’ from the previous
two corollaries:

Definition 5.28. Let T be a G3s’-proof. The ordered sequence of principal-positive
families fi1 , ..., fin occurring in the branch s is called

• a prehistoric loop in the branch s, if i1 ≺s i2 ≺s ... ≺s in ≺s i1, and

• a left prehistoric loop in s, if i1 ≺s
L i2 ≺s

L ... ≺s
L in ≺s

L i1.

Corollary 5.29. Let T be a G3s’-proof. Any branch s in T cannot have a left prehis-
toric loop.
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Proof. Assume, for the sake of a contradiction, that there is a branch s in a G3s’-
derivation with a left prehistoric loop:

i1 ≺s
L i2 ≺s

L ... ≺s
L in ≺s

L i1.

W.l.o.g. the branch s is of the form:

···
!Γ2,!α1(#1)⇒ A2

R!2
Γ′2,!Γ2,!α1(#1)⇒ #2A2,∆

′
2···

!Γn,!αn−1(#n−1)⇒ An
R!n

Γ′n,!Γn,!αn−1(#n−1)⇒ #nAn,∆
′
n···

!Γ1,!αn(#n)⇒ A1
R!1

Γ′1,!Γ1,!αn(#n)⇒ #1A1,∆
′
1···

Since i1 ≺s
L i2, there has to be an occurrence of #1 in the scope of a negative box in

the antecedent of the premise of R!2. From Corollary 5.25 we know that there is an
occurrence of #1 in each sequent of the derivation below the R!2-application until the
root sequent. So there is an occurrence of #1 in the conclusion of the R!1-application
too. If the #1 occurs in the succedent of the R!1-rule, we have that i1 ≺s

R i1 which
contradicts Corollary 5.22. If the #1 occurs in the antecedent of the R!1-rule, there are
two occurrences of #1 in the same sequent (the second occurrence is the #1 introduced
by R!1). This is a contradiction to Lemma 5.20. !

The following theorem is a property of G3s which holds for G3s′ too:

Theorem 5.30. In a G3s′-proof T , if a # j occurs in the scope of a #i in a sequent s,
then for any #i in any sequent of T , there is a # j occurring in the scope of this #i.

Proof. Consider a formula of the form φ(#iψ(# j)) in the node, labeled with the sequent
sl, of T . From Corollary 5.25 we know that the formula φ occurs as a subformula in
each sequent below, until the root sr of T .
Assume, for the sake of a contradiction, that there is an occurrence of #i in the formula
φ′(#i) in the node, labeled with the sequent sk, of T , such that there is no # j in the
scope of it. We have to consider the following cases:
Case 1. If sl = sk, this is a contradiction to Lemma 5.20.
Case 2. If sl " sk, but sl and sk are sequents of the same branch in T . W.l.o.g. let
sk be closer to the root-node sr than sl. From Corollary 5.25 we know that there is an
occurrence of #iψ(# j) in sk. By assumption, there is another occurrence of #i (without
# j in the scope of it) in sk, which contradicts Lemma 5.20 again.
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Case 3. If sl " sk, and sl, sk are sequents in different branches of T . In one node of
T , the two branches get connected by one of the two-premise-rules. Since the formula
Φ, where φ(#iψ(# j)) occurs as a subformula, is different from the formula Φ′, where
φ′(#i) occurs as a subformula, the formulas Φ,Φ′ have to be the active formulas of
the two-premise rule applied. Thus, there are two occurrences of #i in the principal
formula of the rule connecting the two branches, which is a contradiction to Lemma
5.20.

!

The following property of G3s (Corollary 5.12) is also provable for the system G3s′:

Corollary 5.31. If i, j and k are different principal positive families in a G3s′-proof,
then

if k ≺R j and j $ i, then k $ i.

Proof. From k ≺R j we know that there is an R! j-rule of the form

!Γ⇒ α(#k)
R! j

Γ′,!Γ⇒ # jα(#k),∆′
.

With the previous theorem we can be sure, that wherever # j occurs, there is a #k
occurring in the scope of it. Keeping this fact in mind, we prove the corollary for the
different relations:
Case 1. $ =≺s

L. j ≺s
L i implies that branch s is of the form:

s

...

!Γ, γ(# j)⇒ β
R!i

Γ′,!Γ, γ(# j)⇒ #iβ,∆
′

...

sr

Since we know that there is a #k occurring in the scope of # j, we have the desired
property k ≺s

L i.
Case 2. $ =≺s

R. j ≺s
R i implies that branch s is of the form:

s

...

!Γ⇒ β(# j)
R!i

Γ′,!Γ⇒ #iβ(# j),∆′

...

sr

Again we can use the fact, that there is a #k in the scope of # j to get k ≺s
R i.
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Case 3. $ =≺s. This case follows from cases 1 and 2.
Case 4. $ =≺L. j ≺L i implies that there is a branch s with j ≺s

L i. From case 1 it
follows that k ≺s

L i, that is k ≺L i.
Case 5. $ =≺R. j ≺R i implies that there is a branch s with j ≺s

R i. From case 2 it
follows that k ≺s

R i, that is k ≺R i.
Case 6. $ =≺. This case follows from cases 4 and 5.

!

Now we showed all the properties of the system G3s′ we need, to prove the following
theorem:

Theorem 5.32. If T is a G3s′-proof, the following are equivalent:

1. T has a prehistoric loop.

2. T has a left prehistoric loop.

Proof. The direction from 2. to 1. is clear. Direction from 1. to 2.: Consider a
prehistoric loop i1 ≺ i2 ≺ ... ≺ in ≺ i1 of smallest length.
Case 1. If all relations ≺ in the loop we consider are of the form ≺R, the loop is
i1 ≺R i2 ≺R ... ≺R in ≺R i1 and from Corollary 5.31 it follows that i1 ≺R i1 which is a
contradiction to Lemma 5.22.
Case 2. If there are both, occurrences of ≺L and ≺R in the loop, w.l.o.g. we assume
the loop to be of the form i1 ≺R i2 ≺L i3 ≺ ... ≺ i1. By Corollary 5.31 we obtain that
i1 ≺L i3 ≺ ... ≺ i1 is a shorter prehistoric loop. This is a contradiction to our assumption
that the loop we consider is of smallest length.
Case 3. If all relations ≺ in the loop we consider are of the form ≺L, the loop is a left
prehistoric loop. So the shortest prehistoric loop is always a left one.

!

In Corollary 5.29 we proved that in any branch of a G3s’-derivation, there is no left
prehistoric loop. To state that there are no prehistoric loops at all, we need the following
corollary, an analog of Corollary 5.31.

Corollary 5.33. If i, j and k are different principal positive families in a G3s′-proof,
then

1. If k ≺s
R j and j ≺s

R i, then k ≺s
R i.

2. If k ≺s
R j and j ≺s

L i, then k ≺s
L i.

Proof. From k ≺s
R j we know that the R! j-application in the branch s is of the form

!Γ⇒ α(#k)
R! j

Γ′,!Γ⇒ # jα(#k),∆′
.

With Theorem 5.30 we can be sure, that wherever # j occurs in this G3s’-derivation,
there is a #k occurring in the scope of it.
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1.: j ≺s
L i implies that the R!i-application in branch s is of the form:

!Γ, γ(# j)⇒ β
R!i

Γ′,!Γ, γ(# j)⇒ #iβ,∆
′

Since we know that there is a #k occurring in the scope of # j, we have the desired
property k ≺s

L i.
2.: j ≺s

R i implies that the R!i-application in branch s is of the form:

!Γ⇒ β(# j)
R!i

Γ′,!Γ⇒ #iβ(# j),∆′

Again we can use the fact, that there is a #k in the scope of # j to get k ≺s
R i.

From 1. and 2. it follows that if k ≺s
R j and j ≺s i then k ≺s i. !

Corollary 5.34. Let T be a G3s’-proof. Any branch s in T cannot have a prehistoric
loop.

Proof. Assume the branch s in T to have a prehistoric loop, i1 ≺s i2 ≺s ... ≺s in ≺s i1.
Case 1. If all occurrences of ≺s in the loop are of the form ≺s

R, we have that i1 ≺s
R i2 ≺s

R
... ≺s

R in ≺s
R i1. With the previous corollary it follows that i1 ≺s

R i1, which contradicts
Lemma 5.22.
Case 2. If there are both, occurrences of ≺s

L and ≺s
R in the prehistoric loop we consider,

w.l.o.g. the loop is of the form i1 ≺s
R i2 ≺s

L i3 ≺s ... ≺s in ≺s i1. The previous corollary
implies that i1 ≺s

L i3 ≺s ... ≺s in ≺s i1 is a prehistoric loop too, while having less
occurrences of ≺s

R. Since there are only finitely many occurrences of ≺s
R in the original

loop, we eventually gain a prehistoric loop with occurrences of ≺s
L only, which is a

contradiction to Corollary 5.29.
Case 3. If there are only occurrences of ≺s

L in the prehistoric loop, the loop is a left
prehistoric loop, which is a contradiction to Corollary 5.29.

!

Definition 5.35. If D := Γ ⇒ ∆ and D′ := Γ′ ⇒ ∆′ are any sequents of a G3s′ (G3s)
derivation, then we say that the sequentD is a subsequent of the sequentD′, if Γ ⊆ Γ′
and ∆ ⊆ ∆′. Notation: D ⊆ D′.
Theorem 5.36. If T is a G3s′-proof of the sequent Γ ⇒ ∆, we gain a G3s-proof T ′
of Γ ⇒ ∆, such that for every sequent D′ in T ′ we have that D ⊆ D′, where D is the
corresponding G3s′-sequent in T .

Proof. Since G3s′ is sound with respect to S4 (Theorem 3.50), we know that whenever
G3s′ / Γ⇒ ∆, then G3s / Γ⇒ ∆.
If T has no application of L!1, then T=T ′. If there are L!1-applications in T , we
replace all instances of L!1 (there are only finitely many, L!11, L!21,..., L!k1) by
instances of L!:

Γ, Ai ⇒ ∆
L!i1

Γ,!Ai ⇒ ∆
%

Γ, Ai,!Ai ⇒ ∆
L!i

Γ,!Ai ⇒ ∆
.
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We have to write an additional copy of !Ai in the premise of each L!1-rule, accord-
ingly we have to do that in all the sequents above the considered instance of L!i1 until
the top-nodes of the proof. Thus each sequent S in T is a subsequent (S ⊆ S′) of the
corresponding S′ in T ′. All this additional copies of !A1, ...,!Ak are, with the excep-
tion of the premise of the corresponding L!-rule, only side formulas in the derivation.
No matter which rule R is applied above a L!1-rule in the G3s′-proof T , the corre-
sponding rule of G3s is applicable in T ′: We consider the premise Γ′ ⇒ ∆′ of the
i-th L!1-rule in T and call it D. The corresponding sequent D′ in T ′ is of the form
Γ′,!Π ⇒ ∆′, where !Π is the set of boxed formulas !A1,!A2, ...,!Ai which were
added in the L!1-applications L!11,..,L!i1. Actually, !Π is the set of principal for-
mulas of the L!1-applications that occur on the branch below Γ′ ⇒ ∆′. Thus we have
D ⊆ D′. The principal formula of the rule-application above L!i1, has to be in Γ′ or
∆′. Since the principal formula of the rule-application R above L!i1 is contained in Γ′
or ∆′, it is also contained inD′ and there is nothing which precludes us from applying
the same rule R in T ′. Even R! is applicable, since !Π contains only boxed formulas
and Γ′ too, if R! was the rule above L!i in the G3s′-derivation T .

If
Γ′ ⇒ ∆′

R
Γ′′ ⇒ ∆′′

is any rule-application of G3s’ in T , then
!Π,Γ′ ⇒ ∆′

R
!Π,Γ′′ ⇒ ∆′′

is the corre-

sponding application in G3s. The set of additional boxed formulas !Π in the premise
and in the conclusion of R in T ′ is the same, unless the rule R is L!. When R is L!1
in T , then

A,Γ′ ⇒ ∆′
L!1

!A,Γ′ ⇒ ∆′
becomes

!Π,!A, A,Γ′ ⇒ ∆′
L!

!Π,!A,Γ′ ⇒ ∆′
.

The formulas added in the premise of L! in T ′ contain one additional formula (!A)
compared to the conclusion. !

Corollary 5.37. If T is a left-prehistoric-loop-free G3s′-proof of the sequent Γ ⇒ ∆,
there is a left-prehistoric-loop-free G3s-proof T ′ of Γ⇒ ∆.

Proof. From Theorem 5.36 we know that it is possible to construct a G3s-proof from a
G3s′-derivation. It remains to show that whenever T is left-prehistoric-loop-free, then
T ′ is it too. Assume T to be left-prehistoric-loop-free and construct the corresponding
G3s-proof T ′. If there are no R!-applications in T , T ′ is left-prehistoric-loop-free,
too and we are done. If there are R!-applications R!1,...,R! j in T , the corresponding
R!-application in T ′ is of the form:

!Γ⇒ A
R!i

Γ′,!Γ⇒ #iA,∆′
%

!Γ,!Π⇒ A
R!i

Γ′,!Γ,!Π⇒ #iA,∆′
,

where !Π denotes the additional boxed formulas !A1, ...,!Al which were added in the
L!-rules (L!1,..., L!l) below R!i. To be sure that there is no left prehistoric loop in
T ′, we have to modify the premises of the R!-rules as follows:

!Γ,!Π⇒ A
R!i

Γ′,!Γ,!Π⇒ #iA,∆′
, %

!Γ⇒ A
R!i

Γ′,!Γ,!Π′ ⇒ #iA,∆′
.
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!Π′ in the conclusion of the R!i-application in T ′ is the set of principal formulas of
the L!-rules that occur on the branch below R!i, but above the closest R!-application.
Since !Π is the set of all principal formulas of the L!-rules occurring below R!i, we
have that !Π′ ⊆ !Π. We make use of the built in weakening in the R!-rule and omit
the additional copies of the elements from !Π′ in the premise of the R!-rules in T ′
and in all the sequents above. We get exactly the same sequents in the R!-premises
as we have in the G3s’-derivation T . The resulting prooftree, let us call it T ′′, is still
a derivation in G3s: In T ′, the formulas !A1, ...,!Al in !Π are side formulas above
L!1,...,L!l. But L!1,...,L!l are applied below R!i, thus in !Π are only contained
boxed formulas, which are side formulas until the top nodes of the prooftree T ′. Since
!Π′ ⊆ !Π, we can be sure that in !Π′ too, are only contained boxed formulas that are
side formulas until the leaves of the prooftree T ′′.
If
!Π,Γ′ ⇒ ∆′

R
!Π,Γ′′ ⇒ ∆′′

is a rule-application different from R! and L! in T ′, where !Π is

the set of principal formulas of L!-applications on the same branch below R, then the
corresponding rule-application in T ′′ is of the form

!Π′,Γ′ ⇒ ∆′
R

!Π′,Γ′′ ⇒ ∆′′
.

!Π′ is the set of principal formulas of L!-applications on the same branch below R,
but above the closest R!-application. Thus !Π′ ⊆ !Π.
If R is a L!-application in T ′

!Π,!A, A,Γ′ ⇒ ∆′
L!

!Π,!A,Γ′ ⇒ ∆′
, the corresponding rule in T ′′ is

!Π′,!A, A,Γ′ ⇒ ∆′
L!

!Π′,!A,Γ′ ⇒ ∆′
.

Again, !Π′ ⊆ !Π is the set of principal formulas of L!-applications on the same
branch below R, but above the closest R!-rule.
Since T is left-prehistoric-loop-free and T ′′ has the same sequents in the R!-premises,
we can be sure that T ′′ is left-prehistoric-loop-free, too. !

We give an example for such a transformation of a derivation from G3s′ to a loop-free
derivation in G3s:

Example 5.38. The formula φ = !¬!!!P → ¬!P is an S4-theorem, derivable in
G3s’ by the derivation T in Figure 6.
T has no left prehistoric loop. This can be checked by considering the premises of the
two R!-rules.
If we replace all instances of L!′ in T by instances of L!, we get the G3s-derivation
T ′, presented in Figure 7.
If we consider the premises of the two R!-rules in T ′, we can see from R!1 that f2 is a
left prehistoric family of f1 and from R!2 that f1 is a left prehistoric family of f2, thus
1 ≺L 2 ≺L 1, the proof has a left prehistoric loop. The additional boxed formulas, the
formulas we had to add because of the original L!-rule, are the reason for the loop. But
since the formulas are only side-formulas above the premise of the L! application, we
can run the following step: We take the derivation T ′ and proceed from bottom to top:
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P⇒ P
L!′

!P⇒ P
R!1

!P⇒ #1P,⊥ ⊥,!P⇒⊥
L→

!P,¬#1P⇒⊥
L!′

!P,!¬#1P⇒⊥
R→

!P⇒ ¬!¬#1P
R!2

!P⇒ #2!#1P,⊥
R→

⇒ #2!#1P,¬!P ⊥⇒ ¬!P
L→

¬#2!#1P⇒ ¬!P
L!′

!¬#2!#1P⇒ ¬!P
R→

⇒ !¬#2!#1P→ ¬!P

Figure 6: G3s’-derivation of !¬!!!P→ ¬!P

!¬#2!#1P,!P, P,!¬#1P⇒ P
L!

!¬#2!#1P,!P,!¬#1P⇒ P
R!1

!¬#2!#1P,!P,!¬#1P⇒ #1P,⊥ ⊥,!¬#2!#1P,!P,!¬#1P⇒⊥
L→

!¬#2!#1P,!P,!¬#1P,¬#1P⇒⊥
L!

!¬#2!#1P,!P,!¬#1P⇒⊥
R→

!¬#2!#1P,!P⇒ ¬!¬#1P
R!2

!¬#2!#1P,!P⇒ #2!#1P,⊥
R→

!¬#2!#1P⇒ #2!#1P,¬!P ⊥,!¬#2!#1P⇒ ¬!P
L→

!¬#2!#1P,¬#2!#1P⇒ ¬!P
L!

!¬#2!#1P⇒ ¬!P
R→

⇒ !¬#2!#1P→ ¬!P

(We already considered the same G3s-derivation of the same formula in Example 5.8.)

Figure 7: G3s-derivation of !¬!!!P→ ¬!P with a left prehistoric loop.
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consider the undermost L!-rule and mark the copy of the boxed formula (!¬#2!#1P)
in the premise. If we come to the next R!-rule, we drop the superfluous copy of the
marked formula in the premise of the R!-rule. If there is another L!-rule application
(above the first one) below the first R!-rule, we mark the copy of this boxed formula
too and drop both boxed formulas in the premise of the next R!-rule. Like that, we
proceed from bottom to top and get another derivation in G3s, T ′′:

!P, P⇒ P
L!

!P⇒ P
R!1

!P,!¬#1P⇒ #1P,⊥ ⊥,!P,!¬#1P⇒⊥
L→

!P,!¬#1P,¬#1P⇒⊥
L!

!P,!¬#1P⇒⊥
R→

!P⇒ ¬!¬#1P
R!2

!¬#2!#1P,!P⇒ #2!#1P,⊥
R→

!¬#2!#1P⇒ #2!#1P,¬!P ⊥,!¬#2!#1P⇒ ¬!P
L→

!¬#2!#1P,¬#2!#1P⇒ ¬!P
L!

!¬#2!#1P⇒ ¬!P
R→

⇒ !¬#2!#1P→ ¬!P

Note, that the premises of R!1 and R!2 are exactly the same as in T and therefore T ′′
cannot have a left prehistoric loop.

With the previous corollary we can state an analog of Yu’s main theorem for the system
G3s′:

Theorem 5.39. If an S4-theorem φ has a left-prehistoric-loop-free G3s’-proof, then
there is an LP-formula ψ such that ψ◦ = φ and /LP(CS ⊗) ψ.

Proof. From the previous corollary we know that if there is a left-prehistoric-loop-free
G3s’-proof of⇒ φ we can gain a G3s-derivation of⇒ φ with the same property. With
Yu’s main theorem we get that there is an LP-formula ψ such that ψ◦ = φ and ψ is
derivable with a non-self-referential constant specification in LP. !

To answer the question we posed at the very beginning of this subsection, we have
to say that loops can still occur in G3s’-proofs, although contraction is not embedded
in the L!1-rule. Nevertheless, we have found some interesting differences between
the occurrences of prehistoric phenomena in the two systems G3s’ and G3s, and we
have shown how to transform G3s’-proofs into proofs in G3s. With the possibility
to construct a G3s-proof out of a G3s’-derivation, we were able to state an analog
of Yu’s main theorem, relating prehistoric loops in sequent system proofs and self-
referentiality, for the modified system G3s’.
In opposite to families of boxes in G3s, a principal positive family in a G3s’-derivation
cannot be a left prehistoric family of itself. In addition, we can limit the left prehistoric
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loops to occur in a whole G3s’-derivation, but not in single branches of a derivation.
This leads us to the next question that has to be asked, namely, where the remaining
left prehistoric loops come from. Since we already know that a left prehistoric loop
can not appear within a single branch of a G3s’-derivation, the question is not that
hard to answer: it is the point where two different branches of a prooftree meet, the
two-premise rules (L∨, R∧, L→). If we consider the following example of an L∨-
application, it becomes clear that there is still a form of contraction present in the
system G3s’, even though contraction is not dp-admissible for G3s’:

A,!¬#P⇒ ∆ B,!¬#P⇒ ∆
L∨

A ∨ B,!¬#P⇒ ∆
.

The L∨-application relates the principal positive box-occurrence in the conclusion
of the rule-application to two occurrences of the same box, one occurrence in each
premise. Of course this is even a weaker form of contraction than we have in the L!-
rule of the system G3s, but it is still an indication for contraction to be present in the
system. So the next step will be to avoid the form of contraction we have observed
in G3s’-derivations, and check, whether loops can still occur in this modified system.
This is what we will do in the next subsection.

5.4 G3s∗-proofs and self-referentiality
In this subsection, our goal is to avoid the contraction observed in G3s’-proofs by
replacing the two-premise rules (L∨, R∧, L→) by their context-splitting formulation,
and to analyze, whether prehistoric loops can still appear in this modified system.

Definition 5.40. The system we gain from G3s′ by replacing the three two-premise
rules by the context-splitting formulation, namely

Γ⇒ ∆, A Γ⇒ ∆, B
R∧

Γ⇒ ∆, A ∧ B
%

Γ⇒ ∆, A Γ′ ⇒ ∆′, B
R∧cs

Γ,Γ′ ⇒ ∆,∆′, A ∧ B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨ B,Γ⇒ ∆
%

A,Γ⇒ ∆ B,Γ′ ⇒ ∆′
L∨cs

A ∨ B,Γ,Γ′ ⇒ ∆,∆′

Γ⇒ ∆, A B,Γ⇒ ∆
L→

A→ B,Γ⇒ ∆
%

Γ⇒ ∆, A B,Γ′ ⇒ ∆′
L→cs

A→ B,Γ,Γ′ ⇒ ∆,∆′

is called G3s∗.

Since G3s∗ differs from G3s′ only by the formulation of the two-premise rules, G3s∗
is incomplete too. Let us consider the first proof of the incompleteness Theorem 3.48
for G3s’, and explain the changes of the proof for G3s∗. The aim is to show that
G3s∗ ! ¬!¬!(¬!¬P → !¬!¬P). In the prooftree (5), the first occurrence of a two-
premise rule is the following instance of L→. Actually, the only two-premise rules in a

93



G3s’ or G3s∗-derivation of the formula of interest are instances of L→, since there are
no occurrences of ∧,∨ in the formula.

⇒⊥,!(¬!¬P→ !¬!¬P) ⊥⇒⊥
L→

¬!(¬!¬P→ !¬!¬P)⇒⊥

The principal formula of L→ is ¬!(¬!¬P → !¬!¬P), the only side formula is ⊥.
There are two possible context-splitting rule-applications:

⇒⊥,!(¬!¬P→ !¬!¬P) ⊥⇒
L→cs¬!(¬!¬P→ !¬!¬P)⇒⊥

(10)

and

⇒ !(¬!¬P→ !¬!¬P) ⊥⇒⊥
L→cs¬!(¬!¬P→ !¬!¬P)⇒⊥

(11)

If we consider the second rule-application (11), the right premise is an instance of (L⊥),
and to the left premise there is only one rule applicable in reverse, namely R!. Doing
this, we obtain the following tree

¬!¬P⇒ !¬!¬P
R→

⇒ ¬!¬P→ !¬!¬P
R!

⇒ !(¬!¬P→ !¬!¬P)

with the same sequent at the ”top-node” as (5).

If we take the first possibility (10), we proceed on the left branch like we did it in
prooftree (5).
In (6), there is one L→-application at the top of the tree, but again, replacing it by a
context-splitting instance (L→cs) would not change anything on the fact that the left
leaf is no axiom-instance.
The same holds for (7). The following two possible L→cs which are applicable to the
sequent ¬!¬P⇒ !¬!¬P:

⇒ !¬!¬P,!¬P ⊥⇒
L→cs¬!¬P⇒ !¬!¬P

P⇒⊥
R→

⇒ ¬P
R!

⇒ !¬P ⊥⇒ !¬!¬P
L→cs¬!¬P⇒ !¬!¬P

The prooftree on the left leads to the same left premise as (7), while the right premise
is an instance of (L⊥). The tree on the right is obviously no derivation of ¬!¬P ⇒
!¬!¬P.
There is one L→-application left in (8). But again, replacing it by a context-splitting
application would not lead to an axiom-instance on the left top-node of the tree.
Thus, G3s∗ ! ¬!¬!(¬!¬P → !¬!¬P), in other words, not all valid (with respect to
S4) formulas are derivable in G3s∗. But the soundness is still preserved:
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Theorem 5.41. G3s∗ is sound with respect to S4.

Proof. From Theorem 3.50 we know that G3s′ is sound with respect to S4. It suffices to
show that whenever G3s∗ / Γ⇒ ∆ then G3s′ / Γ⇒ ∆. This is proved by an induction
on the depth n of the G3s∗-proofD, such thatD /n Γ⇒ ∆. We consider only the cases,
where the last rule of the deductionD is one of the two-premise rules, since this is the
only point, where the two systems differs from each other. Assume the statement to be
true for n, and letD be a deduction of depth n + 1, such thatD /n+1 Γ⇒ ∆
Case 1. The last rule ofD is R∧cs:

Γ⇒ ∆, A Γ′ ⇒ ∆′, B
R∧cs

Γ,Γ′ ⇒ ∆,∆′, A ∧ B

By induction hypothesis we get G3s′ / Γ ⇒ ∆, A and G3s′ / Γ′ ⇒ ∆′, B. Since
weakening is dp-admissible in G3s′, we have that G3s′ / Γ,Γ′ ⇒ ∆,∆′, A and
G3s′ / Γ,Γ′ ⇒ ∆,∆′, B. Applying the R∧-rule in G3s′, we get a proof of the desired
sequent:

Γ,Γ′ ⇒ ∆,∆′, A Γ,Γ′ ⇒ ∆,∆′, B
R∧

Γ,Γ′ ⇒ ∆,∆′, A ∧ B
.

Case 2. The last rule ofD is L∨cs:

A,Γ⇒ ∆ B,Γ′ ⇒ ∆′
L∨cs

A ∨ B,Γ,Γ′ ⇒ ∆,∆′

Again by induction hypothesis and dp-admissibility of weakening in G3s′ it follows
that G3s′ / A,Γ,Γ′ ⇒ ∆,∆′ and G3s′ / B,Γ,Γ′ ⇒ ∆,∆′. Applying the L∨-rule in
G3s′, we get a proof of the desired sequent:

A,Γ,Γ′ ⇒ ∆,∆′ B,Γ,Γ′ ⇒ ∆,∆′
L∨

A ∨ B,Γ,Γ′ ⇒ ∆,∆′
.

Case 3. If the last rule ofD is L→cs:

Γ⇒ ∆, A B,Γ′ ⇒ ∆′
L→cs

A→ B,Γ,Γ′ ⇒ ∆,∆′

By the same argumentation we gain a G3s′-derivation of the sequent A→ B,Γ,Γ′ ⇒ ∆,∆′.
Thus, we can be sure that the system G3s∗ does not prove formulas, which are not
valid. !

The following properties of derivations in G3s∗ can be proved the same way it is done
for G3s′.

Lemma 5.42. If T is a G3s∗-proof, then

1. in all the sequents of T , there occurs at most one box of each family.

2. for principal positive families fi in T , we have that i ⊀L i and i ⊀R i.
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3. T has a left prehistoric loop iff T has a prehistoric loop.

For derivations in G3s′ we proved that there is at most one R!-application for each
family fi in each branch s j of the prooftree. For G3s∗-proofs, we can even state more:

Lemma 5.43. In a G3s∗-derivation, each principal positive family of boxes #i can be
introduced only once in the prooftree. In other words, there is only one R!-application,
R!i, for each principal positive family fi in the proof.

Proof. Consider a G3s∗-derivation T . If there are no applications of two-premise rules
in T , the proof consists of one branch only and by Lemma 5.42 we can be sure that
there is only one R!-rule for each family of boxes occurring in the proof.
If there are applications of two-premise rules in T , we assume that there are two R!-
applications, R!i, j and R!i,k, which introduce boxes of the family fi in two different
branches s j and sk. At some point of the prooftree, the two branches s j and sk are
connected by one of the three two-premise rules R∧cs, L∨cs, L→cs. Since the two-
premise rules are formulated in a context-splitting way in G3s∗, there is no rule in the
system which relates the two occurrences of #i in the premises to one occurrence in
the conclusion. Thus there are two occurrences of #i in the conclusion of the applied
two-premise rule, which is a contradiction to Lemma 5.42. !

Corollary 5.44. A G3s∗-proof cannot have a left prehistoric loop.

Proof. This property follows from the fact, that there is only one R!-application for
each principal positive family of boxes in each G3s∗-proof. To get a loop of the form

i1 ≺L i2 ≺L ... ≺L in ≺L i1,

there have to be at least two R!ik -applications for one principal positive family fik
occurring in the left prehistoric loop, which is a contradiction to the previous lemma.

!

Theorem 5.45. If T is a G3s∗-proof of the sequent Γ⇒ ∆, we gain a left-prehistoric-
loop-free G3s′-proof T ′ of Γ ⇒ ∆, such that for every sequent D′ in T ′ we have that
D ⊆ D′, whereD is the corresponding G3s∗-sequent in T .

Proof. First, we show how to construct a G3s’-derivation T ′ out of a G3s∗-proof, and
then we can follow that this constructed G3s’-derivation is left-prehistoric-loop-free.
If T has no application of R∧cs, L∨cs and L→cs, then T = T ′. T ′ is left-prehistoric-
loop-free, since T ′ = T , and T is loop-free, since G3s∗-derivations cannot have a left
prehistoric loop.
Otherwise, we replace all instances of the context-splitting formulated two-premise
rules of G3s∗ by the context-sharing two-premise rules of G3s′. Replace instances of
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Γ⇒ ∆, A B,Γ′ ⇒ ∆′, B
R∧cs

Γ,Γ′ ⇒ ∆,∆′, A ∧ B
by

Γ,Γ′ ⇒ ∆,∆′, A B,Γ,Γ′ ⇒ ∆,∆′, B
R∧

Γ,Γ′ ⇒ ∆,∆′, A ∧ B
,

A,Γ⇒ ∆ B,Γ′ ⇒ ∆′
L∨cs

A ∨ B,Γ,Γ′ ⇒ ∆,∆′
by

A,Γ,Γ′ ⇒ ∆,∆′ B,Γ,Γ′ ⇒ ∆,∆′
L∨

A ∨ B,Γ,Γ′ ⇒ ∆,∆′
,

Γ⇒ ∆, A B,Γ′ ⇒ ∆′
L→cs

A→ B,Γ,Γ′ ⇒ ∆,∆′
by

Γ,Γ′ ⇒ ∆,∆′, A B,Γ,Γ′ ⇒ ∆,∆′
L→

A→ B,Γ,Γ′ ⇒ ∆,∆′
.

We add an additional copy of each formula in Γ′ and ∆′ to the left premise of L∨cs
(R∧cs, L→cs) and an additional copy of the formulas in Γ and ∆ to the right premise
of L∨cs (R∧cs, L→cs). But since the resulting tree should still be a derivation, we add
the additional formulas in every sequent between the premise of the considered L∨cs-,
(R∧cs-, L→cs-) rule and the conclusion of the closest R!-rule on each branch. If there is
no R!-rule above the considered L∨cs-, (R∧cs-, L→cs-) rule application, the additional
formulas have to be added up to the top nodes of the prooftree. Thus, each sequent S
in T is a subsequent of the corresponding S′ in T ′. All this additional formulas are
side formulas in the premise of the corresponding two-premise rule and in all sequents
above. It remains to show that no matter which rule R is applied above a L∨cs (R∧cs,
L→cs) application in T , the corresponding rule of G3s′ is applicable in T ′: We con-
sider the sequents in the premises of the i-th L∨-rule in T , A,Γ ⇒ ∆ and B,Γ′ ⇒ ∆′,
and call them DL, DR respectively. The corresponding sequents D′L and D′R in the
G3s’-proof T ′ are of the form A,Γ,Γ′,Φ⇒ ∆,∆′,Ψ and B,Γ,Γ′,Φ⇒ ∆,∆′,Ψ, where
Φ and Ψ are the sets of formulas which were added in the L∨cs-, R∧cs- and L→cs-
applications below the considered rule-application. We haveDL ⊆ D′L andDR ⊆ D′R.

G3s∗ :

...
RL

A,Γ⇒ ∆
...

RR
B,Γ′ ⇒ ∆′

L∨cs
A ∨ B,Γ,Γ′ ⇒ ∆,∆′

G3s′ :

...
RL

A,Γ,Γ′,Φ⇒ ∆,∆′,Ψ
...

RR
B,Γ,Γ′,Φ⇒ ∆,∆′,Ψ

L∨
A ∨ B,Γ,Γ′,Φ⇒ ∆,∆′,Ψ

Consider the G3s∗-derivation: the principal formulas of the rule applications RL and
RR immediately above L∨, have to be in A,Γ,∆ for RL and in B,Γ′,∆′ for RR. From
this observations, and the fact that we haveDL ⊆ D′L andDR ⊆ D′R, it follows, that the
principal formulas of RL and RR in the G3s’-proof are contained inD′L,D′R respectively.
So there is nothing which precludes us from applying the same rule R in T ′, and the
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resulting prooftree T ′ is a G3s’-derivation of the sequent Γ ⇒ ∆. The argumentation
for the cases where we consider the i-th R∧-rule and the i-th L→-rule works similarly.
But why can we be sure, that T ′ is a loop-free derivation of Γ ⇒ ∆? First it has to
be noted, that we construct T ′ out of a left-prehistoric-loop-free derivation T (G3s∗-
proofs can not have a left prehistoric loop). Secondly, we add the additional formulas,
in the construction described, from the premises of the context-sharing two-premise
rule up to the conclusion of the closest R!-rule on each branch. This is no problem,
because of the built-in weakening in R!. Thus, the premise of the k-th R!-rule, R!k,
in T ′, let us call it B′k, is exactly the same as the corresponding sequent Bk in T , in
short form B′k = Bk, for any k = 1, ..., n, where n is the number of R!-applications in
T , T ′. Since the premise of the R!-rules decide, whether or not the derivation has a
loop, we can be sure that T ′ has no left prehistoric loop. !

Corollary 5.46. If T is a G3s∗-proof of the sequent Γ⇒ ∆, we gain a left-prehistoric-
loop-free G3s-proof T ′ of Γ ⇒ ∆, such that for every sequent D′ in T ′ we have that
D ⊆ D′, whereD is the corresponding G3s-sequent in T .

Proof. By Theorem 5.45 we are able to construct a left-prehistoric-loop-free G3s′-
derivation out of a G3s∗-proof. From Corollary 5.37 we know, that the left-prehistoric-
loop-free G3s′-proof itself, can be transformed into a left-prehistoric-loop-free G3s-
derivation. !

Theorem 5.47. If an S4-theorem φ is derivable in G3s∗, then there is an LP-formula
ψ, such that ψ◦ = φ and /LP(CS ⊗) ψ.

Proof. By the previous corollary we know that if ⇒ φ is derivable in G3s∗, we can
gain a loop-free G3s-proof of ⇒ φ. With Theorem 5.19 we obtain, that there is an
LP-formula ψ, such that φ is the forgetful projection of ψ, and ψ is derivable with a
non-self-referential constant specification in LP. !

Finally, we achieved to define a G3-system, the system G3s∗, where left prehistoric
loops do not occur. This was possible, since we eliminated every form of contraction
we observed in derivations from the systems G3s and G3s’. With the possibility to con-
struct a G3s-proof out of a derivation from G3s∗, we can indirectly apply Yu’s main
theorem to the class of S4-theorems, deducible in the system G3s∗. Since the incom-
plete system G3s∗ is still sound with respect to S4, the system can be used to represent
a non-self-referential fragment of modal logic S4. If an S4-theorem φ is derivable in
the system G3s∗, there is a realization of φ, which can be derived in LP with a non-
self-referential constant specification. Thus, the criterion for an S4-theorem calling for
a self-referential constant specification, which Yu obtained from studying prehistoric
phenomena in G3s-proofs, can be complemented by a second one. In addition, we
found a source of the appearance of prehistoric loops: it is the embedded contraction
in the L!-rule of the system G3s, and the hidden contraction in the context-sharing
formulation of the two-premise rules of the systems G3s and G3s’.
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6 Conclusion
In this thesis, we analyze the strategy pursued by Troelstra and Schwichtenberg in
[TS00] to define a weakening-, contraction- and cut-free sequent system, a so called
G3-system, for classical (propositional) logic and S4. In the section about S4, we
introduce a modified version of the G3-system for S4, the system G3s’. For this sys-
tem, contraction is not dp-admissible and therefore the system is incomplete. The
example of G3s’ represents the importance of the dp-invertibility of the rules, for the
dp-admissibility of contraction.
In chapter 3, we apply the results from the previous analysis to construct a G3-system
for the justification counterpart of S4, the Logic of Proofs LP. We define the sys-
tem LPG3, which does not contain structural rules, but weakening and contraction are
depth-preserving admissible for this system. The sequent system LPG for LP intro-
duced by Artemov in [Art01] to prove completeness of LP, is a system of the G2-family
of Gentzen calculi. We can show that our system LPG3 is equivalent to LPG.
In the last section of this thesis, we introduce and continue the work of Junhua Yu in
[Yu09], and study prehistoric phenomena in different contraction-free sequent systems
for S4. R. Kuznets’ approach to study self-referentiality in [Kuz09] takes place on a
logical level that is to decide, whether or not a modal logic can be realized non-self-
referentially. In opposite to this approach, Yu considers the topic at a theorem-level.
He defines prehistoric phenomena in G3s-proofs and shows that left prehistoric loops
are necessary for self-referentiality. This is the initial point for our considerations.
We retrieve the source of left prehistoric loops in G3s-derivations to lie in the embed-
ded contraction of the L!-rule, and therefore we apply Yu’s machinery of prehistoric
phenomena to the system G3s’, where contraction is no more implemented in the left
box-rule. It turns out that this modification is not enough to avoid prehistoric loops in
G3s’-proofs. Although we can prove that within a single branch of a G3s’-derivation
loops cannot occur, they still appear in the whole derivation. The reason therefore is
that there is still a form of contraction present in G3s’, namely in the two-premise rules.
Avoiding this form of contraction by replacing the two-premise rules (L∨, R∧, L→) by
their context-splitting formulation leads us to the system G3s∗, where prehistoric loops
actually do not occur. By finding a way to transform G3s∗-proofs into G3s’-proofs, and
G3s’-proofs into G3s-proofs, we can prove that G3s∗ represents a non-self-referential
fragment of S4.
There is a very interesting question concerning the system G3s’, which is not answered
in this thesis: The examples of G3s’-derivations with a left prehistoric loop occurring,
are very constructed and it seems to be possible that the loops occurring in G3s’-proofs
are not necessary. So is it possible to find a loop-free G3s’-derivation for all theorems
of G3s’? If this question cannot be answered positively, there is an even more inter-
esting question to pose: Does G3s’ represents the fragment of S4, whose realization is
calling for self-referentiality, but not for direct self-referentiality? There is one behav-
ior of prehistoric families in G3s’-derivations, which argues for the second claim to be
true. In G3s’-proofs, any principal positive family fi of boxes cannot be a left principal
family of itself, thus i ⊀L i. Intuitively, i ≺L i is how we imagine ourselves direct self-
reference represented by prehistoric phenomena, and i1 ≺L i2 ≺L ... ≺L in ≺L i1 would
be the corresponding visualization of non-direct self-reference. In G3s-derivations,
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there are both types of loops occurring, in G3’-derivations, the ”direct” form of visual-
ized self-reference within prehistoric phenomena is proved not to occur.
Another conjecture, which is already mentioned in the conclusions of [Yu09], has not
been proved yet. There is supposed that if all G3s-proofs of an S4-theorem φ have
left prehistoric loops, then any realizations of φ will necessarily call for self-referential
constant specifications, thus it is unknown whether a left prehistoric loop is sufficient
for self-referentiality.
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